

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LOOPED SCHEDULES FOR DATAFLOW

DESCRIPTIONS OF MULTIRATE DSP

ALGORITHMS

by

Shuvra S. Bhattacharyyu and Edward A. Lee

Memorandum No. UCB/ERL M93/37

21 May 1993

LOOPED SCHEDULES FOR DATAFLOW

DESCRIPTIONS OF MULTIRATE DSP

ALGORITHMS

by

Shuvra S. Bhattacharyya and Edward A. Lee

Memorandum No. UCB/ERL M93/37

21 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LOOPED SCHEDULES FOR DATAFLOW

DESCRIPTIONS OF MULTIRATE DSP

ALGORITHMS

by

Shuvra S. Bhattacharyya and Edward A. Lee

Memorandum No. UCB/ERL M93/37

21 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LOOPED SCHEDULES FOR DATAFLOW DESCRIPTIONS OF

MULTIRATE DSP ALGORITHMS1

Shuvra S. Bhattacharyya
Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

May 21,1993

1 Introduction

ABSTRACT

The synchronous dataflow (SDF) programming paradigm has been used extensively in

design environments for multirate signal processing applications. In this paradigm, the repetition

of computations is specified by the relative rates at which the computations consume and produce

data. This implicit specification of iteration allows a compiler to easily explore alternative nested

loops structures for the target code with respect to their effects on code size, buffering require

ments and throughput. In this paper, we develop important relationships between the SDF

description of an algorithm and the range of looping structures offered by this description, and we

discuss how to improve code efficiency by applying these relationships.

Synchronous dataflow (SDF) is a restricted form of the dataflow model of computation

[5]. In the dataflow model, a program is represented as a directed graph. The nodes of the graph,

also called actors, represent computations and the arcs represent data paths between computa

tions. In SDF [15], each node consumes a fixed number of data items, called tokens or samples,

per invocation and produces a fixed number of output samples per invocation. Figure 1 shows an

This researchwas sponsored by Defense Advanced Research Projects Agency and monitored by U. S. De
partment of Justice, Federal Bureau of Investigation, under contract no. J-FBI-90-073.

Introduction

SDF graph that has three actors A, B, and C. Each arc is annotated with the numberof samples

produced by its source actor andthe number of samples consumed by its sink actor. The "D" on

the arc between B and C represents a unit delay, which can be viewed as an initial sample that is

queued on the arc. SDF and related models have beenstudied extensively in thecontextof synthe

sizing assembly code forsignal processing applications, forexample [7,8,9,10,17,18,19,20].

In SDF, iteration is defined as the repetition induced when the number of samples pro

duced on an arc (per invocationof the source actor) does not match the number of samples con

sumed (per sinkinvocation) [12]. For example, in figure 1, actor B mustbeinvoked twotimes for

every invocation of A. Multirate applications ofteninvolve a large amount of iteration and thus

subroutine calls must be used extensively, code must be replicated, or loops must be organized in

the target program. The use of subroutine calls to implement repetition may reduce throughput

significantly however, particularly for graphs involving small granularity. On the other hand, we

have found that code duplication can quickly exhaust on-chip program memory [11]. As an alter

native, we examine the problem of arranging loops in the targetcode.

In [11], How demonstrated that by clustering connected subgraphs that operate at the same

repetition-rate, and scheduling these consohdated subsystems each as a single unit, we can often

synthesize loops effectively. This technique was extended in [3] to cluster across repetition-rate

changes and to take into account the minimization of buffering requirements. Although these

techniques proved effective over a largerange of applications, they do not always yield the most

compact schedule for an SDF graph [2].

In this paper we define a simple optimality criterion for the synthesis of compact loop-

structures from an SDF graph. The criterion is based on the looped schedule notation introduced

in [3], in which loops in a schedule arerepresented by parenthesized terms of the form (n M1 M2

... Mk), where n is a positive integer, and each Mj represents an SDF actor or another (nested)

Fig. 1. A simple SDF graph. Each arc is annotated with the number of samples produced by its
source and the number of samples consumed by its sink. The "D" designates a unit delay.

2 of 28

Introduction

loop. For the graph in figure 1, for example, the looped schedule A(2 BC) specifies the firing

sequence ABCBC. Using this notation, we can define an optimally-compact looped schedule as

one that contains only one appearance of eachactorin the SDFgraph. We call such an "optimal"

looped schedule a single appearance schedule. For example the looped schedule CA(2B)Cfor

figure 1 is not a singleappearance schedule since C appears twice. Thus, eitherC mustbe imple

mented with a subroutine, or we must insert two versions of C's code block into the synthesized

code. In the scheduleA(2CB) however, no actorappears more than once, so it is a single appear

ance schedule; thus it allows in-line code generationwithout a code-size penalty.

Our observations suggest that we can construct singleappearance schedules for mostprac

tical SDF graphs [2]. In this paper, we formally develop transformations that can be applied to

single appearance schedules to improve the efficiency of the target code. We also determine nec

essary and sufficient conditions for an SDF graph to have a single appearance schedule. These

conditions were developed independently, in a different form, by Ritz et al. [20], although their

application of the condition is quitedifferent to ours. Ritzet al. discuss single appearance sched

ules in the context of minimum activation schedules, which minimize the number of "context-

switches"between actors. For example, in the looped schedule A(2 CB) for figure 1, the invoca

tions of B and C are interleaved, and thus a separate activation is required for each invocation —

5 total activations are required. On the other hand, the schedule A(2 B)(2C) requires only three

activations, onefor eachactor. In theobjectives of [20], the latter schedule is preferable, because

in that code-generation framework, there is a large overhead involved with each activation. With

effective register allocation and instruction scheduling, such overhead can often be avoided, how

ever, as [18] demonstrates. Thus, weprefer the former schedule, which has less looping overhead

and requires less memory for buffering.

Our focus has been oncreating a general framework for developing scheduling algorithms

that provably generate single appearance schedules when possible, and that incorporate other

scheduling objectives, such as the minimization of buffering requirements, in a manner that is

guaranteed not to interfere with code compaction goals. The framework modularizes different

parts of the scheduling process, and the compiler developer has freedom to experiment with the

component modules, while the framework guarantees that the interaction of the modules does not

3 of 28

Background

impede code size minimization goals. We have applied conditions for the existence of a single

appearance schedule to define our scheduling framework. Due to space limitations, we do not

elaborate further on this scheduling framework in this paper; instead, we refer the reader to [2].

We begin with a review of the SDF model of computation and the terminology associated

with looped schedules for SDF graphs.SDF principleswere introduced [13] in terms of connected

graphs. However, for developing scheduling algorithms it is useful to consider non-connected

graphs as well, so in section 3 we extend SDF principles to non-connected SDF graphs. In sec

tions 4 and 5, we discuss a schedule transformation called factoring, which can produce large

reductions in the amount of memory required for buffering. Finally, in section 6, we develop con

ditions for the existence of a single appearance schedule, and we discuss the application of these

conditions to synthesizing single appearance schedules whenever they exist. The sections form a

linear dependence chain — each section depends on the previous ones. For reference, a summary

of terminology and notation can be found in the glossary at the end of the paper.

2 Background

2.1 Synchronous Dataflow

An SDF program is normally translated into a loop, where each iteration of the loop exe

cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop

erties of periodic schedules.

For an SDF graph G, we denote the set of nodes in G by iV(G) and the set of arcs in G by

A(G). For an SDF arc a, we let sourceiq) and sink(a) denote the nodes at the source and sink of a;

we letp(a) denote the number of samples produced by source(a\ c(a) denote the number of sam

ples consumed by sink(a), and we denote the delay on a by delay(ot).We define a subgraph of G

to be that SDF graph formed by any Z £ N(G) together with the set of arcs {a € A(G) Isource(a),

sink(a) € Z}. We denote the subgraph associated with the subset of nodes Z by subgraph(Z,G); if

G is understood, we may simply write subgraph{Z).

4 of 28

Background

We can think of each arc in G as having a FIFO queue that buffers the tokens that pass

throughthe arc. Each FIFOcontains an initial number of samples equal to the delayon the associ

ated arc. Firing a node in G corresponds to removing c(ct) tokens from the head of the FIFO for

eachinputarc a, and appending p(fi) tokens to theFIFO foreachoutput arc (3. Aftera sequence of

0 ormore firings, wesaythat a node isfireable if there are enough tokens oneach input FIFO to

fire the node. An admissable sequential schedule ("sequential" is used todistinguish this type of

schedulefrom a parallel schedule) for G is a finite sequence S = S^ S2 ... SN of nodes in G such

that each Sjis fireable immediately after S^, S2,..., S^ have fired in succession.

If some Sj is not fireable immediately after its antecedents have fired, then there is least

one arc a such that (1) sink(a) = Sj, and (2) the FIFO associated with sink(a) contains less than

c(ct) just prior to the ith firing in S. For each such ct, we say that S terminates on a atfiring Sj.

Clearly then, S is admissableif and only if it does not terminate on any arc a.

We say that a sequential schedule S is a, periodic schedule ifit invokes each node at least

once and produces no net change in the numberof tokens on a FIFO —for each arc a, (the num

ber of timessource(d) is fired in S) xp(a) = (the number of times sink{o) is fired in S) x c(a). A

periodic admissable sequential schedule (PASS) is a schedule that is both periodic and admiss

able. We will also use the term valid schedule to describe a schedule that is a PASS. For a given

sequential schedule, we denote the ithfiring, or invocation, of actor N by Nj, and we call i the

invocation number of Nj.

In [14], it is shown that for each connected SDF graph G, there is a unique minimum num

ber of times that each node needs to be invoked in a periodic schedule. We specify these minimum

numbers of firings by a vector ofpositive integers qG, which is indexed by the nodes in G, and we

denote the component of qGcorresponding to a node N by qG(N).Every PASS for G invokes each

node N a multiple of qG(N) times, and corresponding to each PASS S, there is a positive integer

/(S) called the blockingfactor of S, such that S invokes each N € N(G) exactly /qG(N) times. We

call qG the repetitions vectorof G. If G is understoodfrom context, we may refer to qG simply as

q. The following properties of repetitions vectors are established in [14]:

Fact 1: The components of a repetitions vector are collectively coprime.

5 of 28

Background

Fact2: Suppose thatG is a connected SDF graph and S is anadmissable schedule forG. If there

is apositive integer/0 such that Sinvokes each NGN(G) exactly /0q(N) times, then Sis a PASS.

Fact 3: The balance equation q(source(a)) xp(a) = q(sink(a)) x c(a) is satisfied for each arc a in

G. Also, any positive-integer vector thatsatisfies thebalance equations is a positive-integer multi

ple of the repetitions vector.

Given an SDF graph G, we say thatG is strongly connected if for any pair of distinct

nodes A, B in G, there is a directedpath from A to B and a directedpath from B to A. We say that

a strongly connected SDF graph is nontrivial if it contains more than one node. Also, wesaythat

a subset Z of nodes in G is strongly connected if subgraph^, G) is stronglyconnected. Finally, a

strongly connected component of G is a strongly connected subset ofN(G) such thatno strongly

connected subset ofN(G) properly contains Z.

Although there is no theoretical impediment to infinite SDF graphs, we currently do not

have any practicaluse for them, so in thispaper, we deal onlywith SDF graphs that have a finite

number of nodes and arcs. Also, unless otherwise stated, we deal only with SDF graphs for which

a PASS exists.

2.2 Looped Schedule Terminology

Definition 1: A schedule loop is a parenthesizedterm of the form (nT^T2... Tm), where n is a

positive integer and each Tj represents an SDF node or another schedule loop. (nT1T2... Tm) rep

resents the successive repetition n times of the firing sequence T^ T2 ... Tm. If L = (n T^ T2 ... Tm)

is a schedule loop, we say that n is the iteration count of L, each Tj is an iterandof L, and Tj T2...

Tm constitutes the body of L. A looped schedule is a sequence V^ V2 ... Vk, where each Vj is

either an actor or a schedule loop. Since a looped schedule is usually executed repeatedly, we

refer to each V; as an iterand of the associated looped schedule.

When referring to a looped schedule, we often omit the "looped" qualification if it is

understood from context; similarly, we may refer to a schedule loop simply as a "loop". Given a

looped schedule S, we refer to any contiguous sequence of actor appearances and schedule loops

6 of 28

Non-connected SDF Graphs

in S as a subschedule of S. For example, the schedules B(3AB)C and (2B(3AB)C)A are both

subschedules of A(2B(3AB)C)A(2B), whereas (3AB)CAis not. By this definition, every schedule

loop in S is a subschedule of S. If the same firing sequence appears in more than one place in a

schedule, we distinguish each instance as a separate subschedule. For example, in

(3A(2BC)D(2BC)), "(2BC)" appears twice, and these correspond to two distinct subschedules. In

this case, the content of a subschedule is not sufficient to specify it — we must also specify the

lexical position, as in "the second appearance of (2BC)".

Given a looped schedule S and an actor N that appears in S, we define inv(N, S) to be the

number of times that S invokes N. Similarly, if S0is a subschedule, we define mv(S0, S) to be the

number of times that S invokes S0. For example, if S = A(2(3BA)C)BA(2B), then wv(B, S) = 9,

mv((3BA), S) = 2, and mv(first appearance of BA, S) = 6. Also, we refer to the schedule that a

looped schedule S represents as the firing sequence generated by S. For example, the firing

sequence generated by A(2(3BA)C)BA(2B) is AB ABABACBABABACBABB. When there is no

ambiguity, we occasionally do not distinguish between a looped schedule and the firing sequence

that it generates.

Finally, given an SDF graph G, an arc a in G, a looped schedule S for G, and a nonnega-

tive integer i, we define P(ol, i, S) to denote the number of firings of source(a) that precede the ith

invocation of sink(a) in S. For example, consider the SDF graph in figure 1 and let a denote the

arc from B to C. Then P(a, 2, A(2 BC)) = 2, the numberof firings of B that precedeinvocation C2

in the firing sequence ABCBC.

3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF graphs [13, 15]. In

this section, we extend some basic principles of SDF to non-connected SDF graphs. We begin

with two definitions.

Definition 2: Suppose that G is an SDF graph, M is any subset of nodes in G, and Ms c M. We

say that Ms is a maximal connected subset ofM if subgraph(Ms, G) is connected, and no subset of

7 of 28

Non-connected SDF Graphs

M that properly contains Mginduces a connected subgraph in G. Every subset of nodes in an SDF

graph has a unique partition into one or more maximal connected subsets. For example in figure 2,

the subset of nodes {A, B, C, E, G, H} has three maximal connected subsets: {A, H}, {B, E, C}

and {G}. If Mg is a maximal connected subset of N(G), then we say that subgraphQ^, G) is a

Fie. 2. An example used to illustrate maximally connected subsets. The direction and the
SDF parameters for each arc are not shown because they are not relevant to connected
ness.

maximal connected subgraph of G. We denote the set of maximal connected subgraphs in G by

max_connected(G). Thus, for figure 3, max_connected(G) = {subgraph({A, B}), subgraph({C,

D})}.

Definition 3: Suppose that S is a loopedschedulefor an SDF graphand N8 £iV(G). If we remove

from S all actors that are not in N8, and remove all empty loops — schedule loops that contain no

actors in their bodies — that result, we obtain another looped schedule, which we call the restric

tion of S to N8, and whichwe denoteby restriction^, N8). For example, restriction((2(2B)(5A)),

{A, C}) = (2(5 A)), and restriction^ C), {A, B}) is the nullschedule. If G8 is a subgraphof G,

then we define restriction^, G8) s restriction^, N(GQ)).

The following fact follows immediately from definition 3 and the definition of a PASS.

Fact4: If S is a PASS for an SDFgraph G and G8 is a subgraph of G, then restriction^, G8) is a

PASS for GQ.

The concept of blocking factor does not apply directly to SDF graphs that are not con

nected. For example,in figure 3 the minimal vector of repetitions for a periodic schedule is given

by q(A, B, C, D) = (1,1,1,1). The schedule A (2 C) B (2 D) is a periodic schedule for this exam-

8 of 28

Non-connected SDF Graphs

&-^® (sM®
Fig. 3. A simple non-connected SDF graph

pie, but this schedule corresponds to a blocking factor of 1 for subgraph({A, B}) and a blocking

factor of 2 for subgraph({C, D}) — there is no single scalar blocking factor associated with A(2

C)B(2D).

Now suppose that S is a PASS for an arbitrary SDF graph G. By fact 4, for each C €

max_connected(G), we have that restriction^, C) is a PASS for C. Thus, associatedwith S, there

is a vector of positiveintegers Js, indexedby the maximal connected subgraphs of G, suchthatV

C € max_connected(G), V N G N(C), mv(N, S) = Js(C)qc(N). We call Js the blocking vector of

S. For example, if S = A (2 C) B (2 D) for figure 3, then Js(subgraph({A, B})) = 1, and Js(sub-

graph({C, D})) =2. On the other hand, if G is connected, then Js has only one component, which

is the blocking factor of S, /(S).

It is often convenient to view parts of an SDF graph as subsystems that areinvoked as sin

gle units. The invocation of a subsystemcorresponds to invoking a minimal periodic schedule for

the associated subgraph. If this subgraph is connected, its repetitions vector gives the minimum

number of invocations required for a periodic schedule. However, if the subgraph is not con

nected, then the minimum number of invocations involved in a periodic scheduleis not necessar

ily obtained by concatenating therepetitions vectors of the maximal connected subcomponents.

For example, consider the subsystem subgraph({A, B, D, E}) in the SDF graph of figure

4(a). It is easily verified that q(A, B, C, D, E) = (2, 2, 1, 4, 4). Thus, for a periodic schedule, the

actors in subgraph{{D, E}) must execute twice as frequently as those in subgraph{{A, B}). We

see that the minimal repetition rates for subgraph({A, B, D, E}) as a subgraph o/the original

graph are given by p(A,B, D,E) =(1,1,2,2), which can beobtained dividing each corresponding

entry in q by gcd(q(A), q(B), q(D), q(E)) =gcd(2,2,4,4) =21. On the other hand, concatenating
therepetitions vectors of subgraph({ A, B}) and subgraph({D, E}) yields therepetition rates p'(A,

B, D, E) = (1, 1, 1, 1). However, repeatedly invoking the subsystem with these relativerates can

1. gcd denotes the greatestcommon divisor.

9 of 28

Non-connected SDF Graphs

never lead to a periodic schedule for the enclosing SDF graph. We have motivated the following

definition.

Definition 4: Let G be a connected SDF graph, suppose that Z is a subset ofN(G), and let R =

subgraph^). We define qG(Z) s gcd(qG(N) I N € Z), and we define qpyo to be the vector of posi

tive integers indexed by the members of Z that is defined by qR/G(N) = qG(N) / qG(Z), V N G Z.

qG(Z) can be viewed as the number of times a minimal periodic schedulefor G invokes the sub

graph R, and we refer to q^Q as the repetitions vector ofRasa subgraph ofG. For example, in

figure 4, if R =subgraph({A, B, D, E}), then qG(N(R)) = 2, and q^ = q^A, B, D, E) = (1,1, 2,

2).

Fact 5: If G is a connected SDF graph and R is a connected subgraph of G, then qp/Q = qR. Thus

for a connected subgraph R, V N G W(R),qQ(N) = qQ(N(R))qR(N).

Proof Let S be any PASS for G of unit blocking factor, and let S' = restriction^, R). Then

from fact 4, for all N G N(R), we have qG(N) = /(S')qR(N). But from fact 1, we know that the

components of qR are coprime. It follows that Z(S') = gcd{qGQ>T) \ N G iV(R)} = qG(N(R)). Thus,

V N G N(R), qR(N) = qG(N) / qG(AT(R)) = qR/G(N). QED.

For example, in figure 4(a), let R = subgraph({A, B}). We have qG(A, B, C, D, E) = (2,2,

1,4, 4), qR(A, B) = (1, 1), and from definition 4, qG(W(R)) = gcd(2, 2) = 2, and qm = (2,2) / 2 =

(1,1). As fact 4 assures us, qR = q^.

.1 1

(a) (b)

Fig. 4. An example of clustering a subgraph in an SDF graph.

10 of 28

Non-connected SDF Graphs

Finally, we formalize the concept of clustering a subgraph of a connected SDF graph G,

which as we discussed above, is used to organize hierarchyfor scheduling purposes. This process

is illustrated in figure 4. Here subgraph({ A, B, D, E}) of figure 4(a) is clustered into the hierarchi

cal node Q and the resulting SDF graph is shown in figure 4(b). Each input arc a to a clustered

subgraph R is replaced by an arc a' having p(a!) =p(a), and c(a') = c(cc) x q^sinkia)), the num

ber of samples consumed from a in one invocationof R as a subgraph ofG. Similarly we replace

each output arc p with p such that c(p) = c(p), andp(P) =p($) x qwQ(source(P)). We will use the

following property of clustered subgraphs.

Fact 6: SupposeG is an SDF graph, R is a subgraph of G, G is the SDF graph that results from

clustering R into the hierarchical node Q, S* is a PASS for G\ and SR is a PASS for R such that V

N GN(R), mv(N, SR) = qRAs(N). Let S* denote the schedule that results from replacing each
appearance of CI in S with SR. Then S* is a PASS for G.

As a simpleexample, consider figure 4 again. Now, (2 Q) C is a PASS for the SDFgraph

in figure4(b), and S s AB (2 DE) is a PASS for R &subgraph({A, B, D, E}) such that mv(N, S) =

Ar/gCN) V N. Thus, fact 6 guarantees that (2 AB (2 DE))Cis a PASS for figure 4(a).

Proofoffact 6. Given a schedule a and an SDF arc ot, we define

A(oc, a) = inv(source(a), a) xp(ct) - inv(sink(a), a) x c(a).

Clearly a is a periodic schedule only if A(cc, a) = 0 V a.

We candecompose S' into s<\ CI s2 CI... Qs^ where each Sj denotes the sequence offirings

between the (/- l)th and/th invocations ofCI Then S* =s^ SR s2 SR ... SR sk.

First, suppose that 0 is an arc in G such thatsource(Q), sink(Q) £ N(R). Then SR contains

no occurrences ofsource(d) nor sink(Q), so P(0, i, S*) =P(Q, i,S') for any invocation number i of
sink(Q). Thus, since S' isadmissable, S* does not terminate on 9. Also, A(0, S*) =A(0, s^ s2 ... Sk) =
A(0, S*) = 0, since S' is periodic.

If source(&), sink(&) GAf(R), then none of the Sj's contain any occurrences of source(&) or

sink(Q). Thus for any i, P(Q, i, S#) =/»(0, /, S**) and A(0, S*) =A(0, S"), where S~ =SR SR ... SR
denotes S* with all of the Sj's removed. Since S** consists of successive invocations of aPASS, it
follows that S* does not terminate on 0,and A(0, S*) =0.

11 of 28

Factoring Schedule Loops

Now suppose that source(Q) GN(R), and sink(&) $ N(R). Then corresponding to 0, there is

an arc 0' in G', such that source(&) =0, sink(&)=sink(Q)ip(&) = qrvG(source(Q))p(&), and c(0') =

c(0). Now each invocation of SR produces inv(source(Q), SR)p(0) = qWG(source(Q))p(Q) = p(0')

samples onto 0. Since c(&) =c(0) and S' isaPASS, itfollows that A(0, S*) =0and S* does not ter

minate on 0.

Similarly, if source(Q) £ N(R), and sink(Q) GN(R), we see that each invocation of SR con

sumes the same number of samples from 0 as CI consumes from the corresponding arc in G\ and

thus A(0, S*) =0 and S* does not terminate on 0.

We conclude that S* does not terminate on any arc inG, and A(a, S*)=0 for all arcs a inG.

Thus S* is a PASS for G. QED.

We conclude this section with a fact that relates the repetition vector of an SDF graph

obtained by clustering a subgraph to the repetitions vector of the original graph.

Fact 7: If G is a connected SDF graph, Z c N(G), and G' is the SDF graph obtained from G by

clustering subgraph(Z) into the node Q, then qG{Cl) = qG(Z), and VNCZ, qG-(N) = qG(N).

Proof Let q' denote the vector that we claim is the repetitions vector for G'. It can easily be veri

fied that q' satisfies the balance equations (defined in fact 3) for G\ Furthermore, from fact 1, no

positive integer can divide all members of ({qG(N) I N $ Z] u {gcd({qG(N) I N G Z})}). Since

qG(Z) = gcrf{qG(N) IN G Z}, it follows that the components of q1 are collectively coprime. From

fact 3, we conclude that q1 = qG.. QED.

4 Factoring Schedule Loops

In this section, we show that in a single appearance schedule, we can "factor" common

terms from the iteration counts of inner loops into the iteration count of the enclosing loop. An

important practical advantage of factoring is that it may significantly reduce the amount of mem

ory required for buffering.

12 of 28

Factoring Schedule Loops

For example, consider the SDF graph in figure 5. One single appearance schedule for this

graphis (100 A) (100 B) (10 C) D. With this schedule, prior to each invocation of C, 100 tokens

are queued on each of C's input arcs, and a maximum of 10tokens are queued on D's inputarc.

Thus 210 words of memory are required to implementthe buffering for this schedule.

Now observe thatthis schedule induces thesame firing sequence as (1 (100 A) (100 B) (10

C)) D. The result developed in this section allows us to factor the common divisor of 10 in the

iteration counts of the three inner loops into the iteration count of the outer loop. This yields the

new single appearance schedule (10 (10 A) (10 B) C) D, for which at most ten tokens simulta

neously reside on each arc. Thus this factoring application has reduced the buffering requirement

by a factor of 7.

There is, however a trade-off involved in factoring, For example, the schedule (100 A)

(100 B) (10 C) D requires 3 loop initiations per schedule period, whilethe factored schedule (10

(10 A) (10 B) C) Drequires 21. Thus the runtime cost of starting loops — usually, initializing the

loop indices — has increased by the same factor by which thebuffering costhas decreased. How

ever the loop-startup overhead is normally much smaller than the penalty that is paid when the

memory requirement exceeds the on-chip limits. Unfortunately, wecannot in general perform the

reverse of the factoring transformation — i.e. moving a factor of the outer loop's iteration count

into the inner loops. This reverse transformation would desirable in situations where minimizing

buffering requirements is not critical.

In this section, we prove the validity of factoring for an arbitrary "factorable" loop in a

single appearance schedule.

*®
Fig. 5. An SDF graph used to illustrate the factoring of loops. For this graph, q(A, B, C, D) = (100
100,10,1). ' v '

13 of 28

Factoring Schedule Loops

Definition 5: Given a schedule S0, we denote the set of actors that appear in S0 by actors(S0). For

example, actors((2(2B)(5A))) = {A,B} and actors^ X (2Y(3Z)X))) = {X, Y, Z}.

Lemma 1: Suppose that S is a single appearance schedule (that is not necessarily a PASS) for the

SDF graph G, and S0is a subschedule in S such that S0is a PASS for subgraph(actors(SQ), G).

Then S does not terminate on any arc 0 for which source(Q), sink(Q) G actors(S0).

For example, suppose that S is the scheduleD(2 A(2 BC))E for the SDF graph in figure 6,

and S0 is the subschedule (2 A(2 BC)). Lemma 1 guarantees that S does not terminate on any arc

that is contained in subgraph({ABC)): No matter what the values of the delays {dj} are, S does

not terminate on the arc from A to B, nor the arc from A to C.

Proofoflemma 1: Since S is a single appearanceschedule,source(Q) and sink(&) are invoked only

through invocations of S0. Since S0is admissable, the number of samples on 0 prior to each invo

cation of sink(Q) is at least c(0). Thus S does not terminate on 0. QED.

Lemma 2: Suppose that G is an SDF graph, S is an admissable looped schedule for G, and S0is a

subschedule in S. Suppose also that S0'is any looped schedule such that actors(Sd) = actors(S0),

and mv(N, S0)= //iv(N, S0') V N € actors(S0). Let S' denote the schedule obtained by replacing S0

with S0' in S. Then S' does not terminate on any arc 0 that is not contained subgraph(actors(S0),

G); equivalently, (source(&) € actors(S0) or sink(&) $ actors(S0)) =» S* does not terminate on 0.

Again consider the example in figure 6 and suppose that D(2 A(2 BC))E is an admissable

schedule for this SDF graph. Then lemma 2 (with S0 = A(2 BC), and S0' = BCABC) tells us that

D(2 BCABQE does not terminate on any of the four arcs that he outside of subgraph({A, B, C}).

Fig. 6. An example used to illustrate the application lemmas 1 and 2. Each dj represents the
number of delays on the corresponding arc. Here q(A, B, C, D, E) = (2,4, 4,1,1).

14 of 28

Factoring Schedule Loops

Before moving to the proof, we emphasize that lemma 2 applies to general looped sched

ules, not just single appearance schedules.

Proof oflemma2: Let 0 be any arc that is not containedin subgraph(actors(S0), G). Let /

be any invocation number of sink(d); that is, 1 £ i <, inv(sink(Q), S'). The sequence of invocations

fired in one period of S can be decomposed into fa fy s2 b2 ... bn s^), where bj denotes the

sequence of firings associated withtheyth invocation of subschedule S0, and Sj is the sequence of

firings between the (/ -l)th andythinvocations of S0. Since S' is derived by rearranging the firings

in S0, we can express it similarly as fa by s2 b2'... bn' sn+1), where bj' corresponds to they'th invo

cation of S0' in S'.

If neither source(&) nor sink(Q) is contained inactors(S0), then none of the bj's nor any of

the bj"s contain any occurrences of sink(Q) or source(/d). Thus P(0, i, S) = P(0, i, Si s2 ... sn+1) =

Now suppose source(Q) € actors(S0) and sink(Q) £ actors(S0). Let k denote the number of

invocations of S0 that precede sink(Q)t in S. Then, since inv(sink(&), bj) =inv(sink(d), bj1) =0 Vy,

we have that k invocations of S0' precede sink(&) in S\ It follows that P(0, /, S) = P(Q, i, s^ s2 ...

Sn+i) +*x inv(source(Q), S0), andP(Q, i, S') =P(Q, i, s^ s2... s^) +kxinv(source(Q), S0'). But, by

assumption, inv(source(Q), S0) = inv(source(&), S0'), so P(0, i, S) = P(0, i, S').

Finally, suppose source(d) C actors(S0) and sink(&) € actors(S0). There are two sub-cases

to consider here: (1) In S, sink(Q)t occurs in one of the Sj's, say sk. Since inv(sink(Q), S0) = inv(-

sink(&), S0'), it follows that in S\ sink(Q)t occurs in sk as well. Since source(&) $ actors(S0), we

have P(e, i, S) = P(0, i -(k- l)inv(sink(Q), S0), Si s2 ... s^ =P(Q, i -{k- l)inv(sink(Q), S0'), ^ s2

... Sk) =P(0, i, S'). (2) In S, sink(0)j occurs in one of theb/s, saybm. Then mv(sink(0), S0) =mv(-

sink(0), S0') implies that in S', sink(0) occursin bm'. Since source(d) t actors(S0), P(Q, i S) = inv{-

source(&), s^ s2 ... sm)=^(0, i, S').

Thus, for arbitrary /, P(Q, i, S) = P(Q, i, S') From the admissability of S, it follows that S'

does not terminate on 0. QED.

The following theorem establishes the validity of our factoring transformation.

15 of 28

Factoring Schedule Loops

Theorem 1: Suppose that S is a valid single appearance schedule for G and suppose that L =

(mfa SO (n2 S2) ... (nk Sk)) is a schedule loop withinS of any nesting depth. Supposealso that y

is any positive integer that divides n^, n2,..., nk, and let L' denote the loop (ym (y 1n1 SO (y 1w2 S2)
... (y'1«k Sk)). Then replacing L with Lf in Sresults in a valid schedule forG.

Proof: Wewill use the following definition in our proofof this theorem.

Definition 6: Given a schedule loop L in S and an arc 0 in G, we define consumed(Q, L) to be the

number of samplesconsumedfrom 0 by sink(Q) during one invocation of L. Similarly, we define

produced^, L) to be thenumber of samples produced onto 0 during oneinvocation ofL. Clearly,

if the numberof samples on 0 is at least consumed(Q, L) just prior to a particular invocation of L,

then S will not terminate on 0 during that invocation of L.

We will prove theorem 1 by induction on k. First, observe that for k= 1, L and L' generate

the same firing sequence, and thus S and S' generate the same firing sequence. Weconclude that S'

is valid for fc = l.

Now consider the casek= 2. Then L = (m fa SO (n2 S2)) and L' = (ym (y1^ SO (y1/i2

S2)). By construction,Z(S')=/(S) and S' is also a singleappearance schedule. Now Let 0 be an arc

in G. If source(Q) € actors(S^) and sink(Q) € actors(S2) then

produced^, (y\ si)) =J(S)qG(source(Q))p(Q)/inv((yJln1 S0,S')

=J(S)qG(source(Q))p(Q) /(ymx inv(V, S'))

=J(S)qG(sink(d))c(Q) / (ym Xmv(L\ S')) (by fact 3)

= consumed(Q, (y"1w2 S^).

Similarly, if source(&) € actors(S2) and sink(Q) € actors(S^), produced(Q, (y"1«2 S^) =

consumed^, (y1/^ SO). Summarizing, we have

source(Q) € actors(S<\), sink(Q) € actors(S2)=*produced^, (y'^n^ SO) = consumed(Q, (y"1w2 S^);

and

source(Q)£ actors(S2)*sink(Q)€ actors(S^)^produced(Q,(y'^n2S2))=consumed(Q,(y'^n^SO)-(EQ 1)

Now we will show that S does not terminate on 0 for an arbitrary arc 0 in G.

16 of 28

Factoring Schedule Loops

Case 1: source(Q) € actors(Si), sink(Q) € actors(S2). From EQ 1, we know that prior to

each invocation of (y1/i2 S^, at least consumed(Q, (y1w2 S^) samples reside on 0. Thus S' never

terminates on0 during an invocation of (y"1w2 S^. Furthermore, since S' is a single appearance

schedule, sink(Q) is fired only through invocations of (y"1n2 S^, and it follows that S' does notter

minate on 0.

Case 2: source(Q) € actors(S2) and sink(&) € actors(S-{). Since S is an admissable sched

ule, delay(Q) £ consumed(Q, fa SO), otherwise S would terminateon 0 during the first invocation

of fa Si). Since y^ 1, it follows that delay(Q) ^ consumed^, (y1w1 Si)), soS' does not terminate

on 0 during the first invocation of (y"1/^ SO. From EQ 1, we know that prior to each subsequent

invocation of (y'1fli Si), at least consumed(Q, (y 1n1 Si)) samples reside on 0, so Sf does not termi

nate on0 for invocations 2,3,4,... of (y1^ SO. We conclude that S' does notterminate on0.

Case 3: source(&), sink(Q) € actors(S^). Since S is a valid single appearance schedule, Si

must be a pass for subgraph(actors(S^)). Applying lemma 1 with S0 = Si, we see that S' does not

terminate on 0.

Case 4: source(Q), sink(Q) e actors^. From lemma 1 with S0= S2, S* does not terminate

on0.

Case 5: source(d) € (actors(S^) u actors(S2)), or sink(Q) £ (actors(S1) u actors(S2)).

Applying lemma 2 with S0 = L and S0' = L\ we see that S' does not terminate on 0.

From our conclusions in cases 1-5, S' does not terminate on any arc in 0, and it follows

that S' is a valid schedule. Thus theorem 1 holds for k = 2.

Now suppose that theorem 1 holds whenever k <> k', for some k' ^ 2. We will show that this

implies thevalidity of theorem 1 for k£ K+1. For k=K+1, L =(m fa Si) (n2 S2)... (%+i S^))

and L'=(ym (y\ Si) (y1n2 S2) ... (y1wk-+i Sk.+0). LetSa denote the schedule that results from

replacing L with the loop Lab (m (1 fa SO (n2 S2)... (nk< Sk<)) (nk'+i SkvO). SinceLaand L induce

the same firing sequence, Sa induces the same firing sequence as S. Now theorem 1for k=K guar

antees that replacing (1 fa SO (n2 S2)... (nw S,,)) with (y(y1«i SO (y1w2 S2)... (y V Sk0) in Sa
results in a valid schedule Sb.

Observe that Sb is the schedule S with Lreplaced byLb =(m (y(y1«i SO (y1w2 S2) ... (y

1% Sk0) (rt|<.+i Sk-+0). Theorem 1for k=2guarantees that replacing 1^ with L^ (ym (1 (y 1w1 SO

17 of 28

Reduced Single Appearance Schedules

(y"1n2 S2) ... (y 1% Sk.)) (y1«k'+i Sk'+O) yields another valid schedule Sc. Now Lc yields the same
firing sequence as L' = (ym (y1/21 SO (y"1»2 S2) ... (y V+1 Sk.+0), so replacing Lc with L* in Sc
yields an admissable schedule Sd. But, by ourconstruction, Sd = S', so S' is a valid schedule for G.

We have shown that theorem 1 holds for k = 1 and k = 2, and we have shown that if the

result holds for k <. k\ then it holds for k<,(k' + 1). We conclude that theorem 1 holds for all k.

QED.

Reduced Single Appearance Schedules

We begin this section with a definition.

Definition 7: Given a schedule loop L, we say that L is reduceable if all iterands of L are sched

ule loops, and there exists an integery > 1 that divides all of the iterationcounts of the iterands of

L. If L is not reduceable, we say that L is irreducible.

For example, the schedule loops (3 (4 A) (2 B)) and (10 (7 C)) are both reduceable, while

the loops (5 (3 A) (7 B)) and (70 C) are irreducible. From our discussion in the previous section,

we know that reduceable schedule loops may result in much higher buffering requirements than

their factored counterparts.

Definition 8: Given a single appearance schedule S, we say that S is fully reduced if:

1) S is not a schedule loop; AND

2) Every schedule loop contained in S is irreducible.

In this section, we show that we can always convert a valid single appearance schedule

that is not fully reduced into a valid fully reduced schedule. Thus, we can always avoid the over

head associated with using reduceable schedule loops over their corresponding factored forms. To

prove this, we use another useful fact: that any fully reduced schedule has blocking factor 1. This

implies that any schedule that has blocking factor greater than one is not fully reduced. Thus, if

we decide to generate a schedule that has nonunity blocking factor, then we risk introducing

higher buffering requirements.

18 of 28

Reduced Single Appearance Schedules

Theorem 2: Suppose that S is a singleappearance schedule for a connected SDF graphG. If S is

fully reduced then S has blocking factor 1.

Proof: First, suppose that not all iterands of S are schedule loops. Then some actor N appears as

an iterand. Since N is not enclosed by a loop in S, and since S is a single appearance schedule,

mv(N, S) = 1, and thus J(S) = 1.

Now suppose that all iterands of S are schedule loops, and suppose thatj is an arbitrary

integer that is greater that one. Then since S is fully reduced,./ does not divide at least one of the

iteration counts associated with the iterands of S. Define i0= 1 and let Li denote one of the iter

ands of S whose iteration count i'j is not divisible by j =j / gcd(j, i0). Again, since S is fully

reduced, if all iterands of Li are schedule loops then there exists an iterand 1^ of Li such thaty /

gcd(j, iqi'O does not divide the iteration count i2 of L^. Similarly, if all iterands of l^ are schedule

loops, there exists an iterand L3 of 1^ whoseiterationcount i3 is not divisiblebyy / gcd(j, ioi^i2).

Continuing in this manner, we generate a sequence Lj, 1^, L3, ... such that the iteration

count ikofeach Lkis not divisible byj / gcd(j, /0*i *k-i)♦ Since G is of finite size, we cannot continue

this process indefinitely — for some m^ 1, not all iterands of Lm are schedule loops. Thus, there

exists an actor N that is an iterand of 1^. Since S is a single appearance schedule,

mv(N, S) =mv(Li, S)wv(L2, LJinvQ^, L2)... wv(Lm, Lm.0wv(N,LJay^... im.

By our selection of the Lk's,y / gcd(j, i0i^i2 ... i^) does not divide im, and thusy does not divide

inv(N, S).

We have shown that given any integer./ > 1,3 N GN(G) such that mv(N, S) is not divisible

byj. It follows that S has blocking factor 1. QED.

Theorem 3: If anSDF graph G has a vahd single appearance schedule, then G has a vahd fully

reduced schedule.

Proof. Weprove theorem 3 by construction. This construction process can easily be automated to

yield an efficient algorithm for synthesizing a fully reduced schedule from an arbitrary valid sin

gle appearance schedule.

Given a looped schedule ¥, wedefine nonreduced(^¥) to be theset of schedule loops in¥

that are reduceable. Nowsuppose that S is a vahd single appearance schedule for G, and let X\ -

19 of 28

Constructing Single Appearance Schedules

(m (n-\ *F0 (n2 ^2) ••• (nk ^k)) t>e anY innermost member of nonreduced(S) — i.e. "K\ is reduce

able, but every loop nested within %\ is irreducible. From theorem 1,replacing A,1 with AV = (ym (y

1»i m\) (y"1/22 '̂2) ... (Y"1«k^k))» wherey=gcdfafn2i ..., nk), yields another valid single appear

ance schedule S-\. Furthermore, A^ is irreducible, and since every loop nested within X\ is irreduc

ible, every loop nested within X\ is irreducible as well. Now let A2 € nonreduced(S^), and

observe that A2 cannot equal X\. Theorem 1 guarantees a replacement A '̂ for A2 that leads to

another valid single appearance schedule S2. If we continue this process, it is clear that no replace

ment loop V ever replaces one of the previous replacement loops A,-/ A2' ••• \-u since these are

already irreducible. Also, no replacement changes the total number of loops in the schedule. It fol

lows that we can continue this process only a finite number of times — eventually, we will arrive

at an Sn such that nonreduced(Sn) is empty.

Now if Sn is not a schedule loop we are done. Otherwise, let L denote the outermost loop

in Sn such that 1) all iterands of L are actors, OR 2) L has more than one iterand. If ¥ denotes the

body of L, then Sn is of the form fa (n2 ... fa ¥)) ...). Clearly Sn generates the same firing

sequence as fan2 ...nk VF). From the definition of a PASS, it follows that *P is a PASS, and by our

selection of L, ¥ is not a schedule loop. Finally, by our construction of Sn, all schedule loops in ¥

are irreducible. QED.

Constructing Single Appearance Schedules

Since single appearance schedules implement the full repetition inherent in an SDF graph

without requiring subroutines or code duplication, we examine the topological conditions

required for such a schedule to exist. First suppose that G is an acyclic SDF graph containing N

nodes. Then we can take some root node ^ of G and fire all qG(i'0 invocations of ^ in succession.

After all invocations of r-| have fired, we can remover-| from G, pick a root noder2of the new acy

clic graph, and schedule its qcfe) repetitions in succession. Clearly, we can repeat this process

until no nodes are left to obtain the single appearance schedule (qG(rO rO (qG(r2) r2) ••• (^g^n)

rN) for G. Thus we see that any acyclic SDF graph has a single appearance schedule.

20 of 28

Constructing Single Appearance Schedules

Also, observe thatif G is an arbitrary SDF graph, then we cancluster the subgraphs asso

ciated with each nontrivial strongly connected component of G. Clustering a strongly connected

component into a single node never results in deadlock since there can be no directed loop con

taining the clustered node. Since clustering all strongly connected components yields an acyclic

graph, it follows from fact 4 and fact 6 that Ghas a valid single appearance schedule ifand only

if each strongly connected component hasa valid single appearance schedule.

Observe that we must, in general, analyze a strongly connected component Ras a separate

entity, since G may have a single appearancescheduleeven if there is a node N in R for which we

cannot fire all qG(N) invocations insuccession.The key is that qR may be less than qG, sowe may

be able to generate a single appearance subschedule for R (e.g. we may be able to schedule N

qR(N) times in succession). Since we can schedule Gso that R's subschedule appears only once,

this will translate to a single appearance schedule for G. For example, in figure 7(a), it canbever

ifiedthat q(A, B, C) = (10,4,5), but we cannot fire so many invocations of A, B, nor C in succes

sion. However, consider thestrongly connected component R* consisting ofnodes A and B.Then

we obtainqpr(A) = 5 and qR*(B) = 2, andweimmediately see thatq^(B) invocations of B can be

scheduled in succession to obtain a subschedule for R*. TheSDFgraph thatresults from cluster

ing {A, B} into is shown in figure 7(b). This leads to the single appearance schedule

(2(2B)(5A))(5C).

Theorem 4: Suppose that G is a connected SDF graph and suppose that G has a vahd single

appearance schedule of some arbitrary blocking factor. Then G has valid single appearancesched

ules for all blocking factors.

5

(a) (b)

Fig.7. An example of how clustering strongly connected components can improve looping.

21 of 28

Constructing Single Appearance Schedules

Proof: Clearly, any schedule S ofunity blocking factor can be converted into a schedule ofarbi

trary blocking factor./ simply by encapsulating S inside a loop ofj iterations. Thus, it suffices to

show that G has a single appearance schedule of unity blocking factor. Now, theorem 3 guarantees

that G has a vahd fully reduced single appearance schedule, and theorem 2 tells us that this sched

ule has blocking factor 1. QED.

Corollary 1: Supposethat G is an arbitrary SDFgraphthat has a vahd singleappearance sched

ule. Then G has a vahd single appearance schedule for all blocking vectors.

Proof Suppose S is a vahd single appearance schedule for G, let R-j, R2,..., Rk denote the maxi

mal connected subgraphs ofiV(G), letJ*(Ri, R2, ..., R|J = fa, z2,..., zj be an arbitrary blocking

vector for G, and for \<,i<,k, let Sjdenote the restriction of S to Rj. Then from fact 4 each Sj is a

valid single appearance schedule for the corresponding Rj. From theorem 4, for 1 <> i <> k, there

exists a vahd single appearance schedule Sj'of blocking factor zt for Rj.Since the Rj's are mutually

disjoint and non-adjacent, it follows that S/ S2 ... Sk' is a vahd single appearance schedule of

blocking vector J* for G. QED.

Our condition for the existence of a single appearance schedule involves a form of prece

dence independence that we call subindependence.

Definition 9: Suppose that G is a connected SDF graph. If Z, and Z2 are disjointsubsetsofN(G)

wesay that'% is subindependent of Z2 in G" if forevery arc a in G suchthatsource(a) € Z2

and sink(a) € Zj, we have delay(a) ^ qG(sink(a))c(a).

For example, consider the SDF graph in figure 8. Here q(A, B, C, D)=(2,1,2,2,), andwe

seethat {A, D} is subindependent of {B, C} and trivially, {B, C, A} is subindependent of {D}.

We are now ready to establish arecursive condition for the existence of a single appear

ance schedule. Recall that an arbitrary SDF graph has a single appearance schedule iff each

1. An alternative proof has been suggested by Sebastian Ritzof Aachen University. This proof is based ontheobservations that
(1) constructing blocking factor 1schedules for acyclic graphs is easy —we simply use the process described at the beginning of
this section, and (2) if astrongly connected SDF graph Ghas asingle appearance schedule then ithas asubindependent subset of
nodes (see definition 9), which allows us to decompose Ginto smaller collections ofstrongly connected components. By hierarchi
cally scheduling the input graph based on observations (1) and (2), wecan always construct ablocking factor 1schedule.

22 of 28

Constructing Single Appearance Schedules

strongly connected component has a single appearance schedule. Theorem 5 gives necessary and

sufficient conditions for a stronglyconnected SDFgraph to havea singleappearance schedule.

Theorem 5: Suppose that G is a nontrivial strongly connected SDF graph. Then G has a single

appearance schedule if and only if there exists Ns ^N(G) such that

(1) N8is subindependent of (N(G)- N8) in G; and

(2) subgraph(Ns, G) and subgraph(N(G) - N8, G) both have a single appearance

schedules.

Proof. «=Let S andT denotesingleappearance schedules for Y=subgraph(Ns, G) andZ s

subgraph(N(G) - N8), G) respectively; let yi, y2, ...,ykdenote the maximal connected subsets of

N(Y); andlet zi, z2, ...,Z|denote themaximal connected subsets ofN(Z). From corollary 1,wecan

assume withoutloss of generality thatfor 1£ i £ k, Js(subgraph(y{)) = qG(yj), andthatfor 1£ i £ /,

J-^subgraphfa)) = qG(Zj). From fact 5, it follows that S invokes each N € N8 qG(N) times, and T

invokes each N G (N(G) - N8) qG(N) times, andsince N8 is subindependent, it follows that (S T)

is a valid single appearance schedule (of blocking factor 1) for G.

=> Suppose that S is a single appearance schedule for G. From theorem 4, we can

assume without loss of generality thatS has blocking factor 1.Then S can be expressed as SaSb,

where Saand Sbare nonempty singleappearance subschedules of S thatare not encompassed by a

loop (ifwe could represent S as asingle loop (n (...) (...)... (...)) then gcd({qG(N) | Ne N(G)})
^ n, so S is not of unity blocking factor — a contradiction). Since Sa Sbis a PASS for G, every

actor N € actors(Sg) is fired qG(N) times before any actor outside of actors(Se) is invoked. It fol

lows that actors(Sfd is subindependent of actors(Sb). Also Sa is a single appearance schedule for

subgraph(actors(Sg)) and Sb is a single appearance for subgraph(actors(Sb)). QED.

1 D 2V

Fig. 8. An example used to illustrate subindependence.

23 of 28

Conclusion

Theorem 5 shows that a strongly connected SDF graph G has a single appearance sched

ule only if we can find a subindependent partition of the nodes — a partition into two subsets Z1

and Z2 such that Z-\ is subindependent of Z2. If we canfind such Zi and Z2, then wecan construct

a single appearance schedule for G by constructing a single appearance schedule for all invoca

tions associated with ZA and then concatenating a single appearance schedule for all invocations

associated with Z^. By repeatedly applying this decomposition, we can construct single appear

ance schedules whenever they exist [2].

The partitioning process on which this decomposition method is based can be performed

efficiently. Given a nontrivial strongly connected SDF graph G, we first remove all arcs from G

whose delay is not less than the total number of samples consumed from the arc in a schedule

period. If theresulting graph G' is stillstrongly connected then no subindependent partition exists.

Otherwise, any root strongly connected component of G' is subindependent. This method of deter

mining a subindependent partition is illustrated in figure 9.

*> 5D 5D

Fig. 9. An example of subindependence partitioning. For the strongly connected SDF
graph on the left, q(A, B, C, D) = 1,10, 2, 20. Thus the delay on the arc directed from D to
B (25) exceeds the total number of samples consumed by B in a schedule period (20). We
remove this arc to obtain the new graph on the right. Since this graph is not strongly con
nected, a subindependent partition exists: the root strongly connected component {A, B} is
subindependent of the rest of the graph {C, D}.

Conclusion

We have formally discussed the organization and manipulation of loops in uniprocessor

schedules for synchronous dataflow programs. We have introduced twomain techniques: (1) con

structing single appearance schedules, which permit the efficiency of inlined code without requir-

24 of 28

Acknowledgment

ing any code duplication across multiple invocations of the same functional block; and (2)

factoring loops in a single appearance schedule to reduce the amount of memory required for

buffering. Based on our technique for constructing single appearance schedules, we have imple

mented a scheduling framework for synthesizing optimally compact programs for a large class of

applications. This framework defines a way to incorporate other scheduling objectives in a man

ner that does not conflict with the full codecompaction potential offered by subindependent parti

tions. For example the incorporation of techniques to make buffering more efficient are discussed

in [2].

The trade-offs involved in compiling an SDF program are complex. These tradeoffs

include the effects of parallelization; code compactness; the amountof memoryrequired for buff

ering; the amount of data transfers that occur only through machine registers; the number of sub

routine calls and their associated overhead; the amount of context-switch overhead, as [20]

addresses; and the total loop overhead (initiation and indexing). We have only begun to explore

these tradeoffs — the existing techniques focus on a small subset of the full range of consider

ations. A more global objective of the formal techniques for working with looped schedules that

this paper presents is to facilitate the exploration of tradeoffs involved in compiling SDF pro

grams. This is demonstrated to some extent by our scheduling framework [2]; there is much more

room for work in this area.

Acknowledgment

The authors are grateful to Sebastian Ritz of Aachen University for his helpful comments.

Glossary

actors(L) The set of actors that appear in the schedule loop L.

admissable schedule A schedule that does not deadlock.

c(cc) The number of samples consumed from SDF arc a by one invocation of sink(a).

delay(a) The number of delays on SDF arc a.

25 of 28

Glossary

gcd Greatest commondivisor.

wv(X, S) The number of times that the looped schedule S invokes actor orsubschedule X.

iterand Given a schedule loop (n % x¥2 ... ¥,<), we referto each% as aniterand.

iteration count Given a scheduleloop (n ¥-, x¥2 ... %), we refer to n as the iteration count.

/(S) Theblocking factor of the PASS S. Every PASS S invokes each actor N some mul
tipleof qeCN) times. This multiple is theblocking factor.

looped schedule A schedule that has zero or more parenthesized terms of the form (n ^ ¥2
... ¥,<), where n is a nonnegative integer, and each*Fj represents either an
SDF node or another parenthesized term, (n ^ x¥2 ... *¥£ represents the
successive repetition n times of the firing sequence ^ x¥2...¥,<.

max_connected(G) The set ofmaximal connected subgraphs of the graph SDF G.
N(G) The set of nodesin the SDF graph G.

P(a, i, S) The number of invocations of the source actor of SDF arc a that precede the ith
invocation of sink(a) in schedule S.

PASS A periodic admissable sequential schedule.

p(a) The number of samples produced onto SDF arc a by oneinvocation of source(a).

periodicschedule A schedule that invokes each actor at least once and produces no net
change in the number of samplesbuffered on any arc.

qG The repetitions vector qG of the SDF graph G is a vector that is indexed by the
nodes in G. qGhas the propertythat every PASS for G invokes each node N a mul
tiple of qo(N) times.

single appearanceschedule A looped schedule that contains only one appearance of
each actor in the associated SDF graph.

sink(o) The actor at the sink of SDF arc a.

source(a) The actor at the source of SDF arc a.

subgraph A subgraph of an SDF graphG is the graph formed by any subset Z of nodes in G
together with all arcs a in G for which source(a), sink(a) G Z. We denote the sub
graph corresponding to the subset of nodes Z by subgraph(Z, G), or simply by
subgraph(Z) if G is understood from context.

termination ofa schedule If S is not an admissableschedule then some invocation/in S is not
fireable immediately after all of its antecedents in the schedule have
fired. Thus/does not have sufficientdata on at leastone of its input
arcs. If a is one such input arc, we say that S terminates on a at/.

valid schedule A schedule that is a PASS.

26 of 28

References

References

[I] Arvind, L. Bic, T. Ungerer, "Evolution of Data-Flow Computers", Chapter 1 in Advanced Topics In Data-Flow
Computing, edited by J. L. Gaudiot and L. Bic, Prentice Hall, 1991.

[2] S. S. Bhattacharyya, J. T. Buck, S. Ha, E. A. Lee, "Generating Compact Code From Dataflow Specifications of
Multirate DSP Algorithms", Technical Report, Electronics ResearchLaboratory, College of Engineering, Ber
keley, California 94720, May 1993.

[3] S. S. Bhattacharyya, E. A. Lee, "Scheduling Synchronous Dataflow Graphs For Efficient Looping", Toappear
in Journal of VLSISignal Processing, 1993.

[4] J. Buck,S. Ha, E. A. Lee, D. G. Messerschmitt, "Ptolemy: A Framework for Simulating and Prototyping Heter
ogeneous Systems", InternationalJournal ofComputer Simulation, June 1992.

[5] J. B. Dennis, "First Version of a DataflowProcedureLanguage",MTTILCSITM-61, Laboratoryfor Computer
Science, MIT, 545 Technology Square, Cambridge MA 02139,1975.

[6] J. B. Dennis, "Stream Data Typesfor Signal Processing",Technical Report, September 1992.

[7] G. R. Gao, R. Govindarajan, P. Panangaden,"Well-Behaved Programsfor DSP Computation",ICASSP, San
Francisco, California, March 1992.

[8] D. Genin,J. De Moortel, D. Desmet, E. Van de Velde, "System Design, Optimization, and Intelligent Code Gen
eration for Standard Digital Signal Processors", ISCAS, Portland, Oregon, May 1989.

[9] P. N. Hilfinger, "SilageReference Manual, Draft Release 2.0", Computer Science Division, EECS Dept., Uni
versity of California at Berkeley, July 1989.

[10] W. H. Ho, E. A. Lee,D.G. Messerschmitt, "High Level Dataflow Programming for Digital Signal Processing",
VLSI Signal Processing III, IEEE Press 1988.

[II] S. How, "CodeGeneration for Multirate DSP Systems inGABRIEL", Master's Degree Report, U.C. Berkeley,
May 1988.

[12] E. A.Lee,"Static Scheduling of Dataflow Programs forDSP", Advanced Topics inDataflow Computing, edited
by J. L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[13] E. A. Lee, "A CoupledHardware and Software Architecture for Programmable Digital Signal Processors",
Ph.D. Thesis, University of California at Berkeley, May 1986.

[14] E. A. Lee, D. G. Messerschmitt, "Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro
cessing", IEEE Transactions on Computers, January 1987.

[15] E. A. Lee, D. G. Messerschmitt, "Synchronous Dataflow", Proceedings of theIEEE, September 1987.

[16] J. R. McGraw, S. K. Skedzielewski, S. Allan, D. Grit, R. Oldehoft, J. Glauert, I. Dobes, P. Hohensee, "SISAL:
Streams and Iteration in a Single AssignmentLanguage", LanguageReference Manual, Version 1.1.,July 1983.

[17] D. R. O' Hallaron, "The ASSIGN Parallel Program Generator", Technical Report, Memorandum Number
CMU-CS-91-141, School of Computer Science, Carnegie Mellon University, May 1991.

[18] D. B. Powell, E. A. Lee, W. C. Newmann, "Direct Synthesis of Optimized DSP Assembly Code From Signal
Flow Block Diagrams", ICASSP, San Francisco, California, March 1992.

[19] H. Printz, "Automatic Mapping of Large Signal Processing Systems to a Parallel Machine", Memorandum
CMU-CS-91-101, School of Computer Science, Carnegie-Mellon University, May 1991.

27 of 28

References

[20] S. Ritz, M. Pankert,H. Meyr,"OptimumVectorization of Scalable Synchronous Dataflow Graphs",Technical
Report IS2/DSP93.1a, Aachen University ofTechnology, Germany, January 1993.

[21] G. Sin,"Multiprocessor Scheduling to Account for Interprocessor Communication", PhDThesis, University of
California at Berkeley, 1991.

[22] R. E. Tarjan, "DepthFirstSearch andLinear Graph Algorithms", SIAMJ. Computing, June 1972.

[23] W. W. Wadge, E. A. Ashcroft, "Lucid, theDataflow Language", Academic Press, 1985.

28 of 28

	Copyright notice 1993
	ERL-93-37

