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Abstract

An upper bound of the global degree of nonholonomy is found for a car with n trailers.
This bound grows exponentially as a function of n similarly to the Fibonacci numbers.
The bound is hence lower than previous upper bounds. Controllability is also shown for
the kinematic model considered.

1 Introduction

A car with n trailers is a nonholonomic system due to the rolling constraints of the wheels.
The configuration of the system is given by two position coordinates and n + 1 angles,
whereas there are only two inputs, namely one tangential velocity and one angular velocity.
Thus, the system has two degrees of freedom. The study of a car with n trailers has
attracted much attention recently and has involved tools from nonlinear control theory and
differential geometry. An important concept for suchsystems is the degree of nonholonomy
which expresses the level of Lie-bracketing needed to span the tangent space at each
configuration. This degree thus expresses how "controllable" the system is.

A kinematic modelfor a car with n trailers waspresented by [3]. Controllability for this
model was proven and the (global) degree of nonholonomy was shown to be bounded by
2n+1. In [6], a coordinate transformation and afeedback transformation ofthe inputs were
proposed which converted locally the kinematics to a chained form. The conversion was
local in all the orientations but global in the position. Since the degree of nonholonomy
of a n + 3-dimensional chained form is n + 2, this conversion showed that the degree of
nonholonomy of a car with n trailers is n + 2 when there areno right angles between the
trailers. In [7], another set of coordinates were used to convert the system to a chained
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form. This conversion which was global also in the orientation of the last trailer, showed
that the degree of nonholonomy was independent of the orientation of the last trailer.

In this paper, an exponential bound lower than 2n+1 is found for the global degree of
nonholonomy of a car with n trailers.

The paper is organized as follows: Mathematical preliminaries are presented in Section
2. Thekinematic model ofa carwith n trailers is presented in Section 3andcontrollability
of this system is shown in Section 4. Bounds on the degree of nonholonomy are given in
Section 5.

2 Mathematical Preliminaries

In this section some definitions and results which are useful in the analysis of the degree
of nonholonomy will be presented. Definitions 1-5 are taken from [5] and [2].

Definition 1 Let f be a smooth vector field on a smooth manifold M and X a smooth
real-valued function on M. The Lie derivative ofX along f is afunction LfX : M-* R
defined as

(i/A)(p)=(/(p))(A)

Definition 2 For f and g any (smooth) vector fields on M, we define a new vector field,
denoted as [f,g] and called the Lie bracket of f and g by setting

(lf,9](p))W = (LfLgX)(p) - (LgLfX)(p)
where X is a smooth function on M.

[/, g] is skew commutative, bilinear over K, and satisfies the Jacobi identity. If the two
vector fields / and g both are defined on an open subset U of Rn, then

[/..]«-£/<«)-£*.)
at each x in U. Let V°°(M) denote the set of vector fields on a manifold M considered
as a module over the ring C°°(M) of C°° real valued functions on M. V°°(M) with the
product [/, g] is a Lie algebra.

Consider the nonlinear driftless system

m

* - ^9j(x)uj (1)
i=i

where x —[asj,..., xn]T € Itn are local coordinates for a smooth state space manifold M,
and u = [tii,..., «n]T € U C Rm. The vector fields gu...,gm aresmooth on M.

Definition 3 System (1) is controllable if

V*i,x2 € M 3T < oo 3« : [0,T]-* U \ x(T,0,xuu) = x2



Definition 4 TheControl Lie Algebra Cfor (1) is the smallest subalgebra ofV°°(M)
that contains j^,...,gm.

The vector fields which are elements in C span the accessibility distribution.

Definition 5 The accessibility distribution L of (1) is given by

L{x) = span {v(x) | v € £}, x € M

L is the involutive closure of A = span^, ...,gm}.

Theorem 1 Consider System (1). Assume that the state space manifold M is connected
and that

dim I(s) = n, V* € M (2)

Then the system is controllable.

Proof: See [5] p. 83.

D

A stonger concept than controllability is given by the following definition, [4],

Definition 6 System (1) is well-controllable if there exists a basis of n vector fields
in the accessibility distribution L such that the determinant of the basis is constant for all
x£ M.

Let the distribution A be given by A(s) = span^^s),.. ,,gm(x)} for x € M. For every
point x € M we construct a chain

A(x) = Aj(a:)cA2(a:)C--- (3)

of linear spaces in a tangent space TXM defining A,-(z) as a linear envelope of all the values
of vector fields that can be represented by Lie brackets of length < t of admissible vector
fields, [1]. This means that

A2 = Ai + [Ai, AJ,..., At- = A,_! + [A,-!, AJ (4)

We can show that if u and v are vector fields such that u € At and v € Aj then

f(x)u € At-, /(:r)€C~
[tt,t>] € A;+i
U+ V € Ana^j}

Motivated by this, we introduce the length of a vector field as follows:



Definition 7 Let u,v, andw be vector fields in L generated by the distribution A andlet
f(x) and g(x) be smooth functions. The length of a vector field l(u) is defined such
that

l(u) = 1, u€A (5)
/(u) = /(*) + /(«>), « = [/(*)*, g(x)w] (6)
/(u) = max{/(*),/(ti>)}, u = f(x)v+ g(x)w (7)

We see from this definition that l(u) depends on how u isgenerated from A. Thi6 length
function has the property that

l(u) = k =» tt€Ajfe

where k is a constant.

By a growth vector ofa distribution A at a point x we mean a sequence ofintegers
{nt(x)}, where nt(a:) = QjmDi(x). The distribution is regular if

Vi Vz € M 3ki ni(x) = ki

where &, is a constant.

The distribution A (3)is completely nonholonomic if for some to, A; = TM for all
t > i0 where TM is the tangent bundle. The degree of nonholonomy is defined as follows,

Definition 8 Let A (3) be a completely nonholonomic distribution. The degree of non
holonomy of A, d(A), is

rf(A) = minO'o | Vt > i0, At- = TM]

where TM is the tangent bundle.

Note that the manifold M considered can be restricted to a small neighborhood around
each configuration. In general, the degree of nonholonomy changes with the manifold
considered. The global degree of nonholonomy is the degree when M is the whole
configuration space, i.e. the maximum degree of nonholonomy over all configurations, if
it exists. Although the degree of nonholonomy is well-defined at each configuration, the
existence of a global maximum is not garanteed. In this paper, an upper bound for the
global degree of nonholonomy is derived.

The following lemma follows readily from Definitions 7 and 8:

Lemma 1 Assume that there exist a constant k and n vector fields v1,...,vn such that
for all i € {1,...,»}, /(t>i) < k and

VxeM\ span{v1(x),...,vn(x)} = TXM

where TXM is the tangent space at the configuration x. Then the degree of nonholonomy
d(A) < k.



3 Kinematic Model

A car in this context is represented by two driving wheels connected by an axle. A
kinematic model of a car with two degrees of freedom pulling n trailers is here given by

$o = u>

9i = -- sin(^t_1 - 0,)v;_i t = 1,..., n (8)
i>i

y = sin0nt>„

X = COS0nVn

where (x, y) is the absolute position of the center of the axle between the two wheels of
the last trailer.

$i is the orientation angle of trailer i with respect to the x-axis, with t € {1,.. .,n}.
$o is the orientation angle of the pulling car with respect to the z-axis.

Li is the distance from the wheels of trailer t to the wheels of trailer t —1, where
t € {2,.. .,n}. Xi is then the distance from the wheels of trailer 1 to the wheels of the
car.

We denote

ai = $i-0i+u t€{0,...,n-l} (9)
an - 0n

vq is the tangential velocity of the car and is an input to the system. The other input
is the angular velocity of the car, u. The tangential velocity of trailer t, u,-, is given by

t-i

Vi = cos(^_! - 0i)vi-i = JJ coscr,- v0 =Q(0t>o (10)
j'=o

where t € {1,..., n} and

Q(©t) = Ilcosaj
3=0

Gi £ [0O,...A]T
The two input vector fields are then given by

V° = [0'i7smao'x"sinaiC°,,,MI"8ban"lCo~llSinanCo,rosan^ (n)
n0 = [i,o,...,o]T (12)

An illustrationof the systemis presented in Fig. L



4 Controllability

Laumond proved that a car with n trailers is controllable where the kinematic equations
were given in terms of a, = ft - ft+i and (z0, jfo) where (s0, y0) is the position of the
pulling car, [3]. In this section controllability will be shown along the same lines for the
kinematic model (8) where also general distances Xt- between the trailers are included.

We introduce the following vector fields

lro = [«o,V0] (13)

Vi+X = cos aiVi-sin oiiYi (14)
fii+1 = (wuxiVi + coBctiYdLi+i (15)
Yi+l = [l?l+1,V-+1] (16)

where i € {0,...,n- 1}.

Theorem 2 Let the vector fields Vif {2it and Yi be iteratively defined for i € {0,...,n}
by (11)-(12) and (18)-(16). These vector fields have then the following structure

Vi = [oi+»,«f]T (17)
Hi = [Of^On-i+a]7, (18)
Yi = [oi+»,irf]T (19)

latere

o, = [0,0,...,0], <ftmot = t (20)

v? = [j7^sinat-,cosa^+1], t£+1 =1, in+1 =1 (21)

V? = [j— cosai,-sino!t-vf+1] (22)

fori € {0,...,n}.

Proof: The proof will be given by induction. Assume that the vector fields V;, /?,, and
Yi are given by (17)-(19) for an t € {0,..., n - 1}. We find from (14) and (17)-(19) that

Vi+1 = cos ctiVi —sin aiYi

= [ot+1, cos oiwf - sin a,-yf]T

= [ot+1, ——(cos ai sin a,- - sin a< cos ai), cos2 a,«2hl +sin2 a,*^,]T

= [o,'+a,i>?+1]T (23)
(24)

/?;+1 = (sinaiVi + cosaiYi)Li+i (25)
= (sin a,[ot+1,«?]T +cos ai[ot+l, »Jl]T)i1+1 (26)



= [oi+1,l,on_tf (27)
(28)

where g = [ft>, Ou..., 0n, a;, y]T. We find from (9), (23), and (21)

0at+i 0at-

= [ol+a, j—cos ai+i, - sin Q^+i«?+a]T
= [o,-+9,ltf+1]r

We find from (11) and (12) that

Yo =[rto,Vo]=g =[0,itfT
Hence, (19) is satisfied for i = 0. The proofis then completed by noting from (11) and
(12) that (17) and (18) are satisfied for t = 0.

D

Weseefrom this theorem that the vector fields Vi and /?» as defined by (13)—(16) have
the same stucture with respect to the sub-trailer system consisting of trailers t through n
as the input vector fields V^, and I20 have with respect to the complete system. Therefore,
using the inputs to e.g. generate a motion in fl{ direction makes trailer t turn.

Laumond has already shown that a car with n trailers is controllable, [3]. The following
theorem states the sameresult for a kinematic model which is given by Eq. (8).

Theorem 3 The kinematic model of a car with n trailers as given by (8)-(12) is control
lable.

Proof: From (17)-(19) and (21)-(22) we have

det[«oi•••,An,Yn, Vn] = -—(cos2an + sin2 an) = -— > 0
Li+1 Li+i

Therefore,
span{/?0, ...,«„, y„, Vn} = Rn+3, \/q € Rn+3

From the construction of 12,-, 1^, and V„, Eqs. (13)-(16), it follows that the system is
controllable according to Definition 1.

Remark: Since det [fl0, •••, nn, Y„, Vn] = ^ everywhere the kinematic model (8)-
(12) is well-controllable, Definition 6, as also shown by Laumond, [3].



5 Degree of Nonholonomy

In this section we will find an upper bound on the degree of nonholonomy of a car with n
trailers.

Let the Control Lie Algebra C be generated by the input vectors f20 and V0. Let the

distribution A be given by A = span {/20, V0}. We note that with V;, Q, and Yi as given
by (13)-(16), we have

l(Yi) = l(Oi) + l(Yi)

where /(•) is defined in Definition 7. Therefore,

l(Yi)>l(f2i), l(Yi)>l(Vi) (29)

Since /(/**) = max{/(y;_1),/(V;_1)} = /(>;_,) then

l(fli) > /(/?,_,)

Lemma 1 then implies that the degree of nonholonomy is bounded by

d(A) < max{/(/20),..., l(fin), l(Yn), l(Vn)} = l(Yn) (30)

From (5)-(7), (13)-(16) and (29) we get

1(15) = '(«) + J(v<)

= maxWVj-OW^i-iW + nMaWV^),/(«-,)} = 2/(^-x)

Since l(Y0) = 2, /(yj) = 2,+1. Eq. (30) then gives thefollowing upper bound on the degree
of nonholonomy:

d(A) < 2n+1

This result was first found by Laumond, [3]. In the following this upper bound will be
reduced.

The following lemma will be useful to find another expression for ¥J, (19), involving
lower degree of Lie bracketing.

Lemma 2 Given the C°° vector fields F(x), Q(x), and the C°° functions f(x), g(x).
Then

[f F,gG) = f(LGg)F - g(LFf)G + fg[F, G]

Proof: This is found from Definition 2 by direct calculation.

Theorem 4 Let the vector field Y{+1 be given by (14)-(16). Then this vector field can be
expressed as follows:

Yi+1 = Li+l[Yi, Vi\ + sinc^Vi + cos a{Yi (31)



Proof: The vector field Yi+1 is defined by Eq. (16):

Ik, = [««+„ Vi+J

The definitions of Vi+i and iJ,-+x, (14) and (15), give

Yi+1 = Li+i[sin aiVi+ cos aflj, cosaM - sina,Ifl
= £,+i[sm aiVi,cos a,K] - £i+i[sin a,*VJ, sina,-!1*] +

Zl+i[cos a,l^, cos a,K] - £.-+i[cos aM, sin aiiy (32)

We note from (9) and (1) that

Ly. sinai = [ot-, - sina,-, sina,-, o„_;+1]V;

Using Theorem 2 and Lemma 2 then gives

[sin at-Vj, cos at-V;] = sin a,([oi, - sin a,-, sin a,-, o„_l+1 ][o;+1, vf]T)V{ -
cos a,([ot-, cos a,-, - cos a,,o„-,-+1][o,-+1, vf]T)Vi

1 . .,sinatV;- (33)
L i+l

[sin atii;-, sin aM] = sin a;([oi, cos a,-, - cosat, o„_<+1 ][ol+1, •J1]7)!* -
sin a,([oi, cos a,-, - cos a,-, on_,+1][oi+J, y?]T)Vi -
[Vi,Yi\sm2ai

= 7—•(sinaicos2atK-sin2aiCOsati;) +8in2at[i;-,V;] (34)

[cos aiYi, cos a^i] = cos a,([o;, - sin on, sin at-, on_l+1 ][oi+l, •Jl]T)l^ -
cos at([ot-, - sin at,sin at, on_t+1 ][ot+1, i/?]T)V- +
[Y;,V;]cos2at-

= 27~(- Bin a* c082 atVi +sin2 ai cos a,!;) +cos2 a,[i;-, Vfl(35)

[sin aiYi, cos a,*-] = sin 0-,-Qoi, - sin a;, sina,-, on_i+1][ot+1, y?]T)Yi -
cos at([ot-, cos a,-, - cos a;,on_i+1][ot+1, y?]T)Yi

1 v= j—cosaiYi (36)

Eqs. (32) and (33)-(36) imply

Yi+l = Li+i[Yi,Vi\ + sinaiVi + cos cM



From Eq. (15) we see that this expression for Yi+l can alternatively be written

Yi+1 =Li+1[Yi,Vi\ +-^-S2i+1
This theorem says that thevector field Y{+x can be given by (31) as an alternative to (16).
This alternative expression for Yi+1 reduces the levels of Lie bracketing and leads to the
following theorem:

Theorem 5 The degree of nonholonomy d(A) for System (8) with input vectors VQ and
S20 is bounded by

d(A)<F(n +3)=i
«+3 / - /PA n+3"

ffl -ffl
where F(i) is the i"* Fibonacci number, i.e.

F(0) = 0, F(l) = l, F(t + 2) = F(i+l) + F(t), t>0
Proof:

Eq. (31) implies that

l(Yi+l) = max{/(y;) + /(V-), /(V-), /(*•)} = l(Yi) + /(V<) (37)
Since

l(Vi+1) = l(ni+1) = max{/(V-), l(Yi)} (38)
then

/(Y-+1) > /(V-+1), l(Yi+1) > l(I2i+1) (39)
Eqs. (38)-(39) imply that /(/!,-+,) > /(12*)- Therefore,

max{/(l?0),...,/(/2n),/(yn),/(Vn)} = l(Yn)

The degree of nonholonomy is hence bounded by

d(A) < l(Yn) (40)

Eqs. (38) and (39) imply that
l(Vi+1) = l(Yi)

Prom Eq. (37) we then have

l(Yi+,) = l(Yi+1) + l(Yi) (41)
From the definition of Y0 (13) we have that l(Y0) = 2. Since /(V0) = 1, Eq. (37) implies
that /(y») = 3. From Eq. (41) we then see that

/(*•) = F(t + 3), t€{0,...,n}

From Eq. (40) we can then conclude

d(A)<F(n + 3)

where the explicit expression for F(n + 3) is a standard result.

a
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6 Conclusions

In this paper we have shown that the global degree ofnonholonomy ofa car with n trailers
is bounded by the n+3rd Fibonacci number. This means that the worst case bound grows
exponentially. The rate is however lower than for previous bounds. The exact degree of
nonholonomy at each configuration will in general be lower than this upper bound. The
research on the exact degree ofnonholonomy at each configuration is actually in progress.
This analysis reveals acertain structure ofthe Lie products generated by the input vectors
which can contribute to the understanding ofthe control problem of such systems.
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Figure 1: Model of a car with n trailers.
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