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ABSTRACT

Synchronous Dataflow (SDF) provides block-diagram semantics that are well-suited to

compiling multirate signal processing algorithms onto programmable signal processors. Akey to
this match is the ability to cleanly express iteration without overspecifying the execution order of

blocks, thereby allowing efficient schedules to be constructed. Due to limited program memory, it
is often desirable to translate the iteration in an SDF graph into groups of repetitive firing patterns
so that loops can be constructed in the target code. This paper establishes fundamental topological
relationships between iteration and looping in SDF graphs, and presents a hierarchical clustering
strategy that provably synthesizes the most compact nested loop structure for a large class of
applications.

1 INTRODUCTION

In the Dataflow model ofcomputation, pioneered by Dennis [5], a program ismanaged as
a directed graph in which the nodes represent computations and the arcs specify the passage of
data. Synchronous Dataflow (SDF) [14] isarestricted form ofdataflow in which the nodes, called

actors, consume a fixed number ofdata items, called tokens orsamples, per invocation and pro

duce a fixed number of output samples per invocation. SDF and related models have been used

extensively to synthesize assembly code for signal processing applications, for example [7, 8, 9,

17, 18, 19].
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In SDF, iteration is defined as the repetition induced when the number of samples pro

duced on an arc (per invocation of the source actor) does notmatch the number of samples con

sumed (persink invocation) [11]. For example, in figure 1, actor B must be invoked two times for

every invocation of actor A. Multirate applications often involve a large amount of iteration and

thus subroutine calls must be used extensively, assembly code must be replicated, or loops must

be organized in the target program. The use of subroutine calls to implement repetition may

reduce throughput significantly however, particularly for graphs involving small granularity. On

the otherhand, we have found thatcode duplication canquickly exhauston-chip program mem

ory [10]. Thus, it is often essential that we arrange loops in the target code. In this paper we

develop topological relationships between iteration andloopingin SDF graphs.

We emphasize that in this paper, we view dataflow as a programming model, not as a form

of computer architecture^]. Many programming languages used for DSP, such as Lucid[22],

SISAL[15], and Silage[8] are based on, or includedataflow semantics. The developments in this

paperareapplicable to this class of languages. Compilers for such languages can easily construct

arepresentation of the input program as a hierarchy of dataflow graphs. It is important for a com

piler to recognize SDF components of this hierarchy, since in DSP applications, usually a large

fraction of the computation can be expressed with SDF semantics. For example, in [6] Dennis

shows how convert recursive stream functions in SISAL-2 into SDF graphs.

In [10], How evaluated augmenting schedulers that did not consider looping with a post

processing phasethat detects successively occurring repetitive firing patterns, andconcludedthat

such simple tacticswere ineffective for generating compact programs. To synthesize loops effec

tively, the scheduler must exploit specific topological properties in the SDF graph. How demon

strated such a property by showing that we can often greatly improve looping by consolidating

subgraphs that operate at the same sample rate, and scheduling such subgraphs as a single unit.

Figure 1 shows how this technique can improve looping. A naive scheduler might schedule this

SDF graph as CABCB, which offersno looping possibility withinthe schedule period. However,

if we first group the subgraph induced by {B,C} into a hierarchical "supernode" T, a scheduler

will generate the schedule AFT. To highlight the repetition in a schedule, we let the notation

(NX1X2...Xm) designate N successive repetitions of the firing sequence X1X2.. .Xm. We refer to a
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schedule expressed with this notation as a looped schedule, and we refer to each term of the

form (N XiX2...Xm) as a schedule loop. Using this notation, andsubstituting each occurrence

of r witha subschedule for the corresponding subgraph, ourconsolidation of the uniform-rate set

{B,C} leads to either A(2BC) or A(2CB), both ofwhich expose the full amount of looping in the

SDF graph of figure 1.

We explored the looping problem further in [3]. First, we generalized How's scheme to

exploit looping opportunities that occur across sample-rate changes. Our approach involved con

structing thesubgraph hierarchy in a pairwise fashion byconsolidating exactly two nodes at each

step. Our subgraph selection was based on frequency of occurrence —we selected the pair of

adjacent nodes whose associated subgraph had the largest invocation count. By not discriminating
against sample-rate boundaries, our approach exposed looping more thoroughly than How's

scheme. Furthermore, by selecting subgraphs based on repetition rate, we reduced data memory
requirements, an aspect that How's scheme did not consider.

Consolidating a subgraph must be done with care since certain groupings cause deadlock.

For example, combining C and Din figure 2 results in a graph for which no periodic schedule

*Y7V-5-^0
Fig 1. An example that illustrates the benefits of consolidating uniform sample-rate sub
graphs. Each arc isannotated with thenumber ofsamples produced byits source and the
number of samplesconsumed by itssink. The "D" designates a unit delay

Fig 2.Anexample of howconsolidating a subgraph in an SDF graph can result indeadlock.
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existsbecause the grouping "hides" acritical delay. Similarly, deadlock canbe introduced whena

grouping encapsulates asource actor. Thus, for each candidate subgraph, wemust first verify that

its consolidation does not result in an unschedulable graph. One way to perform this check is to

attempt to schedule thenew SDF graph [13], however this approach is extremely time consuming

if a large number of consolidations must be considered. In [3], we employed a computationally

moreefficientmethodin whichwe maintained the subgraph hierarchy on the acyclic precedence

graph rather than the SDF graph. Thus we could verify whether or not a grouping introduced

deadlock by checking whether or not it introduced a cycle in the precedence graph. Furthermore,

we showed that this check can be performed quickly by applying a reachability matrix, which

indicates for any two precedence graph nodes (invocations) P^ and P2, whether there is a prece

dence path from P1 to P2.

Two limitations surfaced in the approach of [3]. First, the storage cost of the reachability

matrix proved prohibitive for multirate applications involving very large sample rate changes.

Observe that this costis quadratic in the number of distinct actor invocations (precedence graph

nodes). For example, arasterization actor that decomposes animage into component pixelsoften

involves a sample-rate change onthe order of 250000 to 1. If therasterization output is connected

to an actor that consumes only one token perinvocation (forexample,a gamma level correction),

this actor alone will produce on the order of (250000)2 =6.25X1010 entries in the reachability

matrix! Thus very large rate changes preclude straightforward application of the reachability

matrix; this is unfortunate because looping is most importantprecisely for such cases. The second

limitation in [3] is its failure to process cyclic paths in the graph optimally. Since cyclic paths

limit looping, first priority should be given to preserving the full amount of looping available

within the strongly connected components [1] of the graph. As figure 3 illustrates, this goal can

conflict with consolidating subgraphs basedon repetitioncount.

In this paper, we develop an efficient method for extracting the most compact looping

structure from the cyclic paths in the SDFgraph. This technique is based on a topological quality

that we call"loose interdependence". We show that for SDF graphs that are loosely interdepen

dent, our method is optimal. Interestingly and fortunately, a large majority of practical SDF

graphs seem to fall into this category. Furthermore, forthis class of graphs, ouralgorithm does not
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require use of the reachability matrix, or any otherunreasonably large data structure. For graphs

that are not loosely interdependent, we show that our algorithm naturally isolates the minimal

subgraphs whichrequire special care. Onlywhenanalyzing these "tightly interdependent compo

nents", do we need to apply reachability matrix-based analysis, or some other explicit deadlock-

detection scheme. We emphasize that the techniques developed in this paper extend the develop

ments of [3] by improving the analysis of cyclic subgraphs. In particular, ourearlier method still

applies to acyclic subgraphs for organizing looping while keeping buffering requirements low.

However, when it is used only for acyclic graphs, deadlock is not an issue, and the reachability

matrix is no longer required.

Because we focus on the fundamental limits of looping, the methods developed in this

paper cannot be directly applied to the general parallel processing case. However, we believethat

these techniques will be helpful to understanding problems that combine parallelization and loop

ing objectives, and we are currently investigating such problems. The techniques ofthis paper do

apply to target systems that exploit instruction-level parallelism, such as superscalar and pipelined
architectures.

10D

(a) (b) (o)

Fig 3.This example illustrates how consolidating subgraphs based onrepetition count alone can
conceal looping opportunities that occur within cyclic paths. Part (a) depicts a multirate SDF
graph. Two pain/vise subgraphs exist — {A, B), having repetition count 2,and {A, C}, having rep
etition count 5.Consolidating thesubgraph with thehighest repetition count yields the hierarchi-
cal topology in (b), for which the most compact schedule is (2B)(2rAr)BrArB(2rAr)
(2B)(2(2A)C)B(2A)CB(2(2A)C). Consolidating the subgraph {A,B} of lower repelFtion rate,
depicted in part (c), yields the more compact schedule (2TAB)(5C) =* (2(2B)(5A))(5C).

SINGLE APPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS
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An SDF program is normally translated into a loop, whereeach iteration of the loop exe

cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop

erties of periodic schedules.

For an SDF graph G, we denote the set of nodes in G by N(G). If G' is a subgraph of G,

then we can obtain another subgraph of G by removing from G all nodes in G" and all arcs that

have one or both endpoints in G'. We call this subgraph the complement of G' in G, and we denote

it by G - G\ Also, if Ns <= N(G), then we write 5(NS, G) to denote the subgraph induced by Ns in

G. For an SDF arc a, we let "source(ct)" and "sink(cc)" denote the nodes at the source and sink of

a; we let "p(a)" denote the number of samples produced by source(cc), "c(ct)" denote the number

of samples consumed by sink(ct), and we denote the delay on a by "delay(a)". Finally, if x and y

are two nodes in and SDF graph, we say that x is a successor of y if there is an arc directed from

y to*, and we say that x is a predecessor of y if y is a successor of*.

We can think of each arc in G as having a FIFO queue that buffers the tokens that pass

through the arc. Each FIFO contains an initial number of samples equal to the delay on the associ

ated arc. Firing a node in G corresponds to removing c(ct) tokens from the head of the FIFO for

each input arc a, and appending p(P) tokens to the FIFO for each output arc (3. After a sequence of

0 or more firings, we say that a node isfireable if there are enough tokens on each input FIFO to

fire the node. An admissible sequential schedule ("sequential" is used to distinguish this type of

schedule from a parallel schedule) for G is a finite sequence S-| S2 ... Sn of nodes in G such that

each Sj is fireable immediately after S-j, S2, ..., SM have fired in succession. If some Sj is not fire-

able immediately after its antecedents, then the schedule is not admissable, and we say that the

schedule deadlocks just prior to Sj. Finally, we say that an admissible sequential schedule S is a

periodic admissible sequential schedule (PASS) if it invokes each node at least once, and it pro

duces no net change in the number of tokens on a FIFO — for each arc a, (the number of times

source(a) is fired in S) x p(ct) = (the number of times sink(a) is fired in S) x c(a). We will use the

term valid schedule to describe a schedule that is a PASS.

BACKGROUND
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For a givenperiodicschedule, we denote the ithfiring, or invocation, of actorN by Nj, and

if/is a firing in some schedule, we denote the actor associated with/by actor(/) (e.g. actor(Nj) =

N).

In [13], it is shown that for each SDF graph G that has a PASS, there is a mapping

qG : NQ -> {1,2,3,...} such thatevery PASS for Ginvokes each node na multiple ofqG(/i) times.

More specifically, corresponding to each PASS S, there is a positive integer / called theblocking

factor ofS,such that S invokes each n GN(G) exactly /qG(n) times. We call this mapping qG the

repetitions vector of G. Thefollowing properties ofrepetitions vectors areproved in [13]:

Fact 1:The components ofarepetitions vector are collectively coprime.

Fact 2: If S is an admissible schedule for G, and there is a positive integer / such that S invokes
each n € N(G) exactly JqQ(n) times, then S is a PASS.

Fact 3:For each arc a inG,qQ(source(a)) x p(a) =qG(sink(a)) x c(a).

We will alsouse the following property, which is derived in [4]:

Fact 4: If G8 is a subgraph of G, and n is a node in G8, then kqGg(n) =qG(/i), where k=
gcd{qG(m)|me#(G8)}.

For our hierarchical scheduling approach, we will apply the concept ofconsolidating a
subgraph, which was introduced in [12]. This process is illustrated in figure 3. Here the subgraph
{A, C} of (a) is consolidated into the hierarchical node rAC, and the resulting SDF graph is shown
in(b). Similarly, consolidating subgraph {A, B} results in the graph of (c). Each input arc a to a
consolidated subgraph T is replaced by an arc a' having p(oc') = p(a), and c(a') = c(a) x
qr(sink(a)), the number of samples consumed from a in one invocation ofsubgraph T. Similarly
we replace each output arc Pwith p' such that c(P') =c(P), and p(p') =p(p) x qr(source(P)). The
following property ofconsolidated subgraphs is proven in [4].

SINGLE APPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS 7 off 30
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Fact 5: Suppose G is an SDF graph, G' is the SDF graph thatresults from consolidating a con

nected subgraph F of G, S is a PASS forG', andSr is a pass for T. Thenreplacing eachappearance

of r in S with Sr results in a PASS for G.

The possibility of a self-loop, an arc whose source node is the same as its sink, introduces

minor technical complications in our development. However, without loss of generality, we can

assume that self-loops do not exist, and doing so, we can formulate our results more concisely.

This assumption is valid because a self-loop either introduces deadlock or imposes no sequencing

constraints on the construction of a PASS.

Unless otherwise stated, we assume that an SDF graph contains no self-loops. For exam

ple, when we say "Let G be an SDF graph ...", we mean "Let G be an SDF graph with all self-

loops removed ...". From an implementation standpoint, this means that the input SDF graph is

first preprocessed to remove all self -loops, which, as discussed above, does not affect the subse

quent scheduling process. An important consequence of our assumption is that every strongly

connected subgraph contains at least two nodes.

3 SINGLE APPEARANCE SCHEDULES

To determine the limits of looping for a general SDF graph, we have found it instructive to

determine the topological conditions required for a the existence of a looped schedule that con

tains only a single appearance for each actor. We refer to such a schedule as a single appear

ance schedule. For example, the schedule CA(2B)C for figure 1 is not a single appearance

schedule since C appears twice. Thus, either C must be implemented with a subroutine, or we

must insert two versions of C's code block into program memory. In the schedule A(2CB) how

ever, no actor appears more than once, so it is a single appearance schedule, and it translates into

the most compact program for the given SDF graph.

Since single appearance schedules implement the full repetition inherent in an SDF graph

without requiring subroutines or code duplication, we examine the topological conditions

required for such a schedule to exist. First suppose that G is an acyclic SDF graph containing N
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nodes. Then we can take some root node r^ of G and fire all qQ^) invocations of r-j in succession.

Afterall invocations of r>| have fired, we canremove ^ from G, picka root noder2of the new acy

clic graph, and schedule its qo(r2) repetitions in succession. Clearly, we can repeat this process

untilno nodes are left to obtain thesingle appearance schedule (qafa) r^ (qQ(r2) r2)... (qaM rN)

for G. Thus we see that any acyclic graph has a single appearanceschedule.

Also, observe thatif G is an arbitrary SDF graph, then we canconsolidate the subgraphs

associated with each strongly connected component of G. Consolidating a strongly connected

component into a single block never results in deadlock since there can be no directed loop con

taining the consolidated block. Since consolidating connected components yields an acyclic

graph, it follows from fact 5 that G has a valid single appearance schedule if and only if each

strongly connected component hasa valid singleappearance schedule.

Observe that we must, in general, analyze a strongly connected component G0 as a sepa

rate entity, since G may have a single appearance schedule even if there is a node n in G0 for

which we cannot fire all qQ[/i] invocations insuccession.The key is that qG may be less than qQ,

so we may be able to generate a single appearance subschedule for G0 (e.g. we may be able to

schedule n qGe(n) times insuccession). Since we can schedule Gso that G0's subschedule appears

only once, this will translate toa single appearance schedule for G. For example, in figure 3,it is

can beverified thatqG(A) = 10and qG(B) = 4; butso many invocations of A or B cannot be fired

in succession. However, consider the strongly connected component r^ consisting ofnodes A

and B. Then we obtain qr,fl(A) =5 and qr^CB) =2, and we immediately see that qj (B) invoca
tions ofBcan be scheduled insuccession to obtain asubschedule for TAB. This leads to the single
appearance schedulegivenin the captionof figure 3.

In this section, we develop important properties ofsingle appearance schedules. Insection

4, we will use these properties to develop our looping techniques and prove their optimality ofour
looping techniques. We begin with a lemma. The terminology introduced in this lemma will be

use throughout the rest of this section.

Lemma 1:Suppose that Gis anSDF graph, S is a valid looped schedule for G, and L is a sched

ule loop within S. Let A(L) denote the set ofactors that appear in L, and letM be any maximal

SINGLE APPEARANCE SCHEDULESFORSYNCHRONOUS DATAFLOW PROGRAMS 9 of 30
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connected subset of A(L) (the subgraph associated with M is connected and no node in A(L) - M

is adjacent to a node in M). Remove from L all actors that are not in M, remove any empty loops

that result, and call the resulting schedule loop 1^ — we call 1^ the restriction of the schedule

loop L to theset ofactors M. Similarly, let L2denote the restriction of L to A(L) - M. Finally, let

S' denote the schedule obtained by replacing L in S with 1^ L2. Then Sf is a valid schedule for G.

For example, suppose that G is the SDF graph in Figure 4, and suppose we are given the

schedule S = M(3Y(2AB)CZ) for G. Let L denote the outer loop in this schedule, (3Y(2AB)CZ).

Then M^ = {A, B, C} and M2 = {Y, Z} are two maximal connected subgraphs that partition A(L).

Now we remove the members of M^ from L to obtain (3Y(2)Z), and from this we remove the

empty loop "(2)" to obtain 1^ = (3YZ). Similarly, we remove Y and Z from L to obtain L^ =

(3(2AB)C). Lemma 1 states that if M(3Y(2AB)CZ) is a valid schedule for the graph in figure 4,

then so are M(3YZ)(3(2AB)C) and M(3(2AB)C)(3YZ).

Proofoflemma 1: Suppose that S' deadlocks just prior to some invocation i of actor X. If

we define P(x, y, s) to be the number of firings of actor x that precede invocation y in schedule/

subschedule s, then clearly there exists an arc a such that

(1) sink(a) =Xj and P(source(a), Xj,S') < P(source(a), Xj, S).

Now the sequence of invocations fired in S can be divided into (si li s2 12 ... In sN+1),

where lj is the sequence of firings associated with the ith invocation of loop L, and s-, is the

Fig 4. An illustration of lemma 1. Note that the repetition counts for A B, C, M, X,
Y are respectively 6,6,3,1,3,3.
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sequence of firings betweenthe (i -l)th and ith invocations of L. Since S' is derived by rearrang

ing the firings in L, we can express it similarly as fo V s212 ... 1N' sN+1), where Vcorresponds to

the zth invocation of (L( L£ in S\

Now, the firing sequence generated by L| (or L2) is simply the firing sequence generated

by L with the invocations associated with nodes in A(L^) (or A(L2)) removed. Thus,

(2) P(N,/, S) = P(N,/, S') if (N, actor(/) GA^)) or (N, actortf) GA(L2)).

Also, the number of firings of each actor in 1/ is thesameas the corresponding number in

lj,SO

(3) for i = 1,2,..., N+l and for any node NinG,/G Sj => P(N,/, S)=P(N,/, S'); and

(4) for/= 1,2,..., Nand for any node NC A(L),/G lj =>P(N,/, S) =P(N,/, S').

Itfollows from (1) and (3) that S' can not deadlock in an st; i.e. Xj G1/ for somey, and then
from (4) it follows that source(cc) GA(L). Then P(source(a), Xh 1/) <P(source(a), Xj, lj), so from
(2), either source(a) G A(L^) and X G A(L;>), or source(a) G A(L2) and X G AO-m). Le. either

source(a) GA(L) - Mand XGMor source(cc) GMand XGA(L) - M. Since Misa maximally

connected subset of A(L), this contradicts the adjacency of source(oc) and X = sink(ct). Thus our

assumption that S' deadlocks cannot hold. QED.

Repeated application of lemma 1 to each maximally connected subgraph immediately
yields the following consequence.

Corollary 1: Suppose that G is an SDF graph, S is a valid looped schedule for G and L is a

schedule loop in S. Let M^ M2, ..., Mn denote the set of maximally connected subgraphs of
5(A(L), G), and for i = 1, 2, ..., n, let Lj denote the restriction of L to Mj. Then the schedule

obtained byreplacing L in S with 1^ 1^ ... L„is a valid schedule for G.

Definition 1: We define the nesting degree ofa schedule loop L, denoted ND(L), to be the

maximum loop nesting depth within L. To beprecise, ND(L) = 1if no loops are nested within L;

otherwise, ND(L) = 1+max{ND(Ll) |L'is a loop that isnested within L}. Similarly we define the

SINGLEAPPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS 11 of 30
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nesting degree ofa looped schedule S, denoted ND(S), to be zero ifScontains no schedule loops;
if S contains at least one schedule loop the we define ND(S) to be max{ND(L) | L is a schedule

loop in S} —in other words ND(S) is the maximum nesting degree over all loops inS,which is

equivalent tothe maximum nesting degree over all outermost loops inS. For example, the sched

ule loop (3 AB(2BC)D(2A(2B))) has nesting degree 3,and the looped schedule AB(2C(3A)B)C
has nesting degree 2.

Definition 2: Let Sbe a looped schedule or asubschedule for an SDF graph G. We say that S is
regular if for every schedule loop LinS,A(L) forms aconnected subgraph ofG. Ifnis a nonne-

gative integer, wesay thatS is n-regular if for every loop LinS whose nesting degree is less than

/i,A(L) is connected. Thus, S is regular <=> S is (ND(S) + l)-regular.

Definition 3: LetS be a looped schedule for anSDF graph G and letn bea node in G, then we

define #appearances(/i, S)tobe the number oftimes that nappears inS. For example, #appearanc-

es(C, CA(2B)C) = 2, and S is a single appearance schedule <=> #appearances(n, S)= 1Vn.

Lemma 2: Suppose that Gisan SDF graph and suppose that there exists avalid »-regular looped
schedule S for G. If S is not regular then there exists an (n + l)-regular valid looped schedule S*

for G such that ND(S') = ND(S), and for every actor m in G, #appearances(m, S') =
#appearances(m, S).

Note thatit is trivial toconstruct an (n + l)-regular S' if we donotrequire ND(S')=ND(S).

We candothis simply byreplacing each loop Xofnesting degree nby the loop (1 X). To increase

the "degree of regularity" without constructing a more deeply nested schedule, we repeatedly
apply lemma 1.

Proofof Lemma 2: Let co denote the schedule loops in S thatare not associated withconnected

subgraphs of G and whose nesting degree is n: co = {X | ND(K) = n and A(k) is notconnected}.

From corollary 1, we can replace each schedule loop X G©by a sequence ofloops X1t X2, ...,

XN , where each A(Xj) forms a maximal connected subgraph ofA(X), and each Xj is the restric
tion of X to A(Xj).
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Now suppose that L is a loop properly contained in some Xj (Xj contains L butXj * L).

Then L is therestriction to AQQ of some L' nested within X. Since this U is nested in X, ND(L')

<ND(X) = /*, so from the/i-regularity ofS, weknow that A(L*) is connected. Since A(Xj) forms a

maximally connected subgraph of A(X) andA(L') forms a connected subgraph of A(X), it follows

that A(L') c A(Xj), and thus L' = L, which implies that A(L) is connected.

Since each A(Xj) is connected, and each loop L properly contained in Xj has the property

that A(L) is connected, it follows that each subschedule X^ X2 ... XN is regular. Furthermore
X

ND(Xj) = ND(X), so replacing X by X, X2... XN does not increase the nesting degree of the

overall schedule. We conclude that by replacing each XGoo inSwith X^ X2... XN , we obtain an
X

(n+ l)-regular schedule S' such that ND(S') = ND(S).

Finally, since Xj is the restriction ofX to A(Xj), and since AP^), A(X2), ..., A(XN ) are

disjoint, each actorin A(X) appears in exactly oneXj, andit appears the samenumber of times in

that Xjas it appears in X. Thus each actor appears the samenumberof times in S' as it does in S.

QED.

We will apply the following extension of lemma 2.

Corollary 2: Suppose that there exists a valid single appearance schedule for G. Then there

exists a validsingle appearance schedule forG thatis regular.

Proof: LetS bea valid single appearance schedule for Gand letn=ND(S). Sis trivially 1-regular,

so if n=0, we are done. Otherwise, repeated application of lemma 2 guarantees the existence of

valid single appearance schedule with nesting degree n that are 1-regular, 2-regular,..., (n + 1)-

regular. In particular, there exists a valid single appearance schedule S' such thatND(S') = n, and

S' is (n + l)-regular =»S' is regular. QED.

Lemma 3:Suppose that Sis an admissible single appearance schedule for Gand suppose that L

= (M (Ni Si) (N2 S^ ... (Nm Sm)) is a schedule loop within S (ofany nesting depth) such that each

A(Sj) forms a connected subgraph Gj ofG. Let y= gcd(N1, N2,..., Nm), and letU denote the loop

CyM (y1Ni SO (y"1N2 S<>) ... (y 1Nm)). Then replacing L with U in S results in an admissible
schedule for G.
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Proof. Suppose S has blocking factor k. Clearly, each Sj is a PASS of some blocking factor Vj for

Gj, and we have

(5) VjcG A(Sj),MxNjXVjXqGcx)=fcxqG(x)

Let S' denote the looped schedule obtained by replacing L with L' andsuppose that S' deadlocks

just prior to invocation r of actorX. Since L and L' invoke each actor the same number of times,

we have V Y G N(G), and for any invocation I fired outside of L in S, P(Y, I, S) =P(Y, I, S'). Thus

X G A(L) = A(L'); i.e. X G //(GJ, for some a G {1, 2,... m}. Also, for any actor Z £ A(L), we

have P(Z, Xp S) = P(Z, Xp S'). Thus there exists a predecessor X1 GA(L) of X, and an arc 6

directed from X' to X such that in S\ delay(0) +(the total number ofsamples produced onto 0 by

X prior to Xr) < (the total number of samples consumed from 0 by the first r invocations ofX).

Since each Sj is an admissible schedule for the associated Gj, X' cannot bein Ga. So X' GN(Gb), b

* a. The graphical relationship between X and X' is illustrated in figure 5.

Nowlet R denote the total number of invocations of the loop (Na SJ that have completed

prior to the rth invocation ofX (R =floor((r -1) / (Na x qG (X) x vj). Then, if (a >b) —i. e. Sb
a

lexically precedes Sa — we have

delay(0) +(R +1) x y1Nb x qG (x«) x vb x p(0) <(R+l) x y1Na x qG (X) xva xc(0)
b wa

=>Nbx qG (x«) xvbxp(0) <Nax qG (X) xvaxc(0).

Multiplying both sides by M and applying (5) gives:

Fig 5. An illustration of X, X', and 6 inthe proof of lemma3.
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kx qGpc) x p(0) <kx qG(x> x c(0)

=> qG(x-) xp(0) * qG(x) xc(0),

which contradicts fact 3.

On the other hand, if (a < b), then

delay(0) +Rxy1Nb x qG qc) xvb xp(0) <(R+l) xy1Na x qG (X) xva xc(0).
b wa

Multiplying both sides by yM, applying (5) and the balance equation qG(x*) xp(0) =qG(x) xc(0)
(fact 3) gives

yx delay(0) < Na x qG (X) x vax c(0).
a

Since y^ 1, this implies that

delay(0) < Na x qG (X) x vax c(0).
a

Now, theright side of this inequality is the number of samples that X consumes from 0 in each

invocation ofthe loop (Na SJ. Since a <b—(Na SJ lexically precedes (Nb Sb) —it follows that

S will deadlock before completing the first invocation of(Na SJ. This contradicts our assumption
that S is an admissible schedule. QED

Wewill apply the following consequence of lemma3.

Corollary 3: Assume the same hypotheses as in lemma 3 with the additional assumption that
each Sj has blocking factor 1with respect to the associated Gj. Then there exists a looped schedule

of the form (M S*), where S* is asingle appearance schedule of unity blockingfactor for u g;
such that replacing Lwith (M* S*) in Sresults in another valid single appearance schedule for G.

Proof. From lemma 3, replacing Lwith (yM (y% SO (y 1N2 S2)... (f1NmSm)) gives an admissi

ble schedule for G. Thus S' =(y% S^ (y 1N2 S£ ... (y1NmSJ is PASS for u o,. Let zdenote
theblocking factor forS' and suppose that z> 1. Foreach node x in G, letp(x) denote thenumber

oftimes x is invoked in one period ofS'. Then clearly p(x) =zqQ(;c), Vx € W(G). Since each S{ has

blocking factor 1, we also have
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(6) for; =1,2,... m,x£ A(Sj) =>p(x) =y'% qG(X).
j

Now since gcdiy1^, y_1N2, ....y1^} =1,3/such that zdoes not divide y1^. Then from
(6), there exists a nontrivial factor ofz that divides qG (X) —i.e. there exists aninteger z'> 1such

i

that z' divides z, and z' divides every component of qG (X). But this contradicts fact 1. Thus our
i

assumption thatz > 1cannothold, andweconclude thatS' is a vahdsingle appearance schedule of
m

blocking factor 1for u Q,. Furthermore, replacing L with (yM. S') gives a valid single appearance
/• i

schedule for G.QED.

Corollary 3 shows that we can replace several looped unit blocking factor subschedules

with a loop across a single unit blocking factorsubschedule. Starting at the innermost loops, and

repeatedly applying corollary 3, we can show that from any valid single appearance schedule, we

can generate a valid single appearance schedule of unit blocking factor. The following definition

helps to prove this result concisely.

Definition4: By a simple loop, wemean a schedule loop of theform (NA),where Ais an actor

appearance. Forexample (3 (2AB(3C))(2D)) contains two simple loops — (3C) and(2D). We say

thata looped schedule is simple if every actor appearance is surrounded bya simple loop.

Theorem 1: Suppose that G is a connected SDF graph that has a valid single appearance sched

ule (ofarbitrary blocking factor). Then G has a valid single appearance schedule of blocking fac

tor 1.

Proof. Suppose that S0 is a valid single appearance schedule of arbitrary blocking factor for G.

From corollary 2, there exists a valid single appearance schedule Si of the same blocking factor

thatis regular (each loop spans a connected subset of nodes). Substituting eachactor appearance

A in Si with (1 A) preserves regularity and does not change the firing sequence. Thus, without

loss of generality, wecanassume thatS^ is simple. Let1^ beaninnermost non-simple loop of (1

Si) (If all loops in (1 SO are simple, then (1 SO is a simple loop => G contains only one node,

which trivially yields the desired result). Then 1^ has the form (Mi (Ni ZO (N2 Zg)... (Nm ZJ),

where each Zj is a node in G. Each "Zj" is clearly a valid single appearance schedule for 5({Zj},

G), thesubgraph associated withthesingle node {Zj}. Thus wecanapply corollary 3 to substitute
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Li with (M/ TO, where T| is a valid singleappearance schedule of blocking factor 1 forS(A(LO,

G).

Let S2 denote the schedule that results from replacing L, with (M^ TO in (1 SO- Since S-,

is regular, 5(A(M'1 TO, G) =S(A(L0, G) is connected, so S2 is regular; also, corollary 3 guaran

tees that S2 is avalidsingle appearance schedule for G. Now from S2 select a schedule loop L2 =

(M2 Z^ Z^ ... Z^rrg) such that for each i, Z^j is either asimple loop, orZ^j =(M'i TO- Then S2,

L2 satisfy the hypotheses of corollary 3, so we can substitute 1^ by some (M'2 T^, where T2 is a

valid single appearance schedule of blocking factor 1 for 5(A(L2), G). LetS3 denote the resulting

schedule. Then corollary 3 and the regularity of S2 guarantee that S3 is a valid regular single

appearance schedule G.

Clearly we can repeat this process until wehave visited all non simple loops in (1 Si). At

step k, we select aschedule loop Lk =(Mk LM L^ ... L^ from Sk such that each L^ is either a

simple loop or I^j e {(MJ TO, (M2' T^),..., (MM' TM)}, and we apply corollary 3 and the regu

larity of Sk to obtain a replacement (Mk T^ for Lk, such that Tk has blocking factor 1. This

replacement yieldsavalidregular single appearance schedule Sk+1.

After some number R steps, we will have consolidated all loops in (1 SO into (M^ T^'s.

Thus SR =(M*R Tr) is avalid single appearance schedule for G, and TR is aunit blocking factor

schedule for S(A(Tr), G). But5(A(TR), G) =S(A(M'R Tr), G) =5(A(1 Si),G) =S(N(G), G) =G.

SoTR is avalid single appearance schedule for G that has blocking factor 1. QED

Clearly, any schedule S of unityblocking factor can be converted into a schedule of arbi

trary blocking factor k simply by encapsulating S inside aloop of k iterations. Thus from theorem

1, we can conclude that given an SDF graph G, and given a positive integer k, a valid single
appearance schedule of blocking factor kexists for Gif and only if valid single appearance sched

ules exist for all blocking factors.

We introduce the following terminology to develop the precise condition required for a

strongly connected graph to have asingle appearance schedule. Recall that a general SDF graph

has a single appearance schedule if and only if each strongly connected component has a single
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appearance schedule, so the condition for a stronglyconnected SDF graph specifies the condition

for a general SDF graph.

Definition 5: Suppose thatG is a strongly connected SDF graph. Ifx andy are nodes in G andx

is a successor ofy, then we say thatjc is subindependent ofy inG if for everyarc a directed from

y to xy we have delay(cc) ^ c(cc) x qQ(x). Alsowe say that a properand nonempty subgraphG8 of

G is subindependent in G if G8 is connected and for every nodex in G that is a successor of a node

y in G - G8, x is subindependent of y in G (we often drop the "in G" qualification if G is under

stood from context). In other words G8 is subindependent if no samples produced outside of G8

are consumed from G8 in the same schedule period. If Gi and G2 partition G and Gi is subinde

pendent, we say that Gi is subindependent o/G2 in G, and we denote this by "Gi |G G2", or "Gi |

G2", if G is understood.

We are now ready to establish a recursive condition for the existence of a single appear

ance schedule.

Theorem 2: Suppose thatG is a strongly connected SDFgraph thatcontains more thanonenode.

Then G has a single appearance schedule if and only if

(1) G contains a subindependent subgraph GQ; and

(2) G8 and (G - G8) both have asingle appearance schedules.1

Proof. <= Let Si and S2denote singleappearance schedules for G8 and G - G8 respectively.

From theorem 1, we can assume without loss of generality thatSi and S2 both have unit blocking

factor. Let Ri = gcd{qG(«) |n € G8}, let R2=gcd{qQ(/i) | n € G- G8}, andlet SR denotethe looped

schedule (Ri Si) (R2 S2). Then from fact 4, it follows that SR invokeseach node n € N(G) exactly

qQ(n) times, and from the subindependence of G8, SRis an admissible schedule for G. Applying

fact 2, we conclude that SR is a PASS, and henceit is a valid singleappearance schedule.

=>Suppose that S is a single appearance schedule for G. Again, from theorem 1, we

can assume without loss of generality that S has blocking factor 1. Then S can be expressed as

SaSb, where Sa and Sb are nonempty single appearance subschedules of S that are not encom-

1. Note that (G —Gg) is not necessarilyconnected.
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passed by a loop (ifwe could represent S as asingle loop (N (...) (...) ...(...)) then gcd{qG(x) | x

e G} ^ N, so S is not of unity blocking factor — a contradiction). Furthermore, repeatedly apply

ing corollary 1, we can separate subschedule Sa into a succession T-,T2 ... Tm of one or more sin

gle appearance subschedules, where the set of nodes involved in each Tj form a connected

subgraph Mj and each distinct pair Mif Mj is not connected. Thus T^T2 ... TmSb is a valid single

appearance schedule for G. In this schedule, every actorx that appears in T-| is fired q&(x) times

beforeany node outside of M-j is invoked. It follows that M-, is subindependent of G - Mi. Also T-i

is a singleappearance schedule for M1 andT2T3 ... TmSb is a single appearance for G - M^. QED.

In the following section, we will use this theorem to decompose strongly connected com

ponents in a manner thatpreserves the looping structure inherent in theSDFgraph.

4 LOOSE INTERDEPENDENCE

Theorem 2 implies that for an SDF graph to have a single appearance schedule, we must

be able to decompose it into two subgraphs, one of which is subindependent of the other. In this

section we show how this topological property and its converse can be used to generate compact

looped schedules. We begin with a definition.

Definition 6: Suppose that G is a strongly connected SDF graph. Then we say that Gis loosely

interdependent ifGcan be partitioned into subgraphs G^ and G2 such that G-\ |G G2. We say that

G is tightly interdependent if it is not loosely interdependent.

The properties of loose/tight interdependence are important for organizing loops because,

as we will show, the existence of a single appearance schedule is equivalent to the absence of a

tightly interdependent subgraph. However, these properties can be used even when tightly inter

dependent subgraphs are present. The following definition specifies how to use loose interdepen

dence to guide the looping process. The remainder of this paper is devoted mainly to

demonstrating the effectiveness of this approach.
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Definition 7: Let A^ be any algorithm that takes as input a strongly connected SDF graph G,

determines whether Gis loosely interdependent, and if so, finds a subindependent subgraph inG.

Let A2 be any algorithm that finds the strongly connected components ofa directed graph. Let A3

be any algorithm that takes an acyclic SDF graph and generates a valid single appearance sched

ule. Finally, let A4 be any algorithm that takes as input a tightly interdependent SDF graph that

hasa PASS, and generates a valid looped schedule of blocking factor 1 for thatgraph. We define

the algorithm L^, A2, A3, A4)as follows:

Input: an SDF graph G that has a PASS.
Output: a valid unit-blocking-factor looped schedule SL(G)
for G.

Step 1: Use A2 to determine the strongly connected components
G-j/ G2, ...r G8 of G.

Step2: Consolidate G1f G2, ..., G8 into subgraphs, and call the
resulting graph Gf. This is an acyclic graph.
Step3: Apply A3 to G'/ denote the resulting schedule S'(G).
Step 4:

for i' = l, 2, ..., s
Apply A! to Gj;

If subgraphs X=X(Gj), r=7(Gj) are found such that XLF,
then

•Recursively apply algorithm L to subgraph X; the
resulting schedule is denoted SL(X).
•Recursively apply algorithm L to subgraph Y; the
resulting schedule is denoted SL(7) .
•Let rx = qcd{qQ(n)\n€.N(X) }.
•Let ry= gcd{qQ(n)|w€iV(r) }.
•Replace the (single) appearance of Gj in Sf (G)
with <rx SL(X)) (ry S^F))1.

else (Gj is tightly interdependent)
•Apply A4 to obtain a valid schedule Sj for Gj.
•Replace the single appearance of Gj in S with Sj.

end-lf

end-for

The for-loop replaces each WG," in S?(G) with a valid
looped schedule for Gj. From repeated application of fact 5,
we know that these replacements yield a valid looped sched
ule SL for G. We output SL.B

1. It follows from fact 4 and thedefinition of loose interdependence that this is aPASS for Gj.
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Remark 1: Observe that step 4 does not insert or delete appearances of actors that are not

contained in a stronglyconnected component Gj. SinceA3 generates a single appearance schedule

for G\ we have thatfor every node n thatis notcontained in a strongly connected component of

G, #appearances(«, SL(G)) = 1.

Remark 2: If C is a strongly connected component of G andm€ N(C), thensinceSL(G) is

derived from S'(G) byreplacing the single appearance of each strongly connected component Q

withSL(Gj), we have#appearances(m, SL(G)) =#appearances(m, SL(Q).

Remark 3: For each strongly connected component Gj that is loosely interdependent, L

partitions Gj into Xand Ysuch that X\ QY, and replaces the single appearance ofGj in S'(G) with S*

= (rx SL(X)) (ry SL(7)). If m€ N(X), then m£ N(Y), so#appearances(m, S*) = #appearances(m,

SL(X)). Also since mcannot be in any other strongly connected component besides Gj, and since

S'(G) is a single appearance schedule, we have #appearances(m, SL(G)) = #appearances(m, S*).

Thus, m€ N(X) => #appearances(m, SL(G)) =#appearances(m, SL(X)). By the same argument, we

canshow that m€ N(Y) => #appearances(m, SL(G)) =#appearances(m, SL(Y)).

L(#» •» •» •) defines a family ofalgorithms, which we call loose interdependence algo

rithms because they exploit loose interdependence to decompose the input SDF graph. Since
nested recursive calls decompose a graph into finer and finer strongly connected components, it is

easy to verify that any loose interdependence algorithm always terminates. Each loose interdepen

dence algorithm X=L(Ai, A2, A3, A*) involves the "sub-algorithms" Au A2, A3, and A* which

we call, respectively, the subindependence partitioning algorithm ofk, the strongly connected
components algorithm ofX, the acyclic scheduling algorithm ofX, and the tight scheduling algo
rithm ofX.

We will apply a loose interdependence algorithm to derive a nonrecursive necessary and

sufficient condition for theexistence of a single appearance schedule. First, we need to introduce

two lemmas.
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Lemma 4:Suppose Gis an SDF graph; nisa node inGthat is not contained inany tightly inter

dependent subgraph ofG; and Xis a loose interdependence algorithm. Then n appears only once
in SX(G), the schedulegeneratedby X.

Proof. From remark 1, if n is notcontained in a strongly connected component of G, theresult is

obvious, sowe assume, without loss ofgeneraUty, that nisinsome strongly connected component

Hi ofG. From our assumptions, Hi must beloosely interdependent, soXpartitions Hi intoX(Hi)

and Y(Hi\ where X(HJ |H( Y(JH,J.LetIV denote that member of(X(Hi), Y(H,)} that contains n.
Fromremark 3, #appearances(/2, SX(G)) =#appearances(«, S^W)).

From our assumptions, all strongly connected components of H/ are loosely interdepen

dent. Thus,if nis contained in a strongly connected component H2 of H/, thenXwillpartition H2,

andwe willobtain a proper subgraph H2 of H^ such that#appearances(n, S^H/)) = #appearanc-

es(«, SX(H2)). Continuing in this manner, we get a sequence H^, H2\ ... of subgraphs such that

each Hj' is a proper subgraph of HjV, n is in each Hj\ and #appearances(/i, SX(G)) =

#appearances(w, S^')) =#appearances(/i, SX(H2')) =.... Since each Hj' is a strict subgraph ofits

predecessor, we can continuethis process onlya finite number, say m, of times. Thenn is not con

tained in a strongly connected component of H^, and #appearances(n, SX(G)) = #appearances(n,

Sx(Hm')). But from remark 1,Sx(Hm') contains only one appearance of n. QED.

Lemma5: Suppose that Gis a strongly connected SDF graph, Pisa subindependent subgraph in

G, and C is a strongly connected subgraph of G suchthatC n P * C and C n P * 0. ThenC n P

is subindependent in C.

Proof. Suppose thata is anarc directed from anode inCn (G- P)toa node in Cn P. Bythe sub-

independence of P in G, delay(cc) £ c(cc) x qQ(sink(ct)), and by fact 4, qQ(sink(ot)) £ qc(sink(oc)).

Thus, delay(oc) £ c(a) x qc(sink(a)). Since this holds for any a directed from C n (G - P) to

C n P, we conclude that C n P is subindependent in C.QED.

Corollary 4: Suppose that Gis a strongly connected SDF graph, Gi and G2 are subgraphs such

that Gi |Q G2, and T is a tightly interdependent subgraph ofG.Then T c Gi orT c G2.
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Proof. Suppose that T has nonempty intersection with both Gi and G2. Then from lemma 5,

T n Gi is subindependent in T. Thus T is loosely interdependent. Contradiction.

Theorem 3: Suppose that G is a strongly connected SDF graph that has an admissible schedu-

le.Then G has a single appearance schedule iffevery strongly connected subgraph ofGis loosely

interdependent.

Proof. ^ Suppose every strongly connected subgraph ofGis loosely interdependent, letXbeany

loose interdependence algorithm, and let S denote the resulting schedule for G. Since no node in

Giscontained in a tightly interdependent subgraph, it follows from lemma 4 that SX(G) is a single

appearance schedule for G.

=» Suppose thatG has a single appearance schedule and that G contains a tightly interde

pendent subgraph C. From theorem 2, wecanpartition G intoXq and Y0 such thatX0 is subinde

pendent of Y0 and X0 and Y0 both have single appearance schedules. If X0 and Y0 do not both

intersect C, then Ciscompletely contained insome strongly connected component Zi ofX0 orY0.

We can then apply theorem 1topartition Zi into Xt and Yi,and continue recursively in this man

ner until weobtain a strongly connected subgraph Z* c G with the following property: 7* can be

partitioned into Xk and Yk such that Xk n C and Yk n Cpartition C,and Xk is subindependent of

Yk in Zk. From lemma 5, Xk n Cis subindependent ofYk n C, and thus Cis loosely interdepen

dent. Contradiction. QED.

Corollary 5: Given an SDF graph G, any loose interdependence algorithm will obtain a single
appearance schedule if one exists.

Proof. If a single appearance schedule for G exists, then from theorem 3, G contains no tightly

interdependent subgraphs. In other words, no node in G is contained in a tightly interdependent

subgraph of G. From lemma 4, the schedule resulting from any loose interdependence algorithm

contains only one appearance for each actor in G. QED.

Thus, a loose interdependence algorithm always obtains an optimally compact solution

when a single appearance schedule exists. When a single appearance schedule does not exist,

strongly connected graphs are repeatedly decomposed until tightly interdependent subgraphs are
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found. In general, however, there may bemore than one way to decompose Gintotwoconnected

parts sothat one ofthe parts is subindependent ofthe other. Thus, it is natural toask the following

question: Given two distinct partitions {Gi, G2} and {Gi\ G2'} into connected subgraphs such

that Gi | G2 and Gi' | G2\ is it possible that one ofthese partitions leads toa more compact sched

ule than the other? Fortunately, as we willshow in theremainder of thissection, the answer to this

question is "No". In other words, any two loose interdependence algorithms that use the same

tight scheduling algorithm always lead toequally compact schedules. The key reason is that tight
interdependenceis an additive property.

Lemma 6: Suppose that Gi and G2 are tightly interdependent SDF graphs and Gi n G2 * 0.
Then (Gi u G^ is tightlyinterdependent.

Proof. Suppose that H=Gi u G2 isloosely interdependent. Then there exist subgraphs Hi and H2

suchthatH = Hi uH2andHi |H2.FromHi uH2 =Gi uG2,andGi n G2 * 0, it is easily seen

that Hi and H2 both have anonempty intersection with Gi, or they both have anonempty intersec

tion with G2. Without loss ofgenerality, assume that Hi n Gi * 0 and H2 n Gi * 0. Since Gi is
tightly interdependent, there exists an arc a such that source(a) e^n H2, sink(a) € Gi n Hi,
and delay(a) <qGj (sink(a)) xc(sink(a)), Since Gi c H, itfollows from fact 4that qCi(sink(oc)) <.
qH(sink(ot)). Thus, source(cc) € H2, sink(cc) 6 H1v and delay(oc) <qH(sink(a)) xc(sink(a)), so Hi is
not subindependent of H2. Contradiction.

Lemma 6 implies that each SDF graph G has a unique set {Q, C2, ..., QJ of maximal

tightly interdependent subgraphs such that i*y => Qn Cj =0, and every tightly interdependent
subgraph inGiscontained insome Q. We call each Q a tightly interdependent component ofG. It

follows from theorem 3 that Ghas a single appearance schedule iff Ghas no tightly interdepen
dent components. Furthermore, since the tightly interdependent components are unique, the per

formance of a loose interdependence algorithm, with regards to schedule compactness, is not
dependent on the particular subindependence partitioning algorithm, the sub-algorithm used to

partition the loosely interdependent components. The following theorem develops this result
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Theorem 4: Suppose G is an SDFgraph thathasa PASS, mis a nodein G, andXis a looseinter

dependence algorithm. If mis notcontained in a tightly interdependent component of G, then m

appears only once in SX(G). Onthe other hand, if mis contained in a tightly interdependent com

ponent T then #appearances(m, SK(G)) =#appearances(m, SX(T)) —thenumber ofappearances of

mis determined entirelyby the tight scheduling algorithm of A,.

ProofIfmis notcontained in a tightly interdependent component ofG, thenmis notcontained in

any tightly interdependent subgraph. Then from lemma 4,#appearances(m, SX(G)) = 1.

Now suppose that mis contained in some tightly interdependent component T of G. We

set M0 = G, and suppose that T * Mq. By definition, tightly interdependent graphs are strongly
connected, so T is contained in some strongly connected component C of Mq.

If T * C —i.e. T is a proper subgraph ofC —then C must be loosely interdependent,

since otherwise T would not be a maximal tightly interdependent subgraph. Thus, Xpartitions C
intoX(C) and Y(C) such thatX(C) |cY(Q. We set Mi to be that member of{X(Q, 7(C)} that con
tains m. Since X(C), 7(C) partition C, Mi is a proper subgraph of M^ Also, from remark 3,

#appearances(m, SX(M0)) =#appearances(m, Sx(Mi)), and from corollary 4, T£ Mi.

On the other hand, ifT=C, then we set Mi =T. Since T* M0, Mi is aproper subgraph of
M0; from remark 2, #appearances(w, SX(M0))=#appearances(ro, Sx(Mi)); and trivially, T£ Mi.

IfT* Mi, then we can repeat the above procedure to obtain aproper subgraph M2 ofMi
such that #appearances(m, Sx(Mi)) =#appearances(ro, SX(M;>)), and T£ M2. Continuing this pro
cess, we get a sequence Mi, M2,... ofsubgraphs. Since each Mj isa proper subgraph ofits prede

cessor, we cannot repeat this process indefinitely —eventually, for some k £ 0, we will have T =

Mk. But, by construction, #appearances(m, SX(G)) =#appearances(ro, SX(M0)) =#appearances(m,
S*(Mi)) = ... = #appearances(m, S^^); and thus #appearances(m, SX(G)) =#appearances(m,
Sk(J)).QED.

Theorem 4 states that the tight scheduling algorithm is independent of the subindepen
dence partitioning algorithm, and vice-versa. Any subindependence partitioning algorithm makes

sure that there is only one appearance for each actor outside the tightly interdependent compo
nents, and the tight scheduling algorithm completely determines the number of appearances for

SINGLE APPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS 25 of 30



COMPUTATIONAL EFFICIENCY

actors inside the tightly interdependent components. For example, if we develop a new subinde

pendence partitioning algorithm that is more efficient in some way (e.g. it is faster, takes into

account vectorization, or minimizes data memory requirements), we can replace it for any exist

ing subindependence partitioning algorithm without changing the "compactness" of the resulting

schedules —we don't need analyze its interaction with the rest ofthe loose interdependence algo

rithm. Similarly, if we develop a new tight scheduling algorithm that schedules any tightly inter

dependent graph more compactly than the existing tight scheduling algorithm, we are guaranteed

that using the new algorithm instead ofthe old one will lead to more compact schedules overall.

5 COMPUTATIONAL EFFICIENCY

The complexity of a loose interdependence algorithm Xdepends on its subindependence

partitioning algorithm AgP, strongly connected components algorithm A^c, acyclic scheduling algo

rithm a^s, and tight scheduling algorithm X^. From the proof of theorem 4, we see that X^ is

applied exactly once for each tightly interdependent component. Thus an efficient tight schedul

ing algorithm will not contribute to intractability. For example, the technique of[3] can be applied

as the tight scheduling algorithm. This technique involves a hierarchical clustering phase that has

time complexity1 0(number of arcs xnumber of nodes), followed by a scheduling phase that is
linear in the total number of firings. One drawback of this algorithm, as mentioned in section 1,is

that it requires a reachability matrix, which has quadratic storage cost. However, we greatly

reduce this drawback by restricting application of the algorithm to only the tightly interdependent

components. We are currently investigating other alternatives toscheduling tightly interdependent

SDF graphs.

The other subalgorithms, X^, X^ and AgP, are successively applied todecompose an SDF

graph, and the process is repeated until all tightly interdependent components are found. In the

worst case, each decomposition step isolates a single node from the current n-node subgraph, and

the decomposition must berecursively applied to the remaining (n - 1) - node subgraph. Thus, if

1. In the worst case, every arc corresponds to acluster, and each clusterization step requires a reachability-matrix update that is
linear in the number of nodes.
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the original program has N nodes, N decomposition steps are required in the worst case.Tarjan

[21] first showed that the strongly connected components of a graph canbe found in 0(M) time,

whereM=mtfx(numberof nodes,number of arcs). Hence A*, can be chosento be linear, and since

at most N £ M decomposition steps arerequired, the total timethat such an X^ accounts for in Xis

0(M2). In section 3we presented asimple linear-time algorithm that constructs asingle appear
ance schedule for an acyclic SDF graph. Thus X^ can be chosen such that its total time is also

0(M2).

The following theorem presents a simple topological condition for loose interdependence

that leads toa linear subindependence partitioning algorithm A^.

Theorem 5: Suppose that G is a strongly connected SDF graph. From G, remove all arcs a for

which delay(a) ^ c(a)x qG(sink(a)), and call the resulting SDF graph G\ Then Gis tightly inter
dependentif and only if G' is stronglyconnected.

Proof. => Suppose that G' is not strongly connected. Then G' can be partitioned into d' and G2

such that there are no arcs directed from G2 to G^. Since no nodes were removed in constructing
G\ N(G,') and JV(G2') partition N(G). Also, none of the arcs directed from S(W(G2), G) to

S(N(Gi), G)in G occur in G\ Thus, bythe construction ofG\ foreach arc a directed from a node

in5(A7(G2'), G) to anode inS(N(Gi% G), we have delay(a) 2> c(cc) XqG(sink(a)). Itfollows that G
is loosely interdependent.

<= Suppose that Gis loosely interdependent. Then G can be partitioned into G^ and G2
such that Gi |Q G2. By construction ofG\ N(G^) and W(G2) partition A/(G'), and there are noarcs in

G' directed from S(N(G£, G') to S(N(G,), G). Thus G isnot strongly connected. QPD.

Thus, ^p can be constructed as follows: (1) Determine qG(/j) for each node n; (2) Remove
each arc a whose delay is atleast c(cc) xqG(sink(cc)); (3) Determine the strongly connected com
ponents of the resulting graph; (4) Ifthe entire graph is the only strongly connected component,
then Gistightly interdependent; Otherwise (5) consolidate the strongly connected components —

the resulting graph is acyclic and has at least two nodes. Any root node ofthis graph is subinde
pendent ofthe rest ofthe graph. Itiseasily seen that (1) and (2) can be performed in time 0(M);
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Tarjan's algorithm allows 0(M) for (3); and the checks in (4) and (5) are clearly 0(M) as well.
Thus, we have alinear AgP, and the total time that Aspends in X*p is 0(M2).

We have specified A^, A^, A^, and X& such that each accounts for <9(M2) time. The result

ing loose interdependence algorithm is thus of quadratic worst-case complexity. Note that our
worst case estimate is conservative —in practice only a few decomposition steps are required to

fully schedule a strongly connected subgraph, while our estimate assumes N steps. For most
applications, the running time ofthe algorithm will scale linearly with the size ofthe input graph.

6 CONCLUSION

This paper has presented fundamental topological relationships between iteration and

looping in SDF graphs, and we have shown how to exploit these relationships to synthesize the

most compact looping structure for a large class of applications. Furthermore, we have extended

the developments of [3] by showing how to isolate the subgraphs that require explicit deadlock

detection schemes, such as the reachability matrix, when organizing hierarchy.

This paper also defines a framework for evaluating different scheduling schemes, having

different objectives, with regard to their effect on schedule compactness. The developments of

this paper apply to any scheduling algorithm that imposes hierarchy on the SDF graph. For exam

ple, by successively repeatedly the same block ofcode, we can reduce "context-switch" overhead,

and thus improve throughput [19]. We can identify subgraphs that use as much of the available

hardware resources as possible, and these can be consolidated or"clustered", as the computations

to be repeatedly invoked. However, the hierarchy imposed by such a scheme must be evaluated

against its impact on program compactness. For example, if a cluster introduces tight interdepen

dence, then it may be impossible to fit the resulting program on chip, even though the original

graph had a sufficiently compact schedule.

We have incorporated the techniques of this paper into a block-diagram-based software

synthesis environment that has been developed inour research group [16]. We are currently inves

tigating how to systematically incorporate these techniques into other scheduling objectives —
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for example, how to balance parallelization objectives with program compactness constraints.

Other important tradeoffs to examine include vectorization, as discussed above, and data memory

requirements.
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