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Experimental analysis of 1-D maps from Chua's circuit

N.RRul'kov and A.R.Volkovskii

Radio physical Dpt., Nizhni Novgorod University,
23,Gagarin Av.,603600 Nizhni NovgorodJIUSSIA.

Abstract

Bifurcation analysis by means of a 1-D return map obtained

experimentally from Chua's circuit is presented. It is experimentally
demonstrated that a homoclinic bifurcation associated with the

stationary point at the origin of the phase space precedes the birth of
the double-scroll Chua's attractor.

1. Introduction

Chua's circuit is known as the simplest and deeply studied

nonlinear electronic system with chaotic dynamics (see the extensive

Bibliography in reference 1). The robustness, simplicity and low cost

features of Chua's circuit make it extremely useful for the development

and testing of experimental methods for investigating nonlinear systems

with chaotic dynamics. The main goal in such studies is the

determination of the main bifurcation mechanisms which are responsible

for the transition from regular dynamics to chaotic behavior and its

subsequent evolutions.

It has been shown in a number of numerical simulations w that

due to the strong dissipative compression of the phase volume the

behavior of the trajectories of some attractors in Chua's circuit can be



modeled by means of a one-dimensional (1-D) return map. The analysis of

return maps can be made much more efficient in the experimental

investigation of bifurcation scenarios and chaos in electronic circuits

if the curve generated by the return map is automatically plotted by an

experimental set up 4.

In this paper we present some results on the application of 1-D

return maps for demonstrating experimentally some basic nonlinear

dynamics of Chua's circuit. In our experiments we use the Chua's circuit

described in reference 5 with the following parameter values for the

linear elements: L=%4mH , Cj=56nF and C2=656nF; precision 5%. The

parameter values for Chua's diode were chosen to be the same as in

reference 5. The value of the variable resistance R was used as a

control parameter. The experimental setup for visualizing the Poincare

cross section of attractors, and for plotting the 1-D map was discussed

in reference 4.

By tuning the variable resistance R from 2000Q continuously

towards zero, Chua's circuit exhibits experimentally a sequence of

bifurcations from a stable stationary state to an Andronov-Hopf

bifurcation, to a period-doubling cascade, and finally to a chaotic

attractor.

2. Contraction of the 1-D Return Map

Immediately before the first period-doubling bifurcation, the

projection of the stable limit cycle (from the Andronov-Hopf

bifurcation) onto the (VQ.Vc^-plane is shown in Fig.l. The solid black

dot on the trajectory marks the point where the trajectory intersects

the chosen Poincare section X defined as a plane located in the phase

space and transversal to the trajectories of attractors being observed4,4



Let r„, w=/,2f... denote the consecutive times whenever a trajectory

returns and passes through the Poincare plane X. Each such intersection

(VCj(tn)*vC2(tn)) *s called a return point and is identified by a black

dot on the trajectory as shown in Fig.2,3. From the coordinates of two

consecutive return points at t-tn and t=tn+j, we plot the 1-D map

Wcj(*n)yc](fn+l)) as presented also in Fig.2,3. In order to simplify

our description of the attractor bifurcations let us define Xn=V^j(tn)

so that the 1-D map obtained in our experiments can be written simply as

Xn+l=F(Xn>R)' While the 1-D map F(.Jl) is a piecewise-continuous curve,

our present experimental set up can obtain only a subset of points lying

on the curve.

A. Period Doubling

As we decrease the resistance /?, the evolution of the various

attractors represented by their projections onto the n/C/»^C2^"Plane»

and by the Poincare cross sections are shown in Figs.2 and 3. In each

case, the points where the attractor intersect the Poincare section are

automatically displayed as a subset of the associated 1-D map. This

subset will consist of m points for a periodic orbit having m

intersections, called a period-w orbit, or an infinite number of

mtersections (where its limit set has a fractal dimension between 1 and

2) for a chaotic attractor. Due to the influence of physical and

measurement noise only a limited number of period-doubling bifurcations

can be observed in experiments before chaos emerges. However, the shape

of the experimentally plotted subset of points on the 1-D map of the

attractors (see Fig.2c,d) will enable us to conclude that this

particular transition to chaos and the topological properties of the

attractors are in accordance with the Feigenbaum scenario.



B. Intermittency and Periodic Windows

The existence of a minimum point on the return function F(.)

(F (Xmin)=0, F (Xmin)*0) is responsible for the alternate appearance of

chaotic and stable periodic regimes (called periodic windows) as we tune

the parameter R. As an example a stable limit cycle 3T+ corresponding to

a period-3 window is shown in Fig.2f. An intermittent phenomenon, which

is a form of chaos, is observed before the appearance of this period-3

limit cycle as R decreases, as shown in Fig.2e. This form of chaos is

called an intermittency because except for the random appearance of

brief intervals of spurious bursts, the time waveforms are virtually

periodic. In the cross section of Fig.2e, the bursts corresponds to the

short "arc" crossing the fuzzy period-3 orbit. The period-3 window is

followed by a period-doubling bifurcation sequence of this period-3

cycle which leads to the appearance of the chaotic attractors shown in

Fig.2g,h. In view of the odd symmetry of the vector-field in the phase

space of Chua's circuit2, for every attractor presented above we can

observe a coexisting "twin" attractor, often just by switching the

circuit on and off.

C. Crisis and homoclinicity

When the parameter R crosses some critical value Rcr (in our

experiments /?crsl640Q) the twin chaotic attractors CA+ and CA. collided

with each other, thereby giving rise to a crisis phenomenon which gave

birth to the odd symmetric chaotic attractor CA (called double-scroll

Chua's attractor) shown in Fig.3a. Observe that the 1-D map of CA

(obtained from the cross section shown in this figure) has a

discontinuity at Xn=a. This results from the nature of the trajectory

motions in the vicinity of the saddle-focus 00 which is located at the



origin of the phase space.

The trajectories originating from a Poincare section of the

attractor are separated by the two-dimensional stable manifold of the

saddle-focus O0 into two parts; namely, A{X>a} and B{X<a}. Until then-

next intersections with the Poincare plane the behavior of the

trajectories from part A before and after the crisis are similar. As a

result the part of the 1-D map F(XJl) with X>a undergoes only a small

variation. However, before the trajectories from part B return to the

Poincare section, they can have rather complicated behaviors in the left

part of the phase space. This behavior gives rise to the complicated

oscillatory structure of F(XJi) in the domain X<a, as shown in Fig3.

The crisis bifurcation of the twin spiral Chua's attractors CA+

and CA. takes place at some bifurcation parameter Rcr when a trajectory

belonging to the attractor CA+ and originating from the minimum point on

the 1-D map is mapped into the point a, i.e., a=F(Xm,Rcr)y where

Xm=min{F(XJlcr)\xeCA+}- For R<Rcn all trajectories originating from the
interval [Xm,aJ belong to part B.

A detailed analysis of the 1-D map and the topological properties

of the trajectories in the phase space enable one to make the following

conclusions: Before the crisis, when a<Xmin= min{F(XJt) \y J, the two-
dimensional stable manifold of Oc ( i.e. W2S) separates the basins of

the two spiral Chua's attractors CA+ and CA.. In this case any

trajectory from one side of the manifold can never go to the other side.

Observe that in the 1-D map model the entire stable manifold W2S is

mapped into the point a, see reference 2 . After the crisis, the

trajectories of the symmetric double-scroll Chua's attractor CA can go

from one side of W?5 t0 me other. This implies that at least one



homoclinic bifurcation associated with the point 00 must occur before

the crisis of CA+ and CA.. In the three-dimensional phase space of

Chua's circuit a homoclinic orbit at 00 is any trajectory through 00

which belongs to both the one-dimensional unstable manifold (which

coincides with the unstable eigenvector through 00 in the middle region)

and the two-dimensional stable manifold through the point 00

simultaneously. From the viewpoint of the 1-D map, a homoclinic orbit at

00 is any trajectory which satisfies the equation 0=F* '(ajtfc), where k

is the number of iterations of the function F, and /ty is the parameter

value of R corresponding to the occurrence of the homoclinic orbit Hfc

D. Stable periodic orbits and chaotic quasiattractors

Because the return map has many local extremum points (see Fig.3f

and 3i), many stable limit cycles can exist in the parameter region

corresponding to the spiral Chua's attractor, or to the double-scroll

Chua's attractor7. Some examples of the periodic orbits having large

basins of attraction are shown in Fig.2f and in Fig.3c,d and h.

Stable limit cycles associated with multiple local extrema of 1-D

return map can have long periods and extremely complicated yet very

narrow basins of attraction. These features made them almost invisible

in experiments and in numerical simulations. Despite their local

stability any small noise will throw a periodic trajectory out of its

basin, and as a result this trajectory will land in a domain of

complicated transient motions. In this case the oscillation of the

circuit can remain chaotic with the simultaneous co-existence of stable

limit cycles in the attractor. This kind of chaotic attractors are

called as quasiattractors8. The results in Fig.3 can serve as an

experimental demonstration of the theory of the spiral-type attractors



which can take place in dynamical systems having a homoclinic orbits

from a saddle-focus911.

Figures 3e,f and g demonstrate some examples of the crises of the

chaotic attractors which appeared from the stable periodic orbits shown

in Fig.3d and h. These crises can occur from the intersection of the

stable and unstable invariant manifolds of odd-symmetric periodic orbits

of the saddle type6. Our conclusion concerning the existence of saddle

periodic orbits comes from the oscillatory shape of the return

functions, shown in Fig.3f and i.

Finally, we remark that the examples presented above do not

exhaust the great varieties of dynamical phenomena which can be

observed from a more extensive experimental study of the 1-D map. The

results of this on-going research will be reported in a future

publication.

The authors would like to thank L.O.Chua for careful reading of

the manuscript and a number of useful suggestions.
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Figure captions

Fig.l Projection of one of the two asymmetric periodic orbits

onto the (VQ.VQJ-plane, with #=1689Q. The location of the Poincare

section plane X in the phase space is shown schematically by a small

rectangle. Since this orbit intersects the Poincare section at only one

point (black dot), we call this limit cycle a period-one orbit.

Fig.2 Projections of various attractors onto the (Vc^Vc-j-plane

where the black dots and lines on the left are the intersections with

the Poincare section. The corresponding points and lines are replotted

in the right by electronic circuitry such that each pair of successive

intersection points (XnXn+j) becomes the coordinates of a point on the

1-D return map associated with the chosen Poincare section, (a) rt=1679Q,

2T+ ; (b) /?=1675Q, 4T+ ; (c) /?=1672Q, two-band CA+ ; (d) /?=1668Q, one-

band CA+ ; (e) /?=1660n, intermittency; (f) /?=1658Q, 3T+ ; (g) rt=1647Q,

CA+ ; (h) /?=1645Q, CA+.The code nT+ denotes a period-n orbit located in

the right hand side of the origin. The code CA+ denotes a chaotic

attractor located in the right hand side of the origin.

Fig.3 Projections of various symmetric attractors onto the

^C;'̂ C2^"Plane (left) and meu* corresponding 1-D maps (right).(a)

/?=1636Q, double scroll ; (b) R=1595CI, double scroll ; (c) /?=1529G, 6TS ;

(d) *=1419Q, 2TS ; (e) /?=1417a, CA ; (f) /?=1416Q, CA ; (g) /?=1415n, CA ;

(h) /?=1414n, 2TS ; (i) /?=1409Q, CA. The code nTs denotes a symmetric

period-^ orbit.
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