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Abstract

Simulation continues to be a major tool in the design of digital circuits. With increases in de

sign sizes and the relative simulation times, the need for better simulation performance grows.

Many studies havebeenperformed on methods to improve simulation performance, covering both

software techniques and hardware acceleration methods. This report combines both ideas. On

the software side, the concept is presented for usinglogic synthesis techniques to produce better

implementations of a circuit for functional simulation. From ahardware perspective, this concept

is investigated usinga simulator running on a massively parallel SIMDcomputer. Synthesis tools

are used to modify the functional description of acircuit to increase the parallelism andshorten the

expected simulation time while mapping the description for execution on the parallel architecture.
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Chapter 1

Introduction

Computer-Aided Design (CAD) systems aid designers of integrated circuits through

the verification of designs at all levels and the automatic synthesis of designs from a behavioral

description tosilicon. Theprimary goal ofCAD systems istoproduce nearoptimal implementations

of acorrect design as quickly as possible. Performance of aCAD system iscrucial: therapid growth

of the integrated circuit market requires quick, correct designs inorder tomaintain competitiveness.

Integrated circuits are usually designed with the help of validation tools to guarantee

correctness. After design,circuit descriptions are optimizedusinglogic synthesistools to minimize

delay, minimize area, or somecombination. The outputofthe synthesis is anetlistwhichis usedto

create the fabrication masks.

Simulation is the primary method for validation used in designing circuits. While other

validation methods such as timing verification are useful tools in designing circuits, simulation

is themost important method of assuring a design's correctness. Emerging techniques including

formal verification and correct-by-construction techniques (silicon compilation) are reducing the

need for extensive simulation. However, these techniques are onlyas valid as theinput given. If

the input to a formal verification tool ora correct-by-construction program has notbeen validated,

the resulting design may notbe what was intended. Formal specification can never fully replace

simulation. Many times incorrect systems are specified and built because inadequate simulation

was performed.

While simulation is necessary, it is also a hindrance. Simulation consumes much of

the designer's effort and evenmore of thecomputational effort in designing a digital system. As

systemsbecomelarger, the simulation costs can only grow. With larger systems,the numberof in

terconnections between componentsgreatly increases the amountofvalidationneeded. Tomorrow's



simulators must be fast and must be able to handle the larger circuits being designed.
In general, circuit designs may be described at avariety of levels - functional, logic,

etc. The description of a circuit's behavior is input to the simulator along with a collection of
test cases. Most simulations systems consist oftwo general steps - the mapping of the description
(input/output specification ofacircuit) to the data structures used by the simulation engine and the
simulation itself (that is, executing the simulation with the specified input) run on the simulation
engine. During the mapping phase the description isalso often optimized to reduce the run time of
the simulation. Asnoted earlier, simulator performance isextremely important since simulation is
considered the bottleneck inmost integrated circuit designs.

In this report the simulation system attempts to achieve faster simulation through the
use of synthesis tools to do the mapping of functional descriptions to the simulation format and a
massively-parallel machine as thesimulation engine.

1.1 Synthesis for Simulation

Conventional discrete-event simulation techniques include gate-level, RTL, behavior, and

system-level. Current simulation tools are becoming obsolete as electronic systems rapidly become
more complex. Even so-called behavioral simulation, if itisto maintain the precision required by
many designs, does not provide sufficient speed-up over logic simulation todo the job.

In these conventional systems all design descriptions are ultimately evaluated at the gate-
level, so the potential for speed-up is restricted. Since conventional mainframes and workstations

are Von Neumann machines and implement only binary data types directly in the hardware, the

final binary file produced by the compiler is really alogic-level description. The datapath of the
simulation engine (workstation, mainframe) performs simple operations (and, or, etc.) and some

special support is provided for the number datatype via the floating point hardware. In reality, the
C-compiler (FORTRAN or ADA, in some cases) ofthe workstation is "synthesizing" alogic-level
description of thesystem behavior which is intended tohave thesame functional characteristics as a

real implementation. This description isintended to simulate quickly on aVon Neumann computer.
This gate-level evaluation isillustrated inFigure 1.1,where the levels ofdesign abstraction

are shown on the left. The Von Neumann computer isshown as agate-level implementation since
the dominant abstract data type it directly implements is the binary "bit" on wires in the main
processor.

The keyidea of using synthesis for simulation istoreplace the general-purpose symbolic
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Figure 1.1: Conventional Approach to Discrete-Event Simulation

C-compiler (which maps a behavioral description to the format of the simulation engine) with

effective synthesis tools which understand the special properties of the behavioral descriptions of

digital electronic systems. These tools can manipulate the description from a mathematical and

global point ofview, while maintaining its externalbehavior, so that it simulates quickly. In addition

to using synthesis to minimize the final area or delay time of the hardware implementation of the

design, synthesis tools can be used early in the design cycle to improve the simulation speed (Figure

1.2).

Once synthesis tools are used to compile for simulation, they can also be used to retar

get descriptions to other hardware platforms for improved simulation, such as massively-parallel

single-instruction multiple-data (SIMD) machines, or even FPGA-based emulation engines, giving

designers a wide range of price/performance options. This project targets the massively-parallel

SIMD computer as the simulation engine. The two primary goals of the project were to evaluate

the usefulness of synthesis tools to map behavioral descriptions to a simulation engine format and

to evaluate the performance improvements of the simulation engine using SIMD architectures.

1.2 Report Organization

An introduction to digital simulation, including terminology and general types of simula

tors is presented in Chapter 2. Discrete event simulation algorithms and implementation techniques
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Figure 1.2: Synthesis Techniques Used for Discrete-Event Simulation

are described and some example simulatorsare reviewed. In Chapter3 the potential parallelism in

circuitsand some previous work in parallel digital simulationis summarized. Previous work in the

application of simulationtechniques to various target hardware platformsis presented. A machine

model for the massively-parallel SIMD computer in Chapter 4, which is the basis for the study of

techniques in the remainderof this report.

A general simulation algorithm and implementation is presented in Chapter 5, which

serves as the basis for investigating the use of synthesis tools and techniques as a preprocessor for

parallel simulation. The synthesis tools and framework, experimental results, and conclusions are

presented in Chapter6,7 and 8, respectively.



Chapter 2

Digital Simulation Background

Before presenting the simulation approachchosen for implementation, an understanding

of the basic model of discrete-event simulation and its terminology is necessary. An overview of

digital simulation and some necessary background is presented in this chapter. In the first section,

the different levels of circuit simulators are defined. The discrete-event model and simulation

classifications are defined in the final section.

2.1 Levels of Digital Simulators

There are many levels for modeling the behaviorofa digital circuit At the physical level,

the silicon, metal, etc. may be treated as simple devices such as transistors with timing behavior

derived from the physical components. Transistors may be modeled as simple on-off (digital)

switches with special timing parameters to approximate the behavior of the physical elements of

the transistors. Above this switch model, the transistors may be grouped into functional blocks

implementing Boolean logic functions. These logicblocks, or gates, retain the functionality but are a

less accuratemodel of the underlying physical elements. In the same way, gates can be grouped into

behavioral or functional blocks. These blocks model the functions, but not the individual behavior

of the underlying transistors. In each case the physical design is modeled at a more abstract and less

physically accuratebehavioral level. These models areoften used to specify a design at a high level

of abstraction. The design is then refined to successively lower abstractions, eventually leading to

a physical design specification. Simulation tools are available to verify designs at every level of

abstraction. These design levels translate to five types of digital simulation: circuit-level, switch-

level, gate-level, functional-level and behavioral-level simulation. Techniques for simulation and



examplesimulatorsof each type are presented in the following sections.

2.1.1 Circuit-Level Simulation

Circuit-level simulation is the most accurate simulation of a circuit's behavior. The

circuit is modeled as transistors, resistors and wires. The behavior of these elements is determined

by their physical geometry and the technology in which the circuit is built. From this basis, a

set of mathematical equations can be derived to represent this behavior. The state of any node

in the circuit can be found by solving these equations. Detailed behavior provided by this level

of simulation is essential to verify critical parts of a design. The computational expense of this

detailed solution is too high for general simulationof large designs. Circuit-level simulatorssuch

as SPICE [Nag75] and CAzM [Erd89] are feasible for simulatingup to 10,000 transistor networks.

Today designs easily eclipse this size limit. To handle larger designs, simulation accuracy is traded

against computational complexity. Investigationin reducing the computational complexity at the

circuit level has concentrated on relaxation techniques [NSV83]. A simple model of the circuit

elements may be chosen for simulation giving less accurate behavior modeling at a greatly reduced

computational cost. •

2.1.2 Switch-Level Simulation

In digital circuit design a transistor can be modeled as a simple switch with an acceptable

loss of accuracy. For better analysis of critical portionsof the circuit, circuit-level simulation may

still be used for small pieces of the design. Switch-level simulators model the entire circuit as

a collection of transistors and wires. The wires are generally modeled as idealized, zero-delay

conductors. The transistors are modeled as switches with a simple delay model such as unit-delay

in switching. More complex delay information may often be included if it is available. Some

example switch-level simulators are ESIM [Ter83],MOSSIM [Bry84], and COSMOS [Bry87]. The

circuit simulationinvolvessolvingsimplified equations basedon approximate circuit theory. Many

switch-levelsimulators incorporatemore accuratetimingat the cost ofadditionalcomputationtime.

Some also allow the user to specify increased levels ofprecision in modeling the element behavior.

In spite of the loss of accuracy from circuit-level simulation, the timing information at the switch

level may be sufficient to detect timing problems such as hazards, glitches and race conditions.



2.1.3 Gate-Level Simulation

Gate-level simulators model circuit elements at the gate rather than transistor level. The

representation of a groupof transistors as a simpleBoolean logicgategreatlyreduces thenumberof

modelsto be evaluatedand thusthe totalcomputation timefor the simulation. Rather thanequations

for the voltage and current levels at nodes in the circuit, a set of Boolean logic equations represent

the circuit behavior. The total simulation is more efficient due to the reduced number of equations

and the simplicity of the basic logic computations. The circuit is represented as a collection of

logic gates and the connecting wires. Gate-level simulators frequently support only a small set of

functions: and, nand,or, nor and dff. A delay value is assigned to each gate, reducing the timing

information as compared to switch-level simulation. Some simulators assign fixed or unit delays

to each gate while others incorporate additional information about capacitance or fanout into the

delay models. HILO [Gen85] and THOR [SB87] provide gate-level modeling for simulation.

2.1.4 Functional Simulation

Functional-level, or register-transfer-level, simulation is abstracted another step from the

gate level. The logic gates are grouped into functional blocks of combinational and sequential

components. The connections between these components are no longer restricted to wires. Related

wires or bits may be grouped into ordered sets ofwords or buses. The simulation consists ofa set of

statements describing transfers of data between functional blocks and arithmetic operations on this

data. The higher level ofabstraction in functional-levelsimulation allows functional verificationof

a large design in a reasonable amount of computation time. This functional testing does not include

the ability to catch subtle errors such as races, hazards and critical timing constraints. These timing

errors can only be detected at the lower levels presented above.

2.1.5 Behavioral-Level Simulation

Behavioral-level simulation is very similar to functional-level simulation. Both represent

the circuit design by a set of blocks with functions specified directly by the designer. The main

difference is the blocks correspond directly to hardware blocks in functional-level simulation.

While behavioral-level descriptions duplicate behavior, but not necessarily the structure of the

implementation. The behavioral-level units are generally described using a hardware description

language such as VHDL. Similar to software programming languages these descriptions can be

compiled and executed to emulate the operation of the design specification. Like functional-level
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simulation, behavioral-level simulation isvery efficient for verifying the high-level operation ofthe

design, butdoes notinclude theinformation todetect low-level timing ordesign errors.

2.1.6 Mixed-Level and Mixed-Mode Simulation

Mixed-levelsimulationcombines two different levels of simulation, such as switch and

functional, in a single simulator. These are combined to allow different portions of a design to

be tested at different levels. Critical pieces of the design can be simulated for detailed timing

behavior at the switch-level, while less critical pieces only have their high-level behavior verified.

Computation and precision tradeoffs are made in a single simulation run. LDVSIM [Bri89] and

Lsiml [CE75] are examples ofmixed-level simulators.

Where mixed-level simulation blends two different levels of abstraction for a single

simulation, mixed-mode simulation mixes computational techniques, such as direct and relaxation

methods, in a single simulation. Mixed-mode simulators such as SPUCE [New79] and SAMSON

[SD80] improve simulation performance bytheirdynamic choice of algorithm.

2.2 Discrete-Event Simulation Terminology and Classifications

Figure 2.1 represents a simple circuit comprised of three gates. A change in oneof the

inputs may cause a change in one of the internal nodes which, in turn, may cause a change at the

output. Simulation's role is to determine theeffects of changes at the inputs and involves notonly

determining thevalues of theinternal nodes, butalsothetimeat which changes occurat thenodes.

The basicmodel of discrete-event simulation has a clock representing the current time

in the system and an event queue consisting of events thatwillhappen in the future relative to the

clock. When a node changes state because of a change in theoutput of a simulated gate, thenode

changecannotbe directlyapplied to thenodeuntiltheappropriate time. A simulationevent consists

of a new value for a node and the time at which the change will occur. Forexample, assume an

eventhas beenplacedon theeventqueuefor thecircuitinputin Figure2.1. Whentheclockreaches

the time specified in the event, the event is dequeued and the new gate output value is calculated

usingthenewinputvalue. Thenewoutput value withtheappropriate timeis nowaneventforeach

of thegate fanout nodes. Each ofthese gates must beevaluated, potentiallygenerating more events.

The simulationcontinuesuntil the eventqueue is emptyor somemaximum time value is reached.

Thisbasic discrete-event simulation algorithm is given in Figure 2.2anddepicted inFigure 2.3.



Figure 2.1: A Simple Network

The designers of HSS [B+87] defined several classifications for simulators which are of

interest for discrete-event simulation. A simulation algorithm can be event-driven or oblivious. In

oblivious simulation every gate is evaluated at every time step. In event-driven simulation only

those gates whose input has changed are evaluated. Additionally, a simulation implementation

can be compiled or interpretive. In interpretive simulation a data structure representing the circuit

network is constructed. A central scheduler iterates over the simulation time, calling procedures to

evaluate the network. In compiled simulation acustomized programis produced which simulates the

network. The simulation iterations of the interpretive scheduler are effectively unrolled to produce

a straight line program with direct data addressing. This reduces the overhead of the simulation in

traversing thenetworkdata structure. HSS4 [B+87] is anexample ofacompiled event-driven logic

simulator and SSIM [WHPZ87] is an example of an interpretive oblivious simulation.



while (events remain) {

take earliest event;

update time;

modify node;

evaluate affected gates;

enqueue any events determinde by evaluation;

}

Figure 2.2: BasicDiscreteEvent Simulation Algorithm

I
model evaluation

control

Figure 2.3: Flow Chart ofBasic Discrete Event Simulation
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Chapter 3

Parallel Simulation

Previous studies have tried to measure the potential of using parallel approaches for

digital simulation. These studies, investigating circuit characteristics for parallel simulation, are

reviewed inthe next section. Previous work onsimulators for massively parallel single-instruction

multiple-data (SIMD) machines is reviewed in the final section.

3.1 Circuit Parallelism Studies

Many studies have investigated the feasibility of massively parallel simulation, which

depends on the existence of large amounts of parallelism in the simulation model. In a study of

potential parallelism in logic simulation [Fra86] gave verypromising theoretical estimates. Similar

studies ([BS88], [SB88] and [Won86]) have indicated small degrees of parallelism and forecast

accordingly small speedups from parallel simulation.

Frank [Fra86] determined the theoretical speedup of simulating digital designs of up to

20,000 transistors. The author proposed a theoretical architecture consisting of unlimited num

bers of processors connected with anetwork for instantaneous interprocessor communication. The

instruction of the processors isoptimized for switch-level simulation. The multiprocessor organi
zation for switch-level simulation consists ofasingle simulation instruction per processor allowing
unlimited operands per instruction, eg. unlimited inputs and outputs for nodes in thecircuit. This

proposed multiprocessor architecture was simulated on a uniprocessor machine. The resulting

theoretical speedups were as high as 200 times over a simulation for a single processor. A more

realistic simulation of the architecture using 64 processors obtained speedups of 28times with no

communicationcosts considered and 12times with communicationcosts included. Frankconcluded
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that there is parallelism to exploit in switch-level simulation. He also concluded that the parallelism
does not generally increase with the circuit size and average parallelism will be relatively limited
even for large circuits.

A number of statistics on logic simulation were collected by Wong, et al [Won86] to
identify the potential for increased simulation performance. The statistics collected include the

number of events associated with each simulation component, the number of events in the event
queue, times between events in the queue and queue activity. The main statistic of concern for

predicting parallelism is the numberofsimultaneousevents for queue activity. From theirsimulation
ofexample circuits ofless than 8,000 transistors the authors concluded that relatively few events
occur inparallel. Further, they concluded that the amount of parallelism scales with the size of the

circuit, thus offering opportunities for exploiting parallelism inlarger circuits.

Soule and Blank collected statistics similar to Wong, et aVs in [SB88]. These statistics

were collected on circuit designs specified at four description levels from gate tobehavioral level.
The circuits were simulated and analyzed for exploitable parallelism. The maximum speedup
was measured using an "ideal" parallel environment model with no cost for processor memory
contention and synchronization. Analyzing the simulation for up to 1,000 parallel processors they
found amaximum speedup of100 times for most circuits. For mostcircuits the maximum predicted
speedup isonly 5 times, with little correlation between speedup and design size.

A study by Bailey and Snyder [BS88] was expressly targeted tomeasure parallelism in
CMOS circuit designs. They also used the event queue activity to measure the parallelism in the
designs being simulated. Simulating asmall number ofcircuits ofup to 27,000 transistors, they
obtained amaximum speedup of25 times. The percentage ofparallel activity in the circuits ranged
from 0.04% to only 2.9% of the total design size. For their benchmark circuits, the amount of
parallelism often decreased with increased circuit size.

3.2 Parallel SIMD Simulators

A parallel simulator implementation should give amore accurate performance measure

for exploiting parallelism than astatic analysis of serial simulation runs. Following the direction
ofthis research report, anumber ofsimulators implemented on massively parallel SIMD machines
are presented below.

A relaxation-based circuit-level simulator was implemented byWebber, etalt [WSV87].

This simulator produced good results but used parallelization ofcircuit analysis techniques which
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do notreadily extend to parallel logic simulation.

A data parallel version of the switch-level simulator COSMOS was implemented by
Bryant for amassively parallel SIMD machine [Bry88]. The entire switch-level model is replicated
onto each processing element with a separate input vector evaluated on each. Using a 32,768
processor machine the simulator runs up to 33,000 times faster than a sequential simulator on a
uniprocessor workstation.

The COSMOS switch-level simulator was extended for general parallel simulation on a
SIMD machine by Kravitz and Bryant [KBR89]. The COSMOS algorithm decomposes atransistor
circuit into aseries ofBoolean equations. These equations form aset ofdata independent modules
which can be partitioned onto the massively parallel machine for maximum parallelism. From their
investigations, they concluded that sufficient parallelism is available for speedup through massively
parallel evaluation of the Boolean modules. The parallel implementation of COSMOS took twice
as long to simulate one benchmark circuit and half as long to benchmark the second circuit, as the
same simulation on the regular COSMOS simulator. The authors concluded that the one limiting
factor for massively-parallel simulation was the interprocessor communication times on the SIMD
machine.

The final example of parallel SIMD simulators is the VHDL simulator implemented by
Vellandi [Vel90] for the Connection Machine. Vellandi developed atool for restructuring the
behavioral-level VHDL model functions into fine-grained computational units. Using this tool
with aparallel SIMD simulator implementation she studied the dynamic behavior ofthe parallel
simulation. From these studies she found an average component activity level on the SIMD machine
of25.2% with amaximum of36.0% active and minimum of6.7% active. The final speedups ranged
from 1.4 to 10.4 with an average of3.4 for theirexamples. These speedups were only achieved when
the simulation support functions (i.e., eventqueue routines) were parallelized. Althoughthe program
restructuring techniques exposed ahigher degree ofparallelism than reported by previous studies,
the results for parallelizing only the model evaluations was disappointing. VeUandi concluded that
the potential exists for exploiting the parallelism ofthe circuits but ahardware platform other than
the SIMD machine was necessary for real speedups.
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4.1 The Hardware Model

The massively-parallel computer model considered contains thousands of processors,

typically 1,024 to 65,536 processors. All the processors execute a singlecommand in parallel on

their own data in a single instruction, multiple data (SIMD) fashion. The processing elements

which consist of the processor and its private local data space are conceptually arranged in a

two dimensional array. There is no instruction space associated with anindividual processor since

instructions are provided by acontrol unitfor theentire processor array. A connection toasequential

support machine is required for loading the initial circuit information, as well as providing inputs

to and outputs from the simulation. Prime examples for this model are the Connection Machine

[Hil86] and the MasPar machine [Bla90], [Nic90].

4.2 The Instruction Set

The types of operations which must be provided by the machine's instruction set to fully

supportthe simulationarepresented in the following sections.
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4.2.1 Functional Computation Instructions

Arithmetic operations must be provided to evaluate the simulation models. Boolean

operators arerequired for the evaluation of arbitrary logicfunctions. A small set of operators, such

as AND, OR, INVERT, and perhaps XOR is sufficient. In addition, a number of basic arithmetic

operations are required for the basicsimulation implementation.

4.2.2 Data Access and Transfer Capability

Several levels of data access and transfer capabilities are required for the complete

simulation implementation. For high-level programming, flexibility of the simulation memory

and data addressing modes are a concern. Indirect memory addressing modes are necessary to

supporttablelookupsimulationmethods, or interpretive simulationusingextensivedata structures

to represent the circuit network. Indirectaddressing modesallow different processing elements to

access datain unique localdatalocations. Thistranslates to thecapability forpointerdereferencing

in programming languages such as the C programming language. There are twolevels of memory

access instructions necessary for the particular arrangement of the SIMD architecture. These are

required for the exchange of data between individual processing element's local memory, and

the exchange of data between local processing element memory and the supporting *front-end'

machine. The access to the support machine is used to load the static circuit data, such as the

network configuration, and to exchange information concerning circuit inputs and outputs during

the simulation execution. The remaining instructionrequirement is a communicationinstruction

for moving data between processing elements. An instruction must be available to allow random

processor-to-processor data transfer during the simulation. A single communication instruction

using a global communication network is sufficient, although otherinstructions maybe available

for fastertransfer of data for certain arrangements of data andprocessors.

4.2.3 Specialized SIMD Operations

The simulation program is to be executed on data across the entireprocessor array, even

though anindividual simulationstepmayonlyapply todataonasmallportion ofthetotal processors.

A selection mechanism for theenabling/disabling of execution on selected processors is necessary

for conditional execution of instructions. This instruction allows the use of conditional branches

andloopsin thehigherlevellanguages used for programming the simulation implementation.
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The simulation approach presented in this report is an oblivious, interpretive approach. As
they have been described in the previous chapters, this means that adata structure is generated which
characterizes the static structure of the network to be simulated. This network is then traversed

for each set of inputs to generate the simulation results, independently ofthe input data. While
this would seem avery poor choice ofalgorithm / implementation for asequential simulator, this
is an appropriate choice for the parallel simulation study ofthis report. Both choices correspond
to atrade-off ofoverhead and computational complexity for simplicity. In this case, the simple
choice is more helpful in studying the usefulness of synthesis tools for improving the simulation
performance.

The oblivious evaluation approach, seemingly resulting in evaluation ofunchanging data,
is appropriate for the massively parallel architecture. With hundreds or thousands ofmodules being
evaluated in parallel, the likelihood ofnetwork activity is greatly increased for each evaluation step.
The interpretive implementation choice is also driven by the special characteristics of the SIMD
architecture. Since the simulated time traversal on aparallel execution model causes the evaluation

ofmany logic models in parallel, the efficiency ofthe method as measured by overhead operations
versus model evaluation operations is greatly increased. The use ofadata structure to represent the
circuit network, the interpretive approach for sequential architectures, can be viewed as the obvious
extension of the compiled implementation for parallel architectures. The fact that the network does

not change during simulation allows the use ofan algorithm that efficiently simulates the network,
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just as in compiled simulation for sequential architectures.

These choices are particularly useful in the examination of improvements in simulation

performance between circuit instantiations. Using the simpler algorithm and implementations,

clear relationships can be established between static circuit and network characteristics and the

simulation performance. These network characteristics can then be used as the target parameters

for optimization by the synthesis tools. With the simple simulation approach, the improvement to

simulation should be easierto characterize andoptimization tradeoffs more obvious. From previous

studies, performance improvements should be possible through extensions of the basic simulator.

The parallelizing of the simulation support routines, as in [Vel90], would be expected to improve

the performance regardlessof the execution approach chosen. Therefore, the absolute performance

of the parallel simulator may be worse than possible with more complex simulation choices, the

usefulness as a measure of synthesis for simulation is not affected.

5.1 Simulation Algorithm

The circuit is simulated using a simple evaluation loop (Figure 5.1). The simulation

complexity depends on the static characteristics of the logic network. The gate functions and the

communication patterns are defined by the synthesized logic network and are not dependent on the

simulation input values. The gate output computation is performed on all processors in parallel,

so the time required is negligible. The major cost of the logic simulation on the massively-parallel

machine is the time to "fetch" the input values for the logic function. The communication time is,

therefore, a function of the maximum number of inputs for any gate in the network.

5.2 Gate to Processor Mapping

The input to the simulator is a logic network describing the next-state logic and consisting

of a set of logic gates and their interconnections. The logic network is level-ordered from the circuit

inputs, andthen mapped onto the processor array. The network is mapped startingwith the primary

inputs continuing by increasing logic level of the gates.

Since the mapping of gates to processors preserves the level order of the original circuit,

the gate evaluation sequence can be performed for each successively increasing level of gates.

Given N logic levels in the network, the entire circuit must be evaluated N times per simulation

clock to propagate the input vector values through the network. The simulation results for that



foreach (clock time in the simulation) {

foreach (level of logic) {

forall (gates at this level) {

foreach (input of the gate) {

fetch input value from previous level;

1

compute gate output;

1

1

set Input state = output state;

save/display selected state variables;
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Figure 5.1: SimpleCompiled-Mode Simulation Algorithmfor Massively-Parallel SIMD Machine

simulation clockcanthenbe saved from theoutput vector. This algorithm results in two parameters

to optimize during synthesis for improved simulation performance. The number of logic levels

in the circuit is the main parameter for minimization. Next, the numberof inputs to gates in the

network should be minimized to reduce the amount of data transfer between levels.

5.3 Implementation

The simulator has been implemented on the MasPar massively-parallel machine [Nic90].

The MasPar machine is a general purpose SIMD machine with up to 16,384 processing elements

(PEs). Each PE consists of a 4-bit processor and 16K bytes of local data memory. As a general

purpose machine, the MasPar processors support a full RISC instruction set. In addition to the

Boolean operations anddata transfer instructions required by ourmodelmassively-parallel simula

tion machine, the MasPar instruction set offers additional instructions which may be exploited for

faster simulations. The MasPar instructionset includes arithmeticoperations for the manipulation

of numbers and other abstract data types. It also provides an 'xnet' command for transfer of data

between physically close processing elements. Xnet uses a mesh interconnection network, instead

of the global router network, to transfer data. This allows faster transfers, but is restricted to the

local interconnections and will not work fortransfers between random groups of processors.

The simulator consists ofthree main phasesas shown in Figure5.2. The simulation input
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is a combinational logic description ofthe next-state logic network, as described in Section 3. In

the first phase (<£l), the MIS logic synthesis system [BR+87] is used to produce a functionally
equivalent network optimized for simulation on the MasPar machine. This functional equivalence
holds for the external behavior, as seen at the input vector (primary inputs and state outputs) and
the output vector (primary outputs and state inputs). Using the synthesis tools available inMIS,
alternate implementations ofthe circuit are generated. These tools optimize for area and speed of
the final circuit, but not direcdy for simulation. The circuit is also mapped to alibrary oflogic gates
for simulation on the massively-parallel machine. The MIS technology mapping algorithms, again
oriented for goals other than simulation, are used for this mapping. As described previously, the
"synthesized" logic network is level-ordered and mapped for simulationon the processor array. The
mapped network description is converted to a data structure containing the information required
for evaluation on the individual processors. The data is then written to a file for loading to the
processorarray. These steps are performed on the local workstation, in thiscase a DECstation5000.

The second phase (<l>2) isperformed on the MasPar machine. The network representation isloaded
ontothe parallel processor array by the simulation support routines. The simulation code is then

executed for the simulation input patterns on the MasPar SIMD machine inphase three (<f>3).

*

Workstation
DECstation 3100

Read Logic
Network

±
Optimize
and Map -T+

SIMD Machine
MasPar MP-1

Load

Network

Post-process}«—/*S~ •) Execute

Figure 5.2: Implementationfor Massively-Parallel Machine
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6.1 Introduction

Regardless of the initial level ofdesign description (behavioral, RTL, logic)on the com

puter that mustexecute the simulation (in thiscase, amassively-parallel machine), thedescription

consists of a collection of stored "bits" and a coUection of combinational next-state and output

functions. Again, at the level of the target simulation engine, these operations are expressed in

terms of the fundamental operations available inthemachine instruction set. For mostdescriptions,

these instructions are dominated by the logic operators but may include more abstract operations

onbytesor full words (e.g. arithmetic operations). So thetarget low-level model for thesynthesis-

for-simulation compiler is a state veaor containing the present-state and primary input values of

the description (Rl), a combinational next-state network containing simple logic gates and a state-

vector toreceive thenext-state and primary outputvalues (R2). Thismodel can beused torepresent

anycollection of interacting synchronous or fundamental-mode asynchronous descriptions, derived

from any level of abstraction.

As anexample, consider theparity network shown in Figure 6.1. The parity network was

chosen because of itsregularity and itsworst-case "don't care" property. Inreal examples, different

forms of thesame logic function are radically different due totheability toexploit local don't cares.

In this case, the network has 100,000 primary inputs, butonly a single output. In Figure 6.1,the

network has been implemented as a tree of 2-input XOR gates, with the final gate collecting any
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outputs still tobecombined. Thenumberof stages of logic, as well as thenumberof inputs per gate,

can be varied and stillproduce the same output. In Figure 6.2, a 9-input pergate implementation

of the same function is shown. The range of possible implementations is particularly important

for evaluation on a massively-parallel machine. The major cost of parallel logic simulation is

the communication time for transferring data between processors, which overshadows the logic

function evaluation time. Therefore, the simulation time willvary according to the structure of the

circuit implementation chosen.

Primary Inputs
& State Outputs

2 Inputs/Gate R1 R2

Primary Outputs
& State Inputs

Stages of Logic

Figure 6.1: 100,000-input Parity Network: Two Inputs per Gate

6.2 Synthesis Framework

The MultilevelLogic Interactive SynthesisSystem (MIS) [BR+87] is both aninteractive

and abatch-oriented multilevel logic synthesis and minimization system. Thesystem starts from the

combinational logic, generally extracted from ahigherleveldescription. It produces amultilevel set

of optimized logic equations preserving the input-output behavior of theoriginal description. The

multilevel logic function is represented by a Boolean network. Each node in the Boolean network

is a completely-specified Boolean function represented by both a sum-of-products form and a

factored form. MIS is organized as a setof operators which are applied to theunderlying Boolean

network data structure. MIS has evolved asbetter algorithms are developed and implemented in

the framework. The morerecent evolution, MISII wasusedasthe development framework for this
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9 Inputs/Gate Ri

Stages of Logic

Remaining inputs
collected by last
stage

Figure 6.2: 100,000-input Parity Network: Nine Inputs per Gate
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A common set of synthesis and optimization tools are available in the MIS framework

for manipulation of the logic network, and the network can be mapped to the appropriate form for

simulation. As an evolving system for development of new algorithms, the necessary programming

interface is also available to allow the implementation of auxiliary simulation routines requiring

access to the logic network.

6.3 Synthesis Tools

The MISII logic synthesis system allows access to some of the latest tools for logic

optimization. The system contains tools for both local and global optimization of the network.

The algorithms include network and node simplification and timing optimization, as well as tools

for logic partitioning. Specific categories of these tools, which were studied in this project, are

described in the following sections.

6.3.1 Conversion to Simulation Model: Mapping vs. Decomposition

In the context of this project, technology mapping and decomposition are tools for con

verting the circuit to a format for simulation on the massively parallel simulator. It is not expected

to produce a reduction of the circuit, but to minimize the explosion of the circuit size, measured in
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terms of the numberof levels and gates, during the transformation for simulation.

The technology decomposition tool inMIS [BR+87], techjdecomp, performs asimple

expansion of the logic function at each network node. The function isconverted toan equivalent
set of AND-OR gates. The internal representation of the node logic function inMIS is atwo-level

sum-of-products format, so the conversion is direct and efficient.

The technology mapping routines inMIS [DG+87] are intended toconvert the technology
independent MIS internal network representation to an equivalent logic circuit implementation
in a specific technology. The technology is represented by a library of gates with predefined
characteristics. These characteristics represent the physical behavior for the equivalent functional
blocks implemented inthe desired technology. The library information available tothe technology

mapping routines includes the physical size ofthe component layout and the actual delay times for
signalsthroughthe component.

The mapper uses tree-matching algorithms to find valid combinations oflibrary elements

which are logically equivalent to the network. The library values of area and delay for these

combinations are then calculated and the implementationchosen based onuser-specified parameters
for area and delay tradeoff.

For the purposes of massively parallel simulation, the area of the gate is irrelevant. The

differences in delay between different functional elements of the library is also irrelevant, due to

the minimal times required for function computation during the simulation. More important for

simulation isthe amountofinput data required bythe gate. Therefore, theonly parameters ofinterest
in the library are the delay values, whichcan be used to model the differences in communication

required for simulation of gates withlarger numbers of inputs.

A library can be constructed for mapping toanetwork that can be simulated by setting
all library element area values to unity, or any simple equivalency value. The delay values will
also be equivalent for elements with the same number of inputs, and increase with thenumber of

inputs. The actual delay values reflect the tradeoff in the simulation modelbetween the number of

gate inputs and the number of logic levels in the network. Since inputs can be fetched inparallel,
the number of gate inputs has a smaller effect onthe final simulator performance than the number

of levels. The delayvaluesmust be set to favor reduction in the numberoflevels over reduction in

the number ofgate inputs. This may be accomplished bymaking the differences indelay due tothe
number of inputs a fractional part of the total library element delays. For example, the basic delay

can be set at unity with an additional delay of 5% per gate input over two. Using this approach,
distinct weighting isset for optimizing for the number oflevels before the numberof gate inputs.
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The mapping routines can be run with full delay optimization but with area optimization
turned off. This effectively eliminates interest inthe total number of gates inthe final implemen
tation, which doesn't direcdy affect the performance of the massively parallel simulation, given
sufficient memoryand processing elements.

6.3.1.1 Mapping Results

A comparison of the technology mapping and the technology decomposition tools was
made with the results presented in Table 6.1. In this table, a numbercircuits from the MCNC

and ISCAS logic synthesis benchmark sets, as well as some examples created by the author are
shown. A more complete description of these examples isincluded inChapter 7. In each case, Ivls
represents the numberoflevels oflogic inthe design implementation generated for implementation.

Ipc represents the number of interprocessor communication steps required for simulation on a

massively parallel computer. The experiments were made using the library described above for
the technology mapper and varying numbers of possible inputs for the decomposition. For the

tech-decomp results, the column tide indicates the number of inputs (2 in, 3 in, etc.) tothe AND
and OR gates in the decomposition. A few more clarifications onthe actual operation of the tools

should be made with these results. In the mapping library, the functional complexity ofthe elements

islimited bythe function format. The tree-matching algorithms depend on the function designation
of the element, so it isthe library writer's job to include entries for all unique permutations of the
function description. The efficiency ofthe mapper in finding improved implementations isdirecdy
dependent on the completeness of the library. The decomposition of nodes is restricted to AND

and OR gates, with inversion of inputs allowed. As previously described, the decomposition isa
direct conversion of anodes logic function from the internal sum-of-products form, as long as the

number ofgate inputs specified to the tech_decomp routine isgreater than the number ofinputs to
any single network node. Otherwise, the internal node isbroken into arepresentation with smaller

numbers of gate inputs, requiring additional gates and levels torepresent the same logic function.

Therefore, the number of gate inputs for the decomposition must be carefully chosen so that the
number of gates and levels is not increased.

6.3.1.2 Mapping Conclusions

The technology decomposition routine produces almost ideal results, when the target
simulation model isrestricted to AND, OR, and INV functions. It results insmall expansion inthe
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map (best) decomp (2 in) decomp (3 in) decomp (4 in) decomp (5 in) decomp (10 in)
circuit Ms ipc Ms ipc Ms ipc Ms ipc Ms ipc Ms ipc

5xpl-hdl 14 28 19 38 14 38 14 43 14 43 14 43

CI355 22 49 25 50 24 49 22 49 22 51 22 51
C6288 120 240 120 240 120 240 120 240 120 240 120 240
des 33 66 30 60 23 68 19 71 19 71 18 126
duke2 18 36 9 18 6 18 5 20 4 20 4 36
misex3 17 34 13 26 10 30 8 29 7 30 5 36
sao2-hdl 36 72 36 72 31 79 27 91 22 82 22 91
seq 24 48 12 24 8 24 7 28 5 25 5 50
trisc - - 37 74 36 84 36 91 35 90 35 90
addl6 31 62 46 92 32 94 31 107 31 107 31 107
add32 63 126 94 188 64 190 63 219 63 219 63 219
mult16 73 146 96 192 68 198 65 223 65 223 65 223
mult24 106 212 146 292 101 298 98 341 98 341 98 341

mult32 138 276 194 388 133 394 130 454 130 454 130 454

Table 6.1: Comparison of Technology Mapping andDecomposition.

number of levels, while producing the implementation for the massively parallel simulation. The

functional restriction allows easy comparison of implementations, withminor functional sacrifice,

considering the realistic restriction ofthe library functional descriptions. The technology decompo

sition isefficient, allowing quick comparison ofimplementations with varied maximum gate inputs.
The efficiency makes itanatural choice for benchmarking runs. Inpractice, it also gives very good

results compared totechnology mapping using a technology library modified for massively parallel
simulation.

6.3.2 Simplification Algorithms

Simplification techniques for multilevel logic networks are primarily concerned with

optimization of individual node functions and some incremental improvements to the network

structure. One of the most powerful techniques for node optimization is the use oftwo-level logic

minimizers. The implicit don'tcare information available at a each node ofa logic network isused

to perform two-level logic minimization on the Boolean function associated with the node. The

input to a two-level minimizer, such as ESPRESSO [B+841, is composed of an onset cover and a

don't care set. The onset cover is thenode function expressed in terms of its inputs. The don't

care set at each node contains information on the structure of the network. This information is a

combination ofexternal, observability, and satisfiability don'tcares. Unfortunately, thedon'tcare
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set is extremely large, and may berestricted bythe two-level minimizer.

For the basic simplify operation in the MIS synthesis system, ESPRESSO is used for

the two-level minimization, utilizing varying amounts of don't care information. Thedon't care

set is constructed from a subset of the observability don't care set The extent of thedon't care

information can be varied from none, to the fanin don't cares ofall levels oftransitive inputs to the
node being minimized.

Anewer simplification algorithm has been developed, [STB91], which computes almost
the full localdon't care set at eachnode. Thismethod usesextemal don't care information more

effectively, using newer data manipulation techniques and image computation methods to find the
local don't care sets at each node. In order to handle the informationmore efficiemly, binary decision
diagrams (BDD's) are used togenerate and manipulate the logic information. By providing amore
complete don't care set tothe two-level minimizer, a better simplification result isgenerated. This
technique is implemented as the full-Simplify command inthe MIS synthesis system.

6.3.3 Timing Algorithms

The need to synthesize circuits meeting strenuous timing requirements has led to the

development ofalgorithms for reducing the delays in circuits. Asubset ofthese methods, reducing
delay in combinational logic, isofparticular interest in this report. This method, known as timing
restructuring, attempts to restructure the circuit globally to have better timing properties. In the

restructuring, thequality of a circuit isjudged by thecircuit structure, ratherthanthe calculation of

detailed timing information.

A standard method of timing optimization maps the network into 2-input NAND gates
and inverters and then uses a unit delay model to estimate the delays in the network. With these

delays, critical paths inthe circuit are identified. The timing optimization routine then attempts to
restructure the circuit along these paths toreduce the overall delay inthe circuit. With the 2-input
NAND gate and inverter form for the network, the unit delay model equates the circuit delay to the
number oflogic levels. When the circuit isrestructured with ashorter delay along the critical path,
the circuit has fewer levels of logic, whichis the desired result for reduced simulation time on the

massively parallel simulator.
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6.3.3.1 Speed-up

A routine fortiming restructuring ofcombinational circuits,speed-Up, is providedin the

MIS synthesis system [BR+87]. The input Boolean network is decomposed into 2-input NAND

gates and inverters and weights are assigned to the nodes in the resulting Booleannetwork. The

algorithm uses the node weights to identify the critical portions of the network, choosing a set

of nodes which will reduce the delays on all the critical paths when,sped up. Partial collapsing

is performed on the critical path at each node in the critical set. The collapsed nodes are then

decomposed again into an alternate 2-input NAND gate and inverter representation. The process

continues iteratively until no more improvement can be made.

The MIS Speed-up command allows one ofthree delay models to be specified: mapped,

unit fanout, or unit. The mapped delay model computes the delay using the delay data in the

technology library, as described above with the technology mapper. The unit fanout model is

intended to capture a technology independent model, assigning a 1 unit delay to each gate and

0.2 units to each fanout stem. The unit delay model counts the level of the circuit as its delay.

The Speed-up command provides additionalcontrol over the timing estimation and restructuring

operations. Options exist to determine the nodes considered critical, the amount of collapsing to

be performed around the critical node set, and the area-delay tradeoff to be considered. For this

project, the unit delay model and the pure timing (no area) mode are used to target the massively

parallel simulation model. The other parameters areinvestigated for their effects on generatingthe

best results for simulation

6.3.3.2 Collapse

For pure timing optimization, a simple way to improve the performance is to collapse

a logic network into two levels of logic. Unfortunately, this obvious technique is not widely

applicable. For a large class of circuits, including circuits for which simulation is most expensive,

collapsing is impracticaldue to memory and computation costs.

63.3.2 Reduce.depth

While the cost of collapsing into two levels of logic is prohibitive for most circuits, part

of the delay improvement can be obtained by collapsing a circuit partially at a smaller cost Delay

optimization ofcombinationallogicusingclusteringofnodesandpartial collapsingwasinvestigated

by Touati [TSB91]andimplemented in the MIS synthesis system. This algorithmperformsa partial
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collapse of the circuit based on delay-driven clustering. The circuit may then be simplified using
the simplification tools discussed in section 6.3.2.

The reduce.depth command performs apartial collapse ofanetwork by first clustering
nodes and collapsing each clusterinto asinglenode. Theclusters are formed tominimizethenumber

oflevels ofnodes inthe network after the collapsing ofthe clusters. The clustering algorithm does
not take into account the complexity ofthe logic functions in the nodes. Typically the inputnetwork
isalready decomposed into simple gates, but this is not enforced. The desired depth ofthe network
after clustering may be specified, as well as the maximum amount of logic duplication allowed to
obtainthe clustering.

To use the reduce-depth clustering algorithms to target massively parallel simulation
performance, the desired number of node levels is small, with no limits set on the amount of

duplication. The node levels direcdy correspond to the logic levels in the simulation, while the

duplication correlates to increased logic parallelism. Since the complexity of the clustered and

collapsed nodes isnot restricted, the resultant logic provides an opportunity for logic simplification.
The use offull-Simplify to optimizeeach node in the partially collapsed network should produce some
logic reduction in the simulation. To ensure that the number oflogic levels isnot increased during
the simplification phase, Touati added this restriction in determining acceptable simplifications.
This optimization mode isused when the simplification step follows the reduce-depth execution.
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Chapter 7

Experimental Results

7.1 Benchmark Circuits

Experiments wererun onmostof thecircuits from theMCNC [Lis88] and ISCAS [BBK89]

logic synthesis benchmark sets. Additional circuits were generated using the BLIS behavioral level

synthesis system [Whi92]. The number of useful examples was restriaed by the capacities of

the synthesis tools. Specifically, a number of the circuits caused the synthesis tools to run out of

memory, or failed to completeaftera large amount of CPU time (weeks of real time). The TRISC

example circuit is a full RISCmicroprocessor design which has beenprepared for fabrication. The

par32 circuit is a 32 bit parallel arithmetic circuit, and the MULT circuits are multiplier circuits

implemented using aWallace Tree arrangement [Hwa79]. Each of these examples was completely

generated from a behavioral-level description using the BLIS behavioral synthesis system. The

experiments run on the circuits are characterized and the results obtained are presented in the

following sections.

7.2 Performance Metrics

Thesimulation system described inthis report mustbeevaluated onboth theperformance

of the massively parallel machine for simulation and theeffectiveness of logic synthesis tools to

target thissimulation platform. Dynamic performanceofthemassively parallel simulatorisobtained

by direct measurements of the simulation times on the benchmark circuits. The structure of the

circuits predicts this performance direcdy. Therefore, theeffectiveness of synthesis ismeasured by

changesto the staticstructure of the circuits generated for simulation.
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7.2.1 Dynamic Metrics

Dynamic performance of the simulation are affected by the static configuration of the
network implementation. There are two major dynamic characteristics of SIMD simulation which

must be addressed: computation and communication. The time required for the computation ofthe
model function, i.e. gate evaluation, isminimized inthis study by restricting the simulation model

to simple logic functions. This translates direcdy to simple Boolean operations on the processor
with minimum variation inevaluation time between possible gate types.

Figure 7.1: Contention ona SingleInput Fetch

The second dynamic characteristic, communication time, is direcdy correlated to the

static configuration ofthe network. Since the communication ofdata between processing elements
is accomplished using the global routing network, the communication characteristic translates to

a dependence on contention for the routing channels. Contention during data transfers can be

caused by two processors trying to access data from the same source processor. An example of
multiple fanouts from a single gate being updated in the same communication step is shown in

Figure 7.1. This isaproduct ofthe static (fanout) structure ofthe network. Due tothe design ofthe

communication network on the MasPar computer, contention can also occur when two processors

access physically close processing elements. This is the physical location in the processor array,
which is set by the mapping of the network to the SIMD machine.

Tests were run to determine the effects of contention on the run-time performance of
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Figure 7.2: Contention Time Comparison

the simulation on the MasPar computer (see Figure 7.2). These tests measured the intetprocessor

communication times with 3000 processors and varying levels of contention. The time for the

data transfer between processors ranges from 0.5 to 25 milliseconds, as the amount of contention

increases from the no contention to all 3000 processors in contention. For the typical value of three

fanouts per gate, the time is only increased by 0.2 ms. Therefore, the potential for large contention

delays exist, but it is not expected to be a major factor in the simulation performance.

7.2.2 Static Metrics

Static characteristics of the logic networks direcdy correspond to the absolute simulation

performance. These relationships are due to the simulation algorithm chosen and easily seen from

the evaluation loop shown in Figure 5.1 (see Chapter 5). The main static characteristic affecting the

evaluation time is the number of logic levels in the circuit implementation. The maximum number

of inputs over all the logic gates at each logic level is the next most important characteristic. The

number of input fetches to evaluate the gates at each level is set by the maximum number of inputs

for any gate at that level, since the values can be transferred in parallel. The sum of these input

fetches over all logic levels is the total number ofinterprocessorcommunication (ipc) steps required

for simulation of a single input pattern. For example, consider a logic network consisting of N

levels of two input nand gates. The maximum number of inputs at each level is 2, therefore the
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number of ipc steps required is IN. Now replace a single gate in the first level of logicwitha five

inputnandgate. The maximum number of inputs forthe first levelis 5 andfor the otherN-\ levels

is 2. Therefore 2(AM) + 5 ipc stepsarenowrequired.

7.3 Results

The results forthisproject arepresented in thefollowing twosections, which correspond

to thetwoconcepts investigated. Thefirst sectionpresents theabsoluteperformance ofthesimulator

onamassively parallel machine. Thesimulationperformance ismeasured ontheoriginal benchmark

circuits before optimization with the synthesis tools. The second sectiondetails the effectiveness

of logic synthesis tools for targeting the massively parallel simulation.

7.3.1 Simulation Performance

For the simple simulator implementation described, the results shown in Table 7.1 were

collected. Foreachexample, the tableshows the sizeof thesimulation inputvector(In), the sizeof

thesimulation outputvector(Out). Thenumberof gates (gates) andthenumberof logiclevels(Ms)

in the synthesized circuit indicate the size of the logic networks. The number of communication

steps (ipc) required for the simulation is twice the numberof logic levels,since thesecircuitswere

all decomposed into two input logic gates. The circuits were simulated for a large number of

random inputpatterns. The performance times (ms/pat) given are the calculated average time, in

milliseconds, required to simulate a single input pattern. The final column (ms/ipc) is the time

required for each interprocessor communication step in the simulation run. This value is obtained

bydividing thetimeperpattern (ms/pat) bythenumberofcommunicationsteps required tosimulate

each pattern (ipc).

The absolute performance time of interest is the number of inputpatterns simulated per

second. Looking at thems/pat times forthebenchmarks, note thatthere areonly 5-20input patterns

simulated persecond. This is at leastanorderof magnitude slowerthanexpected (based ona ruleof

thumbperformance of 1,000,000 gates / second for a sequential simulator). Since the performance

bottleneck on this SIMD machine is in the interprocessor communication times tests were run to

measure the basecommunication times of theMasPar machine. Thetimes, forvarying amounts of

processor activity, ranged from 0.3 - 0.6 ms per interprocessor communication step (ipc). These

times are consistentwith die times used per ipc (ms/ipc)in the benchmarks simulationruns. Given



Circuit In Out gates Ms ipc ms/pat ms/ipc

des 256 245 4,441 43 86 215.0 2.50

duke2 22 29 423 19 38 53.2 1.40

misex3 14 14 713 45 90 125.0 1.40

seq 42 35 1,964 26 52 124.0 2.40

trisc 1,176 832 5,546 63 126 185.9 1.48

par32 64 64 12,339 223 446 204.2 0.45

mult16 32 32 5,735 102 204 84.9 0.42

mult24 48 48 13,741 151 302 145.2 0.48

mult32 64 64 24,643 194 388 238.4 0.61
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Table 7.1: Performance Results for the MP Simulator.

this machine communication time and thenumberofcommunication steps required foreach circuit,

this is the best performance expected from the simulator.

7.3.1.1 TRISC: An Example

For more insight into the simulator performance, the TRISC circuit is examined. This

example produced simulation results for only 5 input patterns per second. To understand this

performance, theeffect of thecircuit implementationonthesimulation times was investigated. The

number of logic gates at each logic level in theTRISC implementation is plotted Figure 7.3. Since

the implementation was mapped using 2-input gates, this results in the processor activity at each

communication step (ipc) shown inFigure 7.4. Asdetermined bythenumber of logic gates and the

number of logiclevels, the average number of active processors is 88. The activity plotsfor some

of the benchmark circuits is shown in Figure 7.5. These plots reflect the similarlack of utilization

of resources for those simulations.

7.3.2 Synthesis Improvement to Simulation

The effectiveness of using synthesis tools for speeding up simulation is measured by

static performance metrics. Theresults foreach synthesis toolare, therefore, givenin terms of their

effect onthe number oflevels oflogic inthe implementation and thetotal number ofinterprocessor

communication steps required for the simulation. These measurements depend on the simulation

implementation previously described in Chapter5.

To make the comparisons, the procedure described in Figure 7.6 was followed. For the



1000

CO

£
CO

O
o

f

100

10 20
111 11111111

30 40 50 60

34

Logic Level

Figure 7.3: TRISC Gates vs. Logic Level

original circuit implementation, the synthesis / optimization step is skipped. The and-or-invert

decomposition (Decompose to Simple Gates) step is run for varying numbers of gate inputs,

with the implementation producing the fewest interprocessor communication steps chosen. The

implementation numbers are calculated afterasweep operation to collapseallthe invertersintotheir

fanouts. This operationis valid for all simulationimplementations since the simulationcalculation

was designed to handle inversion of the gate inputs. Finally,the simulation data is generated for the

actual massively parallel simulation.

The results are presented below comparing the static metrics for the original circuit and

alternate implementations generated. The tools used and the parameters specified for these tools

are described with the results.

7.3.2.1 Simplify

Simplify performslocallogic optimizationon eachnode in the logic circuit. It is strictly

targeted to reduce the complexity of the logic functions represented at these local data points. This

may produce a circuit implementation that simulates faster. This is a result of reducing the logic

complexity and is not due to any global timing considerations. The simplify option was used to

restrict increases in the number of levels of logic by the simplification. This reduces the general

effectiveness of the simplification algorithm but produces results targeting reduced simulation

communication. The results of running simplify on the benchmark circuits are shown in Table 7.2.
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Figure 7.4: TRISC ActiveProcessors vs. IPCStep

The simplify operation produced small reductions in the total number of gates for a few of the

circuits. The number of communication steps required for simulation (ipc) was only reduced for
one circuit, sao2-hdl, andonly by 6%.

The full-Simplify operation was executed using the same level restriction option with the
results for the benchmark circuits shown in Table 7.3. The full-Simplify operation could not be

applied tomanyof thelarger benchmark circuits due tomemory limitations. The sizeof thecircuits

(gates) was reduced for most of the circuits. The number of communication steps required for

simulation (ipc) was only reduced for two of the circuits, 5xpl-hdl and sao2-hdl, by 10% and 25%,
respectively.

This simplificationtechnique shows apossibilityof improving the simulation performance

by reducing the number of logic levels. The main result of the simplification, however, is fewer

gates. This is likely to reduce the amount of parallelism in thecircuit The tool might beused in

conjunction with other tools, which direcdy target the numberoflogic levels toprovide consistendy
better results for simulation.

7.3.2.2 Collapse

The collapse of acircuit into two logic levels is ideal for explicidy reducing the number

of logic levels in the circuit. The resulting circuit must still bedecomposed into simple gates for

the simulation. The decomposition into restriaed input gates may cause a subsequent increase



10000,

5

<

1000

100

50 100 150 200 250 300

Logic Level

36

Figure 7.5: Benchmark Processor Utilization

in the number of logic levels to be simulated. Results are given in Table 7.4 for the collapsed

two-level circuits and the same circuits after mapping to simple two input gates. The collapsed

circuitshave only two levels oflogic, but have dramatic increasesin simulationcommunication time

(ipc). The collapse operation produced gates with large numbersof inputs. A highcommunication

cost is incurred by the serial transfer of data to a single processing element (gate). Decreased

communication was achieved by mappingto simple gates (and, or) restricted to two inputs. Some

of the mapped circuits had significantimprovement in simulationcommunication over the original

circuits but others had no improvement. The main disadvantage to the collapse operation is the

limited size of the circuits which may be collapsed. Exponential growth of the circuit during

collapsingrestricts the procedure to smallor simple circuitswhich areexpected to require less time

for serial simulation.

7.3.2.3 Speed-up

The speed-up synthesis tool performs timing optimizationon a circuit. Delays in the

circuit areestimated, using a delay model, and critical pathsareidentified. Logic nodes alongthe

critical paths are collapsed and then re-synthesized in an attempt to reduce the delay along these

paths. Restricted to the unit delay model and pure timing optimization, speed-Up minimizes the

numberoflogic levels in the critical paths. With these restrictions, the resultsofseveralexperiments

withspeed-up are showninTable 7.5. The three experiments correspond to successively increasing
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Figure 7.6: Synthesis Optimizationfor MP Simulation

the number ofpaths considered critical. Foreach of these experimental values, speed-up iterates

oversuccessively increased amounts ofcollapsing along theidentified critical paths. Thebestofall

these iteration results is returned. The results are presented for the circuit after mapping tosimple

input gates for massively parallel simulation. The numberofgates inthesimulationimplementation

(gates) provides a measure of the amount of circuit modification compared to the original circuit

(orig), similarly mapped to simple gates.

Simulation improvements in terms of communication step reduction ranges from 0 -

75%. The largest improvements are in the reduction of the chain structure in the adder benchmark

circuits. Speed-up is well-suited tooptimizations for the massively parallel simulation algorithm,

when modeled correctiy as a pure timing optimization. Thedrawback of speed.up is the isolation

ofoptimization tothe critical paths, without exploring the possibility ofmore global optimizations.

7.3.2.4 Reduce-depth

Thesecond timing optimization algorithm, reduce-depth, is alsodirecdy applicable to

the problem of simulation performance onparallel machines. Similar to speed-up it attempts to

reduce the total delay of the circuit. Restricted to a unit delay model, reduce-depth performs

operations to reduce the number of logic levels Qvls) and consequendy, the number of communi

cation steps (ipc) required forcircuit simulation on a massively parallel machine. Reduce.depth



orig simplify
circuit lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 19 38 93
C1355 25 50 518 25 50 518
C6288 120 240 2353 120 240 2353
des 30 60 3303 30 60 3298
duke2 9 18 1717 9 18 1717
misex3 13 26 1590 13 26 1560
sao2-hdl 36 72 326 34 68 326
seq 12 24 17788 12 24 17152
trisc 37 74 4472 37 74 4472
add 16 46 92 244 46 92 244
add32 94 188 500 94 188 500
multl6 96 192 4107 96 192 4107
mult24 146 292 9751 146 292 9751
mult32 194 388 17623 194 388 17623

Table7.2: Results for simplify.
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includes logic node clustering and duplication techniques which trade circuit area for improvements
in delay. This corresponds direcdy to increasing the amount of parallel execution to reduce the
serial execution in parallel simulation. This is identical to the goal of synthesis for simulation on
massively parallel machines.

The results of the reduce.depth operation on the benchmark circuits are given inTable
7.6. The reduction in the number ofcommunication steps (ipc) ranges from 0 - 48%. The amount
ofduplication ofgates traded for the communication reductions can be compared by the number
of simple gates (gates) in the simulation decomposition. Additional data is supplied in Table 7.7
when alogic simplification algorithm is used with the reduce.depth command. The full-Simplify
algorithm described in Chapter 6is applied to the collapsed node clusters, prior to mapping them
for simulation. This produces incremental improvement over the reduce.depth technique used
alone.



orig full-simplify
circuit lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 17 34 85

C1355 25 50 518 25 50 510

C6288 120 240 2353 - - -

des 30 60 3303 30 60 .3223

duke2 9 18 1717 9 18 1717

misex3 13 26 1590 13 26 1455

sao2-hdl 36 72 326 27 54 202

seq 12 24 17788 12 24 17152

trisc 37 74 4472 37 74 4449

addl6 46 92 244 46 92 244

add32 94 188 500 94 188 500

mult16 96 192 4107 - - -

mult24 146 292 9751 - - -

mult32 194 388 17623 - - -

Table 7.3: Results for full-simplify.

orig collapse CO lapse (2 in)

circuit lvls ipc gates lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 2 25 85 8 16 290

CI 355 25 50 518 - - - - - -

C6288 120 240 2353 - - - - - -

des 30 60 3303 - - - - - -

duke2 9 18 1717 2 31 29 9 18 1717

misex3 13 26 1590 2 204 1491 12 24 13902

sao2-hdl 36 72 326 2 38 86 9 18 521

seq 12 24 17788 2 129 1491 12 24 17788

trisc 37 74 4472 - - - - - -

addl6 46 92 244 - - - - - -

add32 94 188 500 - - - - - -

mult16 96 192 4107 - - - - - -

mult24 146 292 9751 - - - - - -

mult32 194 388 17623 - - - - - -

Table 7.4: Results for collapse.
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orig speed-up (t=0.5) speed-up (t=i.O) speed-up (t=2.0)
circuit lvls ipc gates lvls ipc gates lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 8 16 147 9 18 120 10 20 119

C1355 25 50 518 17 34 612 20 40 532 20 40 532

C6288 120 240 2353 100 200 2894 119 238 2358 104 208 2454

des 30 60 3303 18 36 3506 19 38 3431 20 40 3398
duke2 9 18 1717 10 20 593 10 20 596 10 20 602

misex3 13 26 1590 13 26 724 13 26 724 13 26 724

sao2-hdl 36 72 326 30 60 211 30 60 225 29 58 553
seq 12 24 17788 14 28 2319 14 28 2383 15 30 2513

trisc 37 74 4472 24 48 4654 25 50 4548 26 52 4520
add 16 46 92 244 13 26 312 12 24 296 13 26 346

add32 94 188 500 21 42 564 21 42 581 20 40 688

mult16 96 192 4107 57 114 3256 51 102 3319 49 98 3334

mult24 146 292 9751 90 180 7715 96 192 7657 93 186 7698

mult32 194 388 17623 122 244 13764 128 256 13704 128 256 13710

Table 7.5: Results for speed _up.

orig reduce-depth
circuit lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 8 16 290

CI 355 25 50 518 22 44 26304

C6288 120 240 2353 78 156 5498

des 30 60 3303 - - -

duke2 9 18 1717 9 18 1717

misex3 13 26 1590 13 26 2416

sao2-hdl 36 72 326 24 48 1749

seq 12 24 17788 12 24 17788

trisc 37 74 4472 30 60 31197

addl6 46 92 244 25 50 33646

add32 94 188 500 49 98 77012

mult16 96 192 4107 - - -

mult24 146 292 9751 - - .

mult32 194 388 17623 - - -

Table 7.6: Results for reduce-depth.



orig reduce-depth
circuit lvls ipc gates lvls ipc gates

5xpl-hdl 19 38 93 8 16 290

C1355 25 50 518 16 32 912

C6288 120 240 2353 82 164 5498
des 30 60 3303 - - .

duke2 9 18 1717 9 18 1717

misexS 13 26 1590 13 26 2253

sao2-hdl 36 72 326 19 38 463

seq 12 24 17788 12 24 17277

trisc 37 74 4472 29 58 17244

addl6 46 92 244 25 50 33646
add32 94 188 500 49 98 77012
mult16 96 192 4107 - - .

mult24 146 292 9751 - - .

mult32 194 388 17623 - - -

Table 7.7: Results for reduce-depth with simplification.
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Chapter 8

Conclusions and Future Work

In this project synthesis tools were used to map digital circuit descriptions to a parallel

simulation format for evaluation on a massively parallel SIMD machine. Due to the inherent

random structure of the gate-level logic descriptions being simulated, the local communication

mechanism of the parallel machine could not be exploited effectively. As noted in Chapter 5,

all communications between processors is via the much slower global communication routing

mechanism. The measurement of the communication performance in Chapter 7 shows that the

massively parallel SIMD globalcommunicationis too slow to be viable as a basis for a simulation

engine. An order of magnitude improvement in the global communication performance must be

obtained to provide feasible simulation performance for such circuits.

Moderate success was achievedusing existing synthesis tools to targetsimulationperfor

mance rather than final chip performance. The success was made using timing optimization (delay

reduction) tools. The final goal of these tools is similar to the optimization target for massively

parallel simulation. By modifying the execution parameters of the tools, circuit implementations

were generated requiring less interprocessor communication for simulation. The synthesis im

provements are overwhelmed by the slow speed of the actual simulatoron the massively parallel

SIMD machine. While the use of SIMD machines does not appear promising, advances in the

communication efficiency may occur to make this approach feasible.

The use of synthesis tools for othertargetmachines should be investigated further. More

over, new synthesis and optimization algorithms shouldbe developed to optimize broader perfor

mance metrics of simulation. The possibility of different classes of high performance simulation

engines provides the potential for simulation optimization in largerareas of design.
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