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Abstract

Simulation continues to be a major tool in the design of digital circuits. With increases in de-
sign sizes and the relative simulation times, the need for better simulation performance grows.
Many studies have been performed on methods to improve simulation performance, covering both
software techniques and hardware acceleration methods. This report combines both ideas. On
the software side, the concept is presented for using logic synthesis techniques to produce better
implementations of a circuit for functional simulation. From a hardware perspective, this concept
is investigated using a simulator running on a massively parallel SIMD computer. Synthesis tools
are used to modify the functional description of a circuit to increase the parallelism and shorten the

expected simulation time while mapping the description for execution on the parallel architecture.
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Chapter 1

Introduction

Computer-Aided Design (CAD) systems aid designers of integrated circuits through
the verification of designs at all levels and the automatic synthesis of designs from a behavioral
descriptiontossilicon. The primary goal of CAD systems is to produce near optimal implementations
of a correct design as quickly as possible. Performance of a CAD system is crucial: the rapid growth
of the integrated circuit market requires quick, correct designs in order to maintain competitiveness.

Integrated circuits are usually designed with the help of validation tools to guarantee
correctness. After design, circuit descriptions are optimized using logic synthesis tools to minimize
delay, minimize area, or some combination. The output of the synthesis is a netlist which is used to
create the fabrication masks.

Simulation is the primary method for validation used in designing circuits. While other
validation methods such as timing verification are useful tools in designing circuits, simulation
is the most important method of assuring a design’s correctness. Emerging techniques including
formal verification and correct-by-construction techniques (silicon compilation) are reducing the
need for extensive simulation. However, these techniques are only as valid as the input given. If
the input to a formal verification tool or a correct-by-construction program has not been validated,
the resulting design may not be what was intended. Formal specification can never fully replace
simulation. Many times incorrect systems are specified and built because inadequate simulation
was performed.

While simulation is necessary, it is also a hindrance. Simulation consumes much of
the designer’s effort and even more of the computational effort in designing a digital system. As
systems become larger, the simulation costs can only grow. With larger systems, the number of in-

terconnections between components greatly increases the amount of validation needed. Tomorrow’s



simulators must be fast and must be able to handle the larger circuits being designed.

In general, circuit designs may be described at a variety of levels - functional, logic,
etc. The description of a circuit’s behavior is input to the simulator along with a collection of
test cases. Most simulations systems consist of two general steps - the mapping of the description
(input/output specification of a circuit) to the data structures used by the simulation engine and the
simulation itself (that is, executing the simulation with the specified input) run on the simulation
engine. During the mapping phase the description is also often optimized to reduce the run time of
the simulation. As noted earlier, simulator performance is extremely important since simulation is
considered the bottleneck in most integrated circuit designs.

In this report the simulation system attempts to achieve faster simulation through the
use of synthesis tools to do the mapping of functional descriptions to the simulation format and a
massively-parallel machine as the simulation engine.

1.1 Synthesis for Simulation

Conventional discrete-event simulation techniques include gate-level, RTL, behavior, and
system-level. Current simulation tools are becoming obsolete as electronic systems rapidly become
more complex. Even so-called behavioral simulation, if it is to maintain the precision required by
many designs, does not provide sufficient speed-up over logic simulation to do the job.

In these conventional systems all design descriptions are ultimately evaluated at the gate-
level, so the potential for speed-up is restricted. Since conventional mainframes and workstations
are Von Neumann machines and implement only binary data types directly in the hardware, the
final binary file produced by the compiler is really a logic-level description. The datapath of the
simulation engine (workstation, mainframe) performs simple operations (and, or, etc.) and some
special support is provided for the number datatype via the floating point hardware. In reality, the
C-compiler FORTRAN or ADA, in some cases) of the workstation is “synthesizing” a logic-level
description of the system behavior which is intended to have the same functional characteristics as a
real implementation. This description is intended to simulate quickly on a Von Neumann computer.

This gate-level evaluation is illustrated in Figure 1.1, where the levels of design abstraction
are shown on the left. The Von Neumann computer is shown as a gate-level implementation since
the dominant abstract data type it directly implements is the binary "bit" on wires in the main
processor.

The key idea of using synthesis for simulation is to replace the general-purpuse symbolic
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C-compiler (which maps a behavioral description to the format of the simulation engine) with
effective synthesis tools which understand the special properties of the behavioral descriptions of
digital electronic systems. These tools can manipulate the description from a mathematical and
global point of view, while maintaining its external behavior, so that it simulates quickly. In addition-
to using synthesis to minimize the final area or delay time of the hardware implementation of the
design, synthesis tools can be used early in the design cycle to improve the simulation speed (Figure
1.2).

Once synthesis tools are used to compile for simulation, they can also be used to retar-
get descriptions to other hardware platforms for improved simulation, such as massively-parallel
single-instruction multiple-data (SIMD) machines, or even FPGA-based emulation engines, giving
designers a wide range of price/performance options. This project targets the massively-parallel
SIMD computer as the simulation engine. The two primary goals of the project were to evaluate
the usefulness of synthesis tools to map behavioral descriptions to a simulation engine format and

to evaluate the performance improvements of the simulation engine using SIMD architectures.

1.2 Report Organization

An introduction to digital simulation, including terminology and general types of simula-
tors is presented in Chapter 2. Discrete event simulation algorithms and implementation techniques
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Figure 1.2: Synthesis Techniques Used for Discrete-Event Simulation

are described and some example simulators are reviewed. In Chapter 3 the potential parallelism in
circuits and some previous work in parallel digital simulation is summarized. Previous work in the
application of simulation techniques to various target hardware platforms is presented. A machine
model for the massively-parallel SIMD computer in Chapter 4, which is the basis for the study of
techniques in the remainder of this report.

A general simulation algorithm and implementation is presented in Chapter 5, which
serves as the basis for investigating the use of synthesis tools and techniques as a preprocessor for
parallel simulation. The synthesis tools and framework, experimental results, and conclusions are

presented in Chapter 6, 7 and 8, respectively.



Chapter 2

Digital Simulation Background

Before presenting the simulation approach chosen for implementation, an understanding
of the basic model of discrete-event simulation and its terminology is necessary. An overview of
digital simulation and some necessary background is presented in this chapter. In the first section,
the different levels of circuit simulators are defined. The discrete-event model and simulation
classifications are defined in the final section.

2.1 Levels of Digital Simulators

There are many levels for modeling the behavior of a digital circuit. At the physical level,
the silicon, metal, etc. may be treated as simple devices such as transistors with timing behavior
derived from the physical components. Transistors may be modeled as simple on-off (digital)
switches with special timing parameters to approximate the behavior of the physical elements of
the transistors. Above this switch model, the transistors may be grouped into functional blocks
implementing Boolean logic functions. These logic blocks, or gates, retain the functionality but are a
less accurate model of the underlying physical elements. In the same way, gates can be grouped into
behavioral or functional blocks. These blocks model the functions, but not the individual behavior
of the underlying transistors. In each case the physical design is modeled at a more abstract and less
physically accurate behavioral level. These models are often used to specify a design at a high level
of abstraction. The design is then refined to successively lower abstractions, eventually leading to
a physical design specification. Simulation tools are available to verify designs at every level of
abstraction. These design levels translate to five types of digital simulation: circuit-level, switch-
level, gate-level, functional-level and behavioral-level simulation. Techniques for simulation and



example simulators of each type are presented in the following sections.

2.1.1 Circuit-Level Simulation

Circuit-level simulation is the most accurate simulation of a circuit’s behavior. The
circuit is modeled as transistors, resistors and wires. The behavior of these elements is determined
by their physical geometry and the technology in which the circuit is built. From this basis, a
set of mathematical equations can be derived to represent this behavior. The state of any node
in the circuit can be found by solving these equations. Detailed behavior provided by this level
of simulation is essential to verify critical parts of a design. The computational expense of this
detailed solution is too high for general simulation of large designs. Circuit-level simulators such
as SPICE [Nag75] and CAzM [Erd89] are feasible for simulating up to 10,000 transistor networks.
Today designs easily eclipse this size limit. To handle larger designs, simulation accuracy is traded
against computational complexity. Investigation in reducing the computational complexity at the
circuit level has concentrated on relaxation techniques [NSV83]. A simple model of the circuit
elements may be chosen for simulation giving less accurate behavior modeling at a greatly reduced
computational cost. .

2.1.2 Switch-Level Simulation

In digital circuit design a transistor can be modeled as a simple switch with an acceptable
loss of accuracy. For better analysis of critical portions of the circuit, circuit-level simulation may
still be used for small pieces of the design. Switch-level simulators model the entire circuit as
a collection of transistors and wires. The wires are generally modeled as idealized, zero-delay
conductors. The transistors are modeled as switches with a simple delay model such as unit-delay
in switching. More complex delay information may often be included if it is available. Some
example switch-level simulators are ESIM [Ter83], MOSSIM [Bry84], and COSMOS [Bry87]. The
circuit simulation involves solving simplified equations based on approximate circuit theory. Many
switch-level simulators incorporate more accurate timing at the cost of additional computation time.
Some also allow the user to specify increased levels of precision in modeling the element behavior.
In spite of the loss of accuracy from circuit-level simulation, the timing information at the switch
level may be sufficient to detect timing problems such as hazards, glitches and race conditions.



2.1.3 Gate-Level Simulation

Gate-level simulators model circuit elements at the gate rather than transistor level. The
representation of a group of transistors as a simple Boolean logic gate greatly reduces the number of
models to be evaluated and thus the total computation time for the simulation. Rather than equations
for the voltage and current levels at nodes in the circuit, a set of Boolean logic equations represent
the circuit behavior. The total simulation is more efficient due to the reduced number of equations
and the simplicity of the basic logic computations. The circuit is represented as a collection of
logic gates and the connecting wires. Gate-level simulators frequently support only a small set of
functions: and, nand, or, nor and dff. A delay value is assigned to each gate, reducing the timing
information as compared to switch-level simulation. Some simulators assign fixed or unit delays
to each gate while others incorporate additional information about capacitance or fanout into the
delay models. HILO [Gen85] and THOR [SB87] provide gate-level modeling for simulation.

2.14 Functional Simulation

Functional-level, or register-transfer-level, simulation is abstracted another step from the
gate level. The logic gates are grouped into functional blocks of combinational and sequential
components. The corinections between these components are no longer restricted to wires. Related
wires or bits may be grouped into ordered sets of words or buses. The simulation consists of a set of
statements describing transfers of data between functional blocks and arithmetic operations on this
data. The higher level of abstraction in functional-level simulation allows functional verification of
a large design in a reasonable amount of computation time. This functional testing does not include
the ability to catch subtle errors such as races, hazards and critical timing constraints. These timing
errors can only be detected at the lower levels presented above.

2.1.5 Behavioral-Level Simulation

Behavioral-level simulation is very similar to functional-level simulation. Both represent
the circuit design by a set of blocks with functions specified directly by the designer. The main
difference is the blocks correspond directly to hardware blocks in functional-level simulation.
While behavioral-level descriptions duplicate behavior, but not necessarily the structure of the
implementation. The behavioral-level units are generally described using a hardware description
language such as VHDL. Similar to software programming languages these descriptions can be
compiled and executed to emulate the operation of the design specification. Like functional-level



simulation, behavioral-level simulation is very efficient for verifying the high-level operation of the
design, but does not include the information to detect low-level timing or design errors.

2.1.6 Mixed-Level and Mixed-Mode Simulation

Mixed-level simulation combines two different levels of simulation, such as switch and
functional, in a single simulator. These are combined to allow different portions of a design to
be tested at different levels. Critical pieces of the design can be simulated for detailed timing
behavior at the switch-level, while less critical pieces only have their high-level behavior verified.
Computation and precision tradeoffs are made in a single simulation run. LDVSIM [Bri89) and
Lsim2 [CE75] are examples of mixed-level simulators.

Where mixed-level simulation blends two different levels of abstraction for a single
simulation, mixed-mode simulation mixes computational techniques, such as direct and relaxation
methods, in a single simulation. Mixed-mode simulators such as SPLICE [New79) and SAMSON
[SD80] improve simulation performance by their dynamic choice of algorithm.

2.2 Discrete-Event Simulation Terminology and Classifications

Figure 2.1 represents a simple circuit comprised of three gates. A change in one of the
inputs may cause a change in one of the intemal nodes which, in tum, may cause a change at the
output. Simulation’s role is to determine the effects of changes at the inputs and involves not only
determining the values of the intenal nodes, but also the time at which changes occur at the nodes.

The basic model of discrete-event simulation has a clock representing the current time
in the system and an event queue consisting of events that will happen in the future relative to the
clock. When a node changes state because of a change in the output of a simulated gate, the node
change cannot be directly applied to the node until the appropriate time. A simulation event consists
of a new value for a node and the time at which the change will occur. For example, assume an
event has been placed on the event queue for the circuit input in Figure 2.1. When the clock reaches
the time specified in the event, the event is dequeued and the new gate output value is calculated
using the new input value. The new output value with the appropriate time is now an event foreach
of the gate fanout nodes. Each of these gates must be evaluated, potentially generating more events.
The simulation continues until the event queue is empty or some maximum time value is reached.
This basic discrete-event simulation algorithm is given in Figure 2.2 and depicted in Figure 2.3.
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Figure 2.1: A Simple Network

The designers of HSS [B*87] defined several classifications for simulators which are of
interest for discrete-event simulation. A simulation algorithm can be event-driven or oblivious. In
oblivious simulation every gate is evaluated at every time step. In event-driven simulation only
those gates whose input has changed are evaluated. Additionally, a simulation implementation
can be compiled or interpretive. In interpretive simulation a data structure representing the circuit
network is constructed. A central scheduler iterates over the simulation time, calling procedures to
evaluate the network. In compiled simulationa customized program is produced which simulates the
network. The simulation iterations of the interpretive scheduler are effectively unrolled to produce
a straight line program with direct data addressing. This reduces the overhead of the simulation in
traversing the network data structure. HSS4 [B*87] is an example of a compiled event-driven logic
simulator and SSIM [WHPZ87] is an example of an interpretive oblivious simulation.
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while ( events remain ) {
take earliest event;
update time;
modify node;
evaluate affected gates;-
enqueue any events determinde by evaluation;

Figure 2.2: Basic Discrete Event Simulation Algorithm

dequeue%

model evaluatlon

[ control E

Figure 2.3: Flow Chart of Basic Discrete Event Simulation
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‘Chapter 3

Parallel Simulation

Previous studies have tried to measure the potential of using parallel approaches for
digital simulation. These studies, investigating circuit characteristics for parallel simulation, are
reviewed in the next section. Previous work on simulators for massively parallel singlc-ihstruction
multiple-data (SIMD) machines is reviewed in the final section.

3.1 Circuit Parallelism Studies

Many studies have investigated the feasibility of massively parallel simulation, which
depends on the existence of large amounts of parallelism in the simulation model. In a study of
potential parallelism in logic simulation [Fra86] gave very promising theoretical estimates. Similar
studies ([BS88], [SB88] and [Won86]) have indicated small degrees of parallelism and forecast
accordingly small speedups from parallel simulation.

Frank [Fra86] determined the theoretical speedup of simulating digital designs of up to
20,000 transistors. The author proposed a theoretical architecture consisting of unlimited num-
bers of processors connected with a network for instantaneous interprocessor communication. The
instruction of the processors is optimized for switch-level simulation. The multiprocessor organi-
zation for switch-level simulation consists of a single simulation instruction per processor allowing
unlimited operands per instruction, eg. unlimited inputs and outputs for nodes in the circuit. This
proposed multiprocessor architecture was simulated on a uniprocessor machine. The resulting
theoretical speedups were as high as 200 times over a simulation for a single processor. A more
realistic simulation of the architecture using 64 processors obtained speedups of 28 times with no
communication costs considered and 12 times with communication costs included. Frank concluded
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that there is parallelism to exﬁloit in switch-level simulation. He also concluded that the parallelism
does not generally increase with the circuit size and average parallelism will be relatively limited
even for large circuits.

A number of statistics on logic simulation were collected by Wong, er al [Won86] to
identify the potential for increased simulation performance. The statistics collected include the
number of events associated with each simulation component, the number of events in the event
queue, times between events in the queue and queue activity. The main statistic of concem for
predicting parallelism is the number of simultaneous events for queue activity. From their simulation
of example circuits of less than 8,000 transistors the authors concluded that relatively few events
occur in parallel. Further, they concluded that the amount of parallelism scales with the size of the
circuit, thus offering opportunities for exploiting parallelism in larger circuits.

Soule and Blank collected statistics similar to Wong, et al’s in [SB88]. These statistics
were collected on circuit designs specified at four description levels from gate to behavioral level.
The circuits were simulated and analyzed for exploitable parallelism. The maximum speedup
was measured using an “ideal” parallel environment model with no cost for Processor memory
contention and synchronization. Analyzing the simulation for up to 1,000 parallel processors they
found a maximum speedup of 100 times for most circuits. For most circuits the maximum predicted
speedup is only 5 times, with little correlation between speedup and design size.

A study by Bailey and Snyder [BS88] was expressly targeted to measure parallelism in
CMOS circuit designs. They also used the event queue activity to measure the parallelism in the
designs being simulated. Simulating a small number of circuits of up to 27,000 transistors, they
obtained a maximum speedup of 25 times. The percentage of parallel activity in the circuits ranged
from 0.04% to only 2.9% of the total design size. For their benchmark circuits, the amount of
parallelism often decreased with increased circuit size.

3.2 Parallel SIMD Simulators

A paralle]l simulator implementation should give a more accurate performance measure
for exploiting parallelism than a static analysis of serial simulation runs. Following the direction
of this research report, a number of simulators implemented on massively parallel SIMD machines
are presented below.

A relaxation-based circuit-level simulator was implemented by Webber, et al, [WSV87].
This simulator produced good results but used parallelization of circuit analysis techniques which
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do not readily extend to parailel logic simulation.

A data paraﬂel version of the switch-level simulator COSMOS was implemented by
Bryant for a massively parallel SIMD machine [Bry88). The entire switch-level model is replicated
onto each processing element with a separate input vector evaluated on each. Using a 32,768
processor machine the simulator runs up to 33,000 times faster than a sequential simulator on a
uniprocessor workstation.

The COSMOS switch-level simulator was extended for general parallel simulation on a
SIMD machine by Kravitz and Bryant [KBR89). The COSMOS algorithm decomposes a transistor
circuit into a series of Boolean equations. These equations form a set of data independent modules
which can be partitioned onto the massively parallel machine for maximum parallelism. From their
investigations, they concluded that sufficient parallelism is available for speedup through massively
parallel evaluation of the Boolean modules. The parallel implementation of COSMOS took twice
as long to simulate one benchmark circuit and half as long to benchmark the second circuit, as the
same simulation on the regular COSMOS simulator. The authors concluded that the one limiting
factor for massively-parallel simulation was the interprocessor communication times on the SIMD
machine.

The final example of parallel SIMD simulators is the VHDL simulator implemented by
Vellandi [Vel90] for-the Connection Machine. Vellandi developed a tool for restructuring the
behavioral-level VHDL model functions into fine-grained computational units. Using this tool
with a parallel SIMD simulator implementation she studied the dynamic behavior of the parallel
simulation. From these studies she found an average component activity level on the SIMD machine
0f 25.2% with a maximum of 36.0% active and minimum of 6.7% active. The final speedups ranged
from 1.4 to 10.4 with an average of 3.4 for their examples. These speedups were only achieved when
the simulation support functions (i.e., event queue routines) were parallelized. Although the program
restructuring techniques exposed a higher degree of parallelism than reported by previous studies,
the results for parallelizing only the model evaluations was disappointing. Vellandi concluded that
the potential exists for exploiting the parallelism of the circuits but a hardware platform other than
the SIMD machine was necessary for real speedups.
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Chapter 4

The Massively-Parallel SIMD Machine
Model

4.1 The Hardware Model

The massively-parallel computer model considered contains thousands of processors,
typically 1,024 to 65,536 processors. All the processors execute a single command in parallel on
their own data in a single instruction, multiple data (SIMD) fashion. The processing elements
which consist of the processor and its private local data space are conceptually arranged in a
two dimensional array. There is no instruction space associated with an individual processor since
instructions are provided by a control unit for the entire processor array. A connection to a sequential
support machine is required for loading the initial circuit information, as well as providing inputs
to and outputs from the simulation. Prime examples for this model are the Connection Machine
[Hil86) and the MasPar machine [B1a%0}, [Nic90].

4.2 The Instruction Set

The types of operations which must be provided by the machine’s instruction set to fully
support the simulation are presented in the following sections.
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4.2.1 Functional Computation Instructions

Arithmetic operations must be provided to evaluate the simulation models. Boolean
operators are required for the evaluation of arbitrary logic functions. A small set of operators, such
as AND, OR, INVERT, and perhaps XOR is sufficient. In addition, a number of basic arithmetic
operations are required for the basic simulation implementation.

4.2.2 Data Access and Transfer Capability

Several levels of data access and transfer capabilities are required for the complete
simulation implementation. For high-level programming, flexibility of the simulation memory
and data addressing modes are a concem. Indirect memory addressing modes are necessary to
support table lookup simulation methods, or interpretive simulation using extensive data structures
to represent the circuit network. Indirect addressing modes allow different processing elements to
access data in unique local data locations. This translates to the capability for pointer dereferencing
in programming languages such as the C programming language. There are two levels of memory
access instructions necessary for the particular arrangement of the SIMD architecture. These are
required for the exchange of data between individual processing element’s local memory, and
the exchange of data between local processing element memory and the supporting ‘front-end’
machine. The access to the support machine is used to load the static circuit data, such as the
network configuration, and to exchange information conceming circuit inputs and outputs during
the simulation execution. The remaining instruction requirement is a communication instruction
for moving data between processing elements. An instruction must be available to allow random
processor-to-processor data transfer during the simulation. A single communication instruction
using a global communication network is sufficient, although other instructions may be available

for faster transfer of data for certain arrangements of data and processors.

4.2.3 Specialized SIMD Operations

The simulation program is to be executed on data across the entire processor array, even
though an individual simulation step may only apply to data on a small portion of the total processors.
A selection mechanism for the enabling/disabling of execution on selected processors is necessary
for conditional execution of instructions. This instruction allows the use of conditional branches
and loops in the higher level languages used for programming the simulation implementation.
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Chapter 5

Parallel Simulation Algorithm /

Implementation

The simulation approach presented in this report is an oblivious, interpretive approach. As
they have been described in the previous chapters, this means that a data structure is generated which
characterizes the static structure of the network to be simulated. This network is then traversed
for each set of inputs to generate the simulation results, independently of the input data. While
this would seem a very poor choice of algorithm / implementation for a sequential simulator, this
is an appropriate choice for the parallel simulation study of this report. Both choices correspond
to a trade-off of overhead and computational complexity for simplicity. In this case, the simple
choice is more helpful in studying the usefulness of synthesis tools for improving the simulation
performance.

The oblivious evaluation approach, seemingly resulting in evaluation of unchanging data,
is appropriate for the massively parallel architecture. With hundreds or thousands of modules being
evaluated in parallel, the likelihood of network activity is greatly increased for each evaluation step.
The interpretive implementation choice is also driven by the special characteristics of the SIMD
architecture. Since the simulated time traversal on a parallel execution model causes the evaluation
of many logic models in parallel, the efficiency of the method as measured by overhead operations
versus model evaluation operations is greatly increased. The use of a data structure to represent the
circuit network, the interpretive approach for sequential architectures, can be viewed as the obvious
extension of the compiled implementation for parallel architectures. The fact that the network does
not change during simulation allows the use of an algorithm that efficiently simulates the network,
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just as in compiled simulation for sequential architectures.

These choices are particularly useful in the examination of improvements in simulation
performance between circuit instantiations. Using the simpler algorithm and implementations,
clear relationships can be established between static circuit and network characteristics and the
simulation performance. These network characteristics can then be used as the target parameters
for optimization by the synthesis tools. With the simple simulation approach, the improvement to
simulation should be easier to characterize and optimization tradeoffs more obvious. From previous
studies, performance improvements should be possible through extensions of the basic simulator.
The parallelizing of the simulation support routines, as in [Vel90], would be expected to improve
the performance regardless of the execution approachuchosen. Therefore, the absolute performance
of the parallel simulator may be worse than possible with more complex simulation choices, the
usefulness as a measure of synthesis for simulation is not affected.

5.1 Simulation Algorithm

The circuit is simulated using a simple evaluation loop (Figure 5.1). The simulation
complexity depends on the static characteristics of the logic network. The gate functions and the
communication pattems are defined by the synthesized logic network and are not dependent on the
simulation input values. The gate output computation is performed on all processors in parallel,
so the time required is negligible. The major cost of the logic simulation on the massively-parallel
machine is the time to "fetch" the input values for the logic function. The communication time is,

therefore, a function of the maximum number of inputs for any gate in the network.

- 8.2 Gate to Processor Mapping

The input to the simulator is a logic network describing the next-state logic and consisting
of a set of logic gates and their interconnections. The logic network is level-ordered from the circuit
inputs, and then mapped onto the processor array. The network is mapped starting with the primary
inputs continuing by increasing logic level of the gates.

Since the mapping of gates to processors preserves the level order of the original circuit,
the gate evaluation sequence can be performed for each successively increasing level of gates.
Given N logic levels in the network, the entire circuit must be evaluated N times per simulation
clock to propagate ihe input vector values through the network. The simulation results for that
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foreach ( clock time In the simulation ) {
foreach (level of logic) {
forall ( gates at this level) {
foreach (input of the gate) {
fetch input value from previous level;

)
compute gate output;

}
}
set Input state = output state;
save/display selected state variables;

Figure 5.1: Simple Compiled-Mode Simulation Algorithm for Massively-Parallel SIMD Machine

simulation clock can then be saved from the output vector. This algorithm results in two parameters
to optimize during synthesis for improved simulation performance. The number of logic levels
in the circuit is the main parameter for minimization. Next, the number of inputs to gates in the
network should be minimized to reduce the amount of data transfer between levels.

5.3 Implementation

The simulator has been implemented on the MasPar massively-parallel machine [Nic90).
The MasPar machine is a general purpose SIMD machine with up to 16,384 processing elements
(PEs). Each PE consists of a 4-bit processor and 16K bytes of local data memory. As a general
purpose machine, the MasPar processors support a full RISC instruction set. In addition to the
Boolean operations and data transfer instructions required by our model massively-parallel simula-
tion machine, the MasPar instruction set offers additional instructions which may be exploited for
faster simulations. The MasPar instruction set includes arithmetic operations for the manipulation
of numbers and other abstract data types. It also provides an ‘xnet’ command for transfer of data
between physically close processing elements. Xnet uses a mesh interconnection network, instead
of the global router network, to transfer data. This allows faster transfers, but is restricted to the
local interconnections and will not work for transfers between random groups of processors.

The simulator consists of three main phases as shown in Figure 5.2. The simalation input
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is a combinational logic desc;ription of the next-state logic network, as described in Section 3. In
the first phase (¢1), the MIS logic synthesis system [BR*87] is used to produce a functionally
equivalent network optimized for simulation on the MasPar machine. This functional equivalence
holds for the extemal behavior, as seen at the input vector (primary inputs and state outputs) and
the output vector (primary outputs and state inputs). Using the synthesis tools available in MIS,
alternate implementations of the circuit are generated. These tools optimize for area and speed of
the final circuit, but not directly for simulation. The circuit is also mapped to a library of logic gates
for simulation on the massively-parallel machine. The MIS technology mapping algorithms, again
oriented for goals other than simulation, are used for this mapping. As described previously, the
"synthesized" logic network is level-ordered and mapped for simulation on the processor array. The
mapped network description is converted to a data structure containing the information required
for evaluation on the individual processors. The data is then written to a file for loading to the
processor array. These steps are performed on the local workstation, in this case a DECstation 5000.
The second phase (¢2) is performed on the MasPar machine. The network representation is loaded
onto the parallel processor array by the simulation support routines. The simulation code is then
executed for the simulation input patterns on the MasPar SIMD machine in phase three (¢3).

Workstation SIMD Machine
DECstation 3100 MasPar MP-1
Read Logic
Network
1 )
- 2
o oea) | ¢
Network l
[ Post-process Execute ¢3

Figure 5.2: Implementation for Massively-Parallel Machine
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Chapter 6

Synthesis Tools for Improving

Simulation Performance

6.1 Introduction

Regardless of the initial level of design description (behavioral, RTL, logic) on the com-
puter that must execute the simulation (in this case, a massively-parallel machine), the description
consists of a collection of stored "bits" and a collection of combinational next-state and output
functions. Again, at the level of the target simulation engine, these operations are expressed in
terms of the fundamental operations available in the machine instruction set. For most descriptions,
these instructions are dominated by the logic operators but may include more abstract operations
on bytes or full words (e.g. arithmetic operations). So the target low-level model for the synthesis-
for-simulation compiler is a state vector containing the present-state and primary input values of
the description (R1), a combinational next-state network containing simple logic gates and a state-
vector to receive the next-state and primary output values (R2). This model can be used to represent
any collection of interacting synchronous or fundamental-mode asynchronous descriptions, derived
from any level of abstraction.

As an example, consider the parity network shown in Figure 6.1. The parity network was
chosen because of its regularity and its worst-case "don’t care” property. In real examples, different
forms of the same logic function are radically different due to the ability to exploit local don't cares.
In this case, the network has 100,000 primary inputs, but only a single output. In Figure 6.1,the
network has been implemented as a tree of 2-input XOR gates, with the final gate collecting any
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outputs still to be combined. The number of stages of logic, as well as the number of inputs per gate,
can be varied and still produce the same output. In Figure 6.2, a 9-input per gate implementation
of the same function is shown. The range of possible implementations is particularly important
for evaluation on a massively-parallel machine. The major cost of parallel logic simulation is
the communication time for transferring data between processors, which overshadows the logic
function evaluation time. Therefore, the simulation time will vary according to the structure of the
circuit implementation chosen. '

Primary Inputs
& State Outputs

\
_—

—
Primary Outputs
& State Inputs

~

2 Inputs/Gate FR1 R2

Stages of Logic
Figure 6.1: 100,000-input Parity Network: Two Inputs per Gate

6.2 Synthesis Framework

The Multilevel Logic Interactive Synthesis System (MIS) [BR*87] is both an interactive
and a batch-oriented multilevel logic synthesis and minimization system. The system starts from the
combinational logic, generally extracted from a higher level description. It produces a multilevel set
of optimized logic equations preserving the input-output behavior of the original description. The
multilevel logic function is represented by a Boolean network. Each node in the Boolean network
is a completely-specified Boolean function represented by both a sum-of-products form and a
factored form. MIS is organized as a set of operators which are applied to the underlying Boolean
network data structure. MIS has evolved as better algorithms are developed and implemented in
the framework. The more recent evolution, MISII was used as the development framework for this
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Figure 6.2: 100,000-input Parity Network: Nine Inputs per Gate

report.

A common set of synthesis and optimization tools are available in the MIS framework
for manipulation of the logic network, and the network can be mapped to the appropriate form for
simulation. As an evolving system for development of new algorithms, the necessary programming
interface is also available to allow the implementation of auxiliary simulation routines requiring
access to the logic network.

6.3 Synthesis Tools

The MISII logic synthesis system allows access to some of the latest tools for logic
optimization. The system contains tools for both local and global optimization of the network.
The algorithms include network and node simplification and timing optimization, as well as tools
for logic partitioning. Specific categories of these tools, which were studied in this project, are
described in the following sections.

6.3.1 Conversion to Simulation Model: Mapping vs. Decomposition

In the context of this project, technology mapping and decomposition are tools for con-
verting the circuit to a format for simulation on the massively parallel simulator. It is not expected

to produce a reduction of the circuit, but to minimize the explosion of the circuit size, measured in
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terms of the number of levels and gates, during the transformation for simulation.

The technology decomposition tool in MIS [BR*87], tech_decomp, performs a simple
expansion of the logic function at each network node. The function is converted to an equivalent
set of AND-OR gates. The intemal representation of the node logic function in MIS is a two-level
sum-of-products format, so the conversion is direct and efficient.

The technology mapping routines in MIS [DG*87] are intended to convert the technology
independent MIS intemal network representation to an equivalent iogic circuit implementation
in a specific technology. The technology is represented by a library of gates with predefined
characteristics. These characteristics represent the physical behavior for the equivalent functional
blocks implemented in the desired technology. The library information available to the technology
mapping routines includes the physical size of the component layout and the actual delay times for
signals through the component.

The mapper uses tree-matching algorithms to find valid combinations of library elements
which are logically equivalent to the network. The library values of area and delay for these
combinations are then calculated and the implementation chosen based on user-specified parameters
for area and delay tradeoff.

For the purposes of massively parallel simulation, the area of the gate is irrelevant. The
differences in delay between different functional elements of the library is also irrelevant, due to
the minimal times required for function computation during the simulation. More important for
simulation is the amount of input data required by the gate. Therefore, the only parameters of interest
in the library are the delay values, which can be used to model the differences in communication
required for simulation of gates with larger numbers of inputs.

A library can be constructed for mapping to a network that can be simulated by setting
all library element area values to unity, or any simple equivalency value. The delay values will
also be equivalent for elements with the same number of inputs, and increase with the number of
inputs. The actual delay values reflect the tradeoff in the simulation model between the number of
gate inputs and the number of logic levels in the network. Since inputs can be fetched in parallel,
the number of gate inputs has a smaller effect on the final simulator performance than the number
of levels. The delay values must be set to favor reduction in the number of levels over reduction in
the number of gate inputs. This may be accomplished by making the differences in delay due to the
number of inputs a fractional part of the total library element delays. For example, the basic delay
can be set at unity with an additional delay of 5% per gate input over two. Using this approach,
distinct weighting is set for optimizing for the number of levels before the number of gate inputs.
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The mapping routines can be run with full delay optimization but with area optimization
tumed off. This effectively eliminates interest in the total number of gates in the final implemen-
tation, which doesn't directly affect the performance of the massively paralle]l simulation, given
sufficient memory and processing elements.

6.3.1.1 Mapping Results

A comparison of the technology mapping and the technology decomposition tools was
made with the results presented in Table 6.1. In this table, a number circuits from the MCNC
and ISCAS logic synthesis benchmark sets, as well as some examples created by the author are
shown. A more complete description of these examples is included in Chapter 7. In each case, Ivis
feprcsents the number of levels of logic in the design implementation generated for implementation.
Ipc represents the number of interprocessor communication steps required for simulation on a
massively parallel computer. The experiments were made using the library described above for
the technology mapper and varying numbers of possible inputs for the decomposition. For the
tech_decomp results, the column title indicates the number of inputs (2 in, 3 in, etc.) to the AND
and OR gates-in the decomposition. A few more clarifications on the actual operation of the tools
should be made with these results. In the mapping library, the functional complexity of the elements
is limited by the function format. The tree-matching algorithms depend on the function designation
of the element, so it is the library writer’s job to include entries for all unique permutations of the
function description. The efficiency of the mapper in finding improved implementations is directly
dependent on the completeness of the library. The decomposition of nodes is restricted to AND
and OR gates, with inversion of inputs allowed. As previously described, the decomposition is a
direct conversion of a nodes logic function from the intemal sum-of-products form, as long as the
number of gate inputs specified to the tech_decomp routine is greater than the number of inputs to
any single network node. Otherwise, the internal node is broken into a representation with smaller
numbers of gate inputs, requiring additional gates and levels to represent the same logic function.
Therefore, the number of gate inputs for the decomposition must be carefully chosen so that the
number of gates and levels is not increased.

6.3.1.2 Mapping Conclusions

The technology decomposition routine produces almost ideal results, when the target
simulation model is restricted to AND, OR, and INV functions. It results in small expansion in the
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|| map (best) || decomp (2in) ]| decomp (3 in) || decomp (4 in) || decomp (5 in) || decomp (10in) |

circuit || Ivls | ipc || Ivls _ipc [ vis [ ipc lvls | ipc |[[Ivis| ipc [ Ivis ipc !

Sxpl-hdi || 14 | 28 [ 19 | 38 14 ] 38 43 14 43 43

C1355 2|49 |[ 25 50 24 | 49 22 49 22 | 51 22 51 |
C6288 120 | 240 || 120 | 240 120 | 240 120 [ 240 120 | 240 120 240
des 33|66 || 30| 60 23 | 68 19| 7 19| N 18 | 126
duke2 18 136 | 9 18 6 18 5 20 4 20 4 36
misex3 17 1 34 | 13 26 10 30 8 | 29 7 30 5 36
sao2-hdl || 36 | 72 || 36 | 72 31 79 27 | 91 2| 82 22 91
seq 24 | 48 || 12 | 24 8 24 7 28 5 25 5 50
trisc -0 - 137 74 36 | 84 36 | 91 35| 90 35 90
add16 31|62 |46 | 92 2| 9 31| 107 |[ 31| 107 || 31 107
add32 63 | 126 || 94 | 188 [ 64 | 190 [ 63 | 219 |[ 63| 219 || 63 | 219
|multle || 73 [146 [ 96 | 192 [ 68 | 198 || 65 | 223 |[ 65| 223 || 65 | 223
mult24 || 106 212| 146 | 292 (101 | 298 [ 98 | 341 | 98 | 341 98 | 341
mult32 1138 (276 [[ 194 | 388 |[133| 394 |[130| 454 | 130| 454 | 130 | 454

Table 6.1: Comparison of Technology Mapping and Decomposition.

number of levels, while producing the implementation for the massively parallel simulation. The
functional restriction allows easy comparison of implementations, with minor functional sacrifice,
considering the realistic restriction of the library functional descriptions. The technology decompo-
sition is efficient, allowing quick comparison of implementations with varied maximum gate inputs.
The efficiency makes it a natural choice for benchmarking runs. In practice, it also gives very good
results compared to technology mapping using a technology library modified for massively parallel

simulation.

6.3.2 Simplification Algorithms

Simplification techniques for multilevel logic networks are primarily concemned with
optimization of individual node functions and some incremental improvements to the network
structure. One of the most powerful techniques for node optimization is the use of two-level logic
minimizers. The implicit don’t care information available at a each node of a logic network is used
to perform two-level logic minimization on the Boolean function associated with the node. The
input to a two-level minimizer, such as ESPRESSO [B*84], is composed of an onset cover and a
don’t care set. The onset cover is the node function expressed in terms of its inputs. The don’t
care set at each node contains information on the structure of the network. This information is a
combination of external, observability, and satisfiability don’t cares. Unfortunately, the don’t care
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set is extremely large, and may be restricted by the two-level minimizer.

For the basic simplify operation in the MIS synthesis system, ESPRESSO is used for
the two-level minimization, utilizing varying amounts of don’t care information. The don’t care
set is constructed from a subset of the observability don’t care set. The extent of the don’t care
information can be varied from none, to the fanin don’t cares of all levels of transitive inputs to the
node being minimized.

A newer simplification algorithm has been developed, [STB91], which computes almost
the full local don’t care set at each node. This method uses external don’t care information more
effectively, using newer data manipulation techniques and image computation methods to find the
local don’t care sets at each node. In order to handle the information more efficiently, binary decision
diagrams (BDD’s) are used to generate and manipulate the logic information. By providing a more
complete don’t care set to the two-level minimizer, a better simplification result is generated. This
technique is implemented as the full_simplify command in the MIS synthesis system.

6.3.3 Timing Algorithms

The need to synthesize circuits meeting strenuous timing requirements has led to the
development of algorithms for reducing the delays in circuits. A subset of these methods, reducing
delay in combinational logic, is of particular interest in this report. This method, known as timing
restructuring, attempts to restructure the circuit globally to have better timing properties. In the
restructuring, the quality of a circuit is judged by the circuit structure, rather than the calculation of
detailed timing information.

A standard method of timing optimization maps the network into 2-input NAND gates
and inverters and then uses a unit delay model to estimate the delays in the network. With these
delays, critical paths in the circuit are identified. The timing optimization routine then attempts to
restructure the circuit along these paths to reduce the overall delay in 'thc circuit. With the 2-input
NAND gate and inverter form for the network, the unit delay model equates the circuit delay to the
number of logic levels. When the circuit is restructured with a shorter delay along the critical path,
the circuit has fewer levels of logic, which is the desired result for reduced simulation time on the
massively parallel simulator.
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6.3.3.1 Speed._up

A routine for timing restructuring of combinational circuits, Speed_up, is provided in the
MIS synthesis system [BR*87]. The input Boolean network is decomposed into 2-input NAND
gates and inverters and weights are assigned to the nodes in the resulting Boolean network. The
algorithm uses the node weights to identify the critical portions of the network, choosing a set
of nodes which will reduce the delays on all the critical paths when.sped up. Partial collapsing
is performed on the critical path at each node in the critical set. The collapsed nodes are then
decomposed again into an alternate 2-input NAND gate and inverter representation. The process
continues iteratively until no more improvement can be made.

The MIS speed_up command allows one of three delay models to be specified: mapped,
unit fanout, or unit. The mapped delay model computes the delay using the delay data in the
technology library, as described above with the technology mapper. The unit fanout model is
intended to capture a technology independent model, assigning a 1 unit delay to each gate and
0.2 units to each fanout stem. The unit delay model counts the level of the circuit as its delay.
The speed_up command provides additional control over the timing estimation and restructuring
operations. Options exist to determine the nodes considered critical, the amount of collapsing to
be performed around the critical node set, and the area-delay tradeoff to be considered. For this
project, the unit delay model and the pure timing (no area) mode are used to target the massively
parallel simulation model. The other parameters are investigated for their effects on generating the

best results for simulation

6.3.3.2 Collapse

For pure timing optimization, a simple way to improve the performance is to collapse
a logic network into two levels of logic. Unfortunately, this obvious technique is not widely
applicable. For a large class of circuits, including circuits for which simulation is most expensive,

collapsing is impractical due to memory and computation costs.

6.3.3.2 Reduce_depth

While the cost of collapsing into two levels of logic is prohibitive for most circuits, part
of the delay improvement can be obtained by collapsing a circuit partially at a smaller cost. Delay
optimization of combinational logic using clustering of nodes and partial collapsing was investigated
by Touati [TSB91] and implemented in the MIS synthesis system. This algorithm performs a partial
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collapse of the circuit based on delay-driven clustering. The circuit may then be simplified using
the simplification tools discussed in section 6.3.2.

The reduce-depth command performs a partial collapse of a network by first clustering
nodes and collapsing each clusterinto a single node. The clusters are formed to minimize the number
of levels of nodes in the network after the collapsing of the clusters. The clustering algorithm does
not take into account the complexity of the logic functions in the nodes. Typically the input network
is already decomposed into simple gates, but this is not enforced. The desired depth of the network
after clustering may be specified, as well as the maximum amount of logic duplication allowed to
obtain the clustering. .

To use the reduce_depth clustering algorithms to target massively parallel simulation
performance, the desired number of node levels is small, with no limits set on the amount of
duplication. The node levels directly correspond to the logic levels in the simulation, while the
duplication correlates to increased logic parallelism. Since the complexity of the clustered and
collapsed nodes is not restricted, the resultant logic provides an opportunity for logic simplification.
The use of full _simplify to optimize each node in the partially collapsed network should produce some
logic reduction in the simulation. To ensure that the number of logic levels is not increased during
the simpliﬂcaﬁon phase, Touati added this restriction in determining acceptable simplifications.
This optimization mode is used when the simplification step follows the reduce._depth execution.
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Chapter 7

Experimental Results .

7.1 Benchmark Circuits

Experiments were run on most of the circuits from the MCNC [Lis88] and ISCAS tBBK89]
logic synthesis benchmark sets. Additional circuits were generated using the BLIS behavioral level
synthesis system [Whi92). The number of useful examples was restricted by the capacities of
the synthesis tools. Specifically, a number of the circuits caused the synthesis tools to run out of
memory, or failed to complete after a large amount of CPU time (weeks of real time). The TRISC
example circuit is a full RISC microprocessor design which has been prepared for fabrication. The
par32 circuit is a 32 bit parallel arithmetic circuit, and the MULT circuits are multiplier circuits
implemented using a Wallace Tree arrangement [Hwa79]. Each of these examples was completely
generated from a behavioral-level description using the BLIS behavioral synthesis system. The
experiments run on the circuits are characterized and the results obtained are presented in the

following sections.

7.2 Performance Metrics

The simulation system described in this report must be evaluated on both the performance
of the massively parallel machine for simulation and the effectiveness of logic synthesis tools to
target this simulation platform. Dynamic performance of the massively parallel simulatoris obtained
by direct measurements of the simulation times on the benchmark circuits. The structure of the
circuits predicts this performance directly. Therefore, the effectiveness of synthesis is measured by
changes to the static structure of the circuits generated for simulation.
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7.2.1 Dynamic Metrics

Dynamic performance of the simulation are affected by the static configuration of the
network implementation. There are two major dynamic characteristics of SIMD simulation which
must be addressed: computation and communication. The time required for the computation of the
model function, i.e. gate evaluation, is minimized in this study by restricting the simulation model
to simple logic functions. This translates directly to simple Boolean operations on the processor
with minimum variation in evaluation time between possible gate types.
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Figure 7.1: Contention on a Single Input Fetch

The second dynamic characteristic, communication time, is directly correlated to the
static configuration of the network. Since the communication of data between processing elements
is accomplished using the global routing network, the communication characteristic translates to
a dependence on contention for the routing channels. Contention during data transfers can be
caused by two processors trying to access data from the same source processor. An example of
multiple fanouts from a single gate being updated in the same communication step is shown in
Figure 7.1. This is a product of the static (fanout) structure of the network. Due to the design of the
communication network on the MasPar computer, contention can also occur when two processors
access physically close processing elements. This is the physical location in the processor array,
which is set by the mapping of the network to the SIMD machine.

Tests were run to determine the effects of contention on the run-time performance of
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Figure 7.2: Contention Time Comparison

the simulation on the MasPar computer (see Figure 7.2). These tests measured the interprocessor
communication times with 3000 processors and varying levels of contention. The time for the
data transfer between processors ranges from 0.5 to 25 milliseconds, as the amount of contention
increases from the no contention to all 3000 processors in contention. For the typical value of three
fanouts per gate, the time is only increased by 0.2 ms. Therefore, the potential for large contention

delays exist, but it is not expected to be a major factor in the simulation performance.

7.2.2 Static Metrics

Static characteristics of the logic networks directly correspond to the absolute simulation
performance. These relationships are due to the simulation algorithm chosen and easily seen from
the evaluation loop shown in Figure 5.1 (see Chapter 5). The main static characteristic affecting the
evaluation time is the number of logic levels in the circuit implementation. The maximum number
of inputs over all the logic gates at each logic level is the next most important characteristic. The
number of input fetches to evaluate the gates at each level is set by the maximum number of inputs
for any gate at that level, since the values can be transferred in parallel. The sum of these input
fetches over all logic levels is the total number of interprocessor communication (ipc) steps required
for simulation of a single input pattern. For example, consider a logic network consisting of N
levels of two input nand gates. The maximum number of inputs at each level is 2, therefore the
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number of ipc steps required is 2N. Now replace a single gate in the first level of logic with a five
input nand gate. The maximum number of inputs for the first level is 5 and for the other N-1 levels
is 2. Therefore 2(N-1) + 5 ipc steps are now required.

7.3 Results

The results for this project are presented in the following two sections, which correspond
to the two concepts investigated. The first section presents the absolute performance of the simulator
onamassively parallel machine. The simulation performance is measured on the original benchmark
circuits before optimization with the synthesis tools. The second section details the effectiveness

of logic synthesis tools for targeting the massively parallel simulation.

7.3.1 Simulation Performance

For the simple simulator implementation described, the results shown in Table 7.1 were
collected. For each example, the table shows the size of the simulation input vector (In), the size of
the simulation output vector (Out). The number of gates (gates) and the number of logic levels (Ivls)
in the synthesized circuit indicate the size of the logic networks. The number of communication
steps (ipc) required for the simulation is twice the number of logic levels, since these circuits were
all decomposed into two input logic gates. The circuits were simulated for a large number of
random input patterns. The performance times (ms/pat) given are the calculated average time, in
milliseconds, required to simulate a single input pattemn. The final column (ms/ipc) is the time
required for each interprocessor communication step in the simulation run. This value is obtained
by dividing the time per pattem (ms/pat) by the number of communication steps required to simulate
each pattem (ipc).

The absolute performance time of interest is the number of input patterns simulated per
second. Looking at the ms/pat times for the benchmarks, note that there are only 5-20 input patterns
simulated per second. This is at least an order of magnitude slower than expected (based on a rule of
thumb performance of 1,000,000 gates / second for a sequential simulator). Since the performance
bottleneck on this SIMD machine is in the interprocessor communication times tests were run to
measure the base communication times of the MasPar machine. The times, for varying amounts of
processor activity, ranged from 0.3 - 0.6 ms per interprocessor communication step (ipc). These
times are consistent with the times used per ipc (ms/ipc) in the benchmarks simulation runs. Given
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| Circuit || In | Out]| gates [ Ivls [ ipc [ ms/pat || msfipc |
des 256 [245 | 4441 | 43| 86| 2150 250
duke2 22| 29| 423 19| 38| 532 140
misex3 14| 14| 713 45| 90| 1250 140

seq 42 35| 1964 | 26| 52| 1240 240
trisc 1,176 [ 832 | 5,546 | 63 | 126 | 185.9 1.48
par32 64 | 64 (12,339 223|446 | 2042 045

mult16 32| 32| 5735102 | 204 84.9 0.42
mult24 48 | 48 | 13,741 [ 151 | 302 | 145.2 048
mult32 64 | 64 | 24,643 | 194 | 388 | 2384 0.61

Table 7.1: Performance Results for the MP Simulator.

this machine communication time and the number of communication steps required for each circuit,
this is the best performance expected from the simulator.

7.3.1.1 TRISC: An Example

For-more insight into the simulator performance, the TRISC circuit is examined. This
example produced simulation results for only 5 input pattems per second. To understand this
performance, the effect of the circuit implementation on the simulation times was investigated. The
number of logic gates at each logic level in the TRISC implementation is plotted Figure 7.3. Since
the implementation was mapped using 2-input gates, this results in the processor activity at each
communication step (ipc) shown in Figure 7.4. As determined by the number of logic gates and the
number of logic levels, the average number of active processors is 88. The activity plots for some
of the benchmark circuits is shown in Figure 7.5. These plots reflect the similar lack of utilization
of resources for those simulations.

7.3.2 Synthesis Improvement to Simulation

The effectiveness of using synthesis tools for speeding up simulation is measured by
static performance metrics. The results for each synthesis tool are, thénefore. given in terms of their
effect on the number of levels of logic in the implementation and the total number of interprocessor
communication steps required for the simulation. These measurements depend on the sirm;lation
implementation previously described in Chapter S.

To make the comparisons, the procedure described in Figure 7.6 was followed. For the
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original circuit implementation, the synthesis / optimization step is skipped. The and-or-invert
decomposition (Decompose to Simple Gates) step is run for varying numbers of gate inputs,
with the implementation producing the fewest interprocessor communication steps chosen. The
implementation numbers are calculated afier a sweep operation to collapse all the inverters into their
fanouts. This operation is valid for all simulation implementations since the simulation calculation
was designed to handle inversion of the gate inputs. Finally, the simulation data is generated for the
actual massively parallel simulation.

The results are presented below comparing the static metrics for the original circuit and
alternate implementations generated. The tools used and the parameters specified for these tools
are described with the results.

7.3.2.1 Simplify

Simplify performs local logic optimization on each node in the logic circuit. It is strictly
targeted to reduce the complexity of the logic functions represented at these local data points. This
may produce a circuit implementation that simulates faster. This is a result of reducing the logic
complexity and is not due to any global timing considerations. The simplify option was used to
restrict increases in the number of levels of logic by the simplification. This reduces the general
effectiveness of the simplification algorithm but produces results targeting reduced simulation
communication. The results of running simplify on the benchmark circuits are shown in Table 7.2.
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The simplify operation produced small reductions in the total number of gates for a few of the
circuits. The number of communication steps required for simulation (ipc) was only reduced for
one circuit, sao2-hdl, and only by 6%.

The full_simplify operation was executed using the same level restriction option with the
results for the benchmark circuits shown in Table 7.3. The full_simplify operation could not be
applied to many of the larger benchmark circuits due to memory limitations. The size of the circuits
(gates) was reduced for most of the circuits. The number of communication steps required for
simulation (ipc) was only reduced for two of the circuits, 5xp1-hdl and sao2-hdl, by 10% and 25%,
respectively.

This simplification technique shows a possibility of improving the simulation performance
by reducing the number of logic levels. The main result of the simplification, however, is fewer
gates. This is likely to reduce the amount of parallelism in the circuit. The tool might be used in
conjunction with other tools, which directly target the number of logic levels to provide consistently

better results for simulation.

7.3.2.2 Collapse

The collapse of a circuit into two logic levels is ideal for explicitly reducing the number
of logic levels in the circuit. The resulting circuit must still be decomposed into simple gates for
the simulation. The decomposition into restricted input gates may cause a subsequent increase
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in the number of logic levels to be simulated. Results are given in Table 7.4 for the collapsed
two-level circuits and the same circuits after mapping to simple two input gates. The collapsed
circuits have only two levels of logic, but have dramatic increases in simulation communication time
(ipc). The collapse dperation produced gates with large numbers of inputs. A high communication
cost is incurred by the serial transfer of data to a single processing element (gate). Decreased
communication was achieved by mapping to simple gates (and, or) restricted to two inputs. Some
of the mapped circuits had significant improvement in simulation communication over the original
circuits but others had no improvement. The main disadvantage to the collapse operation is the
limited size of the circuits which may be collapsed. Exponential growth of the circuit during
collapsing restricts the procedure to small or simple circuits which are expected to require less time

for serial simulation.

7.3.2.3 Speed_up

The speed.up synthesis tool performs timing optimization on a circuit. Delays in the
circuit are estimated, using a delay model, and critical paths are identified. Logic nodes along the
critical paths are collapsed and then re-synthesized in an attempt to reduce the delay along these
. paths. Restricted to the unit delay model and pure timing optimization, speed.up minimizes the
number of logiclevels in the critical paths. With these restrictions, the results of several experiments
with speed.up are showninTable 7.5. The three experiments correspond to successively increasing
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Figure 7.6: Synthesis Optimization for MP Simulation

the number of paths considered critical. For each of these experimental values, Speed.up iterates
over successively increased amounts of collapsing along the identified critical paths. The best of all
these iteration results is returned. The results are presented for the circuit after mapping to simple
input gates for massively parallel simulation. The number of gates in the simulation implementation
(gates) provides a measure of the amount of circuit modification compared to the original circuit
(orig), similarly mapped to simple gates.

Simulation improvements in terms of communication step reduction ranges from 0 -
75%. The largest improvements are in the reduction of the chain structure in the adder benchmark
circuits. Speed-up is well-suited to optimizations for the massively parallel simulation algorithm,
when modeled correctly as a pure timing optimization. The drawback of speed_up is the isolation
of optimization to the critical paths, without exploring the possibility of more global optimizations.

7.3.2.4 Reduce_depth

The second timing optimization algorithm, reduce_depth, is also directly applicable to
the problem of simulation performance on parallel machines. Similar to speed.up it attempts to
reduce the total delay of the circuit. Restricted to a unit delay model, reduce.depth performs
operations to reduce the number of logic levels (Ivls) and consequently, the number of communi-
cation steps (ipc) required for circuit simulation on a massively parallel machine. Reduce_depth



38

orig simplify
circuit Wis | ipc | gates || Ivls | ipc | gates

Sxpl-hdl [ 19 | 38 93 19 | 38 93

C1355 25 | 50 | 518 25 | 50 | 518
C6288 120 | 240 | 2353 || 120 | 240 | 2353
des 30 | 60 | 3303 || 30 | 60 | 3298
duke2 9 | 18 | 17117 9 | 18 | 1717
misex3 13 | 26 | 1590 ’ 13 | 26 | 1560
sao2-hdl || 36 | 72 | 326 34 | 68 326
seq 12 | 24 | 17788 || 12 | 24 | 17152
trisc 37 | 74 | 4472 || 37 | 74 | 4472
add16 46 | 92 | 244 46 | 92 | 244
add32 94 | 188 | 500 94 [ 188 | 500
multl6 ‘ 96 | 192 | 4107 || 96 | 192 | 4107
mult24 146 { 292 | 9751 || 146 | 292 | 9751
mult32 194 | 388 | 17623 || 194 | 388 | 17623

Table 7.2: Results for simplify.

includes logic node clustering and duplication techniques which trade circuit area for improvements
in delay. This corresponds directly to increasing the amount of parallel execution to reduce the
serial execution in parallel simulation. This is identical to the goal of synthesis for simulation on
massively parallel machines.

The results of the reduce-depth operation on the benchmark circuits are given in Table
7.6. The reduction in the number of communication steps (ipc) ranges from 0 - 48%. The amount
of duplication of gates traded for the communication reductions can be compared by the number
of simple gates (gates) in the simulation decomposition. Additional data is supplied in Table 7.7
when a logic simplification algorithm is used with the reduce_depth command. The full_simplify
algorithm described in Chapter 6 is applied to the collapsed node clusters, prior to mapping them
for simulation. This produces incremental improvement over the reduce.depth technique used

alone.



orig full_simplify
circuit || Ivis | ipc [ gates |[ Ivls [ ipc | gates
Sxpl-hdl [[ 19 [ 38 | 93 [ 17 | 34 | 85
C1355 25 1 50 | 518 25 | 50 | S10
C6288 120 | 240 | 2353 - - -
des 30 | 60 | 3303 || 30 | 60 | .3223
duke2 9 18 | 1717 9 18 | 1717
misex3 13 | 26 | 1590 13 | 26 | 1455
sao2-hdl || 36 | 72 326 27 | 54 202
seq 12 | 24 | 17788 || 12 | 24 | 17152
trisc 37 | 74 | 4472 || 37 | 74 | 4449
addl16 46 | 92 244 46 | 92 244
add32 94 | 188 | 500 94 | 188 | 500
multl6 9 | 192 | 4107 - - -
mult24 146 | 292 | 9751 - - -
mult32 194 | 388 | 17623 - - -

Table 7.3: Results for full_simplify.

orig collapse collapse (2 in)
circuit Ivls ipc | gates || Ivis | ipc | gates || Ivls | ipc | gates
Sxpl-hdl ]| 19 | 38 | 93 || 2 [ 25| 85 || 8 | 16 | 250 |
C1355 | 25|50 58 - |- -1 -|-1] -
C6288 120 | 240 | 2353 - - - - - -
des 30 | 60 | 3303 - - - - - -
duke2 9 18 | 1717 2 31 29 9 | 18| 1717
misex3 13 | 26 | 1590 2 2041491 |1 12 | 24 | 13902
sao2-hdl || 36 | 72 326 2 | 38 86 9 | 18 | 521
seq 12 | 24 | 17788 || 2 1129|1491 || 12 | 24 | 17788
trisc 37 | 74 | 4472 - - - - - -
add16 46 | 92 244 - - - - - -
add32 94 | 188 | 500 - - - - - -
multl6 96 | 192 | 4107 - - - - - -
mult24 146 | 292 | 9751 - - - - - -
mult32 194 | 388 | 17623 - - - - - -

Table 7.4: Results for collapse.

39
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| orig speed_up (t=0.5)—H speed.up (1=1.0) speed_up (1=2.0)
circuit || lva?] gates [ Ivls | ipc | gates [ Ivls | ipc | gates [ Ivis | ipc [ gates
Sxpl-hdl || 19 | 38 93 8 16 | 147 9 18 120 10 | 20 119
C1355 25 | 50 | 518 17 | 34 | 612 20 | 40 | 532 20 | 40 | 532
C6288 120 [ 240 | 2353 || 100 | 200 | 2894 || 119 | 238 | 2358 || 104 | 208 | 2454
des 30 | 60 | 3303 || 18 | 36 | 3506 | 19 | 38 | 3431 || 20 | 40 | 3398
duke2 9 18 | 1717 10 | 20 | 593 10 | 20 596 10 | 20 602
misex3 13 | 26 | 1590 || 13 | 26 | 724 13 | 26 724 13 | 26 724
sao2-hdl || 36 | 72 326 30 | 60 | 211 30 | 60 | 225 29 | 58 553
seq 12 | 24 | 17788 || 14 | 28 | 2319 || 14 | 28 | 2383 15 | 30 | 2513
trisc 37 | 74 | 4472 || 24 | 48 | 4654 || 25 | SO | 4548 || 26 | 52 | 4520
add16 46 | 92 244 13 | 26 312 12 | 24 296 13 | 26 346
add32 94 | 188 | 500 21 | 42 | 564 21 | 42 581 20 | 40 688
mult16 96 | 192 | 4107 [ 57 | 114 | 3256 || S1 [ 102 | 3319 || 49 | 98 | 3334
mult24 146 1292 | 9751 || 90 | 180 | 7715 | 96 [ 192 | 7657 || 93 | 186 | 7698
mult32 194 | 388 | 17623 || 122 | 244 | 13764 || 128 | 256 | 13704 || 128 | 256 | 13710
Table 7.5: Results for speed_up.
orig reduce_depth
circuit || Ivls | ipc | gates || Ivls [ ipc | gates
Sxpl-hdif 19738 ] 93 [ 8 | 16 | 290 |
C1355 | 25 | 50 | 518 || 22 | 44 | 26304
C6288 | 120 | 240 | 2353 || 78 | 156 | 5498
des 30 | 60 | 3303 -1 - -
duke2 9 18 | 1717 9 18 | 1717
misex3 13 | 26 | 1590 |[ 13 | 26 | 2416
sao2-hdl [ 36 | 72 | 326 24 | 48 | 1749
seq 12 | 24 [ 17788 || 12 | 24 | 17788
trisc 37 | 74 | 4472 || 30 | 60 | 31197
add16 46 | 92 | 244 25 | 50 | 33646
add32 94 | 188 500 49 | 98 | 77012
multl16 96 | 192 | 4107 - - -
mult24 146 | 292 | 9751 - - -
mult32 194 | 388 | 17623 || - - -

Table 7.6: Results for reduce_depth.




orig reduce_depth
circuit [ Iv1s [ ipc [ gates || Ivls | ipc | gates
Sxpl-hdl || 19 | 38 93 8 | 16 [ 290
C1355 25 | 50 | 518 16 | 32 | 912
C6288 " 120 | 240 | 2353 || 82 | 164 | 5498
des 30 | 60 | 3303 - - -
duke2 9 18 | 1717 9 18 | 1717
misex3 13 126 | 1590 || 13 | 26 | 2253
sao2-hdl | 36 | 72 | 326 19 | 38 | 463
seq 12 | 24 | 17788 || 12 | 24 | 17277
trisc 37 | 74 | 4472 || 29 | 58 | 17244
add16 46 | 92 | 244 25 | 50 | 33646
add32 94 | 188 | 500 || 49 | 98 | 77012
multl6 96 | 192 | 4107 ' - - -
mult24 146 | 292 | 9751 - - -
mult32 , 194 | 388 | 17623 || - - -

Table 7.7: Results for reduce_depth with simplification.

41
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Chapter 8

Conclusions and Future Work

In this project synthesis tools were used to map digital circuit descriptions to a parallel
simulation format for evaluation on a massively parallel SIMD machine. Due to the inherent
random structure of the gate-level logic descriptions being simulated, the local communication
mechanism of the parallel machine could not be exploited effectively. As noted in Chapter 5,
all communications between processors is via the much slower global communication routing
mechanism. The measurement of the communication performance in Chapter 7 shoWs that the
massively parallel SIMD global communication is too slow to be viable as a basis for a simulation
engine. An order of magnitude improvement in the global communication performance must be
obtained to provide feasible simulation performance for such circuits.

Moderate success was achieved using existing synthesis tools to target simulation perfor-
mance rather than final chip performance. The success was made using timing optimization (delay
reduction) tools. The final goal of these tools is similar to the optimization target for massively
parallel simulation. By modifying the execution parameters of the tools, circuit implementations
were generated requiring less interprocessor communication for simulation. The synthesis im- -
provements are overwhelmed by the slow speed of the actual simulator on the massively parallel
SIMD machine. While the use of SIMD machines does not appear promising, advances in the
communication efficiency may occur to make this approach feasible.

The use of synthesis tools for other target machines should be investigated further. More-
over, new synthesis and optimization algorithms should be developed to optimize broader perfor-
mance metrics of simulation. The possibility of different classes of high performance simulation

engines provides the potential for simulation optimization in larger areas of design.
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