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ABSTRACT

Currently existing multiobjective linear programming algorithms
(MOLP) are using the simplex algorithm to generate a sequence of steps
toward the optimal solution. The difference between the various MOLP
algorithms depends on the specifics of generating these steps directions and
the amount of involvement required from the decision maker (DM). This
paper uses one variant of Karmarkar's interior-point linear programming
algorithm and modifies it for solving multiobjective linear programming
problems. Specifically, the paper considers the modification of the affine-
scaling primal algorithm and develops a procedure for generating search
directions that are interior to the polytope formed by the constraints of the
linear programming problem. These search directions are combined to a
single direction that approximates the gradient of the utility function of the
decision maker at the current, interior, solution point. The solution process is
comprised of a sequence of steps where search direction are generated and
later combined and projected to yield the next interior iterate.



I. INTRODUCTION

The field of linear programming has long been the domain of the
simplex algorithm developed by George B. Dantzig in 1947 [4,5]. This
situation has changed with the introduction of a new algorithm for linear
programming by Narendra K Karmarkar in 1984 [8]. The difference
between these two algorithms lies in their respective progress toward the
optimal solution of the linear programming problem. While the simplex
algorithm makes its progress by moving the current solution point on the
exterior of the constraint polytope and along its vertices, Karmarkar's
algorithm, in contrast, makes its progress by moving the current solution
point through the interior of the polytope. This characteristic describes the
name given to this new class of algorithms: Interior-point methods for linear
programming. Following the original algorithm introduced by Karmarkar in
1984, a host of other variants were developed in the following years which
are generally referred to as Karmarkar-type algorithms as all of them follow
an interior trajectory toward the optimal solution. These variants now
include primal, dual, primal-dual and various power-series implementations
ofalgorithms for interior linear programming. For a representative reference
list describing some ofthe details of these variants the reader is referred to
[1,3,9,10,14].

When interior point algorithms were first introduced many claims
were made in regards to their superiority relative to the simplex algorithm.
With the passage of time, many performance tests were conducted (see, e.g.
[6] and the references mentioned for the variants ofinterior point algorithms)
and the general evidence points to the conclusion that, in general, the
simplex algorithm outperforms interior point methods for problems of
relatively small size and as the size of the problem increases, interior point
methods for linear programming clearly dominate the simplex algorithm.

Current multiobjective linear programming (MOLP) algorithms are, in
general, simplex-based in the sense that thesolution trajectory follows a path
that is exterior to the constraint polytope. Many approaches and algorithms
have been developed to address the problem of vector-valued optimization
problems (see, e.g. [13]). The difference between these various methods



depends on the approach used in generating the search directions to guide
the exterior solution path and, in addition, the amount of interaction with
the decision maker (DM). As the problem grows in size, the number of
vertices of the constraints polytope generally grows as well and, therefore,
one can expect that asolution process that follows the vertices may become a
lengthy journey. Making progress through the interior of the polytope is less
sensitive to problem size and, therefore, one can expect the solution process
to move faster toward a solution. Extrapolating from the experience
accumulated for single-objective interior linear programming problems we
can expect MOLP problems with arelatively small number ofobjectives and
very large number of constraints to outperform simplex-based MOLP
problems. Before embarking on measuring such relative performance levels,
however, one hasto suggest an appropriate algorithm that addresses a linear
programming problem with multiple objectives while following an interior
trajectory generated by an interior-point linear programming algorithm. This
is precisely the purpose of this paper.

The approach developed in this paper can beviewed as an extension of
the MOLP algorithm suggested in [2]. The difference between the two
approaches is that in [2], all non-dominated neighboring vertices to the
current one were evaluated. Next, their preference with respect to the
current one were assessed and a weighted search direction, based on these
preference measures, was generated to move the solution point from the
current vertex to a new one. This process was repeated until no neighboring
vertex was preferred to the current one. The approach developed in this
paper goes through an iterative process where at each iteration we determine
a single search direction corresponding to a single objective function. These
search directions are then combined to provide a single search direction for

the MOLP problem.

In developing an interior MOLP algorithm there are many issues to be
addressed. Given the wealth of interior-point linear programming algorithms
currently available, an obvious issue is the choice of algorithm to be selected
for the implementation. Reviewing all algorithms is clearly beyond the scope
of this paper, nevertheless, two potential candidates are offered through the
so-called affine-scaling primal algorithm and the path-following primal-dual

Next we turn to discuss scaling of the current iterate. Given a starting

vector, x=[x1,x2,—,xn]T, its components are scaled in to yield the scaled vector
xx whose components are ofequal distance from all the walls of the polytope.
Placing the scaled vector, xv a unit distance from the walls leads us to the

following scaling relationship



algorithm. The choice made for this paper is to implement the afrme-scaling
primal algorithm in the context of a MOLP problem. While this algorithm
does not have some of the performance features of other algorithms in its
class, it is easy to implement and performs well for most applications.

The remainder of this paper is arranged as follows. We review the
affine-scaling primal algorithm and its algorithmic details in section II. Its
modification to address multiobjective linear programming problems is

r1! r xx 0.0 0.0 0.0"

xl =

•L

D =
0.0 x2 0.0 0.0

.
0.0 0.0 0.0 x_

LI J

(10)

and it is easily verified that the original vector, x, and the scaled vector, xlf

are related through

xx =D'xx. (11)

Furthermore, since the solution vector, x, is always interior to the polytope
(that is, x>0), the diagonal elements of the matrix Dare strictly positive and,
therefore, D is invertible. Scaling the'original linear programming problem
shown in (2) leads to thescaled linear programming problem given by

minimize Cj x±

subject to: A-^ =b

wherexxeRn, b6Rm and

Ax =AD, cx =Dc.

The starting vector, xlf for this problem is placed at aunit distance from all
thewalls ofthe polytope given any starting feasible and interior vector x>0.

The projection operator for this scaled linear programming problem is
given by Px where

p^vVcaaV^. (14)

The descent direction vector for the scaled problem, dx1? is found by
projecting the gradient of the scaled problem, clf on the null space ofAx and
negating its direction. This results in

dXl =-P^ =-D[c -AT(AD2AT)Wc].

Letting

(12)

(13)



y =(AD^aVaD^c, (15)

the expression for dxx simplifies to

dXl =-D[c-ATy], <16>

and going back to the original space, the step direction vector for the new
iterate, dx, is given by

dx=Ddxx =-D2[ c -ATy ]. (17)

If we define a new variable, z, by z=c-ATy, then the expression for the step
direction vector from (17) becomes now

dx =-D2z. (18)

When using the simplex algorithm, the expression c-A y represents

the reduced cost vector with y representing the dual vector. In fact, the
variable y defined in (15) stands for an estimate of that dual variable, and
the vector z, therefore, stands for the estimate of the reduced cost vector. In
the simplex algorithm, the next step in the iteration was determined
according to one (negative) component of the reduced cost vector. In contrast,
here the complete reduced cost vector, z, determines the next iterate.

With the step direction vector, dx, given by (18) we now take a step in
that direction and obtain the next iterate of the solution vector, x. This is

found from the updating formula given by

x =x0+dx. (19)

Since the step direction vector, dx, used in this update satisfies (4), the
new iterate of the solution vector, x, satisfies the equality constraints Ax=b.

These equality constraints are satisfied regardless of how far we step along
that direction. To guard against violating the non-negativity constraints of
the solution vector, x, we must establish a maximum allowable step, a, in

that direction. This modifies (19) and results in

x = xn + adx, a > 0



We find the parameter a by considering the non-negativity of the

components of the new iterate of the solution vector:

X0:
Xj = x0< + acbq ;> 0, lss i sm => a ;> - ~j—,

where x0. and 6xi denote the i-th component of the vectors Xq and dx

respectively.

Only negative components of the step direction vector, dx, have the
potential of violating the non-negativity constraints. Similar to the simplex
algorithm, this maximum allowable step, a, is found from a ratio test shown
in (20) below, where x{ is the i-th component of the current solution vector, x,
and dxj is the i-th component of the step direction vector, dx.

OX:

a s max \ - — : dxt< 0 , Is l s;n /. (20)

Using this maximum allowable step size, while guaranteeing feasibility and
maintaining the non-negativity constraints, causes at least one component of
the new iterate to hit the boundary of the polytope and vanish. This causes
the solution vector to no longer be interior to the feasible region. Therefore,
our final modification to the update formula introduced in (19) is to multiply
the step direction vector with a stepsize factor. With this, the new iterate of
the solution vector, x, becomes

x =x0 +a(stepsize)dx1 0<stepsize<l. (21)

While the only constraints on the stepsize are those shown in (21);
values in practice, however, range from 0.95 to 0.995.

Summary of the Affine-Scaling Primal Algorithm:

Given a starting feasible and strictly interior solution vector, Xq, to the
linear programming problem in standard form, that is, Ax0=b, and x0>0, the

primal algorithm proceeds as follows:

8



Stepl: Set the iteration counter, k, at k=0, and initialize the solution
vector through x(k)=XQ.

Step 2: Define the scaling matrix, D(k), as D(k)=diag[x1(k),x2(k),...,xn(k)]
and solve the symmetric system ofequations given by

(AD2(k)AT)y(k)=AD2(k)c

for the m dimensional vector y(k), and evaluate the reduced-cost
vector, z(k), given by

z(k)=c-ATy(k)

Step 3: Evaluate the step direction vector, dx(k), through

dx(k)= -D2(k)z(k)

and take a step toward the next iterate, x(k), that is given by

x(k+l) = x(k) + padx(k)

where: 0<p<l, and a=max{-dxi(k)/x(k), for all dxi(k)<0 }

Step 4: if the problem is primal and dual feasible and the duality gap is
small, STOP; otherwise, increment the iteration counter, k and
gotoStep 1. .

With this background information we turn next to present a modified
algorithm for solving multiobjective linear programming problems.

III. AN INTERIOR-POINT MULTIOBJECTIVE ALGORITHM

In this section we extend the single objective affine-scaling interior-

point primal algorithm presented in the previous section to address linear
programming problems with multiple objectives. We will refer to the



extension of the affine-scaling algorithm to MOLP problem as the Affine-
Scaling Interior MOLP (ASIMOLP) algorithm.

A multiobjective linear programming problem can be described
through the following formulation

max C x

subject to:
Ax=b (22)

x;>0

where A is the mxn constraint matrix, C is a qxn objective matrix, x is the n
dimensional solution vector, and b is the m dimensional right-hand side
vector of available resources. We assume that the constraint matrix, A, is of
full row rank m, and that a starting feasible and interior solution vector, Xq,
to the constraint system is available. That is, Ax^b and Xq>0. Considering
a minimization problem rather then that of maximization is easily
accomplished by negating the objective functions.

The nature of the optimization problem in (22) is ambiguous since
some of the objectives may be conflicting and pursuing the optimum with
respect to each objective will lead to different solutions. This ambiguity is
resolved by introducing the concept of a utility function u(y) which is a real-
valued function over the space ofobjectives attempting to capture the DM's
preferences for different vectors of objective functions values as given by the
objective value vector, v. Ifu(v) was explicitly available we could have used
the fact that v=Cx (that is, vi=q x where lsUq) to obtain a real-valued

function u(x) and use it to arrive at the true optimal solution vector, x, by
solving the nonlinear optimization problem shown in (23).

"max" u(x)

subject to:
Ax=b (23)

x;>0

In general, however, u(v) is known only implicitly by the decision maker and
information about it can be elicited interactively. Since the dimension of v is
significantly smaller than that of x, it is cheaper to elicit preference

10



information about u(v) in the objective space, than about u(x) in the solution
space. Therefore, the problem we address in this paper is in the form shown
in (24)

"max" u[v1(x),v2(x),... ,vq(x)]
subject to:

Ax=b (24)
x*0

T
and where the value of the i-th objective function is given through v~ cx x.

The difficulty with this, and all other, multiobjective optimization
problems is how to obtain a solution to this vector-valued optimization
problem without actually evaluating the multiattribute utility function in an
explicit manner. Existing solution method for MOLP problem make their
progress toward a solution by considering proxy measures for this utility
function without actually ever evaluating it. Such methods require
interaction with the decision maker in order to adapt the progress of the

solution process to reflect the decision-maker preferences. These methods,
therefore, are referred to as interactive multiobjective optimization methods.

One may be tempted to bypass the difficulty introduced through the
matrix of objective functions, C, by trying to use some weighting scheme to
reduce the q objective functions that make up the rows of the matrix C to a
single rowvector amenable to the direct application of a linear programming
algorithm. The problem with such an approach is that, in general, such a
weighting scheme depends on where we are in the solution space and
changes from one location of the solution vector x, to another. What we do
next is to present a method that replaces the vector-valued optimization
problem with a sequence of single objective optimization problems whose
solution is obtained by using the affine-scaling primal algorithm.

Letting the objective matrix, C, be written as C= [cl,c2, ... ,c?] we

apply the affine-scaling primal algorithm to this problem by considering each
row of the objective matrix separately. In doing so, the step direction vector,

T
dxj, that maximizes the value of the i-th objective given by v^x, is

11



obtained by stepping in the direction of the gradient projected on the null
space of the constraints matrix A. The next iterate, Xj, obtained when
stepping in the direction ofdxj, is then given by

x—XQ+ctjdXj, (25)

where Xq is the, strictly interior, startingfeasible solution to Ax=b and otj is a

step size factor chosen so that the new iterate remains interior. Note that
regardless of the specific objective vector, cit the projection operator, P, used

to generate the next iterate is the samefor all objective vectors. As we did in
the previous section, we do not evaluate the projection operator explicitly but
perform its operation implicitly as follows. Incorporating the scaling
operation into the generation ofthe step direction vector, dxj, we have

dx- D2z (26)

where the reduced-cost vector, z, is given through

z=crATy (27)

and where the estimate for the dual vector, y, is found from solving the

symmetric system given by

(AD2AT)y=AD2Ci (28)

Note that introducing different objective vectors affects only the right
hand side of this system of equation and the inversion (efficient solution
methods actually call for factoring followed by forward and backward solve
cycles; see, e.g. [7]) of AD2AT is done only once for all objective vector. The
approach developed in this paper solves, at each step of the algorithm, q
single objective problems where the current iterate is transferred to a new
one that is an ascent direction for the specific objective used to generate this
step. After all new iterates are obtained, we have to combine the new iterates
to a single one that improves the value of the utility function. We consider
this problem next.

To solve the multiobjective optimization problem we have to find a way
to approximate the utility function at the current iterate, and take a step in a

12



direction that results in an improvement of the value of the objective
function. Since the utility function depends on the objective functions, we

have
T T Tu(v1,v2, ... ,vq) =w^x^x,... ,cqx)

and from this, the gradient with respect to the solution vector is found as

du du 9vi du jK du t J2*T foo\
vx" dx dvx 6x dvq dx dvx 1 dvq *

which, in matrix form, is written as

Vxu =(Vvu)C> (30)

To find this approximate gradient we have to evaluate the gradient of the
utility function in the objective space, that is, find Vvu.

i

Considering each of the q objective function by itself, results in
stepping from the initial point x0, along specific step direction vector, dxj, to
q end points with their own specific values for the q objective functions.
LettingAv.. denote the change in the value of the i-th objective function that
results from stepping away from the initial point Xq along the step direction
vector dx,. With this definition, the change in the utility function, w(x), in
stepping from the initial point x0 to a set of q new iterates can be

approximated through a first-order Taylor's expansion as follows

du du du

»<*i> ="(xo)+ ^T Avii +"^TAv2i+ - +"d7 Avqi

du du du
ttCxjP =w(x0) +— Av12 +— Av22 +... + — Avq2 (31)

du du duu(Xq) =u(Xo) +— Avlq +— AV2q +... +"^ Avqq

In matrix form, these q approximations are written as

&u= A[u(x)]= (Vvu)(AV) (32)

13



where the i-th component of the vector Aw is given by w(xi)-u(x0), the q-
dimensional row vector Vvu is the gradient ofthe utility function givenby

du du du

Vva = **l dv2 '" dvqJ

and the q xq matrix AV is given by

r Av,, Av

AV =

fql

11 "y12

Av0, Av,
21 "y22

Av-n Ayq2 -

Av

Av

lq

2q

Avqq J

(33)

(34)

From this approximation, the gradient of the utility function with respect to
the objective vector, v, is given through

V„w =Au(AV)"1 (35)

Since the changes in the values of the individual objective functions are

given by

Avy =ci( x0 +otjdXj) -cx x0 =OjC! dXj (36)

we can express the qxq matrix AV as

a. a,

AV =Ctdx^dx^, ... ,dx ]
a

qJ

= C(DPD)C
a

q J

(37)

where P=I -A1T(A1A1T)~ Ax is the projection operator for the null space of the
scaled matrix AX=AD which we evaluate indirectly by solving the symmetric

system of equations shown in the previous section.

Observing the result for the approximated gradient of the utility
function, we see that as long as we remain interior, the scaling matrix D has
a strictly positive diagonal elements. Furthermore, if no row of the objective
matrix C is in the range space of the constraint matrix A, that is, no row of C
can be expressed as a linear combination of the rows of the constraints

14



matrix A, matrix AV is invertible and, therefore, we can solve the system of

equations for the approximated gradient of the utility function.

With the value of the gradient of the utility function is objective space

given, we now return to the expression of the gradient in the solution space.

Doing so, results in

Vxw =(Vva)C =Aw(AV)-1C (38)

The Taylor's series approximation for the utility function involves the
value of the utility function at the initial point Xq as well as the value at the

new iterates. In the absence of the true utility function, these values are

unavailable and have to be expressed through some proxy measures. There
is no single way for doingit and we choose here to use the Analytic Hierarchy
Process (AHP) to assess priorities associated with the utility of the initial
solution point x0 as well as the q new iterates, x^.-.jX . Since the basic

operations involved in deriving priorities using the AHP are well known by
now, we do not dwell on the specific details. The reader is referred to [11,12]

for details of the AHP.

To obtain an approximate measure for the utility function at the q+1
points of interest we proceed as follows. While the value of the utility
function at the initial point x0 and the q new points xl9x2t.-tx is unknown,

we can still evaluate the complete ^-dimensional vector of objective function
values, v(x)=Cx at each of these points. Together with the current iterate,
x0, wehave information about q+1 points in objective space which we present
to the DM in order to obtain a measure of relative preference for these end

points. This step is done by using the AHP and involves filling a comparison
matrix that evaluates the relative preference of these points.

After the comparison matrix is filled, its principal eigenvector provides
the priority vector that is used to provide an approximate measure of the
vector Au. The relation between the priority vector and the utility values

along the different directions is through the component-wise relation given

by

5a £i
WJ= Pj

for all 0 <; i <> q, and 0 «s j <> q

15



This results in the row vector, Au being approximated through

Aw =pAp =p[ prp0, p2-p0, •••» Pq-Po 1 (39)

for some unknown scalar p and where p> (i=0,l,...,q) is the priority ofthe i-th
iterate as derived by using the AHP. With this vector now available, we have
all the requirements for evaluating the gradient ofthe utility function with
respect to v as shown in (38).

It is useful to seek an interpretation for this approximate gradient and
its relation to the priorities established through the comparison matrix of the
AHP. We established earlier the following result

Vvu =Aa(AV)_1 => Aw =(Vvw)(AV) (41)

Using the expression for AV as given in (37), the relation between the
approximate gradients Vxw and Vvu as given by (38), and defining a diagonal
qxq coefficientsmatrix, Q, through

a.

Q =

°qj

we derive the following expression for the vector Au

Am =(Vvu)C[dxvdx2,... ,dxq]Q =

=(Vxtt)[dXl,dx2,... ,dxq]Q = (42)

=[ax< Vxu, dx^ , ... , aq< Vxu, dxq> ]

where <V u,dxi> designates the inner product between the gradient vector
V u and the i-th step direction vector dxi.

With the approximate gradient now available, we have to generate the
next iterate and move from our current position given by x0 to a new iterate.

Using the approximation for the utility function through the approximate
gradient we have

w(x) - u(xQ) + (Vxw)dx (43)

16



where dx is the step direction vector to be used in making the actual next
step. Clearly this new step direction vector is some combination ofthe set of
individual step direction vectors {dxj} established for each of the q single

objective linear programming problems.

Theapproximate problem for determining dx is given through

"max"U(x0) + (Vxu)dx]
subject to:

A(x0 +dx)=b (44)
x *0

and since the current iterate, x0, is feasible, this is equivalent to

"max" (Vxw)dx
subject to:

Adx =0 (45)
x0 + dx ss 0

If we use the affine-scaling primal algorithm to find dx, we project Vxu

instead of c. That is, remembering the scaling operation, we have

dx= DP(DVvu)T (46)
X

where P=I -DAT(AD2AT)"1AD is the same projection operator used in finding
n

each of the individual step direction vectors {dx)t where dx.=D[P(Dc.)].
Since, from (38), Vxw is a linear combination of the rows of C, the step
direction vector dx must be a linear combination of the individual step
direction vectors {dx^. To show it we proceed as follows. Let Dx be the nxq
matrix whose columns are the individual step direction vectors, that is
D =[dx1}dx2,... ,dx ]=DPDCr, and let Qbe the qxq diagonal matrix given by
Q=diag(a1,...,a ). Then, ifw6Rq is some vector ofweights, we have

dx =(Dx)w (47)

and therefore

(Dv)w =DP(DVxu)T (48)

n



Multiplying both sides of(48) by (DX)TD2 we have

(DX)D 2(Dx)w =(Dx)D2DP(DVxw)T (48)

which leads to

(CDPDCT)w =(CDPD)(Vxw)T (49)

To proceed, we note that since - from (37) - AV=CDPDCTQ, and from (38)-
(39) wehave Vxu=j3Aa(AV)"IC, we can rewrite (49) as

(AVQJ)w =#CDPD)Cr[(AWJ]TApT (50)

from which we have w explicitly through

w=fl(AV)VApT (51)

With this weight vector, the step direction vector, dx, is given through

dx=pDx[(AV)ifApT ( (52)

and, therefore,

dxT=Au(AV)"1(Dx)T (53)

which is similar to the linear combination we had in (38) but with the
columns of Dr rather than the rows of C.

With the combined step vector, dx, now available, we perform the ratio
test to determine the maximum allowable step size and taking a certain

fraction of it (to remain interior) we arrive at the next iterate.

The number of step direction vectorsgenerated at each step equals the
number of objective vectors. Starting with the second iteration, however, we
have one additional vector along which we can take our next step. Recall
that the new iterate, x, was obtained from

x = x0 + padx

where a is determined from the minimum ratio test, and p is a step size
factor satisfying 0<p<l that keeps the next iterate interior to the polytope. By

18



allowing p=l we take the next step all the way to the boundary to an end
point that is given through

x
'end

=x0 +adx (54)

The maximal step direction vector, dxend, that takes us from the current
position,, to the position given by xend, is easily evaluated through

dxend =xend-X0 (55)

Now> in addition to the q step direction vectors evaluated through the affine-
scaling primal algorithm we also have this direction as a candidate along
which to continue our steps. This end point also serves as an anchor point
that one canjump to if the new directibns generated at a given iteration lead
to less desirable points than the current one.

The process continues until we either terminate at the wall or when
the new iterates are less preferred than the current one. In this case we
simply move the current iterate along the last step direction vector and take
it all the way to the boundary of the polytope.

We summarize the proposed algorithm below.

An Affine Scaling Interior Multiobjective Linear Programming
Algorithm (ASIMOLP):

StepO: Given a starting feasible and interior solution, x0, set iteration
counter k=0, set current iterate x=x0,

Step 1: Increment iteration counter k:=k+l. Define the scaling matrix D
through D=diag[x1,x2,...,x2] where Xj is the i-th component of the
current solution vector x, and solve for the set of single step
direction vectors {dx^ from

(AD2AT)Vi =AD2Ci i=l,2,...,q
Zi-Cj-A'Vi
dxi =D2Zi

19



Next find the set of maximum allowable step sizes {a) by
performing the ratio test for each of the step direction vectors dxj,
and find the set of new iterates {xj by using

xi =x +pa^bq where pis a stepsize factor satisfying 0<p<l.

Step 2: Using the AHP, construct a comparison matrix. If this is the first
iteration, we construct a (q+l)x(q+l) matrix and find the priority
vector associated with each of the new iterates {s^} as well as that
associated with the current iterate Xq. Denoting this vector of
priorities by p, find the q-dimensional vector Au through

Au =pAp= p[prp0, p2-P0> •••> Pq-Pol where Pis vet unknown and pt
is the i-th component of the q+1 dimensional vector p.

for any iteration after the first, we also consider the value at the
boundary point, xend, (which we derive at step 5). In that case, we
have a (q+2)x(q+2) comparison matrix and the resulting vector of
priorities is of dimension q+2.

Step 3: Evaluate the value matrix, AV as follows. If this is the first
iteration, that is, k=l, the matrix is given through

a.

AV =C[dxlvdx2, ...,dx]
a

q J

otherwise, for k>l we have

a.

AV =Ctdxpdx^ ... ,dx dxend]
a.

a end .

Next, find the approximate gradient V u according to

Vxw = (Vvw)C

Step 4: Find the step direction vector dx and the new iterate, x, by solving
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(AD2AT)y =AD2(Vxur
z =(Vxu)T-ATy
dx = D2z

Find the maximum allowable step size a by performing the ratio
test and find the set of new iterates x through

x = x + padx

where p is a stepsize factor satisfying 0<p<l.

Step 5: Find the boundary point, xend, as follows. If this is the first
iteration, that is, k=l, the boundary point, xend, is obtained by
taking the largest step along the direction vector dx

xend = X+adx-

for any iteration other thanthe first, that is k^2, we first evaluate a

candidate, x, for a new boundary point through

x = x + adx.

If the value vector at this point v=Cx is preferred to that available
at x d we replace the current boundary point with the new point,

that is xend=x. With the boundary point now available, the vector
dxend, used in step 3, is found from

dxend=Xend-X'

Step 6: If at step 2, all the components ofthe vector Au are negative, no new
direction is preferred to the current one. In this case set x=xend and
terminate the iteration process, OTHERWISE: goto step 1.

Remarks

1. At step 1, the i-th new end point is found from xi =x +pa-dxj where
p is a stepsize factor satisfying 0<p<l. Before presenting it to the
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decision maker, a dominance check can be performed relative to the
current iterate, xQ. It the new point is dominated it is advisable to
limit the actual step taken along this direction. This can be
accomplished by using a much smaller stepsize factor p. The reason is
that since the priorities provide an approximation to the utility
function, a smaller step will provide a better approximation. Large
steps should only be taken in non-dominated directions.

2. In step 4, note that by determining the step size directly through the
ratio test that takes us all the way to the boundary, we can eliminate
the unknown constant p.

3. In step 5, preference of the value vector at xend relative to that at x is
evaluated directly using the AHP. If the utility function is available,

preference is determined from comparing u(x) and u(xend). The
purpose of this step is to keep updating the boundary point during the
interactive process and to keep the best one. This allows us to have
one additional direction vector to consider in evaluating the
approximate gradients, as well as providingus with a solution point at
which we can terminate the search for an optimal solution.

Next, we demonstrate the procedure outlined above with a simple
numerical example.

IV. A NUMERICAL EXAMPLE

Consider the problem given by

max

subject to:

1 0

0 1

xx+x2^ 10
x&O
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with an initial interior feasible solution given by Xo=[2,l,7]. To validate the

proposed approach it is useful to use an actual utility function in generating
the iterative process rather then using the AHP procedure. Assuming that
the utility function is given by w(x)=w(x1x2)=x1x2, the true optimal solution
that maximizes the value of this utility function is at the point where
x1=x2=5, with the optimal value for the utility function given by u =25. Next
we go through one stepofthe modified affine-scaling primal algorithm.

Using the affme scaling primal algorithm, the two step direction
vectors, dxx and dxg, are givenby

dxj =
3.7037

•0.0741

1-3.6296
dx2=

-0.0741

0.9815

.-0.9074

performing the respective ratio tests, and taking a stepsize factor of 0.15, the
two new iterates are given by

xi=

3.0714 1

0.9786

5.9500
x2=

1.9143 1

2.1357

5.9500

Since the utility function is given, we evaluate the vector Au directly

Au = [ 1.0056 2.0884 ]

Note that we ignore the proportionality constant p since, as discussed earlier,
we incorporate it when determining the step factor a.

With the change in values of the objective functions is summarized in
the matrix AV given by

AV =
1.0714 -0.0857

-0.0214 1.1357

the approximate gradients are given by

Vu = [0.9768 1.9125]

Vxu =[0.9768 1.9125 0.0000]
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The new step direction vector, dx, the new iterate,x, and the first boundary
point whichis the maximal newiterate, xend, are given now by

dx=

3.4762

1.8048

-5.2810

x=

2.2304

1.1196

6.6500
xend"

6.6078"

3.3922

0.0000.

and the maximal step direction vector, dxend is found from xend-x. Summary

of the first 25 iterations are shown in the table below. It is useful to note
that bothx and xend converge to the true optimal solution.

Table 1, Summary of iterations

Iteration

x xend

xi x2 X3 xl x2 x3

1 2.2304 1.1196 6.6500 6.6078 3.3922 0.0000

2 2.9007 1.4468 5.6525 6.6078 3.3922 0.0000

3 3.4542 1.7412 4.8046 6.^903 3.4097 0.0000

4 3.9004 2.0157 4.0839 6.4287 3.5713 0.0000

5 4.2481 2i2806 3.4713 6.2184 3.7816 0.0000

6 4.4908 2.5586 2.9506 5.8664 4.1336 0.0000

7 4.6238 2.8682 2.5080 5.3774 4.6226 0.0000

8 4.7899 3.0782 2.1318 5.3774 4.6226 0.0000

9 4.7682 3.4197 1.8121 4.6452 5.3548 0.0000

10 4.7075 3.7522 1.5403 4.6452 5.3548 0.0000

15 4.9531 4.3635 0.6834 4.7505 5.2495 0.0000

...

20 4.8486 4.8481 0.3032 5.0033 4.9967 0.0000

25 4.9187 4.9486 0.1345 15.0033 4.9967 0.0000

The trace of the interior solution trajectory is shown in Fig. 1.

Fig. 1, The solution trajectory
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The evolution of the value of the utility function both at the current

iterate as well as at the current end point is shown in Fig. 2. Note that a good
candidate for a termination point is obtained rather quickly in the process.

Fig. 2, The utility value alongthe solution trajectory

V. SUMMARY

We developed in this paper a modification of an interior point linear
programming algorithm suitable for problems having multiple objectives.
The proposed algorithm is based on modifying the affine scaling primal
algorithm to yield an approximate gradient that is than projected to yield the
step direction in which to take the next step. While the basic mechanism for
implementing such an algorithm have been developed and presented in this
paper, there are more issues that are worthwhile to look at in future work.
An obvious open question at this point is that of selecting the stepsize factor
used in taking the interior steps. In this paper we used a constant fraction
but it is of interest to explore the effect of a variable stepsize in the iteration
process. Another issue worthy of further study is that of the termination
condition. Also of interest is the choice of interior point linear algorithm to
be selected for a MOLP implementation. Finally, once a robust
implementation is available, it will be of interest to compare it against
simplex-based MOLP algorithms and observe performance differences.
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