

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EXACT MINIMUM DELAY COMPUTATION

AND CLOCK FREQUENCIES

by

William K.C. Lam, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/40

28 May 1993

EXACT MINIMUM DELAY COMPUTATION

AND CLOCK FREQUENCIES

by

William K.C. Lam, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/40

28 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EXACT MINIMUM DELAY COMPUTATION

AND CLOCK FREQUENCIES

by

William K.C. Lam, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/40

28 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Exact Minimum Delay Computation and Clock Frequencies

William K.C. Lam * Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Department of EECS, University of California, Berkeley

Abstract

Minimum as well as maximum circuit delays play vital roles in high performance systems.
In this paper, we analyze existing and new minimum delay models and show that these models
are special cases of a general circuit delay model introduced in [LBSV92a] which also unifies
all maximum delay models. Then, we provide algorithms to compute exactly various minimum
circuit delays with arbitrary gate delay models under the same framework. Thus, all minimum
and maximum circuit delay models are unified and the their correponding delays can be computed
exactly. Further, we consider the interactions of various minimum and maximum delays with
clock frequencies of circuits. Finally, we provide experimental results on ISCAS benchmarks.

1 Introduction

Much research in performance analysis of combinational circuits has been focused on the computa
tion of the longest delays under various delay models, for instance, viability delays [MB89], floating
delays [CD90, DKM91], transition delays [DKM92, LBSV92b], and delays by sequences of vectors
[LBSV92a]. Further investigations of high performance design reveal that not only longest delays
but also short delays play a vital role. Particularly, in wavepipelining designs where "waves" of
input data are fed into a circuit in such short intervals that multiple data co-exist in the circuit
simultaneously, the time intervals between data waves in which the circuit computes correctly are
determined by both the longest and the shortest paths of the circuit, [LBSV92c]. In this paper,
we propose two short delay models which are derivatives of a general delay model in [LBSV92a]
and study their exact computations using Timed Boolean Functions (TBF's). We show that the
minimum delay model, destabilizing delay, proposed in [CCD92] is the same as one of our proposed
model under practical situations. Then, we give theorems exhibiting the effects of minimum and
maximum delays on circuit operating speeds under all circuit delay models. Finally, we provide
experimental results on ISCAS benchmarks.

2 Why Minimum Delay?

In conventional clocking schemes, data are applied to circuits in such intervals that the present data
have propagated through the circuits, at least along the "true paths", before the succeeding data

'Supported by Fannie and John Hertz Foundation and SRC under contract 92-DC-008.

are supplied. That is, the clock intervals are equal to the lengths of true paths. However, in fact,
succeeding data can be applied much earlier as long as the succeeding data do not interfere with the
computation by the present data. Suppose two paths converge to a gate, with the first path longer
than the second. When the present data are propagating along the two paths to the gate, error
will result if the succeeding data arrive the gate along the shorter path earlier than the present
data arrive the gate along the longer path. Therefore, if the interval between data is greater than
the length difference of the two paths, the succeeding data will never catch up its previous data
along the shorter path; then, there is a time interval where the output of the gate gives the correct
computation. Therefore, if the intervals between consecutive data are greater than the path length
differences at all gates in a circuit and the output of the circuit is sampled at the correct times,
the circuit computes correctly. Computation in this mode is generally referred as wavepipelining,
[Cot69]. [LBSV92c] gives the following relationship between the correct clocking intervals and the
path lengths in a circuit.

THEOREM 1 Let Lmax and Lmin be the longest and the shortest topological path lengths of a
circuit. The clocking intervals in which the outputs of the circuit are valid are given by

rrnax jmin
< r <

H ~ H-l

where H is some integer. For aspecific interval ^jp- <r < jpzf, the output of the circuit computes
the functionality of the circuit delayed by H cycles.

If the longest path and the shortest path are close in length, the clocking intervals can be orders
of magnitude smaller than the longest path length; thus, circuits with closely matched paths can
operate at very high frequencies. Short paths play an important role in high performance systems.

3 Previous Works

Besides the topological shortest path model, there are currently two short delay models: minimum
destabilizing delay [CCD92] and minimum 2-vector delay [LBSV92c]. The minimum destabilizing
delay is a single vector delay similar to its longest delay counterpart, floating delay. The minimum
destabilizing delay is defined as follows. A circuit is initially stable under a vector, then the
nodes of the circuit take on arbitrary values, possibly under the influence of inputs applied later.
The earliest time at which the output of the circuit becomes unstable under all possible initial
vectors is the minimum destabilizing delay. In [CCD92], a sufficient condition is given in terms
of the floating delay and the minimum destabilizing delay of a circuit under which the circuit will
function correctly. In minimum 2-vector delay, a circuit is assumed to have settled under a first
input vector and a second vector is applied; the earliest time of the first output transition is the
minimum 2-vector delay. In [LBSV92c], a sufficient and necessary condition is given in terms of
the maximum 2-vector delay (transition delay) and the minimum 2-vector delay of a circuit under
which the circuit will function correctly.

Although these two short delay models seem unrelated, they can be regarded as two special
cases of a general delay model proposed in [LBSV92a] in which a circuit's delay model consists of

three basic elements: the circuit's structure, the gate delay models, and the family of input signals
to the circuit.

4 A General Circuit Delay Model

Here we review the general circuit delay model proposed in [LBSV92a]. The idea of this general
model is to identify the constituent elements of circuit delays. We identify the three elements as:
circuit's structure, gate delay models, and family of input signals. Different combinations of these
elements give rise to different circuit delay models. For instance, transition delay is the delay model
with the family of input being pairs of vectors, and floating delay is, under practical situations, the
delay model with the family of input being sequences of vectors. Similarly, minimum destabilizing
delay and minimum 2-vector delay are also derivatives of this general circuit delay model. The
following definition of the general circuit delay model is taken from [LBSV92a].

DEFINITION 1 (A General Delay Model) 1. Let circuit C be a connection of gates with
delay model Mg. and T, the family of inputs to C (assume that circuit C has already settled
before the applications ofX). Then, the circuit delay model for interval type is: [Dmtn(C,Mg,
J), Dmax(C, Mg, 1)], where Dmm is the earliest arrival time of the last output transition and
Dmaxf the latest arrival time of the last output transition.

2. Forl€ {w~,u;+,2}, where u>~ symbolizes sequences of vectors applied at t < 0 with the last
vector at t = 0, w+, sequences of vectors applied at t > 0 with the first vector at t = 0, and
the 2, a pair of vectors, we define:

• Dmax(C, Mg, u>~): the latest arrival time of the last output transition, when a sequence
of arbitrary number of vectors of arbitrary intervals between vectors is applied to the
inputs at t < 0, and the last vector is applied att = 0. Dmtn(C<, Mg, w~) is the same as
Dmax(C, Mg, w~) except that it is the earliest arrival time of the last output transition.

• Dmax(C, Mg} u>+): the latest arrival time of the first output transition, when a sequence
of arbitrary number of vectors of arbitrary intervals between vectors is applied to the
inputs att>0, and the first vector is applied at t = 0. Dmtn(C, Mg, u+) is the same as
Dmax(C, Mg, u>+) except that it is the earliest arrival time of the first output transition.

• Dmax(C, Mg, 2): the latest arrival time of the last output transition, when a pair of
vectors are applied with the first vector applied at t = —oo, the second vector, att = 0.
jDmm(C, Mg, 2) is the earliest arrival time of thefirst output transition under the same
setting.

3. The gate delay models considered in this paper are: Mg£ {[d?int dfax], [df1037, d^a% [0, dfax]},
commonly referred as bounded, fixed, unbounded delay models, respectively.

Thus, minimum 2-vector delay is£>m,n(C, M5,2), orsimply Dmin(Mg, 2). We call Dmin(C, M5, w+)
the minimum delay by sequences of vectors, which will be shown to be equal to the minimum desta
bilizing delay under practical situations.

5 Destabilizing Delay and Dmin(Mg,v+)

We first review destabilizing delay. Initially a circuit is assumed to have settled on an input vector
v, then inputs are applied to the circuit. To be conservative, the inputs can cause the nodes in the
circuit to take on arbitrary values. The destabilizing time of a node is the time for the node's value
to change from a stable value to an unstable value. Thus, given destabilizing times of inputs of a
gate, the destabilizing time of the gate is the delay of the gate plus either the earliest destabilizing
time of its inputs if all inputs are non-controlling or the latest destabilizing time of its controlling
inputs. That is, if all inputs of the gate have non-controlling stable values then the first change at
any of the inputs will cause the gate's output to change; or if some inputs have controlling stable
values, the gate's output will change only when all the controlling inputs have changed, assuming
conservatively that when the last controlling input changes all other inputs are non-controlling.
An input / to a gate G destabilizes G if either / has the earliest destabilizing time if all inputs
of G are non-controlling or / is the controlling input with the latest destabilizing time. A path
is destabilizing if each lead on the path destabilizes its succeeding gate under some vector. The
destabilizing delay of a circuit is the length of the minimum destabilizing path. In contrast to
floating delay, the minimum delays of gates, instead of the maximum delays of gates, are used in
the computation of minimum destabilizing delays.

Now we consider minimum delay by sequences of vectors Dmtn(Mg,u+). A circuit is initially
settled and an arbitrary sequence of vectors are applied. The time of the first output transition is
Dmtn(Mg,u>+). As will be seen later destabilizing delay is equal to minimum delay by sequences
of vectors under practical situations; that is, the conservative assumption that nodes can take on
arbitrary values in destabilizing delay is not conservative at all. The proof follows the same lines as
the proof that floating delay is equal to the maximum delay by sequences of vectors under practical
situations in [LBSV92a]. So, we will state the results here without proof.

THEOREM 2 // every gate in a circuit has variable delay, i.e. dm%n ^ dmax, and no two distinct
paths have the same set of gates, then, destabilizing delay = Dmtn([dmin,dmax],w+).

Proof. Omitted. •

In practical situations, gates have a range of delay values due to manufacturing processes; so
the assumption dmtn ^ dmax is not too restrictive.

6 Formulation of Minimum Delay Computation Using TBF's

We use Timed Boolean Functions (TBF's) to formulate the problems of computing minimum delay
and give exact solutions. With TBF's, both minimum delays can be formulated similarly under
various gate delay models. First, review the definition and some properties of TBF's.

7 Timed Boolean Function

DEFINITION 2 1

1Thisdefinition is a refined version of that in [LBSV92c]

1. A waveform space B(t) is a collection of mappings f : Rt-* B, B = {0,1}.

2. A Timed Boolean Function (TBF) is any function with domain Bn(t) and range B(t). For
analysis on most digital circuits, the following subset of TBF's is sufficient.

TBF F : Bn(t) »-• B(t), is defined recursively as follows.

• The identity function F (i.e. F(v)(t) = v(t), v(t) e B(t)) is a TBF.

• IfG(t): Bn*{t) h+ B(t) andH(t): Bn*(t) t-+ B{t) are TBF's, then, G(t),G{t) •H(t),G{t)+
H(t) are also TBF's.

• If F(t) is a TBF, then, for anyfunction <f>:R^ R, F(<f>(t)) is also a TBF.

Note that TBF is a natural generalization of Boolean function whose domain and range are re
stricted to constant mappings in B(t).

Example 1 Let x, y € Wbe the waveforms shown in Figure 1(a) and1(b); then the TBF /(a, b)(t) =
a(t —1) © b(t+ 1) represents the waveform shown in Figure 1(c) if a=x, b=y.

zn

1

in

1 [W

ro-o | ! ic*

1
*«•» t

i

I

I

| i

_ 1 :

Figure 1: Representing Waveforms by TBF

7.1 Modeling Timing Behavior with TBFs

Before representing a circuit by a TBF, each component of the circuit needs to be modeled by a
TBF.

Here, we only illustrate through examples the modeling process for some commonly encountered
gates.

1. Gates characterized by a single delay for each input-output pair. The complex gate shown
in Figure 2(a) has three inputs; input x,- has a delay Tj to the output. This gate is modeled
with the TBF:

y(t) = x^t - 7i) + x2(t - r2) + x3(t - r3).

XI

X2

Tr=l
Tf=2

>
Tr=4

(a) Tf=3

(b)

Figure 2: Modeling With TBF

|T=0

2. Buffers with different rising and falling delays. Let rr and tj be the rising and falling delays,
respectively. If tt>tj, then the buffer can be modeled as:

y(t) = x(t-Tr)-x(t-Tj).

and if rr < 77, the buffer can be modeled as:

y(t) = x(t - rr) + x(t - Tf).

3. Gates with different rising and falling delays for each input-output pair. Rising (falling)
delay is the delay when the output is rising (falling). Each input is modeled by a buffer with
different rising and falling delays; the "functional block" assumes zero delay. The overall TBF
for the gate is obtained through the usual functional composition. An example of an OR gate
is shown in Figure 2(b). Input 1 has a rising delay of 1 and a falling delay of 2, while input
2 has a rising delay of 4 and a falling delay of 3. The buffer modeling input 1 is

xi{t - 1) + x^t - 2)

and input 2 is

x2(t - 4) •x2(t - 3).

Therefore, the OR gate is

Xi(t - 1) + a?i(i - 2) + x2(t - 4) •x2(t - 3).

A common problem in digital circuit design is pulse shrinkage or dilation. Pulse shrinkage
(dilation) effects occur when a pulse passes through a chain of gates with unequal rising and
falling delays; the pulse width becomes narrower (wider) at the end of the chain. With the
above modeling technique, this effect is captured.

Once each gate of a circuit is modeled, the TBF for each node in terms of primary inputs can
be obtained by composing the gate model's TBF with the TBF's of the fanins of that gate. When
the TBF of a circuit output is found, the circuit's behavior at any time can be calculated from the
TBF. Suppose f(t,xi1....ixn,dii...idm) is the TBF of an output of a circuit, where xi,...,xn are
the primary inputs, and di,..., dm are the delays of gates in the circuit. The value of the output at
t = k is given by /(fc,a?i,....,a:n,di,...,dTO).

8 Formulation of Minimum Delay Computation

In minimum delay by sequences of vectors, assume the sequence is applied at t = 0; so the input
before t = 0 is some constant vector, v° = (vj,.. .,vJJ). After t = 0, the sequence of vectors
are arbitrary. Let /(t,£i,...,a;n,di,...,dm) be a TBF of a circuit. Then the minimum delay
by sequences of vectors is the minimum t such that /(t, a;i,...,a;n,di, ...,dm) is not equal to
/(-co, Xi,...,«„,di,..., dm). Symbolically,

mint

f(t, xi,...,xn, di,..., dm) ^ /(-oo, xi,...,xn, di,...,dm)

<Cin < di < <*Taa;
x,(r) = vf, t < 0

For 2-vector minimum delay, assume the first vector v1 = (uj,..., v*) is applied at <= —oo and
the second vector v2 = (u2,..., v2) is applied at t = 0. Therefore, its formulation is:

mini

/(*, xi,...,xn, di,..., dm) ^ /(-oo, a?i,...,&„,di,..., dm)

dfn < di < a?ax

Xi(r) = v/, t < 0

a:t-(r) = v2, r > 0

We call this formulation a mixed Boolean linear programming problem, because there are
Boolean constraints, e.g. /(t,&i,...,&n,di,...,dm) ^ /(-oo,a?i,. ..,xn,di,.. .,dm), as well as
linear constraints, e.g. dmtn < dt- < dmax.

The semantics of this mixed Boolean linear programming is illustrated by the following example.

Figure 3: Example for Mixed Boolean Linear Programming

Example 2 Refer to Figure 3. Assume the input signals are a pair of vectors switching simulta
neously att = 0. Let (a(0~),6(0~)) be the vector applied from —oo to 0, (a, 6), the vector applied
att = 0. The TBF of the circuit is:

/(t, a, 6,di, d2) = a(t —d2) + a(t —d\ —d2)b(t —d\ —d2)

The static logical function is:

/(-oo,a,6,di,d2) = a(0") + a(0")6(0~) = a(0")

The ranges of the gate delay variables are [1,2]. The TBF variables can take on either the input
vector applied before time 0 or after time 0. For example, TBF variable a(t -d2) equals to a(0~) if
t < d2 or equals to a if t > d2. Any assignment of TBF variables to their respective before or after
values x{0~) or x induces an associated linear programming problem. For instance, the Boolean
assignment to the TBF variables:

a(t —d2) — a
a(t - di - d2) = a(0_)
6(i-d1-d2) = 6(0")

induces following linear programmingproblem:

rain t

t-d2 > 0
t-di-d2 < 0

l<da < 2
1 < d2 < 2

The minimum is 1. For this Boolean assignment, the TBF becomes

a + a(0-)6((T)

which is not equal to the static function a(0~). Since the shortest topological path length is also 1,
the minimum t from the linear programming is indeed the minimum 2-vector delay of the circuit.
Therefore, finding the delay of a circuit is equivalent to finding a Boolean assignment to TBF
variables such the induced linear program gives the minimum t and the TBF function evaluated at
the assignment is not equal to the static logical function.

9 Computation of Exact Minimum Delays

In this section, we demonstrate a strength of formulating delay computations in TBF's: both
Dmtn(Mg,u>+) (destabilizing delay) and Dm%n(Mg,2) (minimum 2-vector delay) can be computed
under the same framework. In [LBSV92a], this advantage is also illustrated for maximum delay
computations for which previous approaches require separate algorithms for different delay models.
The computation of minimum delays parallels to that of maximum delays; thus, we will briefly
review the keys of maximum delay computation using TBF's and point out the differences for the
case of minimum delay computation.

9.1 Computation of Maximum Delays: a Review

Let /(.) be a TBF, a?i,...,xn, the inputs, di,...,dm, the gate delays of a circuit, respectively.
Assuming dmin ^ dmax, computation of Dmox(M5,w~), (viability delay, floating delay, and delay
by sequences of vectors) of the circuit is formulated as:

Dmax(Mg,u>~) = max*

/(*,£i,...,xn,di,...,dm) ^ /(oo,£i,...,a;n,di,...,dm)

d?in< di <dmax
Xi(t) = Vi t>0

where (i>i,..., vn) is a constant vector.
The algorithm to solve the above mixed Boolean linear programming is as follows. Associate

implicitly a pair (a, (3) with each path tt = (di,..., dp) and its correspondingTBF variable £,(<-&,),
where k{ = £?=i dt, a = £?=i d?in> ^d P = HU dTax- lt is shown in [LBSV92a] that the
maximum for the above programming can be found by searching t at the /?'s only, starting from
the largest (3. At each search value of t, a network called TBF network is constructed to represent
the TBF evaluated at t. At a particular value of t, the TBF at t is evaluated as follows. The TBF
variable Xi(t—ki) is set to vt- if t > /?, and set to a new Boolean variable, otherwise. When the TBF
network at t is constructed, its BDD is compared with that of the original network, i.e. checking

/(*, a?i,..., xn,di,..., dm) ^ /(oo, &i,..., xn, di,..., dm)

The maximum delay is the first t at which the inequality holds. Interestingly, only the upper
bounds dmaxis matter.

Computation of Dmax(Mg,2), maximum 2-vector delay or transition delay, is formulated as:

Dmax{Mg,2) = maxi

/(i,2i,...,2n,di,...,dm) £ /(oo,xi,...,xn,di,...,dm)

a?in < di < dmax
0

where (v},..., v„) and (v2,..., v2) are constant vectors.
Again, the maximum is found by searching t at the /?'s. At a particular value oft, the TBF at t

is evaluated as follows. The TBF variable Xi(t —ki) is set to v} if t < a, set to vj if t > /3, otherwise
set to yi = sxvf -f sxv}, where sx is a new Boolean variable that selects either v} or v2, because in
this case t —ki can be either negative or positive, i.e. Xi(t —ki) can be either v} or vf. Then, the
BDD's of the TBF network and the original network are compared. If they are not equal, "cubes"
of the difference BDD are enumerated to give sets of inequalities on paths. The sets of inequalities
together with dmtn < di < dmax are checked for feasibility. If all cubes are infeasible, the search
continues; otherwise, the maximum is found.

" \vf t>

9.2 Computation of Minimum Delays

The computation of minimum delays can also be formulated using TBF's. The computation of
Dmtn(Mg,u+), destabilizing delay or minimum delay by sequences of vectors, is given by:

Dmax(Mg,u+) = mint
/(t,ar1,...,xn,di,...,dm) ^ /(-oo,a?i,...,a:n,di,.. .,dm)

a?in< di <dmax
Xi(t) = vi t<0

where (vi,..., vn) is a constant vector.
This formulation can be seen similar to that of maximum delay computation by replacing t by

-r. Thus,

Dmax(Mg,u+) = maxr
/(-T»&i»'''»3n»di,...,dTO) ^ /(oo,x1,...,a;n,di,...,dm)

a?in< di <a?ax
Xi(-r) = Vi t > 0

The algorithm for solving the programming is similar to that of maximum delay. Instead of
searching t on /?'s starting from the largest /?, search t on a's starting from the least a. A TBF
variable X{(t —ki) is evaluated to «,• if t < a, and to a new Boolean variable, otherwise. The rest
of the algorithm is the same.

Computation of Dmtn(Mg,2) is formulated as:

Dmin(Mg,2) = mint
/(t,x1,...,x„,d1,...,dm) ^ /(-oo,a;i,...,a;n,d1,...,dm)

dfn< di <d?
0

0-to-tin
where (v\,..., v^) and (v2,..., v2) are constant vectors.

Again the search is performed on a's. And a TBF variable x,-(t - ki) is evaluated to v} if
t - k < 0, to vf if t —fc > 0. The rest of the algorithm is the same.

10 Minimum, Maximum Delays and Clock Frequencies

The results so far in this paper and those in [LBSV92a] show that the delays JDm,n(M^,u;+),
Dmin(Mg, 2), Dmax(Mg,u>-), and Dmax(Mg,2) can beformulated using TBF's and computed under

10

the same framework; thus, viability, floating, transition, destabilizing, and 2-vector delays are
unified. Here, we illustrate how these delays interact to affect the performances of synchronous
systems. As discussed earlier, topological longest and shortest paths limit operating speeds due
to interferences of signals. The interactions between the longest and the shortest paths under the
2-vector sensitization criterion are stated by a theorem in [LBSV92c], which we repeat below.

Let f[n —H] be the functionality of a circuit delayed by H cycles.

THEOREM 3 If the interval [^77—,7737) is non-empty, the valid clocking interval is

,Dmax(Mg,2) Lmax x ^ . ,Dm,n(M5,2) Lmin x , „max(LiLi,-)<r<M(gl_f, Jt_)>/crjr>1
and

Ttnax

max(£>mox(Af5,2),-2-) < r, forH = l
The computed function at r is f[n —H].

Proof. See [LBSVon]. •
The expressions for the intervals are similar to that for topological paths (see Theorem 1),

except for the max and min functions. The max and min function limit the ranges of the intervals
so that the analyses of jDm,n(M5,2) and Dmax(Mgi2) remain valid within the intervals.

Now, we present a theorem relating Dmm(M5,u>+) and Dmax(Mg,w~) to valid clocking intervals.
Dmtn(Mg,u+) and Dmax(Mg,u)~) have relatively simple computational algorithms and are widely
used in delay estimations.

THEOREM 4 If the interval [^^,7737) is non-empty, the valid clocking interval is

Dmax(Mg,u-) Dmin(Mg,u+)
H ~T< H-\

The computed function at r is f[n —H].

Proof. Observe that Dmax(Mg,u-) < Lmax and Dmin(Mg,u+) > Lmin. If the interval
[^no-j^^zf) .g non_emptv^ tne mtervai [Dmax{M9,u) Dmtn^M^w)^ can ^ 8pijte<j jnto tnree SVL^_

intervals: {"""W^K"?), [*]F,£r), ™* [jgr,^T.^)-
Obviously, the second interval is valid. Need to show the first and the third intervals are also

valid. Here, we show the third interval is valid. Let /(..., x(n +~),...)bea TBF of the circuit.

We want to show that for r <E [^^"'Xi'"^)* /(..., x(n +[=*]),.. .)= f[n - H). Consider
the TBF variables such that x(n + I=M) ^ x(n - H). Then, n+ I=£• I> n- H+ 1; equivalently,
(H—l)r > k. Therefore, these variables correspondto the variables with t > k in /(..., x(t—k),...),
where t = (H - l)r. The interval [ffgjf, D ^^)) implies Lmin < (H - l)r < Dmin(Mg,u+);
or Lmin < t < Dmin(Mg,cj+). By the definition of Dmin(Mg,u+), the variables with t > k are not
in the support of /(..., x(t —k),...). Therefore, the variables such that x(n + ^r) i=- x(n - H)

11

are not in the support of /(...,x(n + [^*j),...)• Hence, /(...,x{n +\=£\),...)= /[» - B]. The
interval [^.^y) is valid.

The proof for the interval [Ha'w »^JT"]1S analogous. •
It is interesting to see this theorem has the exact form as Theorem 1. If the topological interval

[^7T~i W^) *s not emPtv> a wider interval can be easily obtained by replacing Lmax and Lmin by
Dmax(M3,u-) and Dmin(Mgiu;+), respectively.

11 Balancing Circuits

From our experimental results on ISCAS benchmarks, all the circuits have very different the longest
and the shortest paths, which are not amicable for wavepipelining. We use a very simple algorithm
to balance the circuits to make the long and short paths close. The balancing algorithm is as
follows.

1. Sort nodes in a topological order so that a node appears later than all of its fanins.

2. For each node, compute the lengths of the longest and the shortest partial paths from the
node to the primary inputs.

3. For a node n, consider all its fanins that do not have the longest partial paths from n. Resize
the gates of the fanins to increase their lengths. If resizing of some fanins affect some longest
paths in the circuit, add delays to the outputs of these fanins instead of resizing.

The complexity of the above algorithm is linear in the number of connections of the circuit.

12 Experimental Results

We implemented the algorithms for computing the exact minimum 2-vector delays and delays by
sequences of vectors. The following ISCAS benchmarks were run on a DECstation 5000 (38 mips)
with a standard sis script and then mapped to the mcnc library. The actual delay values used are the
ones given in the library. The minimum gate delay is assumed to be 80%of the maximum gate delay.
Lmax is the longest topological path length, Dmin(2), an abbreviation for Dmin([dmin, dmax], 2), and
jDmtn(u>+), abbreviation for Dmin([dmin,dma%u+). After the minimum and maximum delays of
the benchmarks were computed, the circuits were balanced using the balancing algorithm. The first
table shows the minimum and the maximum delays of the benchmarks before and after balancing.
The CPU times are the average CPU times in computing the delays.

12

Before Balance After Balance

Circuit rtnax £>m,n(2) Dmtn(u>+) rmax Dmtn(2) Dmtn(u+) CPU (sec)

C432 39 1.68 1.68 39 31.2 31.2 50

C499 28.9 1.28 1.28 28.9 23.12 23.12 4.35

C880 36.4 0.88 0.88 36.4 29.12 29.12 0.35

C1355 28.9 1.28 1.28 28.9 23.12 23.12 4.29

C1908 41.1 1.28 1.28 41.1 32.88 32.88 1.56

C2670 36.5 0 0 36.5 29.2 29.2 0.76

C3540 51.2 0.8 0.8 53.1 42.48 42.48 0.86

C5315 51.6 0 0 51.6 41.28 41.28 1.38

C6288 140 1.52 1.52 140 112 112 4.31

C7552 59.8 0 0 59.8 47.84 47.84 1.66

The following table gives the valid clocking intervals for the balanced circuits. The balancing
algorithm was able to balance perfectly for all circuits, i.e. all paths have the same length. In these
balanced circuits, all the maximum delays, e.g. longest topological path lengths, 2-vector delays,
floating delays, are equal; thus, the maximum delays are simply denoted by Dmax. Similarly for
the minimum delays.

Circuit r\max nmm Valid Intervals H

C432 39 31.2 [39, oo),[19.5,31.2),[13,15.6),[9.7,10,4) 1,2,3,4
C499 28.9 23.1 [28.9, oo),[14.5,23.2),[9.6,U.6),[7.2,7.7) 1,2,3,4
C880 36.4 29.1 [36.4, oo),[18.2,29.1),[12.1,14.6),[9,9.7) 1,2,3,4

C1355 28.9 23.1 [28.9, oo),[14.5,23.1),[9.6,11.6),[7.2,7.7) 1,2,3,4
C1908 41.1 32.8 [41.1, oo),[20.6,32.8),[14,16.4),[10,ll) 1,2,3,4
C2670 36.5 29.2 [36.5,oo),[18.3,29.2),[12.2,14.6),[9.1,9.7) 1,2,3,4
C3540 53.1 42.4 [53.1, co),[26.6,42.4),[17.7,21.2),[13.2,14.1) 1,2,3,4
C5315 51.6 41.2 [51.6, oo),[25.8,41.2),[17.2,20.6),[12.9,13.7) 1,2,3,4
C6288 140 112 [140, oo),[70,112),[46.6,56),[35,37.3) 1,2,3,4
C7552 59.8 47.8 [59.8,oo),[29.9,47.8),[20,23.9),[15,15.9) 1,2,3,4

As can be seen, after balancing, the circuits can operate at speeds as much as four times faster.

13 Conclusion

In this paper, we analyzed existing and new minimum delay models and showed that these models
are special cases of a general circuit delay model introduced in [LBSV92a] which also unifies all
maximum delay models. Then, we provided algorithms to compute exactly various minimum
circuit delays with arbitrary gate delay models under the same framework. Thus, all minimum
and maximum circuit delay models are unified and the their correponding delays can be computed
exactly. Further, we considered the interactions of various minimum and maximum delays with
clock frequencies of circuits. Finally, we provided experimental results on ISCAS benchmarks.

13

References

[CCD92] S. Chen, H. Chen, and D. Du. The role of long and short paths in circuit performance
optimization. 29th ACM/IEEE Design Automation Conference, 1992.

[CD90] H. C. Chen and D. H. Du. Path sensitization in critical path problem. 1990 ACM
Workshop on Timing Issues in the Specificationand Synthesis of Digital Systems, 1990.

[Cot69] L. Cotten. Maximum rate pipelined systems. 1969 AFIPS Proceedings of Spring Joint
Computer Conference, 1969.

[DKM91] S. Devadas, K. Keutzer, and S. Malik. Delay computation in combinational logic
circuits: Theory and algorithms. IEEE/ACM International Conference on Computer-
Aided Design, Nov. 1991.

[DKM92] S. Devadas, K. Keutzer, and S. Malik. Certified timing verification and transition delay
of a logic circuit. Proc. of the 29th Design Automation Conference, June, 1992.

[Kog81] P. Kogge. The Architecture of Pipelined Computers. Prentice-Hall, Englewood Cliffs,
N.J., 1981.

/'

[LB92] W. Lien and W. Burleson. Wave-domino logic: Timing analysis and applications. 1992
ACM Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,
1992.

[LBSV92a] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Circuit delay models and their
exact computation using timed boolean functions. IEEE/ACM Design Automation
Conference '93, 1992.

[LBSV92b] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Exact delay computation with
timed boolean function. UC Berkeley ERL memorandum: UCB/ERL M92/57, May
1992.

[LBSV92c] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Valid clocking in wavepipelined
circuits. IEEE/ACM International Conference on Computer Aided Design, '92, Nov.,
1992.

[LBSVon] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Valid clock frequencies and
their computation in wavepipelined circuits. IEEE transaction on CAD, 1993, (will
submitted for publication).

[MB89] P. McGeer and R. Brayton. Provably correct critical paths. The Proceedings of the
Decennial Caltech VLSI Conference, 1989.

[Ung69] Stephen H. Unger. Asynchronous Sequential Switching Circuits. John Wiley and Sons,
Inc., 1969.

14

	Copyright notice 1993
	ERL-93-40

