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Abstract

Automated Design of Signal Acquisition Modules

by

Monte Frank Mar

Doctor of Philosophy in Engineering-Electrical
Engineering and Computer Science

University of California Berkeley

Professor Robert W. Brodersen, Chair

Signal acquisition modules implementthe functions of capturing a signal and providing a dig

itized representation of the signal. They usually include an A/D converter and filters to prevent

anti-aliasing aftersampling. This dissertation discusses methods forautomating the design process

from a high-level specification to layout usingoversampling A/D converters. Using common lev

els of abstraction, a design framework was established allowing centralization of design informa

tion and development of a unified design methodology for these systems. The method of

hierarchical design estimation was developed to guide design development At the lowest level,

hierarchical design estimation relies on the use of architecture templates to capture design infor

mation for specificimplementations of processors and to increase accuracy of designestimates. In

the initial search of the design space, performance estimates are made and propagated in a top

down fashion through the various levels of the hierarchy. At ahigh level, promising design candi

dates canbe identified and pursued. Accurate simulation of the mixed signal system provides veri

fication of the design. Models for 1/f noise were incorporated with existing difference equation

methods to provide improved simulation capabilities for the analog oversampling modulators.

These models were able to predict the performance of several fabricated modulator variations to

within 3 dB of measured results. To verify the functionality of the system, several chip designs

were implemented. The chips covered applications including data acquisition, linear phase filter

ing, and signal acquisition for speech recognition. Analysis using the design framework reduced

design time significantly while still providinghigh performance, fully functional chips.

Chairman of the Committee
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CHAPTER 1

Introduction

Mixed signal systems use both analog and digital signals to perform signal processing tasks.

These types of systems are found in many areas including biomedical instrumentation, communi

cation systems, and industrial control. The monolithic implementation of these systems has been

hampered by the conflicting demands of analog and digital circuit design.

In the past, mixed signal designs have been separated into discrete digital and analog portions.

The use of commodity parts encouraged this type of solution for mixed signal design. The bound

ary between analog and digital was sharply defined allowing each portion to be designed indepen

dently. Translating these designs directly to CMOS is not always possible since several different

technologies and design styles may have been used in the discrete components. In addition, rede

signing the entire interface is complicated since simple architectural changes can have a strong

effect on the implementation. Investigating the trade-offs requires extensive amounts of design

knowledge in both the analog and digital domains.

In CAD of digital integrated circuits, these problems have been addressed by abstracting the

design process and allowing designers to focus on the algorithm level. Designers have the ability

to write high-level descriptions of algorithms and have them compiled to mask descriptions for

integrated circuits [1], [2]. These application specific integrated circuits (ASICs) can be developed

with short design cycles and with high probability of success. While these digital systems can

cover a wide range of applications, it is still difficult to integrate A/D and D/A interfaces due to the

lack of integrated design tools for mixed signal systems.



2 Introduction

Analog CAD tools typically focus on lower levels of abstraction than digital tools, concentrat

ing on transistor-level optimization of known circuit topologies. The different levels of abstraction

and the different types of knowledge required for each design style make it difficult to develop

tools that deal with mixed signal ASIC systems. In addition, there has been a recent trend of mov

ing many signal processing functions into the digital domain. Digital signal processing offers

advantages in precision and dramatically decreases the development cycle time. A/D and D/A con

verters and RF analog circuitry could soon become the only analog circuitry required in many IC

applications. Techniques to raise the level of abstraction for the design of A/D and D/A converters

should be developed.

In this project, oversampling A/D converters were used to illustrate unified design automation

techniques for a class of mixed signal systems. Instead of separating the analog and digital sys

tems, high-level design exploration is used to examine system alternatives. Cell and architecture

libraries, estimation tools, and accurate high-level models provide users with the design informa

tion required to quickly evaluate design candidates. This integrated approach allows encapsulation

of information, freeing designers to examine system interactions rather than being distracted by

the plethora of low-level design issues.

1.1 Previous Approaches to Mixed Signal Design Systems.

Transforming behavioral specifications to circuit layout requires many steps, and these steps

differ between analog and digital circuit design. Many research efforts have focused on different

aspects of the problem and now these results can be integrated into a coherent design system.

Mixed signal system design is much more than a circuit design problem and more tools are focus

ing on higher levels of abstraction. This section outlines some of the recent advances in analog and

digital design tools that address portions of the design process for implementing mixed signal

ASICs.

1.1.1 Analog CAD Tools.

In analog CAD, researchers have found that techniques similar to those used in digital CAD

systems are not that successful since the design space is very large and since there is a lack of gen

eral purpose analog functional blocks. It is therefore difficult to map behavioral descriptions of an

analog function to a set of general purpose circuit blocks. Present design systems rely on translat

ing specifications and mapping them to circuits generated by module generators.
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Generation of analog circuits must be done carefully. While digital circuits can be adapted to

different process technologies with relatively minor changes, analog circuits are more sensitive to

parasitics and process variations. A variety of routing techniques must be used and cells usually

have to be redesigned for each process. Early efforts at analog module generators provided tem

plate design styles for opamps, comparators, and references [3], [4]. An example of this type of

tool is Opasyn which makes use of an optimization engine that could search the parameter space of

a circuit configuration to find the best device sizes for a given design specification [5]. To speed up

the search, models were developed to predict the circuit performance based on device sizes. The

designer had to partition the high-level design based on the system specification and then translate

system parameters to parameters that the module generators worked with. In addition to these

module generators, generalized analog place and route tools have been developed [6].

Since module generators provide help at the lowest level of the design process, higher level

compilers were needed to implement functions like A/D and D/A converters, buffers, amplifiers,

and switched capacitor filters. One approach to solving this problem was used in the IDAC (Inter

active Design of Analog Circuits) system [3]. Each function was described by a template. Device

sizing algorithms were provided for basic block design. Custom software modules were developed

to oversee the integration of the basic blocks into more complex functions. Designers could spec

ify parameters for the template and the software modules would generate the macrocell. Another

approach was to build compilers dedicated to generating a single functional block such as ADORE

for switched-capacitor filters [7], and various A/D converter generators [8], [9], [10].

The basic approach for design using analog module generator tools can be described using the

example of a voiceband PCM telephone codec. The system is decomposed into known signal pro

cessing functions based on design experience. In this case, the design is partitioned into transmit

and receive filters and A/D and D/A converters. Different circuit topologies and techniques are

then evaluated to decide which circuit configuration to use. For the A/D converter, the designer

would have to choose between successive approximation, flash, and oversampling A/D converters.

Specifications are translated to parameters for basic building blocks and the module generators are

then used to implement the building blocks with analog place and route tools to complete the lay

out phase [11].
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1.1.2 Digital CAD tools.

Analog CAD tools focused on translating specifications to known designs. In contrast, digital

CAD tools for custom IC signal processor design focus on higher levels of abstraction. These

CAD tools help designers to meet performance goals through analysis and transformation of algo

rithms to exploit parallelism. The emphasis is on high-level synthesis at the algorithm level of

abstraction, transforming behavioral descriptions to hardware structure. Many systems have been

designed to perform this task and a variety of techniques have been developed [12].

In comparing analog and digital CAD methods, we find that both approaches attempt to fit the

problem to a promising architecture style and that architecture selection is critical. Digital systems

have the advantage that effective architectures can be synthesized based on algorithmic properties

and less attention needs to be given to circuit design. Analog functions must be adapted to known

architectures and circuits must be highly optimized for the given application. Digital CAD tools

work at the algorithmic level where transformations provide many degrees of freedom for choos

ing good architectures, while analog CAD tools work at the architecture and circuit levels with the

designer being responsible for the architecture selection.

1.1.3 System Design: Methodologies and Design Tools

The system definition for mixed signal systems can be partitioned in a variety of ways. Analog

circuits tend to be smaller and can consume less power than digital circuits. Digital circuits tend to

be more flexible, easier to design, and are immune to component drifts and cross-talk effects. The

trend in recent years has been to try to move more of the signal processing functions to the digital

domain, giving rise to vastly different system architecturesthat can provide the same functionality.

This trade-off can be examined in the design of superheterodyne receivers. The basic receiver

block diagram is pictured in Figure 1.1. While previous receivers have been implemented using

analog circuits, the emergence of new A/D converter techniques has allowed more of the receiver

to be implemented digitally. For digital cellular phones, digital chip sets are available to handle all

the functions except for the RF front end [13]. Bandpass A-S systems promise increased perfor

mance with simpler systems [14]. Studying the design trade-offs for these systems is difficult since

system complexity is high, and trade-offs must be balanced with respect to algorithms, architec

tures, and circuits. To properly study these trade-offs, an overall system design methodology is

needed so that as the design proceeds, different options are identified and investigated.
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Figure 1.1 Blockdiagram of a superheterodyne receiver.

The Electronic Systems Design Methodology (MCSE) methodology [15] is an example of a

design methodology to aid in the design and analysisof complex real-time systems. The methodol

ogy is based on the development of a system by creating 3 views, the functional, behavioral, and

hardwareviews. The functional view specifies the types of functions or methods that must be per

formed by the system while the behavioral view gives a description of what each function should

do. The hardware view describes what hardware should be used in the implementation. The 3

views are createdin a process that is characterized as being globally top-down for design and bot

tom-up for implementation with the design process being split into 2 phases, specification and

functional design. The implementation process startsby developing hardware and software imple

mentations for the lowest level descriptions in the hardware view and then assembling these com

ponents in a bottom-up fashion.

Methodologies guide the design process but frameworks are needed to combine design tools

and methodologies into a design system. The YODA system was an effort at this type of design

system [16]. It made use of feasibility studies using high-level models to obtain an estimated per

formance index for implementations of digital filters. The results of the studies help the designer to

select a promising design plan. An additional advice tool was available to advise designers on

design choices. While this system provided strong analysis tools to aid in the top-down design

phase, it did not provide help for implementation and development of architectures and circuits.

1.2 Design System Overview

These ideas from system design methodologies and analysis tools can be combined with the

circuit design CAD tools to form an integrated design system for mixed signal systems. We have

limited the scope of the problem to signal acquisition modules, which implement the tasks of anti-

alias filtering, sampling, quantization, and signal conditioning. A typical block diagram for a mod-
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ule is shown in Figure 1.2. The goal of the framework is to integrate design and analysis tools for

Figure 1.2 Blockdiagram for a typicalsignal acquisition module.

each of these functions in orderto facilitate the processes of specification, optimization, and lay

out.The design problemcan be thoughtof as combining several heterogeneous IC processor mod

ules to provide the behavior of signal sampling and coding. While automation of the design

process is attractive, automationat the expense of the ability to explore design trade-offs for opti

mization is not desirable.

Several problems must be addressed in a design framework. A higher level of abstraction is

needed for the analog circuits and a basicdesign methodology must be developed to help manage

the complexity of the design process. Additionally, methods are needed to help encapsulate the

extensive design knowledge needed for analysis and design.

1.2.1 Levels of Abstraction

In orderto overcome the differences in designstyles foranalog anddigital CAD tools, we pro

pose a design methodology based on 3 levels of abstraction shown in Figure 1.3along with exam

plesof concepts that would be dealtwith at eachlevel of abstraction. By defining shared levels of

abstraction, a common framework can be developed allowing both analog and digital CAD tools

to work together in parallel. These divisions partition the framework so that new tools can be

developed and easily integrated.

The levels of abstraction also provide distinct breaks in the design process whereexploration

can occur. Rather than pursuing a depth-first design strategy, a breadth-first search is encouraged.

At each level, estimation models can be used to provide designers with the information necessary

to guidedesign decisions. The goal of exploration is not to locate the best design at each level, but

to study the design trends so that promising design candidates canbe identified. Only details at the

current level of abstraction need to be considered, making the design of these complex systems

easier to manage. As the design progresses to lower levels of abstraction, candidates will be dis

carded asdesigners decide on whichcandidates to focus implementation and optimization efforts.
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Following the top-down design phase, a bottom-up implementation is pursued which involves

layout and verification. Rather than performing these time-consuming tasks every time a new

architecture is desired, it is possible to develop parameterized architecture templates and to use

architecture synthesis tools. Extensive design knowledge is needed to fully implement a VLSI sig

nal processor, so capturing this information in reusable templates has several advantages. It speeds

up the design process and encapsulates design information, shielding designers from the detailed

implementation informatioa In addition, it can greatly aid the accuracy of high-level estimators

since many details about the implementation are now known. The circuit level of abstraction is

then only dealt with by those who implement new architecture templates or synthesis schemes.

The use of architecture templates alters the flow o*f the design process. When a favorable

design candidatehas been identified at the architecture level, a layout can be generatedusing auto

mated silicon assembly tools. Some degree of architecture exploration is encouraged, but it is lim

ited to the architecture styles supported in the design system. This will not be a serious limitation



8 Introduction

since new architecture templates are easily developed and provisions are made for easy addition of

new templates into the design system.

1.2.2 Functional Compilers and Estimation

Functional compilers are used to map high-level functions to a collection of library templates

[17]. The mapping is achieved either by a specialized module generator or by combining the

results of several module generators. Compilers provide short development times but changes to

the architecture can be difficult since a compiler hides many implementation details. The func

tional compiler approach has been previously applied to this problem with early approaches mak

ing use of an oversampling modulator and a fixed choice of filters [18], [19]. Only the

oversampling ratio could be varied to change the resolution and speed. A later compiler incorpo

rated area estimation techniques in an effort to optimize the design [20]. Other approaches focus

on silicon compilation of modulators via arbitrarynetlists [21] and compilation of filters onto fixed

processor architectures [22], [23]. Functional compilers are limited since they are only able to

cover a fixed design space.

The functional compiler approach can be modified to provide more design exploration and

design space coverage. An overall design manager could be used to control a library of functional

compilers. Rather than comparing the results of several compilers, the compilers should be written

to provide feedback information for the designer without the need for layout generation. This

allows several design paths to be investigated simultaneously at a high level of abstraction. The

initial feedback information from the compilers can be rough estimates since they can be refined as

more design information is acquired. This approach will be called hierarchical design estimation

and is a critical component in the design framework.

Using hierarchical design estimation, designers are able to compare the results of different

modules combinations at a high level of abstraction in an effort to meet their design specification.

This approach involves the designer and helps them to find beneficial design trends. It also pro

vides solutions that can cover a broad range of applications, not just deviations from a specific

design. While functional compilers seek to simplify the design by automating the design process

and hiding many details, hierarchical design exploration seeks to simplify the design by limiting

the amount of design information presentedto the designer. Only small amounts of information are

necessary to make design decisions at a given level of abstraction.
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Combining the levels of abstraction, the information about A/D interface design, and hierar

chical design estimation leads to the design framework used in this project. The design tasks are

partitioned into high-level, detailed-design, simulation, and layout generation tasks as shown in

Figure 1.4. In high-level design, estimators are used to guide the choice of A/D conversion or fil-

High-Level Design:
Algorithm selection

i

Specification

Detailed Design, Phase 1:
Design to determine
algorithm coefficients

i
Detailed Design Phase 2:

Design to determine
parameters for

architecture templates j

i

Layout Generation

High-Level Simulation:
Verification of

behavior

Low-Level Simulation:
Verification of

the design

Figure 1.4 Flow for the design framework.

tering algorithm. Design candidates are defined and studied and designers can vary the interface

specification to investigate the effects and study design feasibility. High-level design deals prima-
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rily with the algorithm level of abstraction. In the detailed design phase, the algorithms are imple

mented, and design estimates can be updated. At this point, there is enough information for a high-

level simulation and architecture templates can be chosen for the components in the design candi

date. Based on these choices, final estimates can be made for the design and decisions can be made

on whetherto proceed with layout generation.

1.3 Summary

This chapter presented a brief introduction to the methodology of the mixed signal system

design. Recent trends have shown that more signal processing functions are being moved to the

digital domain. This places a premium on the design of A/D and D/A converters. A survey of dig

ital and analog CAD tools showed that analog tools focus on the circuit and architecture levels of

abstraction, while digital tools provide support from the algorithm level. By defining common lev

els of abstraction and using architecture templates, a design methodology for attacking mixed sig

nal design was proposed. A brief discussion was given showing how the methodology could be

applied to the design of signal acquisition modules.

The following chapters will cover various aspects of the design system and describe the design

concepts in depth. Chapter 2 presents an introduction to oversampling A/D converters which

includes multirate digital filter design. Chapter 3 will present an overview of the framework for

design including high-level analysis. Chapter 4 discusses simulation techniques. Chapters 5,6, and

7 document the design tools for trarisforming algorithms to analog and digital circuits. Chapter 8

presents some example circuits designed with the system. Chapter 9 presents conclusions and

directions for future work, including how this approach can be extended to more general mixed

signal problems.
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CHAPTER 2

Oversampling A/D Conversion

2.1 Introduction

Oversampling A/D converters are attractive for IC implementation since they can be realized

in standard CMOS and have been used to demonstrate greater than 16 bit resolution without the

need for trimming or precision analog circuitry. The term oversampling A/D converter is usually

applied to the combination of a noise shaping coder or modulator and a set of digital filters as

shown in Figure 2.1. This chapter will provide an overview of the A/D converter and describe the

Analog
Modulator

Digital
M Decimation

Filters

^

Figure 2.1 Block diagram and functions of an oversampling A/DConverter.

concepts used in the modulator and the digital filters.

2.2 Modulators for Oversampling A/D Conversion

Oversampling modulators are related to Delta Modulators, and were initially proposed as a

means of overcoming some of the problems encountered in Delta Modulation [24]. They are

referred to as modulators since they were first used to encode telemetry information in a bit stream

[25]. Inose and Yasuda, the researchers who developed the method, named it A-Z modulation.
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Later researchers have also used the name E-A modulation which has caused some confusion. In

this dissertation, the terms modulator and noise shaping coder will be used interchangeably to

describe these circuits. This section will provide an overview of oversampling, quantization noise,

noise shaping, and the different types of modulators currently in use.

2.2.1 Quantization Noise and Oversampling

The process of signal quantization consists of sampling a signal and then assigning each sam

ple a digitized representation. The quantization error is defined to be the difference between the

actual analog value and the digitized representation that is assigned to the sample. Uniform quan

tizers use the same step size for each digital level assigned to a value. In a linear 8 bit A/D con

verter, for example, there are 256 levels equally spaced across the full scale voltage range.

Quantization can be modelled using an additive error signal e(t) to simulate the actual quanti

zation noise. If the quantizer has a resolution largerthan 2 bits and if the input signal is active, the

error signal e(t) will tend to a uniform distribution on the interval defined by the quantizer step

size. Consecutive samples from e(t) appear to be statistically independent and the quantization

noise can be modelled using white noise. Assuming that the errors are uniformly distributed and

that the step size is A, itcan be shown that the quantization error has power A2/12. A simple model
for an A/D converter can be implemented by adding white noise of with power A /12 to the origi

nal signal.

By using the additive white noise model, the effects of oversampling can be studied. If the sig

nal is oversampled by a factor of 2, the total quantization error still has power A2/12, but it is

spread over a larger frequency region. Figure 2.2 illustrates this using power spectral densities s(f).

An ideal low pass filter can be used to limit the signal bandwidth to fs, eliminating halfof the noise

power and increasing the signal power to noise power ratio by 2. Since the signal is now bandlim-

ited, it can be resampled at half the rate providing data at the original desired rate. When using

higher oversampling ratios, we find that each octave of oversampling provides a gain of 3 dB in

SNR when perfect digital filtering is used.

For sinusoids, it can be shown that if a full scale signal is quantized using an N bit quantizer,

the SNR will be given by Equation 2.1.

SNR = (6.02N+1.76)dB (2.1)
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Figure 2.2 Powerspectral density of the quantization noise for a signalsampled at fs and 2fs.

Thus the 3 dB gain per octave of oversampling translates into 1/2 of a bit in effective resolu

tion for an A/D converter. This illustrates the fundamental trade-off of resolution for speed in A/D

converters. Rather than using better A/D converters which can require costly trim steps, designers

can use oversampling and digital decimation filtering which adds costs in on-chip digital filters.

The gains through oversampling are limited, since a 2 bit gain in converter performance requires a

signal to be oversampled by a factor of 24 = 16. A better solution is to gain more resolution per

octave of oversampling by using noise shaping along with oversampling.

2.2.2 Noise Shaping and the A-I Modulator Family

Noise shaping is achieved by pushing quantization noise away from a particular region of

interest and can be implemented using the A-Z modulator shown in Figure 2.3. The circuit con-

r U

"

i-bit
A/D

1-bit
D/A

Figure 23 Block diagram ofa first orderA-£ modulator.

sists of an integrator in a feedback loop along with an A/D and a D/A converter. In the figure, 1-bit

A/D and D/A converters are used, but noise shaping will occur regardless of the number of bits in
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the converters. To examine how noise is shaped, the A/D converter can be replaced with an addi

tive white noise source to provide the signal flow graph shown in Figure 2.4.

Figure 2.4 Linearized model of the first order A-I modulator.

Early methods for analyzing oversampling modulators were developed around the additive

white noise model. While the model is definitely not accurate for 1 bit quantizers, it has been

applied with some success to the design of delta modulators [24], [26]. Early extensions of this

method to A-Z modulators were shown to be somewhat promising [27], [28] with circuit results

having some degree of matching. The approach taken by Candy will be reproduced here to illus

trate the benefits of noise shaping [27].

The linearized flowgraph of Figure 2.4 can be analyzed using linear system theory. The trans

fer function from input to output is given in Equation 2.2

Y(z)

X(z)
-l

= z

The transfer function from the noise source to the output is given in Equation 2.3.

Y(z) _ -i
N(z) Z

(2.2)

(2.3)

Equation 2.2 is a delay, which causes no signal distortion while Equation 2.3 is a high pass

transfer function. The quantization noise has been pushed away from the low frequency baseband

region. It must be stressed that this analysis is based on assumptions that are not fully valid. In fact

the quantization noise of the 1 bit A/D converter has been shown to be far from white [29]. The

results provided by this method provide some insight, but actual coder behavior is marked by non

linear dynamics which may be better characterized using chaos theory [30].
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These noise shaping results can be verified in simulation. The FFT of tlie output of a modula

tor with a sinusoidal input is shown in Figure 2.5. The input signal passes through the modulator

Amplitude in dB
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Figure 2.5 FFT output of a second-order A-I modulator with a sinusoidal input.

with no distortion or attenuation but the quantization noise is shaped with a high pass response. If

die high pass noise was filtered out, the original sinusoid could be recovered widi high resolution

since the low quantization noise region would be preserved.

The gain in SNR per octave of oversampling can be calculated by using Equation 2.3. It is

assumed that tlie 1-bit A/D converter contributes additive white noise with power e0" = A"/12 and

the sampling period is x. The power spectral density of the noise at the output of die modulator can

be derived from Equation 2.3.

PSD = 2xe;(2-2cosco) (2.4)

To find the total in band noise, tlie power spectral density must be integrated from 0 to co0, tlie

highest frequency of interest. After performing the integration, die in-band noise power N can be

expressed by Equation 2.5.
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N = — (co -sin© )
n ° °

(2.5)

This can be simplified if the sine function is approximated by the first 3 terms of a Taylor's

Series expansion, giving Equation 2.6.

2 2

N«̂ j- (2f0x)3 where f0 =(qJ2k (2.6)

If we assume that the power of the largest possible input sinusoid is A" and define the over-

sampling ratio OSR to be l/(2f0t), the SNR is given by Equation 2.7.

SNR = - (OSR)
it

(2.7)

Thus each time OSR is doubled, the SNR increases by 9 dB, which translates to 1.5 bits per

octave of oversampling in effective resolution.

More noise shaping can be achieved using a second order A-Z modulator which is shown in

Figure 2.6. Under suitable assumptions, the transfer function for noise and signal can be expressed

-*$i±m *

*

1-bit
A/D

1-bit
D/A

Figure 2.6 Block diagram of a second order A-Z modulator.

as in Equation 2.8.

Y(z) = E(z) (l-z_1)2 +X(z)z-1 (2.8)

The SNR value can be calculated using the method described previously giving Equation 2.9.

For each octave of oversampling, a 15 dB gain in SNR is achieved.

760
r

7E

SNR = -^ (OSR)2 (2.9)
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These calculations estimate the possible resolution that could be achieved if a perfect brick

wall filter were used to eliminate the out of band noise. While the equations are not accurate for

design work, they do illustrate the major advantages of oversampling A/D converters. A small set

of modulators can be coupled with different digital filter combinations to provide signal acquisi

tion at a wide range of resolutions and sampling rates. Recent results have shown that implementa

tions are possible from 20 bits at low sampling rates [31] up to 12 bits at 2 MHz [32]. Another

advantage is in the small amount of precision analog circuitry required. The modulators are sim

ple, requiring a few opamps, capacitors, and comparators. Since little precision analog circuitry is

required, these units can be implemented on-chip with digital signal processing systems.

The additive white noise model ignores the nonlinear behavior of the loop. First and second

order A-Z modulators exhibit tones that are created by limit cycles in the loop. However, first and

second order A-Z modulators are inherently stable. Higher order modulators based on cascades of

integrators, like the one shown in Figure 2.7, have been studied [33], but stability problems make

Figure 2.7 Athird order A—Z modulator usingtriple integration.

them less attractive than the first and second order modulators. Theoretical methods can be used to

explain the limit cycle behavior.

2.2.3 Theoretical Analysis Methods for Modulators

The additive white noise model does not provide insight into the limit cycle behavior of the

modulators, but it does help to predict how much resolution can be achieved. It is important to

characterize the limit cycle behavior since it can severely limit usefulness. The structure and size

of these limit cycles can be analyzed by studying the nonlinear dynamics of the modulators.

Theoretical analysis has led to better understanding of the nonlinear dynamics of the modula

tor loop. Early analyses focused on the quantization noise at the output of the modulator in an ideal
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first order modulator with a DC input [27]. For highly oversampled signals, the input varies slowly

over a single sampling period and a DC input is a good approximation. It was found that noise

peaks were present in the output spectrum whenever the DC input was a rational fraction of the

quantizer stepsize [34], which gives rise to a fixed bitstream pattern at the output. The pattern in

the bitstream is periodic so tones can be created in the baseband. Models and equations were

developed to allow calculation of approximate SNR values given an input DC bias point and a sig

nal value. The solution to these equations provides information on only a single data point in a

given waveform. For a variety of inputs, complete solutions require too much time for calculation

limiting usefulness for circuit design. However, these methods can be used to help determine good

bias points that do not create baseband tones.

Researchers have shown that the spectrum for the quantization noise of an ideal first order

modulator can be calculated for sinusoidal inputs [29] and that the additive white noise assumption

does not adequately predict modulator behavior [35], [36]. The power spectral density of the quan

tization noise has been shown to be discrete in nature rather than white.

It has been shown that if the initial condition of the modulator is known, the limit cycle pattern

can be predicted. This analysis problem can also be inverted so that given a limit cycle pattern, the

correct input can be identified within an error bound. In theory, this method provides the highest

possible resolution for an A/D converter. One algorithm for optimal decoding has been studied for

implementation as an integrated circuit [37].

Other theoretical approaches have been applied to stability analysis of higher order loops. One

method modelled the quantizer as additive white noise with a lineargain that depends on the input

[38]. Using this approach, it was noted that the loop gain of a modulator can decrease with larger

inputs. If the loop gain decreases too much, the excess tones caused by the quantizer can cause the

loop to go unstable. In addition to predicting this conditional stability, this method provides some

guidelines on how to design modulators for stable operation given the signal swing. Another

approach used root locus techniques to show that limiters in the feedback loop can add stability to

higher order systems [39].

For the most part, these theoretical analyses can provide good design approximations when

circuits are limited by quantization noise phenomenon as in digital implementations which have

been used to verity these concepts. However, analog circuits contain thermal noise and imperfec-
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tions that are difficult to include in theoretical analyses, so simulation remains the easiest way to

determine the parameters necessary for design.

2.3 Higher Order Noise Shaping Modulators

A-Z modulators are not the only solutions for achieving noise shaping. Researchers have

developed other topologies that have better limit cycle properties and higher order noise shaping

functions. These topologies can be divided into multistage noise shaping modulators, modulators

with higher order loop filters, and modulators that use multibit A/D and D/A converters.

2.3.1 The Multistage Noise-Shaping Modulators

This topology is obtained by cascading low orderA-Z modulators to obtain the transfer func

tion of a high ordernoise shaping function. The trademark name MASH has been applied to one of

these topologies by researchers at NTT [40]. The basic concept used in the multistage modulator is

to take the quantization error from a modulator and then feed this into another modulator which

encodes the noise in a bitstream. Subsequent processing and merging of the bitstreams gives rise to

a noise shaping function that is of higher order than any of the component modulators. Detailed

comparisons and discussions of the various multistage modulators and the theory of operation

have been previously presented [41], [42], [43] and will not be repeated here. The primaryadvan

tage of these modulators is unconditional stability even for high order implementations and better

randomization of the quantization noise leading to fewer limit cycles. Matching limitations

between the individual modulators can limit overall resolution.

Theoretical results have been extended to these modulators [43]. For modulators with an order

of 3 or greater, the quantization noise has been shown to be nearly white regardless of the input.

This means that the white noise assumption has more value for analysis of higher order multistage

structures and can be used as an effective design tool.

2.3.2 Modulators with Higher Order Loop Filters

These modulators make use of multiple feedback and feedforward paths within the loop filter

to create a noise shaping transfer function as shown in Figure2.8. The noise and signal transfer

functions can be designed arbitrarily by moving the poles and zeroes in the loop filter. A design

method based on classical filter design principles and the additive white noise assumption has been

used to determine the gain factors [44]. The major drawback with this topology is the fact that it is
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Figure 2.8 Blockdiagram of a modulator witha higher order loop filter.

conditionally stable [38] since pole placement using the white noise assumption does not guaran

tee stability. Nonlinear dynamics dictate the behavior of the actual loop so rules of thumb were

developed for designing stable systems. If the loop does go unstable, reset circuitry for the integra

tors can be used to bring the loop to a stable state, correcting the problem.

The modulator can be designed so that the noise transfer function has a notch rather than high-

pass response. This modification gives rise to the bandpass Z-A modulators that can be used in

superheterodyne receivers [45], [14].

2.3.3 Modulators with Multi-Bit A/D and D/A converters

One of the major benefits of noise-shaping coders is the tolerance to imperfections in analog

circuitry. The use of 1-bit A/D and D/A converters provides inherent linearity allowing high reso

lution conversion limited primarily by opamp non-idealities or excess noise in the system. By

using multi-bit A/D and D/A converters in the coder, better resolution can be obtained with lower

order modulators or at lower oversampling ratios, but these types of converters are limited by lin

earity in the A/D and D/A circuits.
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Simulation provides the easiest method of assessing how nonlinearities will affect loop per

formance [46]. These methods have shown that mismatch in step sizes can lead to tones that can be

in the baseband. Methods have been proposed to correctnonlinearities in the circuits [47], [48].

2.4 A/D Converters and Filters

The previous discussion has shown that oversampling modulators are complex systems that

can be used to achieve high resolution A/D conversion. However, the resolution can only be

achieved through the use of digital filtering. Figure2.9 shows a summary of the functions per-
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Figure 2.9 Summary of functions for the modulator and filters.

formed by the modulator and by the digital filters. Since oversampling is used, the initial anti-alias

filter, which isn't shown in the figure, is allowed a very large transition band. This reduces the

order of the filter so that 1 or 2 pole RC filters suffice with the bulk of the anti-alias filtering per

formed in the digital domain where circuits can take advantage of scaled geometries.

Besides providing anti-aliasing, the digital filters average a number of samples over time to

implement the speed for resolution trade-off. Since the signal was originally highly oversampled,

provisions must be made to reduce the sampling rate to a lower rate. These functions are imple-
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mented through the use of multirate digital filters, which will be discussed in the remainder of the

chapter.

2.5 Multirate Filter Design

A key issue in oversampling converters is the design of efficient multirate digital filters. Effi

ciency is complex function of user-defined constraints on area, speed, resolution, and power con

sumption. While multirate digital signal processing techniques have been studied extensively

[49], there is no general method for optimizing these types of systems when mixing a variety of

techniques. Some optimization methods have been developed under assumptions such as fixed fil

ter type or fixed architectures [50], [51], [52]. This section discusses several approaches to multi-

rate filter design to provide background for the tools used in the design system.

Throughout this chapter, references are made to multirate and decimation filtering. Decimation

is the process of lowering the sample rate. It originally referred to retaining 1 out of 10 samples

from a signal, but now is used to describe lowering the sample rate of a signal. Decimation is

closely related to interpolation, which is the process of inserting samples to increase the sampling

rate. While most of the examples in this chapter are developed with decimation in mind, the results

can also be applied to interpolation.

Multirate digital signal processing is based on sampling concepts that were originally applied

to implementations of narrow band digital filters which require a steep rolloff between passband

and stopband in a small transition width. High order filters are needed to achieve the desired fre

quency response which results in increased sensitivity to coefficient truncation and long

wordlengths. Instead of implementing narrowband filters with a single filtering stage, a better solu

tion is to use several filter stages operating at different sampling rates.

2.5.1 A Multirate Filtering Example Using FIR Filters

As an example, consider the system specified in Figure 2.10. The signal bandwidth of interest

is 2 kHz, but the input sampling rate is 200 kHz. There can be other signals outside of the band of

interest, so a digital filter must be used to limit the bandwidth of the signal. One way to implement

such a filter would be to decimate by a factor of 40, apply a steep filter, then interpolate by 40 to

get back to the 200 kHz sampling rate. If we are only interested in the data in the low frequency
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f = 2kHz Fs/2 = 100kHz

Figure 2.10 Frequency specification for a narrow-band filter.

region, interpolation is not necessary, and the output can be taken at the lower sampling rate of 5

kHz. A block diagram of this approach is shown in Figure 2.11.

Decimate by 40 2kHz

Input Signal /
Anti-Alias

Filter h 1 D -H
Low-Pass

Filter

Bandlimited

^ Signal^

"l
fs = 200kHz fs = 5kHz

Figure 2.11 Block diagram of a system to recover 200 Hz bandlimited data.

When decimating, simple resampling is not sufficient. Resampling at a lower sampling rate

can be achieved by multiplying the current input stream with the Discrete Fourier Series represen

tation of a pulse train that samples at the lower rate. If s[n] is the input signal sampled with period

T, and we choose to decimate by a factor D, this can be expressed in the time domain as follows:

[) j2rckn

s'[n] =s[n]-£e D
k = 0

(2.10)

In the frequency domain, this represents a convolution. The Fourier transform of

Equation 2.10 is given in Equation 2.11, where co is defined in terms of the higher sampling rate.

I) , . ICO-ZrtK),

S'fV*0) =5^sfe D 1where 0) =2tc/T
k=0

(2.11)
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The aliasing effect expressed by Equation 2.11 is illustrated in Figure 2.12 for the case where

S(eJ°))

SV>|

VD 2fJD

Figure 2.12 Frequency domain interpretationof resampling a signal that isn't bandlimited.

D = 3. Clearly, the signal must be bandlimited before decimation. Specifications are usually given

to define how much the aliased signals should be attenuated.

Suppose the specification called for 40 dB of anti-aliasing for frequencies above 3 kHz up to

100 kHz. If we choose to limit the implementation to one that uses equiripple FIR filters, we can

quickly estimate the complexity of the problem by estimating the length of the required filter using

a well known design equation [53]. A single FIR filter would require a filter of length 328. A more

effective solution is to use 2 filters, one that decimates by 10 and one that decimates by 4. To avoid

aliasing, the filters must have specifications as shown in Table 2-1. Using the same design equa-

TABLE 2-1 Summary of filter requirements

Filter
Dec.

Ratio

Passband

Edge
Stopband
Edge

Number

of taps
required

Single Filter Decima
tion Stage

40 2kHz 3kHz 328

First Filter in 2 stage 10 2kHz 18 kHz 24

Second Filter in 2 stage 4 2kHz 3kHz 39
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tion, we find that the first filter requires 24 taps and the second filter requires 39. There are fewer

total coefficients needed and the second filter operates at a much lower rate, so less computation is

needed. These results can be analyzed to find the number of operations required to implement the

filters.

In calculating the total number of operations, the figures must be adjusted since FIR filters

have advantages when used in multirate applications. Each output is calculated as a linear combi

nation of past input values. Since there are no recursive operations, only the output values at the

lower sampling rate must be calculated. Normally, for every input sample supplied to an FIR filter

with L taps, L state variables must be updated with a multiply-accumulate operation and one out

put sample is generated. This is illustrated in Figure 2.13 for the case where L = 4. When decimat-

Timen

cl*in[n-3] c2*in[n-2] c3*in[n-l] c4*in[n] out[n]

e&ttitfQ'' !<s2*tfiltt"21 c3*kt[«l ic^uit[»w41| out[n+l]

cl*in[n-l] c2*in[n] c3*in[n+l] c4*in[n+2] out[n+2]

tl*Na| :c2*iiita*il :c3*iR{n*3! ;e4*ia|a*-3]

Figure 2.13 Calculations in an FIRfilter with L = 4.

out[n+3]

ing by a factor D, only L/D state variables must be updated since only these L/D state variables

contribute to output samples that won't be discarded. In Figure 2.13, only the unshaded multiply-

accumulate operations need to be calculated, since out[n+l] and out[n+3] will later be discarded.

This means that the computation rate can be decreased by a factor of D when decimation is incor

porated within the FIR filter.

Considering the 2 examples again, we can calculate the number of multiply-accumulate opera

tions needed per sampling period to implement both options. If decimation isn't incorporated in

the first example, then 328x40 = 13120 multiply accumulate operations are required per output

sample generated and 39 intermediate output samples are discarded. If decimation is incorporated

in the filter, the first example requires 328 multiply-accumulate operations per output sample,

showing that quite a gain can be achieved. In the 2-stage example with decimation incorporated in

both filters, the first filter must be run 4 times and the second filter once per output sample gener-
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ated. This means that 4x24 + 39 = 135 multiply accumulate operations are required, about 1/3 of

the total for the first example. The second example can be easier to implement, since it requires

fewer operations per output sample but this depends on the hardware implementation.

2.5.2 Other Solutions to Multirate Filtering Problems

In the last section, 2 solutions to a decimation filtering problem were examined and other com

binations could provide even better results. Crochiere and Rabiner developed design charts and

rules to guide the design of these types of multirate filters when only cascaded equiripple FIR are

used [49]. These results have shown that computations tend to be minimized when the decimation

ratios of all stages are similar. Another approach proposed a branch-and-bound optimization

scheme locate the optimal structure based on cost functions that are applicable to certain VLSI

realizations [52].

FIR filters do have many desirable properties that make them easy to work with but they are

computationally inefficient for narrowband filtering. IIR filters can require fewer operations to

implement a given magnitude specification, but they cannot have a linear phase response over all

frequencies of interest Additionally, it is more difficult to gain computational advantages when

altering the sample rate with IIR filters. Classical IIR filters include biquadratic and lattice wave

digital implementations of Butterworth, Chebyshev, and Elliptical magnitude approximations.

Martinez and Liu proposed one IIR structure that takes advantage of sample rate alteration to

lower the computation rate [54]. This structure is similar to the one proposed by Bellanger [55].

The numerator of an IIR transfer function can be implemented as an FIR filter that only needs to

compute samples at the output rate. If the denominator is implemented with delays that are multi

ples of the decimation ratio, then it also can operate at the lower sampling rate since no intermedi

ate states need to be calculated. This is illustrated in for a decimate by 2 case in Figure 2.14 where

the computation rate can be cut in half.

This idea was extended by Ansari and Liu to polyphase IIR filters [56]. Each branch of a

polyphase filter approximates an all-pass function. The all-pass functions are restricted so that they

use delays that are multiples of the decimation or interpolation ratio.These functions can be imple

mented with fewer multiplies, so.an extra computational savings can be achieved above that given

in the previous scheme. Since the branches are all-pass, fewer degrees of freedom are available,

limiting the range of magnitude responses that can be implemented. The filter design method for
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Figure 2.14 Incorporating decimation in an IIR filter structure,

these polyphase filters leads to implementations that are close to N-th band filters. A half-band fil

ter is a special case of an N-th band filterand has the property that the magnitude response is sym

metric when mirrored about the point fs/4. If a half-band filter has frequency response H, it must

satisfy Equation 2.12.

|H(ej0))|2= l-|H(ej0))|2 (2.12)

The property that governs the frequency response for N-th band filters is given in

Equation 2.13 for filters having N branches and decimatingor interpolating by N [57].

N-l (i)+2icn N

He = 1 (2.13)

n = 0

The -3 dB frequency occurs nearfs/N. N-th band filters can be implemented using FIR filters

as well [58], but the decrease in computation is not as dramatic than for polyphase IIR Nth-band

filters which have been shown to be the most computationally efficient filters for sample rate alter

ation.These polyphasefilters are good for small changes in sample rates.They can maintaingood

passband and stopband ripple, but there is too muchcomputation involvedfor largesampling rate

changes.

While previous methods have shown that using many stages can be beneficial in lowering

computation rates, this is not a goodguideline for VLSI implementation of filters. Usingadditional
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filtering stages may lower the average number of operations, but can greatly increase the chip area.

Rather than using extra stages of large complexity and large area, another approach has been to use

very simple FIR filters for large sampling rate changes.

This approach partitions the sample rate change into 2 tasks: sample rate change and band-

shaping [50]. Some filters are assigned the task of sample rate change, while a few are used for

bandshaping. The sample rate change filters focus mostly on anti-alias requirements and not much

attention is given to the passband providing more design freedom and lower computation require

ments. After the sample rate change, bandshaping filters are used to correct for droop caused by

the sample rate change filters and to give the correct bandshaping according to the specification.

These filters can be difficult to design since they have an arbitrary magnitude response in the pass-

band.

Simple comb and integrator filters were used for sample rate changes. These filters are based

on cascades of filters with rectangular windows and are sometimes called Comb-Integrator Cas

cade (CIC) filters. In continuous time, the frequency response of a rectangular window is described

by the sine function, sinc(x) = sin(x)/x, giving rise to the name sine filters. The transfer function

for a firstorder sine filter is given in Equation 2.14 for the case where the decimation ratio is N and

N is odd.

-j(on N-i . sin(T©) H<D(Nzi,
H(eJfi)) =i-1^ =V e-J(0n = . * e 2 (2.14)

l-e"Jfi> ^ sin (CO)

These filters can be implemented using an accumulate and dump FIR filter or using integrators

and differentiators. Candy used filters with these types of magnitude responses as optimal decoders

for A-Z modulators [59]. In practice the structure based on integrators and differentiators is used

since the implementation can be very efficient in area.

2.6 Summary

In this chapter, the basic concepts involved in oversampling A/D converters were presented. It

was shown that the noise shaping ability of the modulator determines the gain in resolution per

octave of oversampling and that several different modulator types are available. In order to achieve

the full conversion, digital filtering and sample rate alteration are needed. Several filtering tech-
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niques were introduced and basic strategies for decimation filtering were presented. Figure 2.15

Analog
Modulator

Digital
M Decimation

Filters

Figure 2.15 Modules for implementing an oversampling A/D converter.

illustrates the concepts introduced in this chapter.

In order to implement a converter, the basic idea is to select from the blocks shown in

Figure2.15 and to combine them in a way that implements the desired function. There is a large

amount of flexibility, since resolution requirements can be met by selecting higher order modula

tors or increasing the decimation ratio. Since most of the filtering is performed in the digital

domain, the full implementation can be integrated with other digital signal processing circuits in

standard CMOS.

While oversampling converters provide flexibility, a major problem is that widely varying

solutions can often be comparable in performance. For example, varying implementations of over-

sampling A/D converters for encoding speech have been reported in the literature using different

algorithms and architectures [60], [61], [62]. While the modulator design was basically the same,

different approaches were taken for the digital filters but performance results are not that different.

This indicates that no single optimal solution exists.
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Optimization techniques can help to direct the designer towards a good solution, but overall

optimization of this type of system is not easy. The design is too complex for a single optimization

algorithm since a variable number of complex system components are involved. Since interactions

between parts of a system are hard to predict, it is possible that two very different solutions could

both give good results. Our design methodology attempts to explore these options through hierar

chical design estimation. High-level design strategies need to focus on the performance of the

modulator and the design of digital multirate filters.



31

CHAPTER 3

Framework Overview

In this chapter, a complete overview of the design system is presented. The details of high-

level design are discussed and a prototype tool for high-level design is presented. An overview of

the CAD framework for design and the design database are also presented.

3.1 Hierarchical Design Estimation

3.1.1 Introduction

Hierarchical design estimation tries to provide the designer with only a minimal amount of

information needed to make critical design decisions at a given level of design abstraction. How

ever, it can be difficult to decide what type of information to present to the designer. Past filter

design algorithms have used the number of operations and memory storage as design metrics.

While these numbers can be helpful for comparing software implementations of filters, they do not

serve as adequate metrics for IC design since comparisons in the different design phases can be

broad and application specific. For example, a designer may want to compare an FIR filter against

biquad and wave digital implementations of digital filters. Comparing the number of operations is

not sufficient because it can be strongly dependent on the implementation. A custom FIR filter

may only be slightly larger in area than the others if a full multiplier is used. Additionally, the

wave digital implementation may be favored since it has better limit-cycle properties and can be

implemented in small area with shift-add arithmetic. These issues make comparison difficult, so

only the most basic metrics should be used.
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Many aspects of oversampling A/D converter design are quite application dependent. For

example, some designers insist that a constant group delay response in the passband is necessary

for audio applications while other designers will allow group delay to vary with an unclearly spec

ified amount of tolerable variation. Another basic choice is in the analog modulator design, with

different modulator topologies providing advantages with respect to stability, ease of use, and sen

sitivity to process variations.

These issues require human designers to be involved and make a fully automated solution dif

ficult. Studies have shown that the main problems in decision making are due to large numbers of

variables. Saaty has shown that hierarchical approach can be used to limit the number of variables

in cases where multiple criteria must be considered [63]. His approach showed improved results

for decision making, even for problems where metrics for comparison were difficult to quantify.

Thus narrowing the number of variables and using hierarchy allows the designers to critically

examine the trade-offs and to focus on the real factors affecting the decision process. In addition,

once critical factors are identified, the designer can alter the specification to insure that they are not

overly conservative. Better designs can be achieved when suboptimal solutions to smaller prob

lems are balanced to give a good overall solution.

This approach is applicable to design systems where the design decisions are not easily char

acterized into rules that would allow development of automated tools. It has also been used as a

strategy for developing design methodologies for the design of complex systems [64]. As design

experience is gained and as the methodology matures, it may be possible to develop design critics

that can fully automate the design process.

Area, power, speed, and resolution were chosen as the basic metrics that would enable good

design decisions. Economic issues force designers to balance these quantities, so it seems appro

priate to use them as metrics for all levels of the design hierarchy.

3.1.2 Estimation Strategies

Within the framework, the architecture level is the lowest level at which estimation occurs.

Since architecture templates are used, estimation of area and speed can be performed based on

information from the layout generation tools and cell libraries. Estimating the resolution for the

analog modulators can be difficult, but simulation methods discussed in Chapter4 were shown to

provide adequate information. The simulation models can be used with regression techniques to
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generate a mathematical model for the behavior of the modulator as a function of high-level design

parameters. Estimation of power consumption is a difficult problem that is currently being studied

[65]. Power estimation tools were not used in this project, but the framework should support these

tools when they become available.

Estimation at the algorithm level can be heavily influenced by the choice of implementation.

Architecture and circuit features can alter the actual performance numbers and skew the estimation

process. To avoid these problems, a hierarchical approach is used. At the different levels of hierar

chy, estimators are designed to producedata that can drive lower level estimators. Full design esti

mates can be generated hy applying the estimators in a top-down fashion. A common set of

parameters was defined to simplify comparisons between numbers based on different design

styles.

This hierarchical approach can be illustrated in the estimation of area for the implementations

of an FIR filter. At the algorithm level, the length of the filter can be estimated from frequency

domain specifications using a set of empirical formulas [53]. This is propagated to the architecture

level estimators. In addition to the length of the filter, the sampling rate and the number of non

zero bits needed to code the coefficients are needed for estimation. The sampling rate is available

from the initial specification while the non-zero code bits can be estimated using a basic rule of

thumb [66]. The areaestimate is found by choosing an architecture, and applying the architecture

estimator to the input data.

3.2 Design System Overview

3.2.1 Objectives for the Design System

The basic objective for the design system is to automate the process of converting specifica

tions into layout for oversample and decimate A/D converters. The design system must handle the

complexity and breadth of the design tasks from implementation to layout and chip testing. Each

of the processor modules requires different types of expertise to achieve a successful design. In

addition, the interactions between these modules must be accounted for, since beneficial interac

tions between modules can be exploited to reduce design costs. These requirements led to these

goals that we have set for the design system:
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1. To provide a means for designers to focus on one aspect of the design problem, such as
modulator design, while relying on library modules to allow full implementation of a
complete A/D interface.

2. To provide designers with the tools to study design trade-offs between widely varying
implementations.

3. To provide a modular environment for designers to study oversampling A/D and D/A
conversion and multirate digital signal processing which allows easy integration of
new architectures and design techniques.

4. To investigate the possibility of portable module generators for oversampling modula
tors.

5. To simplify and speed up design times for a class of mixed signal VLSI systems.

3.2.2 CAD Framework

A CAD framework was defined to support the analysis and design of these systems. The basic

flow for the design process is shown in Figure 3.1. Within the CAD framework, tools are needed

for hierarchical design estimation and for implementing designs. Methods were established to

allow efficient communication between design tools and to provide designers with access to the

relevant design information. The design process was not totally automated since designers are

forced to make decisions about implementation choices based on information from the estimation

process. If the choices for system components, algorithms, and architectures have been made,

much of the design process can be automated.

The approach to the CAD framework was partitioned between design tasks and estimation

tasks. Most design programs are not interactive and can be coordinated by specifying a set of

sequential design tasks. This can easily be implemented using a set of design programs and some

shell scripts or a design manager program. The long execution times of design programs makes

them less favorable candidates for interactive tools, so designers are accustomed to waiting for the

results. However, when designers are performing estimation, they would rather have an interactive

tool to work with. Immediate feedback allows designers to use "what if analyses to quickly iso

late effective design techniques. Rather than implementing a fully interactive design system, the

decision was made to use a traditional design manager for design tasks and to use a spreadsheet for

the estimation tasks. This provides a solution that is easy to implement and provides much flexibil

ity and modularity. Thus the CAD framework is divided into estimationtools implemented using a

spreadsheet and the detailed design tools implemented using as programs coordinated by a design

manager.
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3.2.3 Status of the Design System

A complete set of detailed design tools was integrated into a CAD framework. A simple

design manager was created and verified. Various modules can be specified and connected using a

hierarchical design language. The design manager can then be used to direct the fully automated

process of creating the structure descriptions used by the layout generators. After annotating these

descriptions, the layout generators then create the mask descriptions for fabrication.

For the estimation tools, only a minimal set of equations was integrated into a spreadsheet.

Separate tools for modulator selection and digital decimation filter design were created. These

tools provide estimation of algorithmic parameters. The architectural level estimators were imple

mented along with the detailed design tools, so the full hierarchical design estimation concept was

not implemented. Work on this phase has begun, but was not completed. Future work can focus on

refining these tools and providing a strong link to the detailed design tools.

In the following sections, a brief overview is given of some basic spreadsheet tools and also

for the detailed design tools for implementing a design. In addition, information about the database

for the detailed design tools is given along with a description of adding programs into the CAD

framework. In Section 3.8, the use of the design system is discussed.

3.3 Spreadsheet-Based Design Tools

Since the high-level estimates can drive the architecture estimators, a large amount of design

exploration can be performed using only estimators. Estimation techniques are not fully accurate

so the designer needs to examine many designs. In addition, this search must be well documented

to allow comparison of these high-level estimates to those obtained later in the design process

when more information is available. The high-level design tools needed to aid the designer should

be characterized by fast response time and an interactive interface. These tools try to capture the

early calculations that most designers make when initially studying the design.

The algorithm and architecture estimators can be characterized by a set of mathematical equa

tions which are usually simple in complexity and can often be implemented using a programmable

calculator. In this project, a simple high-level tool for design exploration was implemented using a

spreadsheet. Speadsheets allow the design equations to be stored as parameterized macros and the

calculations can be performed interactively resulting in immediate updates of the design informa

tion after a specification change. The macro mechanisms allow new estimation routines or tech-
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niques to he quickly developed, tested, and made available to designers. Some spreadsheets allow

customization of user interfaces so dial a custom application can be developed widiout die need for

custom code and provide summaries of data obtained during a session.

The basic design formulas for designing cascades of digital decimation filters were coded into

a spreadsheet design tool using Microsoft Excel. A custom user interface was designed to simplify

data entry. The frequency domain specifications for die overall filter are first entered into the

spreadsheet. Users then have die option of adding different types of digital filters.

When a filter is added to the cascade, die minimum information required is the filter type and

the decimation ratio. Tlie menu for adding a filter is shown in Figure 3.2. If the filter is meant to

Figure 3.2 The custom add filter menu generated in Excel.

have a bandshaping response, additional information can be entered. Otherwise, die spreadsheet is

programmed to automatically calculate the proper band edge requirements. Figure 3.3 shows an

Excel worksheet which displays die results from a design session. In this worksheet, the user can

alter the decimation ratio for each filter stage to see the effect on the overall filter implementation

and the default macros will continue to update die estimates for the required filter order. A second

set of macros can be added for die estimation of die area required based on an architectural choice

and additional macros for estimation of power and resolution can he easily developed.

3.4 Framework for Detailed Design

The CAD framework for design is based on the design flow shown previously in Figure 3.1.

Tlie tools used in die framework can he grouped into tools for coefficient design, architecture map-
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Figure 3.3 Spreadsheet template for studying multirate digital filters.

ping, layout generation, and simulation. A simple design manager has been implemented to over

see the design tasks.

The framework is based on 3 clear breaks in die design process, one at the end of high-level

design, one at die end of coefficient design, and one before layout generation. These breaks parti

tion the detailed design task into well defined design tasks that can be automated. At the breaks in

the design process, the human designer makes decisions on which directions to take. The design

tasks between breaks are well defined, hut die implementation of die tools to automate the task is

not overly restricted. Any variety of techniques could he used to implement a design task as long

as design information is read and written according to a fixed database policy. This provides flexi

bility and allows many existing design programs to be easily ported into the framework. The

breaks in the design process also encourage designers to investigate how the design is progressing

and allows them to find problems before investing excessive design time at the lowest levels.

The tools for coefficient design, architecture mapping, and simulation are discussed in die fol-
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lowing chapters. Layout generation is performed using the Lager Silicon Assembly System [67].

3.5 The Detailed Design Database

The high-level design exploration data is stored in spreadsheet templates. Once detailed design

begins, a well-defined database storage policy is needed is needed to dictate how design modules

interact The database serves a key function since a seamless interface between programs will

allow higher levels of design automation. Designers are then free to focus on die critical design

decisions rather than worrying about how to change data formats for the next design program.

For this application, the amount of design data that needs to be stored during design explora

tion is small. A simple database could be implemented using ASCII files to store data. The infor

mation consists of a set of properties, a frequency domain specification, and a set of coefficients.

Issues like access time and relational querying are not a concern. Organization of the data and

design management are more important considerations.

3.5.1 The OCT Database

The design system uses the OCT database [68] for storing information. OCT was originally

developed for VLSI CAD applications and is an integral part of the CAD framework at Berkeley.

OCT is an object-oriented database with well defined procedures for storingand retrieving data. In

addition, many design tools have been created for OCT, and new design management tools are

being developed. It is possible to use the design manager VOV [69] with the programs created in

this project.

Within OCT, a policy must be defined to dictate how data is stored. OCT contains several

objects that can be combined in different ways to create representations of a design called views.

The rules governingthe attachment of objects arecalled a policy, and each type of view has a pol

icy.

The basic data structures in the database arebags, properties, terminals, nets, and instances. A

bag is a construct that can containOCT objects while a property is an object that stores some data.

Properties can have values that are of the type real, integer, or string.Terminals and nets are used

for describing connectivity. Instances areuse to represent other OCT views within a given view.

The information that must be stored for a design can be broken down into categories that cor-
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respond to the levels of abstractions. The transition from one level of design abstraction to the next

creates additional design information that needs to be stored. While separate OCT views could

have been used at each stage, having all the information in a single view allows easier access and

less clutter. The majority of information for the design system is stored using a policy briefly

described in the next section.

3.5.2 OCT Component View Policy

The OCT component policy was defined for this project and is based on an earlier view

defined for data storagein FIRGEN, a tool for automated VLSI implementation of FDR filters [70].

A simplified version of the policy is shown in Figure 3.4. OCT generic policy is supported, which

TRUCTUR
bag

figure 3.4 Top level of the policy for the component view.

allows instances and provides for interconnection of views using terminals and nets. Each of the

bags in the view is assigned a policy depending on the data stored in it.

The frequency domain specification is stored in the SPECIFICATIONS bag using the format

depicted in Figure 3.5. The specification is used to describe the frequency domain response of the

component and is given in terms of behavior in a frequency band. Each band is characterized by at

least 2 points, which specify the band edges. At each frequency point, the desired magnitude

response and allowable deviation, both given in decibels, are stored as real properties. An optional
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Figure3.5Policyforstoringthespecificationforthefrequencyresponseofacomponent.

WEIGHTpropertyisalsostoredtoindicatetheweightingthatisneededinsomedesignprograms.

Theweightingusuallyindicatestherelativeeffortgiventosatisfyingthefrequencyspecification.

TheNUMBERpropertyisusedtoindicatethenumberofitemsineachbag.BANDandPOINT

bagsarestoredwithindexestoallowseparatebandstoberetrievedwithasinglecall.

TheSTRUCTUREbagholdsthemajorpropertiesneededtostartthedesignforagivencom

ponent.Inaddition,otherpropertiesthatwillbedefinedinlaterstagesofthedesignprocessare

alsokeptinthisbag.Table3-1showsalistofsomeofthepropertiesusedinthedesignsystem.

Requiredpropertiesaredenotedwithanasterisk.Theserequiredpropertiesformammimalset

suitableforrunningnearlyallofthecoefficientdesignprogramsofthefirstdetaileddesignphase.

Whileitmayappearthatmostofthepropertiesrefertodigitalfilterdesign,thesetcanbe

expandedtohandleothertasks.CoefficientdesigntoolsreadtheinformationintheSTRUCTURE

bagandthenwriteresultstotheDESIGN_DATAbag.

TheDESIGN_DATAbagholdsthecoefficientvaluesdeterminedduringthedesignprocess.



42 Framework Overview

TABLE 3-1 Basic properties defined for the STRUCTURE bag.

PROPERTY NAME TYPE DESCRIPTION

SAMPLTNG.FREQ* REAL Input sampling rate for the block.

DEC_RATIO* INT Decimation ratio implemented in the block.

ORDER* INT ORDER of the filter, which is determined by FTL-
TER.TYPE.

FTLTERJXASS* STRING Values are: fflGHPASS, BANDPASS, BANDSTOP,
OTHER

FILTER_STRUCTURE* STRING Values are: LATTICE.WDF, BIQUAD.CAS-
CADE, LINEAR_ARRAY, POLYPHASE.LWDF,

and POLYPHASE_BIQUADS

MAG_APPROX* STRING Values are: BUTTERWORTH, CHEBYSHEVI,
CHEBYSHEVH, ELLIPTICAL, EQUTRIPPLE

INTERPJRATIO INT Interpolationratio implemented in die block

PTOLEMY_MODEL STRING Name of the model to use for this block in simula

tion.

LBRARY.CELL STRING Gives the name of the library cell to use for direct
mapping.

INPUT_WORDLENGTH INT Input wordlength expected by the block.

OUTPUT.WORDLENGTH INT Output wordlength desired from the block.

INTERNAL.WORDLENGTH INT Wordlength used for internal calculations.

COEF.WORDLENGTH INT Wordlength for coefficientcoding.

CODDSfG_METHOD STRING Describes method for coding coefficients. Values are:
TRUNCATION, ROUNDING, CSD.

COEF_CODE_FORMAT STRING Either UNSIGNED.BfNARY, SIGNED.BINARY,

or CSD.

PHASE_APPROX STRING Only LINPHASE allowed. Assumed to be DONT_-
CARE if not assigned a value.

ARCH.FTLE STRING Specifies the architecture description file.

Coefficients for all filter structures are stored using a lineararray structure.The basic structure of

the DESIGN_DATA bag is shown in Figure 3.6. Ordering of array is maintained using the brack

eted index notation. Coefficients for different filter types are stored according to a policy defined

for each FILTER_STRUCTURE type. In the CODED_COEFS bag, the CODE property is used to

store a string representation of the actual coding. The floating point value of the coded coefficient

is also saved since it is used in simulation.

The MAPPING bag holds information that will be needed for generating structure descrip

tions. Two properties should be stored in this bag by the architecture mapping programs. The

PAR_FILE property gives a full file system path pointer to a set of parameter values that will be
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Figure 3.6 Policy for storage of coefficients in the DESIGN_DATA bag.

required for a structure description. The SMV_NAME property gives a file path pointer to an OCT

view created from the structure description created by the architecture mapping program. The

architecture mapping programs can also use this area to store other temporary information. Tlie

MAPPING bag also contains an ESTIMATES bag in which the architecture mapping programs

can write various estimates as properties.

Several additional bags have been added to the top level cell in the database. These are called

MAKE[i] and are used by the design manager. A set of COMMAND[i] string properties are stored

in the MAKE bags. These properties store a command line used to invoke a particular design tool.

Each COMMAND property contains a TIMESTAMP property which is used by the design man

ager to store timestamps for this step of the design process. As design tasks are completed, the

design manager can update the timestamp so that on the next run, the design task is not repeated.

The value ofTIMESTAMP is a long integer value from the time() function in C.

In conjunction with the design manager, a design documentation tool was developed. A signal

acquisition module is comprised of several components. The design manager attempts to run the

coefficient design tools on each instance in the full design before attempting architecture mapping.

As each design is completed, a documentation window can be called to allow the designer to note

details of the design process. This information is stored in a separate database where it can be
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retrieved and examined throughout the design process. This information can be helpful since the

design process is iterative in nature.

3.6 Adding Programs to the Design Framework

Details on design programs that were integrated into the design framework can be found in the

following chapters and in Appendix B. Other programs can be integrated into the design system by

providing routines for the program to read and write the component view database. This section

discusses programming style and various routines developed to aid interface design. It is the task

of the programmer to create interfaces so that design data is correctly read from or written to the

database. Adherence to the policy guarantees that all programs will be able to communicate and

share data.

3.6.1 Consistency in Programming

In all the programs, an effort was made to use consistent programming techniques. The first

step in the process was the use of common exit codes for all the programs. The basic exit codes are

listed in Table 3-2. Program exits are handled using the entrap routines provided in the OCT pro-

TABLE 3-2 Exit codes for programs used in the design system framework.

Number Defined Symbol Condition

0 Normal program exit, no exceptions detected.

• 1 Generic code for an exception.

2 BAD_CLA Bad command line argument passed to the program.

3 BAD_OCT_VT£W An error was encountered processing the OCT data
base.

4 BAD_OCT_CALL An error was encountered from calling an OCT func
tion.

5 BADJNPUT Input data from a text file was not valid.

6 BAD_DATABASE Similar to BAD_OCT_VIEW.

7 BAD_SYS_CALL An error was detected at the return of a system() call.

8 BADJNT_DATA An error or inconsistency was detected within inter
nal data structures.

10 and

above.

These exit codes are reserved for the program. Sym
bols should be defined in the program header file

along with definitions of error conditions.

gramming libraries. The exit call from this library provides the exit code and allows the program

mer to supply a short message to guide the user in fixing the problem. The symbol names for the
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exit codes are defined in a common header file, dblib.h, which will be discussed later in this sec

tion. In addition to exit codes, all programs supply a -L option which specifies that extra program

information will be written to log files.

The OCTTOOLS distribution provides several programming libraries in addition to the entrap

library. Utilities are available for searching paths, processing command line arguments, and for

shortcuts in accessing the database. Use of these routines simplifies the programming task and

gives more uniformity to the programs. A utility is available for generating makefiles to generate

dependencies and process all the OCT related libraries. In addition to the OCT libraries, a set of

routines were created in the dblib library supplied with the design system. These routines provide

support for storing filter coefficients and processing other component view data structures. The

header file dblib.h was created with function prototypes for the dblib routines and the standard exit

codes are also defined in this file. A summary of the dblib routines is provided in Appendix D,

along with the file dblib.h.

3.6.2 Database Interfaces for Coefficient Design Programs

Almost all filter design programs take a frequency specification as input Various filter design

algorithms are discussed in Chapter 5. Based on this information, coefficients are created and then

displayed as output. The database interface will thus consist of a routine to read the frequency

domain specification from the FREQUENCY_SPEC bag and a second routine to format the coeffi

cients so they can be written to the DESIGN_DATA bag.

The frequency specification is available through a call to the function fspec2array() on the

main facet of the component view. The specification is returned in a C structure. For writing the

coefficients to the IDEAL_COEFS bag, a call to the routines farray2dd(), tags2dd(), or

codes2dd() is all that is needed. Prior to the call, the coefficients must be written to an array in a

format that is defined by the FELTER.STRUCTURE property. Details on the specifications for the

array and for the frequency specification are found in Appendix D.

All coefficient design programs should be able to perform a design with only these properties

stored in the STRUCTURE bag: SAMPLING.FREQ, DEC.RATIO, INTERP.RATIO, ORDER,

FILTER_CLASS, FTLTER_STRUCTURE, and MAG_APPROX. The definitions of these proper

ties may have different meanings depending on the design program. Forcing design programs to

use only these parameters simplifies the user interface. When changing design programs, designers
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will immediately know which parameters to specify without having to look in the documentation.

3.6.3 Database Interfaces for Coefficient Quantization Programs

These programs must read the coefficients from the IDEAL_COEFS bag along with some fil

ter properties, perform quantization, then write the corresponding codes and their floating point

equivalents to the CODED_COEFS bag. Methods used in these programs are discussed in

Chapter 5. The ideal coefficients can be obtained from the component view by using the function

farray2dd() which returns an array of type double with the coefficients formatted according to the

FILTER_STRUCTURE property, as explained in Appendix D. When retrieving the coefficients

from the database, programmers may want to assign a tag or alternate name to the coefficient so

that the coefficients can be identified when they are processed by other programs. The tags2dd()

routine allows programmers to do this.

After quantization, 2 sets of coefficients should be produced, one with the coded coefficients

and one with the equivalent floating point values. The coded coefficients are stored as strings since

a single numeric value is not sufficient, especially in the case of Canonical Sign Digit (CDS) cod

ing where -1,0, and 1 are used as digits. The second array is needed so that numerical simulations

can be performed on using the values for the quantized coefficients. The coefficients need to be

formatted into arrays and then written to the CODE_COEFS bag using the functions codes2dd()

and farray2dd().

After quantization, additional properties can be added to the STRUCTURE bag if they were

not added previously. Properties like COEF_WORDLENGTH, CODING.METHOD, and

COEF_CODE_FORMAT all should be defined and added.

3.6.4 Interfaces for Architecture Mapping Programs

The goal of the architecture mapping programs is to convert the quantized coefficients into the

information necessary for layout. This varies according to the technique used for architecture map

ping. Some examples of mapping techniques are described in Chapter 6. In some cases, it may

require generation of the netlist description for a VLSI processor while in other cases, it may only

require generation of parameters for a parameterizable architecture template.

No fixed policy was defined for how architecture mapping programs should access the data

base. The only major requirement is that the MAPPING bag be used for storing intermediate
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results. At the end of the process, the last program invoked on the component view should write

the properties SMV_NAME, which gives the name of the database representation of the structure

description, and PAR_FELE, whichspecifies the nameof the parameter file to use with this struc

ture description. The database for the structure description is generated by processing a LAGER

structure description language (SDL) file [67]. SDL files can be used to store netlist information

about a given architecture implementation.

If any estimates are created by these programs, they should be written to the ESTIMATES bag

contained in the MAPPING bag. The basic structure of the ESTIMATES bag is documented in

Appendix D. The design system program for documentation will look in this bag to summarize

estimates for the design report.

3.7 Layout Generation

Prior to layout generation, a program called writeSDL can be run to create a skeleton SDL file

that describes the entire design. The program attempts to write the SDL file using the

SMV_NAME and PAR_FELE properties from the MAPPING bag. It collects all the parameter

names and applies a transformation to insure uniqueness for all parameter names. No eflbrt was

made in the program to attempt the connection of nets between the modules in the design. This

problem is not easily solved since it involves a one-to-many mapping. Extra information is needed

to connect the various testing features, clock lines, and other signals between components. After

the writeSDL program has been invoked, the generated SDL file must be annotated prior to layout

generation.

Layout generation is performed using the Lager Silicon Assembly System. The Lager System

consists of a set of cell libraries and tools for tiling (TimLager), place and route (Flint), datapath

compilation (dpp), and standard cell compilation. Lager assembles cells according to a netlist

description given in the SDL format which provides constructs that allow parameterization of

designs.

3.8 Using the Design System

3.8.1 Basic Design Steps

The design system was created to aid design space exploration and system optimization. It is

assumed that system users have a basic knowledge of multirate digital signal processing and A/D
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converters. A solid understanding of these concepts will allow designers to created and modify

specifications and to take advantage of various signal processing options to optimize the design.

Detailed knowledge aboutalgorithms, architectures, and circuit design are not necessary, but will

provide extra help in optimizing designs. The basic design task is to create the layout for an analog

modulator and a set of digital filters that will meet resolution and frequency domain specifications.

Appendix C provides a detailed design trace of an example using the design system. Tutorials are

also available as part of the design system distribution.

The first step in the process is to create a specification for the desired application. A complete

specification will provide information on:

1. Desired output sampling rate.

2. Desired frequency domain response, including magnitude response, phase response,
arid anti-aliasing requirements.

3. Peaksignal magnitude andthe desired magnitude forminimum signal resolution.

The information about signal magnitudes can be translated to the desired dynamic range and

peaksignal to noise plus distortion (SNDR) values. These 2 pieces of information basically set the

number of bits for the A/D converter and are needed to choose the modulator.

All of the modulators in the architecture library are characterized using simulationmodels and

measured data from fabricated chips. Data was collected and regression techniques were used to

develop quadratic models for predicting peak SNDR and dynamic range for a givenoversampling

ratio. Eachof these models hasbeen incorporated into a spreadsheet tool forestimating modulator

performance. The main menu is shownin Figure 3,7 along with basic results. The userenters the

information from the specification andchooses a modulator from the list. The results are writtento

a spreadsheet, giving information about the necessary oversampling ratio to achieve the desired

dynamic range, the estimated peakSNDR and dynamic range, and the peak magnitude of the sig

nal for the peakSNDR value. Once a modulator has been selected, thedesigner canuse the digital

decimation filter designaids presented earlier and pictured in Figure 3.3. The spreadsheet tools are

meantto be used so thatseveral designcandidates are enumerated andcompared. The powerof the

design system lies in the ability to compare several widely varying solutions to identify the best

overall solution.

The spreadsheet tool for decimation filter design provides estimates of the order of the filter

and the passband and stopband edge. This information must be translated by hand to the .adi for-
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Figure 3.7 Modulator estimation tool and results implemented in Microsoft Excel.

mat supported by the detailed design tools. The .adi extension is short for Analog to Digital Inter

face. When the input files are complete, the detailed design tools are invoked.

In the detailed design phase, designers can make adjustments to the specification. Results from

coefficient design can be compared to the estimates. These results may affect the design so that

another candidate becomes more favorable. Magnitude and phase responses can be displayed after

coefficient design and quantization. Simulation models can be generated and simulation used to

verify the specification. In die last step of the design, architecture mapping is applied. Based on the

design information, die architecture estimators can be invoked providing further information about

design candidates prior to layout. After architecture mapping, a final structure description is cre

ated and LAGER is used to generate die layout.

3.8.2 Other Modes For Design System Use

The last section illustrated a typical design session for a user that relies only on modules sup

ported in the design system, but die design system does support researchers in developing new

algorithms and architectures. The optimization tools are based on infonnation related to currently

existing design tools so the optimization search process is geared towards finding a solution diat
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can be implemented. However, these tools can also be used to point out things that are lacking in

the designsystem. Once an architecture or algorithm is identified, adesigner could then implement

a solution and incorporate it in the CAD framework. In addition, designers can write new mathe

matical models and code them into the spreadsheet to study the effects of different algorithms or

architectures prior to detailed design. Simulation models can also be developed and incorporated

to further the study of algorithms and architectures prior to detailed design. At the circuit level, the

basic analog building blocks were included with the tool distribution, so designers can quickly

build new layouts for modulators.

The remainder of this dissertation discusses various tools and techniques that were incorpo

ratedinto the design system starting with simulation methods in the next chapter.

3.9 Summary

In this chapter, a framework was presented for the analysis, design, and implementation of

analog to digital interfaces based on oversampling A/D converters. High-level analysis methods

were incorporated along with modularity and reuse of structures providing a framework that

allows rapid design space exploration withexpert advice supplied by estimation tools. Instead of

relying on blackbox compilers, the designer becomes actively involved in finding and exploiting

beneficial design trends. As later exampleswill show, designers from many fields can take advan

tage of this open framework to prototype new ideas without having to investdesign effort in creat

ing the surrounding components or tools.
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CHAPTER 4

Simulation Methods

The ability to produce high-level simulation models for complex systems allows designers to

study design trade-offs. Low-level circuit models often require large amounts of time for simula

tion. High-level models speed up the simulation by only modellingeffects that have an impact on

the final system. A key factor in model development is establishing which factors are critical in

each application. While libraries can be used to store some information, the ability to formulate

models frees designers from reliance on libraries allowing them to study circuit configurations.

4.1 Simulation Methods

Simulation provides the easiest method for studying the design of noise shapingcoders. Most

current design methods are based on simulation models which are used to verify circuit require

ments and tolerances. Simulation models are used to generate a set of data points that arethen ana

lyzed by windowingmethods orthe Minimum Sinusoidal Error method [71] to determine signal to

noiseratios. This section presents a briefoverviewof methodsthathave been applied to the simu

lation of modulators for oversampling A/D conversion.

4.1.1 Circuit-Level Simulation

Circuit-level simulation uses mathematical models to replace each of the devices in the cir

cuit. Circuit descriptions are created based on layout information or schematics and used as input

for a transistor level simulator. This approach is very time consuming when applied to oversam

pling converters since typical circuits use oversampling ratios of greater than 30.To createa single
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output then requires more than 30 clock cycles, and each clock cycle may take hundreds of time

step iterations. Even with fast computers, a single simulation run can take weeks of CPU time.

Simulations on extracted layouts have been performed using HSPICE on a Sun Sparcstation 1. It

required 18 days of CPU time to generate 6200 output samples from a second orderA-Z modula

tor. Since the desired decimation ratio was 128, this was not enough data to provide conclusive

results on dynamic range. It also turns out that numerical rounding errors in the calculations can

limit the simulation accuracy [72]. This approach should be avoided for signal-to-noise ratio anal

ysis, but it is valuable for layout verification when used for a few clock cycles.

4.1.2 Difference Equations and Behavioral Simulation

Since most oversampling modulators are designed using sampled data techniques, these sys

tems canbe described using differenceequations. This approach works well fordigital noise shap

ing coders which are often used in oversampling D/A converters. The equations correctly model

the non-linear behaviorin the feedback loops but non-idealities affect the behavior for analog cir

cuits and modifications must be made to the difference equations. For switched-capacitor imple

mentations, this is done by isolating non-idealities and deriving equations that capture the

behavior. Hauser was one of the first to use this approach for oversampling A/D converters [73]

and he showed that opamp gain and capacitor nonlinearities can severely limit modulator perfor

mance. Bosertook this one step further by tabulating extensive results for second order A-Z mod

ulators [74], This approach has also been applied to other topologies by various researchers [40],

[75], [42], [41], [44]. While these simulations are very fast, they can lack the accuracy thatcircuit

models can provide.

Instead of using difference equations, circuits can also be characterized by simpler models.

Instead of simulating a full opamp transient every cycle, a few cycles canbe use to characterize a

setof look-up tables. Giventheinput and the output values for previous cycles, interpolation meth

ods based on table data can be used to estimate the actual circuit response [76]. This method is

related to difference equation models since it is basically a discrete time simulation with tables

providing the network information rather than equations. Simulation speed is still reasonably fast,

but the method has the potential for better accuracy since the tables are based on actual circuits.

Since the tables are only valid for a single circuit, they must be recompiled for each new circuit

configuration and process technology.
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An approach based on behavioral modeling has been presented by Wolff [72]. Rather than

using actual circuit data, behavioral models are derived based on knowledge of the types of cir

cuits that could be used. The circuits are partitioned into piecewise linear and continuous time sec

tions. Equations are developed for each model section and these equations describe the behavior

given the model state. For continuous time sections, pole-zero models are used to determine con

tinuous time response. This method is similar to table-based methods, but has the advantage that

the models are more general and can be developed without assuming a circuit configuration. The

flexibility of behavioral modelling can provide better results since table-based methods rely on

interpolation of a few data sets.

4.2 Developing Accurate High-Level Simulation Models

Accurate simulation models of the analog modulators are needed to predict performance based

only on process information allowing designers to simulate actual designs and get an indication of

performance without having to go through fabrication. The difference equation model was chosen

because it is fast and applies to a variety of circuit implementations. For a first-order modulator,

the basic equations and the system diagram are shown in Figure 4.1. Finite gain and capacitor non-

Flowaraph

C code Implementation
n2 = g*(nl-n5);

n3 = accumulate(n4,n2)

if (n4 > 0) n5 = refval;

else n5 = -refval

n4 = n3;

Figure 4.1 Block diagram and C code fragment for modelling a first-order A-I modulator.
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linearity canbe accounted forby analyzing the difference equations for a switched-capacitor inte

grator.

4.2.1 Switched Capacitor Integrator Analysis.

A switched-capacitor integrator can be analyzed using charge conservation. The effects of

nonlinearity and finite gain have been investigated using a combined time-domain and frequency-

domain analysis to study the effects of distortion in switched-capacitor filters [77]. These methods

have been modified [73], [78], and are presented in detail here.

Consider the circuit shown in Figure 4.2. When <|>1 is asserted, the input is sampled and a

c,

♦1

+2

V,

o

Figure 4.2 Switched capacitor integratorand waveforms.

charge is placed on Cj. During <j>2, the charge is dumped on to the integrating capacitor. Ideally,

this is modelled using the following equation.
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C,xV0(nT) = qxVoCnT-TJ + CsXV^nT-T) (4.1)

By using adiscrete time representation, Equation 4.1 canbe rewritten as adifferenceequation.

V0[n] =Votn-ll+^V^n-l] (4.2)

This equation is used to replace the function accumulate() in the C code shown in Figure4.1.

4.2.1.1 Modelling the effects of finite opamp gain

To model finite gain in the opamp, the equations must be modified. A residual voltage will

remain on the sampling capacitor Cs at the end (falling edge) of §2. If the open loop gain of the

opamp is Aql» the magnitude of the residual voltage is Vo/Aql- Incorporating this change in the

charge conservation equation gives:

i i r vo(nlnC,xV0(nT)x(l +—) =CIxV0(nT-T)x(l +-±-)+Csx V,(nT-T) ±
AOL AOL L AOL J

If a discrete time representation is used, solving for Vo[n] gives:

AOL+ * ,, r ,., Cs A0L

(4.3)

V0[n] = ^ xV0[n-l]+^x £ xVr[n-l] (4.4)
S I s

AOL+c"+1 AOL+c- +1

4.2.1.2 Modelling the effects of nonlinearities

Nonlinearity can be modelled in a similar fashion. The three major sources of nonlinearity in a

switched capacitor integrator are signal-dependent charge injection from the switches, nonlinearity

in the capacitors, and nonlinearity in the opamp gain function. To illustrate techniques for model

ling nonlinearity, capacitor nonlinearity will be considered and can be modelled by using a Taylor

Series Expansion about a nominal operating point.

C(v) = C0x (l +a1v +a2v2+...) (4.5)

For simplicity, assume only the first term of the Taylor Series is retained and that the nominal

operating point is v=0. The charge conservation equation can now be written:

CI0(l+a,Vo[n])Vo[n] = (^(H-a^olii- 1]) V0[n- 1] +CS0(1 +a,VI[n- 1]) V,[n- 1] (4.6)

Solving for VQ[n] gives:
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V0[nJ +a1(V0[n])2 = VQ [n- 1] +o, (V0[n- 1])2 +^ (V, [n- 1] +oc. (V,[n- U)2) (4.7)

The difference equation is no longer linear and could be solved by iteratively choosing a value

for Vrj[n] until the solution converges. Since the system is oversampled, efforts must be made to

simplify the evaluation so that compute times are not excessive. The initial choice in the iteration

is obtained by assuming that oci(V0[n])2 is 0. Since aj is usually much less than 1, this term will
be close to 0. A first-order simplification is to calculate Vo[n] under these assumptions, then sub

tract the ai(Vo[n])2 term out to obtain an estimate for Vo[n]. This will allow the integration loop

to consist of in-line code without the need for extra iterations. Experience has shown that this sim

plification does not adversely affect the simulation results.

4.2.1.3 Combining Finite Gain and Capacitor Nonlinearity

The effects of finite gain and nonlinearity canbe combined.To simplify the equations, the fac

tors K and M are defined and the voltage notations simplified.

K-I +J- M=1 +J- +S£J- (4.8)
. A0L A0L HAOL

V0 = V0 [n] V01 = V0 [n - 1] V, = V, [n -1] (4.9)

If capacitornonlinearity and finite opamp gain areboth accounted for, the chargeconservation

equation is written as in Equation 4.10.

V,, Aqod +̂KV^KVo =CIO(l +a1KV01)KV0i +Cso^l +a1^VI-^jj^VI-x^
Solving for V0 gives a rathercomplicated equation.

(4.10)

Since Vq appears on both sides of the equation, some changes must be made to implement

Equation 4.11 in a simulation model. To avoid iterations in solving the equation, once again it is

assumed that 04 is much less than 1 and that V0 can be approximated by assuming it is 0 on the

right hand side. Implementing this in a simulation then requires the evaluation of the following

equations:

Vo -^o^&ll+C^ (4.11)
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tempout = f, V01 +f2V201 +f3V, +f4V2

idealout= f5Vjtempout+ f6 tempout2

The constant factors f can be evaluated from known circuit data and are expressed as follows:

(4.13)
AOL+1

f2 =

1 cs
Aol+i +c;

ai(A0L+l)(l +J-)2
A0L

Cs
AoL+l+p"

ai£~AOL
f - I
3 ~ C

A0L+1 +̂

cs
A —

f -
4 c

AoL+1 +7^

cs

f -
5 C

Aol+i+c;

Cs

rv a n t i

f6 =
AOL AOL

Cs
A0L+1+c"

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

It has been shown that simple models like these are sufficient to study behavior of most

switched-capacitor oversampling modulators [79], [44], [40], [42], [46]. These equations can eas

ily be coded in a variety of programming and simulation environments.

4.2.1.4 Parasitic Input Capacitance of the Opamp

The parasitic capacitance at the input of the opamp can be quite large. In some opamps, the

parasitic canbe of the same magnitudeasCs or Cj. These effects have been analyzed [80],[81] and
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can be incorporated in the simulation. Since an opamp has finite gain, charge redistribution will

leave charge on both the sampling capacitor and the parasitic at the input of the opamp. This

diminishes the overall apparent gain of a switched capacitorintegratorstage.

4.2.1.5 Integrator Settling

Settling time effects of the opamps should also be carefully modelled since they can provide a

signal dependent offset when the settling is slew limited. It has been shown that if a single pole

model is used for settling the performance is hardly degraded even if the time constant is quite

small [79]. A simple settling model can be implemented by determining the ideal output, and then

applying rules to determine how well the opamp settles.

Rather than using a single pole model, the settling period can be divided into a slewing region

and a linear settling region. One model for slew rate limiting has been proposed for both the one

pole and two pole systems with slew limiting [81]. A similar model has been used in simulating

oversampling A/D converters [44]. This simplified model does not account for the initial capaci-

tive feedthrough in the integrator, but does provide a simple model for simulation. In this model,

there are 3 regions of operation, as shown in Figure 4.3. If the integrator were ideal, the output

would change by an amount Vo. It is assumed that the time constant x of the single pole system is

less than the sampling periodTs and the integrator has a maximum slew rate SR. When the output

step is small, the integrator should settle with a one pole response. When slew limiting occurs,

there will be a period of slewing until the output is close to the final value, and then linear settling.

In this model, the cutoff point between these regions is chosen to be at the time x. When there is

slewing in the model, the output slews to 1/(xSr) of the final value and then settles linearly in the

remaining time. If the output is fully slew limited, then the output can only change by the amount

TsSr regardless of Vo.

This model can be implemented together with the other models for nonlinearity and finite

opamp gain. The quantity Vo is calculated based on the equations developed previously for the

integrator. The region of operation is then determined based on the inequalities given in Figure 4.3,

and the integrator output is calculated based on the output value, also given in the figure. The same

definitions could be made for a 2 pole model of settling.
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Figure 4.3 Regions of operation for integrator settling.

4.2.1.6 Integrator Clipping

Switched-capacitor integrators are limited in swing. Implementing this in simulation requires

only a minor addition. The output of the integrator must be monitored and a hard limit applied

when the output goes beyond a fixed range. This should be done after the correction for settling

effects. Extra features could be added to model the soft saturation effects normally found in

opamps.

4.2.1.7 Sampling Jitter

Clock jitter affects the sampling process causing an effect similar to gain errors. In simulation,

jitter is easily modelled by adding random jitter to the input sinusoid generator. Results from

experimental circuits showed that timing jitter leads to whitened noise in the output spectrum of

the modulator which significantly degrades performance. This approach has been applied to deter

mine the effects of jitter in audio applications [82], where it was shown that with respect to clock

jitter, oversampling A/D converters are comparable to Nyquist-rate converters.
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4.2.1.8 Models for Switched-Capacitor A-I Modulators

The integrator is the key element for simulation. To create a simulation model, the function

accumulate must be defined based on the material described in the previous sections. Additionally,

an initialization section is needed to store values for the capacitorsizes, the opamp gain, the capac

itor nonlinearity, opamp slew rate, and swing limits. After this has been done, the code given in

Figure 4.1 is sufficient to implement a basic simulation model for a first order A-I modulator.

Higher-order models can be created by adding more integrators or more modulator loops. Other

effects like comparatoroffsets and other noise sources can be added in the code. Noise generators

are discussed in the next sections.

4.2.2 Modelling Continuous Time Integrators for Oversampling A/D Converters

The integrator used in oversampling A/D converters does not need to be implemented using

switched-capacitor technology. Recentiy, there has beendevelopment of anA/D converter in using

superconducting circuits [83] and also using mechanical A-I modulators for accelerometer appli

cations [84]. These types of circuits require continuous time integrator models. Candyhas pointed

out that in highly oversampled systems, the input cannot change very rapidly so a discrete time

approximation shouldbe adequate for analysis and simulation [27]. Algorithms based on Newton-

Raphson iterations, suchasthe method in SPICE, are costlyin CPU time and should be avoided.

4.2.2.1 Digital System Simulation of the Integrator

Forthe accelerometer simulation, the basicdifference equationmodel was modified so that the

entire modulator was simulated at a high sampling rate. The system is already oversampled, but

the integrator model is allowed to runat aneven higher sampling rate, allowing the integrator state

toevolve as the input changes. The integrator model can bedeveloped from adigital simulation of

a continuous time integrator. If the integrator model runs at 32 times the sampling rate, 32 times

more arithmetic must be performed than the basicdifference equation model. This presents some

problems, since the high effectiveoversampling ratio forces long simulation times. In addition to

this overhead, it may also be difficult to establish the oversampling factor thatwill allow adequate

modelling of integrator dynamics.

4.2.2.2 Solution to the Differential Equations

If the input waveform is assumed to be either DC or a sinusoid and if noise effects can be

ignored, it is possible to solve the differential equations governing the state trajectory for an inte-
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grator. The simulation then consists of using the initial conditions at the start of the sampling

period and then calculating the state trajectory for the circuit based on the input function and the

initial conditions. The only pointthatneeds to be calculated in the trajectory is the value at the end

of the sampling period. The state of the circuit at this point becomes the initial condition for the

next sampling period. Since the equations are deterministic, the simulation does will be similar to

the difference equation model in execution time.

Since the trajectory is known for all time points within the sampling interval, it becomes possi

ble to study the effects of the jitter in the clocks used to control the feedback voltages in a modula

tor. This can be done by including a small perturbation in the time value assigned to the clock edge

instead of always calculating the trajectory at a fixed interval. These problems need to be studied

in the superconducting modulator, since it can be difficult to control the precision of the clocking

logic.

4.2.3 Modelling Noise Sources

Even when modelling finite gain and nonidealities, the difference equation model predicts a

higher SNR than observed from actual circuits. For a second order A-I modulator, the model pre

dicts that an oversampling ratio of about 150 is required to achieve 16 bit performance. Circuit

data acquired during this project and from other reported circuits [85] indicate that an oversam

pling ratio closer to 250 is required. We have found that by adding models for 1/f noise and white

noise, agreement between the circuits and the simulation model can be achieved.

4.2.3.1 Generating White Noise

When astream of uncorrelated random variables with variance a2 isgenerated, they will have

the autocorrelation function given by Equation 4.19.

R[n] = a28[n] (4.19)

The discrete Fourier transform of the autocorrelation function gives the power spectral density

(PSD).

S [f] = a2 (4.20)
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The total noise powerof the signal is determined by integrating over the frequency range of

interest. The actual distribution used to generate the numbersdoes not matter, but Gaussian distri

butions tend to be usedsince they are fully characterized by first and secondorder statistics.

For switched-capacitor integrators, white-noise generators are used to model the noise in the

switches. As an example, consider the switch noise in a samplingswitch connected to a capacitor.

For simplicity, assume this total noise is kT/C and the sampling frequency is fs- For a proper sim

ulation in the digital domain, the noise power of the continuous time process must be set equal to

the discrete time process, so the proper value of variance to use in the simulation is kT/C. Note that

this parameter is independent of the sampling frequency.

Since computers work with deterministic algorithms, it can be difficult to generate a random

number sequence. Some functions use Linear congruential random number generators which are

based on modulo arithmetic and will exhibit periodicity after a certain number of points have been

generated. Since many points need to be generated for simulation of oversampling A/D converters,

some attention must be given to the particular random number generator being used. The rand()

function supplied withmostC compilers maynotbeable to generate long enough sequences with

out correlation. One solution is to use a different function or to use modifications that improve the

randomness [86]. Other more involved methods are also available.

4.2.3.2 Generating 1/f Noise

Although 1/f noise is found throughout the natural world, algorithms for 1/f noise generation

are not as pervasive [87], [88]. Modelling the noise near DC for oversampling A/D converters is

important since this noise determines the overall baseband noise floor. A promising approach for

1/fnoise generation is to use the summation of Lorentzian spectra. This approach has been used in

instrumentation to generate continuous time 1/f noise over a specified range of frequencies. It has

been shown that a constant distribution of 1.4 poles per decade gives a 1/f spectrum with less than

1% error [89]. By changing the pole distribution, 1/f noise can be modelled. This model allows

simulation of 1/f noise in over a frequency region which can be defined to include the areas near

DC.

For discrete time, the spectral density can be approximated using sampling concepts.

Equation 4.21 gives the power spectral density for summation of Lorentzian spectra, S(f) only has

an approximate 1/f spectra over a range defined by the values of <j>n.
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N d>S(f) =Ky—^1=̂ for(Pl<f<(pN (4.21)

In continuous time, the Lorentzian spectrum can be implemented by passing white noise

through a one-pole filter. The magnitude response H and the powerspectral density forwhite noise

filtered by H is given in Equation 4.22.

Jp n ~ pa2
-^— S(f) = |H(jf) 2a2 = -i—jco +p ' KJM ? +tf

The DC gain for the filter must be adjusted to give the Lorentzian spectrum. We can obtain a

discrete time approximation by using the s-to-z mapping of Equation 4.23 where T$ is the sam

pling period.

1-z'1s=V- (4.23)

This represents backward-Euler integration and provides adequate results at the low frequen

cies of interest. If higher frequencies need to be considered, the bilinear s-to-z mapping could be

used. The approximate magnitude response H' for the filter H is given in Equation 4.24.

Ts& JFsJi
1 + TcP 1 +t

H'(z) = -^— = —-±— where x=Tsp (4.24)

1_iTt^z 1_mz

The corresponding power spectral density when white noise is filtered is given in

Equation 4.25.

S(f) =, , 1 2*f — <4"25>

Substituting this result into Equation4.21 gives Equation4.26 which is the power spectral

density of the proposed 1/f noise generator.

x 2

S'(f) - I 1 1+Lf i 2°2T* (4'26>n=.l-2(— )C0S(T) +(_)

H(jco) = t^-z S(f) =|H(jf)|2a2 = JL_ (4.22)
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In orderto match the magnitude of the spectral density S'(f) with the continuous time counter

part, the input white noise generators must have the same noise power. As argued in the previous

section, the varianceor noise power in a certainbandwidth must be set equal. In this case, the input

white noise generators in the continuous time model of Equation4.21 have spectral density k. In

the bandwidth fs, they will have noise power Kf§. Thus in the discrete time simulation, the proper

value to use for xTg is the noise power of the continuous time white noise generators, which in this

case is KfsTs = k, a quantity that is independent of frequency.

The noise generator can be implemented as shown in Figure 4.4. The frequency response of

Gaussian "^ ' —

White Noise

Generator

Gaussian

White Noise

Generator
g[n]tf7]<}J

—' P[n]
$HX

Simulated

1/f Noise

Figure 4.4 Summation ofapproximate Lorentzian spectrato obtain a 1/f noise model.

one implementation is shownin Figure 4.5 along with the 12 approximate pole values used in the
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Figure 4.5 Frequency response of a 1/f noise generator.
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generator model. In addition, a plot of the deviation from a true 1/fresponse shown in Figure 4.6

Deviation in dB

0.00001

Figure 4.6 Deviation between the true 1/f response and the simulation result

0.0001 0.001
Relative Frequency (f/fs)

which shows little variation over the low frequency range of interest. The downward trend indi

cates that the simulation model provides noise with a 1/f characteristic where v is slightiy less

than 1. There is little ripple since a high pole density was used across the interval.

To set the value of variance for the input white noise generator, consider the example of a

MOS transistor. The equivalent input-referred noise can be modelled as in Equation 4.27.

v2 =
K,

c(> WLC0,f

The parameter o2^ should be set equivalent to the factor Kf/(WLCox) in magnitude. For the
simulation, the output of the 1/f noise generator is placed so that it adds to the input signal of the

MOS transistor. It is interesting to note that a set of samples from the 1/f noise generator does not

give any information about the sampling rate. In fact, a single set of samples can be used as 1/f

noise regardless of the sample rate. This scalability is a characteristic of 1/f noise. It will look the

same no matter what the resolution is used. This phenomenon has been exploited in the generation

of fractal images.

Several theories have been advanced for the cause of 1/f noise in MOSFETfc. A widely

accepted view attributes it to generation-recombination noise at the silicon-oxide interface [90]

where the traps are characterized by a distribution of time constants. The model simulates this

physical mechanism since a distribution of time constants gives rise to something similar to a sum-

(4.27)
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mation of Lorentzian spectra. Analysis using these assumptions gives rise to Equation 4.27 for a

MOSFET whichshowsthat 1/fnoise is inversely proportional to gate capacitance.

4.3 Simulation and Analysis of Digital Filters

Computer simulation is a powerful tool and is an integral partof design management. Rather

than overspecifying design parameters, system issues can be smdied to refine the specifications. In

addition, interactions between system components are more easily studied in this type of simula

tion environment

4.3.1 PTOLEMY

The PTOLEMY simulation system provides this capability for our design system [91].

PTOLEMY allows designers to assemble flowgraphs of block-level functions, then to simulate the

flowgraphs. The block-level models for the design system were implemented using synchronous

data flow (SDF) [92]. Whenever a Synchronous Data Flow block is invoked or fired, it consumes

or processes a number of tokens and produces a number of tokens, and the number of these tokens

is known before execution. This type of description is adequate for describing most synchronous

systems, including multirate systems. While all the cells related to the design system were imple

mented in the SDF domain, PTOLEMY also allows mixing of simulation schemes. For example,

discrete event simulation models can be mixed with synchronous data flow (SDF) or even timestep

driven simulation models found in most circuit simulators.

The models developed for PTOLEMY generally fall into the classes of FIR filters, Biquadratic

filters, and Lattice Wave Digital Filters. In PTOLEMY terminology, the models are available to

users as stars. With a graphical interface, users connect the starsinto flowgraphs that perform vari

ous signal processing applications.

Since PTOLEMY is written in C++, fixed point models can be implemented using a fixed

point data class. The particular implementation of the fixed point class limits values to be in the

range (1,-1]. An initialization statement can be used so that fixed point arithmetic can be either

saturating or wrap-around.While the fixed point calculationsdo simulate the actual operations of a

chip, they cannot exactly replicate the round off errors, since the ordering of operations may be

compiler dependent. Experiments are being performed to find the best means of incorporating

fixed point simulations in PTOLEMY.
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In addition to simulation models, a translator is provided to generate flowgraphs for filtering

systems developed in the design system. With the simulation power in PTOLEMY, complete data

and signal acquisition systems can be simulated. Effects like finite wordlength effects can be stud

ied in depth on actual data sequences. This makes the study of the interactions between the differ

ent components of a system much easier.

4.3.2 Stars for Oversampling A/D Simulation

PTOLEMY supplies many stars that can be used in simulating oversampling A/D converters.

However, the granularity of the stars is an issue, since oversampling ratios are large and many out

put sample points are desired. Ratherthanusing a large collectionof primitive stars, more complex

stars were written to speed up simulations. An example of this trade-off is shown in the next sec

tion.

The basic modulator models described in the previous sections of this chapter were coded into

stars for first, second, and third order modulators. The 1/fnoise model is not included in the modu

lator, but in a separate star. Since 1/f noise is actually generated inside the modulator, the magni

tude used in simulation must be modified to reflect the gain transfer function from the actual point

where the noise is generated. The 1/f noise generator is included in a star called Vgnsin.

When simulating oversampling A/D converters, high resolutions in the simulation force users

to take precautions to maintain resolution. This is true in the case of sinusoid generation.The nor

mal SDF sinusoid generator in PTOLEMY creates a sinusoid by adding a fixed fraction of the

value %at every time step, and then taking the sine of that value. Since the value ofn is quantized,

roundoff errors accumulate at each time step limiting SNR to about 85 dB. This effect smears the

purity of the sinusoid, distorting the spectral line so it has a finite width. A new star was created to

fix this problem. Rather than adding a fraction of k, an integer counter value is multiplied by the

rounded value of%to create the argument for the sine function at each time step allowing high pre

cision simulation.

For filters, PTOLEMY SDF models provide support for FIR filters and filters based on direct

form II biquads. This library was augmented by stars for implementing CIC filters, and polyphase

N-th band filters. The CIC filter staris the direct mapping of a set of integrators and differentiators.

Since all arithmetic is performed using integers, finite wordlength effects are correctly modelled
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for bit-parallel implementations. Different wordlengths can be used in the integrators and the dif

ferentiators.

A generalized model was created for multirate polyphase N-th band filters. The basic structure

of a polyphase filter is illustrated in Figure4.7. Two variationscan be modelled, one with external

'X:~T^
H2(2)

Figure 4.7 Blockdiagrams of a polyphase 3rd band filter using
external decimation and the counter-clockwise commutation

decimation and one with decimation incorporated in the filter. Using the commutator model, only

one branch per input sample must be evaluated. In the external decimation model, complications

arise, since each state variable in the branch filters must have a depth of N to accommodate the

delays, and all branches must be evaluated for each input sample.

Each of the branches consists of an all-pass filter which can be implemented as cascaded

biquads or lattice wave digital filters. Both filter models were implemented as separate stars both

set up for the decimation case. Interpolation can be handled in a similar fashion, with the commu

tator on the output. The basic algorithm is centered around evaluation of a single branch filter. The

star takes N tokens from the input. The first token is used as input to the (N-l)th branch, the last

token as input for the zeroth branch. The branches are then evaluated in order and the branch out

puts are summed. The stars take as parameters the decimation ratio and an array ofcoefficients for

matted according to the policy described in Appendix D. As special cases, the filters can be used to
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implement a standard IIR filter, either biquadratic or lattice wave digital. Special code is needed in

the lattice wave digital case, since 2 branches are needed while forbiquads, only a single branch is

needed.

Forspectral analysis, PTOLEMY provides anFFTand theoption of generating power spectral

density. It is desirable to use DFT magnitude and sinusoidal curve fitting programs to perform

analysis for A/D converters to obtain signal to noise ratios. Rather than rewriting the code,

PTOLEMY stars make system() calls to these programs and some scripts for post-processing and

graph preparation. A star for die Minimum Sinusoidal Error method of determining SNR [71] was

integrated as well as an FFT post processor that can estimate SNR based on the magnitude plot of

an FFT [78].

4.3.3 Simulation Example

Figure 4.8 shows a flowgraph for first order A-I modulator flowgraph designed using the

PTOLEMY Interactive Graphical Interface (PIGI). This particular model uses PTOLEMY primi-

Figure 4.8 Flowgraph of a first order A-Z modulator implemented in PTOLEMY.

tive functions to implement the modulator. Simulation overhead makes it advisable to encapsulate
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a model like tiiis one as a single piece of code. This has been done in the flowgraph shown in

Figure 4.9 which shows a complete oversampling A/D converter simulation witii a single stage of

Figure 4.9 Complete simulation flowgraph for determining SNR.

decimation filtering.

The basic flowgraph contains 8 basic elements in a feedback loop and will create a plot of

SNR against input amplitude. The Vgnsin star is used to create a sinusoid and additive 1/f and

white noise. A second order modulator and a decimate by 128 FIR filter is added after that. The

output of the filter is routed to a Cut star and a Decoder star. The Cut star is used to cut out parts of

the data stream that represent transient responses. The MSE star analyzes a data stream of a certain

length and calculates SNR. Since the system operates in synchronous dataflow, a method was

needed to allow changing of input amplitude after a specific number of data points was obtained.

The Decoder star, the delay diamond, and die UpSample star were used to implement one scheme.

Under synchronous dataflow, the scheduler will create enough tokens to satisfy the MSE star.

For example, suppose that 2 sets of 32 points are anticipated at the MSE star, representing 2 differ

ent input amplitudes. The parameters in die MSE star are set so tiiat on each iteration, 32 tokens

are consumed. The Cut star can be set to discard the first 32 samples of 64 total tiiat it consumes.

The Decode star is tiien used to detect when 64 total samples have been produced, and produces a

nonzero output on die cycle when this occurs. This value is delayed by 1 cycle using the delay dia-
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mond, and then upsampled by a factor of 128 with zero insertion. A factorof 128 is used to match

the decimation ratio in the filter which keeps the sample rateconsistent in the feedback loop. When

the Vgnsin star detects a non-zero input, it moves to the next amplitude to be generated. When the

flowgraph is run, it will need 2 iterations to complete the required calculations. The result of the

simulation will be a plot of SNR vs. input amplitude, as shown in Figure 4.10.
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Figure 4.10 Output from the flowgraph shown in Figure 4.9

4.4 System Simulation Strategy

Simulation is needed for 3 levels of design abstraction: algorithm, architecture, and circuits.

Algorithmic verification is performed using the models in PTOLEMY. Floating point coefficients

and data values are used to provide feedback on system design. Algorithmic changes can be easily

studied by using the design system to create filter coefficients and then changing stars accordingly.

For architecture simulation, bit-true models are needed to investigate finite wordlength effects.

Some finite wordlength models exist in PTOLEMY, but they are limited. While finite wordlength

effects are important, ordering of operations can affect the accumulation of roundoff errors. These
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effects arehighly architecture dependent, requiring a specific model for each architecture. Models

for FIR filters are easy to generate, but for IIR filters, the task can be more challenging. Design

systems like HYPER and C-to-silicon provide these features. The C-to-silicon tools generate C

language modules that can be used in system simulations using finite wordlength models. The

architecture level is the lowest level at which full system simulations are currently feasible.

At the circuit level, simulations are made on models derived from layout extractions. lYansient

circuit simulations are used to verify connectivity and functionality of analog circuits, while gate

level simulations are used for digital circuits. To verify system functionality, the analog portion is

modelled by the difference equation model. A bit stream is generatedand used as input for the gate

level digital simulation. Since simulation takes quite a bit of time, full simulation runs are not per

formed. A number of output data samples are generated and then compared to the results of the

architecture level simulations. This is repeated for a few different modulator input conditions. A

match between the circuit simulations and architecture simulations verifies the design.

4.5 Summary

Several methods have been presented for developing models for noise-shaping modulators.

The techniques presented here are meant to be a guide in developing new models. The key in sim

ulation is not to force a given model to fit physical phenomena, but to abstract the physical phe

nomena using modelling mechanisms that capture the relevant system characteristics. This method

allows large reductions in simulation time while still providing accurate simulation necessary to

guide system development. As design complexity increases, designers will need to use these

higher-level simulation techniques to shorten design times and to provide better design explora

tion. In addition, digital filtering simulation in PTOLEMY and system level simulation for verifi

cation were discussed.
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CHAPTER 5

Coefficient Design Techniques

5.1 Overview

In the first phase of detailed design, coefficient design is performed based on algorithmic

information from high-level design. This chapter provides an overview of the coefficient design

tools used in the design system. Since most of the coefficient design process is hidden by the

framework, the various design algorithms are discussed, highlighting various strengths and weak

nesses.

5.2 Tools for Filter Design

As mentioned in chapter 2, there are several filtering algorithms, including FIR, biquadratic

IIR, polyphase, and lattice wave digital filters. Each of the these has advantages in certain applica

tions. In order to study the effects of choosing a certain filter type, design aids are needed so that

filter coefficients can be obtained, and various properties can be smdied by simulation or analysis.

This section describes various CAD tools that were incorporated into the design system for analy

sis and implementation of digital filters for multirate applications.

5.2.1 Coefficient Design

Coefficient design is the process of finding a set of coefficients for a given filtering algorithm

that will meet a set of frequency domain requirements and is sometimes called the filter approxi

mation problem. Filter design programs arebased on 2 different approaches, one using approxima-
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tion theory, while the other approach uses numerical optimization techniques to force a transfer

function to approximate a given response. Classical methods will first be discussed, followed by

numerical optimization methods.

5.2.2 Classical Design Methods

When approximation techniques are used, the problem is stated in terms of solving Feldt-

keller's equation.

H(jco) = l + K(jco) (5.1)

H(jco) is the desired continuous time frequency response and is a function that approximates 1

in the passband. Thus, K(jco) must then approximate 0 in the passband. Given a tolerance for pass-

band and stopband ripple, approximation techniques are used to find the locations for poles and

zeroes of the transfer function. The definition of K(jco) allows the approximation of 0 on an inter

val andmethods are available for solving this problem. Optimality of the approximation is defined

by the user and several criteriaareused, including maximally flat approximations and Chebyshev

or minimax approximations. Classical filter design techniques only allow flat specifications for

magnitude deviations in the passbands and stopbands. These methods can been applied to designs

for RLC filters, active filters, and discrete time filters. Full discussions of the techniques can be

found elsewhere [93] so the details of the design process will not be discussed further.

Since classical techniques arebased on the approximation of0 over a region, they arenot eas

ily modified to handlemagnitudeequalization problems. Instead of approximating 0 over a region,

anarbitrary magnitude response must be approximated as is thecase when designing multirate fil

ters using the sine filter approach. Classical methodscannot handle this problem, so othermethods

are needed to provide magnitude or phase equalization.

Extensive results have been tabulated for filters based on Elliptic, Chebyshev I and II, and But-

terworth responses. However, these tables are only able to meet specifications in discrete steps.

Coding the design equations in computer programs allows filters to be designed to custom specifi

cations. The program DOREDI uses this approach in the designof cascaded biquadratic IIR filter

sections [94]. DOREDI also provides facilities for determining optimal pairing of poles and

zeroes, and determining coefficient wordlength.
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While filters basedon cascades of biquads are flexible and easy to implement, wave digital fil

ters areoften favored since they tend to exhibit betternumerical properties. There can be less sen

sitivity of coefficient wordlengths, and the structure minimizes limit cycles. The classical design

methodshavebeen adapted to the design of lattice wave digital filters [95]. While design programs

based on these equations do exist [96], [97], they were not incorporated in this project. The design

equations aresimple to use, andthe designcan be performed using a small programmable calcula

tor.

5.2.3 Remez's Second Algorithm

Several numerical optimization methods are based on the Remez exchange algorithm, which is

also known as Remez's second algorithm [98]. This method was applied by McClellan and Parks

to the design of equiripple FIR filters [99], The basic algorithm uses iterative approximations of a

transformed magnitude response using a trigonometric polynomial. The polynomials are generated

by interpolation using the set of points defined by the extrema points from the previous iteration.

In each iteration, the zero crossings of the magnitude response are altered until an equiripple

response is obtained. The approximation problem has been elegantiy solved since a single polyno

mial is used and the magnitude deviation can be evaluated in both the passband and stopband using

the same function. Since the filter coefficients are symmetric, linear phase is achieved and no

phase equalization is necessary. In addition, the problem has been stated in terms of minimizing

the maximum ripple rather than approximating 0, so arbitrary ripple specifications can be given as

well as approximation of arbitrarymagnitude responses. This makes the approximation optimal in

the Chebyshev sense and it is also known as the minimax approximation.

The concepts used in the Remez algorithm have been applied to IIR filter design problems and

are referred to as modified Remez methods since polynomial approximation techniques are no

longer applied. The Iterative Stopband Method is an example of an algorithm that uses a modified

Remez algorithm [93]. In this method, the passband is uniquely determined by the placement of

the poles of the transfer function. Formulas were developed to design Chebyshev and maximally-

flat passbands given the pole locations. Rather than using a polynomial approximation obtained

from interpolation, partial derivatives for the transfer function are evaluated and used to guide the

placement of the poles. This method can have convergence problems and it only provides for arbi

trary ripple specifications. It cannot approximate arbitrary magnitude responses since the passband

approximations are still based on classical techniques which seek to approximate 0 in a region.
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A similar modified Remez algorithm was used for the design of polyphase IIR N-th band fil

ters [57]. Instead of placing pole or zero locations, the position of the attenuation zeroes of the

transfer function are varied. Approximation techniques from all-pass filter theory are used to find

the new transfer functions based on the results of a design iteration [100]. Again, partial deriva

tives are used to drive the design iterations towards convergence. A version of this program was

implemented in C during the project

5.2.4 Least p-th Error Approximation

Remez methods provide solutions that are optimal in the Chebyshev or minimax sense. The

Least p-th or Minimum p-th Error criterion provides another definition of optimality [101],[102]

and it can be defined as in Equation 5.2.

m

E(c) =£ {Wj [F (Xi) - F' (Xi, c) ]} p (5.2)
i = l

The error criterion E is calculated at m discrete points and the function F'() that minimizes this

criterion is considered optimal for a given value of p. F(x) is the desired frequency response at a

point x. F'(x, c) is the response of the current filter which is characterized by the set of parameters

denoted by c and Wj isaweighting that may vary with each point inthe frequency response. When

p is equal to 2, the set of parameters that minimizes the error criterion is the weighted least squares

solution.

It can be shown that as p approaches infinity, the Least p-th approximation tends to the best

minimax approximation [103]. Based on this concept, Deczky wrote a digital filter design program

to generate coefficients. The Fletcher-Powell algorithm [104] was used to minimize the error crite

rion for a fixed value of p. The program assumed that the filter would be implemented using cas

caded biquads. Gradients could be calculated as a function of the coefficient set since the form of

the transfer function was fixed. The Fletcher-Powell algorithm traces the gradients until an opti

mum is found. When the convergence was achieved, the value of p could be increased and

Fletcher-Powell could be applied again.

The Least p-th filter design program was rewritten in C for this project This implementation

of the program was difficult to work with, and did not always converge to a desirable point. Con

vergence can be improved by first finding the least squares solution and using that solution as the
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starting point for subsequent calls of the Fletcher-Powell algorithm. However, the program still has

difficulty converging for values of p above 4.This appears to be due to numerical problems.

This design method was favored because it could provide arbitrary magnitude and phase

approximation, allowing for magnitude and phase equalization. However, due to the difficulties in

use, this method was abandoned in favor of other approaches. It seems more reasonable to imple

ment a least squares design program since it was observed that few benefits were gained from

increasing the value of p. The Least p-th error algorithm still finds use in the design of filters and

has recently been applied to the design of bandpass A-Z modulators [14]. The source code pro

vided in this project could be modified to handle these applications.

5.2.5 Nonlinear Programming

The problem of magnitude equalization was addressed by using a program based on nonlinear

programming techniques. The approximation problem was reformulated to a problem that could

be solved through the use of sequential unconstrained optimizations [105]. This program also

makes use of the Flecther-Powell algorithm but another formulation of the problem allows better

convergence and better results for filter design than the Least p-th error method. The techniques

used in the program are fairly complex, so recoding was not performed and the program was left in

FORTRAN. This, program can only modify an existing cascade biquadratic filter function so

another design program must be used in conjunction with this one.

There has been recent work on using nonlinear programming schemes to optimize transfer

functions according to the power spectral density of oversampling modulators. Rather than

approximating a magnitude response, coefficients are varied to minimize the aliasing of noise in

decimation filters. Quadratic programming was used to design optimal FIR filters [106], while fil

ters based on polyphase decompositions of IIR filters are designed using multi-objective optimiza

tion [107].

5.3 Coefficient Design

While the general filter design problem has been characterized as "solved", there still exist

many practical problems when implementing digital filters. The filter design problem has tradi

tionally been formulated as an approximation problem. Classical methods solve this problem ele

gantly, but only for the case of constant ripple bandpass filters. For other specifications,
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approximations are based on numerical optimization with a goal of minimizing an error criterion.

Since the value of the minimum is not known, design programs must be used iteratively until

design specifications are met. This complicates efforts at design automation. Scripts can be

devised to direct iterations, but this was not attempted in this project.

Another problem is the fact that almost all design programs provide floating point coefficients.

For VLSI implementation, fixed point arithmetic provides many advantages in lowering area and

power consumption. Designing floating point coefficients to just fit the specifications leaves little

latitude for coefficient quantization. It is difficult to judge how much extra room to leave in the fil

ter specification for coefficient quantization. This can create a larger design iteration loop, and fur

ther complicates design automation.

Once the floating point coefficients have been determined, they need to be quantized to allow

finite wordlength implementations. While the choice of filtering algorithm is generally indepen

dent of the architecture, the proper type of coefficient quantization technique to apply depends

heavily on the implementation of the filter. For bit-serial and microcoded implementations, the

multiply operations in the filter can be implemented using shift-add techniques. In this case, mini

mizing the numberof shifts is important. In contrast, implementations thatuse dedicated multipli

ers require minimization of the wordlength. In the design system, little support is given for

minimizing the wordlengths of coefficients. It was felt that the use of dedicated multipliersshould

be avoided since they tend to take up considerable area.

To minimize the number of shifts, the coefficients are encoded in canonical sign digit (CSD)

notation [108]. The coefficient bits areassigned a value from the set (-1,0,1), and it can be shown

that a minimal coding exists if certain conditions are satisfied. The optimization process seeks to

minimize the number of nonzero bits in the CSD representations of all the coefficients in a filter

while still maintaining the specification. Forthis project the program CANDI was used for coeffi

cient quantization [109]. CANDI uses information created by the simulation and analysis program

DIGEST [110]. Optimization is performedby generating sets of coefficients via searches and then

evaluating the sets to see which satisfy the design specification. CANDI was written as an interac

tive program so the user must control the types of searches that areused. Since DIGEST must be

used before CANDI, frequency response information and other analysescan be performed.

In orderto automate the coefficient quantization process, CANDI was modified. Only a simple

univariate search is performed in the automated mode. This was found to be adequate in most
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cases since it isn't always necessary to find the optimal solution. When implementing microcoded

processors, there are a given numberof machine cycles for evaluation of a filter: It was found that

the univariate search often provided results that could be implemented in the desired number of

machine cycles. Further minimization would only leave idle processor cycles.

Since CANDI searches perturbations to the coefficient set, execution time is combinatorial

with respect to the numberof coefficients. Extra specification points do not increase the execution

time excessively, but high order filters can require considerable amounts of execution time.

Othercoefficient quantization programs are available, but were not integrated into this project.

For the case of FIR filters, better results were obtained by allocating an extra bit to larger coeffi

cients and using a bivariate local search for the CSD coefficients [66]. This program has been used

in the FIRGEN system for implementing FIR filters [70], and is available in the tools distributed

with this project. Another approach based on simulated annealing have also been developed [111].

5.4 Coefficient Design for Analog Modulators

As mentioned in Chapter 2, only one topology requires an extensive coefficient design proce

dure and this topology makes use of higher order loop filter. By changing the placement of the

poles and zeroes in this filter, the noise shaping can be controlled. A design methodology for cal

culating the coefficients has been presented previously [44]. One researcher has reported success

in using the Least p-th Errorcriterion routine for designing these types of modulators [45].

Since the code for the Least p-th Error criterionalgorithm was developed in C for the project,

it should be possible to adapt it for the design of these higher order modulators. .

5.5 Summary

Many tools are available for coefficient design and quantization. A good understanding of the

design methods helps users to identify where changes could be made to the design system to

increase performance. Only a small sampling of programs were incorporated into the design sys

tem, but they represent most of the major techniques in modern filter design.

The designer uses the coefficient design tools after performing high-level design analysis. A

common set of design parametersare stored in the design database, so the designer need only spec

ify the proper design program. Coefficient design and quantization can be fully automated, as
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describedin this section. After coefficient design, the designerwill be ready for architecture map

ping.
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CHAPTER 6

Architecture Design

6.1 Architecture Selection

Algorithmic changes can affect the design in different ways. For example, a clever implemen

tation can free up enough cycles to allow time multiplexing when it was initially thought implausi

ble or an algorithmic transformation can reduce power consumption. While the basic signal

processing functions remain the same, the architecture can be vastly different. For our design sys

tem, we have chosen to support 3 design styles to encourage the exploration of algorithm mapping

techniques to different architectures: specialized architectures, general purpose digital signal pro

cessors, and high-performance architecmres. This chapter discusses and documents some of the

digital filter architecmres that were developed and investigated during the course of the project.

Before discussing the architectures used in this project a brief discussion is given for some of the

other design tools available.

The architecture tools are invoked after coefficient design and quantization. Most of the pro

cess is hidden from the designer, but the basic process is to convert the quantized coefficients into

parameters required by the architecmre templates. As with coefficient design, most of the process

is automated. The designer only needs to select the correct design method, and then let the design

manager take over.
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6.1.1 Bit-Serial Architectures

Bit-serial and digit-serial techniques are attractive for low sampling rate applications. Parallel

ism is exploited both in execution units and on a time basis. Much work has been performed in this

area, and many design systems have been developed. General Electric has made extensive use of

bit-serial circuits in development of products based on A-Z technology [112], [113].The develop

ment of these circuits was made possible by the GE Bitserial compiler. The compiler is able to take

a C-like program description and map it to a layout of CMOS bit-serial circuits. While bit-serial

architecmres were not heavily investigated in this project a simple interface could be written to

generate the input code for the compiler based on coefficients generated by the filter design pro

grams.

6.1.2 High-performance Architectures

High-performance architecmres implement algorithms where there are relatively few machine

cycles per sampling interval. This means that multiplies can't be implemented using a single shift-

add unit and must be mapped to either pipelined or parallel units. Design trade-offs must be smd

ied to determine whether full multipliers must be used or if additional hardware units can be allo

cated so that the algorithm can be scheduled in the appropriate amount of time. These techniques

are needed when the oversampling ratio is low and the sample rate is high, which is the situation

when using higher order modulators for high-speed oversampling A/D conversion.

These types of filter architecmres can be implemented using the HYPER system [2]. HYPER

takes a Silage [114] description of the filter and allows the user to examine the design and apply

transformations to achieve a better design. Silage is a applicative language developed to facilitate

the expression of algorithms meant for IC implementation. Hyper is able to find the minimum

bounds on the number of execution units needed to perform an algorithm under a given sampling

rateconstraint The HYPER system is currently being expanded to handle a variety of architecmre

styles. The output of HYPER is an structural description of the processor that can be used as input

for the Lager Silicon Assembly System [67]. Code generators have been developed to generate

silage descriptions for digital filters to allow the use of HYPER from within the design system.



Time Multiplexed FIR filter family. 83

6.2 Time Multiplexed FIR filter family.

6.2.1 Background

FIR filters for multirate signal processing can be efficiently implemented in hardware. As

explained in Chapter2 for the case of decimation, only the desired output samples need to be cal

culated and thus only a limited numberof state variablesneed be stored. For a filterof length L and

for a decimation ratio of D, only L/D registers are needed. Since the coefficients still need to be

stored in a ROM, these filters are often assumed to consume excessive amounts of area.

Several researchers have proposed architecmres that perform FIR filtering for cases whereL/D

is small. One version was based on a single ROM for coefficient storage and L/D parallel datap

aths to perform the computation [115]. This architecmre can be inefficient in area since it requires

L/D parallel accumulator units.

To avoid the coefficient ROM, Candy found away to calculate the coefficients ofasine2 filter
with only 4 registers, 4 adders, and some peripheral logic [116]. This structure can be quite effi

cient in area, but further improvements might be achievable. Since digital circuits tend to be faster

than analog circuits in a given technology, it is possible to time multiplex the operations so only a

singleadder is required. Structures basedon this approach were developed for the case where L/D

= 2 [61] and L/D = 3 [60]. Both of these approaches made use of counters to generate the coeffi

cient values. In addition, the input was assumed to be a single bit so an AND gate served as a mul

tiplier. Since there is overhead for counter circuits, it isn't clear if Candy's architecmre is smaller.

However, the time-multiplexed architecmres providemore flexibility since they can be modified to

implement an arbitrary impulse responseand they don't rely on modulo arithmetic.

6.2.2 Overview and Black-Box view

For this project, a more flexible approach was sought. A reusable and parameterizable archi

tecmre family was developed based on a single adder and a variable number of registers in the

datapath. The blockdiagramfor the filter family is shownin Figure6.1. A coefficient ROMis used

in most cases. If L/D = 2 and a sine squared filter is implemented or if a simple accumulate and

dump filter is desired, counters can be substituted to reduce area and power consumption. The

coefficientROM allows filters to be implemented with decimation ratios that are not powers of 2.

Additionally, designs are not restricted to have frequency responses that are powers of the sine

function. It is assumed that the impulse response of the desired FIR filter is symmetric, which
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Figure 6.1 Block diagram of the FIRfilterfamily.

allows only half of the response to be stored in the ROM. The filter family currently has stmcmral

descriptions for L/D values of 1,2, and 3.

The filters are designed to handle single bit inputs and to work internally with 2's complement

arithmetic. The clock generators are not included in the structure descriptions and must be con

nected externally. The current implementation is based on 2 phase clocking. Most of the registers

are based on master-slave registers and it would not be difficult to translate the design to a single

phase clocking scheme. Internally, the filter runs at D times the input rate, so a fast clock running

at D times the input rate is needed. A clock running at the input sampling rate is also needed to aid

in synchronization of signals.

The basic timing relations for the filter family are shown in Figure 6.2. No input synchroniza

tion signal is required for the filter since 1 input is required during each slow clock cycle. The

input data is latched on the falling edge of the slow fa phase. Output data is generated at 1/D times

the input rate so a new output is available every D cycles. The new output sample is valid on the
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Figure 6.2 Timing relations for the FIRfilterfamilyfor the case L/D=3.

cycle after the falling edge of the Data Valid signal, and remains valid until 1 slow clock cycle

before the next falling edge of DataValid. The falling edge of the Data Valid signal is periodic and

occurs every D slow clock cycles, or about every L fast clock cycles. The rising edge of DataValid

can occur at slightly different times due to the nature of the circuitry that generates the signal.

After asserting RESET on the filter, the output data will not be correct until 2 output samples have

been generated.

The pinout for the structure description is given in Table 6-1.The filter was designed with a

scanpath for testing. Test vectors can be generated by using data from an IRSIM orTHOR simula

tion model generated from the structure description. To use the test mode, the pin SHIFT should be

set high and the appropriate serial data placed on SCANIN.

6.2.3 Details of the implementation.

The control unit for the filter family is comprised of a finite state machine that controls an

address calculation unit L/D state variables must be updated for each input cycle, and the proper

sequencing of coefficients must be generated. This can be easily achieved by using a pipelined

controller, as depicted in Figure 6.3 for the L/D = 3 case. If each state variable is examined indi

vidually, it is found that the address for the coefficients need only be incremented by 1 each time

an input sample is processed. Since the impulse response was assumed to be symmetric, address

generation can be implemented using a counter that counts from 0 to L/2, then back dowa When
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TABLE 6-1 Pinout forthe FIR filter family.

Pin Name Sig. Type Description

VDD Power Positive power supply terminal

GND Power Negative power supply terminal

PHI1 Clock Phase 1 of the clock

PHI2 Clock Phase 2 of the clock.

pislow Clock Phase 1 of the slow clock.

p2slow Clock Phase 2 of the slow clock.

RESET Control Reset the processor.

SHIFT Test When asserted, scanpath is enabled.

SCANIN Test Input for the scan chain.

SCANOUT Test Output for the scan chain.

DSMINBAR Input Complement of the single bit input.

DSMIN Input The single bit input.

FIROUT N bit output Bit-parallel output.

dvalid Control Signals new output valid.

dvalidbar Control Complement of dvalid.

the address generation is time-multiplexed, the counters can be implemented as shown in

Figure 6.3. Preset values are needed to start the 3 generators in the correct place. Within the con

troller, preset values set the datapath control signals so that the adder either increments, decre

ments, or stalls.

As an example, consider the case where L/D = 3, and L = 9. Figure6.4 shows the progression

of addresses generated for this case. It was assumed that the impulse response was symmetric, so

only 5 coefficients are stored, numbered in order from 0 to 4. During the first input sample, the

addresses are generated as 0, 2, 3. The controller registers are set so that the adder in the address

calculation unit increments on the first fast clock cycle, then decrements, then adds. As the calcula

tions progress, output samples will be calculated in clock cycles 8, 18, and 25. Data Valid will go

low at the end of cycles 9, 18, and 27.

The data path for the filter is shown in Figure 6.5. The LDS signal is a delayed version of the

LATCH signal generated in the controller. LDS and CLEAR can occur in the same cycle, since

latching of the data indicates that the register storing that particular state should be cleared. The

controller and datapaths are fully pipelined. The critical path of the entire filter is dependent on the
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various parameters used in the design, but is dominated by either the time tor the coefficient ROM
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to evaluate or the sum of ripple carry adder delay and the register access times. In all fabricated

versions so far, the filter was found to be faster than the modulator connected to it

In retrospect this filter family can waste quite a bit of power. The registers in both the datapath

and the controller are set up in such a way that they are always clocked at the fast sample rate. A

parallel implementation where each datapath register is loaded only once per input sample could

be more favorable. However, the adder would still be used 3 times per input sample.
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6.2.4 DECFIR

The program DECFIR was written to handle parameter generation for this family of architec

mres. The basic parameters needed to generate the filter parameters are the tap values, the decima

tion ratio, and the wordlength to use in the filter datapath. DECFIR generates the initial state

information for the controller and coefficient tables based on this information.

Since the layout of the datapaths and PLA structures is based on tiling algorithms, it is not dif

ficult to estimate the required area for a design. Routing area is not deterministic since an interac

tive floorplanner is used. It was found by experimentation that adequate area estimates could be

obtained using the sum of the macrocell area and scaling it by a constant. A similar result has also

been obtained in another project for more random layouts [117]. Table 6-2 shows the results of

TABLE 6-2 Area estimation results for the case of L/D = 3. Results are for 2jim CMOS.

Dec. Ratio

Estimated

Area

Area from

an actual

layout

32 4.7 mm' 4.8 mm2

64 5.9 mm2 5.9 mm2

128 6.9 mm2 6.7 mm2

areaestimation for the L/D = 3 case for differing values of D, the decimation ratio.

6.3 CIC Filter family.

6.3.1 Background

CIC (Comb Integrator Cascade) filters have been used in digital filtering for many years. The

basic approach is to use a cascade of integrators anddifferentiators (or comb filters) as pictured in

Figure 6.6 for the decimation case with 3 stages. The filter decimates by a factor D and directly

implements the transfer function shown in Equation6.1.

H(2) =(7T7M (6.1)

An interpolating filter can be obtained by interchanging the placement of the differentiators

and the integrators. The value of M can be used to shape the filter response, but when it is set to 1,

the entire differentiator chain can be run at the lower sampling rate [118]. When the feedback fac-
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Figure 6.6 Block diagram of a CICdecimation filter.

tor in the integrator is 1, the filter is not necessarily stable since the poles lie on the unit circle. It

has been shown that if the filter is implemented using 2's complement arithmetic, and certain con

straints on the registerwordlengths are met, the filter will be stable [119].

These filters are very efficient for pure sample rate changes since they provide good stopband

rejection but very little control over the passband. Transmission zeroes are placed atmultiples of

theoutput sampling rate and the frequencies near these points alias intothebaseband, asillustrated

for the case of a decimate-by-8 sine3 filter in the magnitude response plot of Figure 6.7. In this
Magnitude Response in dB
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Figure 6.7 Magnitude response for a decimate-by-8 sine3 filter.

case, 3 transmission zeroes are placed at 0.125, 0.250, and 0.375. The passband has a monotonic
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droop, but for signal processing applications, this droop may notbe tolerable and it will have to be

corrected in the final filtering stage.

These filters have no coefficient storage, few control circuits are necessary, and they can be

fully pipelined. However,-to insure correct operation, the first register must be set to a minimum

wordlength, which for N stages and aninputthatis in the range (R, -R], the wordlength required is

given in Equation 6.2.

wordlength = Nlog2(R+l) (6.2)

The wordlength can be significantiy large for high decimation ratios. The wordlengths in suc

cessive stages can be truncated to reduce area, but this introduces quantization noise. This effect

can be analyzed quite easily [119], but for oversampling converters, the extra noise due to trunca

tion can wipe out the gains from noise shaping.

The transfer function of Equation 6.1 can be implemented using an accumulate-and-dump

stage when D=l. This circuit has the same transfer function and can be thought of as an FIR filter

of length D. This eliminates the need for 1 register and 1 subtracter. It can be applied in any CIC

implementation for the middle integrator differentiator combination. It simplifies the datapath at

the expense of extra control logic.

Instead of using a single CIC filter for sample rate changes, several CIC filters can be used in

cascade. By using several stages, the wordlength requirements can be minimized which can lead to

a smaller overall implementation. This approach was implemented in the DECGEN filter com

piler, which was developed by Hang and Jain at UCLA [51]. A heuristic algorithm was used to

minimize the arearequired by the composite filter cascade.

6.3.2 Overview and Black Box View

Two versions of CIC filters were created for the DECGEN project, and both have been added

to the design system library. Both versions used digit-serial differentiator implementations but one

implementation used bit-parallel integrators with a final accumulate and dump stage, while the

other used digit-serial integrators. Since the filters used digit-serial arithmetic, the number of I/O

pins is dependent on the wordlength used in the filter and the digit size used for processing.

Digit-serial arithmetic is a generalization of bit-serial arithmetic. Instead of using a single bit,



92 Architecture Design

several bits are processed at the sametime. For example, suppose the wordlength is 16bits and the

digit size is 2 bits. On each clock cycle, the input to the digit-serial processor will be 2 adjacent

bits from the input word and 8 cycles total will be required for processing a single word. Depend

ing on the implementation, the digits may start from the MSB side or the LSB side of the original

word, much like in bit-serial processing. The CIC filters in the DECGEN library work with the

least-significant digit first format.

The structure descriptions for both of these architecmres are written by programs based on

input parameters taken from the design database or provided by the user on the command line.

Floorplans are also generated by these programs so that automatic place and route options can be

used. Several modifications were made to these programs to increase functionality and to provide

rudimentary area estimation. Since the clock generators are based only on divider circuits, only

decimation ratios that are a power of 2 can be implemented with these circuits. The two architec

mre versions will be discussed separately.

6.3.2.1 Bit-Parallel Integrator version

For the bit-parallel integrator version, there is an option for having bit-parallel or digit-serial

outputs from the filter. The outputwordlength and the digit size mustbe set so thattheirproduct is

amultipleof the decimation ratio. It is not necessary forthe inputand outputwordlengths to be the

same since the wordlength can be adjusted in the parallel to serial convenor after the last integra

tor. The module generators will add logic for testing the filters if desired. The extra logic consists

of multiplexers on the input to allow data to come from 2 sources which is useful for isolating fil

ters for individual testing. The pinout for the architecmre template is given in Table 6-3 and the

timing relations for the output data are shown in Figure 6.9.

CLK

Output DataX X MSD X LSD
Output Data
Valid

Figure 6.8 The output timing relations for the input signalsfora CIC filter with digit-serial
integrators. Digit-size was assumed to be 4.

6.3.2.2 Digit-Serial Integrator version

Since both the integrators and the differentiators are implemented using digit-serial arith-
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TABLE 6-3 Pin names for the bit-parallel integrator version of the CIC filter.

Pin Name Sig. Type Description

VDD Power Positive power supply.

GND Power Negative power supply.

CLK Clock Inputclock, frequency is equal to the input sam
pling rate.

L0AD1 Control Signalis high when most sig. digit is presentat the
output

gRSTb Control Reset signal, active low.

CLKp Test Alternate clock input for testability.

TESTC1 Test If asserted, use CLKp rather than CLK as input.

DMlp N-bit test input Alternate data input for testability.

TEST1 Test If asserted, use INlp rather than INI as input.

IN N-bit input Input data, wordlength is N.

OUT M-bit output Output with digit or word length M depending on
choice of output style.

93

metic, there are restrictions on the value of the wordlengths that can be used. One of the design

parameters for the filter is the clock ratio, which specifies the number of clock cycles per input

sample (not input digit). The input and output wordlengths must be a multiple of the clock ratio.

The digit size for the input is then the input wordlength divided by the clock ratio, and a similar

argument holds for the output wordlength. The word size can be truncated after the integrator sec

tion, so the input and output wordlengths need not be the same Table 6-4 gives the pin information

used in the structure description and Figure 6.9 shows the timing relations that must be obeyed

CLK

Input Data X XmSdXlSDX X XmSdXlSdX X^
Input Data
Valid

Figure 6.9 The expected timing relations for the input signals for a CIC filterwith digit-serial
integrators. Digit-size was assumed to be 4.

when providing inputs to the filter. The input data valid signal should last as long as the input digit

is valid. The data are latched on the falling edge of the input clock. The filter generates data with

output timing relations as shown in Figure 6.9.
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TABLE 6-4 Pin names for the digit-serial integrator version of the CIC filter.

Terminal Sig. Type Description

Vdd Power Positive supply.

GND Power Negative supply.

fCLK Clock Input clock running at frequency (clock ratio) *
(input sampling rate).

L0AD1 Control Input for data valid signal of the previous digit
serial stage.

LOAD2 Control Output data valid signal. Goes high when most sig.
digit is on output

gRSTb Control Reset, active low.

CLKp Test Alternate input for fCLK.

CLKdivp Test Input for testing differentiator stage.

TESTC2 Test When asserted, CLKp and CLKdivp are used as
the clock inputs rather than fCLK.

INp N-bit test input Alternate datainput

LOADlp Test Alternate input for input data valid signal.

TEST2 Test If asserted, data is taken from INp and LOADlp
rather than from IN and LOAD1.

IN N-bit input Digit-serial input data with digit size N.

diffOUT M-bit output Digit-serialoutput data with digit size M.

6.3.3 Details of the Implementation

The design and implementation of these filters has been previously documented in detail

[51]. The bit-serial integrators were modified to provide zeroing when the gRSTb signal is

asserted. This extra circuitry is not necessary, but simplifies simulation and testing, since registers

can be set to a known state. The modified register circuit diagram is shown in Figure 6.10.

Currendy, the circuits are only matginally functional. The key problem lies in the circuits used

for generating internal clocks which is buUt from divide-by-2 circuits. The circuit, shown in

Figure 6.11, has been reported previously [120] and is currently not a part of the standard Lager

libraries. It is based on a single phase latch which has a lower bound on hold times after the clock

edge has fallen and the data was latched. The latch can allow data to shoot through, so when direct

feedback is used, a race condition exists. The solution to this problem is to add an extra buffer on

the latch output to insure that the hold time constraint is met.

These errors in single phase circuits are difficult to find by simulatioa To date, the cells in the
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Figure 6.11 Divideby 2 circuit.

•Lager libraries have generally ignored clock edges since this is not a crucial issue in the design of

2-phase circuits. Switch-level simulators such as IRSIM were not able to pick up problems due to

slow clock edges. Circuit-level simulations are not easy, since the latch should be simulated within

a large system design. Routing contributes a significant capacitive load to the clock lines and must

be accurately modelled. Another problem is that the single phase logic circuits are not scalable. As

the circuit speed gets faster, clock edges need to be sharper,but from experience, it appears that the

propagation delay of the latch decreases faster than the buffer driver delay.

The filters were implemented using a scalable buffer strategy. Centralized clock buffers are
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generated for each module and a single clock line feeds the datapath. This technique should be

examined more closely if the filters are redesigned.While the gate loading for the registers is accu

rately modelled, it is more difficult to calculate the parasitic capacitance associated with the rout

ing from the buffer to the registers. A better strategy would be to use dedicated buffers in control

slices on the datapath. This eliminates the extra capacitance loading due to routing, and the buffers

can be programmed to drive a known capacitance.

6.4 Custom Decimate-by-2 FIR filter

6.4.1 Overview

As mentioned in chapter 4, decimation can be incorporated in an FIR filter implementation so

that only the required output samples need to be calculated. This requires only L/D registers for

state variable storage when L is the filter length and D is the decimation ratio. WTiile it appears that

the computation rate drops by a factor of D, it will not decrease this much since address computa

tion becomes more complicated. Usually, only one copy of the coefficients is stored in a coefficient

ROM so when decimation is incorporated, the state variable updates no longer follow a simple

incremented progression. One solution is to keep a single address pointer for each state variable

and then update this pointer each time the state variable is updated. This solution was adopted in

the custom FIR solution described in Section 6.2. Since L/D was assumed to be small, few address

pointers are required and the computation overhead and extra hardware are not excessive.

For FIR filters with larger L/D ratios, another solution is available. Filters with large L/D ratios

tend to be used in situations where there are many processor cycles in each sampling period. In this

case, a time-multiplexed architecmre is desired. A general purposeprocessoris one solution, but if

L is too large, a full multiplier may be required. A custom solution to this problem was developed

for DECGEN. This solution used a full parallel multiplier and a hardware realization of an address

calculation algorithm.

6.4.2 Black-box view

This filter can take either digit-serial or bit-parallel inputs. The structure description files for

this filter are generated using a program that requires only the quantized coefficient values, the

internal wordlength to use, and the input and output wordlengths. If digit-serial input are used, the

basic timing relations are the same as for the CIC filters. For bit-parallel inputs, the data is latched
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internally on the falling edge of the input clock as shown in Figure 6.12. The timing for generation

CLK |
Input Data Y~~

Input Data
Valid

Internal
Data

X X

Next Valid Data

Figure 6.12 Timing diagram for latching of the bit-parallel input.

of the output

DataValid signal is shown in Figure 6.13 and the pinout is given in Table 6-5.

CLK f % ^_

Output DataX X Next Valid Data X
DataValid

Figure 6.13 Timing relations for the output data for the decimate-by-2 filter.

6.4.3 Implementation details

The architecmre and circuit designs are given along with the documentation for the other

DECGEN modules [51]. The controller was modified to account for a global RESET synchroniza

tion and differs slightly from previous documentation. When RESET is asserted, the controller

will wait for the next time that LOAD2 is asserted and then begins the filtering operations. The

implementation also makes use of the div2N cell described in the previous section. Care must be

taken to insure that this cell will operate correctly. Several registers within the datapath make use

of single phase clocking, so clock buffers must be simulated and adjusted accordingly when

changing feature size.
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TABLE 6-5 Pin names for decimate-by-2 FIR filter.

Terminal Sig. Type Description

Vdd Power Positive power supply.

GND Power Negative power supply.

CLK Clock Input clock, must ran at (L/D)*(output
sampling rate).

L0AD2 Control Data Valid signal from the last stage.

RESET Control Active HIGH reset signal.

SCAN Test If HIGH, enables the scanpath.

SCANIN Test Input for scan data.

SCANOUT Test Output for scan data.

CLKp Test Alternate clock input.

TESTC3 Test When asserted, enables CLKp as clock
input.

L0AD2p Test Alternatefor input data valid signal.

SInp N-bit test input Alternate for data input.

TEST3 Test When asserted, allows data entry from
LOAD2p and SInp rather than LOAD2
and Sin.

Sin N-bit input Input data with word or digit size N.

OUT M-bit output M bit output data.

6.5 C-to-silicon

6.5.1 Overview

The C-to-silicon projectbegan with the Kappa processor developed for Lager ni [121]. Lager

III provided support for silicon compilation of stmcmral descriptions of systems to layout [122].

Azim and Shung developed an assembler for this architecmre to allow mapping of generic DSP

algorithms to a parameterizable architecmre. Rimey furthered this work by providing a retargeta-

ble compilerwhich could accommodate user-defined processor architecmres [I]. With LagerIII, it

was possible for a user to write a C language description and have it compiled to a variety of user

defined architecmres. In LagerlV, the software and processor libraries were updated and the tools

were designated as the C-to-silicon toolset by Thon [123]. Thon refined the Kappa processor and

renamed it the Puma processor. The C-to-silicon process is illustrated in Figure 6.14.

In order for the compiler to generate code for different architectures, an architecmre descrip

tion must be supplied. This description delineates the processor resources and the valid register
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Figure 6.14 Design flow for the C-to-silicon design tools.

transfers that can take place on the datapath. The compiler assumes a fixed 2 level control struc

ture, but extra datapaths and memory units can be added. The output of the compiler is a register

transfer languagedescription of the algorithmthat must be processed by an assembler to obtain die

microcode and parameters necessary for layout. The assembler also needs an architecmre descrip

tion that specifies the control signals that activate individual register transfers. A previous effort

sought to generate this information automatically [124].

The C-to-silicon tools are not integrated under a design manager. The user must perform each

step of the compilation process by hand. A script was written for this project so that the process

can be automated to some extent, but this assumes that all steps proceed without errors. Retarget

ing the compiler and assembler for new architecmres can be somewhat tedious.

6.5.2 Black-box description.

As mentioned previously, the basic architecmre defined for the C-to-silicon tools is called

Puma. A block diagram of the processoris shown in Figure6.15. The basic Puma architecmre has

been used to implement several projects including a pitch extractor, a PID controller, and several
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Figure 6.15 Block diagram of the Puma processor.

digital filters. In addition to basic processor I/O, several control lines can be defined to control the

processor or detect conditions within the processor. The basic pinout is given in Table 6-6. An

internal clock generator is used to create the internal 2 phase clocks used in the processor. Only a

single clock input is required.
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TABLE 6-6 Pinout for the PUMA processor.

Pin Name Sig. Type Description

Vdd Power Positive power supply.

GND Power Negative power supply.

CLOCKIN Clock Input master clock.

RESET Control Processor reset signal.

MCC Control Master clock control. When low, processor is in
normal operating mode.

BPFLAG Control Output signal used in testing.

READSTRB Control Asserted by the processor when the processor
reads DATAINPORT.

WRTTESTRB Control Asserted by the processor when the processor
reads DATAOUTPORT.

WRPORT Control Signal set high when writing data port and low
when reading port. Can be used for tristate con
trol of a bidirectional I/O pad.

OFFCHTP2CFSM Control Bus Signals that were defined as input boolean flags
in the RL code.

LGU20FFCHIP Control Bus Signals that were denned as output boolean flags
in the RL code.

TESTMODEINV Test Active low signal that enables testing mode.

TPHI1 Test Clock phase 1 for use during testing.

TPHI2 Test Clock phase 2 for use during testing.

SCANIN Test Input for the scan chain.

SCANOTJT Test Output for the scan chain.

PORTADDRESS 4-bit input Supplies address for reading and writing exter
nal data ports.

DATAINPORT N-bit input Data input to processor.

DATAOUTPORT N-bit output Data output from processor.
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The timing diagram for processor input and output is shown in Figure 6.16. The input data to

the processor must be valid at the end of fay at which point the data is latched. The output data is

held valid over both phases of the clock cycle. The signal WRPORT was originally used to control

a the signal direction of a bidirectional I/O pad for the stand-alone version of the processor.

For digital filtering, it was found that the several of the resources in the Puma architecmre

were underutilized and that the compiler does not allow control of scheduling processor I/O. The

external world must be able to supply on the cycle when it is needed by the processor and to latch

data when it is generated. A buffer was needed to store data since data was often not generated or
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Figure 6.16 Timing relations for the Puma processor.

latched on the cycle when it was needed. The intent of the C-to-silicon tools was to allow minor

architectural changes so designs could be optimized for different applications.

The Lambda architecmre was developed with these ideas in mind. The Lambda processor is a

stripped version of the Puma processor.The address calculation unit was deleted, so only immedi

ate addressing schemes could be used. This is not a problem since addresses are known at compile

time for digital filters. It is also design trade-off, since addresses are now stored in ROM rather

than being calculated on the fly making this choice favorable when the additionalROM size is less

than the size of the address calculation unit. The datapath functionality was reduced, and an I/O

buffering unit was added. The block diagram for the Lambda architecmre is shown in Figure 6.17

and the pinout, which has changed slightly from Puma, is shown Table 6-7. The processor can

have different widths for the input and output data but the processor datapath must have the same

wordlength as the output data.

The processor timing is now data driven and determined by the input program to the compiler.

Input data is latched on the falling edge of fa after the falling edge of IDataValidThe input data

must be held valid over the entire fa cycle time. In addition, the output data is latched and remains

valid until the rising edge of the next ODataValid signal. No detection circuitry was incorporated

for detecting read/write conflicts internal to the processor.
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Figure 6.17 Block diagram of the Lambda processor.

6.5.3 implementation details

The Puma architecmre has been fully documented in previous work [121], [125]. Some of the

leafcells were updated to allow more feedthrough paths in the datapath cells allowing better rout

ing and smaller datapath implementations. The Lambda architecmre has been optimized for digital

filtering. Using one filter design, it was found that the Lambda architecmre provided an implemen

tation that was 60% smaller in area than the Puma implementation.



104 Architecture Design

TABLE 6-7 Pinout of the Lambda Processor.

Pin Sig. Type

Vdd Power Positive power supply.

GND Power Negative power supply.

PHI1 Clock Processor clock phase 1.

PHI2 Clock Processor clock phase 2.

RESET Control Global processor reset signal.

IDataValid Control External source asserts this signal when
input data is valid.

ODataValid Control Asserted by the processor when output
value is valid.

MCC Control Controls testing modes.

BPFLAG Control Status signal during testing mode.

TESTMODEINV Test Active low signal that enables testing mode.

TPHI1 Test Clock phase 1 for use during testing.

TPffl2 Test Clock phase 2 for use during testing.

SCANTJSf Test Input for the scan chain.

SCANOUT Test Output for the scan chain.

IN M-bit input Input for the processor.

OUT N-bit output Output for the processor.

A block diagram of the Lambda processor was shown in Figure 6.17. The logical unit and

address calculation unit were removed, but an extra unit for I/O buffering was added. The I/O unit

is targeted towards applications where several input data valuesare consumed foreachoutput data

value generated. The I/O unit consists of a single register buffering the output values, and a small

register file, as shown in Figure 6.18. The processor controller provides addresses for reading data

from the register file. The local controller uses a counter to generate addresses forthe register file.

The basic operation is as follows. When an external source strobes IDataValid high, the con

trollerdetects the falling edge, latches the data into the register file, and the counter is incremented

by one. The processorsignal READSTRB controls the multiplexer which selects either the counter

value or the address coming from the processor. When READSTRB is asserted, the register file

placesdata on the output port using the address provided by the processor. No extra circuitry was

provided to detect conflicts between the IDataValid signal and the READSTRB signal from the

processor controller. Since the program execution is periodic and deterministic, conflicts can

detected from simulation. If a conflict is present, the algorithm must be rescheduled, either by



DATAIN

IDataValid

ODataValid

DATAOUT

C-to-silicon 105

ig|)gWtgQg8Qgwwgwgwwwg<)ggwgggl<BgBaaWWW9WgWgg;WgWOOB»»08WgWgOWgWWgggggWIWWI«OTUUWW»9»W9^

I/O Unit

write

register
Tile

addr

n=nfLH-i£2H2Ea

rea<

-1

lload

Processor
Signals

RDPORT

READSTRB

PORTADDR

WRSTRB

PROC OUT

Figure 6.18 Block diagram of the I/O unit in the Lambda Processor.

recompilation or by modifying the assembly code. When the processor asserts W^RSTRB, the data

is latched in a register, and the WRSTRB signal is delayed by 1 clock cycle to create the OData

Valid signal.

In the current implementation, the input data is aligned with the processor data at the LSB.

Some implementations may favor MSB alignment, so the template can be changed accordingly.

Also, the I/O unit clock is derived from the processor clock. To achieve synchronization, the pro

cessor clock must be at least as fast as the clock that generates the input data valid signal.

The PUMA datapath and address calculation unit are shown in Figure 6.19. The Lambda data

path is shown in Figure 6.20. The functionality was reduced by lowering the maximum right shift

from 15 to 7 bits. Additionally, the shifter is now controlled only by the controller rather than

allowing variable multiplies, which were implemented through the shift register called RCOEF

shown in Figure 6.19. Removing the address calculation unit provided area advantages because it

removed a major routing bottleneck in the processor layout. Only minor changes were needed in

the architecmre description for correct compilation to this new processor architecmre.
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Figure 6.19 Block diagram of the PUMA datapath and Address Calculation Unit.
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Figure 6.20 Block diagram of the Lambda datapath.
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6.6 Parallel to Serial Converter

6.6.1 Description

For chip development, serially transmission of signals cuts down the number of pins required

for packaging. A simple implementation of a parallel-to-serial converter is included in the archi

tecmre template library. The converter is implemented with a programmable counter and a shift

register. The program pisogen can be used to generate the state table for the converter. Note that

for an N bit parallel to serial conversion, N+l clock cycles are needed for the converter to work.

The pinout for the converter is shown in Figure 6-8 and the timing diagram is as shown in

TABLE 6-8 Pinout for the parallel to serial converter.

Pin Name Sig. Type Description

Vdd Power Positive power supply.

GND Power Negative power supply.

PHI1IN Clock Input clock, phase 1.

PHI2IN Clock Input clock, phase 2.

OCLOCK Clock Output serial data burst clock.

RESET Control Reset the converter and wait for next DataValid.

DatatValid Control Input signal to denote that input data is valid.

TSHIFTIN Test When asserted, scan test mode enabled.

SCANIN Test Input for the scan chain.

SCANOUT Test Output for the scan chain.

WORDIN N-bit Input Parallel data input.

SERIALOUT Output Output serial data stream.

Figure 6.21

6.6.2 Details

The converter is implemented using 2 parallel registers, a standard cell logic block, and a PLA

as shown in Figure 6.22. The counter was implemented in the PLA since a it required less area

than a dedicated counter. The entire converter could be implemented using standard cells, provid

ing arbitrary aspect ratios and denser routing. It is uncertain whether this version change would

make the overall circuit smaller. It appears that the density of the PLA will be traded for the white

space due mismatch in aspect ratios and the implementations will be roughly the same size. A sim-
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Figure 6.22 Block diagram of the parallel to serial converter.

ilar version could be developed using a single phase register. This would be helpful, since only one

clock phase would need to be routed to the circuit.
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6.7 Clock Generators

The clock generator module contained within the TimLager Cell library does not provide ade

quate non-overlap time if the clock buffer is heavily loaded. The circuit diagram is shown in

Figure6.23. Some caution must be observed when using this clock generator since the amount of

Figure 6.23 Clock generator circuit for generating 2 non-overlapping phases.

non-overlap time is dictated by the delay in the inverter chain. If the clock driver is heavily loaded,

the edges will have longer rise and fall times and will lessen the non-overlap time. Cross-coupled

NOR gates overcome this limitation, and should be considered if the library is redesigned. Simula

tors like IRSIM do not have the accuracy to determine if an adequate non-overlap time has been

maintained so hand calculations should be performed to verify buffer drive capacity.

As a standard methodology to increase testability, clocks lines are always routed through a

multiplexer so that if there is a problem with non-overlap time, off-chip clocks can be used. The

output of the on-chip clock generator is multiplexed with a pad input. After the multiplexer, the

clock signal is run into the on-chip clock buffers.

A master clock is used to generate all other clocks on chip. D flip-flops can be used to divide

the master clock to generate some clock values. If the master clock must be divided by a factor that

is not a power of 2, custom logic must be designed. In the current architecmre library, there is a

need for a divide by 6 circuit. This can be realized using 3 flip-flops and some random logic, as

shown in Figure 6.24. This circuit provides 2 output clocks, which are 1/2 and 1/6 the input clock

rate.
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Figure 6.24 Blockdiagram of circuitused to generate 1/6 and 1/2 clock phases.

6.8 Analog Modulator Architecture Selection

6.8.1 Overview

While minimizing the areaof the digital filter is an important concern, the choice of modulator

determines the overall converter performance. The noise shaping ability and circuit imperfections

dictate the lowest possible noise floor. The various types of oversampling modulators were dis

cussed in Chapter 2 and various trade-offs were highlighted. Currendy, only the second order A-Z

modulators are available. An experimental second order first order cascade was developed, but

was not fully debugged.

6.8.2 Black Box Description

The modulators in the cell library are not scalable. Various cells exist in 2ujn CMOS with dif

ferent options for capacitors and opamps. A single version exists in 1.2ujn CMOS. The variations
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are listed in Table 6-9. Selection of the proper modulator should be guided by the process in which

TABLE 6-9 Modulators in the Cell Library

Cell Name Features

dsm2abn 2\xm n-well layout, metal1-poly caps, Class AB opamp,
int. gain = 0.25.

dsm2ab 2um p-well layout, double poly caps, Class AB opamp,
int gain = 0.25.

cds2pab 2u.m p-well layouL double poly caps, Class AB opamp,
int gain = 0.25, offset zeroing in the first integrator.

dsm2pl2 2um p-well layout, double poly caps, Class AB opamp,
inL gain = 0.5.

fcdsm2p 2um p-well layout, double poly caps, Folded Cascode
opamp, int. gain = 0.25.

dsm2pc2 1.2|juti n-well layout, metal1-poly caps, Class AB opamp,
int gain = 0.5.

the circuit will be fabricated and by resolution and speed considerations. All of the modulators

conform to the basic pinout listed in Table 6-10. There are many pins listed, but most are related to

clocking and biasing. Appendix F provides details on how to connect the various supply and bias

lines to chip pins in order to minimize the effects of cross-talk. The current sources for biasing

were set nominally to 40 uA for Class AB opamps and 275 u,A for folded cascode opamps. Analog

ground should not be confused with analog Vss and is defined to be the potential halfway between

VddiandGND!.

For timing, the analog input is sampled on the falling edge of phi1 in all cases except for

cds2pab, for which the input is sampled on the falling edge of phi2. A single bit output is gener

ated every clock cycle, and is latched and valid during phi2.

6.9 Estimation Techniques

6.9.1 Area

Area estimates can easily be generated from most target architecmres. Since a cell library

based approach is used, area for datapaths and tiled stmcmres can be estimated by adding up all of

the leafcell area. It has been shown that the total area of a design is proportional to the total leafcell

area plus a factor to account for global buses and controller area [117]. This result was obtained for

systems that use a simple control structure based on a single PLA.
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TABLE 6-10 Basic Modulator Pinout.

Pin Name Sig. Type Description

Vdd! Supply Analog Vdd

GND! Supply Analog Vss, lowest potential

DVdd! Supply Vdd for digital comparator

DGnd! Supply GND for digital comparator

dout Output Single bit output from modulator

doutb Output Logical complement of dout

phil Clock Phase 1 of clock

phi lb Clock Logical complement of phil

phi2 Clock Phase 2 of clock

phi2b Clock Logical complement of phi2

phild Clock Delayed version of phi1

phildb Clock Logical complement of phild

phi2d Clock Delayed version of phi2

phi2db Clock Logical complement of phi2d

shield1 and shield2 Shield Connect these pins to a clean supply

capshield Shield Connect this pin to the well supply

vcmol andvcmil Bias Analog ground inputs

vref_posl and vref_pos2 Bias Set to positive full scale voltage

vrefjiegl and vref_neg2 Bias Set to negative full scale voltage

nbias_inl and nbias_in2 Bias Input tail current for n transistor mir
ror

pbias_inl and pbias_in2 Bias Input tail current for p transistor mir
ror

intin_posl Analog Input Positive analog input

intin_negl Analog Input Negative analog input
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Our layout generation tools make use of an interactive floorplanner. Poor initial placement of

the leafcells results in layouts that have large amounts of whitespace that inflate area numbers.

Thus area estimates will have an accuracy that can be dependent on the designer. To improve on

this strategy, 2 area numbers are reported for most architecmres. The total leafcell area is reported

as well as an area estimate based on a fixed floorplan. It has been found that for most designs, the

actual total area is about 1.5 to 3 times the leafcell area for all of the architecmre templates in the

system. This is slightly lower than the figure reported by Schultz [117], but this is due to the fact

that the architecmres used in this project have fewer global buses and also to the fact that regular
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stmcmres are used, so estimates are quite good.

6.9.2 Speed

Digital circuit speed can be estimated by finding the critical path. For parameterized struc

tures, this can be difficult since different critical paths exist for different combinations of parame

ters. In this project, the analog circuit speed turns out to be much less than the digital circuit speed.

While the critical paths of the architectures are generally known, a formalized set of estimators

were not developed. Speed only is a problem for the C-to-silicon architecmres that run at rates sig

nificantly higher than the analog sampling rate with very large programs requiring a large RAM.

6.9.3 Power

Methods for power estimation were being concurrendy developed in other projects at Berke

ley. The results were not available for inclusion in this project. The basic method is to estimate the

loading capacitance due to logic gates and interconnect. Based on a statistical measure, an activity

factor can be defined to designate how many bits are changing for an assumed inpuL Power num

bers for the current library are skewed, since a pseudo static PLA is a large contributor to power

consumption in most current designs. To guide the design process now, decisions can be guided by

the material presented in recent papers on low-power design considerations based on algorithms

and architecmres [126], [65].

6.10 Adding New Architecture Templates

6.10.1 Different Techniques

The architecmre templates are stored in structure description language (SDL) files. SDL files

are the input for the Lager Silicon Assembly System. The Lager System is based on assembly of

various circuit stmcmres which at the lowest level are simply circuits from a cell library. While

circuit synthesis programs can be used in the layout generation phase, to date, only hand-designed

leafcells are found in the cell library. SDL is hierarchical, allowing partitioning of complex

designs. SDL captures the type of blocks used in a design and their connectivity. In addition, SDL

provides programming constructs to a largedegree of parameterization.

Since SDL contains information about the component circuits and the connectivity, it is

merely one expression of very general information. SDL could be translated to other hardware
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design language formats to provide for layout generation in other design systems. The previous

sections show 3 basic techniques for developing architecmre templates in SDL: fixed library cells,

parameterized SDL files, and SDL generators.

The analog modulators were developed using the fixed library cell approach. Custom layout

was generated and then an SDL file was written to make the cell available within the Lager System

for place and route. The PUMA and Lambda architecmres and the FIR family were all developed

using parameterizable SDL files. Key features like ROM values and wordlengths are parameters to

these files. This means that the SDL files always remain the same, but different circuit configura

tions are generated by altering the input parameter file. The CIC filters and the decimate-by-2 FIR

filter were implemented using C programs that write the proper SDL files based on the design

parameters. In this case, subtle changes in the architecmre were not able to be expressed in terms

of parameters.

Each technique provides some advantages. The examples currently in the design system can

be used as models for developing new architecmres. The philosophy in developing a new digital

architecmre for the design system is to make it parameterizable so it can handle a range of applica

tions. This often leads to design trade-offs that increase flexibility at the cost of performance.

However, it has been found that the penalties are small and the benefits to other potential users is

large.

6.10.2 System Integration Issues

It is often necessary to use many different clock frequencies in the various architecmres to

allow better performance. The FIR family with L/D=3 uses 2 clocks, one at 3 times the frequency

of the other. Clocking issues must be considered with care, since multiple clock frequencies

increase clock generation circuit complexity, and can increase noise coupling with the analog cir

cuits. Clock skew can also become a problem. For these reasons, clock generation circuits were

left external to the architecmres so that if centralized clock generation circuitry is desired, it can be

implemented.

Digital filters and analog modulators arecomplex systems on their own. Combining them into

a usable integrated circuit requires good interface specification to insure that data is properly inter

changed. Within the current architecmre library, an attempt has been made to outline some basic

interface timing constraints so that all the blocks can interact without requiring extra glue logic.
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One basic problem within the design system is the use of different clocking schemes for

sequential logic. Four-phase, two-phase, single-phase, and edge-triggered clocking schemes are

used throughout the various architecmres. Basic I/O timing relations have been developed and

nearly all of the bit-parallel architecmres obey this scheme. The clock phase phi 1 is considered to

be the reference clock phase. All circuits should generate a signal to indicate that new output data

is present and the output data should be valid until the rising edge of the next this data valid signal.

The new output data is guaranteed to be valid on the falling edge of the data valid signal, at which

time it can be latched.

The basic scheme is shown in Figure 6.25. While this scheme is rather conservative, it should

♦l

Data Valid

Valid data can be latched on this edge

Figure 6.25 Timing relations for system design.

guard against setup and hold time violations, allowing arbitrary mixing of architecmre blocks.

Multiple clock frequencies also cause complications for the I/O timing. If a slower clock is used in

the processor receiving data, it may be difficult to determine when the data is valid, since the data

valid pulse may be contained within a single clock cycle. This means that the detection scheme

should be based on an edge triggered scheme or an SR latch that processes the data valid signal

and the uses local clocks to determine when data valid has gone low. A block diagram of such a

circuit is shown in Figure 6.26. The circuit is able to detect the falling edge regardless of what

clock rate was used to generate it. If the processor is known to be faster than the processor supply

ing the data valid signal, a simpler circuit can be used, as shown in Figure 6.27. This is the circuit

that was used in the I/O unit of the Lambda processor architecmre.
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Figure 6.27 Simpler circuit for detecting a falling edge.

6.11 Summary

This chapter presented information on the architecmre templates developed in this project. For

each template, an overview was given along with information necessary for using the template in a

larger design.
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CHAPTER 7

Design and Implementation
of the Analog Circuits
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The design of oversampling modulators is not a simple task. Although there are only a few

analog components, it can be difficult to achieve the high resolution promised by theoretical

results. New theories are being proposed, but the behavior of a quantizer in a non-linear feedback

is still not fully understood. This chaptercontains a discussion of the library cells developed in this

project and some thoughts on developing module generators for these circuits.

7.1 Design of the Experimental Circuits.

The quality of the analog modulator design is critical to the overall interface performance.

Analog circuit imperfections have been shown to limit the performance that can be achieved at

high oversampling ratios. Uncertainty in simulation results can lead to over-design which can be

cosdy. Previously, models based on difference equations have tended to overestimate dynamic

range and peak signal-to-noise ratio. For a second order modulator, a difference equation model

including basic non-idealities predicts that an oversampling ratio of about 150 is required to

achieve 16 bit performance. The estimators presented in Chapter 2, Equation 2.9, predict that an

oversampling ratio of about 100 is required. In practice, oversampling ratios above 250 are

required [85]. A better correlation of modulator performance and simulation models will enhance

the design process and allow better design approaching theoretical limits.

For this project, several designs were fabricated and characterized to help formulate a better

simulation model for design. The basic second order A-L modulator was chosen as the test config-
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uration, and variations were made to die opamps, capacitors, capacitor ratios, and processes. One

of the advantages of oversampling A/D converters is the tolerance of component mismatch allow

ing them to be implemented in standard digital CMOS processes. Part of the design process was to

establish what circuits are necessary to implement high resolution conversion widiout the need for

precision analog techniques.

7.1.1 Modulator Overview

The circuit diagram for the modulator is shown in Figure 7.1 This is a 2 phase circuit, with the

input sampled on §\ and accumulation and update of the feedback voltage occurring on fa. The

input switches are clocked with delayed phases to implement die bottom plate sampling scheme.

This type of sampling decreases die distortion caused by the effects of charge injection since the

sampling switches open into the fixed potential provided by the summing node [77]. A modular

circuit layout was used to facilitate changes in the modulator components, as detailed in

Section 7.5. Figure 7.2 shows the organization of the layout for one of the modulators along with a
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Figure 7.2 Block diagram of modulator layout and a die photo from a fabricated chip.

die photo of a modulator. To explore the effects of different circuit phenomena, several variations

detailed in Table 7-1 were designed and fabricated. All circuits were designed to operate from a

nominal 5V supply.
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TABLE 7-1 Modulator variations studied in this project.

Variation Opamp type
Capacitor
Type Process Extra Features

1 . Class AB Double Poly Orbit 2|im,
pwell

none

2 Class AB Double Poly Orbit 2um,
pwell

Correlated Double

Sampling Integrator

3 Folded Cascode Double Poly Orbit 2um,

pwell
none

4 Class AB Metall-Poly Vn2u,m,
nwell

none

7.1.2 Integrator Design

Differential circuits provide many advantages, including largersignal swings and better rejec

tion of power supply fluctuations. Fully differential circuits were used in all the integrator designs

since this also provides cancellation of odd order harmonic distortion. Opamp nonlinearity can

lead to significant performance degradation, so single ended opamps are avoided. Simulation

results have shown that large signal swings are needed by the modulators [79], on the order of

twice the input signal swing. Additionally, opamp gain should be larger than the desired decima

tion ratio and settling will not alter behavior if it is characterized by a single pole response. Since

single-stage CMOS opamps can satisfy these requirements, class AB and folded cascode opamps

were chosen.

Previous results have shown that the configuration with 2 integrators of gain of 0.5 maximizes

the SNR if both feedback voltages are of the same size [79]. However, by allowing the feedback

voltages to vary independently, integrator gains can be changed to take advantage of voltage scal

ing in switched capacitor networks. This increases the complexity of the circuit design, since more

reference voltages must be generated. Table 7-2 summarizes some simulation results for the case

where the feedback voltage vref2, as defined in Figure7.1, and the integrator gains are varied.

These simulations were performed using an input sinusoid of fixed amplitude 40 dB down from

full scale. Using different values for the integrator gains in the first and second integrators does not

have much of an affect on the simulation since changing the second or inner integrator gain only

affects the size of the input to the comparator. The number of design choices can be reduced by

forcing them to be the same. In the simulations, the feedback voltage denoted by vrefl was held to

the value 2.8 while vrefl was allowed to vary.
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The data in Table 7-2 indicate that the SNR can be maximized by lowering the feedback volt-

TABLE 7-2 Values for SNR in dB as a function of feedback voltage vref2 and integrator gains for a
2nd order A—£ modulatorwithfixed sine wave inputof amplitude -40dB down from full
scale.
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age vref2 and decreasing the integrator gain. The results are not very sensitive to the absolute

value of the vref2, but the value should be less than the feedback voltage vrefl. With lower values

of integrator gain, there is increased sensitivity to the integrator gain variation since the range over

which the SNR is maximized grows smaller. Other simulations have shown that lower integrator

gain values allow larger input signals and more dynamic range. Using this data, it was decided to

set the nominal integrator gains to 0.25, rather than the 0.5 value previously used. The sampling

capacitor size was chosen to be 0.5 pF.

Integrators can also be designed to use a technique called correlated double sampling (CDS),

which is a form of offset cancellation. This technique allows cancellation of DC offset and low fre

quency noise which limits the achievable dynamic range in switched-capacitor circuits and has

been used previously in A-Z modulators [127]. To implement CDS, extra switches were added to

provide the offset sampling feature as shown in Figure 7.3. The charge conservation equation can

be written for this integrator assuming that the opamp has a time varying offset voltage Vostn].

Cs((VI[n-l]-V0S[n-l])-V0S[n])-CI(V0[n-l]+V0S[n-i]) =C,V0[n] (7.1)

Solving for V0[n] gives:
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Figure 7.3 Integratorwith correlated double sampling.

C iV0[n] =Votn-H-^tn-lJ-Cs^ostn-n+VostnlJ+qVos^--] (7.2)

If the offset is not time varying and if Q = 2Cs, perfect cancellation is achieved. Low fre

quency noise is only averaged and so cancellation isn't achieved. For the test circuit, the correlated

double sampling scheme was implemented with Q = 4CS since previous integrators had been

designed with this capacitor ratio. Perfect DC cancellation is not achieved, but 1/f noise would be

reduced if it were the dominating factor. In the modulator, only the first integrator was changed to

the correlated double sampling configuration. The sampling clocks were changed by 1/2 clock

phase for this modulator to ensure correct sampling in the second stage.

7.1.3 Opamps

In previous designs reported in the literature, both class AB and folded cascode opamps have

been used in oversampling A/D converters. Class AB opamps are favored because they can pro-
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Figure 7.4 Folded Cascode Opamp.

vide large slew rates and large output swings. Folded cascode amps have fewer transistors in the

signal path so they have wider bandwidths than class AB opamps. Successful oversampling A/D

converters have been designed using both types of opamps. The schematic for the folded cascode

opamp used in this study is shown in Figure7.4 along with device sizes in Table 7-3. The sche-

TABLE 7-3 Device sizes for the opamp shown in Figure 7.4.

Devices Size Device Size

M1,M2 438/2 M7,M11 180/3

M3 450/3 M12, M16 44/3

M4,M8 225/3 M13, M17 44/3

M5.M9 225/3 M14, M18 18/3

M6, M10 90/3 M15, M19 18/3

matic for the class AB opamp is shown in Figure 7.5 and device sizes shown in Table 7-4. It is

similar to the one used by Castello [128].

A third opamp variation was designed for use in a l.2u,m process and is shown in Figure 7.6

and device sizes shown in Table 7-5. This variation of the class AB opamp uses a different config

uration for the input devices. Both class AB opamps have similar input referred noise contribu-
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Figure 7.5 Class AB opamp, variation1.

TABLE 7-4 Device Sizes for the Class AB opamp, variation 1.

Device Size Device Size Device Size

M1.M2 6/2 M15, M16 10/2 M29.M30 96/2

M3,M4 6/2 M17, M18 24/2 M31.M32 96/2

M5.M6 20/4 M19, M20 10/2 M33,M34 40/2

M7,M8 40/4 M21,M22 9/2 M35, M36 40/2

M9. M10 24/2 M23,M24 9/2 M37,M38 32/4

Mil, M12 16/2 M25, M26 4/2 M39, M40 32/3

M13, M14 16/2 M27,M28 4/2

tions. The second variation allows better matching between devices in the input stage, making it

more immune to power supply variations while the first variation has the advantage that the input

common-mode voltage can be at half the supply voltage. For maximum dynamic range, the second

variation needs to have the input common mode voltage set about a PMOS threshold voltage

below half the supply voltage.
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Figure 7.6 Class AB opamp, variation 2.

TABLE 7-5 Device sizes for the Class AB opamp, variation 2.

Device Size Device Size Device Size

M1,M2 30/1.2 M15, M16 24/1.2 M29,M30 48/1.2

M3,M4 30/1.2 M17,M18 9.6/1.2 M31,M32 19.2/1.2

M4,M6 18/2.4 M19, M20 5.4/1.2 M33,M34 19.2/1.2

M7,M8 24/1.2 M21,M22 5.4/1.2 M35, M36 9.6/2.4

M9,M10 24/1.2 M23,M24 2.4/1.2 M37,M38 9.6/1.8

M11,M12 24/1.2 M25, M26 2.4/1.2

M13, M14 9.6/1.2 M27.M28 48/1.2
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All opamps were simulated with SPICE providing the results listed in Table 7-6. For band

width and settling simulations, estimates were made of the loading due to routing and bottom plate

capacitor parasitics. For the Class AB 1 and folded cascode opamps, capacitor parasitics were cal

culated assuming double poly capacitors, while metal 1-poly capacitors were assumed for the Class

AB 2 opamp. Device models for the simulations were taken from process information supplied by

MOSIS. Additional simulations were made to characterize performance of the Class AB opamps

since a wide range of variation can be tolerated for the bias current, allowing a trade-off between
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TABLE 7-6 Summary of simulation results.

Parameter Folded Cascode Class AB 1 Class AB 2

Bias currents 275 uA 40 uA 40 uA

DC gain over full scale
swing

1270/5.3 V 823/5.9 V 995/6.0 V

AC low freq. small signal
gain

692 908 371

Small signal bandwidth 87 MHz 50 MHz 64 MHz

Phase margin 61° 40° 54°

Settling time, 0.5% 28.3 ns 61.1 ns 24.0 ns

SPICE device models Level 2,2.0 um Level 2,2.0 um BSIM,1.2um

gain and bandwidth. Settling time was measured by placing feedback capacitors on the opamp and

then capacitively coupling a step signal into the opamp inputs. This ignores the switch resistances

usually found in switched-capacitor integrators, providing an optimistic estimate of the settling

time. Settling time was measured for a 1 V transition at the output of the opamp.

The common-mode feedback circuitry is based on a dynamic capacitive update scheme [129]

shown in Figure 7.7. The capacitive update is applied during (J>2 to provide correction by the end of

phi2 phil

M2'
oa_outp

cmfb_ref

opamp cmfb_in

oa outn

— vcmo

C1 = C2 = 0.5 pF
C3 = C4 = 0.25 pF

Figure 7.7 Common mode feedback circuit using capacitive updates.

the phase when the output is considered valid. A value for the reference cmfb_ref is generated

using a set of ratioed devices usually included in the opamp layout The output common mode

voltage vcmo is set to analog ground.
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7.1.4 Comparators

Since a relatively large offset can be tolerated, a simple comparator based on cross coupled

inverters is sufficient for this application. Early designs made use of the comparator shown in

Figure 7.8 along with device sizes shown in Table 7-7 while later versions of the modulator incor-
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Figure 7.8 Circuitdiagram for comparator variation 1.

TABLE 7-7 Device sizes for comparator variation 1,

OUT-

M17

—,N+

M18

Devices Size Devices Size Devices Size

Ml 20/3 M7,M8 6/2 M15, M17 4/2

M2 10/3 M9, M10 6/2 M16,M18 4/2

M3,M4 20/3 M11.M12 4/2

M5,M6 10/3 M13, M14 4/2

porated the comparator shown in Figure 7.9 along with device sizes in Table 7-8. This comparator

TABLE 7-8 Device sizes for comparator variation 2.

Device Size Device Size Device Size

M1.M2 4.8/2.4 M7,M8 28.8/1.2 M13, M14 4.8/1.2

M3,M4 14.4/1.2 M9,M10 28.8/1.2

M5,M6 9.6/1.2 M11,M12 9.6/1.2

was used in both 2 um and 1.2 um without modification. Both comparators rely on cross coupled

inverters and regeneration. The second comparator allows the source of each transistor to be con-
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Figure 7.9 Circuitdiagram for comparator, version 2.

nected to ground or the power supply. This eliminates the body effect for the transistors in the

feedback configuration, allowing faster regeneration resulting in a faster comparator response

[130]. Offset is also lower when body effect is lessened.

In both cases, <J>j is the evaluate stage and <j)2 is the precharge stage. Both comparators can be

designed to be much faster than the settling time of the opamps so the choice between circuits is

not crucial. The decision from the comparator must be stored for use on fat0 select the reference

voltage for the integrator. In early circuits, a dynamic latch was used while in later circuits, an SR

latch was adopted.

7.1.5 Capacitors

Capacitor nonlinearity has been shown to cause harmonic distortion and performance degrada

tion. Capacitor nonlinearity for most MOS processes is not well characterized, so metal 1-poly and

double-poly capacitor variations were used in the experimental circuits. The double-poly capacitor

option is not available in all processes and involves extra processing steps and digital CMOS pro

cesses are beginning to favor a third layer of metal rather than a second poly layer. If metal 1-poly

capacitors provide good linearity performance, it will be more economical to use standard CMOS

processes over those which supply double-poly capacitors.

In simulation, values for first order capacitor nonlinearity were set to 10 to 100 parts per mil

lion per Volt, based on numbers reported in the literature [131], [132]. Below 20 ppm/V, only small

amounts of harmonic distortion are observed in simulation. These values for nonlinearity reflect
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the use of single-ended circuits. For differential circuits, first order nonlinearity cancels and

smaller numbers should be used. No attempt was made to account for higher order capacitor non-

linearity.

The capacitance between the metal1 and poly layers is much lower than for double-poly so

large amounts of area are needed to implement these capacitors. The large bottom plate parasitic

loads the opamp and limits the achievable speed of modulators. In this case, Class AB opamps

become more favorable since they can drive the larger capacitances. Other capacitor options do

exist, such as metal l-metal2 capacitors. They may provide better linearity since both plates are

matched, but the bottom plate parasitic is similar. This choice was not tried in any circuits, but

results from the metal 1-poly capacitors should reflect the performance achievable by metal 1-

metal2 capacitors. A third choice is a metal2-metall-poly sandwich capacitor.This structure could

reduce the bottom-plate parasitic and has been used in past work [133]. Layouts were developed

using these capacitors, but circuits were not fabricated.

7.2 Results from the Test Circuits

Each of the modulators was measured using the experimental setup shown in Figure 7.10,

High Quality
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Board

Bit Stream

Clock
Generator

Clock

Analysis Software Tool Kit

- Digital Filters, FIR and IIR

- Window Spectral Analysis

- Minimum Sinusoidal Error
V Analysis

Serial Data
Test Board>i

PC Parallel
Port

386/486
PC

Figure 7.10 Block diagram of the measurement setup,

which is described in Appendix G. Care was taken to minimize extra sources of noise in the test
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circuit since these can greatly alter the measurement results. Measurements were made at an over-

sampling frequency of 1.23 MHz and the resulting bit streams were filtered in software with a

sine3 FIR filter using a decimation ratio of 256. The SNR values were calculated using the Mini

mum Sinusoidal Error (MSE) method [71] on data sets of 1024 points. The sampling frequency

was chosen so that all of the modulators could be compared under similar operating conditions and

was limited by the modulator using correlated double sampling.

To determine dynamic range, a single set of measurementswas taken on a representative chip

to obtain a plot of SNR against input amplitude. The 0 dB SNR point was determined by fitting a

line to the data using linear regression and extrapolating. To verify that this method was satisfac

tory, repeated measurements were made on a single chip. While there was variation between mea

surements, the deviation was not large, almost always less than 3 dB.

The measured results for the chips are found in Table 7-9. The peak Signal to Noise + Distor-

TABLE 7-9 Measured results from the test chips.

Circuit Features

measured
dynamic
range

simulated

dynamic
range

measured
peak
SNDR

simulated
peak
SNDR

measured

peak SNR

Class AB opamp, double
poly capacitors, pwell

82.0 dB 85.1 dB 72.9 dB 74.0 dB 82.2 dB

Class AB opamp, double
poly capacitors, pwell,
correlated double sam

pling

91.6 dB 91.1 dB 78.8 dB 78.8 dB 91.2 dB

Class AB opamp, metal 1-
poly capacitors, nwell

85.7 dB 77.9 dB 86.4 dB

Folded Cascode opamp,
double poly capacitors,
pwell

93.8 dB 97.4 dB 77.7 dB 80.1 dB 93.9 dB

tion ratio (SNDR) for the folded cascode version was limited by reduced signal swing in the inte

grators.When quantizationeffects only are includedin simulation, the dynamic range in simulation

is found to be about 104 dB. Comparison of the results for the various opamp combinations indi

cates that 1/f noise is a strong factor in the dynamic range. The high values for peak SNR indicate

that harmonic distortion is the main source of degradation rather than excess noise generated at

high input levels.
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7.3 Comparing Circuits and Simulation Results

133

Measured 1/f noise data was available for the 2 um p-well process. Hand calculations were

made to estimate the total input referred noise of the various opamps. Equation 7.3 was used to

model the total input referred noise density, n(f),for MOS transistors. From fabricated devices, the

measured value ofKf was found to be 6xl0"12 V^F for an NMOS device.

vL =
Kf V2

ei WLC0XfHz
(7.3)

The resulting numbers were used to characterize simulation models developed using the tech

niques described in Chapter4. Figure 7.11 shows measured data and the data from the simulation

SNDR in dB

100.0 • Diff. Eqn. Model

80.0 -

60.0

40.0

20.0

0.0

-20.0

-100.0

Folded Case.
Data

torr. Dbl. Samp
lata

;lass AB
>ata

•80.0 •60.0 •40.0 -20.0 0.0

Input Amplitude in dB

Figure 7.11 Comparison of measured data (solid lines) and results from simulation models (dotted
lines).

models for SNDR as a function of input amplitude for a fixed decimation ratio of 256. The simula

tion model provides much better information than the basic difference equation model. Simula

tions match measured data to within about 3dB.
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An additional nonlinear term was used to model the distortion at high input levels. Simulation

values of around 300 ppm/V of nonlinearity were required to provide a good degree of matching.

In examining the experimental data, it is found that most of the distortion is due to third harmonics

which is expected for a differential implementation. At large input signal levels, there is a consid

erable amount of second harmonic distortion.

The large nonlinearity coefficient cannot be accounted for by the capacitors. Voltage coeffi

cients for double poly capacitors are expected to be well below 100 ppm/V since both plates con

tain similar materials [131].The 4 phase clocking scheme minimizes the effect of signal dependent

charge injection so this is probably not the cause. Tests were run with only 2 clock phases, which

should have forced charge injection from the switches to have an effect. The distortion increased

but only by a small amount, but not much above that which was already present. Nonlinearity in

the opamp gain function must be the probable cause of the distortion. SPICE transient simulations

using these opamps and level 2 models from MOSIS did exhibit a similar amount of harmonic dis

tortion. While low gain can be tolerated in these modulators, these numbers indicate that low gain

must be achieved with good linearity and low variation over the full scale range.

Parameters used in the simulation model are listed in Table 7-10. Excellent matching was

TABLE 7-10 Parameters used in the simulations.

Parameter

Class AB
Model

Class AB
Model with
CDS

Folded

Cascode

Model

Input standard deviation
for the 1/f noise generator

0.0000920 0.0000920 0.0000208

Standard deviation for

additive white noise

0.0001287 0.0001287 0.0001287

Combined opamp/capaci-
tor nonlinearity

325 ppm/V 325 ppm/V 500 ppm/V

Open loop opamp gain 1000 1000 1000

Positive opamp satura
tion level

3.5 V 3.5 V 3.5 V

Outer Feedback Voltage 2.8 V 2.8 V 2.8 V

Inner Feedback Voltage 1.8 V 1.8 V 1.8 V

Time Constants allowed

for opamp settling
4 4 4

Integrator Gain 0.25 0.25 0.25

achieved between circuits and simulation models. Even in the correlated double sampling case, the
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simulation was still able to predict the noise averaging effects. These results show that the pres

ence of 1/f noise dominated the circuit performance in actual circuit implementations. However,

dynamic range on the order of 15 bits still can be achieved in these circumstances without the need

for trimming or special circuit design techniques. Additionally, there is no evidence to suggest that

the nonlinearity of metal 1-poly capacitors is a problem. This shows that relatively high resolution

converters can be integrated in standard digital CMOS processes. However, 1/f noise must be

characterized to allow simulations and to predict worst case performance.

Figure 7.12 shows results for various decimation ratios for the first circuit listed in Table 7-9,

SNDR in dB

60.0 -

50.0

40.0
5.0 6.0 7.0

Simulation

8.0 9.0

Decimation Ratio

Figure 7.12 Comparison of simulation and measured results for changes indecimation ratio. Inputis
a sinusoid, 20 dB down from full scale.

with fixed input amplitude of 20 dB down from full scale. The simulation model predicts the

decrease in performance that actual modulators experience when large decimation ratios are used.

As the oversampling ratio is increased, the residual 1/f noise and white noise from the amplifiers

and the switches limits the performance of the modulator. Accurate simulation of this degradation

is necessary so designers can improve the circuits used in high resolution conversion.

FFT plots can be used to illustrate the degradation and also to show the degree of matching

between circuits and simulation. The top plot in Figure 7.13 shows the relative magnitudes of
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Figure 7.13 FFT plots of simulated and measured data. The top plot shows the ideal response
from a modulator, along with white noise and 1/f noise contributions. The bottom plot shows the

composite simulation along with an FFT plot from taken from one of the test circuits.
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white noise, 1/f noise, and quantization noise for a second order A-S modulator, with output deci

mated by 256 using asine3 filter. The simulations assume that the size of the sampling capacitor is

0.5 pF. The 1/f noise contribution is clearly larger than the other two. However, even if the 1/f con

tribution were removed, the white noise contribution is still dominant. Decimating by a factor of 2

would only cut the noise in half, leading to a 3 dB gain at best. In the lower half of Figure7.13, a

plot is shown comparing actual data from a chip and the simulation model combining all the noise

sources. The chip data shows harmonic distortion, but the matching for the noise floor is quite

good.

These results show that modelling techniques for oversampling A/D converters can provide

accurate results that match circuits. Issues such as the choice of opamp, capacitors, capacitor

ratios, or comparator have little effect on the overall design since 1/f and white noise dominate the

results.These results point to the fact that very high resolutionconversion can be achieved if chop

per stabilization techniques are adopted to minimize 1/f noise. These results were derived from

second order A-I modulators, but the simulation techniques can be applied to the design of higher

order modulators. Since circuits and simulation models have been shown to correlate, a future step

is to derive module generators for modulators to allow truly automated generation of ASIC over-

sampling A/D converters.

7.4 Module Generators for Oversampling Modulators

While oversampling modulators are tolerant to process variations, they still must be rede

signed when implemented in a new process technology. Analog design is time consuming and can

be the bottleneck in mixed signal designs. Module generators would allow designers to quickly

implement new modulators, avoiding the need to rely on the choices presented by a fixed cell

library. This would encourage even more design exploration to find trade-offs for interfaces com

prised of low and high order modulators. As mentioned in chapter 1, there has been recent progress

in the development of analog layout generation tools. Based on the design experience presented in

this chapter, accurate module generators for the analog loops could be developed. The next sec

tions discuss how to accomplish this.

7.4.1 Developing a Module Generator

Developing module generators for analog oversampling modulators should not be a difficult

task. A module generator for the basic integrator configuration has already been developed for use



138 Design and Implementation of the Analog Circuits

in automatic layout generation for algorithmic A/D converters [9]. The current integratorsynthesis

routines allow for optimization of opamp properties like bandwidth, gain, and power. Simulation

results for oversampling A/D converters have provided rules of thumb for opamp gain and settling

time. Foroversampling modulators, it is known that opamp swing should be maximized and input

referred 1/f noise should be minimized. To handlethe designof oversampling modulators, the syn

thesis routines for the opamps could must modified to optimize these additional parameters.

Synthesis and place-and-route tools are needed to integrate the module generators for integra

tors, voltage references, and comparators. The synthesis routines need to analyze the given specifi

cations and then translate the specifications to requirements on the integrators and comparators. In

addition to this, a generalized module generator will need to be able to synthesize several topolo

gies for the modulator. There are several different problems when synthesizing each modulator

topology, and these were briefly discussed in the previous.

It is not clear how this type of module generator should be used in a design system. A large

amount of knowledge is needed to successfully run most module generators. Often, some effort is

required to touch up or compact the layouts generated by these module generators. One of the

attractive features of oversampling modulators is that a single design can be used with different

decimation filters to give different resolutions. It seems reasonable to encourage reuse rather than

module generation. The best choice will probably be to include optional module generators in the

design system. If libraries need to be designed or if expert users want to experiment with new

topologies or higher performance, they can make use of the module generators. However, shorter

design cycles will be available to those who use library based cells.

Selecting a good topology for design is much more difficult than implementing a module.

While a common layout generation and opamp synthesis program could be used, a general module

generator would need different high-level design tools. The MASH and A-Z topologies can make

use of basic template designs. However, the modulators with higher order loop filters require a

coefficient design program to find the placements of the poles and zeroes, and the proper capacitor

sizes. In addition, tools that can handle the complex routing and capacitorsizing areneeded. There

are also the issues of stability and component requirements to consider.
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7.4.2 Module Generation and Topology Choice

The choice of topology is influenced by the application. The basic strategy is as follows. First

select a low order modulator and attempt to increase the decimation ratio to meet performance

requirements. If this can't be done, then increase the order of the modulator. Increasing the deci

mation ratio does not always bring higher resolution, and these effects can be studied. Opamp non-

idealities, sampling noise, and 1/f noise all limit performance so that practical decimation ratios

are less than 500 for 5 Volt systems. The use of high decimation ratios provides a good system

trade-off, since this provides more cycles for digital signal processing. However, this approach

does not work for very high speed conversion.

For higher sampling rate applications, there is no alternative but to use higher order modula

tors or modulators with multi-bit A/D and D/A converters. Higher order modulators are often

reported in the literature, but emphasis is placed on the analog portion. While lower decimation

ratios may be used for a given resolution, higher order digital filters, are required to suppress the

additional noise. These filters require more hardware and power. This trade-off is important since

well over 80% of the chip area usually is required for digital filtering.

While module generators can probably be easily developed, it isn't clear that they will be help

ful in the design automation process. In the end, designers will tend to rely on methods that they

are comfortable with. Unconditional stability at the expense of both analog and digital circuit com

plexity is available with multistage modulators. Simple circuits with high linearity, but with

unconditional stability are available from the modulators with higher order loop filter. Stability and

simple circuits can be achieved with first and second order A-Z modulators, but this comes with

spurious tones and high decimation ratios. No perfect solution exists, and good designs will

require more than a module generator to balance these conflicting demands.

7.5 Layout Techniques for Oversampling Modulators

While module generation would have aided the rapid prototyping of modulators, custom lay

out was used in this project. A modular design style was developed to simplify the layout tasks

[78]. The modulator was partitioned into integrators, a comparator, and a latch. The integrator was

further partitioned into sections for switches, capacitors, and the opamp.

Opamps were designed to be symmetric with common centroid geometry. The layout for the

Class AB 2 opamp is shown in Figure 7.14. All devices were surrounded with guard rings to pro-
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output cascode drivers bias and CMFB output cascode drivers

Figure 7.14 Layout of the Class AB 2 opamp.

vide isolation. The width of the layout was set by the size of the capacitor array, while the height

could be varied arbitrarily. A layout showing both metal1-poly and double-poly capacitors is

shown in Figure 7.15. Both arrays in tlie figure implement 0.5 pF sampling caps, 2.0 pF integrator

caps, and the 2 common mode feedback caps. The size discrepancy shows why metal 1-poly caps

have such a large bottom plate parasitic. The basic switch array for an integrator is shown in

Figure 7.16. The top routing channel is used for clocks and other digital signals while die lower

channel is used for analog signals. Both channels have a poly shield beneath them to minimize

coupling of signals to the substrate. The switches are routed so that no analog and digital lines
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Figure 7.15 Layout for double-poly and metah -poly capacitors,

cross. The switch array is composed of 2 symmetric blocks containing the input and summing

node switches and a third block containing the cmfb switches. Integrator structures are created by

tiling the 3 modules together.

For a full modulator, a comparator is needed for die feedback loop. The layout for the second

comparator variation is shown in Figure 7.17. A full first-order A-I modulator can be assembled

by tiling all the components to form an integrator in a feedback loop. Layout for a full modulator is

shown in Figure 7.18. The distribution tape for the design system provides the various modules

used in the project along with examples for tiling the modules into complete modulators with

orders from 1 to 3.
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Figure7.16Layoutfortheintegratorswitcharray.
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Figure7.17Layoutforthesecondcomparatorvariation.
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Figure 7.18 Layout for a first-order modulator.
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7.6 Summary

In this chapter, the design of the analog circuits was examined. Design information and circuit

diagrams were presented to document the cells currently in the library. It was shown that model

ling techniques could be used to accurately predict the perfermance of the analog modulator based

only on information that can be obtained from normal test devices. Results from fabricated circuits

were presented to verify that the models work for a variety of circuits. Performance was shown to

be limited by excess noise associated with the opamps. Design features like opamp or comparator

choice and integrator gain were shown to be secondary considerations in these cases. Also, it was

shown that the linearity of metal 1-poly capacitors is not a problem up to 15 bit resolution. In the

last part of the chapter, the development of module generators for the analog circuits was dis

cussed. The choice of modulator was found to be highly dependent on the application and the

entire implementation should be considered when making the choice.
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CHAPTER 8

Design Examples

Several design examples are examined in this chapter. The examples progress in complexity

and mirror the advances made during the project As more sophisticated tools were developed, bet

ter analyses could be performed. In the discussion, emphasis is placed on describing the design

process and what trade-offs were considered.

8.1 Analysis Principles for Oversampling A/D Converter Design

Before discussing design examples, a brief review of applications for oversampling converters

will be given. These converters are not memoryless.They must be run for a period of time before

the output samples are fully up to date which means that a single analogmodulator cannot be time-

multiplexed among several channels unless ample time is provided for transients to settle out. In

data acquisition applications, bandlimiting is provided for free when linear filters are used for the

decimation and averaging to increase resolution. Oversampling converters must use oversampling

which limits them to applications where the final sampling rate is many times slower than the

achievable gate delay in the process. At present, video rate converters seem to be out of the ques

tion.

While oversampling converters may not be useful for the fastest applications, they are quite

useful for high resolution applications. The 1 bit A/D and D/A converters used in the modulators

are by definition the highest linearity that can be achieved. With careful design, this fact can be

exploited to give resolutions greater than 20 bits [31 ], [134]. For modulators that use multi-bit A/D
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and D/A converters, oversampling and noise-shaping can provide increases in resolution beyond

the limitations of matching in a process.

In designing oversampling A/D converters, the basic design principle is the trade-off of resolu

tion for speed. Simple but accurate models can be developed to predict the amount of resolution

possible for a given oversampling ratio for a variety of modulator configurations. This can be

based on simulation results or on process information, as was shown earlier. Basic circuit tech

niques can be used to predict the maximum sampling rate that a modulator can achieve in a given

technology [135]. Once this is done, the design process can be simply stated as choosing a modu

lator, an oversampling ratio, and a set of digital filters that minimize the loss of resolution due to

aliasing.

The variety of modulator topologies and digital filtering options clearly complicates the initial

topology decision. Higher order modulators provide better noise shaping, and thus more resolu

tion, at a lower oversampling ratio. However, the increased noise shaping requires higher order

digital filters to suppress the out of band noise. Higher order filters may increase area, but area

could be reduced by time-multiplexing operations and running the digital filters at higher rates

than the analog loop. This trade-off might not be favorable due to the increase in power dissipation

due to the overhead of sharing circuitry. As discussed in chapter 4, there are complex trade-offs for

digital decimation filter design between speed, power, area, and the amount of noise aliased back

in band.

8.2 Example 1: Data Acquisition

8.2.1 Application

Data acquisition is the process of collecting data points from a slowly varying signal. Mea

surements are not necessarily made in a periodic time fashion. Since the input signal varies slowly

and since relatively large amounts of time are available, high resolution is usually desired. The

solution to this problem has been to use an integrating A/D converter with a precision current

source. However, resolution is limited by mismatches and very high resolutions are obtained

through trimming.

Oversampling A/D converters are attractive because they can achieve high resolution without

the need for trimming. Since there is quite a bit of time for conversion, large oversampling ratios
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are not a problem. Also, relatively simple, low order modulators provide the resolution without

having to worry about instability in higher order loops. A critical problem is the interference of

noise sources, such as 60 Hz AC power noise. Since a digital decimation filter is a necessity, it can

be designed to provide suppression at these critical frequencies, improving the performance of the

overall system.

8.2.2 Requirements

The first project undertaken with the design system was the design of fully integrated data

acquisition IC. The goal was to investigate some of the cross talk issues and to verify the function

ality of the designs. In the actual design of a data acquisition converter, several specifications need

to be considered.

The choice of the digital filter is not very difficult. Since there is interest in DC signals, the

passband of the filter only has to pass DC without attenuation and there are not other passband rip

ple requirements. For stopband attenuation, the main goal is to limit the amount of noise aliasing

back in band from the noise shaping process and to attenuate any out of band signals mixed with

the input The filtering function can easily be satisfied by a sine filter.

For the modulator, a second order A-Z modulator provides good resolution without stability

problems. There is some concern about the noise tones created by the nonlinear behavior of the

loop, but these should be minor since circuit noise will provide enough dithering to randomize the

patterns. For very high resolution applications, the first integrator should be chopper stabilized or

auto-zeroed to minimize the effects of 1/f noise. Capacitors can be made quite large to reduce

switch noise. In this case, an extra dithering source might be considered to randomize the limit-

cycle patterns.

The data acquisition system should try to minimize area and power but this can be a tricky

proposition. Bit-serial circuits seem favorable at these speeds, since they are small but they must

be run at significantly higher clock rates, which may make the power trade-off* unfavorable.

8.2.3 Implementation

No real specifications were created for this project and add-hoc methods were used in the opti

mization process. The standard second A-Z modulator with a Class AB opamp was used. Mea

sured data showed that the modulator would provide resolution gains up to decimation ratios of
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about 128. After this point, the 1/f noise of the first opamp dominated and further decimation

would only provide marginal gains in performance.

The FIR filter with coefficients implementing a sine3 filter was chosen for decimation. The

coefficients were not rounded since rounding adds noise to the response and can diminish the over

all converter resolution. The CIC comb filter was shown to require about the same area for decima

tion ratios of 64 to 128, and was not a viable candidate at the time since it was still being

developed. A decimation ratio of 64 was chosen, since it allowed the resulting chip to fit into the

cavity of a 40 pin DIP package when the chip was implemented in a 2 um process. If further deci

mation was required, it could be implemented off chip in subsequent processing. This is a feature

found in most commercial data acquisition chips based on A-I converters. A parallel to serial con

verter was added so data could be collected using the standard test setup.

During layout generation, some care was taken to isolate the analog portion of the circuit.

While the place-and-route tool used a true digital router, clever placement still allowed definition

of channels dedicated to analog signals. No digital and analog signals were allowed to cross and

some distance was allowed between the analog part and the rest of the digital circuitry.

8.2.4 Verification Strategy

To verify the circuit, extensive simulations were performed using ERSIM. The entire chip was

extracted, including the pads. The circuit was designed with a multiplexer to allow testing of the

digital filter independent of the analog modulator. In the simulation, the modulator does not inter

fere since the input to the digital filter was tied high when the simulation was run. It was verified

that the output sum for the FIR filterwas correctand that the datavalid pulses generated by the fil

ter were periodic and equally spaced in time. In addition, extensive simulations were run on the

scan path to verify functionality and to generate test vectors.

8.2.5 Results

The chip layout occupied 5.5 x 4.5 mm2 with pads and it runs offasingle 5V supply. It was

fabricated in a double poly 2 um process. Figure 8.1 shows the die photo of the chip. The chip was

found to be functional during early testing so the scan test mode was never exercised.

On this chip, it was possible to disable the digital circuits without affecting the analog circuits

allowing examination of crosstalk effects. Measurements were made with the filtering performed
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in software and with the on-chip filter. The SNR curves are shown in Figure 8.2 for the case where

SNDR
70.0 f—

50.0

30.0
With Software

Filter

With On-chip
Digital FilteF

10'-%5.0 -55.0 -45.0 -35.0 -25.0 -15.0 -5.0 5.0
Input Amplitude

Figure 8.2 Comparison of SNR curves when the filtering is performed on-chip and off-chip.

the modulator is sampling at 1.23 MHz. It can be seen that there is relatively little difference

between the 2 cases so crosstalk is not a major problem. However, it was noticed that extra tones

can be seen in the spectrum of the output of the chip. These tones are small in magnitude and con

tribute at most 1 dB of performance degradation. The probable cause of these tones is clock

feedthrough from the clock buffers. As seen in Figure 8.1, the clock buffers were placed relatively

close to the analog modulator.

Table 8-1 summarizes chip performance. A large portion of the power consumption is due to

TABLE 8-1 Summary of Results for the data acquisitiontest chip with decimation ratio 64.

Parameter Value

Technology Double Poly 2jim CMOS

Area of the chip core 3.6 x 3.0 mm2

Extrapolateddyn. range@ fs=1.23 MHz 74.9 dB

Measure Peak SDNR @ fs=1.23 MHz 69.4 dB

Maximum Output Sampling Rate 125 kHz

the digital portion of the chip. To investigate the possibilities, measurements were made with
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reduced supply voltages. The critical path of the digital filter is quite small and is not limited by the

current sampling rate. This means that extra speed is available and lowering the supply will not

cause a circuit failure. Table 8-2 shows a plot of measured power for different supplies. Power

TABLE 8-2 Measured power dissipation. Output data rate was 52 kHz.

Supply Voltage Digital Power Analog Power

5.0 V 67.8 mW 4.1 mW

4.5 V 52.7 mW. 3.1 mW

4.0 V 38.2 mW 2.2 mW

3.5 V 27.2 mW 1.5 mW

consumption can be decreased significantly by lowering the supply on the digital portion. Analog

dynamic range is lost when lowering the supplies, so a separate analog power supply could be used

for these circuits. Calculations have shown that over half the digital power is dissipated in the PLA

structures which use pseudo static circuits. These figures show that low power A/D conversion

should be easily implemented. Digital power can be reduced so that it is the same order of magni

tude as the analog power.

Since this chip was done in the early development stages of the design system, design time

was relatively long, about a 2 month design cycle for a single designer. Most of the time was spent

in developing the digital filter architecture and in simulation and verification. The modulator had

been developed previously.

8.3 Example 2: Linear Phase A/D converter

8.3.1 Background

In some cases, linear phase.is required to maintain signal characteristics. An all FIR filter

implementation of the decimation filters is necessary to achieve this. Design programs are readily

available for FIR filters and the coefficient rounding problems are not difficult to handle. This

makes them conceptually easy to deal with and implement. However, they can consume an enor

mous amount of resources, as will be shown in this example.

The all FIR case is not always a bad choice since FIR filters can be competitive with DDR filters

when the transition region is large. Also, for the case where phase response is important, FIR fil

ters may provide an advantage. In terms of complexity, an IIR filter with phase equalization may
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require just as many resources as an FIR filter for the same specifications. For this reason, it is

important to support the design of FIR filters for all stages of filtering.

The DECGEN compiler was developed to address this class of problems [51]. An A/D con

verter was designed to verify the design of the compiler and the supporting circuits. The specifica

tions for the circuit were for a 12 bit converter with 72 dB of stopband attenuation. The

specification is generic and can be used for speech coding. To reduce die area, the total decimation

ratio was limited to 64, but the circuits were designed to function with an output sampling rate of

in excess of 150 kHz. The basic frequency domain specification is shown in Table 8-4.

TABLE 8-3 Specifications for the Linear Phase Coder Design.

Parameter Value

Sampling Rate 140 kHz

Passband Edge 63 kHz

Passband ripple <0.01dB

Anti-alias attenuation above 67 kHz 70 dB

8.3.2 Implementation

Rather than using design estimators, the design was implemented using the DECGEN com

piler. DECGEN assumes a fixed architecture of cascaded CIC filters followed by a decimate by 2

FIR filter. A heuristic model is used to estimate the areaconsumed by various combinations of fil

ters. Once an optimal choice has been selected, netiist generators are invoked to write the structure

descriptions of the functional units.

The chip is comprised of 4 functional units as shown in Figure 8.3. The compiler calculated

2nd order
A-Z

Modulator

r Sine4, ^
decimate

by 8
.wordsize=16>

r Sine7,
decimate

by 4
^yordsize=24/

'128 tap FIR
decimate

by 2
^vordsize=18/

Figure S3 Functional units in the linear phase A/D converter.

the necessary wordlengths in each of the CIC filters in an effort to minimize area and the

wordlengths used in each filter are shown in the figure. The circuits and architecture templates
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have been discussed in Chapter 6. The use of single phase logic allows very high clock rates, cer

tainly much higher than required in this application.

Care must be taken when rounding the output values of each filter stage. Rounding adds quan

tization noise to the signal. If not enough bits are retained, the noise floor is set by the quantization

noise of the digital filter, which dominates over the noise from the modulator. No decimation filter

ing can then improve the signal to noise ratio above the theoretical 3 dB gain per decade of deci

mation. The DECGEN compiler currently takes care of these calculations, but the calculations do

not provide guard bits. In the current implementation, only the upper 12 bits of the first filter and

the upper 10 bits of the second filter were retained and used in the next stage. It would be better to

add 1 or 2 bits to the numbers that DECGEN provides.

The circuit was implemented with several testability features. Each of the filters can be iso

lated through multiplexers. In addition, clocks and input signals can be supplied from the pads and

intermediate outputs can be observed. Since many of the signals are serial, few extra pads were

needed to implement this strategy.

8.3.3 Verification

With this chip, several verification problems became evident The size of simulation files

required many hours to perform a simulation run. The design was partitioned so that each func

tional block was verified independently. As was the case with the previous chip, a DC signal was

used to verify that the FIR filters provided the correct sum at the output This proved to be an

insufficient test vector, since errors in the reset of the accumulator cannot be detected. Digit serial

data formats also complicated testing. Rather than observing outputs at a given time in the simula

tion, the proper start bit must be identified, and then parallel data must be reconstructed from the

digit data after several samples. To get the internal clock generators to start, a rather complicated

simulation sequence was required. Simulation times in ERSIM measured on the order of 4 hours

using an IBM RS 6000.

8.3.4 Results

The chip was 9.9 x9.6 mm2 in size in 2.0um CMOS and the die photo isshown inFigure 8.4.
The core size was 8.3 x 8.1 mm2. Quite a bit ofarea was lost due to mismatch in aspect ratios. An
accumulator reset error in the final FIR filter went undetected in simulation, so the chip was not
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Figure 8.4 Die photo of the linear phase A/D converter.

fully functional. The error manifested itself by distorting 6 out of 64 samples when examining the

finite impulse response. Output data was examined and was correct for the 58 samples that were

valid. A sample of the measured chip output is shown in Figure 8.5. This error has been fixed in

the architecture templates and a new version of the layout was generated and simulated but a new

chip was not fabricated.
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Figure 8.5 Measured output from the linear phase A/D chip.

8.4 Example 3: Speech Coder

8.4.1 Requirements

This circuit was designed to investigate the possibility of integrating a full signal acquisition

system as part of a real-time speech recognition system. A basic specification was defined for the

A/D response. The system designer specified a 2 sets of frequency responses summarized in

Table 8-4, and requested a response in between the 2. The basic design strategy was to minimize

TABLE 8-4 Frequency domain specifications for the interface for speech coding.

Parameter Relaxed Value Tightly Specified Value

Sampling Rate 20 kHz 20 kHz

Passband 120Hz-9kHz 120Hz-9kHz

Passband Ripple 0.125 dB 0.05 dB

Magnitude at 60 Hz -12 dB -20 dB

Magnitude at 10 kHz -14 dB -30 dB

Anti-alias above 11 kHz -28 dB -72 dB

area, but to also maximize the digital filter performance. The design called for an output sampling

rate of 20 kHz, and as much dynamic range as possible. Harmonic distortion is not a pressing
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issue.The large dynamic range is more importantsince the system must be able to pick up soft and

loud voices. To study the efficiency of the design tools, a 2 week constraint was placed on total

design time.

8.4.2 Design Study

To minimize area and power consumption, a 1.2 um process was chosen for implementation

since it was the smallest feature size available. The high-level design tools were applied and

design candidates were formed. Estimates for resolution were obtained using simulation models

andprocess data. Simulations indicated that a decimation ratio of 256 would provide about90 dB

of dynamic rangewhen a second order modulatorwas used. While a slight redesignof the modula

tor would have allowed true 16 bit dynamic range, it was felt that the presentmodulatorwas suffi

cient, since redesign time would be on the order of 3 weeks. For similar reasons, a third order

modulator was rejected. First ordermodulators were rejected due to the problems with tones in

baseband.

At this point, several design candidates were enumerated. Using the anti-alias requirements

and passband specifications, estimates for filter order were obtained. A partial list of the design

candidates is shown in Table 8-5. In terms of area, the all FIR filter solution is the worst case since

TABLE 8-5 Partial list of design candidates.

NO. Filter 1 Filter 2 Fitter 3 Filter 4 Filter 5

1 Sine4, dec.
by 8

Sine', dec. by
4

128 tap FIR,
dec by 8

2 . Sine4, dec.
by 8

Sine7, dec. by
4

8th Order

Elliptic

3 Sine3, dec.
by 32

Polyphase,
dec. by 8,
Order 31

3rd Order

Elliptic

4 Sine3, dec.
by 32

Polyphase,
dec. by 4,
Order 7

Polyphase,
dec. by 2,
Order 11

3rd Order

Elliptic

5 Sine3, dec.
by 32

Polyphase,
dec. by 2,
Order 3

Polyphase,
dec. by 2,
Order 5

Polyphase,
dec. by 2,
Order 11

3rd Order

Elliptic

speed requirements dictate that all the filters be implemented on separate processing units. The

same is true for the case where an IIR filter is used as a decimating filter. The remaining combina-
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tions made use of a dedicated hardware processor for the FIR filter, and a processor core to imple

ment the remaining filters.

For the FIR filter, we wish to implement asine3 response. This can be achieved with an FIR

filter or with a CIC filter. Area estimators showed that for a decimation ratio of 32, the CIC filter

would require 1.7 mm2 and the FIR filter would require 2.0 mm2 of area. Although the FIR filter
requires more power and area, it was chosen over the CIC filter since the area penalty was small

and since there was some doubt about making the CIC filter work in the 1.2 urn process.

To establish the choice for the remaining digital filters, estimators were used. Since it is essen

tially a software implementation, it is fair to compare the total number of operations based on

guesses for coefficient coding numbers. Using rules of thumb, the FIR filter approaches were

found to be too costly. What remainedwere the approaches based on polyphase N-th band filters.

The coefficient design tools run fairly fast, so it was possible to perform detailed design to

investigate properties of the remaining implementations. The aggressive specification providedby

the designer allowed 0.05 dB ofripple in the passband. The sine3 filter introduces about 0.14 dB of
droop across the passband which must be compensated in the final filter. It was thoughtthatonly a

minor deviation from the estimated order would be needed to achieve these results. Using an opti

mizationprogram, it was found thatexcessiveeffort was neededto compensate to 0.05 dB of rip

plein the passband andthat the polyphase N-thband filters introduce negligible ripple. After some

consideration, we decided not to compensate the 0.14 dB of droop and to use a latticewave digital

filter as the final stage. This filter required fewer operations to implement than the corresponding

biquad, and had better numerical rounding properties.

The remaining problem was to establish which combination of N-th band filters was the best

for this application. Detailed designwas performed on the 3 remaining candidates to obtaincoeffi

cients coded in the CSD notation. As a study in design metrics, the total number of nonzero bits

required to evaluateeachof the 3 caseswas tabulated as in Table 8-6. Since the designs aresimilar,

all 3 were translated to C and the C-to-silicon compiler was used to obtain the total number of

operations required. These numbers are also listed in Table 8-6.

Since the total decimation ratio is 256, the processorcan be designed to allow multiples of 256

cycles for implementing the digital filters. If 512 cycles are required, then the processor must run

at twice the rate of the modulator and will consume more power. If all of the implementations had
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TABLE 8-6 Summary of detailed design data for design candidates.

Filter Candidate
(Refer to Table 8-5)

Number of Non

zero coefficient
bits per output
sample

Estimated Number of
machine cycles required
per output sample

3 149 365

4 82 253

5 78 277

1 less than 256 cycles, the;y would all be equal y viable at this point since th

require roughly the same amount of ROM space. However, only 1design candidate met this crite

rion, so it was selected for implementation.

Using the results of the compiler, a finite wordlength simulation was performed. Since high

resolution was desired, we decided not to truncate the data words at the outputs of filters. This

meant that at least 16 bits were needed at the output of the filters. Figure 8.6 shows the results of

80.0

60.0

40.0

20.0 •

•90.0 -70.0 •50.0 •30.0 -10.0 10.0

Figure 8.6 Results from finite wordlength simulations for the overall chip.
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finite wordlength simulations for the SNR curves using the modulator simulation model. We chose

22 bits as the wordsize of the datapadi for the processor.

The composite frequency response for die filtering combination was calculated to show how

coefficient quantization affects the filter design. Figure 8.7 shows the composite frequency

magnitude in dB
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-250.0
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Figure 8.7 Composite frequency response for the decimate by 256 filter cascade.

response for the decimate by 256 filter. The calculations were made assuming that the sampling

rate was 20 kHz at the output, or 5.12 MHz at die input. Figure 8.8 shows the detailed passband

magnitude in dB
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-0.10 -

-0.15 -
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Figure 8.8 Detailed passband response.
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response. There is less than 0.2 dB of ripple in the passband from 0 to 9 kHz and the peaking in the

passband is caused by the ripple in the elliptic filter at the end of the cascade. The magnitude

responses from both the ideal and quantized coefficients are plotted in the figure. The discrepan

cies between the 2 arevery minor. Figure 8.9 isolates the region of the filter response from 0 to 160

magnitude in dB

0.0

-20.0
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-60.0

-80.0

-100.0
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n
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Quantized Coefficients

50.0 100.0 150.0
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Figure 8.9 Detail of overall frequency response for the region 0 to 160 kHz.

kHz. The quantization of the filter coefficients degrades the magnitude response significantly but

still maintains the anti-aliasing requirement and overall frequency domain specifications.

The entire design study required about 3 days and the layout was generated in half a day.

8.4.3 Verification

Experience from the second design example showed the value of choosing good test vectors.

Rather than choosing DC, we now chose a sinusoid with magnitude 3 dB down from full scale.

The full layout was extracted and ERSIM simulations were performed from the pads. The analog

modulator was again bypassed, and a bitstream created in software was injected into the first digi

tal filter. Simulations generally required about 8 hours to obtain roughly 200 output samples using

an IBM RS-6000. These numbers were then compared to the fixed point simulations performed

previously. This process was performed for input sinusoids whose frequency was chosen to be DC,

1 kHz, and 9.9 kHz. In all cases, it was shown that the magnitude response was as expected. The

sinusoid at 9.9 kHz was rejected, since it lies in the stopband of the filter. A difference of about 5
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LSB values was found between the fixed-point and the IRSIM simulations. This difference was

attributed to slightly different simulation methods in the 2 models.

Verification and simulation required about 1 week of time with most of the time spent waiting

for the simulations to finish.

This method of verification was shown to be very useful. A slight bug in the filter code gener

ators was detected in the first simulation of the extracted layout. While it'is costly in CPU time, the

results are worth the investment. More work needs to be applied developing tools for correlating

high level simulations to the circuit level simulation results.

8.4.4 Results

The total chip area required was 5.1 x 6.0 mm2. The die photo for the signal acquisition mod

ule is shown in Figure 8.10. The chip contains 2 parallel to serial converters to allow examination

from the output of both digital signal processing units. Performance results are tabulated in

Table 8-7. The modulator made use of metal1-poly capacitors, allowing fabrication in a standard

TABLE 8-7 Summary of chip results.

Parameter • Value

Technology 1.2 um standard CMOS

A/D Interface Area 3.2 x 4.0 mm2= 12.9 mm2

Extrapolated Dynamic Range 87 dB

Measured Peak SNDR 74 dB

Output Sampling Rate 20 kHz

Oversampling Ratio 256

Anti-alias performance > 65 dB over 0 to 9 kHz

Passband Ripple <0.15dBover0to9kHz

digital IC process.

Figure 8.11 shows a comparison of measured and simulation data for the chip. There is excel

lent agreement between the simulation for the signal acquisition module and the actual measured

data. At most, there is less than 3 dB deviation over the entire 87 dB of dynamic range, indicating

that crosstalk is negligible. The FFT of the output data was examined, and appears to be free of

interfering tones.
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Figure 8.10 Die photo for the speech coder A/D interface.

In Figure 8.11, a comparison is made with data from a modulator whose output was processed

insoftware with a sine3 filter. This data was taken from a test chip that contained only the modula-
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Figure 8.11 Measured results from test chips

tor without the digital filter. Note that there is roughly a5dB difference between the sine3 case and
the chip case. This was observed in simulation and is attributed to 2 factors. The sine3 filter does
have a droop attenuation, and thus decreases the total in band noise at high frequencies. The filter

designed in our case has very little droop across the pass band, so in band noise is at full strength.

The other factor is the aliasing of the shaped quantization noise from the modulator. The sinc3

transfer function is more efficient at rejecting this noise than the cascade filter, and thus a perfor

mance loss is expected.

The chip was functional up to an 8 MHz sampling ratewith the speed being limited by the ana

log modulator. Experiments were run to see how lowering the power supply affects power con

sumption and the results are shown in Table 8-8.

8.5 Other Examples

Elements of the design system have been applied to several other projects. A summary of

projects is listed in Table 8-9
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TABLE 8-8 Measured data for power consumption.

Supply Voltage Digital Power Analog Power
Measured

Peak SNDR

5V , 145 mW 1.2 mW 74.6 dB

4V 72 mW 0.6 mW 70.3 dB

3V 46 mW 0.3 mW 49.4 dB

TABLE 8-9 Projects using the design system.

Project Comments

Wavelet Transform Filter

Bank

Detailed design programs were used to analyze the imple
mentation of a wavelet transform filter bank.

Accelerometer Simulation environment was used to study the feasibility
of using noise shaping methods in a control loop for an
accelerometer.

Zoomer Implementation of a nonlinear filtering scheme for opti
mal decoding in data acquisition applications.

Superconducting A-I
Converters

Simulation models and detailed design tools were used to
design and implement high resolution converters using
superconducting circuits.

Wavelet filter banks can be designed using the tools for digital filtering [136]. A set of scaling

filters is needed to implement a wavelet transform processor. The design method for the filters

makes use of design techniques for quadraturemirror filters. One implementation of a wavelet fil

ter bank was studied using the framework. Estimates for different types of FIR filters were exam

ined to determine the feasibility of integrating a filter bank on a single chip. Mask layouts were

generated to compare FIR filters generated by the FIR decimate-by-2 architecture template and the

design tool XFTJR, which uses the FIRGEN program [70]. It was found that design exploration

using the HYPER system provided a smaller implementation than either of the architecture tem

plates examined.

Other projects have made use of various design tools to study implementations of new features

in oversampling techniques. The basic trend is to use the design tools in 1of 2 ways. Some design

ers use the high-level design tools to investigate applications of noise-shaping techniques to new

technologies. This is happening in the case of the accelerometer [84] and the superconducting A/D

converter [83].

Other designers make use of the library cells as they prototype new ideas. This approach was

used in the zoomer [37]. The C-to-silicon tools were used to study the implementation of a nonlin-
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ear filter. The chip was to be generated using a modified version of a library modulator. The non

linear decoding algorithm is easily expressed in C.

8.6 Summary

This chapter presented 3 extensive design examples using the oversampling converter design

framework. All examples exhibited a greatly shortened design cycle. The improved simulation

models were used to predict how the actual chip would perform based on process information for

1/f noise. The final section illustrated how various partsof the design system could be used to rap

idly develop new design ideas.
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CHAPTER 9

Conclusion

9.1 Design System Features

In this project, a design system has been developed to facilitate the design and analysis of sig

nal acquisition modules based on oversampling A/D converters. The design system has demon

strated 3 major concepts: effective design partitioning of mixed signal designs, the possibility of

accurate modulator modelling, and centralization of a variety of design styles to allow better

design comparisons.

9.1.1 Partitioning of the Mixed Signal Design Process

Providing common levels of abstraction for both analog and digital circuits provides the basis

for high-level design and a seamless design framework. The mixed signal design process was

shown to be complex with quality solutions being spread out over a large part of the design space.

To speed up the search and to allow comparison of widely differing solutions, the design process

was partitioned into tasks that could be easily automated and decision tasks where human design

ers were needed to resolve complex design issues.

The automated tasks were defined with strict data interface specifications but limited defini

tions for functionality. This allows provides the tools designers with the freedom to use any tech

nique to solve a problem and to further divide the task into smaller problems. Since interface

specifications were defined between the primary steps in the design system, the design tools can

localize data so that the designer must only deal with a small amount of information during the
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decision tasks. In addition, the interface specification allows designers to try several design tools

based on a single design specification facilitating design exploratioa Within the design system, the

coefficient design, architecture mapping, and layout generation tasks were all highly automated.

The choice of algorithm, choice of architecture, and high-level design tasks all involved deci

sion making. By examining the limited information required for the automated design tasks,

designers are able to rapidly define new design ideas and then focus on the more abstractaspects of

the design comparing the relative strengths and weaknesses of designs. This strategy was taken

one step further by providing tools that could estimate the performance that a detailed design tool

would give without having to run the tool. The strategy of hierarchical design estimation greatly

speeds up design, increases estimation accuracy, and limits the amount of design information that

must be stored from each design candidate.

Effective partitioning of the design process provided the means for a block oriented design

system. Design elements could be abstracted to simple black boxes that could be implemented in a

variety of ways. Designs can be mixed and matched to provide the best solution for a given appli

cation.

9.1.2 Improved Modulator Modelling

Improved models were presented for the noise-shaping modulators. The models were able to

generate data that had an excellent degree of matching with data from fabricated circuits. 1/f noise

was found to be a limiting factor in all of the designs examined. While chopper stabilization can be

used to minimize this noise, it can be desirable to implement modulators with only simple opamps

since it decreases design complexity and fairly high resolutions are still possible. Modelling can

provide good insight in these cases. The new models will have their largest effect in system design.

Using these models, system designers will be able to examine how specifications affect the imple

mentation of a design. In addition, designers will be able to study how aliasing in suboptimal deci

mation filters affects overall resolution.

The success in matching models and circuits shows that simple simulation models will be use

ful for other applications. These models have already been applied for the design of mechanicalA-

Z loops and to implementations of superconducting oversampled A/D converters. The real prob

lem will be in correctly identifying the limiting factors to incorporate in the model.
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9.1.3 Centralized Design Templates

Many different filtering styles have been incorporated in the design system. In addition, the

definition of a CAD framework facilitates the integration of new design tools. Designers now have

the opportunity to focus on comparing the merits of different architecture implementations and

algorithms. The reuse of parameterized designs encourages design exploration and shortens the

design cycle considerably. It also encapsulates information, allowing designers to use a module

without having to work out the details of the implementation. The centralization of this design

information should make it easier for digital system designers to incorporate these interfaces on-

chip with a minimal investment in design time. In addition, it will allow designers to experiment

on a single facet of the design and then to rely on the library to supply the other modules to imple

ment a full design. The final design example of the last chapter shows that the design cycle can be

reduced to a matter of days.

9.2 Extensions for D/A Conversion

In many applications, it is desirable to have on-chip A/D and D/A converters to form a codec.

The benefits of oversampling and noise shaping can still be exploited for D/A conversion and

many of the design techniques used in this project can be used. The basic oversampling D/A chan

nel consists of the components shown in Figure9.1. Interpolation filters are needed to bandlimit a

InterpolationN ^ f Digital \__^j Analog
Filters J ^Modulator/ ^l Filter

Figure 9.1 Block diagram of an oversampling D/A channel.

signal after extra zero samples are inserted to increase the sampling rate. The process is called

interpolation because the filters replace the zero samples with a value that is interpolated from the

original samples. The digital modulators take the higher sampling rate signal and perform the

noise shaping. They are similar to the analog modulators and implement the same discrete time

difference equations. A key portion of the modulator design is the implementation of the low reso

lution D/A converter. While it may be only a one bit output, attention must be given to the rise and

fall times of the output bitstream since the shape of the waveform can determine the ultimate reso

lution. Finally, analog filters must be used for reconstruction and smoothing of the signal.
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Most of the digital filter design programs can be adapted for interpolation filter design. Imple

mentation can be performed with the HYPER and C-to-silicon tools. The digital modulator is eas

ily implemented as an architecture template if the D/A converter cell is carefully designed. The

remainder of the modulator consists of adders and registers. The most difficult problem will be

designing and integrating the analog filters.

Switched-capacitor filters can be designed through ADORE [7]. However, these filters are sin

gle-ended and differential architectures are more desirable. At Berkeley, efforts are underway to

attack the general analog place and route problem [11], so it should soon be possible to incorporate

architecture templates for general analog filters.

9.3 Extensions for General Mixed Signal Design

As analog CAD tools mature, it will be interesting to see if they can be integrated within the

current design framework. This would allow the comparison of oversampling and Nyquist-rate

converters for the same design specifications. Oversampling converters do consume quite a bit of

area,but this may not be the deciding factor in fine-line technologies. In addition, higher resolution

without trimming is possible. The trade-offs in placement of different signal processing tasks in

the analog and digital domains can also be effectively studied.

In the analog domain, it appears that module generators will arise around architectures that

have desirable properties. Issues like testability and characterization will drive the development of

these architectures. It may be that few design alternatives will be available, and the value of com

paring many implementations at a high level will be diminished. It remains to be seen what

advances will be made in analog CAD and this will determine how system designers choose to

approach the mixed signal design problem.

9.4 Future Directions

Several future directions can be pursued with respect to the design concepts presented in this

project

9.4.1 Graphical Interfaces and Design

Within this project, PTOLEMY was used as the simulation system. However, something simi

lar to the PTOLEMY graphical interface could be used as the design interface for a hierarchical
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design exploration system. PTOLEMY makes good use of hierarchy, and simulation can currently

be performed with mixed levels of abstraction. PTOLEMY does encourage the use of a block dia

gram design methodology and reuse. However, the data structures in PTOLEMY are geared

towards simulation. Adequate interconnect information is not readily available in the schematic

views of PTOLEMY unless the simulation is being performed at the gate level. A set database

views with different facets would need to be created as connectivity is discovered during the top

down design process.

9.4.2 Refinements in the Libraries and Tools

The task of library definition and management needs to be addressed with a more unified

approach. Currently, the task of macrocell generation for a library is a long process. As new librar

ies are formulated, the functionality of cells may change so that architecture templates become

obsolete. A more desirable approach would be to define ways of expressing architectural informa

tion so that designs could easily be ported from library to library. With VHDL, this is becoming a

possibility, but it is by no means a standard.

In addition, a method is needed for evaluating designs in the architecture library. Most users

will not pay attention to the implementation details. Some circuit techniques may be marginal or

problematic, especially as designs are scaled and moved between different process technologies.

Reuse means that good and bad designs will be reused, so some facility is needed to judge designs

and to dictate when redesigns should be considered.

There is a pressing need for tool development in the formal verification of designs. The design

tools presented in this project speed up design, but verification of the layout and of the functional

ity now take most of the design time. Methods are needed for establishing appropriate test vectors

at all levels of simulation and for easing the process of comparing the results at different levels.

This problem is not as simple as for pure digital circuits since the analog circuits need to be simu

lated and verified concurrently with the digital portions.

9.4.3 Automating the Design Process

The title of this dissertation alluded to fully automatic generation. While much of the design

process was automated, several key steps were left out on the assumption that a human designer

would be better able to address the problem. It is possible to fully automate the design exploration

at each level of the hierarchy, but there is a problem of defining a proper objective function for
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optimization. The cost function will need to cover several objectives and methods must be estab

lished for assigning relative costs to quantities to allow fair comparisons. It will most likely be a

highly nonlinear cost function, so mathematical optimization will not be easy. Other optimization

schemes may provide better insight. Recent developments in the field of Operations Research and

in Systems Engineering show promise for studying these problems [137].

9.5 Conclusion

We have presented a CAD framework for the analysis, design, and implementation of over-

sampling analog to digital interfaces. High-level analysis methods were incorporated with modu

larity and reuse of structures to provide a framework that allows rapid design space exploration

with expert advice supplied by estimation tools. Instead of relying on black box compilers, the

designer becomes actively involved in finding and exploiting beneficial design trends. Case studies

for 3 chip designs implemented with the design system tools were presented to illustrate the vari

ety of problems that can be addressed. The framework builds on the previous work in silicon

assembly to provide rapid prototyping of designs. Examples have shown that designers from many

fields can take advantage of this open framework to prototype new ideas with out having to invest

in the design effort to create the surrounding components or tools.
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APPENDIX A

The OCDS Distribution

A.1 Introduction

The tools described in this dissertation were gathered into the Oversampling Converter Design

System (OCDS) distribution. Included on this tape are magic layouts, design programs, SDL

design templates, PTOLEMY models, C simulation models, documentation, and examples. The

distribution requires about 80 Mb of disk space.

Throughout this appendix, it is assumed that the environment $OCDS has been defined.

$OCDS refers to the home directory of the OCDS installation. All files are referenced from this

directory. For the LAGER and OCTTOOLS packages, references are made assuming the installa

tion is similar to that of the zabriskie cluster at Berkeley.

The OCDS distribution does not contain the C-to-silicon tools. These tools are found in the

Lager directories, under ~lager/common/c-to-silicon and ~rl, which is held within the c-to-silicon

directory.

A.2 Requirements

For a full installation, several tools and conditions must be met They are listed here.

1. The install makefiles will work with GNU make version 3.58. Earlierversions may
work, but Lager Gnumake did not correctly detect dependencies that were up to date.

2. Priorto beginning the install, the OCDS tape should be read into some directory. You
must then set $OCDS to the root directory before proceeding.
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3. OCTTOOLS 5.1 should be installed.

4. LAGER 2.1 or later should be installed and available, with the c-to-silicon tools.

5. PERL should installed. If you don't have it, get it from an ftp site such as uunet.uu.net
or jpl-dewax.jpl.nasa.gov.

6. f77, the fortran compiler should be available.

7. PTOLEMY version 0.4-alpha should be installed.

Subsets of the full install are available. If you don't have PTOLEMY, you can use the C simu

lators provided. LAGER is only needed if you plan to generate layouts. The C-to-silicon tools,

however, are necessary for some architecturemapping and compilation tasks. It may be possible to

convert the FORTRAN code to C using the f2c compiler. This would eliminate the need for f77.

All of the programming code was written with OCTTOOLS 5.1. Later or earlier versions may

work, but there is not guarantee.

To begin the install process, read the file $OCDS/README and $OCDS/Makefile. All the

information for the install in found there. The distribution comes with binaries compiled for Sparc

architectures running SunOS 4.1.3.

A.3 Typical User Setup

If OCDS has already been installed, you must add several lines to your .cshrc file before you

can use the system. First, be sure that $OCDS/bin is in your path. You can do this by executing

commands similar to those listed below in your .login file:

# Gives path to root directory of OCDS
setenv OCDS /usr/tools/siera/OCDS
# Adds $OCDS/bin to path
set path = ($OCDS/bin $path)

In addition, you must add commands similar to the following ones in your .cshrc to set up your

account for running the OCDS version of pigiRpc, necessary for PTOLEMY simulations:

### For PTOLEMY ###
if (! $?ARCH) setenv ARCH '/bin/arch4
setenv PTOLEMY ~ptolemy
setenv PIGIRPC $OCDS/bin/pigiRpc
set path= (. ~ptolemy/bin "ptolemy/bin.$ARCH $OCDS/bin /usr/ucb $path)

Also, append the contents of $OCDS/lager to the lager file in your home directory. This will

allow LAGER to find the architecture libraries.
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Be sure to check that these things are set in the correct places when you have problems execut

ing parts of the design system.

A.4 Organization

In $OCDS, there are many directories. This section will discuss the highlights and point out

various features available. The section will start with documentation and tutorials, and then move

on to the standard programs and cell libraries. The next section provides a discussion of some fea

tures not integrated into the design system.

A.4.1 Tutorials and Documentation

Tutorials are found in the directory $OCDS/hypertext. The files are in Framemaker format,

and meant to be read using Framemaker hypertext features. The README file gives a quick over

view of the material. The tutorials are set up to introduce design with oversampling A/D convert

ers, then to guide a designer through the process from specification to layout Postscript versions of

the files are given for those who don't have Framemaker.

Most of the detailed documentation is found in this dissertation. The manual pages reproduced

in Appendix B are stored in Framemaker format in $OCDS/manpages. Use the file manpages.book

to access all the files and print them out at the same time.

A.4.2 Examples

Examples are contained in $OCDS/examples. There are 4 directories of examples: 8bit,

comp2schem, design, and speech. 8bit contains the files for the example used in the tutorial and

speech contains the files for the example given in Appendix C. In the design directory, there is a

README file that describes the examples, which include the design of biquads, linear phase

equiripple FIR filters, polyphase N-th band filters, sine filters, and coefficient quantization exam

ples. In the comp2schem directory, there are 2 examples of filter design and automatic translation

to PTOLEMY flowgraphs.

There is an exercise to introduce the oversampling A/D converter stars in PTOLEMY. This is

found in $OCDS/ptolemy/tutorial. The file, in Framemaker format, is called ptlab.doc. The exer

cise will show you how to assemble your own simulations using the added stars. It is assumed that

the user knows how to used PTOLEMY already.
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A.4.3 Design Programs

The Microsoft Excel macro sheets are found in $OCDS/excel. The README file in that direc

tory describes how to load the files on a PC compatible running Windows and Excel v4.0.

The filter design programs are contained in $OCDS/design. The basic set of-programs consists

of biquads, doredi, optiir, and polyiir for IIR design, and sinwin and lpfir for FIR design. The pro

gram fr is used to plot magnitude and phase responses. sCandi is used for coefficient quantization

along with digest Most users will not use doredi, optiir, and digest since scripts have been written

so that users will not have to deal with the input and output formats. They can, however, be used if

you know how to set up the input files.

The $OCDS/lib directory holds the dblib package. This package is further described in

Appendix D, and is used by programmers to implement interfaces to the design database.

Programs for architecture mapping are contained in $OCDS/mapper. The OCDS installation

provides the programs c2sil, coef2rl, coef2sil, decfir, pisogen, and writeSDL. Architecture tem

plates are found in $OCDS/architecture. This directory holds these architectures:

• clkmodule - clock generator.

• firldl, firld2, firld3 - FIR filters for L/D = 1,2, or 3

• lambda - a C-to-silicon target architecture

• piso - parallel to serial converter

System support programs reside in $OCDS/system. The programs vmake, parser, and the pro

grams used for documentation all have sources here.

A.4.4 Layout Generation

A single layout generator program was supplied with OCDS for LAGER. This program is

called leafgen, and will instantiate a single leafcell in a design. Some architecture templates use

this, and source is found in $OCDS/layout_gen/leafgen.

A.4.5 Cell Libraries

Cell libraries are provided with SDL descriptions and magic layouts. In $OCDS/cellib, several

dpp libraries and aTlmXager library are supplied. These cells are used by the various architecture

templates supplied with OCDS. For analog cells, modulator layouts are found in $OCDS/analog/
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leafcells. They are fully compatible with LAGER and can be instantiated in any LAGER design.

Some of these cells use double poly capacitors, so use the technology file $OCDS/technology/

scmos2p4.tech21 with magic v4 to view them. Also, for generating OCT from magic files, use

$OCDS/technology/mag2oct for translation. From OCT to magic, use $OCDS/technology/to-

magic-gea

A.4.6 PTOLEMY

The files to run the oversampling A/D stars in PTOLEMY are found in $OCDS/ptolemy. The

program comp2schem for translating component view data to PTOLEMY schematic views is

found in $OCDS/ptolemy/comp2schem. The restof the directory is set up like the PTOLEMY dis

tribution for SDF stars. $OCDS/ptolemy/doc holds the documentation for the stars in troff format.

There is a makefile in the directory for printing things. $OCDS/ptolemy/osad holds various flow-

graphs for demonstrations. $OCDS/ptolemy/pigiRpc holds the sources for making the OCDS ver

sion of pigiRpc. $OCDS/ptolemy/src contains the source for the MSE and PFF4 programs called

by stars in the OCDS distribution. Manual pages for both of these programs are found here.

$OCDS/stars contains the source code for the stars added into PTOLEMY.

A.5 Extra Features

A.5.1 Design Programs

In $OCDS/design/extras, you will find some programs that were examined, but not integrated

into the design system. There is a C translation of Deczky's least-pth error criterion design pro

gram along with some programs for rounding FIR coefficients.

A.5.2 Mapping

In $OCDS/mapper/Iaker, there is source for mapping biquad descriptions on to a switched-

capacitorfilterarchitecture. This program could be used with ADORE to generate switched-capac-

itor filters automatically.

In $OCDS/packages/decgen, the completedecgendistribution is given. While none of the dec-

gen design programs were integrated into OCDS, several enhancements were made including area

estimation routines. Only I/O interfaces for the database need to be added to incorporated these
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architecture mapping techniques into OCDS. Decgen provided a high-level design interface that

can be used without OCDS. See $OCDS/README for more details.

A.5.3 Analog Layout

In $OCDS/analog/test_leafcells, a number of older versions of modulator layout are found.

These layouts have some feature that enhanced the testability of the modulators. Most modulators

have switch structures that allow observation of different internal analog nodes.

The file $OCDS/analog/templates.tar.Z is a compressed tar file containing various magic lay

outs for building modulators. Included in this archive are the 3 opamps mentioned in this disserta

tion along with spice simulation decks from extracted layouts. Several versions of capacitors,

comparators, and modulator layouts round out the archive.

A.5.4 C simulation

In $OCDS/Csimulation, there is a complete stand alone simulation package. See the

README file in that directory for details.

A.5.5 Chip Layouts

In $OCDS/chips/chipcif, the OF files for all of the chips described in Appendix H are given.

The SDL files for generating these chips are not given in the release, but can be found at Berkeley

on optical disk.



187

APPENDIX B

Design System Program
Descriptions

B.1 Description

The design system integrates many different types of CAD programs:This appendix will give

the manual pages for the design system programs.
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NAME

biquads

program to design coefficients for cascaded biquad IIR filters.

SYNOPSIS

biquads [options] view

OPTIONS

-L [logfile] file to use to log output information.

-O run OPTIIR after synthesis.

-s save intermediate input and output files.

DESCRIPTION

biquads is a front end to a collection of programsfor design cascaded biquad IIR filters. The pro
gram takes as input a component view with sufficientproperties to direct the design process and a valid fre
quency specification. These properties must be set in the component view.

FTLTER_CLASS - one of LOWPASS, fflGHPASS, BANDPASS, or BANDSTOP
ORDER - defines the order of the filter to be designed.
FTLTER_STRUCTURE - must be set to BIQUAp_CASCADE
MAG.APPROX - one of ELLIPTIC, BUTTERWORTH, CHEBYSHEVI, or CHEBY-
SHEVII
SAMPLING_FREQ - set to the sampling frequency in Hz. This, value is used to reference
the frequency points given in the frequency specification.

See parser(l) for information about the frequency specification declaration. If a deviation from a
classical design is desired, enter the final frequency domainspecification for the filter, biquads uses the band
edge informationand the band edge deviation specification to performthe initial design. If the -O option was
requested, OPTIIR is then invoked, and the program tries to move the classical design towards the desired
one. Note that none of the programsusedby biquads has the ability to distinguish if it has met the specifica
tions or not The user must check to verify that the design has succeeded. If not, another iteration must be
used and the filter order can be increased, or the specificationmade more lenient The program fr(l) can be
used to automatically check the frequency specification.

The program works by translating component view information into ASCII text files that serve as
inputs to the filterdesign programs. The programsusedare DOREDI,by G. F.Dehner and OPTIIR, by M. T.
Dolan and J. F. Kaiser. The resulting ASCII output files are parsed, and information stored into the compo
nent view. By saving the intermediate files, users can run these programs by hand.

AUTHOR

Monte F. Mar, mmar@zabriskie.berkeley.edu

SEE ALSO

parser(l), fr(l)

REFERENCES

Programs for Digital Signal Processing, IEEE Press, 1979.



Description 189

NAME

c2sil

script used to compile a program written in RL to parameters for an SDL file description of a pro
cessor.

SYNOPSIS

c2sil [options] viewname

OPTIONS

-v Verbose mode. Shows information about the compilation process.

-L [filename] Log file for output.

-s Saves all intermediate files created in the compilation process.

-a Specifies that the subroutine stack should be left out of the processor.

-1 Specifies that the logical unit and the address processing unit should be left out of
the processor (i.e. use the Lambda processor architecture rather than PUMA).

DESCRIPTION

c2sil is a Perl script written to automate the process of compiling a program written in RL onto a
processor architecture using the C-to-silicon tools. The script requires that an RL file with the same name as
the input view must be in the same working directory as the input view, and the file must have an extension
Jc

To make this script work correctly, you must have the following programs in your path: kc, jas,
compact-parw, espresso, KAest, and LAest

When the script is invoked, the first step is to call the RL compiler with the Jc file as input. When
the Jcfile was generated, information about the target processor was included in the Jc file. This script makes
the assumption that the processor architecture was either PUMA or Lambda. PUMA is the default, and
Lambda is used when the -1 flag is specified. The input code is compiled to a register transfer language
description with a .s extension and a summary of the compilation information is printed to stdout (or to the
log file if selected) and to a file with the extension .script Next the jas assembler is called on the .s file to
create a representation of the microcode. If the -a option was used, jas will attempt to analyze the state tran
sitions and assign unique state representations so that a stack is not necessary. Jas creates a Lager style
parameter file with the extension .par, which is immediately transformed by the script to the extension
.par.org. This file is then processed by the script compact-parw, which attempts to compact the PLA descrip
tions using the program espresso. The output of this process is a file with the .par extension. This file can
then be used in DMoct to get the processor layout As a final step, the .par file is parsed by an area estimation
program, either KAest or LAest depending on the architecture. The estimates are then written to the log file
and into the database.

While the process is highly automated, several features can be exploited by performing the compi
lation by hand. The kc compiler was written in common lisp, and can create simulation models, both fixed
point and floating point These can be very useful in debugging program descriptions. A profiler is also
available for the simulators generated by die compiler. The profiler provides information about machine
cycle counts for the target processor.

BUGS

The script relies on the user's environmentfor program paths.
Abnormal exits from programs may not be handled correctly.
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AUTHOR

Monte F. Mar

REFRENCES

For details on using the C-to-Silicon Tools, refer to

L. E. Thon, K. Rimey, and L. Svensson, "From C to Silicon", in R. W. Brodersen, editor, "Anatomy

of a Silicon Compiler", pages 251-268, Kluwer Academic, Norwell, Mass., 1992.
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NAME

candi

program to quantize coefficients, providing CSD coding.

SYNOPSIS

candi [options]

OPTIONS

-a Run candi in an automatic mode

-i [filename] input file created by digest

-o output file listing information about the candi session

-c output file listing only the final coefficients

DESCRIPTION

candiis a program that will allow interactivequantizationof filtercoefficients according to a point-
wise specification. The program uses the specification to guide the process and to maintain a feasible set of
coefficients. The input for the program is generated using the programdigest, which creates a matrix repre
sentation of the network.

This version of candihas been modified to accept command line arguments and to provide an auto
mated design mode. Within the program, there are basically 3 methods for examining the search space: a
univariate search, a local search, and a multivariate search. In the interactive mode, users can try the differ
ent search methods in an effort to minimize the number of nonzero bits in the coefficients. In the automated

mode, only a univariate search is performed.

The program searches the coefficient space to establish feasible sets. Thus execution time is
directly proportional to the number of coefficients being quantized. For large numbers, the search time can
be quite long.

AUTHOR

Rajeev Jain

REFERENCES

See the candi and digest manuals for more detailed explanations.

R. Jain, et al., "Efficient and Accurate Mutiparameter Analysis of Linear Digital Filters Using a
MultivariableFeedback Representation", IEEETrans,on CAD, CAD-32:225-235,March, 1985.
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NAME

coeGrl

code generator to translate quantized coefficients to rl code descriptions

SYNOPSIS

coef2rl [options] viewname

OPTIONS

-L [filename] write log to filename

-m [integer] integer indicates ordering when merging several RL files

DESCRIPTION

Coeflrl is a code generatorprogram for digital filters. It expectsan input the component view for
mat containing quantized coefficients. The program works for FIR, Biquad IIR, Lattice Wave Digital IIR,
and polyphase N-th band IIR filters and could be extended for other topologies. A straightforward mapping
from coefficients to code is performed. No optimization is applied to the code, compilers should be able to
figure the proper procedure. The output code is in the RL (Rimey's Language) format, suitable for the kc
compiler.

In the current state, the program handlesdecimation correctiy, but this may not be true for interpo
lation.

The outputcode is validRL code,but mightbe modified to add extra flags or data conditions. The
wordlength used in the processor is established using the INTERNAL_WORDLENGTH property. The
properarchitecture file to use is indicatedthroughthe useof the ARCHJFUJB property. When the -m flag is
used, the generatedcode forms a subroutine that can be called by another module. The program will anno
tate the database with a property called MERGEthat allowssubsequentcalls to coeflrl to identify the order
ing of the subroutines. If coe£2rl is called on a view that has instances, it will generate code in the correct
order by using the MERGE property to order the module calls. This capability is only supported for 1 level
of subroutine calls.

This program will generate an output with the same name as the input view with the extension .k
appended.

AUTHOR

Monte Mar

REFERENCE

For more information on the syntax of RL, see

Kenneth E. Rimey, "A Compiler for Application-Specific Signal Processors", Ph. D. Thesis, U. C.
Berkeley, January, 1990.
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NAME

coef2sil

code generator to translatequantized coefficients to silage code descriptions

SYNOPSIS

coef2sil [options] viewname

OPTIONS

-L [filename] write log to filename

-m [integer] integer indicates ordering when merging several silage files

DESCRIPTION

Coeflsil is a code generator program for digital filters. It expects an input the component view for
mat containing quantized coefficients. The program works for FIR, Biquad IIR, Lattice Wave Digital IIR,
and polyphase N-th band IIR filters and could be extended for other topologies. A straightforward mapping
from coefficients to code is performed. No optimization is applied to the code, compilers should be able to
figure the proper procedure. The output code is in the silage format, suitable for the kc compiler.

In the current state, the program handles decimation correctly, but this may not be true for interpo
lation.

The output code is valid RL code, but might be modified to add extra flags or data conditions. The
wordlength used in the processor is established using the INTERNAL_WORDLENGTH property. The
properarchitecture file to use is indicated through the use of the ARCH_FILE property.When the -m flag is
used, the generated code forms a subroutine that can be called by another module. The program will anno
tate the database with a property called MERGE that allows subsequent calls to coeflsil to identify the
ordering of the subroutines.Ucoef2sil is called on a view that has instances, it will generatecode in the cor
rect orderby using the MERGE property to order the module calls. This capability is only supported for 1
level of subroutine calls.

This program will generate an output with the same name as the input view with the extension .sil
appended.

BUGS

The output programshave not been verified with a silagecompiler. This should be done before the
code is released

AUTHOR

Monte Mar, mmar@zabriskie.berkeley.edu

REFERENCE

For more information on the syntax of silage, see

P. Hilfingerand J. Rabaey. DSP Specification Using the Silage Language. In R W Brodersen, edi
tor,Anatomyofa Silicon Compiler, chapter 15, pages 199-220. Kluwer Academic, 1992.
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NAME

comp2schem

program to convert information in the component view to a PTOLEMY flowgraph.

SYNOPSIS

comp2schem [options] view:type

OPTIONS

-L [logfile] file to use to log output information.

-t attempt to trace the nets, recreating the connectivity in the component view.

DESCRIPTION

complschem translates information found in the component view to the schematic policy followed
by PTOLEMY. The output of this program can be used as a galaxy in a PTOLEMY simulation. In order to
map the instances in the component view, complschem makes use of the PTOLEMY_MODEL property.
The value of this property is the actual ptolemystar or galaxy that should be implemented in the flowgraph.
A filecalled cellpathmust be placed in thecurrentworking directory. In this file, the paths to the PTOLEMY
stars must be included, so complschemcan locate the stars and find informationabout terminals and model
parameters.

In order to map component view data to a PTOLEMY star, complschem uses a lookup table to
establish relationships between component view propertiesand PTOLEMY model parameters. There are 2
sources for establishing the lookup table. The file comp2schem.def outlines system wide correspondences
for mappingproperties. In addition, mappings can be specified in the input text file for the componentview.
These values are stored in the PTOLEMY.PARAMETERS bag.

If the -t option is used, the program assumesthateachcomponentviewinstancehas only 1 terminal
with the property INPUTand 1 terminalwiththe propertyOUTPUT. A 1 to 1 mappingis then used to create
a connectedflowgraph with terminalsfor a galaxy. If the -t option is not used, the stars are placed randomly
in the flowgraph and the user can connect them in any order.

Besides the output schematic view, the program will sometimes create files that will be loaded as
parameters when the flowgraph is run. This is due to the fact that long strings of coefficientscan't be stored
in the OCT database according to the policy implemented by PTOLEMY. These files are given names like
component_view_name.array, and thereformat is explained in the definition of the componentviewpolicy.

AUTHOR

Monte F. Mar, mmar@zabriskie.berkeley.edu

SEE ALSO

DMoct(l), vmake(l), sdl(5)
Oversampling Converter Design System documentation for details on OCT policies.
Oversampling Converter Design System documentation on PTOLEMY SDF models.
The ALMAGEST: PTOLEMY Users Manual
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NAME

decfir

program to calculate area estimates and parameters for a family of FIR decimation filters.

SYNOPSIS

decfir [options] filename

OPTIONS

-d debug mode. Shows information about the impulse response on stderr.

-L [filename] Log file for output.

-A If this flag is used, the remaining command line options are enabled.

-f [filename] File containing the integer coefficients

-m [string] An arbitrary name for the design. Output files will use this as a base name.

-1 [integer] Length of the impulse response for the filter.

-r [integer] The decimation ratio for the filters.

-w [integer] The internal word length to use in the filter.

-c [integer] The number of digital clock cycles for each analog cycle, or the L/D ratio.

-S [integer] Use coefficientsto implementa sine window. The power of the window is deter
mined by the argument to the -c flag. Input to the -f option is ignored.

-a [integer] Only do the area estimation.

DESCRIPTION

decfir calculates the parameters necessary for the implementation of a decimating FIR filter. The
architectures have been described in the Lager structure description language (SDL). The FIR filters make
use of a structure similar to those reported by Friedman and Leung.

If the decimation ratio is large and the filter length is suitably short, it is possible to use a very effec
tive polyphase decomposition of an FIR filter. Since only samples at the output rate need to be calculated,
the filteronly needs to store the number of variablesgiven by the L/D ratio. The L/D ratio is the length of the
filter divided by the decimation ratio. To save on hardware, it is possible to update the state variables at a
higher rate than the incoming sample rate.

Normally, the program will take component view information for input Only the view name needs
to be specified;all the informationshould be found in the view. The programcan also be used in stand-alone
mode by specifying the -A flag. As a design example, suppose you wanted to implement a filter of length
164 and you want to decimate by 64. The L/D ratio is 2.56, but it must be rounded up to 3. We choose to
place the coefficients in a file called fcoefs and to call the design newfir. The command line to use is:

"elias 21> decfir -f fcoefs -m newfir -1164 -r 64 -c 3

decfir will return some statistics on area consumption based on the current implementation of
SCMOS cells using lambda = 1.0|im. It will also create several files ending with .esp and one file ending
with .par. These files are the parameter files used by the Lager Silicon Assembly system.

Instead of specifying a value for length and a file of coefficients, the -S flag can be used. In this
case, coefficients for a sine window will be calculated. For the L/D=l and L/D=2 cases, a counter scheme is
used eliminating the need for a coefficient ROM.
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AUTHOR

Monte F. Mar mmar@zabriskie.berkeley.edu

REFERENCES

Friedman, V., et. al., "A Dual-Channel Voice-Band PCM Codec Using Sigma Delta Modulation
Technique", IEEE Journal of Solid State Circuits, vol. 24, No. 2, April, 1989, pp. 274-280.

Leung, B. H-K., "Multi-Channel PCM A/D Interfaces Using Oversampling Techniques", Ph.D.
Thesis, U. C. Berkeley, Nov. 1987.
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NAME

doc

program to document steps in the design process

SYNOPSIS

doc [options] designname

OPTIONS

-L [logfile] file to use to log output information.

-s [string] string names the stage of the design being completed.

-e use emacs rather than vi for data entry.

-r record data found in the estimates bag into the documentation.

DESCRIPTION

This program creates a separate view called documentation in the current working directory where
consecutiveentries are held. A template is written describingthe design and asking various questions. After
a design stage is completed, extra informationcan be added to the file through a vi or emacs editing window.
The program can be used in the vmakescript to force designers to makedocumentation entries.

The results of this program can be printed out using the printdoc program.

AUTHOR

Monte F. Mar

SEE ALSO

printdoc(l)
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NAME

fir

program to calculate magnituderesponses for a varietyof filters.

SYNOPSIS

fr [options] view

OPTIONS

-L [logfile] file to use to log output information.

-f [string] use the string to find the nameof the first filter instancein a cascadedimplemen
tation.

-i use ideal coefficients to calculate the response (default).

-c use coded coefficients to calculate the response.

-n [integer] specify the number of point to calculate the frequency response (default 256).

-m use xgraph(l) to display the magnitude data.

-p display phase data. Only works if -f option is not specified.

-a display aliasing data. Only works if -f option is specified.

DESCRIPTION

This program is meant to be used as part of the Oversampling Converter Design System. The input
should be an OCT component view with information about some filter designs, especially the FTLTER_-
STRUCTURE property, which determines the algorithm used to calculate the response. Depending on the
design state, the frequency response can be calculated using ideal coefficients or coded coefficients.

The program is able to calculate the composite response of a cascade of filters if they are specified
in the input component view. If decimation is used in a cascade, the program will calculate the response with
respect to the highest sampling rate in the system, i.e. the input sampling rate. The number of points speci
fied will refer to the number of points in used in at the lowest sampling rate. Thus if the number of points is
256, and a cascade consists of a decimate by 8 followed by a single rate filter, there will be 2048 total points
in the output response.

The program writes out the following files, using the viewname for the file stub.

view.mgn - magnitude response in decibels.
view.phase - phase response.
view.alias - composite alias if a full scale signal were applied.

The output files are written in two columns, with the frequency parameter first and the data param
eter second. This format is suitable as input for xgraph(l). The alias file consists of a summation of all the
images that will be aliased into the low pass band.

If frequency domain specifications are found in the input view, the program will calculate the
response at these points and check to make sure that the magnitude specifications are within the tolerances.
If the response is outside these bounds, error messages are logged, and the program returns a non-zero sta
tus.

Optionally, the data created by the program can be displayed automatically if the proper command
line options are specified.

BUGS
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The program is currentiy set only for decimation. Modifications are needed to extend to the case
that handles interpolation in the filter cascades.

AUTHOR

Monte F. Mar
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NAME

lpfir

program to calculate coefficients for equiripple FIR filters.

SYNOPSIS

lpfir [options] filename

OPTIONS

-c interpret the input file as an oct view (default),

-a [filename] interpret the input file as ASCII input

DESCRIPTION

lpfir implements the equiripple FIR design program presented by Parks, McClellan, and Rabiner.
The input specification can either be in an OCT component view or ASCin. The program has been extended
to allow for arbitrary band descriptions to be entered. This feature has been used to design filters with droop
compensation.

The ASCII input description is almost identical to the one accepted by the FORTRAN implementa
tion of this program published in the original paper.Two examples of ASCII inputs will be given here.

3213 00

0.0 0.10.2 0.35

0.425 0.5

0.0 1.00.0

10.0 1.0 10.0

This example comes form the original FORTRANsource code for the algorithm. Note that this ver
sion requires no commas between data entries. This input data specifiesa length 32 bandpass filter with stop-
bands from 0 to 0.1 and 0.425 to 0.5 and passband from 0.2 to 0.35 with weighting of 10 in the stopbands
and 1 in the passband. The grid density defaults to 16.

The new mode is called type 4. To use the type 4 filter specification, you must specify the number
of bands. The type 4 specification is meant to modify a regular band pass filter to compensate for droop or to
provide droop in the passband. Three groups of points are stored. The first group gives a listing of the fre
quency points. The second group gives the expected magnitude of the filter response. The third group give
the weights associated with the magnitude values. An example is given below.

12842021

0.000000 0.250000 0.275000 0.500000

0.000000 0.0250000.050000 0.075000

0.100000 0.125000 0.150000 0.175000

0.200000 0.225000 0.250000 0.275000

0.3000000.3250000.3500000.375000

0.400000 0.425000 0.450000 0.475000

0.500000

1.000000 1.018466 1.033445 1.050814

1.070699 1.093252 1.118650 1.147104

1.178857 1.2141941.2679580.000000



Description 201

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.000000

1.000000 1.000000 1.000000 1.000000

1.000000 1.000000 1.000000 1.000000

1.000000 1.000000 1.000000 1.000000

16.000000 81.000000 256.000000 625.000000

1296.000000 2401.000000 4096.000000 6561.000000 10000.000000

This example describes a 128 tap low pass filter with a passband modified to compensate for a sine
shaped droop in the passband. Note that there are 21 frequency points defined, and that the standard stop-
band is not weighted uniformly.

The program writes output data similar to what the FORTRAN program originally printed. If an
OCT input view was specified, the impulse response will be stored in the same view.

OCT component views suitable for lpfir can be generated using the vmake utility:

BUGS

The code has not been tested thoroughly. The maximum length for a filter can be set in a header file
in the source code.

AUTHOR

Monte F. Mar

REFERENCES

J. H. McClellan, T. W. Parks, and L. R. Rabiner, "A Computer Program for Designing Optimum
FIR Linear Phase Digital Filters", IEEE Transactionson Audio and Electroacoustics, Vol. AU-21,
No. 6, December 1973, pgs. 506-515.
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NAME

parser

parser for converting .adi files to OCT component view, .adi files are the input to the oversampling
converter design system.

SYNOPSIS

parser filename

DESCRIPTION

parser is called by the vmake program. The main function is to map text entries into the policy
defined for the OCT component view. The input syntax for the parser is defined in terms of several blocks
which are described in the following paragraphs. The parser supports C-style syntax for comments. A sam
ple input file is given here.

name speech;
subcells {
dsm2pb2 DSM;
firldl FTLTER1;
fourth FILTER2;
halfFTLTER3;
e2 FTLTER4;
}
pinlist {
parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;
input parent IN;
input DSM IN;
midlDSMOUn
midl FBLTER1 IN;
mid2 FTLTER1 OUT,
mid2 FDLTER2 IN;
mid3 FTLTER2 OUT;
mid3 FILTER3 IN;
mid4 FILTER3 OUT;
mid4 FBLTER4 IN;
outFILTER4 0UT;
out parent OUT;
property {
SAMPLING.FREQ 1.0;
DEC.RATI0 256;
ARCH_FHJE firisc2;
}
freqSpec{
0.000 2.00 0.05dB 1.0 edge;
0.225 2.00 0.05dB 1.0 edge;
0.275 0.00 60.0dB 1.0 edge;
0.500 0.00 60.0dB 1.0 edge;
design {
fr-fFILTER2;
}
mapping {
coef2rl;
}

The name line gives the name of the component view that the data will be written to. This need not
correspond with the actual name of the file. In what follows, ordering of the lists must be maintained, but
some Lists are optional.
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The instances contained in the view are given in the subcells list Each entry in the list consists of 2
fields. The first field gives the name of the view to be instantiated. The second field is the instance name. If a
component view is not found using the information in first field, the parser will attempt to create the compo
nent view.The file cellpath in the current working directory is used to provide paths to search for this file.
The component view will then be created in the current working directory. This list is optional.

The pinlist consists of entries with 3 fields separated by spaces and terminated by a semi-colon. It is
used to specify connectivity of instances found in the view. If the terminal is found on the parent, the first
field is set to parent and the second field gives the name of the terminal. The third field denotes the property
to be associated with the terminal. Valid property values are INPUT, OUTPUT, CONTROL, CLOCK,
TEST, MISC. If the terminal is found on an instance, the first field is used to specify the instance name that
the terminal is connected to. The second field gives the name of the terminal. The third field assigns a net
name to the terminal. Two terminals are connected by assigning them the same net name in the pin list. This
list is optional.

The freqSpec list provides the ability to specify custom frequency responses. Each entry in the fre
quency specification consists of 5 fields. The first field is for the frequency point The second field is the
expected magnitude value. Optionally after this entry, you can put the character string 'dB' to indicate that
the value is in dB. The next field is the deviation from the expected magnitude value. Again the string 'dB'
may follow this. The field following the deviation is a weight value to specify the emphasis to put on meet
ing the specificationat that point This is currently only used by the lpfir design program. The final keyword
'edge' should be added to entries that make up the band edges. This list is optional.

The property list consists of entries with 2 fields. The first field gives the property name, and the
second gives the property value. Only a single field is read after the property name, so strings with spaces are
not allowed.

Following the property list, 3 lists can be given. These lists are titled design, quantize, mapping,
and smv. Each list consists of entries that are command lines for a given program, without the view name
specified. The parser will add the view name automatically. These 4 lists are translated to the DEPEN
DENCY bag that will be used by vmake for time stamp information.

The parser works by using 2 passes. In the first pass, data is parsed in to internal data structures. On
the second pass, data is written to the component view. If an error is encountered, the parser will attempt to
continue until a new section is recognized. At the end, the parser will print the number of errors encountered.
It returns a non-zero value if parsing was not successful.

AUTHOR

Monte F. Mar

SEE ALSO

vmake(l)
Oversampling Converter Design System documentation for details on OCT policies.



204 Design System Program Descriptions

NAME

pisogen

program to create parameters for the libraryparallel-to-serial converter.

SYNOPSIS

pisogen [options]

OPTIONS

-w [integer] wordsize of the bit parallel input

-m [filename] name for the parameter file to be created, use an .esp extension.

DESCRIPTION

Pisogen creates the state machine description needed by the piso architecture template. The output
file is suitable for as input for espresso, allowing the resulting PLA to be minimized. In addition to this file,
a second parameter file must be created by the user.This file must include the following information:

(statewidth 7)

(wordlength 17)

(inwidth 7)

(outwidth 7)

(espresso "filename.esp")

Statewidth, inwidth, and outwidth all have the same value, which can be calculated as log2(-
wordlength) + 2.

AUTHOR

Monte F. Mar
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NAME

polyiir

program to design N-th band polyphase IIR filters

SYNOPSIS

polyiir [options] viewname

OPTIONS

-L [logfile]

-A

-m [filename]

-p [filename]

-o [filename]

-s [filename]

-n [integer]

-c [integer]

-a [integer]

-b [integer]

-w [filename]

-1'

DESCRIPTION

file to use to log output information.

Use the ascii command line. If this flag is used, must specify at least then,c,a,b
flags.

If not used, o,n,c,a,b,w,l,s flags are ignored and viewname is not necessary.

debug at level given by integer.

write magnitude response to this file.

write phase response to this file.

output file for the design data.

save high precision coefficients to this file.

number of points in freq. response (default 256).

fraction of 1.0 for the filter cutoff frequency.

number of attenuation zeroes desired.

number of branches (ie decimation ratio).

save wdf coefs. in save file rather than biquad coefs.

approximate linear phase response.

Polyiiris basedon the algorithmpresentedby Renforsand Saramaki. It will designcase 1 Nth band
IIR filters.Only a subset of the entire algorithm was implemented,so convergence problems may be encoun
tered for high orders of attenuation zeroes.

The program can generate coefficients for biquad implementations, or wavedigital filterimplemen
tations using all pass filters in the branches.

From the component view, the property ORDER defines the number of attenuation zeroes,
DEC_RATIO determines the number of branches, and FILTER_STRUCTURE determines whether biquads
or wavedigitalcoefficients are calculated. The cutoffis determined from the frequency specification.

BUGS

Sinceonlypartof the algorithm was implemented, convergence problems are encountered above4
attenuation zeroes for the nonlinear phase case, and above about 9 attenuation zeroes for the approximate
linear phase case.

AUTHOR

Monte F. Mar
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REFERENCES

M. Renfors and T. Saramaki, "Recursive Nth-Band Digital Filters - Part I:Design and Properties",
IEEE Transactions on Circuits and Systems, Vol. CAS-34, No. 1, Jaunuary 1987, pgs. 24-39.
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NAME

printdoc

program to print documentation collected with the doc program

SYNOPSIS

printdoc [options] documentationview

OPTIONS

-L [logfile] file to use to log output information,

-s [filename] print documentation to this file.

DESCRIPTION

This program prints the documentation entered using the doc program. Entries are sorted according
to the order that they were entered, and according to name. The output file is in ASCII format.

AUTHOR

Monte F. Mar

SEE ALSO

doc(l)
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NAME

sCandi

script to quantize coefficients, providing CSD coding.

SYNOPSIS

sCandi [options] viewname

OPTIONS

-L [logfile] run candi in an automatic mode

-s save intermediate files created for digest

-a run candi in automatic mode.

DESCRIPTION

sCandi is a Perl script written to automate the process of file processing for using the candi pro
gram. This allows complete automation from filter coefficients stored in the component view to quantized
coefficients written to the component view.

The script first calls the program coefldig to create an input for digest. Next digest is run to gener
ate an input file for candi, which is called immediately after. Candi can be run in automated mode, where
only a univariate search is performed. In the interactive mode, other searches can be performed that will
minimize the number of nonzero coefficients further. After candi, candildb is called to write the coefficients
into the database.

AUTHOR

Monte Mar

SEE ALSO

coef2dig(3), digest manual, candid), candi manual, candi2db(3)

REFERENCES

See the candi and digest manuals for more detailed explanations.
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NAME

sincwin

program to design FIR coefficients for filters that have powers of sin(x)/x for the magnitude
response.

SYNOPSIS

sincwin [options] view

OPTIONS

-L [logfile] * file to use to log output information.

-o order for the sine window (power that sin(x)/x is raised to).

-b number of bits for the coefficient representation.

-r decimation ratio to be implemented.

-t use truncation to obtain output coefficients. Default is to use rounding.

DESCRIPTION

Sincwin calculates the filter coefficients to implement a window that has a sin(x)/x response raised
to a power. The coefficients are easy to generate. If the decimation ratio is R and the order is N, the length
will be R - N + 1, and the coefficients are given by the N convolutions of a pulse train of length R. The pro
gram only works for orders from 1 to 6.

The program will optionally round the coefficients or truncate them. Quantization will only occur if
the number of bits in the coefficient representation is set smaller than that required by the largest coefficient.

If any of the flags o, b, r, or t are not specified, the program will look for the information in the input
view. The ORDER property corresponds to the o flag, COEF_WORDLENGTH to the b flag, DEC_RATIO
to the r flag, and CODING.METHOD to the r flag.

AUTHOR

Monte F. Mar
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NAME

vmake

design manager program for the Oversampling Converter Design System

SYNOPSIS

vmake [options] view:type

OPTIONS

-L [logfile] file to use to log output information.

-d print out verbose information on the make process.

-n run vmake without execution of commands.

-t [design Iquantize Imapping Ismv]
run the make process, but stop at the end of this target

DESCRIPTION

vmake is a design manager for the Oversampling Converter Design System. Starting with a input
text file, vmake converts the text file to an OCT component view, then proceeds to track design progress,
verifying that targets are up to date. This program was meant to be a general purpose program that could be
extended to handle general processing and time stamp checking of arbitrary OCT views.

The programs expects to find a time stamp information within a DEPENDENCY bag in the OCT
views that it processes. The DEPENDENCY bag is created by the program parser(l) which is called by
vmake. All time stamps are handled by vamke itself, so none of the programs executed by vmake must han
dle this. In the case of input text files and OCT views that do not require DEPENDENCY bags, time stamps
are inferred from the last date of modification obtained from the stat(3) function.

AUTHOR

Monte F. Mar

SEE ALSO

parser(l), stat(3)
Oversampling Converter Design System documentation for details on OCT policies.
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NAME

writeSDL

programto convert top level component view to SDL description of a module.

SYNOPSIS

writeSDL [options] view:type

OPTIONS

-L [logfile] file to use to log output information.

DESCRIPTION

Once all the design steps have been finished in the Oversampling Converter Design System, a the
final component view has enough information to allow implementationof each of the instances in the view.
But without extra information about connectivity, a full structure_master view cannot be developed from the
component view. The purpose of this program is to attemptto writea skeletal version of an SDL file for the
input component view.,

The basic algorithm for writeSDL is as follows. Each instance in the view is examined to see if
contains mapping information specifying a structure.master view corresponding to the instance. If it does
not the property LIBRARY_CELL is searched for. Oncea structure_master view hasbeen located, informa
tion about the formal terminals and formal properties is recorded. If the structure_master view does not
exist, anattemptis made to call DMoctto generate it After this information is gathered for each instance,
the sdl file is generated. Since information about interconnect is not guaranteed in the component view,
writeSDL createsthe SDL file in pinlist format which can be easily edited.

This program assumes that mapping tools create parameter files by taking the SMV parameter
name and then prepending the component instance name. This must be done to insure uniqueness of the
property names in the case where 2 SMVs have properties with a common name, but different values.
Within the pinlist the program sorts the terminalsand groups them according to the terminal type assigned
in the SMV by the TERMTYPE property or also by the NETTYPE property, if the formal property was
attached to a net. This was done to help users sortout the terminals when editing the output sdl file.

The program will attempt to match names on component instances with formal SMV terminals in
orderto preserveconnectivity. If there is a match between the names, the program will attempt to find the net
thatthecomponent view terminal is attached to,andthenassign thatnet nameto the net in the SDL file. This
means that if the correct terminal net specification is placed in the component view, the resulting SDL file
will be valid, and DMoct can be invoked as part of the vmake process.

To connect modules that have different wordlengths, writeSDL provides the information specified
in the INTERNAL.WORDLENGTH, BINARY.POINT, and WORD.ALIGNMENT properties. For the
input net of an instance, correct connection is specified by aligning the binary point with that of the preced
ing instance. The binary pointsshouldbe offset to the rightby the amount specifiedin the WORD_ALIGN-
MENT property. This alignment is performed using the net-base and term-base properties of the SDL
language.

AUTHOR

Monte F. Mar

SEE ALSO
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DMoct(l), vmake(l), sdl(5)
Oversampling Converter Design System documentation for details on OCT policies.
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NAME

candi2db

program to parsethe output coefficient file from candi, writing results to the database

SYNOPSIS

candi2db [options] -i [filename] viewname

OPTIONS

-L [filename] write log to filename

-i [filename] input file created by candi

DESCRIPTION

candildb is a support program written so that the sCandi scriptcouldbe realized. The main prob
lem was to get the coefficient information from the candi output into the database in the component view.
This translation presents a problem, since the database names for the coefficients and the names used in
Candi areusuallynot the same.To get around this problem, the program coefZdig createstags andannotates
these to the database. The job of candildb is then to readthe tagsout of the database and then sort the coef
ficients from the outputcoefficient file so that the proper quantized valueis storedin the database.

AUTHOR

Monte Mar

SEE ALSO

sCandi(l), candi(l), coe£2dig(3)
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NAME

coef2dig

program to translate database coefficients to format suitable for the program digest

SYNOPSIS

coef2dig [options] viewname

OPTIONS

-L [filename] write log to filename

-o [filename] input file created by candi

DESCRIPTION

CoefZdig is a support program written so that the sCandi script could be realized. Candiis used to
generate quantized coefficients that still meet a design specification. This program translates a set of coeffi
cients of a known filter type to an input file suitable for digest.In order to do this, the program reads the data
base, identifying the proper filter type using the FILTER_STRUCTURE property, and then annotates the
coefficients with the tag that is used in the digest file, and the description is written.

This program need not only be used in the sCandi script. The file generatedby this program can be
modified and used with digest to obtain frequency response information and other analyses can be per
formed. See the digest users guide for more information.

Note that the frequency specification points that candi uses for evaluation are the ones held in the
FREQUENCY_SPEC bag in the component view.

AUTHOR

Monte Mar

SEE ALSO

sCandi(l), candi(l), candi2db(3), digest manual
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NAME

KAest

program to estimate area that a PUMA processor will take

SYNOPSIS

KAest [options] viewname

OPTIONS

-L [filename] write log to filename

-w write results into the database

-1 [float] size of lambda in microns

DESCRIPTION

KAestperforms area estimation based on the parameter file for a C-to-silicon design. The area of
the majorfunctional blocks is calculated,and then overallarea is estimatedusingan assumedfloorplan.

The routine is based on simple mathematical formulas.

AUTHOR

Monte Mar

SEE ALSO

c2sil(l)
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NAME

LAest

program to estimate area that a Lambda processor will take

SYNOPSIS

KAest [options] viewname

OPTIONS

-L [filename] write log to filename

-w write results into the database

-1 [float] size of lambda in microns

DESCRIPTION

LAest performs area estimation based on the parameter file for a C-to-silicon design. The area of
the major functional blocks is calculated, and then overall area is estimated using an assumed floorplan.

The routine is based on simple mathematical formulas.

AUTHOR

Monte Mar

SEE ALSO

c2sil(l)
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NAME

optiir

program to optimize the design coefficients for cascaded biquad IIR filters.

SYNOPSIS

optiir

DESCRIPTION

Optiir is a program that will attempt to alter a transfer function to meet a specified deviation. The
program makes use of sequential unconstrained optimizations to force convergence. Each of the optimiza
tion problems has been formulated so it can be solved used the Fletcher-Powell algorithm.

This program is taken directly from the IEEE collection, and requires input data to be in the format
described in the documentation. It reads stdin and writes stdouL A call can be made to optiir from within the
biquadsprogram. Biquads formats the information in the proper format.

It has been noticed that this program will give differentt output results on different computers. It
appears to be compiler dependent

SEE ALSO

biquads(l)

REFERENCES

Programs for Digital Signal Processing, IEEE Press, 1979.
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APPENDIX C

An Example Design Trace

Tutorials for the design system can be found in the distribution. The root directory of the

installation should be set in the environment variable OCDS. The tutorials can be found in the

directory $OCDS/hypertext. You canview thesedocuments usingFramemaker or Frameviewen If

you do not have Framemaker, you can printout the postscriptversions also found in that directory.

In additionto the tutorials, several examples are provided in the directory $OCDS/examples. You

can run these examples to see how the system works. Separate README files are included with

each example to tell how to run the example and what it should do.

C.1 Creating Design Specifications

The design starts by specifying the peak absolute and minimum voltages that need to be pro

cessed by the converter. Additionally, the designershould be able to answer these questions:

Magnitude Information

The peak magnitude of the signal is: 1 Volt
The minimum signal magnitude of interest is: 100 microvolts

Frequency Characteristics of the Signal

The highest frequency of interest is: 4.75 kHz

Desired Signal Conditioning
Is a magnitude droop acceptable across the passband? No
If not, how much passband ripple can be tolerated? 0.1 dB
How much anti-alias attenuation is needed? 60 dB
How much bandwidth is needed for a transition region? 0.25 kHz
What output sampling rate is acceptable? 10 kHz
Should the phase response be linear? No
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A comment should be made about the definition of transition region. When bandlimiting a sig

nal, we cannot provide an infinitely steep rolloff. The transition region defines the point from the

edge of the passband to half of tlie sampling frequency. Making this bandwidth small will greatly

increase the complexity of filters but will allow more usage of the sampled bandwidth.

Some default parameters were given, and these will be used throughout this design trace.

Using these parameters, some estimates can be made using some tools implemented in Microsoft

Excel.

C.2 Spreadsheet Analysis Tools

Tlie macro sheets for the spreadsheet tools are found in $OCDS/excel. They were created

using MS Windows 3.1 and MS Excel 4.0. There are 3 versions of each macro sheet with exten

sions .xla, .xlm, and .csv. The .xla format is the add-in format. If you transfer these files to a PC or

a Macintosh and install them in the excel/xlstart directory, they will be automatically loaded when

you start Excel. The .xlm format is editable. You can load these macros using the open command

from the file menu in Excel. The .csv format stands for comma separated values. These files were

included to document the macros and equations used in estimation. The remainder of this discus

sion assumes that you are on a PC or a Macintosh, you have Excel running, and the macros were

loaded either as add-ins or by opening all the .xlm macro sheets.

Using the data from the last section, we can choose a modulator and estimate the necessary

oversampling ratio for achieving the specification. Figure C. 1 shows the data entry menu for mod-

Figure C.l Sample data entry box for estimating modulator parameters.

ulator analysis. This menu can be invoked by typing control-m. The macro returns estimation

information to tlie current worksheet, and provides the information as shown in Figure C.2. The
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Figure C.2 Results from the modulator estimation macro.

estimated oversampling ratio is 244, and die peak SNDR is expected to be only 75.1 dB. The

usable dynamic range is 93.4 dB, but tlie user only requested 201og(l/10e-6) = 80 dB. Signal mag

nitudes about 0.17 V will have excessive harmonic distortion, and this voltage is estimated to be

the peak magnitude for linear conversion. The information provided by this macro is based on

ideal digital filtering, so some margins should be allowed for losses in digital filtering.

If droop is acceptable, like in low frequency applications, a simple CIC filter response will sat

isfy the digital filter requirements. No further estimation is needed, since the CIC or sine FIR filters

can be selected with order set 1 degree higher than die order of the modulator. The filter must

implement a decimation ratio at least as large as the estimated oversampling ratio.

Since droop was not acceptable in die specification presented in Section C.l, a set of decima

tion filters need to be designed. A new worksheet can be created in Excel, and a template drawn by

invoking a macro with control-t. Once the template is drawn, the user can enter values for tlie

desired output sampling rate, passband edge, passband ripple, and anti-aliasing. Once this has been

done, the Add Filter menu can be invoked by typing control-a and is shown in Figure C.3. The user

<♦ Sine FIR

C LqiwippleFIR
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•ulBrPfopKrttEs

Decimation Rati

B^^:^:;::^^^<

32

;»•'»?!;»;••••••»
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Ft ft a r Nq:

Cancel |
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Figure C3 The Add Filtermenu for filter parameter estimation.
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has the choice of adding a filter as a decimation filter or a bandshaping filter. For a decimation fil

ter, only the decimation ratio needs to be entered since the band edges and the attenuation can be

derived from the system specifications. However, for a bandshaping filter, arbitrary information

and attenuations can be specified. If a mistake is made, die last filter in the cascade can be removed

using the macro invoked by control-w. Once all the filters have been entered, the worksheet should

appear like the one shown in Figure C.4. The information in the worksheet can be used to created
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Figure C.4 Completed worksheet for decimation filter design.

the input files for detailed design. Since the estimation is performed using a spreadsheet, it is easy

to try different combinations to see how performance is affected. Performance estimators for area,

power, and speed have not been implemented in the spreadsheet tool, but will be used in the design

estimation process at a later date.

In summary, the designer has now chosen a modulator. Tlie oversampling ratio guides the

choice of decimation ratio and in the final implementation, they will be set equal. The digital filter
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or filters have been chosen through estimation, and all the basic parameters necessary for coeffi

cient design are now available.

C.3 Input File Descriptions For Detailed Design

The input file descriptions are written in the design languageused by the design system parser.

The files should be created with a .adi extension, which stands for Analog to Digital Interface.

Sample input files based on information in the last section are presented. There is a discrepancy for

the file e2.adi,which is used to specify the final filter in the cascade. The filter implemented in this

block is a lattice wave digital filter. No design program for lattice wave digital filters was incorpo

rated in the system, but it is easy to design the filter coefficients according to Gaszi's method. The

program a2oct can insert the coefficients into the database, and this is what was done. The file

e2.adb lists these coefficients and is the input for a2oct.

Some other discrepancies will be noted between the data in Figure C.4 and the input descrip

tions listed in this section. The frequency response datain filter, adi has been altered so that more

aliasing is allowed in the transition region. This is an acceptable practice sincethe noisealiased in

this bandis attenuated by the final 2 filters in the cascade. The sampling rate was changed from 10

kHz used in Figure C.4 to 20 kHz in the inputdescriptions. There are otherdiscrepancies, but this

reflects the fact that the design can be altered to take advantage of design properties to gain better

implementations.

The input files canbe found in the distribution in the directory $OCDS/examples/speech. They

are reproduced here:

###

### file: speech.adi
###

name speech;
subcells {

}
pinlist {

dsm DSM;
firl FILTER1;
procl PROC;

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;
parent EN CONTROL;
input parent IN;
input DSM IN;
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}
quantize {

}
mapping {

}

An Example Design Trace

midl DSM OUT;
midl FILTERl IN;
Itlid2 FILTERl OUT;
mid2 PROC IN;
out PROC OUT;

out parent OUT;

fr -c -n 32 -f FILTERl -m -a;
doc -s quantization_done;

writeSDL;
doc -s mapping_done -r;

###

### file: dsm.adi

###

name dsm;
pinlist {

}
properties {

}

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;
parent EN CONTROL;

PTOLEMY_MODEL DSM2;
GAIN 1000.0;
LIBRARY_CELL dsm2pb2;

###

### file: firl.adi

###

name firl;
pinlist {

}
properties {

}
design {

}
mapping {

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;
parent EN CONTROL;

PTOLEMY_MODEL FIR;
FILTER_STRUCTURE LINEAR_ARRAY;
FILTER_CLASS LOWPASS;
DEC_RATIO 32;
SINC_ORDER 3;
CODING_METHOD ROUNDING;
INTERP_RATIO 1;

s mcwin ;

decfir;
doc -r -s mapping_done;
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}

###

### file: procl.adi
###

name procl;
subcells {

}
pinlist {

}
properties {

}
design {

}
quantize {

}
mapping {

}

fourth FILTER2;
half FILTER3;
e2 FILTER4;

parent IN INPUT;
parent OUT OUTPUT;
input parent IN;
input FILTER2 IN;
midx FILTER2 OUT;
midx FILTER3 IN;
midy FILTER3 OUT;
midy FILTER4 IN;
out FILTER4 OUT;
out parent OUT;

WORD_ALIGNMENT .4;
BINARY_POINT 2;

fr -m -n 256 -f FILTER2;

doc -s design_done;

fr -m -c -n 256 -f FILTER2;
doc -s quantize_done;

coef2rl;
c2sil -1 -a;
doc -r -s mapping_done;

###

### file: fourth.adi

###

name fourth;
pinlist {

}
properties {

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;

SAMPLING_FREQ 1.0;
DEC_RATIO 4;
INTERP_RATIO 1;
ORDER 2;
FILTER_STRUCTURE POLYPHASE_LWDF;
FILTER_CLASS LOW_PASS;
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PHASE_APPROX NON_LIN_PHASE;
INTERNAL_WORDLENGTH 22;
PTOLEMY_MODEL Polywdf;
PROCESSOR_NAME procl;
ARCH_FILE lambda;
BINARY_POINT 3;
WORD_ALIGNMENT 4;

freqSpec {
0.0 4.00 0.05dB 1.0 edge;
0.0625 4.00 0.05dB 1.0 edge;
0.1875 0.00 53dB 1.0 edge;
0.1983 0.00 53dB 1.0,
0.2295 0.00 53dB 1.0,
0.2705 0.00 53dB 1.0,
0.3018 0.00 53dB 1.0,
0.3125 0.00 53dB 1.0,
0.4375 0.00 53dB 1.0,
0.5 0.00 53dB 1.0 edge;
}
design {

polyiir;
fr -m;
doc -s design done;

}
quantize {

sCandi -a;
fr -c -m;
doc -s quantize done;

}
mapping {•

coef2rl -m 1;

}

###

### half.adi

###

name half;
pinlist {

}
properties {

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;

SAMPLING_FREQ 1.0;
DEC_RATIO 2;
INTERP_RATIO 1;
ORDER 5;
FILTER_STRUCTURE POLYPHASE_LWDF;
FILTER_CLASS LOW_PASS;
PHASE_APPROX NON_LIN_PHASE;
INTERNAL_WORDLENGTH 22;
PTOLEMY_MODEL Polywdf;
PROCESSOR_NAME procl;
ARCH_FILE lambda;
WORD_ALIGNMENT 4;
BINARY_POINT 3;



}
freqSpec {
0.0 2.00 0.05dB 1.0 edge;
0.225 2.00 O.OSdB 1.0 edge;
0.275 0.00 60dB 1.0 edge;
0.2773 0.00 60dB 1.0;
0.280 0.00 60dB 1.0;
0.285 0.00 60dB 1.0;
0.2891 0.00 60dB 1.0;
0.295 0.00 60dB 1.0;
0.300 0.00 60dB 1.0;
0.3086 0.00 60dB 1.0;

0.315 0.00 60dB 1.0

0.320 0.00 60dB 1.0

0.325 0.00 60dB 1.0

0.330 0.00 60dB 1.0

0.335 0.00 60dB 1.0

0.3418 0.00 60dB 1.0;
0.345 0.00 60dB 1.0

0.350 0.00 60dB 1.0

0.360 0.00 60dB 1.0

0.370 0.00 60dB 1.0

0.380 0.00 60dB 1.0

0.3906 0.00 60dB 1.0;
0.410 0.00 60dB 1.0

0.430 0.00 60dB 1.0

0.450 0.00 60dB 1.0

0.4609 0.00 60dB 1.0;
0.480 0.00 60dB 1.0;
0.5 0.00 60dB 1.0 edge;

}
design {

Input File Descriptions For Detailed Design

}
quantize {

polyiir;
fr -m;
doc -s design_done;

}
mapping {

}

sCandi -a;
fr -c -n 1024 -m;
doc -s quantize_done;

coef2rl -m 2;

###

### file: e2.adi

###

name e2;
pinlist {

}
properties {

parent IN INPUT;
parent OUT OUTPUT;
parent CLOCK CLOCK;

FILTER_CLASS LOWPASS;
ORDER 2;
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}
freqSpec {

}
design {

}
quantize {

FILTER_STRUCTURE BIQUAD_CASCADE;
FILTER_CLASS lowpass;
MAG_APPROX chebyshevii;
DEC_RATIO 1;
SAMPLING_FREQ 20000;
INTERNAL_WORDLENGTH 22;
PTOLEMY_MODEL Polybiq;
PROCESSOR_NAME procl;
ARCH_FILE lambda;
BINARY_POINT 1;
WORD_ALIGNMENT 2;

0.000000 O.OOOOOOdB 0.200000dB 1.0 edge;
300.000000 O.OdB 0.200000dB 1.0

600.000000 O.OdB 0.200000dB 1.0

900.000000 O.OdB 0.200000dB 1.0

1200.000000 O.OdB 0.200000dB 1.0

1500.000000 O.OdB 0.200000dB 1.0

1800.00000.0 O.OdB 0.200000dB 1.0

2100.000000 O.OdB 0.200000dB 1.0

2400.000000 O.OdB 0.200000dB 1.0

2700.000000 O.OdB 0.200000dB 1.0

3000.000000 O.OdB 0.200000dB 1.0

3300.000000 O.OdB 0.200000dB 1.0

3600.000000 O.OdB 0.200000dB 1.0

3900.000000 O.OdB 0.200000dB 1.0

4200.000000 O.OdB 0.200000dB 1.0

4500.000000 O.OdB 0.200000dB 1.0

4800.000000 O.OdB 0.200000dB 1.0

5100.000000 O.OdB 0.200000dB 1.0

5400.000000 O.OdB 0.200000dB 1.0

5700.000000 O.OdB 0.200000dB 1.0

6000.000000 O.OdB 0.200000dB 1.0

6300.000000 O.OdB 0.200000dB 1.0

6600.000000 O.OdB 0.200000dB 1.0

6900.000000 O.OdB 0.200000dB 1.0

7200.000000 O.OdB 0.200000dB 1.0

7500.000000 O.OdB 0.200000dB 1.0

7800.000000 O.OdB 0.200000dB 1.0

8100.000000 O.OdB 0.200000dB 1.0

8400.000000 O.OdB 0.200000dB 1.0

8700.000000 O.OdB 0.200000dB 1.0

9000.000000 O.OdB 0.200000dB 1.0 edge;
9900.000000 0.000000 30.0dB 1.0 edge;
9990.000000 0.000000 30.0dB 1.0 edge;

a2oct;
fr -m;
doc -s design_done;

sCandi -a -s;
fr -c -m;
doc --s quantize_done;
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>

coef2rl -m 3;
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###

### file: e2.adb

###

name e2

instances

end

terminals

IN INPUT

OUT OUTPUT

CLOCK CLOCK

end

netlist

end

structure

FILTER_TYPE string LOWPASS
ORDER integer 3
FILTER_STRUCTURE string LATTICE_WDF
FILTER_CLASS string lowpass
MAG_APPROX string chebyshevi
DEC_RATIO integer 1
SAMPLING_FREQ real 20000
INTERNAL_WORDLENGTH integer 22
PTOLEMY_MODEL string Polywdf
PROCESSORJSTAME string procl
end

specProps
end

frequencySpec
0.000000 2.000000 O.lOOOOOdB 1.0 edge
1000.000000 2,.000000 O.lOOOOOdB 1.0

2000.000000 2..000000 O.lOOOOOdB 1.0

3000.000000 2,.000000 O.lOOOOOdB 1.0

4000.000000 2,.000000 O.lOOOOOdB 1.0

5000.000000 2,.000000 O.lOOOOOdB 1.0

6000.000000 2,.000000 O.lOOOOOdB 1.0

7000.000000 2,.000000 O.lOOOOOdB 1.0

8000.000000 2,.000000 O.lOOOOOdB 1.0

9000.000000 2,.000000 O.lOOOOOdB 1.0 edge
9800.000000 0,.000000 24.0dB 1.0 edge
9950.000000 0,.000000 24.0dB 1.0

9990.000000 0 .000000 24.0dB 1.0 edge
end

idealCoefs

latticeWdf
2

1

1

0'

0

1

1

.237694593
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0

0

5

.158963109

5

.023291743

end

codedCoefs

end

Destimates

end

connect

end

parameters
end

Mestimates

end

status

end
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C.4 Output From A Design Session

The output from the design session using the input files of the last section is presented below.

The script output has been annotated to indicate what actions were performed. Subtities are used to

break up the flow and to designate new steps initiated in the design process.

C.4.1 Preliminaries

These lines show the content of the current working directory, and the contents of the cellpath

and comp2schem.def files. Both must be in the current working directory for the program to work.

Script started on Wed Jan 27 10:43:44 1993
elias 21> Is

cellpath e2.adb fourth.adi
comp2schem.def e2.adi half.adi
dsm.adi firl.adi procl.adi

script.out
speech.adi

elias 22> m cellpath
~ptolemy/src/domains/sdf/dsp/icons:~ptolemy/lib/technology/ptolem
y:~ptolemy/src/domains/sdf/icons:-cad/ADsystem/ptolemy/stars:~pto
lemy/src/domains/sdf/stars:~ptolemy/src/domains/sdf/dsp/stars:~/l
ambda: -cad/ADsystem/architecture/firld3: -/analog/leafcells: -/arch
tools/lambda:.

elias 23> Is

cellpath e2.adb
comp2schem.def e2.adi
dsm.adi firl.adi

fourth.adi

half.adi

procl.adi

script.out
speech.adi

elias 24> m comp2schem.def
# This is a temporary version of comp2schem.def



Output From A Design Session 231

# This should contain bindings between component view and ptolemy
model

# property names,
coefs values

taps values
values values

decimation- DEC_RATIO
decRatio DEC_RATIO
interpolation INTERP_RATIO
order ORDER

attZero ORDER

intwl INTERNAL_WORDLENGTH
diffwl INTERNAL_WORDLENGTH
outwl OUTPUT WORDLENGTH

C.4.2 The DESIGN Phase

In this phase, coefficient design is performed. When the files are run, the fr -m command

forces vmake to display the frequency response on the users screen using xgraph. The doc program

provides a template to record information.

elias 25> vmake -t design speech
vmake> parser speech.adi
Parsing completed successfully.
viewname = speech
parser> Opened facet with name: speech
parser> View procl/component not found.
parser> Attempting to parse file procl.adi.
Parsing completed successfully.

...Intermediate output was deleted...

C.4.3 The QUANTIZE Phase

In the second phase of detailed design, coefficient quantization was performed using the pro

gram candi. The automated mode was chosen. Once again, the fr program was used to verify that

the resulting designs met specifications.

elias 26> vmake -t quantize speech
vmake> parser speech.adi
Parsing completed successfully,
viewname = speech

...Intermediate output was deleted...
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C.4.4 A Small Digression

Before going to the mapping phase, 2 files were placed in the current working directory. It has

been found that the kc compiler used in the mapping phase has a problem performing tilde expan

sion. To circumvent this, we place the 2 files in the current working directory. Since the kc com

piler finds them there, no search and no tilde expansion are necessary. If we hadn't placed them

there, an obscure message about a segmentation fault would be reported by the kc compiler.

elias 27> cp ~r1/etc/lambda.md .
elias 28> cp ~r1/etc/lambda.lsp .

C.4.5 The MAPPING Phase

In the final mapping phase, all parameters are determined. The output from the kc compiler

has been trimmed.

elias 29> vmake -t mapping speech
vmake> Running vmake on master of instance PROC
vmake> Running vmake on master of instance FILTER4
vmake> coef2rl -m 3 -L e2.log e2

...Intermediate output deleted...

script done on Wed Jan 27 12:42:15 1993

Area estimators were run during this part of the design. The results are found in the next sec

tion in the reports generated by calls to the doc program.

C.5 Documentation

The doc program allows users to add additional information as the design process progresses.

Here are some comments entered on this particular design run. The program stores all the design

information in a single view, and labels the reports as they are added. Reports are sorted according

to the instance that they were generated for.

********rePORT #1****************************

Design module: e2
Design report time: Wed Jan 27 10:44:30 1993
Successful completion of design stage: design_done

The design meets specifications.

********report #2****************************

Design module: e2
Design report time: Wed Jan 27 10:48:05 1993
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Successful completion of design stage: quantize_done

Checked specifications, no violations in the passband, but near
the Edythe ripple is close to the specification.

********REPORT #1*************************** *

Design module: half
Design report time: Wed Jan 27 10:44:57 1993
Successful completion of design stage: design_done

The design succeeded. There is a small margin in the stopband,
passband ripple is small.

********REPORT #2****************************

Design module: half
Design report time: Wed Jan 27 10:51:46 1993
Successful completion of design stage: quantize_done

There is a slight violation of spec due to quantization. There is
not a spec point near the violation, and if one were added, candi
would handle it. It is not a very large violation, so I will
ignore it, but look at the overall quantized results.

********REP0RT #1****************************

Design module: fourth
Design report time: Wed Jan 27 10:45:32 1993
Successful completion of design stage: design_done

The magnitude data shows that spec is exceeded in one region, but
this is due to Nth band nature of the design, and the fact that
the frequency spec was given in 2 bands without specifying the
don't care band.

********REPORT #2****************************

Design module: fourth
Design report time: Wed Jan 27 10:54:17 1993
Successful completion of design stage: quantize_done

Quantization did not cause problems.

********REPORT #1****************************

Design module: procl
Design report time: Wed Jan 27 10:46:32 1993
Successful completion of design stage: design_done

No specifications are given in the magnitude plot, but by eye-
balling the response, we do have about 65 dB of attenuation across
the passband of the composite plot.

********REPORT #2 ****************************

Design module: procl
Design report time: Wed Jan 27 10:54:38 1993
Successful completion of design stage: quantize_done

Composite for the last 3 filters looks good. The minor spec viola
tion is not a problem, but I can see where it occurs. The overall
response looks good.
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********pjjJpQprp £3 ****************************

Design module: procl
Design report time: Wed Jan 27 11:50:11 1993
Successful completion of design stage: mapping_done

Total Area Estimate: 20.263936 sq mm
Cell Area Estimate: 4.989446 sq mm

Area estimates seem large for total area. I would guess something-
like 15 or 16 sq mm. There were 218 instructions in the cstore.

********pj2PQRip #]_** ************** ************

Design module: speech
Design report time: Wed Jan 27 10:55:51 1993

Examining the response shows that the quantized composite for all
filters Attenuation appears to be over 65 dB for composite filter.
Note that gain is about 54 dB in the plot, but this is due to gain
of sine filter. Since we are using quantized coefficients, the
gain is not 1.

********REPORT #2****************************

Design module: speech .
Design report time: Wed Jan 27 13:34:36 1993
Successful completion of design stage: mapping_done
Couldn't find the area estimates.

Full design completed, writeSDL gave the usual message about no
pins on the parent.

********REPORT #1****************************

Design module: firl
Design report time: Wed Jan 27 11:51:22 1993
Successful completion of design stage: mapping_done

Total Area Estimate: 3.517398 sq mm
Cell Area Estimate: 2.344932 sq mm

Area estimates seem about right. Total converter area should be on
the order of 25 sq mm in 2um CMOS.

C.6 Final Design Steps

The program writeSDL created a skeleton SDL file in pinlist format. The parameter values are

currently spread across several files, but the file speech.par will contain references to all of them.

The user only needs to connect the terminals in the design, and then instantiate the design in a sys

tem. Layout can then be performed using the Lager Silicon Assembly System.
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D.1 Overview

This appendix contains detailed information on coefficient storage, the ESTIMATION bag,

and the dblib programming library.

D.2 dblib Programming Library

The dblib programming library provides routines that aid programmers in dealing with the

component view. Within the distribution for the design system, the dblib package can be found in

the directory $OCDS/lib/dblib, where OCDS is an environment variable pointing to the root direc

tory for the Oversampling Converter Design System installation.

D.2.1 Header File

The file dblib.h should be included in design programs so that proper exit codes, data struc

tures, and function types are defined. The file is included here.

/* dblib.h */
#ifndef DBLIB_H #define DBLIB_H
#define DBL_PKG_NAME "dblib"

/* Constants for string size */
#define SMALL_ST 32
#define STR_SZ 256
#define LRG_ST 4096
#define MIN DB -240.0
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/* Error codes for errtrap */
#define BAD_OCT_VIEW 3
#define BAD_OCT_CALL 4
#define BAD_INPUT 5
#define BAD_SYS_CALL 7

enum coefClassType { COEF_NULL=0, LINEAR_ARRAY, BIQUAD_CASCADE,
LATTICE_WDF, POLYPHASE_BIQUADS, POLYPHASE_LWDF,
COMB_CASCADE };

typedef enum coefClassType coefClassType;

typedef: struct FSPEC {
double frequency;
double magdB;
double magdevdB;
double weight;

} Fspeci •

/* Function definitions */
extern void getPropO ;
extern void createOrModifylprop();
extern void createOrModifyRpropO ;
extern void createOrModifySprop0;
extern void farray2dd();
extern void tags2dd();•
extern void codes2dd();
extern double *dd2farray () ;
extern char **dd2tags();
extern char **dd2codes();
extern coefClassType getCoefType()
extern char *getToken();
extern char *stringCat();
extern char *real2str();
extern char *int2str();
extern char *prop2str();
extern char *iArray2str();
extern char *rArray2str();
extern Fspec *fspec2array();

#ifndef OCT_H #include "oct.h"
#endif

extern octStatus myCreateRprop();
extern octStatus myCreateOrModifyRprop();
extern octStatus myGetByRpropName();

#endif /* DBLIB_H */

D.2^ dblib Function Call Descriptions

The basic function calls are described in detail.

dblib.doc - description of top level functions in dblib package

This is a collection of routines to ease the implementing of
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software that will interact with the Oversampling Converter Design
design System (OCDS).

/* General purpose property routines */
void getProp(octObject *facetp, char *propname,

octObject *containerp/ octObject *propp)

Given all the information, it will return the property.
The facet is given primarily for error message reporting.

octObject *createOrModifySprop(octObject *facetp, char *propname,
octObject *container, char *value)

octObject *createOrModifyIprop(octObject *facetp, char *propname,
octObject *container, int value)

octObject *createOrModifyRprop(octObject *facetp, char *propname,
octObject *container, double value)

Routines to set or change properties anywhere in the design.
Has added error diagnostics that make them better to use than
just the plain oh versions.

/* Real property routines */
Use these routines to handle all real properties. OCT only
stores real variables in %lf format, which will not carry
enough precision. These routines use %.141g format to store
real variables as strings, maintaining much higher
precision. These routines mirror their counterparts given in
the oh (OCT helper) package.

octStatus myCreateRprop(octObject *contp, octObject *propp,
char *str, double val)

Create a real property contained by contp using propp with
name given by str and value val.

octStatus myCreateOrModifyRprop(octObject *contp,
octObject *propp, char *str, double val)

Create or modify a real property contained by contp using
propp with name given by str and value val.

octStatus myGetByRpropName(octObject *contp,
octObject *propp, char *str)

Get a real property contained by contp with name str and
return it in propp.

/* Coefficient data class access */
void farray2dd(octObject *facetp, double *array, int length,

coefClassType type, char *bagname)

Routine to convert a linear array into the proper COEF
bag in the DESIGN_DATA bag. Assumption in the current code
is that integer coefs are CODED, while real coefs are IDEAL.
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Bagname.should be either IDEAL_COEFS or CODED_COEFS.

void tags2dd(octObject *facetp, char **array, int length;
coefClassType type, char *bagname)

Routine to convert a annotate the IDEAL coefficient values
with the tags contained in the array. Attaches the TAG
property to the VALUE property for a coefficients in the bag
given by bagname. Bagname should be either IDEAL_COEFS or
CODED_COEFS.

void codes2dd(octObject *facetp, char **array, int *length,
coefClassType type, char *bagname)

Routine to convert a linear array into the proper COEF
bag in the DESIGN_DATA bag. CODES are stored in array. Rather
than creating a VALUE property, a CODE property is created.
Bagname should be either IDEAL_COEFS or CODED_COEFS.

double *dd2farray(octObject *facetp, double *array, int *length,
type)

Routine to convert COEF bag info about VALUE properties to a
linear array for use by other programs. Space is allocated
internally, and can be freed by the calling routine. Bagname
should be either IDEAL__COEFS or CODED_COEFS.

char **dd2tags(octObject *facetp, char **array, int *length,
coefClassType type, char *bagname)

Routine to convert COEF bag info about TAG properties
attached to VALUE properties to an array of characters for
use by other programs. Space is allocated internally, and
can be freed by the calling routine. Bagname should be either
IDEAL_COEFS or CODED_COEFS.

char **dd2codes(octObject *facetp, char **array, int *length,
coefClassType type, char *bagname)

Routine to convert COEF bag info about CODE properties to an
array of characters for use by other programs. Space is
allocated internally, and can be freed by the calling
routine. Bagname should be either IDEAL_COEFS or
CODED_COEFS.

/* Strings */
char *stringCat(char *strl, char *str2, char delimiter)

Returns a string with the parameters concatenated and
separated by the delimiter. Arguments are not modified, and
the result can be freed by the calling routine.

char *real2str(double number)

char *int2str(int number)

char *prop2str(octObject *prop)
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Routines to convert the argument to a string. The result can
be freed by the calling routine.

char *getToken(char *str, char **token)

Token is stripped off of argument str and returned as token.
Function returns pointer to remaining string. Do not free
this, since it should have been allocated by the calling
routine. The token can be freed in the calling routine.

char *rArray2str(double *array, int length, char delimiter)

char *iArray2str(double *array, int length, char delimiter)

Routines to convert arrays to formatted strings. Space is
allocated within the routine, and must be freed by the
calling routine. The character delimiter separates entry
in the single string.

/* Frequency Specification */
Fspec *fspec2array(octObject *facetp, int **sizes)

This routine will retrieve the frequency specification from
the component view and return it in an array of the structure
Fspec. The pointer **sizes is used to return the number of
specification points in each band. The zeroth entry will
have the number of bands in the specification.

D.3 Coefficient Storage

Separate policies were created for FIR, Biquads, and Lattice Wave Digital Filter (LWDF)

structures. Within programs, all coefficients must be stored in a linear array before they are written

to the database. They also are formatted in an arraywhen they are retrieved from the database.

For an FIR filter, the coefficients are stored in order in the array, which should have length N

for an N tap response. Within the component view, the coefficients are also stored as a linear array

contained in the appropriate coefficient bag. This policy is not generic, and will have to be

extended to accommodate polyphase FIR filter realizations.

For Biquads and LWDFs, a policy was created that encompasses both single branch and multi

ple branch polyphase implementations. Biquad coefficients are defined as shown in Figure D.l.

The array for storing biquad coefficients is set up as follows. Suppose there are N branches of

biquads in the filter. The first entry in the arraywill then be the value N. The N entries that follow

specify the number of biquadratic sections in each branch. The next N values denote the branch

delay associated with each branch. Branch delays are necessary when implementing polyphase fil-
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Figure D.l Correspondence between a biquadand the system equation,

ters. The next N entries specify the gainvalues to associate with eachbranch. Alter this, there will

be 6 entries per biquad specifying the coefficients. Setting the coefClassType parameter to

BIQUAD_CASCADE or POLYPHASE_BIQUADS in function calls to the database will force

this format to be recognized. An example for a 2 branch filter follows.

ar[0] = 2 /* Number of branches in the filter */
ar[l] = 2 /* Number of sections in branch 1 */
ar[2] = 1 /* Number of sections in branch
ar[3] = 0 /* Delay associated with branch
ar[4] = 1 /* Delay associated with branch
ar[5] = 0.8 /* Gain factor associated with branch 1
ar[6] = 1.2 /* Gain factor associated with branch 2
/* coefficients for biquad 1 of branch 1 */
ar[7] = al; ar[8] = a2; ar[9] = a3;
ar[ 10]' = bl, ar[ll] = -bl; ar[12] = -b2;
/* coefficients for bilinear section 2 of branch 1 */

ar[13] = al;
ar[16] = bl,

ar[14] = a2; ar[15] = 0;•
ar[17] = -bl; ar[18] = 0;

*/

*/
/

*/

*/

/* coefficients for biquad 1 of branch 2 */
ar[19] = al; ar[20] = a2; ar[21] = a3;
ar[22] = bl, ar[23] = -bl; ar[24] = -b2;

For LWDFs, the array is similar except only 4 slots are used for coefficients. LWDFs use

biquadratic sections that consist of 2 adaptors stacked on top ofeach other. Each adaptor has a type

from 1 to 5 and a coefficient value. Setting the coefClassType parameter to LATTICE_WDF or

POLYPHASE_LWDF causes this format to be recognized. An example follows.
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ar[0] = 2 /* Number of branches in the filter */
ar[l] = 2 /* Number of sections in branch 1 */
ar[2] = 1 /* Number of sections in branch 2 */
ar[3] = 0 /* Delay associated with branch 1 */
ar[4] = 1 /* Delay associated with branch 1 */
ar[5] = 1 /* Gain factor associated with branch 1 */
ar[6] = 1 /* Gain factor associated with branch 2 */
ar[7] = 0.4123 /* Coefficient for lower adaptor of biquad section
1, branch 1 */

ar[8] = 1 /* lower adaptor type for biquad section 1, branch 1 */
ar[9] = 0.1234 /* Coefficient for upper adaptor of biquad section
1, branch 1 */

ar[8] = 5 /* lower adaptor type for biquad section 1, branch 1 */
ar[10] = 0.14 /* Coefficient for lower adaptor of biquad section
2, branch 1 */
ar[ll] = 2 /* lower adaptor type for bilinear section 2, branch 1
*/
ar[12] = 0.0 /* Only a lower adaptor for section 2, branch 1 */
ar[13] = 0.0 /* Only a lower adaptor for section 2, branch 1 */
ar[14] = 0.21 /* Coefficient for lower adaptor of biquad section
1, branch 2 */
ar[15] = 4 /* lower adaptor type for bilinear section 2, branch 1
*/
ar[16] = 0.34 /* Coefficient for upper adaptor of biquad section
1, branch 2 */
ar[17] = 4 /* upper adaptor type for bilinear section 2, branch 1
*/

For the coefficient tags arrays, the header information must only contain the number of

branches entry and the number of sections in each branch. Tags arrays are used to allow the pro

grammer to assign arbitrary names to the coefficients. Tags for the coefficients should be in the

same array position as the coefficient value would be.

Within the component view in the OCT database, the array is translated into the structure

shown in Figure D.2. The array values for the 4 LWDF coefficient entries map into the SEC-

TION[i] bag as follows:

VALUE[0] = lower adaptor coef. value
TYPE[0] = lower adaptor type
CODE[0] = coded coefficient representation
VALUE[1] = upper adaptor coef. value
TYPE[1] = upper adaptor type
CODE[l] = coded coefficient representation.

For a biquad SECTION[i] bag, the coefficients map as follows.

VALUE[0] = al VALUE[1] = a2 VALUE[2] = a3
VALUE[3] = 1.0 VALUE[4] = -b2 VALUE[3] = -b3
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Figure D.2 OCT policyfor storingbiquad and LWDF coefficients.

The coded coefficients should be stored according to the COEF_CODE_FORMAT stored in

the STRUCTURE bag. If the property value is SIGNED.BINARY or UNSIGNED.BINARY, the

coded coefficients are stored as a binary number in string representation, for example " 101101". If

the propertyhas value CSD, then the codes arestored with spacesbetween the values, like "1.0-

1 1". The binary point is allowed in coded coefficients.

D.4 MAPPING bag

As mentioned in Chapter2, no strict policy exists for the use of the mapping bag. However, if

an ESTIMATES bag is generated within the mapping bag, it should follow the policy shown in

Figure D.3. The ESTIMATES bag contains several bags that store the actual estimates which are

retrieved by the doc program when generating reports about the design. Only the AREA bag has a

set policy, with 3 values needed. The CELL_AREA property stores the total areaof all the subcells

excluding routing. The TOTAL property gives an estimate for the entire layout with routing. The

UNITS property stores the scaling value to give the area in square microns.
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Figure DJ Policy forthe MAPPING bag and the ESTIMATES bag.
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APPENDIX E

Architecture Library Summary

This appendix serves as a cross reference for the architecture template library. The templates

areorganized in alphabetical order.The various options for second order modulators are listed sep

arately in the last section along with some basic design estimation equations.

E.1 CIC Filters

Description:

This architecture performs filtering with magnitude responses that are powers of sin(x)/x.

They are built using cascades of integrator and differentiator stages. There is no control over the

passband response, but attenuation in the stopband is. good. The description for this architecture

family starts on page 89

Typical Use:

CIC filters are used as the first stage of decimation after the modulator. They are very useful

for implementing moderate decimation ratios, and for cases when there are few constraints on

passband ripple.

Pinout and Timing Diagrams:

See Table 6-3 on page 93 and Table 6-4 on page 94 for pinouts and Figure 6.9 on page 93 and

Figure 6.9 on page 93 for the timing relations.
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E.2 C-to-Silicon

Description:

This template allows for the compilation of RL programs onto the PUMA processor architec

ture. A stripped version of PUMA called Lambda is also supported. The script c2sil provides full

translation from filter coefficients to compiled microcode. The description for this template starts

on page 98.

Typical Use:

C-to-silicon is used when there are many processor cycles available for a program implemen

tation. Time-multiplexing of hardware can be achieved allowing several signal processing algo

rithms to be implemented in software.

Pinout and Timing Diagrams:

Pinouts for the PUMA processor are found in Table 6-6 on page 101. For the Lambda proces

sor, the pinout is found in Table 6-7 on page 104. Timing relations are found in Figure 6.16 on

page 102.

E.3 Clock Generators

Description:

Various clock generator cells are supported for the different architecture templates. There are

macrocells for 2 phase clock generation and divide-by-6 clock generation. The descriptions for

these circuits starts on page 110.

E.4 Decimate-by-2 FIR Filter

This template implements a custom FIR filterwith decimation ratio of 2. Samples only need to

be calculated at the output rateallowing the internal number of state variables to be cut in half. The

description for this filter starts on page 96.

Typical Use:

This is a dedicated filter architecture, and for a filter length of N, N clock cycles will be

required for evaluation of a single output This limits the filterto relatively low speed applications.

Since it does implement a decimate-by-2 function, it can be used in wavelet filter bank applica-
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tions.

Pinout and Timing Diagrams:

The pinout is given in Table 6-5 on page98. Timing relations are found in Figure 6.12 on

page 97 and Figure 6.13 on page 97.

E.5 FIR Filter Family, Time Multiplexed

Description:

This template implements a custom family of FIR filters for cases where the ratio of number of

coefficients to the decimation ratio is 1,2, or 3. The input must be 1 bit wide. The implementation

allows for arbitrary coefficient values. The description of this family starts on page 83.

Typical Use:

This template has been used for the first filter after the modulators. The architecture has been

optimized for speed. These filters can be used in the same way as CIC filters, but they have added

flexibility since arbitrarycoefficient values can be stored.

Pinouts and Timing Diagrams:

Pinouts for the template can be found in Table 6-1 on page 86 and a timing diagram in

Figure 6.2 on page 85.

E.6 Parallel to Serial Converter

Description:

This is an on-chip parallel to serial converter. The description starts on page 108.

Typical Use:

The converter is used to convert bit-parallel data to serial-burst data so that fewer pins are

needed in a full chip implementation. It can also be used to take parallel words off a data bus and

sent off chip for observability.

Pinout and Timing Diagrams:

The pinout can be found in Table 6-8 on page 108 and a timing diagram in Figure 6.21 on

page 109.
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E.7 Second Order Modulators

A set of 5 basic modulators were developed in this project, and all implement the basic second

order A-Z modulator. The overall performance varies across the modulators by about 12 dB in

dynamic range, with most of the variation attributed to differences in 1/f noise contributions. No

naming convention was followed. Each modulator macrocell was designed for a specific technol

ogy and was not meant to be scaled. Moving from N-well to P-well can be achieved by changing

the appropriate shields and wells in the layout. The double poly cells were designed using a modi

fied technology file that allows both layers of poly to overlap. Mosis technology files are not com

patibleand define an explicit capacitorlayer. All circuits are assumed to be running off a single 5

V supply with analog ground set to 2.5 V.

The basic pinout can be found in Table 6-10 on page 113. Detaileddesign information is found

in Chapter 7.

Estimation formulas make use of the parameter R = log2(Oversampling Ratio). The formulas

were developed using regression based on data from simulation models, and should be valid for R

in the range 2 to 9. Opamp and comparator schematics and other circuit diagrams are found in

Chapter 7.

E.7.1 Modulator 1: dsm2pc2

Technology: 1.2 jxm N-well CMOS

Nominal Sampling Cap. Size: 1.0 pF,metal 1-poly

Nominal Integrator Gain: 0.5

Opamp: Class AB 1, bias nominal 20 jliA

Comparator: variation 2

Voltage References: vref_posl = vref_pos2 = 3.5 V, vref_negl = vref_neg2 = 1.5V

Estimated Dynamic Range: -1.4789R2 +26.857R - 31.221
Estimated PeakSNDR: -1.5691R2 +26.784R- 34.235

Simulation parameter, 1/f noise input std. dev.: 0.000021

Simulation parameter, additive white noise std. dev.: 0.000091

Simulation parameter, nonlinearty: 325 ppm

Simulation parameter, inner and outer feedback voltages: 2.0

Area:971 x 705 = 0.685 mm2

Maximum sampling rate: 8 MHz

E.7.2 Modulator 2: dsm2abp

Technology: 2 u\m P-well CMOS
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Nominal Sampling Cap. Size: 0.5 pF, double poly

Nominal Integrator Gain: 0.25

Opamp: Class AB 1, bias nominal 20 uA

Comparator: variation 1

Voltage References: vref_posl = 3.9V, vref_pos2 = 3.6 V,

vrefjiegl = 1.1 V, vref_neg2 = 1.4 V

Estimated Dynamic Range: -1.6899R2 +27.037R - 26.902
Estimated Peak SNDR: -1.6453R2 +26.013R - 30.239

Simulation parameter, 1/f noise input std. dev.: 0.000092

Simulation parameter, additive white noise std. dev.: 0.000129

Simulation parameter,nonlinearty: 325 ppm

Simulation parameter, outer feedback voltage: 2.8

Simulation parameter, outer feedback voltage: 1.8

Area:705 x 914 = 0.644 mm2

Maximum sampling rate: 5 MHz

E.7.3 Modulator 3: dsm2abn

Technology: 2 urn N-well CMOS

Nominal Sampling Cap. Size: 0.5 pF,metal 1-poly

Nominal Integrator Gain: 0.25

Opamp: Class AB 1, bias nominal 20 |iA

Comparator: variation 1

Voltage References: vref_posl = 3.9V, vref_pos2 = 3.6 V, .

vrefjiegl = 1.1 V, vref_neg2 = 1.4 V

No data for estimating dynamic range or SNDR.

Simulation parameter, additive white noise std. dev.: 0.000129

Simulation parameter, nonlinearty: 325 ppm

Simulation parameter, outer feedback voltage: 2.8

Simulation parameter, outer feedback voltage: 1.8

Area: 1373 x 846= 1.16 mm2
Maximum sampling rate: 3 MHz

E.7.4 Modulator 4: cds2pab

Technology: 2 um P-well CMOS

Nominal Sampling Cap. Size: 0.5 pF,double poly

Nominal Integrator Gain: 0.25, with correlated double sampling.

Opamp: Class AB 1, bias nominal 20 |iA

Comparator: variation 1

Voltage References: vref_posl = 3.9V, vref_pos2 = 3.6 V,
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vref_negl = 1.1 V, vref_neg2 = 1.4 V

Estimated Dynamic Range: -1.5747R2 +26.951R - 28.324
Estimated PeakSNDR: -1.6504R2 +26.690R - 32.389

Simulation parameter, 1/f noise input std. dev.: 0.000092

Simulation parameter, additive white noise std. dev.: 0.000129

Simulation parameter,nonlinearty: 325 ppm

Simulation parameter,outer feedback voltage: 2.8

Simulation parameter, outer feedback voltage: 1.8

Area: 704 x 800 = 0.563 mm2

Maximum sampling rate: 3 MHz

E.7.5 Modulator 5: dsm2fc2p

Technology: 2 um P-well CMOS

USE the cell fcbias to provide biasing with this cell!

Nominal Sampling Cap. Size: 0.5 pF, double poly

Nominal Integrator Gain: 0.25

Opamp: Folded Cascode, bias nominal 275 |xA

Voltage References: vref_posl = 3.9V, vref_pos2 = 3.6 V,

vrefjiegl = 1.1 V, vref_neg2 = 1.4 V

Estimated Dynamic Range: -1.2447R2 +24.844R - 25.440
Estimated Peak SNDR: -1.4194R2 +24.173R - 27.296
Simulation parameter, 1/f noise input std. dev.: 0.000020

Simulation parameter, additive white noise std. dev.: 0.000129

Simulation parameter, nonlinearty: 550 ppm

Simulation parameter, outer feedback voltage: 2.8

Simulation parameter, outer feedback voltage: 1.8

Area: 849 x 833 =0.707 mm2

Maximum sampling rate: 3 MHz

Note that numbers for maximum sampling rate are based on measured data from cir
cuits. Bandwidth can be increased by using different bias conditions.
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APPENDIX F

Mixed Signal VLSI Design

F.1 Overview

•When designing mixed signal VLSI chips, caremust be taken to rninimize the amount ofnoise

that is coupled from the analog to digital circuits. Several precautions were taken in this project in

all the chips implemented. This appendix documents some of the steps taken to reduce crosstalk.

In all cases, crosstalk was not found to limit performance. Differences between simulation and

measured chip results were within experimental error.

F.2 Cell Design

The Lager System was designed as a digital assembly system. Library cells are assembled

using place and route tools. Littie attention is given to routing or the sensitivity of nets. This must

be considered when designing cells for inclusion in the Lager System.

For high resolution A/D conversion, it is best to isolate the analog and digital circuitry to pre

vent capacitive coupling of digital signals into sensitive nodes. Consider the floorplan of the mod

ulator shown in Figure F.l. The digital circuits, the switches and comparators, are separated from

the analog circuits. In addition, shields are placed underneath the switches and the capacitors.

Within the opamp layout, all devices are shielded using guard rings. The floorplan was also ori

ented so that all digital signals and clocks enter from one side of the cell. Analog signals enter on

the opposite side. Power and biasing signals were also placed on separate sides. The entire cell is

surrounded by a guard ring.
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Figure F.l Floorplan forthe modulator.

The macrocell could have been designed as separate entities within the Lager System, with

separate cells for opamps, switch arrays, capacitors, and comparators. However, at the present

time, only digital place and route tools are available. Since parasitics associated with poor routing

can affect the behavior, the entire cell layout was performed by hand. At this leyel of abstraction,

routing connections will have only a minor affect on the overall performance.

F.3 Global Place and Route

Since the cell was created with digital and analog I/O on separate sides, it is possible to dedi

cate specific routing channels for analog signals. This usually requires designers to use the manual

placement and channel definition modes when using FLINT in the Lager System. It is possible to

route chips so that no digital lines cross analog signal lines.

The analog modulator should be placed close to the edge of the chip to shorten the runs for the

analog signals and allow for some isolation. The modulator was usually placed close to a comer so
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that 2 sides would be shielded from digital circuits. On the other 2 sides, an effort is made to place

relatively quiet circuits or white space to increase the distance from active circuits and clock buff

ers. With the experimental circuits, crosstalk was not a major issue. Crosstalk was only observed

when the clock generators were placed to close to the modulator, which was the case in example 1

of Chapter 8. The crosstalk caused a 2 dB degradation at the 12 bit level of resolution. From

F.4 Pad Ring Design

To further decrease crosstalk, separate power supply pads were used for digital and analog cir

cuits and for shields. To isolate the supplies, the pad ring surrounding the chip core must be broken

at some point so that the power lines for the pads are isolated. In this project, no protection was

used on the analog pads, so no analog pad ring was necessary. While this decreases the chance of

noise coupling from a supply, it also decreases reliability since chips are susceptible to ESD. The

pad ring for most chips was developed based on the pinout required by the test board discussed in

Appendix A.

F.5 Board Level

All analog supplies and bias lines were carefully filtered close to the pin on the package. A

combination of a 10 up tantalum capacitor and a 100 nF ceramic capacitor was used. Measure

ments made with and without these filter caps showed quite a bit of improvement. Separate power

planes were assigned for analog and digital supplies with the groundpoint for both supplies estab

lished on the board close to the device. The supply lines were tied together at the power supply to

minimize the number of loops.
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APPENDIX G

Modulator Test Setup

G.1 Testing Oversampling A/D converters.

All of the modulators and A/D converters in this project were tested using a custom test sys

tem. Initially, logic analyzers were used, but they did not have sufficient memory and it was diffi

cult to transfer data to a workstation for analysis. The current test system was designed to be

simple yet accurateenough to test 16 bit A/D interfaces. The system needed to be flexible enough

to allow testing of modulators as well as full interfaces, allowing arbitrary wordlengths and large

sample sizes.

The test system consists of 2 boards and IBM compatible PC. A block diagram of the system

is shown in Figure G.1.The device under test is placed on the analog test board. The dataacquisi

tion board serves as a memory buffer between the PC and the analog test board. A Khron-Hite sig

nal generator provides a low distortion sinusoid for a test signal. Clock signals for the analog

modulators are generated from a crystaloscillator. A single HP power supply is used to supply+12

V and-12 V for driving the analog bias circuitry. The +5 V output is used to powerthe restof the

boards. Ground is established on the analog test board. The signal generator and power supply are

left floating.

G.2 Chip Testing Board

The analogchip testing board provides the following features:
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Figure G.l Blockdiagram of the test system.

2 phase non overlapping clock generator.

Delayed versions of the 2 phases.

Digital buffering for driving data to the data acquisition board.

Generation of 5 analog bias levels.

Single-ended to differential signal conversion, with level shifting.

Separate analog and digital power planes.

Separate analog and digital power supplies, and a separatesupply for biasing the well.

A 40 pin dip package was selected for the analog test board.The pinout is shown in Table G-

1. The pinout was initially defined for testing 2 modulators packaged in a single chip. Note that

most analog and digital signals are placed on separate sides of the package. By planning the inter

nal chip placement correctly, all analog signals can be routed to one side. Internal crossovers of

analog and digital signals can be avoided? The separation also allows theuseof abroken pad ring,

so digital and analog power lines can be isolated in the pad ring. While the analog test board only

contains a 40 pin ZBF package, this should not be a limitation. Daughter boards have been

designed. With good design, minimal degradation was observed. A block diagram of the board is

shown in Figure G.2.

J
Serial Data
Test Board

PC Parallel
Port

r
386/486

PC
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TABLE G-1 Pinout for the 40 pin DIP socket on the test board.

Pin Description Pin No. Pin No. Pin Description

Substrate (0 or 5V selectable) 1 40 Capshield (5 or 0V selectable)

1Analog In- 2 39 vref_negl (Adjustable, 0 -2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output 6 35 Analog Vss

1 bit output 7 34 unused

Input for phi Id 8 33 unused

Input for phi2d 9 32 unused

Input for phil 10 31 unused

Input for phi2 11 30 unused

Digital GND 12 29 unused

Digital Vdd 13 28 unused

unused 14 27 unused

unused 15 26 Analog Vdd

unused 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

unused 17 24 vreLposl (Adjustable, 2.4 - 5V)

unused 18 23 2Analog In-

unused 19 22 2Analog In+

Shield 20 21 Analog Ground (2.5V)

G.2.1 Digital Clock Generation circuitry.

The circuit used for clock generation is straightforward. The schematic is shown in

Figure G.3. A crystal is preferred for clock generation, since it creates low phase noise. Standard

pulse generators were found to have excessive amounts of phase noise, which caused an increase

in the noise floor observed in the modulators. A high precision sinusoid generator can also be used

for a clock generator. Full TTL levels were used to clock the circuit. Lower clock levels may lower

noise levels.

G.2.2 Single-Ended to Differential Converter

All of the modulators were designed for differential input signals. To achieve single-ended to

differential conversion, several methods can be applied. The easiest is to use a signal generator

with differential outputs. Another option is to use a transformer, but this is generally used for
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higher frequency signals. The final approach is to use a set of opamps as shown in Figure G.4. Sev

eral opamps were used during development of the test board. It was found that the opamps do add
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Figure G.4 Single-ended to differential converter.

some harmonic distortion, but this tends to be small compared to the distortion added by the cir

cuit

G.2.3 Analog Reference Generators

Simple resistive dividers with good bypass capacitor networks were found to be adequate for

this application. Buffer amplifiers can be added, but they also add noise. Bias current generation

was performed using a simple IC transistor array.

G.3 Serial Data Acquisition Board

A serial acquisition card was designed to allow collection of data from modulators and com

plete A/D converters. Once data is collected, it can be analyzed to determine the performance of a

converter. The board was designed to interface to an IBM compatible personal computer. This pro

vides an inexpensive, easy to use system. The board was used with a 33MHz, 486 based system

with 5Mb of memory. It also worked with a 20Mhz, 386SX laptop with 6Mb of memory. Mini

mum requirements are a 386SX system with at least 2Mb of memory. The software might be

rewritten to allow less memory usage with longer program execution times.
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G.3.1 Overview of the Serial Data Acquisition Board

The block diagram for the board is shown in Figure G.5. It consists of a bank of memory orga-
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Figure G^ Block diagram of the Serial DataAcquisition Board.

nized into 4 bit words, an address generator, a controller, and a serial to parallel converter. The

board has 4 modes of operation, listed as follows:

8. Idle mode - do nothing.

9. Load address - load an address offset into the address generator.

10. Acquire mode - Acquire data and save it into the memory.

11. Read mode - Allow PC to read data sequentially from the memory.

The board has been implemented with 4 Megabits of memory organized as 4 bit words. The

address generator was implemented using a 20 bit up counter.

G.3.2 Communication Protocols

Communication between the PC and the Serial Data Acquisition board is controlled using the

lines normally associated with the printer interface. The signals carried on the 25 pin cable were
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redefined to conform to the current application. Rather than using the data lines normally associ

ated with the parallel port, data are collected through the status lines since they can be read without

the need for latching data. This should speed up the data transfer. Data for the initializing the

address in the 18-bit counter are put on the normal data lines. 3 consecutive 8-bit words are sent to

the counter to provide the 18-bit initial address. The controller is designed to respond to the rising

edge of a strobe signal, making the system asynchronous.

Custom software provides the interface to control data acquisition using the Serial Data

Acquisition board. The software was developed using a port of the GNU gcc compiler. Saving

long streams to disk is time consuming so the program provides 2 filtering tasks after acquisition,

FIR decimation filtering and serial to parallel conversion. Computation using in memory operands

speeds up the acquisition and analysis tasks. Additionally, the program provides for an arbitrary

batch file to be executed after the filtering tasks have been completed.

G.3.3 Parallel to Serial Converters

This system will only acquire serial data. In order to collect data from bit parallel systems, a

parallel to serial converter is required. The parallel to serial convertercan be implemented on chip

using a library module, or on the test board using the simple circuit programmed in a PLD. The

PLD is used to implement a statemachine similarto the one found in the library module.
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APPENDIX H

Chip Descriptions

H.1 Overview

This appendix provides detailed information about chips generated in this project The CDF

files for each of these chips is included on the design system distribution tape. Each sheet provides

a pinout, details on the chip functionality, and information about chip yields. The descriptions are

arranged in alphabetical order accordingto the name assigned to the chip. MOSIS run numbers are

also included to ease identification of chips.
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Chip#l:adl2
Mosis ED Number: N280 AJ1

1.1 Introduction

This, chip contains a second order modulator, an FIR filter, and a version of the Lambda processor
created by the C-to-silicon tools. It implements an oversample and decimate by 256 A/D converter.
Design notes indicate that this chip was created during 7/92. The chip was fabricated using HP's
CMOS34 1.2 jam, n-well process. It also contains an on-chip clock generator.

1.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 1.1.The pinout conforms

TABLE l.lPinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 0V) 1 40 Capshield

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

1Guard 5 36 vcmi (set to about 1.5V)

1 bit modulator output 6 35 Analog Vss

;PSEROUT 7 34 vref_neg2 (tie to pin 25)

. Input for slow phi Id 8 33 vref_pos2 (tie to pin 24)

1Input for slow phi2d 9 32 AVdd (tie to pin 26)

(Input for slow phi1 10 31 ODSMIN

Input for slow phi2 11 30 FSERIALOUT

, Digital GND 12 29 FOCLOCK

|Digital Vdd 13 28 POCLOCK

jCLOCKIN 14 27 PDataValid

jofPHII 15 26 Analog Vdd

|ofPHI2 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

|CLOCKSEL (H for on-chip) 17 24 vref_posl (Adjustable, 2.4 - 5V)

jRESET 18 23 Unused

•ODSMSEL (H for on-chip) 19 22 Unused

•BUFSEL (H for normal operation) 20 21 Unused

to the standard for the analog test board.

€hi>#l March 2,1993 N280 AJ1
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1.3 Chip Contents

The chip contains an on-chip clock generator, a second order modulator (the same one used on
dsml2), a decimate by 32 FIR filter, and a DSP core. To operate the chip in normal mode with the
on chip clock generators, place a clock that is 6 x 256 times as fast as the desired output rate on the
pin CLOCKIN. Then set CLOCKSEL and ODSMSEL high and BUFSEL low.The modulator out
put will be available on pin DSMOUT and the A/D output will be available as a 22 bit output in a
serial burst The serial data is found on pin PSERIALOUT, the serial burst clock on POCLOCK,
and a synchronization signal on DataValid. In addition, the output of the FIR filter is available as
16 bit serial words in serial bursts with data on FSERIALOUT and the serial clock on FOCLOCK.

To use external clocks, set CLOCKSEL low and set PHIl, Pffl2, PHIld and PHI2d at 256 times
the desired output rate. Set ofPHI 1 and ofPHI2 3 times faster than PHI 1 and PHIZ

The input data to the filter can be supplied from off-chip. Set pin ODSMSEL low and place syn
chronized input data on ODSMIN.

1.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12chips were provided. The cif file was cdsdsm.cif. Of the 12 chips, all were found to be fully
functional. The chips were tested by applying an input sinusoid and measuring SNR response.
However, there is a circuit problem that makes the chips fail when operating slightly above 5 V.
This appears to be highly temperature dependent This only affects the Lambda processor. The
modulator and FIR filter work fine, and were tested up to 5.5 V.

1.5 Comments

Under speed tests, the chips were found to be functional up to about 8 MHz. It may go faster, but a
50 MHz crystal was the highest speed available for testing. The modulator definitely dies out
above 8 MHz. The references were set so that vref_posl = 3.5V, vrefjiegl = 1.5V, vref_pos2 = 3.5
V, and vrefneg2 = 1.5 V. Biascurrents wereset to a nominal 40 |lA. Nominal size of the integrat
ing capacitor was set to 2.0 pF and the sampling caps to 1.0 pF. Dynamic range using the on-chip
digital filter was extrapolated to be 87 dB.

The pad frame for this chip is set up for a 108 pin package. If extra die are rebonded, it is possible
to enable some other test features, such as the ability to see what is on the main processor bus.
Please refer to the SDL design files for more detail.

The chip will only work when the on-chip clock generator was used. These is a flaw in the design
so that PHIl and PHIld are shorted together. The filter should still work using off-chip clocks, but
there appears to be a synchronization problem in the interface for the processor. I did not debug
this.

1.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 2 comparator was used as well as the
type 2 Class AB opamp. Details on the design trade-offs for the digital filter can also be found
there. Other details on device sizes can be obtained by examining the CIF file.

Chip #1 March 2,1993 N280 AJ1



266 Chip Library Documentation bcap

Chip #2: bcap
Mosis ID Number: N15W FA1

2*1 Introduction

This chip contains 2 second order modulators, both using class AB opamps and double poly capac
itors with integrator gains set to 0.25. The first modulator uses 1 pF sampling caps, while the sec
ond modulator uses 4 pF sampling caps. Design notes indicate that this chip was created during
5/91. The chip was fabricated using Orbit's 2.0 |Lim, p-well, double poly process.

2.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 2.1. The pinout conforms

TABLE 2.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

lAnalog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 boutpl

Input for phi Id 8 33 boutnl

Input for phi2d 9 32 boutn2

Input for phi 1 10 31 boutp2

Input for phi2 11 30 soutp2

Digital GND 12 29 soutn2

Digital Vdd 13 28 soutpl

outenab 14 27 soutnl

tvinp 15 26 Analog Vdd

tvinm 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

tvol 17 24 vref_posl (Adjustable, 2.4 - 5V)

,tvo2 18 23 2Analog In-

tbias 19 22 2Analog In+

Shield 20 21 Analog Ground (2.5V)

to the standard for the analog test b(
and data from pins 6 and 7 will be v

>ard. The chi

alid.

ip will functi on properly if placed in the test board

Chip #2 March 2,1993 N15W FA1
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2.3 Chip Contents

Two copies of the modulator were placed on the chip. On the left side of the chip is the modulator
with 1 pF sampling caps. Outputs from the first and second integrators were routed to pads 27,28,
29, and 30. On the right side of the chip is the modulator with 4 pF sampling caps. Outputs from
the second modulator were routed to pads 31, 32, 33, and 34. This chip made use of a set of
switches on the integrator outputs so the routing to the pads could be switched out when parasitic
effects weren't desired. This feature is controlled by pin 14, outenab. When set high, the outputs of
the integrators were enables.

In addition to the modulators, a test opamp was placed on the chip. The schematic for the opamp
will be given in section 6.

2.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were provided. The cif file was called bcap.cif. Of the 12 chips, all were found to be
fully functional. The chips were tested by applying an input sinusoid and measuring SNR
response. Under these conditions, the 12 chips were found to be functional with a spread of about
7 dB in performance across the chips.

2.5 Comments

During testing, the references were set so that vref_posl = 3.9V,vrefjiegl = 1.1V,vref_pos2 = 3.4
V, and vref_neg2 = 1.6 V. Bias currents were set to a nominal 40 JXA. On this chip, I tried using
unit capacitors to create the big caps. I also found the noise floor only slighdy lower than dsm2p.
The larger capacitances did slow down the devices.

2.6 Circuit Diagrams
Circuit diagrams can be found in the dissertation. The type 2 comparator was used as well as the
type 1 Class AB opamp. The schematic for the extra test opamp is shown in Figure 2.1. Other

Analog Vdd

m

tbia

tvirtp

h—I§
tvinm

tvol

tvo2

Analog Vss

FIGURE 2.1Schematic for the test opamp placed on the chip.

details on device sizes can be obtained by examining the CIF file.

Chip #2 March 2,1993 N15W FA1
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Chip #3: cdsdsm
Mosis ID Number: NOBO CC1

3.1 Introduction

This chip contains 2 second order modulators, both usingclass AB opamps and double poly capac
itors with integrator gains set to 0.25. The first integrator in both modulators made use of corre
lated double sampling. Design notes indicate that this chip was created during 10/90. The chip was
fabricated using Orbit's 2.0 Jim, p-well, double poly process. It also contains an on-chip clock gen
erator.

3.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 3.1. The pinout conforms

TABLE 3.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjieg1 (Adjustable, 0 - 2.6V)

1lAnalog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

: Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

, 1bit output (test) 7 34 Unused

Input for phild 8 33 Unused

' Input for phi2d 9 32 Unused

Inputfor phil 10 31 Unused

Input for phi2 11 30 Toutpl

| Digital GND 12 29 Toutnl

•Digital Vdd 13 28 Toutp2

; phil 14 27 Toutn2

' phi2 15 26 Analog Vdd

jphild 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

|phi2d 17 24 vref_posl (Adjustable, 2.4 - 5V)

]select (Hforon-chip) 18 23 2Analog In-

)compbar 19 22 2Analog In+

! Shield 20 21 Analog Ground (2.5V)

to the standard for the analog test board. The chip will function properly if placed in the test board
and data from pins 6 and 7 will be valid.

Chip #3 March 2,1993 NOBO CC1
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3.3 Chip Contents
Two copies of the modulator were mirrored on the chip. On the left side of the chip, outputs from
the first andsecond integrators as well as the comparator output were routedto pads27,28,29,30,
and 19. To use the on-chip clock generator, set pin 18 high. The 4 clock phases are then derived
from the input on pin 10 and buffered an placed on pins 14, 15, 16, and 17.The output of the left
modulatoris routedto pin 7. The rightmodulator has no parasitic loading and the output is routed
to pin 6.

3.4 Yield Statistics

Chips are numbered in pencil, usually nearthe label where the Mosis ID number is found. On this
run, 12chips were provided. The cif file was cdsdsm.cif. Of the 12chips, all were found to be fully
functional. The chips were tested by applying an input sinusoid and measuring SNR response.
Under these conditions, the 12 chips were found to be functional with a spread of about 4 dB in
performance across the chips.

3.5 Comments

Under speed tests, the chips were found to be functional up to about 3 MHz. However, this can be
changed by adjusting bias to lower opamp gain. Absolute speed numbers are difficult to gauge
since performance rolls off slowly.The references were set so that vref_posl = 3.9V, vrefjiegl =
1.1V, vref_pos2 = 3.6 V, and vref_neg2 = 1.4 V. Bias currents were set to a nominal 40 |iA. Nom
inal size of the integrating capacitorwas set to 2.0 pF and the sampling caps to 0.5 pF. The peak
SNR was measured at 78 dB and the dynamic range was extrapolated to be 91 dB.

3.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
typel Class AB opamp. The circuit diagram for the correlated double sampling integrator is also
given. The on-chip clock generator is asdocumented. Otherdetails on device sizes can be obtained
by examining the CIF file.

Chip #3 March 2,1993 NOBO CC1
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Chip #4: df3s2
Mosis ID Number: N1CF JA1

4.1 Introduction

This chip contains 2 second order modulators, both using class AB opamps and double poly capac
itors with integrator gains set to 0.25. The first integrator in both modulators made use of corre
lated double sampling. Design notes indicate that this chip was created during 10/90.The chip was
fabricated using Orbit's 2.0 Jim, p-well, double poly process. It also contains an on-chip clock gen
erator.

4.2 Pinout

The chip was packaged in a 132 pin PGA and the pinout is given in Table 4.2, Table 4.2, Table 4.2,

TABLE 4.1Pinout for the chip, north side of the chip.

Pin No. Pin Description Type Pin No. Pin Description Type

1 pbias Analog in 18 iLOADl Test out

2 nbias Analog in 19 1N2P1 Test out

3 AVdd Analog pwr 20 DM2P0 Test out

4 AVss Analog pwr 21 Vdd Dig. pwr

5 iop2 Analog out 22 Unused

6 ion2 Analog out 23 Unused

7 ctrl2 Ana. ctrl. 24 Gnd Dig. pwr

8 ctrl2* Ana. ctrl. 25 Unused

9 TESTC1 Test ctrl 26 Unused

10 slOUTl Test out 27 CLR2 Test ctrl

11 slOUTO Test out 28 PRE2 Test ctrl

12 iLOAD2 Test out 29 PRE3 Test ctrl

13 GND Dig. pwr 30 Unused

14 TCSTC3 Test ctrl 31 Vdd Dig. pwr

15 TESTC2 Test ctrl 32 Unused

16 TEST2 Test ctrl 33 Unused

17 LOADlp Test in

and Table 4.2.

Chip #4 March % 1993 N1CFJA1
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TABLE 4.2Pinout for the chip, west side of the chip.

Pin No. Pin Description Type Pin No. Pin Description Type

34 SCANIN Test in 51 Unused

35 LOAD2p Test in 52 Unused

36 S2OUT0 Test out 53 Vdd Dig. pwr

37 S20UT1 Test out 54 Unused

38 S20UT2 Test out 55 iNext Test out

39 Vdd Dig. pwr 56 RESET Ctrl in

40 IN3p[0] Test in 57 ilatch2 Test out

41 IN3p[l] Test in 58 Hatch1 Test out

42 IN3p[2] Test in 59 SCAN Test ctrl

43 TEST3 Test ctrl 60 PRE4 Test ctrl

44 RESETb Ctrl in 61 DL1 Test ctrl

45 GND Dig. pwr 62 GND Dig. pwr

46 CLK64p Test in 63 Unused

47 CLK16p Test in 64 Unused

48 iCLK Test out 65 Unused

49 Unused 66 Unused

50 Substrate Dig. pwr

TABLE 4JPinout for the chip, south side of the chip.

Pin No. Pin Description Type Pin No. Pin Description Type

67 GND Dig. pwr 84 OUT2 Dig. out

68 Vdd Dig.pwr 85 OUT1 Dig. out

69 OUT17 Test out 86 OUT0 Dig. out

70 OUT16 Test out 87 Vdd Dig. pwr

71 OUT15 Test out 88 GND Dig. pwr

72 OUT14 Test out 89 fCLK Clock

73 OUT13 Test out 90 SCANOUT Test out

74 OUT12 Test out 91 TEST0 Test ctrl

75 OUT11 Test out 92 XPHI2d Test clock

76 OUT10 Test out 93 XPHI1 Test clock

Chip #4 March 2,1993 N1CFJA1
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TABLE 4.3Pinout for the chip, south side of the chip.

Pin No. Pin Description Type Pin No. Pin Description Type

77 OUT9 Test out 94 Vdd Dig. pwr

78 OUT8 Test out 95 XPHIld Test clock

79 OUT7 Test out 96 XPHI2 Test clock

80 OUT6 Test out 97 GND Dig. pwr

81 OUT5 Test out 98 CLR1 Test in

82 OUT4 Test out 99 Unused

83 OUT3 Test out

TABLE 4.4Pinout for the chip, east side of the chip.

Pin No. Pin Description Type Pin No. Pin Description Type

100 DataValid Ctrl out 117 DGnd Dig. pwr

101 TEST1 Test ctrl 118 DVdd Dig. pwr

102 GND Dig. pwr 119 ctrll* Ana. ctrl

103 Unused 120 ctrll Ana. ctrl

104 Unused 121 ionl Ana. out

105 Unused 122 iopl Ana. out

106 Unused 123 guard Ana. ref.

107 Unused 124 shiled Ana. ref.

108 Unused 125 inlp Analog in

109 Unused 126 AGnd Ana. ref.

110 Unused 127 inn Analog in

111 Vdd Dig. pwr 128 Cshield Ana. ref.

112 Unused 129 vref_posl Ana. ref.

113 Unused 130 vrefjiegl Ana. ref.

114 Unused 131 vref_pos2 Ana. ref.

115 Unused 132 vref_neg2 Ana. ref.

116 dout Ana. out

The pinout does not conform to the standard for the analog test board. A separate test board was
used for testing this device.

4.3 Chip Contents

This chip contains a second order modulator and 3 digital FIR filters implementing an oversample
and decimate by 64 A/D converter. The chip contains many testability features, allowing all 4 of

Chip #4 March 2,1993 N1CFJA1
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the functional units to be tested individually. To get the overall chip to run, start by placing the
master clock on the pin fclk. It should be twice as fast as the desired sampling rate. Set these sig
nals low: ctrl2, TESTC1, TESTC3, TESTC2, TEST2, CLR2, PRE2, PRE3, TEST3, RESET,
SCAN, PRE4, DLl, TESTO, CLRl, TESTl, and ctrll. Set these signals high: ctrll*, RESETb, and
ctrl2*. Youmay have to toggle RESET and RESETb to get the processors started. All analog refer
ences should be connected as in other examples. The differential analog input then should then be
placed on the pins inp and inn.

To work with the modulator alone, use the following bits of information:

1. The signals ctrll and ctrll* control switches connected to the output of the first integrator. The
output can be observed on the pins ionl and iopl. Setting ctrll high and ctrl 1* low enables the
switches so the output can be observed. For the second integrator, the signals ctrl2, ctrl2*, ion2,
and iopl serve similar functions.

2. If TESTO is set high, then the modulator clock inputs must come from XPHI1, XPHI2,
XPHIld, and XPHI2d. IfTESTO is low, then the modulator clocks are derived from fclk.

3. The output of the modulator is available on the pin labelled dout

All the digital filters were designed with 2 sets of inputs. The signals with TEST at the beginning
control these functions.

To isolate the first filter after the modulator, a 4th order CIC filter, use this information:

1. If you setTESTCl high, the signal CLK64p must be supplied to clock this circuit CLK64p has
a frequency that is 64 times the output rate.

2. If you set TESTl high, then the 1 bit filter input is taken from the pin INI p.

3. The digit serial output is available on pins S1OUTO and S1OUT1.The signal iLOAD1 is gener
ated internally and is synchronized with the most significant digit

4. The signal RESETb resets this filter.

To isolate the second filter, a 7th order CIC filter, use this information:

1. If you set TESTC2 high, then you must supply CLK64p and CLK16p. CLK64p has frequency
64 times the output rate, and CLK16p has frequency 16 times the output rate. If TESTC2 is low,
then clocks are derived from fclk.

2. If you set TEST2 high, then you can supply the digit serial input data on the pins IN2pO and
IN2pl. You must also supply LOADlp, which is a signal that is synchronized with the most
significant digit of the input. If TEST2 is low, data is taken from the preceding CIC filter.

3. The digit serial outputs are available on pins S2OUT0, S20UT1, and S20UT2. The signal
ULOAD2 is generated by this filter and is synchronized with the most significant digit of the
input data.

4. The signal RESTb resets this filter.

To isolate the third filter, a 128 tap FIR filter, use this information:

I. If you set TESTC3 high, then you must supply the clock CLK16p as described previously, and
fclk must still be connect. The signal iCLK will show you the internally generated clock.

Chip #4 March 2,1993 N1CF J Al
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2. If you set TEST3 high, you can supply the digit serial data input data on the pins IN3p[0-2].
You must also supply LOAD2p, which is synchronized with the most significant digit.

3. The output data is bit parallel and found on pins OUT[0-17]. In addition, the signals iNEXT,
iCLK, iLATCHl, and iLATCH2 are generated in this filter and can be used to detect chip prob
lems.

4. The signal RESET is used to reset this filter.

5. This filter has a scanpath. By setting SCAN high and putting vectors on SCANIN, you can load
the scan chain. Output scan data is found on SCANOUT.

Several signals called PREX, CLRX, and DLl also exist. The CLR signals can be used to reset the
integrators in the CIC filters. The other signals are associated with clock generation circuitry.

4.4 Yield Statistics

This chip was hard to test, and some devices exhibited problems when run at 5V. Only the digital
portions of the chips were tested. No numbers on yield were tabulated.

4.5 Comments

The chip contains an error in the RESET circuitry which causes 6 out of every 64 output samples
to be corrupt. This error only occurs in the final 128 tap FIR filter. The intermediate filtering sec
tions do work. This chip was packaged in a 132 pin PGA. A wire-wrapped test board was used.
From the limited amount of data presented here, it is clear that this is a very complex chip.

4.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
typel Class AB opamp. Details on the chip and digital circuits can be found in Shoei-Shin Hang's
Masters Degree Report, available from UCLA. Other details on device sizes can be obtained by
examining the OF file.

Chip #4 March 2,1993 N1CF JA1
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Chip#5:dsml2
Mosis ID Number: N1BA AD 1

5.1 Introduction

This chip contains a second order modulator using a class AB opamps and metal1-poly capacitors
with integrator gains set to 0.5. Design notes indicate that this chip was created during 11/91. The
chip was fabricated using HP's CMOS34 1.2 |im, n-well process. It also contains 3 variations of a
clock driver to allow variation of the sampling edge.

5.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 5.1. The pinout conforms

TABLE S.lPinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 0V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 Unused

1 bit output 6 35 Analog Vss

Unused 7 34 ngate

Input for phild 8 33 ndrain

Input for phi2d 9 32 pgate

Input for phil 10 31 pdrain

Input for phi2 11 30 intoutl

Digital GND 12 29 intout2

Digital Vdd 13 28 Unused

outenab 14 27 vcmi

enablel 15 26 Analog Vdd

enable2 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

enable3 17 24 vref_posl (Adjustable, 2.4 - 5V)

intouti 18 23 Unused

intout4 19 22 Unused

| Unused 20 21 Unused

to the standard for the analog test b<)ard.

Chip #5 March 2,1993 N1BA AD1
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5.3 Chip Contents

The chip contains a secondorder modulator designed for 1.2Jim CMOS. The outputs of the inte
grators were routed to pins 18, 19,29, and 30. Switches were placed between the opamp outputs
and the pads to isolate the opampsfrom extra parasiticloading. The signal outenab is used to close
and open the switch.

3 clock buffers with different sizes were placed on the chip. They have tristate outputs, and a sin
gle set of buffers must be enabled for the chip to work. The signals enable1, enable2, and enable3
are the buffer enables, with enable1 activating the slowest clock buffer and enable3 the fastest

The signal vcmi should be set about Vt below analog ground. Other values can be tried.

Also on this chip, an n and a p transistor were supplied so that the process could be characterized if
necessary. Figure 5.1 shows the pin connections for the devices.

ndrain Analog Vdd

Analog Vss pdraln
FIGURE 5.1Extra devices put on the chip for device characterization.

5.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 50 chips were provided. The cif fileused to fabricate the chip was calleddsm12.cif. Of the 50
chips, 40 were found to be fully functional. Devices 10,11, 12,13,27, 38, and 39 did not work at
all. Devices 8, 14, and 41 showed some life, but poor performance. The chips were tested by
applying an input sinusoid and measuring SNR response. Under these conditions, the 40 chips
were found to be functional with a spreadof less than2 dB in performance across the chips.

5.5 Comments

Underspeed tests, the chips were found to be functional up to about 8 MHz. However, this can be
changed by adjusting bias to lower opamp gain. Absolute speed numbers are difficult to gauge
since performance rolls off slowly. The references were set so that vref_posl = 3.5V, vrefjiegl =
15 V, vref_pos2= 3.5 V, and vref_neg2= 1.5 V. Bias currentswere set to a nominal 40 |0,A. Nom
inal size of the integrating capacitor was set to 2.0 pF and the sampling caps to 1.0 pF. The peak
SNDR was measured at 83 dB and the dynamic range was extrapolated to be 92 dB.

5.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 2 comparator was used as well as the
type2 Class AB opamp. Other detailson devicesizescan be obtained by examining the CIF file.

ngate
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Chip #6: dsm2p
Mosis ID Number: N04Y EG1

6.1 Introduction

This chip contains 2 second order modulators, both using Class AB opamps and double poly
capacitors with integrator gains set to 0.25. Design notes state that the chip was created during
3/90. The chip was fabricated using Orbit's 2.0 |J,m, p-well, double poly process. 2 cascoded n
transistors and 2 capacitors were included as test structures.

6.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 6.1. The pinout conforms

TABLE 6.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

lAnalog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 ncdrain

Input for phi Id 8 33 ndrain

Input for phi2d 9 32 negate

Input for phil 10 31 ngate

Input for phi2 11 30 bottom 1 (bottom plate of capacitor)

Digital GND 12 29 topi (top plate of capacitor)

Digital Vdd 13 28 top2 (top terminal of capacitor)

tphild (test phild phase) 14 27 bottom2 (bottom plate of capacitor)

Toutn2 15 26 Analog Vdd

Toutp2 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

comp 17 24 vref_posl (Adjustable, 2.4 - 5V)

Toutpl 18 23 2Analog In-

Toutnl 19 22 2Analog In+

Shield 20 21 Analog Ground (2.5V)

to the standard for the analog test be
but only data from pin 6 will be vat

>ard. The chi

id.

p will functi on properly if placed in the test board,

Chip #6 March 2,1993 N04Y EG1



278 Chip Library Documentation dsm2p

6.3 Chip Contents

Two copies of the modulator were mirrored on the chip. On the left side of the chip, outputs from
the first and second integrators as well as the comparatoroutput were routed to pads 18,19,15,16,
and 17. In addition, the first modulator has the phi Id clock phase separated and routed to pin 14 to
allow an additional testing mode. If this pin is set low, the first integrator is isolated and can be run
using the vref1 pins as input In normal operation, pin 14 was tied to pin 8. The output of the left
modulator is routed to pin 7. The right modulator has no parasitic loading and the output is routed
to pin 6.

Several test devices were placed on the chip and their schematics are shown in Figure 6.1.

ncdrain

negate J

ngate J

J

5- ndrain

Analog Vss

FIGURE 6.1Extra devices put on the chip for device characterization.

bottom bottom

6.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were provided. The cif file was dsm2p.cif. Of the 12 chips, 10 were found to be fully
functional. Chip 6 was not functional, and chip 8 functioned at a lower performance level. The
chips were tested by applying an input sinusoid and measuring SNR response. Under these condi
tions, the 10 chips were found to be functional with a spread of about 2 dB in performance across
the chips.

6.5 Comments

Under speed tests, the chips were found to be functional up to about 8 MHz. Absolute speed num
bers are difficult to gauge since performance rolls off slowly. The references were set so that vref_-
posl = 3.8V, vrefjiegl = 1.2V, vref_pos2 = 3.0 V, and vref_neg2 = 2.0 V. Bias currents were set to
anominal 40|IA.For asampling rate of 1MHz and adecimate by256 sine3 decimation filter, typ
ical peak SNR was 72 dB and dynamic range was 82 dB. Nominal size of the integrating capacitor
was set to 2.0 pF and the sampling caps to 0.5 pF.

The cif file was written with an old version of the magic technology file, which causes an error
when n transistors are read in. Use the cif istyle lambda=1.0(oldpwell) if this happens.
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6.6 Circuit Diagrams
Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
type 1 Class AB opamp. Other details on device sizes can be obtained by examining the CIF file.

Chip #6 March 2,1993 N04Y EG1
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Chip #7: dsmad2
Mosis ID Number: N12E HB1

7.1 Introduction

This chip contains a second order modulator with integrator gains set to 0.25 and an FIR decimate-
by-64 filter. Design notes state that the chip was created during 1/91. The chip was fabricated using
Orbit's 2.0 |Lim, p-well, double poly process. An on-chip clock generator was included to simplify
clock generation.

7.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 7.1. The pinout conforms

TABLE 7.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Unused 5 36 nbias (input for n current mirror)

1 bit output 6 35 Analog Vss

SERIALOUT 7 34 Analog Vdd (tie to pin 26)

Input for slow phild 8 33 SCANIN

Input for slow phi2d 9 32 SHIFT (H enables scantest)

Input for slow phil 10 31 RESET

Input for slow phi2 11 30 filter GND

PAD GND 12 29 filter Vdd

PAD Vdd 13 28 OCDSM

input for fast phil 14 27 DSMSEL (H for on-chip)

input for fast phi2 15 26 Analog Vdd (tie to pin 34)

CLOCKIN 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

SOCLOCK 17 24 vref_posl (Adjustable, 2.4 - 5V)

CLOCKSEL (H for on-chip) 18 23 Unused

SCANOUT 19 22 Unused

Unused 20 21 Unused

to the standard for the analog test board. See the notes in the next section to achieve proper opera
tion of the chip.
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7.3 Chip Contents
This chip contains an on-chip clock generator, a second order modulator with double poly capaci
tors, a decimate-by-64 FIR filter, and an output parallel to serial converter.

The chip requiresa set of fast clocks and slow clocks and the fast clock must be 3 times faster than
the slow clock. These clocks can be generated off-chip and supplied to the chip at pins 8,9,10,11,
14, and 15. Pin 18 must be set low to enable off-chip clock inputs. For on-chip clocks, a clock that
is twice the desired fast clock frequency should be connected to pin 16 and pin 18 should be set
high. The on-chip clock generator was functional.

Power and ground leads were separated into pad, filter, and analog pins. This allows direct mea
surement of the power consumed by the filtercore, without adding the power in the pads.

The digital filtercan operate in a scan test mode.The input for the scan chain is pin 33 and the out
put is pin 19. Pin 32 should be set high when scantest mode is used. Another testability feature
allows the filter input to come either from the on-chip modulator or from an external source. To
use the on-chip modulator, set pin 27 high. For off-chip data, place the data stream on pin 28 and
set pin 27 low.

The filter output comes out as a 19 bit serial burst with LSB first data. The output stream appears
on pin 7 and the corresponding serial clock appears on pin 17. Since the clock is not active very
often, there is little trouble in synchronizing the data acquisition board and a data valid signal is
not required. When operating the filter, the RESET pin 18 must be set high and then low to reset
the filter. Use a scope to visually verify that the SOCLOCK signal is periodic. If it is not, the
RESET sequence was not correct and must be repeated.

7.4 Yield Statistics

Chips are numbered in pencil, usually nearthe label where the Mosis ID numberis found. On this
run, 24 chips were provided. The cif file was dsmad2.cif. Of the 24 chips, 20 were found to be
fully functional. Chips 16, 17, 18,and 20 werefound to be problematic. The chips were tested by
applying an input sinusoid and measuring SNR response. Under these conditions, the 20 chips
were found to be functional with a spread of about 3 dB in performance across the chips.

7.5 Comments

The chips performed similar to dsm2p. The references were set so that vref_posl = 3.9V,
vrefnegl = 1.1V, vref_pos2 = 3.0 V, and vref_neg2 = 2.0 V. Bias currents were set to a nominal
40 |1A. Nominal size of the integrating capacitor wasset to 2.0 pF and the sampling caps to 0.5 pF.
The chip design was discussed as example 1 of the dissertation.

Chips 23 and 24 were given to Pao Chen, EG&G Reticon.

7.6 Circuit Diagrams
Circuitdiagrams can be found in the dissertation. The type 1 comparator was used as well as the
folded cascode opamp. Otherdetails on device sizescan be obtainedby examining the CIF file.
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Chip #8: dsmchip2
Mosis ID Number: M98X DK1

8.1 Introduction

This chip was created by placing the modulators left by Max Hauser and Bosco Leung on a single
die. Design notes state that the chip was created about 11/89. The chip was fabricated using Orbit's
2.0 (im, p-well process.

8.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 8.1. The pinout does not

TABLE 8.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Unused 1 40 testin

Unused 2 39 testout

2Analog In+ 3 38 Vdd

2Analog In- 4 37 GND

Unconnected 5 36 dout2

1Analog In+ 6 35 phil

1Analog In- 7 34 phild

shield 8 33 doutl

Analog Vdd 9 32 phi2d

Unused 10 31 phi2

Analog Vss 11 30 dout3

vref_posl 12 29 dith-

vref_neg2 13 28 dith+

pbias 14 27 Unused

nbias 15 26 Unused

Unused 16 25 Unused

1Analog Ground 17 24 3Analog Ground

3Analog In- 18 23 s21

vref_neg2 19 22 s24

vref_pos2 20 21 3AnalogIn+

conform to the standard for the analog test board.
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8.3 Chip Contents

This chip contains the first order modulator described in Bosco Leung's Ph. D. dissertation, the last
versions of the second order modulator and a first order modulator that Max Hauser worked on.

8.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were received. The cif file used to fabricate the chip was called dsmchip2.cif. There
was much difficulty in testing this chip since a wire wrapped test board was used. No specific notes
were kept on yield, but at least 1 chip was shown to be functional.

8.5 Comments

Initial studies were performed using a DAS. The serial-to-parallel converter board developed by
Max Hauser for the SPUDS system was used for testing.

The cif file was written with an old version of the magic technology file. The old tech file caused
all of the n transistors to exhibit design rule violations. To view this file, use the cif istyle lamb-
da=1.0(oldpwell).

8.6 Circuit Diagrams

Circuit diagrams can be found in Bosco Leung's dissertation for his first order loop.
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Chip #9: dsmtest
Mosis ID Number: N15W FBI

9.1 Introduction

This chip contains 2 second order modulators, both using class AB opamps and double poly capac
itors. One modulator has integrator gains of 0.5. The other modulator has features that allow the
isolation and testing of a single opamp. Design notes indicate that this chip was created during
5/91. The chip was fabricated using Orbit's 2.0 |lm, p-well, double poly process.

9.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 9.1. The pinout conforms

TABLE 9.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 cmfbin

Input for phild 8 33 oaouten

Input for phi2d 9 32 oainen

Input for phil 10 31 iolen

Input for phi2 11 30 oa_inp

Digital GND 12 29 oa_outm

Digital Vdd 13 28 oa_outp

compjeval 14 27 oa_inn

i douten 15 26 Analog Vdd

indout 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

| intout* 17 24 vref_posl (Adjustable, 2.4 - 5V)

; comp 18 23 2Analog In-

' comp* 19 22 2Analog In+

1Shield 20 21 Analog Ground (2.5V)

to the standard for the analog test be
and data from pin 6 will be valid.

>ard. The chiip will funcn on properly if placed in the test board
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9.3 Chip Contents

Two modulators were placed on the chip. On the right side, the modulator uses 1.0 pF sampling
caps and integratorswith gain set to 1/2.The output of this modulator is routed to pin 6. The mod
ulatoron the left was designed so the opamp could be isolated. The integrators are configuredfor a
gain of 1/4, and the sampling capacitoris sized to 2 pF. Figure9.1 shows a wiring diagram to illus
trate how the pads should be connected for various testing modes. A fiilly differential circuit
implementation is used but only a single ended version is shown in the drawing.The signals comp,
indout, oa_inp, and oa_outm all have complementary versions.

Setting the signals compen, oaouten, oainen, and iolen all high enables the modulator to work as
desired. There are basically 3 modes of operation that can be used.

1. The opamp can be isolated by setting io len, oaouten, and oainen low. The input to the opamp is
accessible through the pins oa_inp and oa_inm and the outputs at oa_outm and oa_outp. The
clocked common-mode feedback is disabled, and the voltage placed on cmfbref will control the
output common mode point Also in this mode, the comparatoris isolated. Response can be
studied by connecting compeval to phil, and injecting signals with the opamp used as a buffer
in unity gain feedback mode. Output of the comparator is available on the pins comp and
comp*.

2. Using the same conditions as in mode 1, but setting oaouten high enables the clocked common
mode feedback, allowing examination of the opamp under normal operating conditions. Again,
the comparator can be tested.

3. Using the same conditions as in mode 2, but setting oainen high forces the opamp into an inte
gratorconfiguration. The signal compen can be set high to enable the feedback loop, or set low
to allow injection of signals into the second opamp input This is achieved by placing comple
mentary logic values on indout and indout*.

9.4 Yield Statistics

Chips are numbered in pencil, usually nearthe label where the Mosis ID number is found. On this
run, 12chips were provided. The cif file was called dsmtestcif. Of the 12 chips, all were found to
be fully functional. The chips were tested by applying an input sinusoid and measuring SNR
response. Under these conditions, the 12chips were found to be functional with a spread of about
1 dB in performance across the chips.

9.5 Comments

During testing, the references were set so that vref_posl = 3.9V, vrefjiegl = 1.1V,vref_pos2 = 3.6
V, andvref_neg2= 1.4V. Bias currents wereset to a nominal 40 \lA. Full characterization of these
chips was not performed. However, it was noted that basic SNR performance was similar to that
obtainedwith dsm2p. Examining the FFT showed that there was slightiy lower noise when using
the integrators with gain of 1/2.This is expected since under the additive white noise analysis, the
noise shaping is not as steep for the gain of 1/2 case. The larger capacitances did slow down the
opamps.

Chip #9 March 2,1993 N15VV FBI
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9.6 Circuit Diagrams
Circuit diagrams can be found in the dissertation. The type 2 comparator was used as well as the
type 1 Class AB opamp. The circuit diagram for the correlated double sampling integrator is also
given. Other details on device sizes can be obtained by examining the CIF file.
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Chip#10:fc2p2
Mosis ID Number: NOBO CB1

10.1 Introduction

This chip contains 2 second order modulators, both using folded cascode opamps and double poly
capacitors with integratorgains set to 0.25. This chip was created during 10/90 and is a redesign of
fcdsm2p. The chip was fabricated using Orbit's 2.0 |im, p-well, double poly process. It also con
tains a replica of the biasing circuitry used in the folded cascode opamp and an on-chip clock gen
erator.

10.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 10.1. The pinout con-

TABLE lO.lPinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vref_negl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current minor)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 biasl

Input for phild 8 33 bias2

Input for phi2d 9 32 bias3

Input for phil 10 31 bias4

Input for phi2 11 30 Toutpl

Digital GND 12 29 Toutnl

Digital Vdd 13 28 Toutp2

phil 14 27 Toutn2

phi2 15 26 Analog Vdd

phild 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

phi2d 17 24 vref_posl (Adjustable, 2.4 - 5V)

select (H for on-chip) 18 23 2Analog In-

comp 19 22 2Analog In+

Shield 20 I21 Analog Ground (2.5V)

forms to the standard for the analog test board. The chip will function property if placed in the test
board and data from pins 6 and 7 will be valid.
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10.3 Chip Contents

Two copies of the modulator were mirrored on the chip. On the left side of the chip, outputs from
the first and second integrators as well as the comparator output were routed to pads 27,28,29,30,
and 19. To use the on-chip clock generator, set pin 18 high. The 4 clock phases are then derived
from the input on pin 10 and buffered an placed on pins 14, 15, 16, and 17. The output of the left
modulator is routed to pin 7. The right modulator has no parasitic loading and the output is routed
to pin 6.

The replica high swing cascode biasing circuit is shown with pin names in Figure 10.1.

Analog Vdd

S? MM
pbias

G
bias3

nbias

h=

bias4

^rn
\H

h' '^'n
Analog Vss

FIGURE lO.lHigh swing cascode bias circuit

biasl

bias2

10.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were provided. The cif file was fc2pc2.cif. Of the 12 chips, 8 were found to be fully
functional. Chips 1, 4, 7, and 12 functioned at a lower performance level with large amounts of
harmonic distortion evident in the output spectrum. Performance could be increased by adjusting
the bias conditions. The chips were tested by applying an input sinusoid and measuring SNR
response. Under these conditions, the 8 chips were found to be functional with a spread of about 3
dB in performance across the chips.

10.5 Comments

Under speed tests, the chips were found to be functional up to about 3 MHz. Absolute speed num
bers are difficult to gauge since performance rolls off slowly. The references were set so that vref_-
posl = 3.9V, vrefjiegl = 1.1V, vref_pos2 = 3.0 V, and vref_neg2 = 2.0 V. Bias currents were set to
a nominal 275 |XA, but the integrator outputs for the test modulator were found to be in the wrong
operating region. Bias was readjusted until the common mode output was at 2.5V. By measuring
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the values of bias2 and bias3, it was found that the high swing bias was not correct SPICE models
did not give the correct results for the linear region operation of the devices. Nominal size of the
integrating capacitor was set to 2.0 pF and the sampling caps to 0.5 pF. The peak SNR was mea
sured at 77 dB and the dynamic range was extrapolated to be 93 dB.

Devices 7 and 12 were given to Pao Chen, EG & G Retcion.

10.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
folded cascode opamp. The on-chip clock generator is as documented. Other details on device
sizes can be obtained by examining the CIF file.
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Chip#ll:fcdsm2p
Mosis ID Number: N06M GE1

11.1 Introduction

This chip contains 2 second order modulators, both using folded cascode opamps and double poly
capacitors with integrator gains set to 0.25. Design notes state that the chip was created during
6/90. The chip was fabricated using Orbit's 2.0 fim, p-well, double poly process. 2 cascoded n
transistors and 2 capacitors were included as test structures.

11.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 11.1. The pinout con-

TABLE U.lPinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield(Connect to 0V)

1Analog In- 2 39 vref.negl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias(input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 ncdrain

Input for phild 8 33 ndrain

Input for phi2d 9 32 negate

Input for phil 10 31 ngate

Input for phi2 11 30 bottom 1 (bottom plate of capacitor)

Digital GND 12 29 topi (top plate of capacitor)

Digital Vdd 13 28 top2 (top terminal of capacitor)

Itphild (test phild phase) 14 27 bottom2 (bottom plate of capacitor)

iTouui2 15 26 Analog Vdd

Toutp2 . 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

1comp> 17 24 vref_posl (Adjustable, 2.4 - 5V)

1Toutpt 18 23 2Analog In-

JToutn1 19 22 2Analog In+

. Shield 20 21 Analog Ground (2.5V)

forms to the standard for the analog test board. The chip will function properly if placed in the test
board, but only data from pin 6 will be valid.
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11.3 Chip Contents

Two copies of the modulator were mirrored on the chip. On the left side of the chip, outputs from
the first and second integrators as well as the comparatoroutput were routed to pads 18,19,15,16,
and 17. In addition, the firstmodulator has the phild clock phase separated and routed to pin 14 to
allow an additional testing mode. If this pin is set low, the first integrator is isolated and can be run
using the vref1 pins as input. In normal operation, pin 14 was tied to pin 8. The output of the left
modulator is routed to pin 7. The right modulator has no parasitic loading and the output is routed
to pin 6.

Several test devices were placed on the chip and their schematics are shown in Figure 11.1.

ncdrain

negate

ngate

J

3-
ndrain

bottom

Analog Vss

FIGURE ll.lExtra devices put on the chip for device characterization.

11.4 Yield Statistics

Chips arenumbered in pencil, usually nearthe label where the Mosis ID number is found. On this
run, 12chips were provided.The cif file was fcdsm2p.cif. Of the 12chips, 8 were found to be fully
functional. Chips 1, 3, 5, and8 functioned at a lower performance level with large amounts of har
monic distortion evident in the output spectrum. The chips were tested by applying an input sinu
soid and measuring SNR response. Under these conditions, the 8 chips were found to be functional
with a spread of about 3 dB in performance across the chips.

11.5 Comments

Under speed tests, the chips were found to be functional up to about 3 MHz. Absolute speed num
bers aredifficult to gauge since performancerollsoff slowly. The references were set so that vref_-
posl = 3.9V, vrefnegl = 1.1V, vref_pos2 = 3.0 V, andvref_neg2 = 2.0 V. Bias currents were set to
a nominal 275 (lA, but the integrator outputs for the test modulatorwere found to be in the wrong
operating region. Bias was readjusteduntil the common mode output was at 2.5V. Nominal size of
the integrating capacitorwas set to 2.0 pF and the sampling caps to 0.5 pF. Using chip 10, peak
SNR was measured at 67.5 dB.
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After testing this chip, a small design flaw was found in the common mode feedback circuitry. The
redesigned version of this chip was called fc2p2. In spite of this error, it is possible to gather quite
a bit of useful data from this chip. The design flaw decreases the integrator swing giving rise to
large harmonic distortion.

The cif file was written with an old version of the magic technology file, which causes n transistors
to be displayed with design rule violations. Use the cif istyle lambda=1.0(oldpwell) if this occurs.

11.6 Circuit Diagrams
Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
folded cascode opamp. Other details on device sizes can be obtained by examining the CIF file.
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Chip#12:mlpn2
Mosis ID Number: N03W EE1

12.1 Introduction

This chip contains 2 second order modulators, both using Class AB opamps and metal 1-poly
capacitors, with integrator gains set to 0.25. Design notes state that the chip was created about
3/90. The chip was fabricated using VLSI Technology's 2.0 |lm n-well process. 2 cascoded n tran
sistors, a p transistor, and a capacitor were included as test structures.

12.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 12.1. The pinout con-

TABLE 12.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 0V) 1 40 Capshield (Connect to 5V)

1Analog In- 2 39 vref_negl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current minor)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

1 bit output (test) 7 34 pgate

Input for phild 8 33 ncdrain

Input for phi2d 9 32 pdrain

Input for phil 10 31 ndrain

Input for phi2 11 30 negate

Digital GND 12 29 ngate

Digital Vdd 13 28 top (top terminal of capacitor)

tphild (test phild phase) 14 27 bottom (bottom plate of capacitor)

Toutn2 15 26 Analog Vdd

Toutp2 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

comp 17 24 vref_posl (Adjustable, 2.4 - 5V)

Toutpl 18 23 2Analog In-

Toutnl 19 22 2Analog In+

Shield 20 21 Analog Ground (2.5V)

forms to standard for the analog test board. The chip will function properly if placed in the test
board, but only data from pin 6 will be valid.
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12.3 Chip Contents
Two copies of the modulator were mirrored on the chip. On the left side of the chip, outputs from
the first and second integrators as well as the comparatoroutput were routed to pads 18,19,15,16,
and 17. In addition, the first modulator has the phi Id clock phase separated and routed to pin 14 to
allow an additional testing mode. If this pin is set low, the first integrator is isolated and can be run
using the vref1 pins as input. In normal operation, pin 14 was tied to pin 8. The output of the left
modulator is routed to pin 7. The right modulator has no parasitic loading and the output is routed
to pin 6.

Several test devices were placed on the chip and theirschematics are shownin Figure 12.1.

ncdrain

negate

ngate

J
ndrain

Analog Vss

pgate

Analog Vdd

J
h
pdrain

FIGURE 12.1Extra devices put on the chip for device characterization.

12.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were provided. The cif file was mlpn2.cif. All 12 were found to be functional. The
chips were tested by applying an input sinusoid and measuring SNR response. Under these condi
tions, all chips were found to be functional with a spreadof about 1 dB in performance across the
12 chips.

12.5 Comments

Under speed tests, the chips were found to be functional up to about 3 MHz. Speed seems to be
limited primarily by the large parasitic capacitance (from the bottom plate of the integrating cap)
on the output of the opamps. The references were set so that vref_posl = 3.8V, vrefjiegl = 1.2V,
vref_pos2 = 3.0 V, and vref_neg2 = 2.0 V. Bias currents were set to a nominal 40 |IA. For a sam
pling rate of 1MHz and adecimate by256 sine3 decimation filter, typical peak SNR was 77 dB
and dynamic range was 85 dB. Nominal size of the integrating capacitor was set to 2.0 pF and the
sampling caps to 0.5 pF.

12.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
type 1 Class AB opamp. Other details can be obtained by examining the CIF file.
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Chip #13: oatest
Mosis ID Number: NOCT DF1

13.1 Introduction

This chip contains a second order modulator and an stand alone integrator, both using class AB
opamps and double poly capacitors with integrator gains set to 0.25. Design notes indicate that this
chip was created during 12/90. The chip was fabricated using Orbit's 2.0 |im, p-well, double poly
process. It also contains an on-chip clock generator. This chip was designed so that the opamp in
the stand alone integrator could be isolated for performance measurements.

13.2 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 13.1. The pinout con-

TABLE 13.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield (Connect to 0V)

1Analog In- 2 39 vrefjiegl (Adjustable, 0 - 2.6V)

1Analog In+ 3 38 vref_posl (Adjustable, 2.4 - 5V)

Analog Ground (2.5V) 4 37 pbias (input for p current rnirror)

Shield 5 36 nbias (input for n current mirror)

1 bit output (clean) 6 35 Analog Vss

CLKIN 7 34 oa_outp

Input for phild 8 33 oa_outn

Input for phi2d 9 32 vcmo

Input for phil 10 31 cmfbin

Input for phi2 11 30 oa_inp

Digital GND 12 29 oa_inn

Digital Vdd 13 28 to_oap

cdout 14 27 to_oan

cmfben 15 26 Analog Vdd

csp_pos 16 25 vref_neg2 (Adjustable, 0 - 2.6V)

csn_pos 17 24 vref_posl (Adjustable, 2.4 - 5V)

csp_neg 18 23 2Analog In-

csn_neg 19 22 2Analog In+

CLKSEL(H for on-chip) 20 21 Analog Ground (2.5V)

forms to the standard for the analog test board. The chip will function properly if placed in the test
board and data from pins 6 will be valid.
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13.3 Chip Contents

To use the on-chip clock generator, set pin 20 high. The 4 clock phases are then derived from the
input on pin 7 and buffered an placed on pins 8,9,10, and 11.These pins use bidirectional pads so
that if the internal clock generator is bad, the 4 clock phases can be supplied from an off-chip
source. The output of the modulator is routed to pin 6.

By configuring connections on the chip, the opamp can be configured as an integrator. Figure 13.1.
The layout was developed so these integrator portions could be wired for 4 modes of operation.

1. Test of the opamp core. In this mode, set phi2 and cmfben low. Common mode feedback is con
trolled through the use of the cmfbjn pin. A full differential opamp can be measured.

2. Test the opamp core with clocked common mode feedback. In this mode, enable the clocks and
set cmfben high.

3. Test the opamp in an integrator configuration. Set the clocks and cmfben as in mode 2. In addi
tion, use off chip capacitors and the switch array to create an integrator. This can be done as fol
lows. Short the following pairs of pins: 35 and 32,30 and 28,29 and 27. Connect capacitors
across these pins: 34 and 29, 33 and 30,16 and 17,18 and 19. Set pin 14 to either high or low
and set vref_pos2 and vref_neg2 to Analog Ground. Now pins 23 and 22 serve as the inputs to
the integrator.

4; Test the opamp as a first order modulator. Set up the pins as in mode 3, but take pins 33 and 34
and use them as the inputs to the a comparator. Take the output of the comparator aridconnect it
to pin 14. This signal is also the output of the modulator.

13.4 Yield Statistics

Chips are numbered in pencil, usually near the label where the Mosis ID number is found. On this
run, 12 chips were provided. The cif file was oatestcif. No formal tests were made to see if all of
the chips were functional. The chip was made primarily to provide a testable opamp.

13.5 Comments

A single device was characterized for performance. The references were set so that vref_posl =
3.9V,vrefjiegl = 1.1V,vref_pos2 = 3.4 V, and vref_neg2 = 1.6 V. Bias currents were set to a nom
inal 40 |IA. Nominal size of the integrating capacitorwas set to 2.0 pF and the sampling caps to
0.5 pF. The performance was similar to that obtained from the dsm2p chips.

13.6 Circuit Diagrams

Circuit diagrams can be found in the dissertation. The type 1 comparator was used as well as the
typel Class AB opamp. The on-chip clock generator is as documented. Other details on device
sizes can be obtained by examining the CDF file.
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FIGURE 13.1Wiring diagram for the integrator components.
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Chip #14: order3
Mosis ID Number: N15W FC1

14.1 Introduction

This chip contains second order and firstorder modulators set up in a cascade. When properly con
figured, the composite circuits can be used as a third order multistage modulator. All integrators
use class AB opamps and double poly capacitors with integrator gains set to 0.5. Design notes
indicate that this chip was created during 3/91. The chip was fabricated using Orbit's 2.0 |im, p-
well, double poly process. It also contains logic to allow collection of both data streams.

142 Pinout

The chip was packaged in a 40 pin dip and the pinout is given as in Table 14.1.The pinout con-

TABLE 14.1Pinout for the chip.

Pin Description Pin No. Pin No. Pin Description

Substrate (Connect to 5V) 1 40 Capshield

Unused 2 39 vrefjiegl

Unused 3 38 vref_posl (

Unused 4 37 pbias (input for p current mirror)

Shield 5 36 nbias (input for n current mirror)

doutl 6 35 Analog Vss

SEROUT 7 34 ioen3

Input for phild 8 33 intout_pos3

Input for phi2d 9 32 intout_neg3

Input for phil 10 31 vref_pos3

Input for phi2 11 30 vref_neg3

Digital GND 12 29 ioen2

Digital Vdd 13 28 intout_pos2

Unused 14 27 intout_neg2

dout2 15 26 Analog Vdd

iolen 16 25 vref_neg2

intoutpl 17 24 vref_posl

intoutnl 18 23 2Analog In-

, Shield 19 22 2Analog In+

[CSH 20 21 Analog Ground (2.5V)

forms to the standard for the analog test board.
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14.3 Chip Contents
The left modulator is a standard second order modulator. The output is routed to pin 6 as signal
doutl. The differential outputs of the last integrator in the left modulator serve as the inputs for the
first order modulator placed on the right. The output of the first order modulator is accessible on
pin 15 as the signal dout2. The signals iolen, io2en, and io3en control switches placed on the out
puts of the 3 integrators. When disabled, the switches block the capacitive loading associated with
the routing wires to the chip pads. Iolen and io2en control the isolation of the outputs of the first
and second integrators in the left modulator and io3en controls the integrator in the first order mod
ulator. The outputs appear on the pins as labeled.The additional signals vref_pos3 and vref_neg3
serve as the D/A inputs for the first order modulator. They can be connected to the references for
the second order modulator if desired.

The signal SEROUT is obtained by combining the signals doutl and dout2 and the circuit used for
this is shown in Figure 14.1.

doutl

SEROUT

doute

FIGURE 14.1Logic used to combine the output bit streams into a single stream.

14.4 Yield Statistics

Chips are numbered in pencil, usuallynear the label where the Mosis ID number is found. On this
run, 12chips were provided. The cif file was cdsdsm.cif. Of the 12chips, all were found to be fully
functional. The chips were tested by applying an input sinusoid and measuring SNR response.
Under these conditions, the 12 chips were found to be functional with a spread of about 3 dB in
performance across the chips.

14.5 Comments

During testing, the references were set so that vref_posl = vreg_pos2 = vref_pos3 = 3.2V, and
vrefjiegl = vref_neg2 = vreg_neg3 = 1.8V. Bias currents were set to a nominal 40 jllA.

The master clock on the test board is divided by 2, so it can be used as the clock to collect the sig
nal SEROUT. Once the data stream was collected in software, a filtering algorithm was imple
mented to combine the bit streams into a single stream with third order noise shaping. See the
papers by Ribner for information about this type of second-order first-ordercascade. It was found
that the performance was not better than a single second order modulator since the third order
noise shaping was masked by the noise floor caused by 1/f noise in the opamps.
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14.6 Circuit Diagrams
Circuit diagrams can be found in the dissertation. The type 2 comparator was used as well as the
type 1 Class AB opamp. The circuit diagram for the correlated double sampling integrator is also
given. Other details on device sizes can be obtained by examining the CDF file.
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