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Abstract. In this paper, we develop the machinery of exterior differential forms, more
particularly the Goursat normal form for a Pfaffian system, for solving nonholonomic motion
planning problems, i.e. planning problems with non-integrable velocity constraints. We
apply this technique to solving the problem ofsteering a mobile robot with n trailers. We
present an algorithm for finding a family of transformations which will display the given
system of rolling constraints on the wheels of the robot with n trailers in the Goursat
canonical form. Two of these transformations are studied in detail. The Goursat normal
form for exterior differential systems is dual to the so-called chained form for vector fields
tbat we have studied in our earlier work. Consequently, we are able to give the state
feedback law and change ofcoordinates to convert the iV-trailer system into chained form.
Three methods for steering chained form systems using sinusoids, piecewise constants and
polynomials as inputs are presented.

The motion planning strategy is therefore to first convert the JV-trailer system into
chained form, steer the corresponding chained form system, then transform the resulting
trajectory back intotheoriginal coordinates. Simulations andframes ofmovie animations of
the JV-trailer system for parallel parking and backing into aloading dock using this strategy
are also included.
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JV-TRAILER PROBLEM

1. Introduction

In the past few years there has been a great deal of interest in the generation of
motion planning algorithms for robots with nonholonomic ornon-integrable velocity
constraints in cluttered environments. These constraints on the instantaneous veloc
ities that can be achieved arise from the kinematics of the drive mechanisms of the
carts. This work has been a departure from the traditional robot motion planning
(see for example [6, 15, 18]) which concentrated on understanding the complexity
of the computational effort associated with planning trajectories for robots (with
no constraints on their instantaneous velocities) which would avoid both fixed and
moving obstacles. Unfortunately the motion plans arising from these more tradi
tional methods often required sideways motion of robot carts with wheels, and as
was pointed out by Laumond, most mobile robots are not on castors [19, 20].

In this paper, we consider and solve the motion planning problem for a system
consisting of a car-like mobile robot pulling n trailers. This system has been an
important canonical example for the work on nonholonomic motion planning ever
since it was posed in [22, 28]. The nonholonomic constraints for this system arise
from constraining each pair of wheels to roll without slipping. Strictly speaking,
if an axle has a differential that keeps the pair ofwheels rolling without slipping,
then each wheel turns a different amount in accordance with a simple geometric
relationship called the Alexander-Maddocks condition [1]. In our system we will
neglect this and model the wheels on an axle as being parallel.

The system of a car with n trailers has been viewed as a canonical example
because each trailer adds one dimension tothe state space ofthe system (represent
ing its angle with respect to the inertial frame) and one nonholonomic constraint.
Regardless of the number of trailers attached, the general system always has two
degrees of freedom, corresponding to thedriving and steering directions of the front
car. It has been shown that every point in the state space is reachable, i.e. that the
system is completely controllable [22]. The question that is answered in this paper
is one ofconstructive controllability; explicit open loop controls for steering the car
with n trailers from an initial to a final position are given.

We first give abrief description ofsome ofthe previous work on this problem. A
more detailed review ofthe general nonholonomic motion planning problem can be
found in [29] or in arecent collection ofpapers [24]. A more detailed description of
the JV-trailer problem and its variations can be found in [21].

Barraquand and Latombe [2] proposed a planner for cars with trailers in a clut
tered environment, with an attempt at finding onewith a minimal number of back
ups. The main drawback to their approach was that it required a discretization of
the statespace followed by an exhaustive search of all possible directions the robot
could go at each point. Consequently, the method became computationally infea-
sible for a large number of trailers. The method, however, worked well in a very
cluttered environment since the presence ofmany obstacles drastically reduced the
number ofsearch directions. Related to this work is that of Divelbiss and Wen [8]
which uses gradient descent in a discretized input space. Obstacles can be incorpo-
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rated into their method using potential fields. The convergence properties of their
methods are currently under investigation.

Reeds and Shepp [30] proved an interesting result onthe minimum length feasible
paths for arobot of the Hilare type with bounded turning radius. They showed that
the optimal length path belonged to a family of paths that consisted of segments
of straight lines and arcs of circles. It seems doubtful that such a method could be
generalized easily to a car with n trailers.

A paper by Murray and Sastry [29] studied motion planning for nonholonomic
systems, and focused attention on a specific class of systems in so-called "chained
form":

Xi = U\

&2 = V>2

Xz = XzUi

3» = a?n-iUi.

This class of systems was inspired by some early work of Brockett [3] on optimal
control of "canonical systems'*. In [29], we gave sufficient conditions for converting
systems into chained form, and an algorithm (using sinusoids at integrally related
frequencies) for steering chained form systems. The theory was used to transform
the front-wheel drive car, a car with one trailer, and a hopping robot into chained
form, and to find feasible trajectories for these systems using the sinusoidal steering
algorithm. However, the car with two trailers did not fit the sufficient conditions
and was left an open problem. Recently Sordalen [32] showed that the system of
the car with n trailers could be put into chained form using the coordinates of the
nth trailer (rather than those ofthecab) for parameterizing the configuration space
of the system.

Fernandes, Gurvits and Li [9] used numerical methods for solving constrained
optimal control problems associated with nonholonomic motion planning problems,
using a perturbation (of the cost functional) to make the singular optimal control
problem regular. In other work [10], they also suggested the use of input sinusoids
(as basis functions) in a Ritz approximation algorithm for steering nonholonomic
systems.

Sinusoids were also used in a method proposed by Sussmann and Liu [33], see
also Gurvits and Li [14]. Their method was completely general in that it applied
to any controllable nonholonomic system, and used asymptotically high frequency,
high magnitude sinusoids to achieve convergence. This method was applied to the
system of Hilare with two trailers in [35], but the paths generated were highly
oscillatory and impractical, owing to their use of high magnitude and frequency
sinusoids.

Divelbiss and Wen [8] have explored a computational approach to the N-trailer
problem, in which they discretize the system and use gradient descent in the (dis
cretized) input space to generate a feasible path. Convergence properties of their
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method are currently under investigation, but the algorithm hasdemonstrated good
performance in simulation. They are also able to incorporate obstables into the
problem formulation, using potential field methods.

Several other methods have been proposed which used piecewise constant inputs
[16, 17, 26]. All of these worked best in the cases where the control Lie algebra is
nilpotent. Their extension to systems whose control Lie algebra is not nilpotent is
not fully satisfactory, requiring a large number of steps to come close to the goal
point.

Our current paper is some what different in style from most of the previous work.
Instead of focusing onthe directions in which the system is allowed to move, namely
the two vector fields which correspond to the two degrees of freedom of the system,
wehave defined the system from the constraints on its velocity. That is, instead of
looking at the control system

* = 9i(x)ui + g2(x)u2

and the distribution spanned by the input vector fields A = {gug2}, we consider
the exterior differential system orthogonal to this distribution, namely J = Ax =
{a1,... ,an"2}. In the context of motion planning, this is in some sense a very
natural framework since each a* is a one-form defined on the tangent space to the
configuration space, and represents the constraint that the wheels on the iih axle
must roll without slipping.

This system J is called a Pfaffian system (of codimension 2); such exterior differ
ential systems and their properties were first studied by Pfaff in the early 1800's.
There exists alarge body ofwork on Pfaff's problem in the literature (see [4] for a
historical overview). The formulation of the JV-trailer problem as an exterior dif
ferential system allows us to draw on classical results by Goursat, Engel, Cartan,
and otherson classification and canonical forms. Most of the relevant results in this
area are presented in abbreviated fashion in [4] and are reviewed in Section 2 of this
paper. The normal form for Pfaffian systems of codimension 2 that was proposed
by Goursat is in fact the dualof chained canonical form as defined above. As in the
work ofS0rdalen, the calculations for the Goursat normal form are simplified quite
considerably by using the coordinates of the last trailer instead of those of the cab
to parameterize the configuration space of the multi-trailer system.

After the crash course on exterior differential systems in Section 2, we examine
the Pfaffian system associated with a mobile robot towing n trailers. We show in
Section 3that this system can be converted into Goursat's normal form or equiva-
lently chained form. Section 4is devoted topresenting methods for steering systems
in chained form. Three different methods are presented using as inputs sinusoids,
piecewise constant inputs (as in [26]) and polynomials. Finally, we apply some of
these steering methods to the JV-trailers example, and display the results in Sec
tion 5. There are movie animations oftwo ofthe trajectories; a two-trailer system
can be seen parallel-parking by viewing the upper right-hand corner of the odd
numbered pages (from the front ofthe paper to the back), and this same system
backing into a loading dock can be seen in the upper left-hand corner of the even
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numbered pages (from the back of the paper to the front).

2. A Crash Course on Exterior Differential Systems

In this section we give a review of the tools available from the studyof exterior
differential systems and show how to apply these tools to the problem of finding
a feedback transformation which converts a system into chained form. We present
only a verybriefreview of the necessary tools here, concentrating on the computa
tions that must be performed. A much more detailed description can be found in
the monograph by Bryant et al. [4].

2.1. Exterior algebra. Let V be a vector space over R, which we also refer to
using the notation A1. We define a new vector space A2 by defining the wedge
product as a skew-symmetric bilinear map which satisfies:

(aiai + a2a2) A0 = afax Af3) + a2(a2 A/?)
a A(&A + b2p2) = &x(a Aft) + b2(a Aft)

aAa = 0 (*'
a A /3 = -p Aa.

That is, Ais a bilinear, associative, distributive, non-commutative product mapping
A1 x A1 -+ A2. If {at} is a basis for A1, then at A<7,-, 1 < i < j < n is a basis
for A2. It follows that the dimension ofof A2 is (2). An element of A2 is called a
two-vector.

In a similarway, wedefine a p-vector 0 € Ap bytaking the wedge product between
p one-vectors and using the rules

(act + 6/3) Aa2 A•••Aap = act Aa2 A•••Aap + bfl Aa2 A•••AOp
ai A•••Aap = 0 if any a,- = ay,%̂ j

ai A•••Aap changes sign if any two at are interchanged.

Ap consists of all pth order exterior products and has abasis given by {ahl A•••A(Thp]
where {(7,} isa basis for A1 andthe /&,-'s areordered. Ap isa vector space ofdimension
(p). In particular, dim An = 1anddim A* = 0ifk> n. For completeness, we define
the set of zero-vectors as A0 = R.

The wedge product is a very powerful toolwhich can be used to great advantage
in calculations. We will make frequent use of the following facts:

Proposition 1. The vectors Vi,..., vp € A1 are linearly dependent if and only if
Vi A • • •A vp = 0.

Corollary 1.1. Let £,v{ € A1. J/(Aa;1A"-A«p = 0 then
p

| =^a,Vi a,€R.
»=i
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Just as in the caseof polynomials, it is often desirable to speak ofa vector ofmixed
order (or unknown order). Using the wedge product, one can define an algebra over
the set of exterior forms. Let A = A0 © A1 © •••© An and define multiplication
between two elements of A using the wedge product. The wedge product is a
bilinear, associative, distributive, skew product which maps Ar x A* -*• Ar+* and
hence A x A —• A. We say an element £ € A is homogeneous of order p if f € Ap;
i.e. it is a p-vector. A exterior form is non-homogeneous if it has components of
different orders.

If V is a vector space of dimension n, its dual, V*, is also a vector space of
dimension n. The exterior product over V* can be used to form the vector space
Slp(V) := AP(V*). An element a € flp is called a p-form.

2.2. Differential forms. Given a manifold M ofdimension n, the tangent space
of M at a point a; is a vector space of dimension n, denoted TXM. The vector
space AP(TXM) consists of all p-vectors constructed from tangent vectors in TXM.
By attaching the vector space Ap(r,M) to each point x € M, we get a bundle
structure on M, which we write as AP(M). Similarly, the bundle QP(M) is defined
by using thedual space T*M. We call a element u € ftp(M) an exterior differential
p-form on M.

Relative to a local coordinate chart, we describe the tangent and cotangent bun
dles by choosing a local basis:

T,M = spa„{—,...,_}

T*M - span{da;1,...,dxn},

where

A p-form w on M can be represented in this basis as

w(s)= ^ w«1..^(*)(fe<IA...Aifa<F.
»!<•••<»

We say that wis smooth if the coefficient functions uh...ip are smooth functions of
x for any choice of coordinate chart.

Let Q(M) bethe algebra ofexterior differential forms on M. The exterior deriva
tive on Q(M) is the unique map d:Qr -• {T+1 which satisfies the following prop
erties:

(1) If / € ft°(Jlf) = C°°(M) then df = £ gdxt(relative to a local coordinate chart).
(2) If0<Eftr, <?£& then d(0A<T) = dBAi+(-lY9Ada.
(3) rf2 = 0.

These rules are extremely useful in computations.
We will make frequent use of the following lemma, which relates the exterior

derivative of a one-form to the Lie bracket between two vector fields.
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Lemma 2. Let u € ftJ(M) and letX andY be smooth vector fields on M. Then

dw(X,Y) = Xw(Y) - Yu(X) - u([X,Y]).

Proof. It suffices to show that the lemma is true for a basis element, and hence for
w = fdg. On the one hand, we have

aw(X,Y) = (dfAdg)(X,Y)
= df{X)dg(Y)-df(Y)dg(X)
= X(f)Y(g)-Y(f)X(g).

Furthermore,

Xu(Y) - Yu(X) - u([X,Y])
= X(fY{g)) - Y(fX(g)) - f(XY(g) - YX(g))
= X(f)Y(g)-Y(f)X(S),

and the lemma is proved. •

This lemma gives the following version of Frobenius's theorem.

Theorem 3 (Frobenius). Let A be a C°° distribution of dimension k on M, an
n-dimensional manifold. A is involutive if and only if there exist n —k linearly
independent one-forms wi+1,...,wn which vanish on A and satisfy

n

aw{= Y, 0j. Aw> i = fc +l,...,n (2)

for some set of one-forms (K.

Proof. The proof follows from application of Lemma 2 and Frobenius' theorem for
vector fields. Let X, Y be two vector fields in A. Then

[X,Y]€A <=» u>i([X,Y]) = 0 t = ib + l,...,n

since the w's annihilate A. Now applying Lemma 2 we have

[X,Y]€A <=> -awi(X,Y) + Xwi(Y)-Yu>i(X) = 0
<=^ dwi(XiY) = 0 t = jfe + l,...fn.

It follows that du% must have the form in equation (2) since du is annihilated on all
vectors X, Y € A and {uk+1,..., wn} form a basis for the space of one-forms which
annihilate A. •
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2.3. Pfaffian Exterior Differential Systems. Formally, an exterior differential
system is given by an ideal 1 c ft(M)tnat is closed under exterior differentiation.
Recall that an ideal J satisfies

a6l,i9€ft(M) a A (5 € I.

We will be primarily interested in the special case of exterior differential systems
which are generated by a set of nonholonomic constraints and wefocus on that case
here.

A Pfaffian system is an exterior differential system which is generated by a set
of linearly independent one-forms. Let J be a codistribution spanned by a set of
linear independent one-forms {a**}, i = 1,..., 5. The ideal generated by J is

I = {/} = {ff€ft:<7Aa1-Aa'=0}.

For an ideal generated by a set of one-forms, each element in the ideal has the form

£=I>;0'"Aai

for some 9j € ft.
It is also possible to rephrase Frobenius's Theorem in a concise way using ideals.

Let I be the ideal generated by {o1,...,a'} and write dl for the set consisting of
the exterior derivative ofall elements ofI. We say that I is integrable if there exist
functions hu...,h, such that J = {dhu...,dhs}. The Frobenius theorem asserts
that the following set of relationships hold:

J is integrable «<=>• dl c I

<$=$• da* Aa1 A •••Aa8 = 0

<=* da' =£0JAoy forsome0j,i=l,...,3 ^

<*=>> do? = 0 mod J.

The last relationship in equation (3) uses the notion of congruence. Given two
forms o>, £ e ft, we write o> = £ mod J if there exists an exterior form n € I such
that u = £+ n. If / is a set ofone-forms (and hence not an ideal) then we write
w= £ mod / if there exist exterior forms a € / and n€ ft such that w= £+ nAa.
It follows that if I is the generator set for an ideal J, then u mod I = lj mod I.
In the case that J is generated by one-forms {a,}, we will often make use of the
relationship

(j mod J = 0 «=*• w= Y $i Aa* for some 0,- € ft.

Although conceptually simple, mod-ing out bya set of one-forms can sometimes
require considerable effort. For example, given the expression

dx\ Adx2 + dx2 Adx$ mod dx3,
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it is easy to see that this is congruent to dxi Adx2. One merely sets all components
containing a factor of dx3 to zero. However, for the expression

(dxi + dx3) Adx2 mod dx2 + dx3

this simple prescription will not work. The one-form must be rewritten in terms of
an appropriate basis. For example, the above expression can be rewritten as

(dxi + dx3) A(dx2 + dx3) - dxx Adx3 mod dx2 + dx3

and this is clearly congruent to -dxx Adx3. More generally, to compute w mod
or1,..., a', one must rewriteu> in terms of a basis whichincludes the a* '6aselements.

2.4. The derived flag. Let I = spanfw1,.. .,w5} be a smooth codistribution on
M. The exterior derivative induces a mapping 6 :1 -+ ft2(M)//:

6 : A «-• dX mod I € ft2(M).

The mapping 6 is a linear mapping over C°°(M):

6(f<* + gP) = dfAa + fda + dgAp + gdp modi
= fda + gdfi mod J

= f6(a) + g6((3).

It follows that the kernel of 6 is a codistribution on M (i.e. at each point p€ M,
the kernel of 6 is a linear subspace of T*M). We call this subspace I^\ the first
derived system of I:

/(1) = ker 6= {A € J: dX mod / =0}.

We can represent /W using a set ofone-forms, but it is important to note that the
basis for /W may not be a simple subset of the basis for I. Linear combinations of
basis elements (over the ring of smooth functions on M) must be searched to find
a basis for the derived system.

Since /W is itself aPfaffian system, we can continue this construction and gen
erate a nested sequence of codistributions

j =j(0)D/U)D..o/w (4)

If the dimension of each Jw is constant, then this construction terminates for some
finite integer JV. In this case, we call equation (4) the derived flag of J and JV the
derived length.

The derived flag describes the integrability properties of the ideal generated by
J. If / is completely integrable, then by Frobenius's theorem we have I& = i<°),
i.e. the length ofthe derived flag is zero. In fact, JW is always integrable since by
definition dlW mod /<*> = 0. /W is the largest integrable subsystem contained
in I. Thus if JW is not empty, then there exist functions hu...,hr such that
{dhi} C {/}. In the context of control theory, this means that the system is not
controllable since there exist algebraic functions which provide a foliation of the
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Figure 1. Penny rolling on a plane. The state space is defined
by the (si,.ft) position of the penny, x3, the angle of the penny
with respect to the reference frame, and x4 the amount the penny is
rotated with respect to the vertical.

state space and it is impossible to move from one leaf of the foliation to another.
The converse of this controllability result is provided by Chow's Theorem.

Theorem 4 (Chow). Let I = {a1, ...,a'} represent a set of constraints and as
sumed that the derived flag of the system exists. Then, there exists a path x(t)
between any two points satisfying a*(x)x = 0 for all i if and only if there exists an
N such thatlW = {0}.

Example 1. Consider the kinematic model ofa penny rolling on a plane, as shown
in Figure 1. Let x € R4 denote the configuration of the penny, with (xux2) being
the location of the penny on the plane, x3 the angle that the penny makes with a
fixed line on the plane, and x4 the angle of a fixed radial line on the penny with
respect to the vertical. We take the radius of the penny as 1. The constraints for
the penny are that it roll in the direction it is pointing, with no slipping:

a1 = cosx^dxi + s'mx3dx2 - dx4
o? = sinx3dx\ —cos x3dx2.

The exterior derivatives of a1 and a2 are given by

da1 = - sin x3 dx3 Adxx + cos x3 dx3 Adx2
da2 = cos x3 dx3 Adxt + sin x3 dx3 Adx2.

It is easy to check that the following relationships hold

da1 Aa1 = -dxx Adx2 Adx3 + cos x3dx2 Adx3 Adx4 - sin x3dxx Adx3 Adx4
da1 A a1 Aa2 - 0

do? Aa1 Aa2 = -dxx Adx2 Adx3 Adx4 ^ 0,

(5)

(6)

(7)

(8)



10 TILBURY, MURRAY, SASTRY

and hence the derived flag has the form:

J<°> = {a\a2}

J(1) = {a1} (9)
I<2> = {0}.

The dimension of the derived flag is (2,1,0), implying that the system is completely
controllable.

In control theory, Chow's theorem is usually statedby asking that the involutive
closure of the distribution I1 span the tangent space at each point x € M. The
connection between the Lie algebra formulation of Chow's theorem and the exterior
differential system formulation is made with the following lemma.

Lemma 5. IfI = A1 then I& = (A + [A, A])1.

Proof. Follows from Lemma 2. Q

This lemma allows us to compute the derived flag for a system given the dis
tribution A = I1. Define the nested set of distributions E0 C Ex C ••• C EN
as

E0 = A

Ei = Ei-i + [£7<_i,J5j_i].

This sequence terminates if the dimension ofeach E{ is constant, and it follows from
Lemma 5 that /W = Ef.

Remark 1. When doing computations with exterior differential systems, it is con
venient to choose a basis of one-forms whose structure matches that of the derived
flag. We say that a basis {a*} is adapted to the derived flag if

^Ci) = {a1 «•-}.
where s» is a strictly decreasing sequence of integers. In other words, an adapted
basis is one in which the derived systems are calculated by dropping elements from
the end of the basis. An adapted basis can be calculated by computing the de
rived flag and then choosing the basis elements starting with a basis for jC*-1) and
proceeding backwards.

2.5. PfafFs problem and EngePs theorem. The simplest type of normal form
for a nonholonomic system involves finding a normal form for a single constraint.

Theorem 6 (Pfaff's problem). Suppose a is aone-form which satisfies (da)r+1A
a = 0, (da)r Aa^O. Then there exist coordinates such that

a = dxi -r x2dx3 -\ \- x2rdx2r+1.
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The proof uses a number of tools that are beyond the scope of this paper. In the
r = 1 case, the proof reduces to proving that there exist two functions fx and f2
which satisfy

da Aa Adf1 = 0 aAdfi^O
aAdf1Adf2 =0 and dftAdf2^0. (10)

Given f\ and /2, a can be scaled such that

ol = df2 + gdfi =: dxx + x2dx3.

The Pfafftheorem guarantees that these equations have a solution (it need not be
unique).

In the caseof a single constraint in R3, Pfaff's theorem shows that if the constraint
is non-integrable then the corresponding control system can be written in chained
form. This follows because if a is not integrable then daAa^O but (da)2 Aa = 0
by a dimension count. Therefore, we can apply Theorem 6 (with a relabeling of
coordinates) to conclude that

A basis for the right null space of this constraint is then given by

which is the chained form for two input vector fields in R3.
Engel's theorem applies to the case of two non-integrable constraints in R4.

Theorem 7 (EngePs theorem). Let I be a two-dimensional codistribution onR4
with dim/*1) = 1 and dim J<2) = 0. Then there exist local coordinates such that

I = {dU - &<%,<% - {,<%}. (ii)

Proof. Choose a basis I = {a1, a2} which is adapted to the derived flag. It follows
that da1 Aa1 ^ 0 and (da1)2 Aa1 = 0 (by dimension count). Hence we can use
Pfaff's theorem to find coordinates such that a1 = d$4 - {3d£i.

To determine &, we use the structure of a2. Since a1 € 7(1), we have da1 Aa1 A
a2 = 0. But da1 = -d£3 A d& andhence

a2 = a d{3 + bd£x mod a1.

Since a2 ^ 0, it follows that we can not have both aand 6= 0. We split the proof
into two cases.

Case 1: (a ^ 0). Since a2 is only determined mod a1, we are free to scale a2 by
any nonzero function. Hence

-a2 = d£3+-d{1 mod a1 (12)
a a v '
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and choosing £2 = -b/a yields a basis for the codistribution which is in Engel's
normal form. Notice that the basis is a transformed version ofthe original basis,
namely,

a1 = al = d£4 - fcdft

ot2 = -ct2 + Xax = d£3 - £2dtii

where Ais chosen such that equation (12) becomes an equality.

Case 2: (6^0). In this case we can scale a2 so that

-a2 = -d£3 + d£i mod c*i.

Defining £2 = —ajb gives the normal form

ai = <%A - £3<ffj

&2 = d^ - $2d£3.

It turnsoutthat this normal form isdiffeomorphic to Goursat form via thefollowing
change of coordinates:

% = -& a1 = dn4 - n3drji
na = ~d a2 = dn3 - n2dni.
V4 = ^4 - f16

Hence the transformed basis is in Engel's normalform. •

2.6. Goursat normal form. We now turn to the more general case of n - 2
constraints on an n-dimensional manifold M. Let J be a codistribution on M
whose derived flag satisfies dim/**) = n-t-2.

Theorem 8 (Goursat normal form). Let U be an open subset of Rn and I =
{a1,...,a*} be a collection of s = n - 2 smooth, linearly independent one-forms
defined onU. If there exists a one-form n ^ 0 mod / such that

da* = -ai+1 Air mod a1,..., 0/ i = 1,..., s - 1
da' 5* 0 mod / (13)

then there exists a set of coordinates £ such that

J={#»-{»-i#i,...,*s-6#i}.

A few comments on the statement of this theorem are in order. The conditions
of the theorem require the existence ofa special basis {a*} and a special one-form
7T. A quick calculation shows that the basis {a*} is adapted to the derived flag of
the system and hence if we start with an adapted basis, the real requirement is
the existence ofa one-form x which satisfies the congruences. Determining n can
involve a further scaling ofthe adapted basis which preserves the adapted structure
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(see Section 3.2 for an example). For most examples, tt can be determined by a
combination of physical insight and repeated guessing.

A complete proof of this theorem can be found in [4]. It can be summarized in
the following algorithm for converting a system into Goursat form (see [12] for the
feedback linearization version of this algorithm, on which this is based).

Algorithm 1. Given a codistribution / = {w1,.. .,wfl} with s = n - 2, the following
steps are required:

(1) Construct a basis / = {a1,...,a'} which is adapted to the derived flag.
Check the Goursat congruences to ensure they are satisfied for some 7r.

(2) It follows from the congruences that a1 and a2 satisfy da1 Aa1 A a2 = 0
and hence the proof of Engel's theorem can be used to find coordinates such
that

a1 = d£n - £„_!<*£!

This mayinvolve finding a new basis which preserves the adapted structure,
as well as a change of coordinates, to convert between the two normal forms
in the proof of Engel's theorem.

(3) The remaining coordinates are determined by simple differentiation. Given
& we determine &_i by algebraically solving the equation

an~i+1 = d£i +£_i#i mod a1,..., an'i+1.

The proof of Goursat's theorem is to essentially show that this equation
always has a solution.

Example 2. Consider again therolling penny from the previous example. The basis

or1 = cos x3dxi + sinx3dx2 —dx4
a2 = smx3dxi —cosx3dx2

/ = {<*', a2}

was shown to be a basis adapted to the derived flag.
Next, we search for a one-form ir which satisfies the Goursat congruences. Since

this system is low dimensional, the algebra needed to find ir is straightforward.
Define a3 and aA so as to complete the basis:

a3 = cos x3dxi + sin x3dx2
a4 =dx«.

7r must satisfy

da1 = -a2 A7r mod a1;

Setting 7r = A3a3 + A4a4, equation (14) gives

A3 = 0

A4 = l =^ 7T = dXn.

(14)
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We now proceed to apply the algorithm for converting the system to Goursat
form. In this case, only the Engel's step is required. We begin by solving Pfaff's
problem. The first partial differential equation to be solved is da1 Aa1 Adfi = 0,
which yields

(-dxi Adx2 Adx3 - sin x3dxx Adx3 Adx4 + cos x3dx2 Adx3 AdxA) Adfi = 0.

This equation has a trivial solution given by fx = x3. The second partial differential
equation, a1 A dfi A df2 = 0, then becomes

(cos x3dxi Adx3 + sin x3dx2 Adx3 + dx3 Adx4) Adf2 = 0,

which has a solution given by f2 = xx cosx3+ x2 sin x3 —x4.
Finally, we solve for the remaining coordinate by finding functions a and b such

that

a1 = adfi + bdf2.

This is a completely algebraic problem which has a solution given by

a = Xi sin $3 —x2 cos £3

6=1.

Combining all of these calculations, we define

£1 = «3

£3 = ~~$1 sin x3 + x2 cos x3

£4 = Xi cos x3 -r x2 sin x3 —x4

which gives a1 = d£4 —£3d£i.
We now define £2 by examining a2. From the proof of Engel's theorem we must

have

a2 = ad(3 + bd£i mod a1.

Performing all calculations in the original coordinates, this relationship becomes

smx3dxi —cosx3dx2 =

a(— sin x3dxi + cos x3dx2 —(xx cos x3 + x2 sin a^d&s) + bdx3 mod a1

from which it follows that a - -1 and b- -(xx cos x3 + x2 sin x3). This is case 1in
the proof of Engel's theorem and hence

£2 = b/a = (xi cos x3 + x2 sinx3)

and a2 = -a2 is the new basis element. This completes the change of basis and
change of coordinates, and the resulting system is in Goursat normal form.

A more complex example, the JV-trailer system, is the subject of Section 3.
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2.7. Converting systems to chained form. Chained form is dual to the Gour
sat normal form presented above. That is, a system with constraints in Goursat
normal form can always be written as a control system in chained form by choosing

d d

dxi dx3

02 =
d

dx2

+ Xn-l
d

dxn

which forms a basis for the distribution annihilated by /. Thus, we can formulate
the problem of finding a basis for the constraints which is in Goursat form as the
problem of finding a feedback transformation to convert a system to chained form

The Goursat congruences are somewhat unsatisfying since they require the exis
tence of a one-form ir. Necessary and sufficient conditions for the existence of such
a 7r, and hence for converting a set of constraints into Goursat normal form, were
presented in [27]. We summarize the main result here.

Let / = span{o;1,...,wa} be a codistribution on Rn and write A = I1 for the
distribution which spans the null space of the codistribution. We define two nested
sets of distributions:

E0 = A

Ei = E0 + [2?o, E0]
E2 = Ei + [EuEi]

F0 = A

Fi = F0 + [F0,F0]
F2 = Fi + [FuF0] (15)

Ei+i = Ei+ [Eu Ei] Fi+1 = Fi + [ft, F0].

Under the assumption that each distribution is constant rank, the two sequences
have finite length (possibly different).

The filtration {Fi} is the the onewhich usually appearsin the contextofnonlinear
controllability and feedback linearization. Inparticular, F{ consists ofall brackets up
to order i. The distribution Et also contains all brackets oforder i, but may contain
additional Lie products of higher order. This is due to the recursive construction of
E{, as opposed to the iterative construction of F{. The filtration Et is precisely the
sequence of distributions which is perpendicular to the derived flag of / = A1.

Theorem 0 ([27]). Given a 2-dimensional distribution A = I1 such that

dimEi = dimFi = i + 2 i = 0,...,n-2,

there exists a basis {a1,...,a'} for I which is in Goursat normal form.

This theorem allows us to completely characterize the set of systems which are
equivalent to a system in chained (or Goursat) form in the case that the relative
growth vector of the system is o = (2,1,..., 1). It can be shown that the JV-trailer
problem satisfies the conditions of Theorem 9 and hence it can be converted to
chained form.
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Figure 2. The mobile robot Hilare with n trailers.

3. The Motion Planning Problem for the N-trailer system

In this section, we define the Pfaffian system (set of one-forms which represent
the velocity constraints) for the JV-trailer problem and calculate its derived flag.
We then show how the system can be converted into either Goursat normal form
(following Theorem 8 and Algorithm 1) or its dual, chained form. Although the
calculations in this section assume a particular configuration of the mobile robot
and trailer system, we will show that our model is general enough to encompass
not only the specific choice we have made but also a front-wheel drive car pulling
trailers and the luggage trains found in airports.

3.1. The system of rolling constraints and its derived flag. Consider a
mobile robot such as Hilare1 with n trailers attached, as in Figure 2. Each trailer
is attached to the body in front of it by a rigid bar, and the rear set of wheels of
each body is constrained to roll without slipping. The trailers are assumed to be
identical, but to have possibly different link lengths L{. The x,y coordinates of a
midpoint between the two wheels are referred to as (xit y{) and the hitch angles
(all measured with respect to the horizontal) are §t. The connections between the
bodies give rise to the following constraints:

Xi = Xi-i - Li cos 9i
Vi = yi-i-LismOi, (16)

i= 1,2,..., n for the general case with n trailers. These constraints are holonomic
and will reduce the dimension of the configuration space, since the positions (xi,yt)
for i > 1 can be expressed in terms of xo,yOi0Oi... ,it. By symmetry, (z,-,t/,) for
i < n can also be expressed in terms of xni yn, 0n, Bn_u ... ,0{. For our purposes it
will be far more useful to use as configuration space variables thexty coordinates of
a point on the nth trailer and the n+ 1 hitch angles: xn, yn, 0n,... , 60 because the
calculations that follow are vastly simplified.2 We will refer to the state space as
x = (xn, yn,0n,'-. , 0i, 9Q). We have assumed that the bodies are connected between

JThe Hilare family of mobile robots resides at LAAS in Toulouse, see for example [7, 13].
2The intuition for this comes from the oft repeated dictum: "when backing up acar with

a trailer, keep your eye on the hind part of the trailer". Of course, the generalization to
this dictum is: when driving a car with n trailers keep your eye on the endpoint of the n1h
trailer
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the midpoints of the two sets of rear wheels; it should be noted that if the trailers
are hitched behind the rear axle, the equations will not simplify as shown here.

The wheels of the robot and trailers areconstrained to roll without slipping; this
implies that the velocity of each body in the direction perpendicular to its wheels
must be zero. We model each pair of rear wheels as a single wheel at the midpoint
of the axle, and state the non-slipping conditions in terms of coordinates, beginning
with the nth trailer:

0 = xn sin0n - yn cos0n. (17)

Equation (17) models the fact that the velocity perpendicular to the wheels is zero.
In the language of one forms we write this as

^fan^nA,... A) = Bm9ndxn - cos9ndyn. (18)
To write the other rolling constraints, we define vt to be the magnitude of the
velocity of the ith trailer. The direction of motion of the (i + 1)** trailer and
consequently the direction of t><+i, if its wheels are rolling without slipping, is along
the direction of the hitchjoining the (i +1)5* body to the ith body. Since the bodies
are linked together by rigid rods, it follows that the projection of vt onto the line of
the hitch is equal to v,+1. Thus, we have that

vi+i(x) = cos(0i+i - 0i)vt(x). (19)

Also, we have that the velocity of the nih trailer vn is given by

vn(x) = cos 9nxn + sin 9nyn. (20)

In the sequel we will need to use vn as a one form (i.e. we will need to use vndt)
and we denote this by abuse of notation as:

vn(x) = cos 0ndxn + sin 9ndyn. (21)

We may now recursively write down the rolling without slipping constraints for all
the trailers. The velocity of each trailer has a component due to the velocity vi+1
of the previous trailer and a component Li+i9i+i due to the rotation of the hitch.
The relative geometry of this situation is illustrated in Figure 3. The component of
t>,-+i in the direction perpendicular to the wheel base is vi+i sin(9i - 9i+x) and the
component of I,+i0l+i in this direction is Li+i§i+i cos(9t - 0i+1). If the i*A trailer
rolls without slipping then we must have

0 = Li+i9i+i cos(0i+1 - 9i) - vi+i 8m(9i+i - 9t). (22)

Dividing through the equation (22) by cos(0i+1 - 9{) yields the form constraint for
n - 1 > i > 0:

an+1-\x) = Li+id9i+i - tan(0<+1 - 0<>i+1 = 0. (23)
Note that we have used the one form version of vi+i in equation (23).

The forms a1(x),a2(x),..., an+1(x) represent the constraints that the wheels of
the nth, (n - 1)", ..., 0*h trailer (i.e. the cab), respectively roll without slipping.
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Figure 3. Showing the definitions of the angles and velocities of
the ith trailer

They are given by the formulas (23) with the recursion relations (19). Thus, the
Pfaffian system for the JV-trailer problem is:

7 = span{a1,a2,... ,an+1}. (24)

The following theorem gives the derived flag associated with this Pfaffian system.

Theorem 10 (Derived Flag for the JV-trailer Pfaffian system). Consider the
Pfaffian system ofthe N-trailer system (24) with the one forms a{ defined by equa
tions (18) and (23). The one-forms a{ are adapted to the derived flag in the fol
lowing sense:

J(0) = span{a1,a2,...,an,an+1}
J(1) = span-fa1,a2,... ,an}

i (25)
I<n> = spanfa1}

J(n+1) _ ^

Proof. The proof is by recursion starting from the bottom of the flag of (25). Indeed
for the first step, we compute da1 to be d(sm9ndxn - cos9ndyn), namely:

da1 = cos 9nd9n Adxn + sin 9nd9n Adyn
= (- cos9ndxn - sin 9ndyn) Ad9n
= -vn A d9n.

From Equation (21) it follows that da1 ^ 0 mod a1. This establishes the last two
steps of the derived flag above. For the preceding step, we note that the form a2 is
given by

a2 = Lnd9n - tan(0n - 9n_i)vn.
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This yields that d9n is proportional to vn mod a2. Consequently, we have that
da1 = -vn A d9n is equal to 0 mod a2. This establishes that

j(n-i) = Span{ai,tt2j
I<n> = spanja1} (26)

J(n+1) = {q}

For the ith step of the recursion proof, we assume that we have shown that

/<"> = span^1} (27)
!<»+») = {0}.

We need to show that da{ = 0 mod a1,..., a'"1,a*. To verify this it is useful to
have the following preliminary lemma:

Lemma 11. For the one forms vt we have that

dvn_i = 0 mod a1, a2,..., ai+2. (28)
Proof. Start first with dvn = d(cos9ndxn + Bin.9ndyn):

dvn = - sin9nd9n Adxn + cos 9nd9n Adyn
= (sin9ndxn - cos 9ndyn) Ad9n
= 0 mod a1.

Thus dvn = 0 mod a1.
From «„_! = vn sec(0n - 9n_x) it follows that

dvn_i = dvn sec(0n - 0n_i) + sec(^n - 9nmml) tan(0n - 9n.x)vn A(d9n - d9n.x).
The first term is zero mod a1 since dvn = 0 mod a1. The second term is zero mod
a2 since vn is proportional to d9n mod a2 and the third term is zero mod a3 since
vn is proportional to 9n-i mod a3. Thus, we have that

dvn-i = 0 mod a1, a2, a3.

Proceeding recursively, we have that

dvn_i = 0 mod a1,a2,..., a*"+2,

which completes the proof of the lemma. •

We will also need to make use of the relations:

mod a2= vt

d9{ = vn

d9n_i+2 = vn

mod an~i+2

mod a1.

(29)

These follow directly from the definition ofthe a1 in Equation (23) and the linear
dependence of the one-forms v,-, given in Equation (19).
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Continuing with the proofof the theorem, we now begin the calculation for

da1 = d(Ln-i+2d9n-i+2 - tan(0n_i+2 - 0n_1+i>n_i+2)
= - sec2(0n_i+2 - 9n-i+i)(d9n-i+2 - d9n_i+i) Avn_i+2

- tan(0n_i+2 - 9n-i+i)dvn_i+2.

This expression has three terms. By equation (28), we have that dvn.i+2 = 0
mod a1,... ,a\ Also by the proportionality of the d0t to vn (29) and the linear
dependence of the v^s (19), we have that d9n-i+2 Av„_,+2 = 0 mod a* and d0„_,+i A
v„_t+2 = 0 mod a*'"1. Thus, we have that da* = 0 mod a1,a2,..., a* which implies
that the derived flag has the form

/(-'+') = {a1 a%

as stated. •

We note that the J(n+1) = {0} implies that the JV-trailer system is completely
controllable (by Chow's theorem).

3.2. Conversion to Goursat Normal Form. In the preceding subsection, we
have shown that the ideal generated by a1,..., an+1 defined in equations (18) and
(23) is adapted to its derived flag in the sense of (25). It remains to check whether
the ax satisfy the Goursat congruences and if they do, to find a transformation that
puts them into the Goursat canonical form.

Theorem 12 (Goursat Congruences for the JV-trailer system). Consider the
Pfaffian system associated with the N-trailer system (24) with the one-forms a* de
fined by equations (18) and (23), repeated below:

a1(x) = sin9ndxn - cos9ndyn
a*(x) = Ln-i+2d9n-i+2 - tan(0n_,+2 - 0„_i+iK-.+2

t = 2,..., n + 1.

There exists a change of basis of the one forms a* to a% which preserves the adapted
structure, and a one-form ir which satisfies the Goursat congruences for this new
basis:

da* = ~dt+1A7r mod a1,...,a* i = l,...,n
dan+1 £ 0 mod J.

The one-form which satisfies these congruences is given by

7T = cos0nda:n + sin 9ndyni

and is equivalent to vnt the velocity form of the nih trailer.

Proof. The outline for the proof is first to determine a suitable one-form 7r from
the first Goursat congruence, da1 = -a2 A 7r. Then we construct the new basis
elements a% one at a time such that they satisfy the rest of the congruences. For
this example, we find that these new basis elements are multiples of the original
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basis elements, and since the original basis is adapted to the derived flag, the new
basis is also adapted.

We determine ir by following the same procedure as in Example 2. We complete
the basis of {a1,..., an+1} with

an+2 = cos0ndxn -f sin 9ndyn = vn
an+3 = d90.

Note that an+2 = vn, the velocity form of the last trailer. We then set 7r = Aian+2 +
A2an+3 and solve for Ai, A2 using

da1 = —a2 A ir mod a1.

Calculating the exterior derivative of a1,

da1 = cos 9nd9n Adxn +sin 9nd9n Adyn = d9n Avn, (30)
and then examining a2 Air,

a2Air = (Lnd9n - tan(0n - 9n_i)vn) A(Xivn + X2d9Q),
we see that if we choose Ai = 1, A2 = 0, then

a2 Air = Lnd9n Avn = Lndax.

We note here that we could have chosen Xt = -1/Ln, but instead wewill define a
new basis element a2 = -(1/Ln)a2. Then the one-form ir = vn will satisfy

da1 = -a2 A ir.

We now continue this procedure to find the rest ofthe transformed basis. Taking
the exterior derivative of a2,

da2 = d(-d9n +-±-tza(9n-9n-i)vn)

= j- sec2(0» " 0n-i)(d9n - d9n.i) A»fl-i tan(0n - 0n_i)dvn,
and noting that

vn Ad9n = 0 mod a2

dvn = 0 mod a1,

it can be seen that

Also, since

a choice of

** = -— sec2(0„ - 9n_i)d9n_i Avn mod a\a2.

a3 Air = Ln_id9n_i Avn,

1
a3 =

LnLn-l
sec2(0n - 9n_i)a*
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will result in the congruence:

da2 = -a3 Air mod a1, a2.

Since the new basis we are defining is merely a scaled version of theoriginal basis,
mod-ing out by ax or a1 is equivalent.

Continuing, we find

da3 =d(±sec2(9n - 9n_x)d9n_i - _t_Sec2(0n - 9n_i)tm(9n_i - 9n_2)vn_i).
Ln LnLn~1 (31)

Referring to Lemma 11 and Equation (29), we see that the following congruences
hold,

d9n A vn = 0 mod a2

d9n_i A vn = 0 mod a3

d9n A d9n_i = 0 mod a2, a3

dv„_i = 0 mod a1, a2, a3,

and that using these, Equation (31) can be reduced to

da3 = —-- sec2(0„-tf-.^sec2^.. ,-0_ n\d.9. « a «_ . mnd/v1 *2 /v3— sec2(0n - 9n„i) Bec2(9n_i - 0„-2)<f0n_2 Avn.i moda1, a2, a2

— sec3(0n - 9n_i) sec2(9n_i - 9n_2)d9n_2 Avn mod a1, a2, a3.

In the second expression we have written vn_! in terms of vn. Also, a4 Air =
Ln-2d9n_2 A vn, so if we define

^ = r T~ r sec3(0n - 9n_i)sec2(9n_i - 9n_2)a4,

then the congruence

da3 = —a4 Air mod a1, a2, a3

results.

In general, we assume that a* has been defined as

*' = L^L 8ec,"I(^»-i - *n)sec''-2(0n_2 - 9n.i) •••sec2(9n.i+3 - 0n_i+2)a\
•^n -Lin—i+2

Using the congruences

d9n-iAd9n_i+1 = 0 modai+2,ai+3
d9n_iAvn = 0 mod a*+2

dvn_i = 0 mod a1,..., ai+2,
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we can show that

d& =-rL-^—seci'\9n.i - 9n)seci-2(9n_2 - $n_t)
sec2(0n_i+3 - 0n_l+2)sec2(0n_l+2 - 0„_l+i)d0n_i+1 Avn_i+2
modoj1,^2,... ,a*

»-i
_ (-D

Ln" ' in-»+2
sec3(0n_i+3 - 0„-1+2)sec2(0„_<+2 - 0n_i+1)d0n_,+1 Avn
mod a1,a2,... ,a*

= - at+1 Avn mod a1,a8,..., fi\

All that remains now is to demonstrate that

dan+1^Q mod/.

From the above analysis, we know

mod a1,... ,an+1

which is nonzero. D

Now that we have shown that the one-forms a* do satisfy the Goursat congru
ences, we can follow the steps of the algorithm of Section 2 to find the coordinate
transformation that will result in Goursat normal form. Following Algorithm 1, in
step 2we look for possibly non-unique functions fuf2 which satisfy (10), namely

sec{(9n^ - 9n) sec%-l(9n_2 - 9n^)

da1 Aa1Adfi=0 a1 Adfi ^0
a1 Adfi Adf2 =0 ^ dfi Adf2 ^ 0.

23

(10)

Since a1 = sinMs„ - cos 9ndyn and da1 = - cos 9ndxn Ad9n - sin0n Ad9n, it
follows that da1 Aa1 = dxn Adyn Ad9n. Thus fx may be chosen to be any function
of xn,yn,9n exclusively. We now proceed to explain two different solutions of the
equations (10):
Transformation 1: Coordinates ofthe Nih trailer. In a choice motivated by
Sordalen [32] we choose fx = xn. Then, the second equation of (10) becomes

sin 9ndxn Adyn Adf2 = Q

with the proviso that dfi Adf2 ^ 0. A non-unique choice off2 is

h = yn.

For the changeof coordinates, we choose

Zi= fi(x) =xn
*n+3 = f2(x) = yn.
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The one form a1 = 0 may be written by dividing through by sin 9n as

a1 = dyn + tan 9ndxn
= dzn+3 —zn+2dzi,

so that

*n+2 = -tan0n.

By the proof of Engel's theorem, we now need to find a(x), b(x) so that:

a2 = a(x)dzn+2 + b(x)dzi mod a1
= -a(x)8ec2(9n)d9n + b(x)dxn mod a1.

But a2 = Lnd9n - tan(0„ - 0„_i)u„. Hence, we have that

and we may write

Now, we define

zn+l

sec20n ^ ' cos9n

a = dzn+2 -r^-dzi.
a(x)

— Kg) _ tan(fln -fl^.^cosfln
a(x) ~ Ln

The remaining coordinates are found by solving the equations

a* = dzn„i+4 - zn-i+3dzi mod a1,... , a*"1

for i > 2. The details are not particularly insightful and are omitted here.
Transformation 2: Coordinates of the origin seen from the last trailer.
Yet another choice for fx corresponds to writing the coordinates ofthe origin asseen
from the last trailer. This is reminiscent of a transformation used by Samson [31]
in a different context, and is given by

zx := fi(x) = xn cos9n + yn sin9n.

This has the physical interpretation of being the origin ofthe reference frame when
viewed from a coordinate frame attached to the nih trailer. It satisfies the first of
the equations of (10) simply by virtue ofthe fact that it is a function of xn, yn, 9n.
It may beverified that a choice of f2 (non-unique—we got it by guess work!) given
by

zn+3 := h - *n sin 9n - yn cos9n - 9nzx

satisfies

a1 A dfi Adf2 = 0.

The remaining coordinates z2,..., zn+2 corresponding tothis transformation may
be obtained from the same procedure as in the previous solution. The details are
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tedious.3 In the next subsection, we discuss yet another technique for obtaining the
coordinates for the Goursat normal form.

3.3. Conversion to Chained Form. In the previous section, we described a
method for converting the JV-trailer exteriordifferential systeminto Goursat normal
form. Recalling from Section 2 that the dual of Goursat normal form is chained
form, we now show how a similar procedure can be used to transform the the
nonholonomic control system corresponding to the JV-trailer system into chained
canonical form.

We note that an exterior differential system on W1 of codimension 2,given by

I={a\x),..., a"~\x)},
is dual to a two-input nonholonomic control system:

S : x = gi(x)ui +g2(x)u2l (32)

where the vector fields g^(x) span a 2-dimensional distribution A which is annihi
lated by the one-forms a%:

«*(*) •**(*) = 0.
When we transform an exterior differential system into Goursat normal form, we
only perform a coordinate transformation z = f(x). There is no input per se to
a formal exterior differential system, although we can speak of the two degrees of
freedom of the system, given by the distribution A = I1.

The procedure for transforming a nonholonomic control system such as (32) into
chained form requires both a coordinate transformation and state feedback. Al
though for the most general case, a state feedback is given by

u —a(x) + b(x)u,

for drift-free nonholonomic systems it is easily seen that a(x) = 0. (If this were
not the case, the state feedback would add a drift term to a drift-free system and
could not result in a chained form.) The purpose of the state feedback u= b(x)u is
therefore to transform the basis of the distribution A into chained form in the new
coordinate system:

°Zl °Z* fen ,w
_, v d (33)

In this section, we follow through the calculations for transforming the nonholo
nomic control system of the JV-trailer problem into chained form. Although some
of the details are very similar to what has already been presented in Section 3.2, we
want to highlight the distinctions between the exterior differential and the vector
field formulations of the system, and we feel that an involved discussion is merited.

3Iteaders interested in the details of the transformation may obtain it from the first
author by email or regular mail.
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First, we will find a basis for A = I1 and show that the two vector fields which
we choose as the basis have a physical meaning in themulti-trailer robotic system.
We then consider the problem of putting the JV-trailer control system into chained
form: given the two vector fields gug2 and inputs uuu2, with the system defined
as

x = gi(x)ui + g2(x)u2,

find a coordinate transform z = f(x) and an input transformation u = b(x)u such
that the system

z = gi(z)ui + g2(z)u2

is in chained form, i.e. gi(z),g2(z) are of the form (33). We present the two coor
dinate transformations which were defined in the previous section along with the
required input transformations, showing that as expected they result in a chained
form system, and we also demonstrate that these coordinate transformations are
local diffeomorphisms.

Proposition 13. Consider an N-trailer system with n+1 rolling constraints a* = 0,

a*(x) = Bm9ndx„ - cos9ndyn = 0
an+1-l(x) = Li+id9i+i-taji(9n.i-9i)vn.i = 0 i = 0,...,n- 1,

where the vt are as specified in (19). A basis for the distribution A which is anni
hilated by these one-forms {a1,..., an+1} is given by

9\ =

COS0n
sin0n

^-tan^!-^)

Tl IE* sec(0<-i - 9i) tan(0o - *i)
0

02 =

Proof. For the proof, we will derive the constraints a% in a different way than was
done in Section 3.1. The set of constraints that we use here comes from the condition
that the pair ofwheels on the ith trailer cannot slide sideways; see Figure 4 for the
definition of the variables associated with the iih trailer. The linear velocity of the
i body is v{ = x{ cos 9t + y{ sin 9{ and the velocity of the trailer in the direction
perpendicular to the wheels is vf- = x{ sin 9{ - yt cos 9t. The non-slipping constraint
requires that v/- = 0.

As stated in the beginning of Section 3.1, (s,-,»j) can be expressed in terms of
(3n,2/nA,-..,0<):

Si = xt+i + Li+i cos9i+i

Vi = Vi+i + Li+1 sin 0i+i

to determine that
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Figure 4. The i*ft body, showing the velocities. The velocity v{ is
defined to be in the same direction the wheels are pointing, and so
the velocity perpendicular to this direction, vj-, must be zero if the
rolling constriants are to be satisfied.
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vf- =xn sin 9i - yn sin9t - ^ it cos(0t- - 9h)9k.

Once again we will abuse notation and also use vf to refer to theone-form:
n

v{- =sin 9idxn - sin 9tdyn - ^ Lh cos(0t- - 9k)d9k.
i=i+l

Remark 2. The one-forms defined by these velocity constraints

w* := t*h.<+i = 0, t = l,...,n + l

are also adapted to the derived flag. Indeed, since the one-forms a* as defined in
Equation (23) are adapted to the derived flag, and the relations between the <J and
the a* are "triangular,"

a/= a'+ £4*',
for some coefficient functions c\, it follows that the «•" are adapted to the derived
flag as well.

Because {w1,... ,un+1} form an n+1 dimensional co-distribution fi on T*M,
there exists a 2-dimensional distribution A on M which is annihilated by fi. A
basis for this distribution is given by two linearly independent vector fields gug2
which satisfy:

u>%(x)-gj(x) = 0 Vf = 0,...,n, i = l,2.

Since none of the u{ have a term d90, one of thevector fields in A can be chosen to
be

d

92 = W0'
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It can be verified that choosing the other vector field

gi =cos9n— -rsm9n— +£y-tan(fc_1-flk) f[ sec(9^i - ftJj-
oxn Oyn k=1Lk .=]fe+1 dffk

will result in w* •g1 = 0 Vi. In a more familiar notation, these two vector fields are
written as

0i =

COS0n
sin0n

£tzn(9n-i-9n)

Tl II?=2 sec(ft-i ~ ft) tan(^0 - *i)
0

02 =

where the coordinates are written in the order x = (xn, yni 9n,..., 0O).
Although there are many different choices of gug2 which will span A, the two

which we have picked are natural in the sense that when the nonholonomic control
system is written as:

x = gi(x)ui + g2(x)u2

theinput functions have the physical meanings: «i = vn is the linear velocity ofthe
n* trailer, and u2 =u is the rotational velocity of the lead car. From a practical
point of view, we have control only on thevelocity v0 of the lead car given in terms
of vn by

v0 = sec(0o - 0i)sec(0! - 92) •••sec(^n_1 - 9n)vn.
This is merely an input transformation, and will not change any of the properties
of the chained form system. •

We will now derive thecoordinate transformations and changes ofinput required
to put the system into chained form, as was discussed in Section 2.7. Recall that a
system in chained canonical form is defined to be

ii = ux

z2 = u2

Z3 = Z2Ui

Zm — Zm-iUi.

We note that the functions zx(t) and zm(t) will completely define all the state
variables ofachained-form system,4 since the other m- 2states and the two inputs

4As this paper was being finished it was pointed out tothe authors that this situation is
referred to by Fliess et ai as flat outputs [11].
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can be determined from the equations:

Ui = Zi

* = ^i+i/tti i = m - 1,..., 2
u2 = z2.

Consequently, a coordinate transformation into chained form is completely defined
by thefirst and last coordinates ofthe chain, zx and zm, as functions oftheoriginal
coordinates x along with equation (34). (The fact that such a transform exists
follows from ourhaving verified the Goursat congruences for the a*' in the previous
subsection.) It does need to be checked that the transformation which results from
equation (34) is a valid diffeormorphism. In general, there are many possible trans
formations into chained form; two are presented here. These two are exactly the
same as those discussed in the previous subsection in the context of the Goursat
normal form.

Transformation 1: Coordinates of the Nth trailer. Originally proposed by
S0rdalen [32], and also used in the previous section, is as follows:

Zi = xn

Zn+3 = yn-

The corresponding input transformation is:

ui = zi = cos9nvn = cob(90 - 9i)cos(9x - 02) **•cos(^n_1 - 9n)v0.

The other input u2 = z2 is a quite complicated function ofx,v0,u for the general
case with n trailers. However, it is easily verified that

implying that the input transformation u = b(x)u is nonsingular. The remaining
coordinates z = f(x) are defined using equation (34); Mathematica code which
generates these coordinates symbolically is given in Appendix A.

It can be checked that this coordinate transformation is valid by looking at the
Jacobian,

[-] =

" 1 0 0 •• • 0]
0 1 0 •• • 0

0 0 * 0

0 0 * *
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where the coordinates are written in the order: x = (xn,yn,9n,9n_u... ,0O), z =
(zi,zn+3i zn+2,..., z2) and *represents any nonzero function. The ordering of the
z coordinates was chosen to put the Jacobian matrix in a lower-triangular form,
thereby highlighting its nonsingularity. That the Jacobian is nonsingular implies
that the map / : x -*• z is a local diffeomorphism.
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It should be noted that this coordinate transformation is only defined locally.
Since its definition requires a division by uu if any of the factors in «i are zero,
the transformation is undefined for that particular configuration. For example, if
9n = 7r/2, corresponding to the last trailerbeing at right-angles with the coordinate
frame, this coordinate transformation is nolonger valid. In addition, if the ith trailer
is jack-knifed, that is to say, for some 1 < i < n, 9t = 9t.i ± ir/2, the coordinate
transformation is also singular.
Transformation 2: Coordinates of the origin as seen from the last trailer.
Another coordinate transformation which also has some singularities but will allow
the trailer to be at any orientation with respect to the coordinate frame, was also
detailed in the previous section in the forms version; we define it here as:

Zi = s„cos0n + 2/nsin0n

zn+3 = xn sin 9n - yncos9n -9nzx.

The input transformation and therest ofthecoordinates follow from Equation (34),
Mathematica code which generates both the coordinate and input transformations
is given in Appendix A. Once again, it canbe verified that the input transformation
has the form:

\ v>2 ) Lb2ti(x) b2>2(x) J V w )

with &i,i and 62i2 nonzero functions ofa. This implies that the input transformation
is nonsingular.

We can show that this coordinate transformation is nonsingular by looking at its
Jacobian:

®-

" COS0n sin0n * 0 0 "

sin#n —cos 9n *
•

' .

0 0 -1 0 0

0 0 * * 0

0 0 * * *

where the coordinates are written in the order: x = (xn,yn,9n,9n-u... ,90) and
z —(zi,zn+3, zn+2,... ,z2) and * represents any nonzero function. Again, since
the Jacobian is nonsingular, the map / : x -*• z is a local diffeomorphism. The
singularities in this transformation also occur when division by Ui is undefined.
This happens when the expression

Ln + (ycos 9n - x sin 9n) tan(0n - 9n_x) = 0,

and also when any of the trailers is jack-knifed.
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Figure 5. The front-wheel drive car with n trailers. This model is
similar to that of Hilare 2 with an extra axle added to the front of
the first body in the chain.

3.4. Generalizations. Thus far, we have concentrated our attention on the ex
ample of the Hilare mobile robot pulling a chain of trailers. In this section we
demonstrate that this model is equivalent (under a coordinate transformation and
state feedback) not only to the more familiar system of a front-wheel drive car
pulling trailers, but also to the luggage trains commonly found in airports.

The model ofthe front-wheel drive car is shown in Figure 5. In comparison with
the Hilare model, we have added another axle to the front body of the chain, and
a variable <f> representing the angle of the front wheels with respect to the car. The
length of the wheelbase of the lead car is defined to be L0.

The equivalence between the two models is most easily seen by looking at the
form constraints. Each constraint corresponds to one axle rolling without slipping.
Hilare with n trailers has n+ 1 axles; the car with n trailers has n+ 2 axles, and
its Pfaffian system is therefore equivalent to that of Hilare pulling n+ 1 trailers.

Of course, the states and inputs that we define for the car system are slightly
different. By convention, we define the angle of the front axle relative to the car
instead of relative to the coordinate frame. This angle <f> is merely 90 - 9X on the
Hilare system. The velocity input is the same, assumed to be the linear velocity
of the first body (we can define it at either the front or rear axle depending on
whether our car is front-wheel drive or rear-wheel drive), but the rotational input
is usually taken as u' = 4> the steering wheel velocity. Since in the Hilare case, we
can control the velocity of the first body w = 90, state feedback can be used to
reconcile these differences. As mentioned in the proof of Proposition 13, there are
many choices of vector fields orthogonal to a given Pfaffian system with each choice
having a different physical meaning.

The luggage carts used at most airports are also equivalent to the Hilare model.
Each trailer on the luggage cart train has two sets of wheels; the front axle can
spin freely about its center but the back axle is constrained to be aligned with the
trailer (see Figure 6). Here again we have defined the angles of the front wheels
with respect to each trailer, but looking at the form constraints it is easily seen
that the cab with n luggage trailers is equivalent to a front-wheel drive car with 2n
one-axle trailers. Again, a coordinate transformation is needed, since in the model
of the luggage carts we define the angle of the front wheels of the trailers relative
to the trailer instead of relative to the coordinate frame.
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Figure 6. A car pulling n luggage carts. Each trailer has two axles;
the front axle is free to spin about its midpoint but the rear axle is
constrained to be aligned with the body of the trailer.

4. Steering Chained Form Systems

Now that we have seen how to transform an TV-trailer system into chained form,
we examine various methods for steering chained form systems:

Zi = tti

i2 = u2
z3 = Z2Ui (35)

Zm = zm-\u\-

We assume an m-state system, and note that Hilare with n trailers has n+ 3 states,
a car with n trailers has n + 4 states, and a car with n luggage trailers has 2n+ 4
states.

The problem that we address in this section is: Given a system in chained form
with an initial state z° and a goal state zf, find some control inputs Wi(i),w2(t)
which will steer the system from z° to z5 after some time T. The application of
these results to the problem of steering the mobile robot with multiple trailers is
covered in the next section.

We present three methods to steer the chained form system:

(1) Sinusoidal inputs
(2) Piecewise constant inputs
(3) Polynomial inputs

4.1. Sinusoidal inputs. The first steering method that we consider uses sinu
soidal inputs. Steering chained form systems with sinusoids was originally proposed
by us in [29]. The method that we have developed here is different from the original
algorithm in that it steers all the states in one step, instead of one state at a time.

Given anm-state chained form system, it is easily seen that thefirst two states, zx
and z2, can be steered from their initial to their final positions using constant inputs
over any time period T. Ofcourse, the states z3,... , zm will drift as a consequence
of this.
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By direct integration, it may be verified that a combination of out of phase
sinusoids applied to the inputs,

tii(*) = a sinut u2(t) = p cos ut

overone period T = 2ir/u, will cause a motion in the z3 variable as follows:

Zi(T) = zi(0)
*2(T) = *2(0)

Zz(T) = *3(0)+g.
The states z4,...,zm will drift in some fashion. Further, using inputs with u2
having k times the frequency of ui, namely:

tii(t) = a sin ut u2(t) = /3 cos kwt

applied over one period T = 27r/w, will result (as may be verified directly by inte
gration) to be

Zi(T) = zi(0)

zk+i(T) = *fc+1(0)

zk+2(T) = zk+2(0) + ak0
k\(2u)k'

The intuition behind this steering scheme lies inthe different levels ofLie brackets.
If we consider the input vector fields gug2, we note that \gug2] = [0 010••-Of,
precisely in the z3 direction. Motion in this first level Lie bracket is generated by
cycling between the two input vector fields in acontinuous manner described by the
out of phase sinusoids. To get motion in the second level Lie bracket, \gu [gug2]] =
[0 0010••-0]T or equivalently the zA direction, the input u2 completes two cycles
for one cycle on ux. More generally, motion in the ad^2 = [0 •••1•••0]T or the
zk+2 direction is achieved by using k times the frequency of Ui on u2.

The Murray and Sastry steering algorithm is step-by-step: It first steers zuz2
to their final position using constant inputs, disregarding the other states. Then it
steers z3 to its desired final position using sinusoids, zuz2 will return to their final
values. Now z4 can be steered, and similarly on down the chain, until all states are
at their final positions. This is asimple algorithm that is easy to implement, but
can be time-consuming when there are many states to be steered.

We propose instead an "all-at-once" sinusoids method, combining all the frequen
cies on ti2 together in one step,

^i = ao + flisinorf

ti2 = 60 +bi cos u)t +b2 cos 2wt +•••+6m_2 cos(m - 2)u>t. (36)
It is no longer as simple to choose appropriate values for the parameters (a0, au b0,
•••, fcm-2) because of the drift that we were able to ignore when we considered
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each state individually. However, it is still possible to integrate the chained form
equations sequentially, finding zr(t),z2(t),z3(t),...,zm(i) which result from the in
puts (36) above. The state z(t) is a function of the initial condition z° as well as the
input parameters a0, au60,..., 6m_2. If we evaluate z(T), with T = 2ir/u>, all the
sinusoidal functions will evaluate to either 0 or 1. By setting z(T) = z* weget a set
of m polynomial equations in the (m + 1) input parameters (a0, aub0,..., 6m_2).
The following proposition guarantees the existence of solutions to these equations
at least locally around z°.

Proposition 14. Consider an m-state chained form system with initial and final
states z°, zs'. If\z°—zf\ < 6small, then there exist input parameters (a0, aub0,..., bm_2)
such that the inputs

tii = a0-\-ai smut

u2 = b0 + &i cos ut + b2 cos 2u)t -\ 1- 6m_2 cos(m- 2)ut

will steer the system from z° to z* in time T = 2ir/u.

Proof. Consider the map

&o : Rm -* Rm

which takes values in the parameter space (a0, b0,..., 6m) andmaps them to values
in the state space (z{,..., *£). We define ^o(a0,60,..., 6m) to be the value of z(T)
when the chained form system (35) is integrated starting at the initial condition z°
and applying the inputs (36) over the time period [0,T]. We choose ax ^ 0. We
will show that cf>zo is a local diffeomorphism by looking at its directional derivatives,
and demonstrating that the Jacobian of <f>zo is nonsingular.

Let {e,}^! be the standard basis for Rm and let e be small. Set ax ^ 0. Now
consider the input parameterized by eei,

Ui = e •{• ai sin ut u2 = 0.

Integrating the chained form equations and evaluating it at time T will give

M«i) = *° + [€T 0 KO"• o(e)]T
where o(e) represents terms that are of linear and higher order in €.

Now consider the input parameterized by ce2

«i = Oi sin ut u2 —e.

We integrate and evaluate at T as before,

M«2) = *° + [0 €T o(e)...0(€)]T.

In this case it may be verified that o(e) terms are linear in e. In general, for an
input parameterized by eek,

tii = ai smut u2 = ecos(k - 2)ut,
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Figure 7. The inputs and state trajectories for a six-state, chained
form system, steering from (-10,-7,-2,2,4,8) to the origin. The input
tii is sinusoidal of one period; u2 is a sum of sinusoids, of which the
highest frequency is 4u>.

the directional derivative of <j> in the ek direction is given by:

&.(«*) = *° + [0• •-0 p(e) o(e) ••.o(e)f,

where

?(<)=
Jb-2

(k - 2)\(2uf~2'

35

These m directional derivatives axe seen to be linearly independent; implying
that the Jacobian of <j>xo is nonsingular, and that <f>zo is a local diffeomorphism. Q

Remark 3. We have dealt with the overparameterization of the input (m + 1 pa
rameters: a0,ai,b0,..., 6m_2 and m states) by initially choosing a value for ax and
then solving the m equations for the remaining m input parameters.

We note here that by choosing a fixed value for au we axe requiring tix to go
through one period. Since ux roughly corresponds to the driving input in a mobile
robot system, paths planned using the sinusoidal method generally have one back
up or speed reversal, corresponding to the zero-crossing oftii. Parallel-parking type
maneuvers seem particularly well-suited to sinusoidal trajectories.

Remark 4. Appendix A contains Mathematica code which symbolically integrates
the chained form system and solves for the input parameters a0,b0,... ,6m_2 in
terms of ai,u, and the initial and final states z0,z*.

A sample of the input functions and state trajectories for a sinusoidal steering
problem is shown in Figuxe 7. Thexe are six states, in chained form, steering from
an initial position of (zu z2, z3, z4, zh, z6) = (-10, -7, -2,2,4,8) to the origin. The
parameters were chosen to be T = 10 seconds and at = ^.
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4.2. Piecewise Constant Inputs. The second method we investigate for steering
chained form systems uses piecewise constant inputs. This method was originally
proposed by Monaco and Normand-Cyrot [26], and was inspired by multirate digital
control. It is most easily understood in the context ofnonholonomic motion planning
simply as piecewise constant inputs.

Consider holding the inputs «i and ti2 constant over some small time period [0,6),

Ul(>T\= *•' r€[0,j)

The chained form state equations can then be integrated, and evaluated at time 6
to yield

Zi(6) = *i(0)+ *!,!?
z2(S) - z2(0) + u2A6

62Zs(S) = 23(0) +*2(0)tiiii£ +Uiiiti2,1y

zm(S) = zm(0) + zm_i(0)ui>i6 + "--ru2>iU^2-. —. (37)
• (m—1)!

We can now consider another pair ofconstant inputs on the time interval [6,26),

u2(t) = ti2>2. L ' >

Integration ofthe state equations gives us z(26) as afunction of z(6), uh2, u2>2. Using
z(6) from equation (37), we get an expression for z(26) in terms of z(0), tiM, ti1(2,
«2,i» «2,2- This procedure ofpiecewise integration and substitution can be repeated
as many times as necessary.

For path planning, we choose to keep «i at a constant value over the entire
trajectory. We therefore iterate theequations (37) m-l times so as to have exactly
m parameters for which to solve: ti^ti^,... ,«2,m-i. The total time needed for
steering is 6 = (m-1)£. Although 6 can be chosen arbitrarily, a smaller time Swill
result in larger inputs ti to achieve the same path.

The mequations which result from setting z(0) = z° and z(6) = z* are polynomial
(oforder m-2) in tix but are linear inu2tU..., u2>m.i. Since tii is easily determined
from

z{-z\
t*i =

6

the remaining m-l linear equations can be solved for ti2 quite easily. This is
one of the reasons that we propose keeping tii constant over the entire trajectory;
if tii vaxied, we would need to solve high-order polynomial equations in the tix k
parameters.
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Figure 8. Sample inputs and state trajectories for steering a six-
state chained form system with Piecewise Constant inputs. The
initial position is (-10,-7,-2,2,4,8) and the goal point is the origin.

Remark 5. Appendix A contains Mathematica code which will symbolically inte
grate the chained form equations, and solve for the input values tii, u2tk in terms of
the initial and final states z°, zs. The code is written for asix-state system, but the
generalization to any numbex of states is straightforward.

It should be noted that if z{ =z\, or the initial and final states agree in the first
coordinate, this method as stated so far will fail to yield asolution. From looking at
the chained form equations, it is obvious that if Ui = 0, only the second state z2 can
move; all other states must remain stationary. In practice, this case is dealt with by
planning two paths, the fixst of which takes the initial condition to anintermediate
state, the second of which joins the intermediate state with the goal position. The
concatenation of these two paths is a valid trajectory between the start and goal.
Our algorithm chooses the intermediate point zm halfway between the initial and
final points in all coordinates except the first, which we choose to be offset from the
staxting position by a constant amount,

= (z'-z°k)/2, Ar = 2,...,m
— »o= z\ + const.

The constant offset can be adjusted to fit the situation.
The procedure detailed in the previous paragraph is used when apaxallel-paxking

trajectory is desired for the mobile robot with trailers, since the z1 direction in
chained form corresponds to "sideways" in the original coordinates. We have found
it practical to choose the constant offset at approximately twice the length of the
entire robot and trailer system. A smaller offset will result in tighter turns and
more lateral motion. If there are obstacles in the field, this constant offset gives a
parameter that can be adjusted in an effort to avoid collisions.

Another reason for choosing tix tobe constant over the entire trajectory is that in
the mobile robot and trailer system, this input is roughly equivalent to the driving
velocity. Because of the coordinate transformation that maps tii to the actual
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velocity t;0, the actual velocity of the robot will not be constant, but in most cases
it will not cross zero and change sign. This means that the robot will not have to
execute backing-up maneuvers to achieve its final goal position.

The main drawback of the piecewise constant inputs is the discontinuity of ti2.
The models used in this paper are purely kinematic using as inputs the driving
and steering velocities. In a real robot system, the inputs are not velocities but
accelerations, or torques. When a path satisfying the velocity constraints is found,
the input velocities need tobe differentiated tofind the corresponding accelerations.
Oftheir very nature, the piecewise constant trajectories arenot differentiable at the
switching points.

4.3. Polynomial inputs. Yet another possibility for steering systems in chained
form is to use polynomial inputs:

tii = 1

u2 = c0 + ci*+--- + cm_2r-2.

This approach has the advantage ofaconstant input on tii with the added advantage
of the differentiability of ti2.

The time needed to steer the system from z° to zs is determined by the change
desired in the first cooxdinate,

T = 4-zl

Once T has been found, the state equations (35) can be integrated using the initial
condition z(0) = z°,

zi(t) = zi(0) + t
Ci*2z2(t) = 2r2(0) + c0t+-i- + ...+ Cm-2^'

m—1

m— 1

m—2

«w =«<»>+£^+£^<»>
*-l 41-Jfe

Evaluating the foregoing at time T and setting z(T) = z* yields a total ofm- 1
equations affine in the m - 1 variables c0,... , cm_2,

M(T)

Co

Cl

. Cm-2 .

+ /(z(0),T) =

4
zi

tn m
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Figure 9. Sample trajectories and input traces for steering with
Polynomial inputs. The initial position is (-10,-7,-2,2,4,8) and the
goal point is the origin.

where the matrix entries Miti(T) have the form:

_ (j - 1)! 2***-*
Mij =

39

It may be shown that this matrix is nonsingulax for T ^ 0.
Note that if z{ - z\ < 0, then we get a solution which gives a negative time

period. This situation is easily remedied by choosing ux = -1 (see Appendix A for
the Mathematica code which solves this problem).

As in the case of steering with piecewise constant inputs, this method will yield
no solution when z{ - z\ - 0. We follow the same procedure outlined in Section 4.2
to deal with this case.

4.4. Other choices. Because ofthe simple form ofthe chained form system, many
different classes of input functions other than the three described above could be
used to steer systems in this form. The chief requirement is that there should be at
least asmany parameters in the input functions as there are states. For multi-trailer
systems, a desirable characteristic of the input functions is that tii have few or no
zero-crossings since these will correspond to fewer backups. In fact, the number of
backups needed tocomplete amanoeuvers may be taken as ameasure ofcomplexity
of an input class.

5. Simulations and Observations

We now have an extensive toolbox from which to choose for steering an JV-trailer
system. With two different coordinate transformations into chained form, and at
least three different methods for steering the system once it is in chained form, we
can try to pick the best combination ofcoordinate transformation and input type
for each start and goal point. There is as yet no formal way todefine when one path
is "hettex" than another, but as we mentioned eaxliei, we tend to think of desirable
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paths as those that have few backups and do not stray too fax from the vicinity of
the staxt and goal points.

One ofthethings thatmust beconsidered iscoordinate singularities. Although we
have shown that all three methods proposed here will find a path between any staxt
and goal points inthechained form coordinates, there isnoguarantee thatthis path,
when transformed back into the actual coordinates, will avoid the transformation
singularities. This must bechecked fox each desixed path. If asingulaxity does xesult,
anothex steeling method might yield avalid path, ox pexhaps an intexmediate point
will need to be chosen, and the path planned in twoox moxe steps.

In Figuxes 10and 11,we show two diffexent paths fox a front-wheel dxive cax with
two txailexs. We have chosen the wheelbase of the cax to be Lx = 0.5 units, and
each txailex to have alength of L2 = L3 = 2units. Each path was genexated using
techniques descxibed in this papex: fixst, tiansfoxming the staxt and goal points into
the chained foxm cooxdinates; second, steeling the chained foxm system using one
of the methods from Section 4; and finally, transforming the txajectoxy back into
the original cooxdinates.

The txajectoxy shown in Figuxe 10 xepxesents the txuck backing into a loading
dock. The initial condition is (x3,y3,93,92,9u90) = (10,10,0,0,0,0) and the final
position is (0,0, f, f, f, §). Cooxdinate txansfoxmation 2 is used, since the fixst co-
oxdinate txansfoxmation is singular at the goal position. In the figuxe, we have
pxesented the txajectoxy of the front of the cax (x0, y0) instead of the back of the
second txailex (x3, y3) to amplify the diffexence between the two steering methods;
the txajectoxies of the second txailex axe vixtually identical.

In Figuxe 11 we again have chosen to pxesent the path taken by the front cax.
Hexe we have used two diffexent cooxdinate txansfoxmations with the same steeling
method. The txajectoxies in the chained foxm cooxdinates axe identical; howevex, a
diffexence can be seen inthe physical cooxdinates. Once again, the txajectoxy txaced
by the xeax of the second trailer is very similar in both cases. Some scenes from a
movie animation of this trajectory axe shown in Figuxe 12; in the movie we pxesent
the cooxdinates dexived from txansfoxmation 1.

With the sinusoidal steeling method, thexe is one paxametex that can be adjusted
independently ofthe staxt and goal positions; this is the magnitude of the sinusoid
on the fixst input, ox ax in the teiminology ofSection 4.1. In constxucting this movie,
we examined sevexal diffexent values of o^ a laxgex value of ax will coxxespond to
the cax driving out faxthex befoxe it starts backing into the space. We wexe able to
choose avalue fox this paxametex so that the cax and txailex system did not hit any
of the obstacles along its path.

6. Summary and Future Work

In this papex we applied the machinexy ofexterioi diffexential systems to the N-
tiailex pxoblem. We showed that the multi-tiailex system could be put into Gouxsat
noxmal foxm, and that this is the dual to chained foxm. We solved the motion
planning pxoblem fox the mobile xobot pulling ntxailexs by convexting the kinematic
equations into chained foxm, and steering the chained foxm system from and initial
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Figure 10. Backing a car with two txailexs into a loading dock. We
show hexe txajectoxies found by two diffexent steexing methods fox
the same initial and final conditions. The solid line coxxesponds to
the piecewise constant inputs and the dashed line to the polynomial
inputs. The x, y txace of the front of the cax is shown, since the txa
jectoxy of the xeax txailex is virtually identical in the two cases. Both
txajectoxies use the second cooxdinate txansfoxmation. The input v0
is the dotted line in both gxaphs. Clips from a movie simulation of
this trajectory can be seenin Figure 13and the movie can be viewed
on the left hand pages of this paper.

h&bfaotrdaar

I 10 12 14 16

Figure 11. PaxaJlel-paxking a cax with two txailexs using sinusoids,
the txace of the front cax is shown fox two diffexent choices of coox
dinates: Transformations 1 (sohd line) and 2 (dashed line). We also
see how the steering input differs on with the two transformations,
although for this path, the driving input v0 (dotted line) is similax
in both cases.
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Figure 12. Scenes from amovie animation, showing the front-wheel
dxive cax with two txailexs (a six-state system) parallel-paxking inthe
pxesence of obstacles. Sinusoidal inputs wexe used fox steeling, and
the magnitude of the periodic part of the driving input (at in the
terminology of Section 4) was adjusted so that the obstacles were
avoided. The first coordinate transformation was used. The entire
movie animation can be seen on the right-hand pages of this paper.
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Figure 13. These axe scenes from a movie animation, showing the
front-wheel drive car with two trailers backing into a loading dock.
Piecewise constant inputs were used to steer the chained form sys
tem. The entire movie simulation can be viewed on the left-hand
pages of this papex.
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to a final position, then convexting the txajectoxy back into the oxiginal cooxdinates.
Thxee diffexent methods fox steeling chained foxm systems wexe pxoposed.

The woxk done in this papex has several natural avenues of continuation:

(1) The genexation of txajectoxies fox the JV-tiailex system in an envixonment
cluttexed with obstacles. This line of woxk has been started in [25] whexe
the authoxs considexed the motion of a single Hilaxe-like xobot in a clut
texed envixonment. Another approach for a Hilare-like xobot was defined
in [23]. Othex methods fox obstacle avoidance which useoptimization based
appxoaches may be found in [8, 9].

(2) The stabilization of open loop txajectoxies. The txajectoxies genexated by
oux method need to be stabilized, pexhaps using a technique such as that
outlined in [36]. Thexe has also been considexable intexest in stabilizing
nonholonomic systems not to txajectoxies but to points. Although from
Bxockett's necessaxy condition [3] it follows that such stabilizing contxol laws
cannot be both C° and time-invaxiant, methods using eithex discontinuous
ox time-vaxying feedback have been suggested. One appxoach to stabilizing
chained foxm nonholonomic systems is given in [34].

(3) Geneialized Goursat type canonical forms for exterior differential systems
for higher codimension systems are discussed in [12, 27] and were useful in
transforming to chained form a firetruck system. The fixetxuck has thxee
inputs: driving and steering in the front and another steering wheel at the
tiller [5] (multi-input chained form systems are also discussed in [29]). This
work is asyet far from complete since thexe is avexy laxge numbex of diffexent
possibilities fox the noxmal foxm in this instance.

(4) Thexe axe sevexal examples of nonholonomic systems whose constxaints fail
to meet the conditions of the Gouxsat noxmal foxm, fox example, the system
modeling a ciiculax fingex tip lolling on a planax face [29]. The pxoblem of
steeling such systems xemains an open one. .

Acknowledgements

We would like to thank sevexal people who have helped us in undexstanding this
pxoblem ovex the past few yeaxs: Rogex Bxockett, Linda Bushnell, John Canny,
Robert Gaidnex, Geoxges Gixalt, Geiaxdo Laffexiexe, Jean-Paul Laumond, Zexiang
Li, Bxian Mixtich, Richard Montgomery, Dorothee Normand-Cyrot, Willem Sluis,
William Shadwick, Hector Sussmann and Greg Walsh. Also Sordalen for furnishing
us with his transformations of the AT-tiailex systemsinto chained form coordinates.
For the maxgin movies we thank Anita Flynn, Joe Jones and Patrick O'Donnell of
the MIT AI lab.

D. Tilbuxy and S. Sastxy would like to thank Sanjoy Mittex fox his hospitality at
LIDS and CICS at MIT whexe some of this leseaxch was done in the Fall of 1992.



JV-TRAILER PROBLEM 45

Appendix A. Mathematica Code

(* 3trailer.m D. Tilbury November 30,1992
* Defining the coordinate transformation for the system of Hilare
* with three trailers (equivalent to a car with 2 trailers).
*)

(* Definitions of the gradient, Jacobian, and the state vector *)
grad[x_, vectJ := Table[D[x,vect[[jj]]] ,jj,Length[vect]] ;
Jac[x_, vectJ := Table [D[x[[i]] ,vect [[j]]] ,i,Length[x],j,Length [vect]] ;
q s {x,y,th3,th2,thl,th0};

(* The input vector fields g-1 and g_2 *)
gl ={Cos[th3], Sin[th3], Tan[th2-th3]/L3, Tan[thl-th2] SecCth2-th3]/L2,
Tan[thO-thl] Sec[thl-th2] Sec[th2-th3]/Ll , 0 };
g2 = { 0, 0, 0, 0, 0, 1 };

(* The derivative of the state: the two inputs here are vn, the linear
* velocity of the last body, and omega, the rotational velocity of the
* first body (Hilare)
*)

dq = gl vn + g2 omega;

(* First define zl and z6, the first and last chained form coords. *)
(* Coordinate Transform 1 *)
zl a x;

z6 = y;

(* Coordinate Transform 2
zl » x Cos[th3] + y Sin[th3];
z6 = x Sin[th3] - y Cos[th3] - th3 zl; *)

(* ul is then the derivative of zl, and we coax Hathematica to apply
* a useful trig identity *)

ul = grad[zl,q].dq /. a_ Sin[x_]~2 + a. Cos[x_]~2 -> a;

(* Define z5, z4, z3, z2 from the derivatives of z6, z5, z4, z3 *)
z5 o Together [Expand[grad[z6,q] .dq/ul]] ;
z4 = Factor[grad[z5,q].dq/ul];
z3 = Together [grad [z4,q] .dq/ul];
z2 = Together[grad[z3,q].dq/ul];

(* then find u2 = dz2 *)
u2 = grad[z2,q].dq;
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(* sinusoids.m D. Tilbury November 17, 1992
* Here we take a 6-state system in single-chained, 2-input form
* and steer it with sinusoids in one step (over one period).
*)

(* Set up the initial and final points *)
xO = {x01,x02,x03,x04,x05,x06};
xf = {xfl,xf2,xf3,xf4,xf5,xf6};

(* Choose the inputs to be sums of sinusoids *)
ul[t_] := aO + al Sin[w t];
u2[t_] := bO + bl Cos[w t] + b2 Cos[2 w t] + b3 Cos[3 w t]
+ b4 Cos[4 w t];

(* Calculate the states as functions of time *)
ete[kj := Expand[k, Trig->True] ;
xl[tj := xO[[l]] + lntegrate[ul[tau],tau,0,t];
x2 [t J := xO [[2] ] + Integrate [u2 [tau] ,tau,0,t] ;
x3[tj := x0[[3]] + Integrate[ete[ul[tau] x2[tau]] ,tau,0,t]
x4[tj := x0[[4]] + Integrate[ete[ul[tau] x3[tau]] ,tau,0,t]
x5 [tJ := xO[[5]] + Integrate[ete[ul[tau] x4[tau]],tau,0,t]
x6[tj := x0[[6]] + Integrate [ete[ul [tau] x5[tau]] ,tau,0,t]

(* Set the time period to be T *)
T = 2 Pi/w;

(* The coefficients aO, bO, and bl can be solved for individually.
* Due to interference, the coefficients b2, b3, and b4 must be
* found together. All of these coefficients will be in terms of
* w and al, both of which are free.

*)

Solve[xl[T]==xfl,aO] >» ss_inputs.m
Solve[x2[T]==xf2,bO] >» ss_inputs.m
Solve[x3[T]==xf3,bl] >» ssJ.nputs.rn
Solve[{x4[T]==xf4, x5[T]==xf5, x6[T]==xf6},{b2,b3,b4}] >» ss_inputs.m
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(* Piecewise.m D. Tilbury November 17, 1992
* Here we take a 6-state system in single-chained, 2-input form
* and steer it with Piecewise constant controls over 5 steps,
* d = deltabar = delta/5
*)

(* First calculate the states after one step, using constant controls
*)

xl[i_] := xl[i-l] + d ul[i];
x2[ij := x2[i-l] + d u2[i];
x3[i_] := x3[i-l] + d x2[i-l] ul[i] + d*2 u2[i] ul[i]/2;
x4[ij := x4[i-l] + d x3[i-l] ul[i] + d~2 x2[i-l] ul[i]~2/2 +
d~3 ul[i]~2 u2[i]/3«;
x5[ij := x5[i-l] + d x4[i-l] ul[i] + d~2 x3[i-l] ul[i]~2/2 +
d~3 x2[i-l] ul[i]**3/3! + d"4 ul[i]~3 u2[i]/4!;
x6[i_] := x6[i-l] + d x5[i-l] ul[i] + d*2 x4[i-l] ul[i]~2/2 +
d~3 x3[i-l] ul[i]~3/3! + d~4 x2[i-l] ul[i]~4/4! +
d~5 ul[i]~4 u2[i]/5!;

(* Then we iterate for 5 steps, *)
xlT = Expand[xl[5]]
x2T = Expand[x2[5]]
x3T = Expand[x3[5]]
x4T = Expand[x4[5]]
x5T = Expand[x5[5]]
x6T = Expand[x6[5]]

(* We define ul to be constant over all 5 time periods *)
ul[2] := ul[l]; ul[3] := ul[l]; ul[4] := ul[l]; ul[5] := ul[l];

(* And now we solve for the input magnitudes *)
Solve [{xlT == xfl},{ul[l]}] >» pc_inputs.m

(* We know that xiT are linear in the inputs u2[i], namely
* final = Matrix.input2 + constant
* so we set goal = final and solve for the magnitudes of input2
* solution = Inverse[Matrix].(goal - constant)
*)

input2 = {u2[l], u2[2], u2[3], u2[4], u2[5]};
final = { x2T, x3T, x4T, x5T, x6T };
goal = { xf2, xf3, xf4, xf5, xf6 };
Matrix = Jac[final,input2];
constant = final - Matrix.input2;
solution = (Inverse[Matrix].(goal - constant)) >» pc_inputs.m
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(* polynomial.m D. Tilbury January 14, 1992
* Here we take a 6-state system in single-chained, 2-input form
* and steer it with Piecewise constant controls over 5 steps,
* We do two cases: ul = 1, ul = -1;
*)

(* Set up the initial and final conditions *)
xO = {x01,x02,x03,x04,x05,x06};
xf = {xfl,xf2,xf3,xf4,xf5,xf6};

(* Choose the inputs to be polynomials *)
(* ul[tj := 1 *)
ul[tj := -1;

u2[t_] := bO + bl t + b2 t~2 + b3 t~3 + b4 t~4;

(* Calculate the states as functions of time *)
xl[tj := xO[[l]] 4 lntegrate[ul[tau],tau,0,t];
x2[t_] := x0[[2]] + Integrate[u2[tau],tau,0,t];
x3[t_] := x0[[3]] + Integrate [ul [tau] x2[tau] ,tau,0,t]
x4[tj := x0[[4]] + Integrate [ul [tau] x3[tau] ,tau,0,t]
x5[tj := x0[[5]] + Integrate [ul [tau] x4[tau] ,tau,0,t]
x6[t_] := x0[[6]] + Integrate [ul [tau] x5[tau] ,tau,0,t]

(* The time needed to steer is determined by the first state *)
Solve [xl[T] == xfl, T] >» poly.inputs.m

(* Now we can solve for the desired coefficients.
* We know that final = Matrix. coeffs + const
* Therefore, setting goal = final, we find
* coeffs = Inverse[Matrix].(goal - const)
*)

coeffs = { bO, bl, b2, b3, b4 };
final = {x2[T],x3[T],x4[T],x5[T],x6[T]};
goal = { xf2, xf3, xf4, xf6, xf6 };
Matrix = Jac[final,coeffs];
const = final - Matrix.coeffs;
solution = Inverse [Matrix], (goal - const) >» poly.inputs.m
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