

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LARGE OBJECT SUPPORT IN POSTGRES

by

Michael Stonebraker and Michael Olson

Memorandum No. UCB/ERL M93/22

10 March 1993

LARGE OBJECT SUPPORT IN POSTGRES

by

Michael Stonebraker and Michael Olson

Memorandum No. UCB/ERL M93/22

10 March 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LARGE OBJECT SUPPORT IN POSTGRES

by

Michael Stonebraker and Michael Olson

Memorandum No. UCB/ERL M93/22

10 March 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Large Object Support inPOSTGRES1

Michael Stonebraker
Michael Olson

Department of Electrical Engineeringand Computer Science
University of California at Berkeley

Abstract
This paper presents four implementationsfor support of
large objects in postgres. The four implementations
offer varying levels of supportfor security, transactions,
compression, and time travel. All are implementedusing
thePOSTGRES abstract data type paradigm, supportuser-
defined operators and functions, and allow file-oriented
access to large objects in the database. The supportfor
user-defined storage managers available in POSTGRES is
also detailed. The performance of all four large object
implementations on two different storage devices is
presented.

1. Introduction

There have been numerous implementations supporting
large objects in database systems [BILI92]. Typically,
these implementations concentrate on low-level issues
such as space management and layout of objects on
storage media. Support for higher-level services is less
uniform among existing systems.

Commercial relational systems normally support
BLOBs (binary large objects), and provide the capability
to store and retrieve them through the query language.
Commercial systems, however, in general do not allow
the query language to be extended with new functions and
operators that manage typed BLOBs. Such query
language and typing support would make BLOBs much
more useful

An important issue in managing large objects is the
interface provided to users for accessing them. The Star-
burst long field manager [LEHM89] supports file-oriented
access using a functional interface. [HASK82] proposes
extending the SQL cursor mechanism to support cursor
operations on largeobject data.

1Funding for this research was provided bythe Army Research
Officeundergrant DAALQ3-91-0183.

Other important services include versioning and
compression. Some research systems, such as Exodus
[CARE86], support versioning of large objects, but previ
ous proposals have been not supported other essential
features, such as user defined functions, operators, and
compression.

Finally, there has been considerable discussion about
extendability in relational database management systems
[BAT086, HAAS90, STON90]. Proposals have
addressed the inclusion of new types, new access
methods, new optimizer strategies,and rule systems.

In this paper, we present the implementation of large
objects in postgres, and describe the services provided
by the database system for managing large object data.
We consider the notions of files, large objects, file sys
tems, and user-defined storage managers in a new light
Specifically, we propose that large objects be considered
large abstract data types (ADTs), that large ADTs have a
file-oriented rather than cursor-oriented interface, that
several different implementations for large ADTs be con
structed, and that files be supported on top of data base
large ADTs. The constructs we discuss are all imple
mented in postgres, Version 4, and performance results
from the running system will be presented

The rest of this paperis organizedas follows. Section 2
describesrelatedwork on the management of largeobject
data. In Section 3 we consider support for large objects
as ADTs, and indicate the advantagesof this approach as
well as three major problems. Then in Section 4 we turn
to the user interface desired for large ADTs. Section 5
describes the techniques used to manage temporary large
objects. We continue in Section 6 with four implementa
tions for POSTGRES large ADTs. Section 7 introduces
postgres support for user-defined storage managers and
discussesthreethat we have implemented. Section 8 con
tinues with a discussion of the Inversion file system,
which supports conventional user files on top of large
ADTs. Finally, Section9 presents a performance studyof
the various implementations available for files and large
objects.

2. Related work

The Wisconsin Storage System (WiSS) [CHOU85] was
an early implementation of a storagemanager supporting
access to large data objects. WiSS decomposes large
objects into pages, which are the fundamental unit of per
sistence. The WiSS client controls physical layout of
object pages, making it easy to implement clustering stra
tegies appropriate to particular large object applications.
Indices on logical page locations make object traversal
fast

The EXODUS storage manager [CARE86] provides a
set of low-level abstractions for managing large data
objects. It supports efficient versioning of these objects.
Users can extend the system to support new object types
and operations on them. EXODUS is the storage
management component of a DBMS toolkit, and does not
provide (for example) query-language access to the data
that it stores.

Storage management in Starburst [LEHM89] is more
closely integrated with conventional relational database
management Starburst manages large objects as files,
with strategies for laying out data efficiently and creating
new versions of existing objects. Users can extend the
storage manager with new storage strategies, and can
define new large data types. Large objects can be
accessed via an ad hoc query language using a functional
interface.

Orion [KTM89] is an object-oriented system that sup
ports efficient versioning of objects. A special buffering
strategy for large object data allows Orion to instantiate
only pages of interest, so entire objects need not be
presentin physical memory. 02 [DEUX90] uses WiSS to
manage object data, and so provides page-oriented access
to large object data. Both Orion and 02 provide good
support for abstraction and encapsulation over large
object data. Users may define methods and accessors on
largeobjects and invoke them from within their programs.

The work described here differs from these systems in
several ways. Most importantly, postgres provides a
file-oriented interface to large objects, both for the client
and for the server programs. The user may choose among
several supported implementations, trading off speed
againstsecurity and durability guarantees, postgres sup
ports fast random access to compressed data, fine-grained
time travel over versions of large objects, and the
definition of operators and functions on large objects.
Operators and functions are dynamically loaded, and may
be invoked from the query language. A file system built
on top of the large object implementation supports
transaction-protected access to conventional file data.
Finally, postgres provides this large object support in a
relational database system.

3. Large objects as abstract data types
Commercial systems support only rudimentary access to

untypedBLOBs, allowingusersto reador write them, but
not to pass them to functions inside the database system.
This approach has some serious drawbacks. First it
requires BLOBs to be moved from the database system to
the user's application program in order to examine then-
contents. Second, it precludes indexing BLOB values, or
the results of functions mvoked on BLOBs.

A much betteralternativeis to supportan extensible col
lection of data types in the DBMS with user-defined
functions. In this way, the data type "image" could be
added, requiring a variable and perhaps large amount of
space. In addition, functions that operate on the large
type could be registered with the database system, and
could then be run directly by the data manager. Indexing
BLOBs can also be supported.

Clearly, Abstract DataTypes (ADTs) offer many advan
tages over BLOBs. Previous work in this areas is
reported in [OSBO86, STON86, STON87]. These propo
sals support the definition of new types, along with
appropriate operators and functions for them. It is
straightforward to apply this construct to large objects,
and several different storage representations can be
quickly identified.

However, there are three major problems with the
specific ADT proposal suggested in [STON86, STON87]
when it is applied to large objects.

First, when small types are passed as arguments to a
function, they reside completely in memory. For large
objects, which may be gigabytes in size, this is clearly
impractical. Functions using largeobjects must be able to
locate them, and to request small chunks for individual
operations.

Second, the specification of ADTs in [STON86,
STON87] allows conversion functions to be invoked
when ADT values move between the database system and
the client These conversion functions transform data
from an external to an internal format

Conversion routines allow the ADT mechanism to sup
port compression. The input conversion routine
compresses the large object, and the output routine
uncompressesit Large objects will include photographs,
satellite images, audio streams, video streams, and docu
ments, which win require tailored compression strategies.
The ADT proposal supportsthis capabilityby allowingan
arbitrary number of data types for large objects, and by
supportingtype-specific conversion routines.

Using conversion routines to manage compression has
some problems. Conversion routines only compress or
uncompress complete data values, which can be very
inefficient if only a small part of a large object must be
examined. The second problem arises in a client-server

environment The database server must support access
from geographically remote clients over long-haul net
works. Using the ADT proposal of [STON86, STON87],
data conversion routines will execute on the server, con
verting the data before it is sent to the client If these rou
tines are performing large object compression, this is the
wrong place to do the conversion. Whenever possible,
onlycompressed largeobjectsshouldbe shipped over the
network — the system should support "just-in-time*'
uncompression. This saves network bandwidth, and will
be crucial to good performance in wide-area networks.
The original ADT proposal supported compression only
on the server side of a client-sever interface, and cannot
support this just-in-time requirement

In Section 6 of this paper, we suggest a collection of
proposals with increasing functionality that address these
disadvantages. First, however, Sections4 and 5 discusses
the user interface that all our proposalsshare.

4. Interface to large objects
Others (e.g. [HASK82]) have suggested that the cursor

mechanism used in SQL be extended to support large
objects. We believe that a better model for large object
support is a file-oriented interface. A function can be
written and debugged using files, and then moved into the
database where it can manage large objects without being
rewritten. Also, since programmers are already familiar
with fileaccess, large objects are easy to use.

Version 4 of postgres provides such a file-oriented
interface. In version 4, an application can execute a
query to fetch a large object e.g.:

retrieve (EMP.picture)
where EMP.name «• "Joe"

postgres will return a large object name for the "pic
ture** field. The application can then open the large
object seek to any byte location, and read any number of
bytes. The application need not buffer the entire object; it
can manage only the bytes it actually needs at one time.

To define a large ADT, the normal abstract data type
syntax in postgres must be extended to:

create large type type-name (
input ** procedure-name-1,
output = procedure-name-2,
storage = storage type)

Here, the first two fields are from the normal ADT
definition and indicate die input and output conversion
routines used to convert between external and internal
representation. The last field has been added to specify
which of the implementations of large ADTs to be
described in the next section should be used.

5. Temporary objects
Consider the following query:

retrieve (clip(EMP.picture,
"0,0,20,20n::rect))

where EMP.name - "Mike"

Here clip is an ADT function which accepts two argu
ments, an image and a rectangle, and clips the image to
the dimensions of the rectangle. The result of the func
tion is another image which is passed back to the execu
tor, for subsequent forwarding to the user. Functions
which return small objects allocate space on the stack for
the return value. The stack is not an appropriate place for
storage allocation for the return of large objects, and tem
porary large objects in the data base must be created for
this purpose.

As a result, a function returning a large object must
create a new large object and then fill in the bytes using a
collection of write operations. A pointer to the large
object can be returned by the function. Temporary large
objects must be garbage-collected in the same way as
temporary classes after the query has completed.

6. Large abstract data types
We expect there to be several implementations of large

ADTs offering a variety of services at varying perfor
mance. This same point about multiple instantiations of
an interface is made in a file system context in
[MULL91].

In the next four subsections, we discuss four different
implementations, namely user file (u-file), postgres file
(p-file), records of fixed-length chunks of user data (f-
chunk), and variable-length segments of user data (v-
segment).

6.1. User file as an ADT

The simplest way to support large ADTs is with user
files. With this mechanism, the user could insert a new
employee as follows:

append EMP (name ** "Joe",

picture « Vusr/Joen)

open ("/usr/Joe")
write (...)

Here, a new record for Joe is added to the EMP class, and
the nameof a userfile is used as a large objectdesignator
and stored in the appropriate field in the data base. The
user then opens the large object designator and executesa
collections of write operations to supply the appropriate
bytes.

This implementation has the advantage of being simple,
and gives the user complete control over object place
ment However, it has several serious drawbacks.

Access controls are difficult to manage, since both the
user and the database system must be able to read and
write the file. If the file system does not supporttransac
tions, then the database cannot guarantee transaction
semantics for any queryusinga largeobject Finally, this
implementation provides no support for automatic
management of versionsof large objects.

62. POSTGRES file as an ADT

Thesecond ADTmechanism for large objects is to util
izea userfile, as in the implementation above. However,
in this case, the DBMS owns the file in question. An
insert is programmed as:

retrieve (result - newfilename())
append EMP (name = "Joen,

picture = result)

open(result)
write (...)

Here, there is an extra step relative to the previous case.
Because postgres is allocating thefilein which thebytes
are stored, the user must call the function
newfilename in order to have POSTGRES perform the
allocation. After this extra step, the insert proceeds as
before.

The only advantage of this implementation overthepre
vious one is that it allows the UNIX file to be updatable
by a single user.

63. Fixed-length data chunks
In order to support transactions on large objects,

POSTGRES breaks them into "chunks" and stores the
chunks as records in the database. In the third large
object implementation, these chunks are of fixed size, so
this implementation is referred to as f-chunk.

For each large object, P, a postgres class is constructed
of the form:

create P (sequence-number = int4,
data = byte[8000])

Here, the user's large object would be broken into a col
lection of 8K sub-objects, each with a sequence number.
The size of the data array is chosen to ensure a single
record neatly fillsa postgres 8K page; a small amountof
spaceis reserved for the tupleand page headers.

Since large objects are managed directly by postgres,
they are protected. Also, large objects are stored in
postgres classes for which transaction support is
automatically provided. Lastly, since postgres does not
overwrite data, timetravel is automatically available.

If a conversion routine is present, each 8K record is
passed to the input conversion routine on input, and the
variable length string returned by thecompression routine

is stored in the database. Before a given byte range is
examined, the required variable length strings are
uncompressed by the output conversion routine. Just-in-
time conversion is supported.

The problems with this scheme are that compression is
performed on fixed length blocks of size 8K, and that no
space savings is achieved unless the compression routine
reduces the size of a chunk by one half. Because
postgres does not break tuples across pages, the only
way that two compressed values will be stored on the
same page is if they are half the size of the original block
or smaller.

6.4. Variable-length segments
Li contrast to the f-chunk proposal, the fourth implemen

tation stores a large object as a collection of variable
length segments,or v-segments. A segment index is con
structed for each large object with the following composi
tion:

segment_ndx (locn, compressed_len,
byte__pointer)

The contents of a segment are constructed by compress
ing the variable length data generated by the user into a
variable length object These variable length objects are
concatenated end-to-end and stored as a large ADT,
chunked into 8K blocks using the fixed-block storage
scheme f-chunk described above. Each time the large
object is extended,a new segment is created, and a record
is added to the appropriate segment index indicating the
location of the segment, its compressed length and a
pointer to its position in the compressed f-chunk.

Using this implementation, the unit of compression is a
variable length segment, rather than an 8K block. Also,
because the segment index obeys the no-overwrite
postgres philosophy, time travel is supported for the
index. Because the actual segment contents are not
overwritten, time travel for the contents of each large
ADT is supported. Finally, any reduction in size by the
compression routine is reflected in the size of the
postgres large object

7. Storage managers
postgres allows large object data to be stored on any of

several different storage devices by supporting user-
defined storage managers. This construct is supported
in Starburst through the use of extensions [HAAS90].
Ourapproach is similar, but defines a specific abstraction
that a storage manager must follow. Our abstraction is
modelled after theUNIXfilesystem switch, and any user
can define a newstoragemanagerby writing andregister
inga small set of interface routines. Typically, a storage
manager must be written to manage new device types. A
single postgres storage manager can manage all of the

magnetic disks available to the system, but a different
storage manager was written to manage an optical disk
jukebox. A complete description of thedevice extensibil
ity inpostgres appears in [OLS091].

Version 4 ofpostgres contains three storage managers.
The first supports storage of classes on local magnetic
disk, and is a thin veneer on top of the UNIX file system.
The second allows relational data to be stored in non
volatile random-access memory. The third supports data
on a local or remote optical disk WORM jukebox. When
a POSTGRES class is created, it is allocated to any of these
storage managers, using a parameter in the create com
mand.

8. The Inversion file system
postgres exports a file system interface to conventional

application programs. Large objects stored in the data
base are simultaneously accessible to both database
clients, using the query language and database front-end
library, and to non-database clients,which treat the large
objects as conventional files. Because the file system is
supported on top of the DBMS, we have called it the
Inversion file system.

Inversion stores the directory tree in two database
classes:

STORAGE (file-id, large-object)
DIRECTORY (file-name, file-id,

parent-file-id)

The first class maps files to large ADTs in postgres,
while the second class stores the directory structure. The
standard file system calls (e.g. read and write) are sup
ported by turning them intolarge object reads andwrites.
Other file system calls are executed by performing the
appropriate databaseoperations on these twoclasses. A
separate class, FILESTAT, stores file access and
modification times, the owner's user id, and similar infor
mation.

This implementation has several advantages over the
conventional UNIX fast file system. First, files are data
base large ADTs, so security, transactions, time travel and
compression are readily available. Second, a DBMS-
centric storage manager canbe optimized forlarge object
support, so higher performance on very large files is pos
sible. Lastly, because the file system meta-data is stored
in DBMS classes, a user can use the query language to
perform searches on theDIRECTORY class.

9. Performance

The various large object and file implementations
described above provide different levels of security and
atomicity, and allow users to trade off performance for
reliability. All tests were run on a 12-processor 80386-
based Sequent Symmetry computer running Dynix 3.0.17.

In thissection, weanalyze theperformance of thefollow- ~
ing implementations:
(1) userfile asa ADT or userfile asa file
(2) postgres fileas an ADT

(3) f-chunk ADTs or Inversion files using the disk
storage manager

(4) v-segment ADTs or Inversion files using thedisk
storage manager

(5) f-chunk ADTs orInversion files using theWORM
storage manager

(6) v-segment ADTs or Inversion files using the
WORM storage manager

9.1. The benchmark

The benchmark measures read and write throughput for
large transfers which are either sequential or random.
Specifically, a 51.2MB large object was created andthen
logically considered a group of 12,500 frames, each of
size 4096 bytes. The following operations constitute the
benchmark:

• Read 2,500 frames (10MB) sequentially.

• Replace 2,500 frames sequentially. This operation
replaced existing frames in the object with new
ones.

• Read 250 frames (1MB) randomly distributed
amongthe 12,500 frames in the object

• Replace 250 randomly distributed frames
throughout the object

• Read 250 frames from the large object, distributed
with 80/20 locality, i.e. the next frame was read
sequentially 80% of the time and a new random
frame was read 20% of the time.

• Replace 250frames from the large object, accord
ing to the distribution rule above.

In Figure 1, we indicate the size of the 51.2 Mbyte
object in the6 implementations that we tested. User file
and postgres file as ADTs show no storage overhead.
This is actually incorrect; the Dynix filesystem associates
inodes and indirect blocks with these files, but the inodes
and indirect blocks are ownedby the directory containing
the file, and not the file itself. As a result they are not
included in thespace computation. Wealso measured the
f-chunk implementation when no compression was
present, andFigure 1 indicates that the storage overhead
is 1.8%. Lastly, we tested f-chunk with 30% and 50%
compression andv-segment with 30% compression. The
f-chunk with 30% compression saves no space because
thedata values stored by f-chunk are about5.67K bytes in
size. As a result only one data value fits on a postgres

User file 51,200,000
postgres file 51.200,000
f-chunk data
f-chunk B-tree index

51338,976

270336
f-chunk data (30% compression)
f-chunk B-tree index

51338,976
270336

v-segmentdata (50% compression)
v-segment 2-level map
v-segment B-tree index

36,290,560
507,904
188,416

f-chunk data(50% compression)
f-chunk B-tree index

25,919,488
270336

Storage Used by the Various
LargeObject Implementations

Figure 1

page, and the remainder of the space is wasted. On the
other hand, the 50% f-chunk and30% v-segment achieve
the desired compressioncharacteristics.

The next two subsections indicate benchmark perfor
mance respectively on disk data and on WORM data.

92. Disk performance

Figure 2 shows the elapsed time spent in each of the
benchmark operations described above. The implementa
tions measured are user file as an ADT, postgres file as
an ADT, f-chunk ADTs and v-segment ADTs. Further
more, f-chunk is measured with 30% and 50% compres
sion aswell as withno compression. Lastly, v-segment is
measured with 30% compression. Elapsed times are in
seconds.

Consider initially the first three columns of Figure 2
where uncompressed data is measured. For sequential
accesses, f-chunk is within seven percent of the

performance the native file system implementations.
Random accesses are more expensive, since the f-chunk
implementation maintains a secondary btree index on the
data blocks, and so must traverse the index any time a
seek is done. Nevertheless, random throughput in f-
chunk is half to three-quarters that of the native systems.
Although the extra cost of the btree traversal will remain
a factor, it is likely that further tuning can improve perfor
mance even more.

Now consider the rightmost three columns, in which the
effects of compression are shown. We evaluated two
compression algorithms; one achieved 30% compression
on 4096-byte frames, at an average cost of eight instruc
tions per byte. A second algorithm achieved 50%
compression, consuming 20 instructions perbyte.

When f-chunk is used with the 30% compression algo
rithm, no space is saved, because only one compressed
user block fits on a postgres page. Elapsed time
increases, since an extra eight instructions are executed
per byte transferred. The f-chunk implementation with
30% compression is about 13% slower than without
compression.

The v-segment implementation does save space, but
increases elapsed time even more. This increaseis due to
extra disk reads that must be done to fetch a user data
block. A btreeindex is scannedto locate the correctentry
in the segment-index table. The segment-index record
contains a pointer to the compressed segment, which is
retrieved. This increases the average number of disk
accesses required per data block read. V-segment is
about 25% slower than uncompressed f-chunk, but does
requireless storage.

Finally, usingfixed-sized chunkswith 50%compression,
two user data blocks fit on a single postgres page. In
this case, the Inversion file system actually beats the
native filesystem, since fewer I/Os arerequired to satisfy

Operation user POSTGRES f-chunk f-chunk v-segment f-chunk
file Me 0% 30% 30% 50%

10MB sequential read 13.11 13.77 14.05 1636 1735 11.03
10MB sequential write 33.92 34.02 3531 39.53 41.90 23.48
1MB random read 5.63 5.77 736 8.37 9.48 5.52
1MB random write 6.73 6.91 8.81 10.01 11.46 6.76
1MB read, 80/20 locality 2.20 233 336 3.73 4.12 2.33
1MB write, 80/20 locality 4.25 436 5.30 6.06 6.43 3.72

Disk Performance on the Benchmark
Figure2

Operation special f-chunk f-chunk v-segment f-chunk
program 0% 30% 30% 50%

10MB sequential read
1MB random read

1MB read, 80/20 locality

123.01 148.92 157.08 100.37 69.87
14132 142.16 143.51 104.38 67.19

149.77 42.11 4131 30.94 1630

WORM Performance on the Benchmark

Figure 3

requests for user blocks. The extra 20 instructions per
byte are more than compensated for by the reduced disk
traffic. This clearly demonstrates the importance of sup
port for "chunking*' compression. No commercially-
available file system we know of couldbegin to approach
the performance of the Inversion system on random
access to compressed data.

93. Optical disk jukebox performance
An earlier section of this paper described the WORM

storagemanager. In Figure 3 we present the result of our
benchmark for this storage system. Because there is no
file system for the WORM, we have used in its place a
special purpose program which reads and writes the raw
device. This program provides an upper bound on how
well an operating system WORM jukebox file system
could expect to do. Also, this special program cannot
update frames, so we have restricted our attention to the
read portion of the benchmark.

For large sequential transfers, the special purpose pro
gramoutperforms f-chunk by about 20%. This is because
it has no overhead for cache management, and makes no
guarantees about atomicity or recoverability. Forrandom
transfers, however, f-chunk is dramatically superior,
because the WORM storage manager in postgres main
tains a magnetic disk cache of optical disk blocks. For
the 1MB random read test, the cache satisfies some of the
block requests. For the 1MB test with locality, most of
the requests are satisfied from the cache.

In Figure 3, compression begins to pay off in terms of
elapsed times. The 50% f-chunk and 30% v-segment
strategies reduce the amount of data that must be moved
from the optical disk jukebox into the user program.
These transfers are very stow, so eliminating some of
them speeds things up substantially.

Overall, the WORM performance numbers are disap
pointing. Due to a probablebug in the device driver that
manages the jukebox, we get only one-quarter the raw
throughput claimed by the hardware specification. We
are investigating this problem now, and expect to have
much better performance soon.

10. Conclusions

In this section we summarize the novel features of our
proposal. Others have suggested large object managers,
e.g. [CARE86, LEHM89]. Our contribution is to propose
a range of alternatives with various performance and
functionality characteristics. Moreover, two of our pro
posals support user defined compression, which previous
proposalshave not considered. Lastly, two of our propo
sals also have efficient deltaing of versions of large
objects to support time travel, which some of the previous
proposals have not supported. As was seen in the previ
ous section, our implementations offered varying perfor
mance, depending on the underlying device and the
natureof the user's operations.

In addition,our architecture supports a standard file sys
tem interface to large objects. As such, there is little dis
tinction between files and large objects, and this allows
the definition of a novel Inversion file system. This sys
tem was shown to offer very high functionality at surpris
ingly good performance. Inversion can use either the f-
chunk or v-segment large object implementations for file
storage. As our measurements demonstrate, the Inversion
approach is within 1/3 of the performance of the native
file system. This is especially attractive because time-
travel, transactions and compression are automatically
available. Another study determined that transactionsup
port alone costs about 15% [SELT92].

Lastly, we suggested a clean table-driven interface to
user-defined storage managers. This allows the con
venient definition of new storage managers, a capability
also present in Starburst However, our proposal has the
advantage that any new storage manager automatically
supports Inversion files. Consequently, non-data base
programs can automatically use the new storagemanager.

11. References

[BAT086] Batory, D„ "GENESIS: A Project to Develop an
Extendible Database Management System,'* Proc. 1986
International Workshop on Object-oriented Database Sys
tems, Asilomar, Ca^ Sept 1986.

[BHJ92] Biliris, A., "The Performance of Three Database
Storage Structures for Managing Large Objects," Proc.
1992 ACM SIGMOD Conference, San Diego, CA, June
1992.

[CARE86] Carey, M. et al., "Object and File Management in
the Exodus Extensible Database System," Proc. 1986
VLDB Conference, Kyoto, Japan, August 1986.

[DEUX90] Deux. O. et al., "The Story of 02," IEEETransac
tionson Knowledge andData Engineering, March 1990.

[HAAS90] Haas, L et al., "Starburst Midflight: As the Dust
Clears," IEEE Transactions on Knowledge and Data
Engineering, March 1990.

[HASK82] Haskins, R. and Lone, R„ "On Extending theFunc
tion of a Relational Database System," Proc. 1982 ACM-
SIGMODConferenceon Management of Data, Orlando, FL,
June 1981

[KIM89] Kim, W„ et al., "Features of the ORION Object-
Oriented Database System," Object-Oriented Concepts,
Databases, and Applications, W. Kim and F. Lochovsky,
eds.,Addison-Wesley/ACMPress, May 1989, pp. 251-282.

[LEHM89] Lehman, T., and Lindsay, B., "The Starburst Long
Field Manager," Proc. 1989 VLDB Conference, Amster
dam, Netherlands, Sept. 1989.

[MOSH92] Mosher,C. (ed), "The POSTGRES Reference Manual,
Version 4," Electronics Research Laboratory, University of
California, Berkeley, Ca.,ReportM92/14,March1992.

[MUUL91] Muller, K. and Pasquale, J., "A High-performance
Multi-structured File System Design," Proceedings of the
1991 ACM Symposium on Operating System Principles,
Asilomar, CA, October 1991.

[OLS091] Olson, M., "Extending the postgres Database Sys
tem to Manage Tertiary Storage," M.Sc. thesis, University
ofCalifornia, Berkeley, CA, May 1991.

[OSB086] Osborne, S. andHeaven, T., "The Design of a Rela
tional System with AbstractData Types asDomains,"ACM
TODS, Sept. 1986.

[SELT92] Seltzer, M. and Olson, M., "LIBTP: Portable.Modu
lar Transactions for Unix," Proc. 1992 Winter Usenix, San
Francisco, CA, Feb. 1992.

[STON80] Stonebraker, M., "Operating System Support for
Database Management," CACM, April 1980.

[STON84] Stonebraker, M. and Rowe, U "Database Portals: A
New Application Program Interface." Proc. 1984 VLDB
Conference, Singapore, Sept. 1984.

[STON85] Stonebraker, M., et al., "Problems in Supporting
Data BaseTransactions in anOperating SystemTransaction
Manager." Operating SystemReview,January, 1985.

[STON86] Stonebraker, M., "Inclusion of New Types in

Relational Data Base Systems," Proc. 1986 IEEE Data
Engineering Conference, Los Angeles, Ca., Feb. 1986.

[STON87] Stonebraker, M. et al., "Extensibility in postgres,"
IEEE Database Engineering, Sept. 1987.

[STON87B] Stonebraker, M., "The POSTGRES Storage System,"
Proc. 1987 VLDB Conference, Brighton, England, Sept.
1987.

[STON90] Stonebraker, M. et al., "The Implementation of
POSTGRES," IEEE Transactions on Knowledge and Data
Engineering,March 1990.

[TRAI82] Traiger, L, "Virtual Memory Management for Data
Base Systems," Operating Systems Review, Vol 16, No 4,
October 1982.

	Copyright notice 1993
	ERL-93-22

