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ABSTRACT

Synchronous Dataflow (SDF) provides block-diagram semantics that are well-suited to
compiling multirate signal processing algorithms onto programmable signal processors. A key to
this match is the ability to cleanly express iteration without overspecifying the execution order of
blocks, thereby allowing efficient schedules to be constructed. Due to limited program memory, it
is often desirable to translate the iteration in an SDF graph into groups of repetitive firing patterns
so that loops can be constructed in the target code. This paper establishes fundamental topological
relationships between iteration and looping in SDF graphs, and presents a hierarchical clustering
strategy that provably synthesizes the most compact nested loop structure for a large class of

applications.

1 INTRODUCTION

In the Dataflow model of computation, pioneered by Dennis [5], a program is managed as
a directed graph in which the nodes represent computations and the arcs specify the passage of
data. Synchronous Dataflow (SDF) [14] is a restricted form of dataflow in which the nodes, called
actors, consume a fixed number of data items, called fokens or samples, per invocation and pro-
duce a fixed number of output samples per invocation. SDF and related models have been used
extensively to synthesize assembly code for signal processing applications, for example [7, 8, 9,

17, 18, 19].
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INTRODUCTION

In SDF, iteration is defined as the repetition induced when the number of samples pro-
duced on an arc (per invocation of the source actor) does not match the number of samples con-
sumed (per sink invocation) [11]. For example, in figure 1, actor B must be invoked two times for
every invocation of actor A. Multirate applications often involve a large amount of iteration and
thus subroutine calls must be used extensively, assembly code must be replicated, or loops must
be organized in the target program. The use of subroutine calls to implement repetition may
reduce throughput significantly however, particularly for graphs involving small granularity. On
the other hand, we have found that code duplication can quickly exhaust on-chip program mem-
ory [10]. Thus, it is often essential that we arrange loops in the target code. In this paper we
develop topological relationships between iteration and looping in SDF graphs.

We emphasize that in this paper, we view dataflow as a programming model, not as a form
of computer architecture[2]. Many programming languages used for DSP, such as Lucid[22],
SISAL[15], and Silage[8] are based on, or include dataflow semantics. The developments in this
paper are applicable to this class of languages. Compilers for such languages can easily construct
a representation of the input program as a hierarchy of dataflow graphs. It is important for a com-
piler to recognize SDF components of this hierarchy, since in DSP applications, usually a large
fraction of the computation can be expressed with SDF semantics. For example, in [6] Dennis

shows how convert recursive stream functions in SISAL-2 into SDF graphs.

In [10], How evaluated augmenting schedulers that did not consider looping with a post-
processing phase that detects successively occurring repetitive firing patterns, and concluded that
such simple tactics were ineffective for generating compact programs. To synthesize loops effec-
tively, the scheduler must exploit specific topological properties in the SDF graph. How demon-
strated such a property by showing that we can often greatly improve looping by consolidating
subgraphs that operate at the same sample rate, and scheduling such subgraphs as a single unit.
Figure 1 shows how this technique can improve looping. A naive scheduler might schedule this
SDF graph as CABCB, which offers no looping possibility within the schedule period. However,
if we first group the subgraph induced by {B,C} into a hierarchical “supernode” I', a scheduler
will generate the schedule AIT. To highlight the repetition in a schedule, we let the notation
(NXX,...Xp,) designate N successive repetitions of the firing sequence X,Xo...X,,. We refer to a
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INTRODUCTION

schedule expressed with this notation as a looped schedule, and we refer to each term of the
form (N X;X5...Xr,) as a schedule loop. Using this notation, and substituting each occurrence
of I" with a subschedule for the corresponding subgraph, our consolidation of the uniform-rate set
{B,C} leads to either A(2BC) or A(2CB), both of which expose the full amount of looping in the
SDF graph of figure 1.

We explored the looping problem further in [3]. First, we generalized How’s scheme to
exploit looping opportunities that occur across sample-rate changes. Our approach involved con-
structing the subgraph hierarchy in a pﬁirwise fashion by consolidating exactly two nodes at each
step. Our subgraph selection was based on frequency of occurrence — we selected the pair of
adjacent nodes whose associated subgraph had the largest invocation count. By not discriminating
against sample-rate boundaries, our approach exposed looping more thoroughly than How’s
scheme. Furthermore, by selecting subgraphs based on repetition rate, we reduced data memory

requirements, an aspect that How’s scheme did not consider.

Consolidating a subgraph must be done with care since certain groupings cause deadlock.
For example, combining C and D in figure 2 results in a graph for which no periodic schedule

2 1 1 1
D
Fig 1. An example that illustrates the benefits of consolidating uniform sample-rate sub-

graphs. Each arc is annotated with the number of samples produced by its source and the
number of samples consumed by its sink. The “D” designates a unit delay.

Fig 2. An example of how consolidating a subgraph in an SDF graph can result in deadlock.
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exists because the grouping “hides” a critical delay. Similarly, deadlock can be introduced when a
grouping encapsulates a source actor. Thus, for each candidate subgraph, we must first verify that
its consolidation does not result in an unschedulable graph. One way to perform this check is to
attempt to schedule the new SDF graph [13], however this approach is extremely time consuming
if a large number of consolidations must be considered. In [3], we employed a computationally
more efficient method in which we maintained the subgraph hierarchy on the acyclic precedence |
graph rather than the SDF graph. Thus we could verify whether or not a grouping introduced
deadlock by checking whether or not it introduced a cycle in the precedence graph. Furthermore,
we showed that this check can be performed quickly by applying a reachability matrix, which
indicates for any two precedence graph nodes (invocations) Py and P,, whether there is a prece-
dence path from P, to P».

Two limitations surfaced in the approach of [3]. First, the storage cost of the reachability
matrix proved prohibitive for multirate applications involving very large sample rate changes.
Observe that this cost is quadratic in the number of distinct actor invocations (precedence graph
nodes). For example, a rasterization actor that decomposes an image into component pixels often
involves a sample-rate change on the order of 250000 to 1. If the rasterization output is connected
to an actor that consumes only one token per invocation (for example, a gamma level correction),
this actor alone will produce on the order of (250000)? = 6.25x100 entries in the reachability
matrix! Thus very large rate changes preclude straightforward application of the reachability
matrix; this is unfortunate because looping is most important precisely for such cases. The second
limitation in [3] is its failure to process cyclic paths in the graph optimally. Since cyclic paths
limit looping, first priority should be given to preserving the full amount of looping available
within the strongly connected components [1] of the graph. As figure 3 illustrates, this goal can
conflict with consolidating subgraphs based on repetition count.

In this paper, we develop an efficient method for extracting the most compact looping
structure from the cyclic paths in the SDF graph. This technique is based on a topological quality
that we call “loose interdependence”. We show that for SDF graphs that are loosely interdepen-
dent, our method is optimal. Interestingly and fortunately, a large majority of practical SDF
graphs seem to fall into this category. Furthermore, for this class of graphs, our algorithm does not
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require use of the reachability matrix, or any other unreasonably large data structure. For graphs
that are not loosel;r interdependent, we show that our algorithm naturally isolates the minimal
subgraphs which require special care. Only when analyzing these “tightly interdependent compo-
nents”, do we need to apply reachability matrix-based analysis, or some other explicit deadlock-
detection scheme. We emphasize that the techniques developed in this paper extend the develop-
ments of [3] by improving the analysis of cyclic subgraphs. In particular, our earlier method still
applies to acyclic subgraphs for organizing looping while keeping buffering requirements low.
However, when it is used only for acyclic graphs, deadlock is not an issue, and the reachability
matrix is no longer required.

Because we focus on the fundamental limits of looping, the methods developed in this
paper cannot be directly applied to the general parallel processing case. However, we believe that
these techniques will be helpful to understanding problems that combine parallelization and loop-
ing objectives, and we are currently investigating such problems. The techniques of this paper do

apply to target systems that exploit instruction-level parallelism, such as superscalar and pipelined
architectures.

(a) ® O]

Fig 3. This example illustrates how consolidating subgraphs based on repetition count alone can
conceal looping opportunities that occur within cyclic paths. Part (a) depicts a multirate SDF
graph. Two pairwise subgraphs exist — {A, B}, having repetition count 2, and {A, C}, having rep-
etition count 5. Consolldatlng the subgraph with the highest repetition count yields the hierarchi-
cal topolo%y in b& for which the most compact schedule is (ZB?(2FAC)BFACB(2I‘AC) =
(2B)(2(2A)C)B(2A B_(2§2A)C). Consolidating the subgraph {A,B} of lower repetition rate, as
depicted in part (c), yields the more compact schedule (2Txg)( é) = (2(2B)(5A))(5C).

SINGLE APPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS Sof30
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2 BACKGROUND

An SDF program is normally translated into a loop, where each iteration of the loop exe-
cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop-

erties of periodic schedules.

For an SDF graph G, we denote the set of nodes in G by N(G). If G' is a subgraph of G,
then we can obtain another subgraph of G by removing from G all nodes in G' and all arcs that
have one or both endpoints in G'. We call this subgraph the complement of G’ in G, and we denote
it by G —G'. Also, if Ng € N(G), then we write S(N,, G) to denote the subgraph induced by N, in
G. For an SDF arc o, we let “source(cr)” and “sink(ct)” denote the nodes at the source and sink of
a; we let “p(a)” denote the number of samples produced by source(c), “c(cr)” denote the number
of samples consumed by sink(c), and we denote the delay on o by “delay(a)”. Finally, if x and y
are two nodes in and SDF graph, we say that x is a successor of y if there is an arc directed from

y to x, and we say that x is a predecessor of y if y is a successor of x.

We can think of each arc in G as having a FIFO queue that buffers the tokens that pass
through the arc. Each FIFO contains an initial number of samples equal to the delay on the associ-
ated arc. Firing a node in G corresponds to removing c(ct) tokens from the head of the FIFO for
each input arc o, and appending p(f) tokens to the FIFO for each output arc 3. After a sequence of
0 or more firings, we say that a node is fireable if there are enough tokens on each input FIFO to
fire the node. An admissible sequential schedule (“sequential” is used to distinguish this type of
schedule from a parallel schedule) for G is a finite sequence S¢S, ... Sy of nodes in G such that
each §; is fireable immediately after Sy, So, ..., S;4 have fired in succession. If some S; is not fire-
able immediately after its antecedents, then the schedule is not admissable, and we say that the
schedule deadlocks just prior to S;. Finally, we say that an admissible sequential schedule S is a
periodic admissible sequential schedule (PASS) if it invokes each node at least once, and it pro-
duces no net change in the number of tokens on a FIFO — for each arc a, (the number of times
source(a) is fired in S) X p(a) = (the number of times sink(cx) is fired in S) X c(a). We will use the
term valid schedule to describe a schedule that is a PASS.

6 of 30 SINGLE APPEARANCE SCHEDULES FOR SYNCHRONOUS DATAFLOW PROGRAMS
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For a given periodic schedule, we denote the ith firing, or invocation, of actor N by N;, and
if fis a firing in some schedule, we denote the actor associated with f by actor(f) (e.g. actor(N;) =
N).

In [13], it is shown that for each SDF graph G that has a PASS, there is a mapping
da: Ng— {1, 2,3, ...} such that every PASS for G invokes each node n a multiple of qg(n) times.
More specifically, corresponding to each PASS S, there is a positive integer J called the blocking
Jactor of S, such that S invokes each n € N(G) exactly Jqg(n) times. We call this mapping qgq the

repetitions vector of G. The following properties of repetitions vectors are proved in [13]:
Fact 1: The components of a repetitions vector are collectively coprime.

Fact 2: If S is an admissible schedule for G, and there is a positive integer J such that S invokes
each n € N(G) exactly Jqg(n) times, then S is a PASS.

Fact 3: For each arc a in G, qg(source(a)) X p(c) = qg(sink(c)) X c(o).

We will also use the following property, which is derived in [4];

Fact 4: If G, is a subgraph of G, and n is a node in G,, then kqg, (n) = qg(n), where k =
ged{qa(m) |m € N(Gy)}.

For our hierarchical scheduling approach, we will apply the concept of consolidating a
subgraph, which was introduced in [12]. This process is illustrated in figure 3. Here the subgraph
{A, C} of (a) is consolidated into the hierarchical nodé [ac, and the resulting SDF graph is shown
in (b). Similarly, consolidating subgraph {A, B} results in the graph of (c). Each input arc a to a
consolidated subgraph I is replaced by an arc o having p(a’) = p(a), and c(a') = c(a) x
qr(sink(a)), the number of samples consumed from o in one invocation of subgraph T. Similarly
we replace each output arc B with ' such that ¢(B') = c(B), and p()) = p(B) % qr(source(p)). The
following property of consolidated subgraphs is proven in [4].
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Fact 5: Suppose G is an SDF graph, G' is the SDF graph that results from consolidating a con-
nected subgraph I"of G, S is a PASS for G', and Sr-is a pass for I'. Then replacing each appearance
of I'in S with Si-results in a PASS for G.

The possibility of a self-loop, an arc whose source node is the same as its sink, introduces
minor technical complications in our development. However, without loss of generality, we can
assume that self-loops do not exist, and doing so, we can formulate our results more concisely.
This assumption is valid because a self-loop either introduces deadlock or imposes no sequencing

constraints on the construction of a PASS.

Unless otherwise stated, we assume that an SDF graph contains no self-loops. For exam-
ple, when we say “Let G be an SDF graph ...”, we mean “Let G be an SDF graph with all self-
loops removed ...”. From an implementation standpoint, this means that the input SDF graph is
first preprocessed to remove all self -loops, which, as discussed above, does not affect the subse-
quent scheduling process. An important consequence of our assumption is that every strongly

connected subgraph contains at least two nodes.

3 SINGLE APPEARANCE SCHEDULES

To determine the limits of looping for a general SDF graph, we have found it instructive to

determine the topological conditions required for a the existence of a looped schedule that con-
tains only a single appearance for each actor. We refer to such a schedule as a single appear-
ance schedule. For example, the schedule CA(2B)C for figure 1 is not a single appearance
schedule since C appears twice. Thus, either C must be implemented with a subroutine, or we
must insert two versions of C’s code block into program memory. In the schedule A(2CB) how-
ever, no actor appears more than once, so it is a single appearance schedule, and it translates into

the most compact program for the given SDF graph.

Since single appearance schedules implement the full repetition inherent in an SDF graph
without requiring subroutines or code duplication, we examine the topological conditions

required for such a schedule to exist. First suppose that G is an acyclic SDF graph containing N
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nodes. Then we can take some root node ry of G and fire all qg(ry) invocations of 1y in succession.
After all invocations of ry have fired, we can remove r; from G, pick a root node 1, of the new acy-
clic graph, and schedule its gg(rp) repetitions in succession. Clearly, we can repeat this process
until no nodes are left to obtain the single appearance schedule (qg(ry) 11) (qa(T2) T2) ... (qalTn] Tn)
for G. Thus we see that any acyclic graph has a single appearance schedule.

Also, observe that if G is an arbitrary SDF graph, then we can consolidate the subgraphs
associated with each strongly connected component of G. Consolidating a strongly connected
component into a single block never résults in deadlock since there can be no directed loop con-
taining the consolidated block. Since consolidating connected components yields an acyclic
graph, it follows from fact 5 that G has a valid single appearance schedule if and only if each

strongly connected component has a valid single appearance schedule.

Observe that we must, in general, analyze a strongly connected component G, as a sepa-
rate entity, since G may have a single appearance schedule even if there is a node » in G, for
which we cannot fire all qg[n] invocations in succession.The key is that qg, may be less than qg,
so we may be able to generate a single appearance subschedule for G, (e.g. we may be able to
schedule n qg_(r) times in succession). Since we can schedule G so that G,’s subschedule appears
only once, this will translate to a single appearance schedule for G. For example, in figure 3, it is
can be verified that qg(A) = 10 and qg(B) = 4; but so many invocations of A or B cannot be fired
in succession. However, consider the strongly connected component I'yg consisting of nodes A
and B. Then we obtain qr,, (A)=5and qr“(B) = 2, and we immediately see that qr,,(B) invoca-
tions of B can be scheduled in succession to obtain a subschedule for I'yg. This leads to the single

appearance schedule given in the caption of figure 3.

In this section, we develop important properties of single appearance schedules. In section
4, we will use these properties to develop our looping techniques and prove their optimality of our
looping techniques. We begin with a lemma. The terminology introduced in this lemma will be
use throughout the rest of this section.

Lemma 1: Suppose that G is an SDF graph, S is a valid looped schedule for G, and L is a sched-
ule loop within S. Let A(L) denote the set of actors that appear in L, and let M be any maximal
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connected subset of A(L) (the subgraph associated with M is connected and no node in A(L) - M
is adjacent to a node in M). Remove from L all actors that are not in M, remove any empty loops
that result, and call the resulting schedule loop Ly — we call L, the restriction of the schedule
loop L 1o the set of actors M. Similarly, let L, denote the restriction of L to A(L) — M. Finally, let
S' denote the schedule obtained by replacing L in S with L, L,. Then S' is a valid schedule for G.

For example, suppose that G is the SDF graph in Figure 4, and suppose we are given the
schedule S = M(3Y(2AB)CZ) for G. Let L denote the outer loop in this schedule, (3Y(2AB)CZ).
Then M, = {A, B, C} and M, = {Y, Z} are two maximal connected subgraphs that partition A(L).
Now we remove the members of M; from L to obtain (3Y(2)Z), and from this we remove the
empty loop “(2)” to obtain Ly = (3YZ). Similarly, we remove Y and Z from L to obtain L, =
(3(2AB)C). Lemma 1 states that if M(3Y(2AB)CZ) is a valid schedule for the graph in figure 4,
then so are M(3YZ)(3(2AB)C) and M(3(2AB)C)(3YZ).

Proof of lemma 1: Suppose that S' deadlocks just prior to some invocation i of actor X. If
we define P(x, y, s) to be the number of firings of actor x that precede invocation y in schedule/

subschedule s, then clearly there exists an arc a such that
(1) sink(a) =X and P(source(a), X;, S') < P(source(a), X,i’ S).

Now the sequence of invocations fired in S can be divided into (s 14 so Io ... Iy Sn+1)s

where 1; is the sequence of firings associated with the ith invocation of loop L, and s; is the

Fig 4. Anillustration of lemma 1. Note that the repetition counts for A, B, C, M, X,
Y are respectively 6, 6, 3, 1, 3, 3.
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sequence of firings between the (i —1)th and ith invocations of L. Since S' is derived by rearrang-
ing the firings in L, we can express it similarly as (sq 1y sp 1o’ ... Iy’ Sn.1), Where I’ corresponds to
the ith invocation of (Ly Ly) in S'.

Now, the firing sequence generated by L; (or Ly) is simply the firing sequence generated
by L with the invocations associated with nodes in A(L,) (or A(L,)) removed. Thus,

(2) PN, f, S) =P(N, £, ") if (N, actor(f) € A(Ly)) or (N, actor(f) € A(L,)).

Also, the number of firings of each actor in 1 is the same as the corresponding number in

I, so
(3) fori=1,2,...,N+1 and for any node Nin G, f€ 5;= P(N, f, S)=P(N, f, S"); and
(4) fori=1,2,...,N and for any node N ¢ A(L),f€ I, = PN, , S)=P(N, f, S".

It follows from (1) and (3) that S' can not deadlock in ans;; i.e. X; € I for some j, and then
from (4) it follows that source(ct) € A(L). Then P(source(ct), X;, }) < P(source(a), X, 1), so from
(2), either source(ar) € A(L,) and X € A(L,), or source(ar) € A(L,) and X € A(Ly). Le. either
source(o) € A(L) —M and X € M or source(cr) € M and X € A(L) - M. Since M is a maximally
connected subset of A(L), this contradicts the adjacency of source(c) and X = sink(ct). Thus our
assumption that S' deadlocks cannot hold. QED.

Repeated application of lemma 1 to each maximally connected subgraph immediately

yields the following consequence.

Corollary 1: Suppose that G is an SDF graph, S is a valid looped schedule for G and L is a
schedule loop in S. Let My, My, ..., M, denote the set of maximally connected subgraphs of
S(AL), G), and for i = 1, 2, ..., n, let L; denote the restriction of L to M;. Then the schedule
obtained by replacing L in S with L; L, ... L, is a valid schedule for G.

Definition 1: We define the nesting degree of a schedule loop L, denoted ND(L), to be the
maximum loop nesting depth within L. To be precise, ND(L) = 1 if no loops are nested within L;
otherwise, ND(L) =1 +max{ND(L') | L' is a loop that is nested within L}. Similarly we define the
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nesting degree of a looped schedule S, denoted ND(S), to be zero if S contains no schedule loops;
if S contains at least one schedule loop the we define ND(S) to be max{ND(L) | L is a schedule
loop in S} — in other words ND(S) is the maximum nesting degree over all loops in S, which is
equivalent to the maximum nesting degree over all outermost loops in S. For example, the sched-
ule loop (3 AB(2BC)D(2A(2B))) has nesting degree 3, and the looped schedule AB(2C(3A)B)C
has nesting degree 2.

Definition 2: Let S be a looped schedule or a subschedule for an SDF graph G. We say that S is
regular if for every schedule loop L in S, A(L) forms a connected subgraph of G. If n is a nonne-
gative integer, we say that S is n-regular if for every loop L in S whose nesting degree is less than
n, A(L) is connected. Thus, S is regular < S is (ND(S) + 1)-regular.

Definition 3: Let S be a looped schedule for an SDF graph G and let n be a node in G, then we
define #appearances(n, S) to be the number of times that 1 appears in S. For example, #appearanc-

es(C, CA(2B)C) = 2, and S is a single appearance schedule & #appearances(n, S) =1V n.

Lemma 2: Suppose that G is an SDF graph and suppose that there exists a valid n-regular looped
schedule S for G. If S is not regular then there exists an (n + 1)-regular valid looped schedule S'
for G such that ND(S") = ND(S), and for every actor m in G, #appearances(m, S') =
#appearances(m, S).

Note that it is trivial to construct an (n + 1)-regular S' if we do not require ND(S') = ND(S).
We can do this simply by replacing each loop A of nesting degree n by the loop (1 A). To increase
the “degree of regularity” without constructing a more deeply nested schedule, we repeatedly
apply lemma 1.

Proof of Lemma 2: Let o denote the schedule loops in S that are not associated with connected
subgraphs of G and whose nesting degree is n: @ = {A | ND(A) = n and A(A) is not connected}.
From corollary 1, we can replace each schedule loop X € by a sequence of loops Xy, X, ...,
XNx’ where each A(X;) forms a maximal connected subgraph of A(X), and each X; is the restric-
tion of X to A(Xj).
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Now suppose that L is a loop properly contained in some X; (X; contains L but X; #L).
Then L 1s the restriction to A(X;) of some L' nested within X. Since this L' is nested in X, ND(L')
<ND(X) =n, so from the n-regularity of S, we know that A(L') is connected. Since A(X;) forms a
maximally connected subgraph of A(X) and A(L") forms a connected subgraph of A(X), it follows
that A(L') C A(X)), and thus L' =L, which implies that A(L) is connected.

Since each A(X) is connected, and each loop L properly contained in X; has the property
that A(L) is connected, it follows that each subschedule X; X» ... XNx is regular. Furthermore
ND(X;) = ND(X), so replacing X by Xy X, ... X, does not increase the nesting degree of the
overall schedule. We conclude that by replacing eac;l X€ owinSwithX; X5... XNx’ we obtain an
(n + 1)-regular schedule S' such that ND(S') =ND(S).

Finally, since X; is the restriction of X to A(X;), and since A(X4), AXy), ..., A(XNX) are
disjoint, each actor in A(X) appears in exactly one X;, and it appears the same number of times in

that X as it appears in X. Thus each actor appears the same number of times in S' as it does in S.

QED.
We will apply the following extension of lemma 2.

Corollary 2: Suppose that there exists a valid single appearance schedule for G. Then there
exists a valid single appearance schedule for G that is regular.

Proof: Let S be a valid single appearance schedule for G and let n =ND(S). S is trivially 1-regular,
so if n=0, we are done. Otherwise, repeated application of lemma 2 guarantees the existence of
valid single appearance schedule with nesting degree n that are 1-regular, 2-regular, ..., (z + 1)-
regular. In particular, there exists a valid single appearance schedule S' such that ND(S') = n, and
S'is (n + 1)-regular = S' is regular. QED.

Lemma 3: Suppose that S is an admissible single appearance schedule for G and suppose that L
= (M (N; S4) (N2 S2) ... (N S)) is a schedule loop within S (of any nesting depth) such that each
A(S;) forms a connected subgraph G; of G. Let y=gcd(Ny, Ny, ..., N), and let L' denote the loop
(M (v™N; Sy) (¥'N; Sy) ... (¥'Np). Then replacing L with L' in S results in an admissible
schedule for G.
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Proof. Suppose S has blocking factor k. Clearly, each S; is a PASS of some blocking factor v; for

G;, and we have
(5) Vxe€ A(S.), M x Ni Xv;X qGi(x) =kX qG(X)

Let S' denote the looped schedule obtained by replacing L with L' and suppose that S' deadlocks
just prior to invocation r of actor X. Since L and L' invoke each actor the same number of times,
we have V'Y € N(G), and for any invocation I fired outside of L in S, P(Y, I, S) =P(Y, I, S"). Thus
X € A(L)=A(L); i.e. X € N(Gy), for some a € {1, 2, ... m}. Also, for any actor Z ¢ A(L), we
have P(Z, X, S) = P(Z, X,, S'). Thus there exists a predecessor X' € A(L) of X, and an arc 0
directed from X' to X such that in S', delay(8) + (the total number of samples produced onto 0 by
X' prior to X)) < (the total number of samples consumed from © by the first  invocations of X).
Since each S;is an admissible schedule for the associated G;, X' cannot be in G,. So X' € N(Gy), b
# a. The graphical relationship between X and X' is illustrated in figure 5.

Now let R denote the total number of invocations of the loop (N, S,) that have completed
prior to the rth invocation of X (R = floor((r — 1) / (N, X qg X) X Vy)). Then, if (a>b) —i.e. Sy
a
lexically precedes S, — we have

delay(0) + (R + 1) X YN, q, ) X Vb X p(6) < (R+1) x Y'NaX qg () X vy X c(6)
= Np X qg, &) X VpX p(@) <N, x A X) X Vg X c(0).

Multiplying both sides by M and applying (5) gives:

00

Ga
Gy

Fig 5. An illustration of X, X', and 6 in the proof of lemma 3.
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k x qgx) Xp(0) <k X qx) X c(6)
= qg&") Xp(0) * q¢x) X ¢(6),

which contradicts fact 3.

On the other hand, if (a < b), then
delay(0) +R x y'N, x qg, &) X Vp X p(B) < (R+1) X YN X g5 &) X vg X c(0).

Multiplying both sides by YM, applying (5) and the balance equation qgx) Xp(0) = qg&x) x¢(0)
(fact 3) gives

v X delay(8) <Ny X q (X) X vax¢(0).
Since y2 1, this implies that
delay(9) <N, X qg (X) X v, X ¢(6).
a

Now, the right side of this inequality is the number of samples that X consumes from 0 in each
invocation of the loop (N, S,). Since a <b — (N, S,) lexically precedes (N, S,) — it follows that
S will deadlock before completing the first invocation of (N, S,). This contradicts our assumption
that S is an admissible schedule. QED

We will apply the following consequence of lemma 3.

Corollary 3: Assume the same hypotheses as in lemma 3 with the additional assumption that
each §; has blocking factor 1 with respect to the associated G;. Then there exists a looped schedule
of the form (M" S°), where S” is a single appearance schedule of unity blocking factor for L”,') G;

iml

such that replacing L with (M" S) in S results in another valid single appearance schedule for G.

Proof. From lemma 3, replacing L with ("M (Y'N; S4) ("N, S,) ... (¥'NSy)) gives an admissi-
ble schedule for G. Thus S' = (Y'N; S;) (Y'N, S,) ... (f'N,,S) is PASS for .C) G,. Let z denote
the blocking factor for S' and suppose that z > 1. For each node x in G, let p(x) Eelnote the number
of times x is invoked in one period of S'. Then clearly p(x) = zqg(x), V x € N(G). Since each S; has

blocking factor 1, we also have
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(6) forj=1,2,...m,x€ A(S) = p(x) =yN; 96,)-

Now since ged{y'N;, YNy, ..., ¥'Ny} = 1,3 i such that z does not divide yN;. Then from
(6), there exists a nontrivial factor of z that divides 9 %) — 1.e. there exists an integer z' > 1 such
that z' divides z, and z' divides every component of 96,00 But this contradicts fact 1. Thus our
assumption that z > 1 cannot hold, and we conclude that S' is a valid single appearance schedule of
blocking factor 1 for L"_') G;. Furthermore, replacing L with (YM S') gives a valid single appearance
schedule for G. QED.

Corollary 3 shows that we can replace several looped unit blocking factor subschedules
with a loop across a single unit blocking factor subschedule. Starting at the innermost loops, and
repeatedly applying corollary 3, we can show that from any valid single appearance schedule, we
can generate a valid single appearance schedule of unit blocking factor. The following definition

helps to prove this result concisely.

Definition 4: By a simple loop, we mean a schedule loop of the form (N A), where A is an actor
appearance. For example (3 (2AB(3C))(2D)) contains two simple loops — (3C) and (2D). We say
that a looped schedule is simple if every actor appearance is surrounded by a simple loop.

Theorem 1: Suppose that G is a connected SDF graph that has a valid single appearance sched-
ule (of arbitrary blocking factor). Then G has a valid single appearance schedule of blocking fac-
tor 1.

Proof. Suppose that Sy is a valid single appearance schedule of arbitrary blocking factor for G.
From corollary 2, there exists a valid single appearance schedule S, of the same blocking factor
that is regular (each loop spans a connected subset of nodes). Substituting each actor appearance
A in Sy with (1 A) preserves regularity and does not change the firing sequence. Thus, without
loss of generality, we can assume that S, is simple. Let L; be an innermost non-simple loop of (1
Sy) (If all loops in (1 S) are simple, then (1 S) is a simple loop = G contains only one node,
which trivially yields the desired result). Then L has the form (M; (Ny Z;) (N2 Zo) ... (N, Zo)),
where each Z is a node in G. Each “Z” is clearly a valid single appearance schedule for S({Z;},
G), the subgraph associated with the single node {Z;}. Thus we can apply corollary 3 to substitute
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L, with (My' Ty), where T} is a valid single appearance schedule of blocking factor 1 for S(A(L,),
G).

Let S, denote the schedule that results from replacing Ly with (M;' Ty) in (1 S). Since S,
is regular, S(A(M'y Ty), G) =S(A(L,), G) is connected, so S; is regular; also, corollary 3 guaran-
tees that S, is a valid single appearance schedule for G. Now from S select a schedule loop L, =
M2 Zyy Zy ... Zpmp) such that for each i, Zy; is either a simple loop, or Zyj=(M'y Ty). Then S,
L, satisfy the hypotheses of corollary 3, so we can substitute L, by some (M's T,), where T» is a
valid single appearance schedule of blocking factor 1 for S(A(Ly), G). Let Sz denote the resulting
schedule. Then corollary 3 and the regularity of S, guarantee that Sg is a valid regular single
appearance schedule G.

Clearly we can repeat this process until we have visited all non simple loops in (1 S). At
step k, we select a schedule loop Ly, = (M Ly Lkz2 ... Ligm) from S, such that each Ly; is either a
simple loop or Ly; € {(My' Ty), (My' To), ..., My’ Ti.1)}, and we apply corollary 3 and the Tegu-
larity of S to obtain a replacement (M, T)) for Ly, such that Ty has blocking factor 1. This
replacement yields a valid regular single appearance schedule Sy, ;.

After some number R steps, we will have consolidated all loops in (1 S;) into (M, T))’s.
Thus Sg = (M'g Tg) is a valid single appearance schedule for G, and T is a unit blocking factor
schedule for S(A(TR), G). But S(A(TR), G) =S(AM'g Tr), G) =S(A(1 S¢), G) = S(N(G), G) =G.
So Tris a valid single appearance schedule for G that has blocking factor 1. QED

Clearly, any schedule S of unity blocking factor can be converted into a schedule of arbi-
trary blocking factor k simply by encapsulating S inside a loop of k iterations. Thus from theorem
1, we can conclude that given an SDF graph G, and given a positive integer k, a valid single
appearance schedule of blocking factor k exists for G if and only if valid single appearance sched-
ules exist for all blocking factors.

We introduce the following terminology to develop the precise condition required for a
strongly connected graph to have a single appearance schedule. Recall that a general SDF graph
has a single appearance schedule if and only if each strongly connected component has a single
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appearance schedule, so the condition for a strongly connected SDF graph specifies the condition
for a general SDF graph.

Definition 5: Suppose that G is a strongly connected SDF graph. If x and y are nodes in G and x
is a successor of y, then we say that x is subindependent of y in G if for every arc a directed from
¥ to x, we have delay(a) 2 c(a) X qg(x). Also we say that a proper and nonempty subgraph G, of
G is subindependent in G if G, is connected and for every node x in G that is a successor of a node
yin G = G, x is subindependent of y in G (we often drop the “in G” qualification if G is under-
stood from context). In other words G; is subindependent if no samples produced outside of G,
are consumed from Gg in the same schedule period. If G, and G, partition G and G, is subinde-
pendent, we say that G, is subindependent of G, in G, and we denote this by “Gy |g G,”, or “Gq |
G,”, if G is understood.

We are now ready to establish a recursive condition for the existence of a single appear-

ance schedule.

Theorem 2: Suppose that G is a strongly connected SDF graph that contains more than one node.
Then G has a single appearance schedule if and only if

(1) G contains a subindependent subgraph G,; and

(2) G4 and (G — Gy,) both have a single appearance schedules.!

Proof. <= Let S4 and S, denote single appearance schedules for G, and G — G, respectively.

From theorem 1, we can assume without loss of generality that S, and S, both have unit blocking

factor. Let Ry =gcd{qa(n) | n € G;}, let Ry =gcd{qg(n) | n € G =G}, and let Sg denote the looped

schedule (R S4) (Ra Sp). Then from fact 4, it follows that S invokes each node n € N(G) exactly

qa(n) times, and from the subindependence of G, Sgis an admissible schedule for G. Applying
fact 2, we conclude that Sg is a PASS, and hence it is a valid single appearance schedule.

= Suppose that S is a single appearance schedule for G. Again, from theorem 1, we

can assume without loss of generality that S has blocking factor 1. Then S can be expressed as

SaSp, where S, and S, are nonempty single appearance subschedules of S that are not encom-

1. Note that (G — Gy) is not necessarily connected.
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passed by a loop (if we could represent S as a single loop (N (...) (...) ... (...)) then ged{qgg(x) | x
€ G} 2N, so S is not of unity blocking factor — a contradiction). Furthermore, repeatedly apply-
ing corollary 1, we can separate subschedule S, into a succession T4T5 ... T, of one or more sin-
gle appearance subschedules, where the set of nodes involved in each T, form a connected
subgraph M; and each distinct pair M;, M; is not connected. Thus T;T, ... TSy, is a valid single
appearance schedule for G. In this schedule, every actor x that appears in Ty is fired qg(x) times
before any node outside of M is invoked. It follows that M is subindependent of G — M. Also T,

is a single appearance schedule for My and T,Tj ... TSy, is a single appearance for G — M. QED.

In the following section, we will use this theorem to decompose strongly connected com-

ponents in a manner that preserves the looping structure inherent in the SDF graph.

4 LOOSE INTERDEPENDENCE

Theorem 2 implies that for an SDF graph to have a single appearance schedule, we must
be able to decompose it into two subgraphs, one of which is subindependent of the other. In this
section we show how this topological property and its converse can be used to generate compact
looped schedules. We begin with a definition.

Definition 6: Suppose that G is a strongly connected SDF graph. Then we say that G is loosely
interdependent if G can be partitioned into subgraphs Gy and G, such that G, |g G,. We say that
G is tightly interdependent if it is not loosely interdependent.

The properties of loose/tight interdependence are important for organizing loops because,
as we will show, the existence of a single appearance schedule is equivalent to the absence of a
tightly interdependent subgraph. However, these properties can be used even when tightly inter-
dependent subgraphs are present. The following definition specifies how to use loose interdepen-
dence to guide the looping process. The remainder of this paper is devoted mainly to

demonstrating the effectiveness of this approach.
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Definition 7: Let A, be any algorithm that takes as input a strongly connected SDF graph G,
determines whether G is loosely interdependent, and if so, finds a subindependent subgraph in G.
Let A, be any algorithm that finds the strongly connected components of a directed graph. Let Aq
be any algorithm that takes an acyclic SDF graph and generates a valid single appearance sched-
ule. Finally, let A4 be any algorithm that takes as input a tightly interdependent SDF graph that
has a PASS, and generates a valid looped schedule of blocking factor 1 for that graph. We define
the algorithm L(A,, Ap, Ag, Ay) as follows:

Input: an SDF graph G that has a PASS.
Output: a valid unit-blocking-factor looped schedule SL(G)
for G.
Step 1: Use A, to determine the strongly connected components
Gys Go;, ..., Gg Of G.
Step2: Consolidate Gy, Gp, ..., Gy into subgraphs, and call the
resulting graph G'. This is an acyclic graph.
Step3: Apply Az to G'; denote the resulting schedule S' (G).
Step 4:
for i=1, 2, ..., s
Apply Ay to Gy
if subgraphs X=X (G;), Y=Y (G;) are found such that XY,
then '
®*Recursively apply algorithm L to subgraph X; the
resulting schedule is denoted S (X).
®*Recursively apply algorithm L to subgraph Y; the
resulting schedule is denoted S (Y).
®let ry=gcd{qgg(n)|ne N(X)}.
*Let ry= gcd{qgg(n)|nEN(Y)}.
®*Replace the (single) appearance of G; in S'(G)
with (rs SL(X)) (xry SL(P))?t.
else (G; is tightly interdependent)
*Apply A4 to obtain a valid schedule S; for G;.
®Replace the single appearance of G; in S with §;.
end-if
end-for
The for-loop replaces each “G” in S'(G) with a valid
looped schedule for G;. From repeated application of fact 5,
we know that these replacements yield a valid looped sched-
ule S for G. We output S..H

1. It follows from fact 4 and the definition of loose interdependence that this is a PASS for G;.
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Remark 1: Observe that step 4 does not insert or delete appearances of actors that are not
contained in a strongly connected component G;. Since A3 generates a single appearance schedule
for G', we have that for every node n that is not contained in a strongly connected component of

G, #appearances(n, S (G)) =1.

Remark 2: If C s a strongly connected component of G and m € N(C), then since S, (G) is
derived from S'(G) by replacing the single appearance of each strongly connected component G,
with S, (G;), we have #appearances(m, S (G)) = #appearances(m, S_(C)).

Remark 3: For each strongly connected component G; that is loosely interdependent, L
partitions G;into X and ¥ such that X IG‘Y, and replaces the single appearance of G;in S$'(G) with S~
= (1 SU(X)) (ry SL (V). If m € N(X), then m ¢ N(Y), so #appearances(m, S') = #appearances(m,
SL(X)). Also since m cannot be in any other strongly connected component besides G;, and since
S'(G) is a single appearance schedule, we have #appearances(m, S|(G)) = #appearances(m, S').
Thus, m € N(X) = #appearances(m, S (G)) = #appearances(m, S (X)). By the same argument, we
can show that m € N(Y) = #appearances(m, S| (G)) = #appearances(m, S (Y)).

L(®, ¢, ¢, ¢) defines a family of algorithms, which we call loose Iinterdependence algo-
rithms because they exploit loose interdependence to decompose the input SDF graph. Since
nested recursive calls decompose a graph into finer and finer strongly connected components, it is
easy to verify that any loose interdependence algorithm always terminates. Each loose interdepen-
dence algorithm A =L(A;, Ay, A3, Ay) involves the “sub-algorithms™ A,, Ay, Az, and A4, which
we call, respectively, the subindependence partitioning algorithm of A, the strongly connected
components algorithm of A, the acyclic scheduling algorithm of A, and the tight scheduling algo-
rithm of A.

We will apply a loose interdependence algorithm to derive a nonrecursive necessary and
sufficient condition for the existence of a single appearance schedule. First, we need to introduce

two lemmas.
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Lemma 4: Suppose G is an SDF graph; n is a node in G that is not contained in any tightly inter-
dependent subgraph of G; and A is a loose interdependence algorithm. Then n appears only once
in S, (G), the schedule generated by A.

Proof. From remark 1, if n is not contained in a strongly connected component of G, the result is
obvious, so we assume, without loss of generality, that n is in some strongly connected component
H; of G. From our assumptions, Hy must be loosely interdependent, so A partitions H, into X(H;)
and Y(H;), where X(H,) |Hl Y(H,). Let H,' denote that member of {X(H,), Y(H,)} that contains 7.
From remark 3, #appearances(r, S,(G)) =#appearances(n, S,(H;").

From our assumptions, all strongly connected components of H;' are loosely interdepen-
dent. Thus, if n is contained in a strongly connected component Hy of H;', then A will partition H,,
and we will obtain a proper subgraph Hy' of Hy' such that #appearances(n, S,(H,") = #appearanc-
es(n, S,(Hy)). Continuing in this manner, we get a sequence Hy', Hy), ... of subgraphs such that
each H is a proper subgraph of Hi,, n is in each H{, and #appearances(n, S,(G)) =
#appearances(n, S;(H;")) =#appearances(n, S,(H") = ... . Since each H;' is a strict subgraph of its
predecessor, we can continue this process only a finite number, say m, of times. Then n is not con-
tained in a strongly connected component of Hy,, and #appearances(n, S,(G)) = #appearances(,
S,(H,)). But from remark 1, S,(H,,") contains only one appearance of n. QED.

Lemma 5: Suppose that G is a strongly connected SDF graph, P is a subindependent subgraph in
G, and C is a strongly connected subgraph of G such that CNP#Cand CNP#@. Then CNP

is subindependent in C.

Proof. Suppose that a.is an arc directed from a node in C N (G —P) to a node in C N P. By the sub-
independence of P in G, delay(a) 2 c(at) X qg(sink(cr)), and by fact 4, qg(sink(cr)) 2 qc(sink(ct)).
Thus, delay(a) 2 c(ax) X qg(sink(ar)). Since this holds for any o directed from C N (G - P) to
C NP, we conclude that C N P is subindependent in C. QED.

Corollary 4: Suppose that G is a strongly connected SDF graph, G, and G, are subgraphs such
that Gy |g Gp, and T is a tightly interdependent subgraph of G. Then T € G, or T € Go.
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Proof. Suppose that T has nonempty intersection with both Gy and G,. Then from lemma 5,
T M Gy is subindependent in T. Thus T is loosely interdependent. Contradiction.

Theorem 3: Suppose that G is a strongly connected SDF graph that has an admissible schedu-
le.Then G has a single appearance schedule iff every strongly connected subgraph of G is loosely

interdependent.

Proof. < Suppose every strongly connected subgraph of G is loosely interdependent, let A be any
loose interdependence algorithm, and let S denote the resulting schedule for G. Since no node in
G is contained in a tightly interdependent subgraph, it follows from lemma 4 that S,(G) is a single
appearance schedule for G.

= Suppose that G has a single appearance schedule and that G contains a tightly interde-
pendent subgraph C. From theorem 2, we can partition G into X, and Y, such that X, is subinde-
pendent of Y, and X, and Y, both have single appearance schedules. If X and Y, do not both
intersect C, then C is completely contained in some strongly connected component Z, of X, or Yy,
We can then apply theorem 1 to partition Z, into X; and Y4, and continue recursively in this man-
ner until we obtain a strongly connected subgraph Z, C G with the following property: Z, can be
partitioned into X and Yy such that X, N C and Y, N C partition C, and X, is subindependent of
Yy in Z. From lemma 5, X, N C is subindependent of Yy N C, and thus C is loosely interdepen-
dent. Contradiction. QED.

Corollary 5: Given an SDF graph G, any loose interdependence algorithm will obtain a single

appearance schedule if one exists.

Proof: If a single appearance schedule for G exists, then from theorem 3, G contains no tightly
interdependent subgraphs. In other words, no node in G is contained in a tightly interdependent
subgraph of G. From lemma 4, the schedule resulting from any loose interdependence algorithm
contains only one appearance for each actor in G. QED.

Thus, a loose interdependence algorithm always obtains an optimally compact solution
when a single appearance schedule exists. When a single appearance schedule does not exist,

strongly connected graphs are repeatedly decomposed until tightly interdependent subgraphs are
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found. In general, however, there may be more than one way to decompose G into two connected
parts so that one of the parts is subindependent of the other. Thus, it is natural to ask the following
question: Given two distinct partitions {Gy, G,} and {G;', G,'} into connected subgraphs such
that Gy | Gz and Gy' | Gy, is it possible that one of these partitions leads to a more compact sched-
ule than the other? Fortunately, as we will show in the remainder of this section, the answer to this
question is “No”. In other words, any two loose interdependence algorithms that use the same
tight scheduling algorithm always lead to equally compact schedules. The key reason is that tight
interdependence is an additive property.

Lemma 6: Suppose that G; and G, are tightly interdependent SDF graphs and G; N G, = @.
Then (G4 U Gy) is tightly interdependent. ,

Proof. Suppose that H=G, U G, is loosely interdependent. Then there exist subgraphs H; and H,
such that H = Hy U H and H; | H,. From Hi UH; =G, UGy, and G; NG, = @D, it is easily seen
that H, and H, both have a nonempty intersection with Gy, or they both have a nonempty intersec-
tion with G,. Without loss of generality, assume that Hy N G, # @ and H, N G, # . Since Gy is
tightly interdependent, there exists an arc o such that source(a) € G; N Hy, sink(a) € Gy N Hy,
and delay(a) < qc, (sink(a)) X c(sink(ar)), Since Gy C H, it follows from fact 4 that qe, (sink(a)) <
qu(sink(a)). Thus, source(ax) € Hy, sink(cr) € Hy, and delay(o) < qu(sink(a)) X c(sink(ct)), so Hy is
not subindependent of H,. Contradiction.

Lemma 6 implies that each SDF graph G has a unique set {C;, C,, ..., C,} of maximal
tightly interdependent subgraphs such thati # j = C;n G= @, and every tightly interdependent
subgraph in G is contained in some C;. We call each C; a tightly interdependent component of G. It
follows from theorem 3 that G has a single appearance schedule iff G has no tightly interdepen-
dent components. Furthermore, since the tightly interdependent components are unique, the per-
formance of a loose interdependence algorithm, with regards to schedule compactness, is not
dependent on the particular subindependence partitioning algorithm, the sub-algorithm used to
partition the loosely interdependent components. The following theorem develops this result.
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Theorem 4: Suppose G is an SDF graph that has a PASS, m is a node in G, and A is a loose inter-
dependence algorithm. If m is not contained in a tightly interdependent component of G, then m
appears only once in S,(G). On the other hand, if m is contained in a tightly interdependent com-
ponent T then #appearances(m, S,(G)) =#appearances(m, S,(T)) — the number of appearances of
m is determined entirely by the tight scheduling algorithm of A.

Proof. If m is not contained in a tightly interdependent component of G, then m is not contained in
any tightly interdependent subgraph. Then from lemma 4, #appearances(m, S,(G)) = 1.

Now suppose that m is contained in some tightly interdependent component T of G. We
set Mo = G, and suppose that T # M,,. By definition, tightly interdependent graphs are strongly
connected, so T is contained in some strongly connected component C of M,.

If T #C —ie. T is a proper subgraph of C — then C must be loosely interdependent,
since otherwise T would not be a maximal tightly interdependent subgraph. Thus, A partitions C
into X(C) and Y(C) such that X(C) |c ¥(C). We set M, to be that member of {X(C), Y(C)} that con-
tains m. Since X(C), Y(C) partition C, M, is a proper subgraph of M,. Also, from remark 3,
#appearanqes(m, 5,(My)) = #appearances(m, S,(M,)), and from corollary 4, T € M;.

On the other hand, if T = C, then we set M; =T. Since T #M,, M, is a proper subgraph of
M; from remark 2, #appearances(m, S,(M,)) =#appearances(m, S A(My)); and trivially, T S M;.

If T # M,, then we can repeat the above procedure to obtain a proper subgraph M, of M,
such that #appearances(m, S,(M,)) = #appearances(m, 5,(Mp)), and T & M,. Continuing this pro-
cess, we get a sequence My, My, ... of subgraphs. Since each M; is a proper subgraph of its prede-
cessor, we cannot repeat this process indefinitely — eventually, for some k > 0, we will have T =
M. But, by construction, #appearances(m, S,(G)) =#appearances(m, S,(My)) = #appearances(m,
Sa(My)) = ... = #appearances(m, S\(M,)); and thus #appearances(m, S,(G)) = #appearances(m,
S(T)). QED.

Theorem 4 states that the tight scheduling algorithm is independent of the subindepen-
dence partitioning algorithm, and vice-versa. Any subindependence partitioning algorithm makes
sure that there is only one appearance for each actor outside the tightly interdependent compo-

nents, and the tight scheduling algorithm completely determines the number of appearances for
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actors inside the tightly interdependent components. For example, if we develop a new subinde-
pendence partitioning algorithm that is more efficient in some way (e.g. it is faster, takes into
account vectorization, or minimizes data memory requirements), we can replace it for any exist-
ing subindependence partitioning algorithm without changing the “compactness” of the resulting
schedules — we don’t need analyze its interaction with the rest of the loose interdependence algo-
rithm. Similarly, if we develop a new tight scheduling algorithm that schedules any tightly inter-
dependent graph more compactly than the existing tight scheduling algorithm, we are guaranteed

that using the new algorithm instead of the old one will lead to more compact schedules overall.

5 COMPUTATIONAL EFFICIENCY

The complexity of a loose interdependence algorithm A depends on its subindependence
partitioning algorithm Aqp, strongly connected components algorithm A, acyclic scheduling algo-
rithm A, and tight scheduling algorithm A;,. From the proof of theorem 4, we see that Ay is
applied exactly once for each tightly interdependent component. Thus an efficient tight schedul-
ing algoritﬁm will not contribute to intractability. For example, the technique of [3] can be applied
as the tight scheduling algorithm. This technique involves a hierarchical clustering phase that has
time complexity1 O(number of arcs X number of nodes), followed by a scheduling phase that is
linear in the total number of firings. One drawback of this algorithm, as mentioned in section 1, is
that it requires a reachability matrix, which has quadratic storage cost. However, we greatly
reduce this drawback by restricting application of the algorithm to only the tightly interdependent
components. We are currently investigating other alternatives to scheduling tightly interdependent
SDF graphs.

The other subalgorithms, Agg, Aug, and A, are successively applied to decompose an SDF
graph, and the process is repeated until all tightly interdependent components are found. In the
worst case, each decomposition step isolates a single node from the current n-node subgraph, and

the decomposition must be recursively applied to the remaining (n — 1) - node subgraph. Thus, if

1. In the worst case, every arc corresponds to a cluster, and each clusterization step requires a reachability-matrix update that is
linear in the number of nodes.
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the original program has N nodes, N decomposition steps are required in the worst case.Tarjan
[21] first showed that the strongly connected components of a graph can be found in O(M) time,
where M = max(number of nodes, number of arcs). Hence A, can be chosen to be linear, and since
at most N < M decomposition steps are required, the total time that such an A, accounts for in A is
O(M?), In section 3 we presented a simple linear-time algorithm that constructs a single appear-
ance schedule for an acyclic SDF graph. Thus A, can be chosen such that its total time is also

oM3).

The following theorem presents a simple topological condition for loose interdependence
that leads to a linear subindependence partitioning algorithm A,

Theorem 5: Suppose that G is a strongly connected SDF graph. From G, remove all arcs o for
which delay(a) 2 c(or) X qg(sink(a)), and call the resulting SDF graph G'. Then G is tightly inter-
dependent if and only if G' is strongly connected.

Proof. = Suppose that G' is not strongly connected. Then G' can be partitioned into G;' and G,
such that there are no arcs directed from G,' to G;'. Since no nodes were removed in constructing
G', N(Gy") and N(Gy) partition N(G). Also, none of the arcs directed from S(N(G2), G) to
S(N(Gy'), G) in G occur in G'. Thus, by the construction of G', for each arc o directed from a node
in S(N(Gy), G) to a node in S(V(G4'), G), we have delay(a) 2 c(ar) X qg(sink(a)). It follows that G

is loosely interdependent.

< Suppose that G is loosely interdependent. Then G can be partitioned into G4 and G,
such that Gy |g G2. By construction of G', N(G;) and N(G,) partition N(G'), and there are no arcs in
G’ directed from S(N(Gy), G') to S(N(G;), G'). Thus G' is not strongly connected. QED.

Thus, Ay, can be constructed as follows: (1) Determine qa(n) for each node n; (2) Remove
each arc a whose delay is at least c(ar) X qg(sink(c)); (3) Determine the strongly connected com-
ponents of the resulting graph; (4) If the entire graph is the only strongly connected component,
then G is tightly interdependent; Otherwise (5) consolidate the strongly connected components —
the resulting graph is acyclic and has at least two nodes. Any root node of this graph is subinde-
pendent of the rest of the graph. It is easily seen that (1) and (2) can be performed in time O(M);
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Tarjan’s algorithm allows O(M) for (3); and the checks in (4) and (5) are clearly O(M) as well.
Thus, we have a linear A4, and the total time that A spends in Ay is O(M3).

We have specified Agp, Agg, Ags, and Ay such that each accounts for O(M2) time. The result-
ing loose interdependence algorithm is thus of quadratic worst-case complexity. Note that our
worst case estimate is conservative — in practice only a few decomposition steps are required to
fully schedule a strongly connected subgraph, while our estimate assumes N steps. For most

applications, the running time of the algorithm will scale linearly with the size of the input graph.

6 CONCLUSION

This paper has presented fundamental topological relationships between iteration and
looping in SDF graphs, and we have shown how to exploit these relationships to synthesize the
most compact looping structure for a large class of applications. Furthermore, we have extended
the developments of [3] by showing how to isolate the subgraphs that require explicit deadlock

detection schemes, such as the reachability matrix, when organizing hierarchy.

This paper also defines a framework for evaluating different scheduling schemes, having
different objectives, with regard to their effect on schedule compactness. The developments of
this paper apply to any scheduling algorithm that imposes hierarchy on the SDF graph. For exam-
ple, by successively repeatedly the same block of code, we can reduce “context-switch” overhead,
and thus improve throughput [19]. We can identify subgraphs that use as much of the available
hardware resources as possible, and these can be consolidated or “clustered”, as the computations
to be repeatedly invoked. However, the hierarchy imposed by such a scheme must be evaluated
against its impact on program compactness. For example, if a cluster introduces tight interdepen-
dence, then it may be impossible to fit the resulting program on chip, even though the original
graph had a sufficiently compact schedule.

We have incorporated the techniques of this paper into a block-diagram-based software
synthesis environment that has been developed in our research group [16]. We are currently inves-

tigating how to systematically incorporate these techniques into other scheduling objectives —
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for example, how to balance parallelization objectives with program compactness constraints.
Other important tradeoffs to examine include vectorization, as discussed above, and data memory

requirements.
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