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1. INTRODUCTION i

The presence of chaos both in nature and in man-made devices is very common and has

been extensively demonstrated in the last decade. Quite frequently chaos is a beneficial feature

as in some chemical or heat and mass transport problems [Ottino, 1989]. However, in many other

situations chaos is an undesirable phenomenon leading to irregular and possibly catastrophic

failures.

The problem of controlling chaos, that is, to convert the chaotic behaviour found in a

physical system to a periodic time dependence, or aperiodicity which is predictable, has attracted

much recent interest [Ott et al., 1990; Jakson, 1990; Shinbrot et al., 1990; Ditto et al., 1991;

Hunt, 1991; Mehta and Henderson, 1991; Tel, 1991; Braiman and Goldhirsch, 1991; Vincent and

Yu, 1991; Singer et al., 1991; Shinbrot et al., 1992; Chen and Dong, 1992; Kapitaniak, 1992;

Kapitaniak, 1993]. The existing methods used to control chaos can be classified into two main

categories: feedback and nonfeedback methods. Feedback methods [Ott et al., 1990; Jakson,

1990; Shinbrot et al., 1990; Ditto et al., 1991; Hunt, 1991; Mehta and Henderson, 1991; Tel,

1991; Vincent and Yu, 1991; Singer et al., 1991; Shinbrot et al., 1992; Chen and Dong, 1992 ]

make use of the properties of chaotic systems, including their sensitivity to initial conditions, to

stabilize orbits already existing in the systems. The initial breakthrough of the feedback technique

was made by Ott, Grebogi and Yorke [1990]. They show that permanent chaos can always be

suppressed by stabilizing one of many periodic orbits embedded within the chaotic attractor. Non-

feedback methods [Hubler, 1989, Braiman and Goldhirsch, 1991; Kapitaniak, 1992; Kapitaniak,

1993], on the other hand, applies a small driving force, or a small modulation to some system

parameter. These methods modify the underlying dynamical system such that stable solutions

appear.

Chaotic attractors of dynamical systems described by:

x = f(x, pi) (D

where xe Rn, n£3, can be divided into two main classes: (a) hyperbolic attractors and attractors

which are similar to hyperbolic ones, like the Lorenz-type attractors, and (b) quasi-attractors



[ShiKnikov, 1993]. The second class of attractors is the most important in practice because of its

wide applications. Such attractors are observed in many models; including the logistic map,

Henon map, Lorenz system, Duffing's equation, Chua's circuit, etc. The term quasi-attractor

denotes the limiting set enclosing the periodic orbits of different topological types, structurally

unstable homoclinic Poincare trajectories, which may not betransitive, etc. In systems withquasi-

attractors there exists a structurally unstable homoclinic orbit of either system (1), orof a system

"close" to it. This implies a sensitive dependence of the attractor structure onany small variation

of the parameter p. We can exploit this property in controlling chaos by changing slightly only

one parameter of the system (1), or by coupling a low-dimensional (one- or two-dimensional)

linear system to the original system (1).

In this paper we describe a method for controlling chaos in which the control effect is

achieved by coupling the chaotic main system to a simpler autonomous system (controller),

usually linear, as shown in Figure 1. Our method is developed for chaotic systems in which for

some, for example technological, reasons it is difficult if not impossible to change any parameter

of the main system. In particular consider the coupling of the chaotic system (1) to another

(simpler) asymptotically stable system (controller) described by:

y = g(y, e) (2)

where xe Rm, e is a vector denoting the controller's parameters, where the value of at least one

of the parameters e, can be easily changed. For practical reasons, the dimension "m" of the

controller system (2) should be chosen as low as possible. Since our method is mainly designed

for controlling chaos in mechanical systems, in this paper we choose m=2, i.e. one-degree-of-
freedom controller (the simplest mechanical system). The equations for the augmented system
are given by

x = f(x, p) +Cy y (3a)

y = g(y. e) +<x x (3b)



where ^x and Cy are the coupling matrices. When ^x =0 and ^y =0 the x and y
subsystems in Eq. (3) are uncoupled and for small l|^x ll andHSy W (i.e., all entries are small)
only small additional signals are injected into the main system. Since the y-subsystem is

asymptotically stable, the role of the controller is to change the behaviour of the system from a

chaotic one to some desired periodic, possibly constant, operating regime. If IISXH and l|Cy II
are sufficiently small, x(t) of the coupled system (3) will evolve in a small neighbourhood of the

original attractor of Eq. (1) thereby preserving the qualitative dynamics of the main system. As

the evolution of x(t) given by Eq. (1) takes place on an attractor there exists a vector MeR° such

that |xi(t)I^Mi for all time t. Our control will be effective if x(t) given by Eqs (3) fulfills the

relation |xj(t)l<M,+ e, where e is a small parameter. This method is a nonfeedback one. In

general it does not stabilize existing unstable orbits, but rather it modifies the dynamical system

such that a new stable orbit appears in a neighbourhood of the original attractor.

In most feedback methods the fact that in the chaotic attractor there are many embedded

unstable periodic orbits isexploited. In our method we exploit the fact that ina small "parameter"

neigbourhood of a quasi-attractor for Eq. (1) there exist many stable periodic orbits. Our goal is

to change the dynamics of the system in such a way as to obtain periodic orbits close to the

original attractor. Depending on the application, we can stabilize a desired fixed point, or a

periodic orbit having a desired period.

The idea of our method is similar to that of the so-called dynamical vibration absorber, long

known in linear systems [Shabana, 1991]. A dynamical vibration absorber is a one-degree-of-

freedom system, usually a mass n^ attached to a spring (sometimes a viscous absorber is also

added), which is connected to the main system as shown in Figure 2. The additional degree of

freedom introduces a shifts of the resonance zones, and in some cases can eliminate oscillations

of the main mass m. Although such a dynamical absorber can change the overall dynamics

substantially, it usually needs only to be physically small in comparison with the main system,

and does not require an increase of the excitation force. It can be easily added to an existing

system without major changes in design or construction.

The plan of this letter is as follows. Section 2 presents an application of our method for

controlling chaos in Duffing's oscillator. First an approximate analytical method which allows

us to evaluate appropriate parameters of the controller is presented. Next the effectiveness of our



method in the presense of noise is discussed. In Sec. 3 we describe an experimental study of

controlling chaos in Chua's circuit by coupling it to a simple linear system. Sume practical

suggestions and guidelines on how to couple the controller are given in Sec.4. Finally we

summarize our results in Sec.5.

2. CONTROLLING DUFFING'S OSCILLATOR

2.1 Analitycal Approximation

In this section we consider the problem of controlling the chaotic behaviourof the Duffing

oscillator*. To obtain an appropriate control effect Duffing's oscillator is coupled to an additional

linear system (controller) in the way shown in Figure 2. The dynamics of the augmented system

is described by,

x + ax + bx + ex3 + e(x-y) = B0+B,cosQt (4a)

y + e(y-x) = 0 (4b)

where a,b,c,e,e,B and Q are constants. Althought the system (4a) is a nonautonomous one, it can

be easily tranformed to an autonomous system. The coefficient e and e are the characteristic

parameters for the controller, and we can take them as the control parameters. The parameters

of Eqs (4) are related to those of Figure 2 in the following way: a=c/m(2, b=k/mft2, c=ke/mQ2,

e=kt/mft2, eskymgQ2, BosFo/mQ and Bi=F,/mQ. It should be noted here that the parameters e

and e are related to each other by the controller stiffness kg. For simplicity in the rest of this

letter we assume that e is constant and consider e as the control parameter, i.e. we assume a

constant stiffness kj and allow the controller mass nr^ to vary.

It should be noted here that Duffing's oscillator is widely used as a theoretical model for a

number of mechanical engineering problems, such as, for example, buckling and stability of

elastic beams, shells and plates, rotordynamics, etc. More detailscan be found in Moon [1987]

and Kapitaniak [1991].



It is well-known that the uncoupled equation (4a) (i.e. without the contoller) exhibits chaotic

behaviour for certain parameter region [Ueda, 1979; Kapitaniak, 1991]. In many cases the route

to chaos is a sequence of period-doubling bifurcations [Ueda, 1979; Kapitaniak, 1990].

To analyze the system with the controller ( e, e*0), we first assume that all parameters of

equation (1), except the forcing frequency ft, are constant, and estimate the ft-domain where

chaos exists. The application of the harmonic balance method enables us to determine the

stability domain of the associated T-periodic solutions, where T=2n/Cl i.e.,

x = C0 + Qcostftt+Vj/)

y = D0 + D,cos(ftt+y) (5)

and the associated 2T-periodic solutions

x = A0 + A1/2cos[(ft/2)t+p] + A,cosftt

y = E0 + E1/2cos[(ft/2)t+P] + E,cosftt (6)

where Q, C„ D0, D„ A0, A1/2, A1? E0, E1/2, E,, y, y, p and P are constants which are determined

by substituting Eqs (2) or (3) into Eq.(l). The approximate boundaries of stability for these

periodic solutions as functions of the forcing frequency ft for each solution can be estimated by

introducing small perturbations dx and dy to x and y, and investigating the associated Hill's

equation. The complete procedure is fully described in [Kapitaniak, 1991], so we omit the details

here. Knowing the period-doubling bifurcation values ft,'and ft2' at which we have bifurcation

from T -♦ 2T periodic solutions, and ft," and ftj" at which we have bifurcation from 2T —• 4T

periodic solutions, we can obtain the approximate values for of the accumulation points ft," and

ft," as

ft1- = ft,'+Aft1/(l-l/6)

ft2~ = ft2'+ Aft2/(l-l/6) (7)

where Aft,=ft,"-ft,' , Aft2=ft2'-ft2" and 5=4.66.. is a Feigenbaum constant. In [Kapitaniak,

1990, 1991] it has been shown that the interval [ftj~,ft2~] can be considered as an approximation



of the ft frequency domain for which chaos exists.

The above procedure can be easily carried out using any symbolic algebra system (we used

Mathematica) and by tracking it for different values of e we are able to obtain a map of the

behaviour of Eq.(4) as a function of two parameters: the frequency ft and the dynamical absorber

control parameter e, as shown in Figure 3 (solid lines). The other parameters of Eq.(4) are:

a=0.77, b=0, c=1.0, Bo=0.045 and Bj=0.16. This plot is in good agreement with the numerically

calculated result shown in Figure 3 (broken lines). The numerical results were obtained using a

fourth order Runge-Kutta method with a time step of K/200CI. To determine the chaotic

behaviour, the Lyapunov exponents were calculated using the algorithm ofWolf et al. [1985].

From Figure 3 it is clear that, for fixed ft, we can obtain different types of periodic
behaviours by making only small changes in e. As an example, consider a system with ft=0.98.
Changing e from 0.01 to 0.16 it is possible to obtain easily T, 2T, 4T, 8T periodic orbits".
Theoretically, orbits of higher periods are also possible, but their narrow range of existence
makes them difficult to find either experimentally or numerically. To justify calling our method
a"control" technique, observe that the values of the parameter ee [0.01, 0.16] can be obtained

with acontroller mass m, approximately 100 times smaller than the main mass for the forcing
frequency ft=0.98 (Figure 2). As it is seen from Figure 3 for the other forcing frequencies in the
interval [0.93, 1.05] m, can be even smaller.

Similar controlling effects can be obtained by varying the absorber stiffness, i.e., by
simultaneous changes of the parameters e and e [Blazejczyk et al., 1993].

*An easy access to anumber of possible periodic orbits can be an advantage in certain
mechanical systems, e.g., textile machines, robots, etc. For example, if we allow our system to
operate in achaotic regime during the idling time period, and then switch it to aperiodic one
when it is ready to perform auseful function, we can significantly reduce the fatique of the
materials. Future manufacturing machines could conceivably be designed in this way in order
to extend their useful life.



2.2 Effect of Noise

To show the effectiveness of our method in real experimental conditions we have also

considered the effect of quasiperiodic noise, namely

N

h(t) =XaiC0S<vit+Tl) <8>
i«l

where oCj«B0, are constant, Vj and ti, are time independent random variables on the behaviour

of Eq. (3). The quasiperiodic noise given by Eq. (8) is an approximation of the realization of a

band-limited white noise stochastic process with zero mean and a spectral density:

s(v)= s/(vmax-vmin) V€[Vmin,Vmax]

0 ve[vmiD,vmaJ

where s is the noise intensity and [vmiD, vmax] is the interval of relevant frequencies and can be

easily simulated experimentally [Kapitaniak, 1988].

Considering the perturbed system

iL (9a)
x +ax +bx +ex3 +e(x-y) = B0 +B,cos(ftt) +£ apos(v.f. +T|.)

y+e(y-x) =0 '"' (9b)

we have found the interesting property that thepresence of noise actually reduces the range of

e necessary to obtaina desiredperiodic solution. This property is summarized in Figure 4, where

we compared the behaviour of the system (4) for different noise intensity.

3. CONTROLLING CHUA'S CIRCUIT

To verify our method in a real experimental setting we used it to control chaos in one of the

simplest chaotic systems - the Chua's circuit [Madan, 1993; Zhong and Ayrom, 1985; Chua et
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al., 1986]. Chua'a circuit is a remarkably simple and robust electrical circuit made of only four

linear elements (one resistor, one inductor, two capacitors) and a nonlinear element. The circuit

is shown in Figure 5 while the state equations are given by

<hc 1
C,—-=-(vc-vc)-*(vc)

dt R 2 l l

** 1,„ _ w (10)
2 dt R c> c* L

<fr c*

where vci, vC2 and iL denote the voltage across the capacitor C„ the voltage across the capacitor

C2, and the current though the inductor L, respectively, and g(t) is the voltage versus current

characteristic of the nonlinear element shown in Figure 6.

The problem of controlling chaos in Chua's circuit by bothfeedback [Hartley and Mossayebi,

1983; Genesio and Tesi, 1993] and nonfeedback [Kapitaniak, 1993] methods has attracted much

recent interest. In our method we assume the Chua's circuit is coupled to a 2nd-order linear

circuit, as shown in Figure 7 . The state equations of the angmented circuit are given by:

C, L=—(vr -vr) -g(vr)
dt R 2 • »

foe 1 1 m

dt R l 2 R*

A-Vc, (11)
dt °»



L dt Vc

dv™

dt rm c l Rx ^ c

where the two angmented state variables vc{1) and iL(1) are the voltage across the capacitor C1} and

the current though the inductor L(1), respectively.

To investigate the control of chaos in Chua's circuit, let us fix the parameters of the Chua's

circuit so that the system exhibits a chaotic attractor; specifically the so-called double scroll

attractor. The following typical values produced the attractor shown in Figure 8: C, = lOnF, Bp

= 1 V, C2 = 99.34 nF, Ga= -0.76 mS, Gb = -0.41 mS, L = 18.46 mH, , R = 1.64 kft. For the

coupled linear system we used off-the shelfcomponents for the inductor and the capacitor: L(1)

= 18 mH with tolerance ±10%, Cn= 100 nF with tolerance ±5%. The value of the resistance R(1)

was experimentally chosen to be 7.67 kft.

The dimensionless form of Eq.(8) is obtained by rescaling the parameters of the system:

x =vc,/Bp y =vC2/Bp z =iL/BpG x(1) =v(,)/Bp a =Q/C,

p = C2/LG2 a(,)=C2/Ca) P(,) = (VL("G2 f^R/R™ e = R/Rx

which gives the state equations:

x = a(y - x - g(x))

y = x-y + z + e(y(1)-y)

z = -Py (12)

y(,) = a(1)[-yl}y(1) + z(,) + e(y-y(1))]

10



z(,) = -p(1)y(1)

where e denotes the coupling stiffness. Note that if e=0 Eqs (12) described two uncoupled

systems. When e is sufficiently small the dynamics of Eqs (12) is closly related to the dynamics

of the original system.

The results of our experimental control to obtain different types of periodic orbits are shown

in Fig.9(a-f). Observe that a small change in the coupling stiffness e allows us to obtain a

periodic orbit (e=0.302) as shown in Figure 9(a), a period-two orbit (e=0.148) as shown in Figure

9(b), a period-four orbir (e=0.134) as shown in Figure 9(c), a period-five orbit (£=0.105) as

shown in Figure 9(d) and a period-three orbit (e=0.097) as shown in Figure 9(e). In Figure 9(f)

(e=0.322) our methods allows us to operate at a fixed point. We can summarize the experimental

results as follows:

(1) all of the periodic orbits in Figure 9 are close to the original attractor of Eq. (10). We can

compare them with the corresponding periodic orbits obtained from the original Chua's circuit

as shown in Figure 10(a-d); note that in the original system the position and the shape of the

periodic attractors are similar but have a slightiy larger period;

(2) the fixed point shown in Figure 9(f) is one of the unstable fixed points of Eq.(10);

(3) the interval of the system parameter e when the stable periodic orbits exist in the system

(11) is larger than the corresponding interval in the original system (10). As a consequence

we cannot experimentally find the period-five orbit in system (10).

We have obtained very similar controlling results when the Chua's circuit is coupled to a

simpler one- or zero-dimensional (resistive) controller, thereby demonstrating that the domain of

applicability of our method is rather broad. A second-order contoUer was chosen in Fig.7 in order

to compare the experimental result with the mechanical system example in Fig.2.

4. PRACTICAL CONSIDERATIONS FOR OPTIMAL COUPLING

Since our method is designed mainly for experimental applications, now we shall briefly

suggest some guidelines for applyng this method.

(1) The coupled system has to be as simple as possible. In some applications it maybe a one-

11



dimensional linear system, while in other applications it maybe a two-dimensional linear

system. In mechanical systems, it usually consists of a small mass coupled to the main mass

by the spring. In electrical systems, it usually consists of a resonant LC circuit.

(2) The coupling stiffness e should be chosen as small as possible.

(3) If it is possible one could couple the controller in such a way that the location of the

fixed points of the original system are not changed. For example, consider the system:

xi = m(xi>x2,x3)

X2 = I2(X1»X2>X3) 03)

X3 = l3(X|,X2,X3)

Suppose that the fixed points of the system (13) are such that the second coordinate is zero: x2=0.

Then the following coupled system

X, = Ij(iXj,X2,X3J

x2 = f2(x„x2,x3) + e(y,-x2)

x3 = f3(xj,x2,x3) (14)

y, = any, + a12y2 + e(x2-y,)

Y2 = a2iyi + a22y2

will have the same fixed points as those of Eq. (13), as can be seen from Eq. (14).

In fact the coupling in the system considered in Sec.3 is chosen in this way. The advantage

of such a coupling is obvious: with a relatively small e we can stabilize the exact fixed point of

the original system.

In the mechanical system of Sec. 2 it is difficult to apply this type of coupling but with an

additional mass 100 times smaller than the main mass the simple analysis of the augmented

system shown in Figure 2 shows that the original fixed points are only slightly perturbed.

5. CONCLUDING REMARKS

12



In this paper we have shown that chaotic behaviour can be converted into a desired periodic

behaviour without feedback by coupling the chaotic system to a simple linear controller. The

appropriate control is obtained by changing one of the controller parameters without changing

any of the main system parameters. This method offers a way of controlling chaos without the

necessity of following a response trajectory and targeting it to some desire domain of the phase

space. An additional advantage of our method is that we can stabilize not only periodic orbits,

but also fixed points.

The method can be especially useful in mechanical systems, where its simplicity offers

important practical advantages in comparison with other controlling methods [Ott et al., 1990;

Jakson, 1990; Shinbrot et al., 1990; Ditto et al., 1991; Hunt, 1991; Mehta and Henderson, 1991;

Tel, 1991; Braiman and Goldhirsch, 1991; Vincent and Yu, 1991; Singer et al., 1991; Shinbrot

et al., 1992; Chen and Dong, 1992; Kapitaniak, 1992; Kapitaniak, 1993, Hartley, 1983; Genesio

and Tesi, 1993]. For example, in mechanical systems the feedback controllers are usually very

large (sometimes even larger than the controlled system), and have complicated dynamics. In

comparison with such controllers the simplicity of our controller (which is realizable by the

simplest mechanical system, e.g., mass on a spring with controllable stiffness) offers a

straightforward yet effective approach. In practical mechanical applications ourmethod is even

simpler than taming chaos with weak periodic or random perturbations [Kapitaniak, 1988;

Braiman and Goldhirsch, 1991], as we do not need a constant source of energy. As shown in

Sec.3 this method can be applied not only to mechanical systems, but also to such electrical

systems as microelectronic and VLSI circuits, where it is difficult, if not impossible to access the

internal circuit parameters. It can also be exploited in the design of foult - tolerant elecrical

systems where a previously built-in linear contoUer can be switched on by aremote signal (e.g.,

from earth to a malfunctioning satellite) to stabilize a system which had become chaotic due to

aging, radiation, etc.

The simplicity of controlling chaos by this and similar methods and the possibility of easy

access to different periodic orbits can foster wider applications of chaotic systems in practice.

13
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CAPTIONS

Figure 1. Chaotic system coupled to an appropriately design controller without any external

inputs.

Figure 2. The dynamical absorber.

Figure 3. Behaviour of the equations (1) for different,values of e and Q: a=0.77, b=0,

c=1.0, d=0.002, B0=0.045 and B,=0.16; analytical approximation (solid line), numerical

simulation (broken line).

Figure 4. Effect of noise on the behaviour of Eqs (4).

Figure 5. The Chua's circuit.

Figure 6. Nonlinear resistor characteristic.

Figure 7. The Chua's circuit coupled to a two-dimensional linear system.

Figure 8. The double scroll attractor; vertical axis: vc2 200mv/div, horizontal axis vcl lv/div.

Figure 9. Effects of experimental controlling procedure; vertical axis: vc2 200mv/div, horizontal

axis vcl lv/div: (a) periodic orbit (e=0.322), (b) period-two orbit (e=0.302), (c) period-

four orbit (e=0.148), (d)period-five orbit (e=0.105), (e)period-three orbit (e=0.097), (f)

fixed point (e=0.322).

Figure lO.Experimental periodic orbits in the Chua's circuit, (a) periodic orbit (R=1.811kQ),

vertical axis: vc2 200mv/div, horizontal axis vcl 2v/div (b) period-two orbit

(R=1.777kO), (c) period-four orbit (R=1.769kQ), (d) period-three orbit

(R=1.749kQ); (b-d) vertical axis: vc2 200mv/div, horizontal axis vcl lv/div
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