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Abstract

In thisreport we present a new architecture for a Field Programmable LogicDevice. The architec
ture is geared towards routing completion and predictable timing performance. The central prin
ciple of the new architecture is based on the concept of efficient use of silicon resources. It is
performance-oriented, with predictable interconnect and logic delays, and has aguaranteed routabil-
ity. Latency in the original circuit is exploited in such a manner as to make efficient reuse of in
terconnect resources. Specifically, the given circuit is topologically levelized and implemented in
a folded-pipeline manner. The new architecture is CAD friendly, thereby eliminating the need for
complex time-consuming place and route tools.



1 Introduction

In this report, we introduce a newarchitecture for a field programmable logic device (FPLD). The
area of FLPDs and field programmable gate arrays (FPGAs) has been gaining prominence in the
last few years. Many new chip architectures are being introduced in the market, along with related
computer-aided design (CAD) tools to assist the user in the implementations of digital designs on
thesechips. One of the advantages of usingFPGAs is fast turn around time, andthis meansthatthe
CAD tool should complete the user's design implementation on the FPGA with little orno manual
intervention. Designing FPGA chip architectures while keeping inmind theabilities ofcurrent CAD
tools, is hence an area of active research.

We have christened our architecture "Dharma". Dharma is meant for use along with its CAD
tool. Dharma is geared towards routing completion and predictable timing performance. The task
of theCAD tool for this architecture is considerably simplified - tominimize thenumber of levels
in the circuit, with the constraint that the number of nodes per level should not exceed a certain
number (decided by the available resources on chip). The tasks of placement and routing are made
almost trivial, because of the architecture.

In the next section, we motivate our work further. The central idea of our architecture is based
on theconcept of time-sharing of silicon resources. We assume single clock synchronous circuits
with registered inputs and outputs. In such circuits, the combinational part of the circuit can be
topologically levelized, and the levels are then implemented in folded-pipeline fashion. This idea
is explained in Section 3. The architecture itself is described in Section 4. The architecture is
illustrated with detailed examples in Appendix I. A brief analysis of the architecture is given in
Section 5. Section 6 outlines various modifications to the generic architecture of Section 4 and
Section 7 discusses mapping issues.

2 Motivation

When the FPGA chips made their entry into the market, the idea was to make possible fast proto
typing. Many different architecture styles have cropped up [1]; differing mainly in type of logic
blocks, technology used (like anti-fuse, SRAM), and routing resource availability anddistribution.
But they havedepended on the same basic idea - to make the connections programmable.

Designing circuits using these kinds of architectures has proceeded very much along the lines
ofmask programmable gate arrays:

1. Map the circuit gates into the logic blocks of the FPGA chip.

2. Place the logic blocks on the FPGA plane.

3. Route the connections using the FPGA programmable routing resources.

All the above 3 steps are the responsibility of the CAD tools accompanying the architecture.
Step 3 has tended to be the most difficult for certain architecture styles[2], as far as completion of
routing is concerned. If performance (clock speed of the FPGA-implemented circuit) is made a



Circuit Delay (in ns) Routing delay
per level (ns)

9sym 69.3 3.1

clion9 70.2 3.3

cs8 70.6 3.4

9symml 72.8 4.0

rd84 77.1 5.0

misex2 93.3 9.1

cex2 95.3 9.6

cdkl6 102.8 11.5

b9 107.2 12.6

Table 1: Wom-case delays for some benchmark examples. All the circuits have 3levels oflogic each. Each circuit isplaced and routed on
thesmallest Xflinx 3000 series chip thathasenough number ofCLBs tofitthedesign.

criterion too, atpresent there is no commercial FPGA chip and accompanying CAD tool which can
guarantee a given clock speed, orperform the above 3 steps while taking into consideration both
logic and routing delays. As a result, it isnot yet possible to fully utilize a programmable chip in
high-performance designs.

The synthesis step (mapping) for performance has proceeded along the lines ofdelay minimiza
tion by reducing the number of logic levels [6, 9]. By decreasing the number of logic levels, the
numberoflogic blocks along the critical path isreduced, and it is hoped that this will produce faster
circuits. However, this does not always turn out to be true, since the placement and routing tools
may notsucceed in keeping the interconnect delay low. In table 1we have tabulated the worst-case
delays for some combinational benchmark circuits, after place and route on Xilinx [15] 3000 series
FPGA chips. Each of the circuits has 3 levels of logic, but we observe that the the delay varies by
a factor of about 60%. This is because the routing delay per level (definedas total routing delay
divided by number of levels) varies widely. In table 2 we have tabulated the worst-case delays for
circuitswith 4 levels of logiceach. Again weobserve widevariation in the delays. Further, we see
that some circuits with 4 levels of logic (cex7, cex5, cex4 and cs420) have lesser delay than circuits
with 3 levels of logic (cdkl6, b9).

Thereason forpoorperformance characteristics ofFPGA-implemented circuitdesigns is mainly
due to the routing architecture. Sinceeach routing track can carry only one signal, it is difficult
for the CAD tool to program the connections in such a manner that both the routing completion
requirement and the delay constraints are metat the same time.

So far, this problemhas been tackled in the following manners:

• Architecture approach The chip architecture designers have essentially punted on the prob
lem, by making available much more routing resources than needed. This eases the task of
the router, and routing completion is usually possible. However, silicon resource has been
wasted, and because of larger number of switches per track, the parasitic capacitance on the
track is quite large, and hence causes poor timing performance.



Circuit Delay (in ns) Routing delay
per level (ns)

cex7 86.3 4.3

cex5 94.0 5.8

cex4 99.5 6.9

cs420 102.0 7.4

f51m 109.3 8.8

clip 120.5 11.1

count 133.1 13.6

apex7 168.6 20.7

Table 2: Worst-case delays for examples with 4levels of logic each. Compared to table 1, some circuits have lower delay than 3-level circuits.

• CAD approach[2,11] The quality of therouting depends on the manner in which the circuit
gateshave been allocated to the FPGA blocks,in Step 1. Hence a CAD tool which combines
steps 1,2 and 3 above could beexpected toperform better than those which split it into steps.
But no sure-fire way of combining these steps hasbeenpublished so far.

The way to go, it seems to us, is to combine the chip architecture design along with the CAD.
Inotherwords, the chiparchitect has to acknowledge that certain problems are toodifficult to solve
for the CAD tool, and hence design the programmable chip such that these problems do notoccur.
Research in the area of combining architecture and CAD is ongoing in the universities; but the
efforts therein have been to modify existing FPGA architectures.

We present an entirely different architecture. It has programmable routing elements and pro
grammable logic elements like current FPGA chips. However, the architecture has been designed
such that steps 2 and 3 above are reduced to almost trivial steps, and the CAD tool's responsibil
ity now lies only in performing step 1. This means that the mapping solution in itself decides the
performance of the circuit.

3 Levelization: a means to share silicon

In this section, we develop the central idea on which Dharma is based. Our idea is to time-share
routing resources. We start by describing signal propagation in logic circuit, and then show how
levelization and the addition of latches can makeit possible to time-share routing.

3.1 Signal propagation in logic circuits

In Figure3.1 we show the general model ofa sequential logic circuit. It consists ofa combinational
logicblock and sequential elements(latches). The outputof the latches are fed as input to the com
binational logic block, and some outputs of the combinational logic block are fed back as inputs
to the latches. In addition to the outputs from the latches, the combinational block also gets inputs
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Figure 3.1* Ageneral model ofasequential logic circuit.

directly; andsomeofits outputs neednot feedback to the latches. The speed of thiscircuit is defined
as the rate at which the latches can be clocked. Forcorrect operation, if Tc is the time-period of the
clock, D is the delay through the combinational block and T8d is the latch set-up plus latch delay
times,

Tc > D + Tad.
What do we mean when we say that the combinationalblock has delay Dl Let the inputs to the

combinational block assume their correct value at time instant U. Then, if the time instant at which
alloutputshaveassumed theircorrect values (as determined by the function thecombinational block
is implementing) is <0, then D = t0-1,. Someof theoutputs may assume their correct values earlier
than the otheroutputs,but in the definition of thedelay Dy we require all the outputsto have settled
to their correct values.

How do signals flow in such a circuit? Assume thatat some instant of time <„ the latchoutputs
and other inputs to the combinational block are ready. After D units of time, the outputs of the
combinational block are valid, and after another T8 (latch set-up time) units of time, the values can
be latched. After Tj (latch propagation delay) units of time, the latch outputs are valid, and the
signal flow cycle repeats.

Let us now observe how signals propagate through the combinational block. When the number
of inputs and outputs arelarge, the combinational block is typically implemented as a multi-level
circuit, as shown in Figure 3.2.

The nodes of the directed acyclic graph (DAG) in Figure 3.2 represent single output combina
tional gates, and the edges represent the interconnection between them. The symbols within the
nodes represent the delay through the gates and the interconnection delay is marked by symbols on
the edges.

For ease of explanation, and without loss of generality, let us assume the gate delay to be the
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FigUTe 3.2: Multi-level implementation ofcombinational logic block.

same for all gates, and let it be 6. Similarly, let us assume the interconnect delay to be the same
for every source-sink pair, and let it be7. With these assumptions, we can immediately seethat the
delayof the entirecombinational block, D is given by

D = L6+ (1+1)7,
where L is the maximum number of levels in the DAG.

In Figure 3.3 we show how the signals propagate with time. In the first time interval 7, the
signals propagate through the first level of interconnect, following which they propagate through
the first level of logic in 6 time units. Hence, at the end of 7 4- S units of time, after inputs are
valid, the signalshave reached the outputsof the first level of logic. Similarly, the signals propagate
through the otherlevels of logic and finally reach the outputs of the Xth level after time L(6 + 7).
One additional 7 time interval is required to propagate through the interconnection to the output (or
latch inputs).

Consider Figure 3.4, where we have introduced latches at all the inputs and at the outputs of
all the nodes of Figure 3.2. For the present, let us assume that these latches are ideal, and have no
set-up/hold times, nor any propagation delays. Let the inputs be latched at time instant tx. After
time interval 7 -I- £, the outputs of the first level of logic are latched. At time instant U + 2(7 + £),
the outputs of the second level of logic are latched, and so on. Since the latches make available the
signal value to higher levels of logic, the interconnect and logic resources at level i perform useful
work only during the time intervalU + (t - \)(6 + 7) to U+ i(6 4- 7) and are 'idle' (not producing
anything new) for the rest of the time during a clock cycle U to (*, + D).

In Figure 3.3, we have used 2 different shades. Each resource, be it interconnect or logic, is
shaded black when signals are propagating through it for the first time. At the end of the black
shaded region, signals are available for use by the next resource (logic or interconnect, as the case
may be). The light (grey) shade is used to show that the resource is, in some sense, 'idle*, since it
is not producing anythingnew. Our aim is to reuse the resource during its idle period.
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Figure 3.3: Signal propagation in Figure 3.2 and the identification of 'idle* resources. Lightly shaded regions correspond to time-intervals
during which the logic orinterconnect resource isnot in use, when ideal latches are used to hold output logic levels, asillustrated inFigure 3.4
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Figure 3.4: The DAG ofFigure 3.2 isredrawn here with ideal latches at the outputs ofevery node and also at the inputs to the combinational
logic block.



3.2 Levelize-and-hold

Fromthe aboveobservation, we candevelopa strategy fortime-sharing resources. We first perform
a topological levelization of the DAG representing the combinational block of the input circuit.
Nodes at the same level cannot be time-shared since they evaluate theiroutputs in parallel. Nodes at
different levels can be time-shared, i.e., nodes at level i +1 can use the same logic resource used by
nodes at level i, since the nodes at level i + 1 cannot start their function evaluation until the nodes
atlevel i havecompletedtheirevaluation. Similarly, the interconnect resource connecting level i to
i + 1 can be used to connect level i + 1 signals to level i + 2.

Hence, Dharma needs to have one level of interconnect, one level of logic, and latches to hold
the values of signals generated. We also need a means to change the interconnection and logic
function, when the next level of logic and interconnect are to be implemented. In the next section
we describe how this is achieved in Dharma.

3.3 Sequential elements

So far we only described how the combinational blockof Figure 3.1 can be implemented by time
sharing logic andinterconnection. Do the sequential elements of Figure 3.1 pose a problem? No,
theydo not, sincethey are required to latch thevalues of theoutputs of thecombinational block, and
make them available as inputs when the next clock periodbegins. In our levelize-and-hold scheme,
this function is already being performed by the latches of hold. Thus, using levelize-and-hold, the
only differencebetween combinational andsequential circuits is that the last level is fed backto the
first level in the latter, but not in the former.

4 Dharma Architecture

In this section, we describe the new architecture. We first give an overview using a high-level block
diagram and then go into the details of each block.

4.1 Overview

The central idea of Dharma is the time-sharing of silicon area, especially the interconnection re
sources. This is made possible because of the topological levelization of the input circuit being
implemented on Dharma. Dharma consists of four main blocks (see Figure 4.1):

1. A one-dimensional array of dynamic logic modules (DLM)

2. A one-dimensional arrayof pass-buffers

3. Dynamic Interconnection Array (DIA)

4. Latches
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Figure 4.1.' High level block diagram ofDharma

A circuit to be implemented on Dharma is first levelized. Let / be the number of levels. Then
the implementation of this circuit on Dharma is a cyclic repetition of / internal cycles. In internal
cycle i, the logic modules are configured to implement the functions in level i of the circuit, and
the interconnection block is configured to implement the connections between level t* and i + 1. We
use the term dynamic, to describe the logic modules and the interconnection, because the function
implemented by the logic modules and the interconnection structure is dynamically re-configured
atevery level. Note thatprogramming of acircuit ontoDharma consists of a one-timecompilation
of the values to be loaded into the DLMs and DIAs. These values are then loaded ontothe chip at
power-on or 'boot time'.

A DLM generates an output which is a combinational function of its inputs. To allow the pos
sibility of realizing any function, the DLM is a RAM (look-up table). All the DLMs can perform
a look-up (based on the input configuration) in parallel. Hence, each level of logic of the input cir
cuit can be evaluated in parallel by the DLM array, (provided, of course, the number of functions
being evaluated is less than the number of DLMs). The DIA connects the outputs of the DLMs and
pass-buffersto the inputs of the next level of logic, through latches. To allow 100%routability, with
predictable performance, the DIA block is designed such that all required connections are possi
ble. The latches are used to store the signals between levels, and they also function as storage for
state variables, in sequential circuit implementations. The pass-buffers arerequired to pass signals
through levels; eg., if signal X is generated in level 2 andrequired in level 4, X will pass through
level 3.

Based on the above four blocks, Dharma can be parameterized by the following variables (as
signing different values to thesevariables will generate a chip-series).
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1. Number of DLMs, C.

2. Number of inputs per logic DLM, K.

3. Number of pass-buffers, B.

4. Number of levels, L.

The number of internal latches would then be KC + B.
In addition to the four main blocks illustratedin Figure4.1, Dharma has the following:

1. Level counting circuitry, consisting of

(a) Level counter, to keep track of which level is currently evaluated.

(b) Maximum level register, to store the value of the maximum level of the circuit being
implemented.

(c) A decision circuit, to control when the level counter loops back.

2. Internal clocking circuitry. The levels are changed at the rate of this internal clock.

3. Memory write circuitry, to program the chip for a particular circuit. This will write into the
memory bits of

(a) The DLMs

(b) The DIA

A detailed block diagram of the chip is illustrated in Figure 4.3.

4.2 Dynamic Logic modules

The logic module has to be general enough that it can be programmed to perform many combina
tional function of its inputs. Among the known logic modules are PLAs, look-up tables and MUX
based modules. Among these, only the look-up table based modules can perform all the combina
tional functions of its inputs. Xilinx series of chips have used look-up table based logic modules,
in various configurations, and also with more than one output per module. For the purposes of il
lustration we have chosen the logic module to be a A'-input, 1-output LUT. However, it should be
noted that the architecture is general enough to allowothertypes of logic modules. The advantages
of using more complex configurations would depend on how well logic modules can be utilized.

Each logic modulemay haveto perform a different function ateach level. A Af-input, 1-output
LUT requires 2K bits of memory to implement any function of AT-inputs. If a single chip can be
used to implement circuits of atmost L levels, then each logic module will require L x 2K bits. A
detailed diagram of theDLMis shown in Figure 4.2. There are many ways in which thelevel select
lines and the K address lines can be combined together, and the figure shows one way. Which is
the best one to use will depend on the area usage and memory read time, which would depend on
the technology being used. Combining the level-selects and the K inputs together, is in essence
making each DLM a(K + /o^I)-input, 1-output LUT, and this LUT should be designed such that
area usage iskept down while giving timing performance as close tothe A'-input LUT as possible.
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4.3 Pass buffers

The pass buffers areused to pass signals through levels, as alreadydescribed in the previous section.
Although it is nice to think of them as buffers, in actuality they need not be anything more than a
wire, since they just transfer the input back into the DIA block.

4.4 Dynamic Interconnection Array

The DIA block consists of two crossbar switches, as shown in the detailed diagram in Figure 4.4.
This breakup into two crossbars reduces the number of routing switches.

The X-crossbar connects the outputs of the DLM and the buffers to the latches at the inputs of
the DLM array. The B-crossbar connects the buffer outputs to the latches at the inputs of the buffer
array. A DLM output which has to pass through the next level is directly connected to a unique
buffer. This is a hard-wired connection. However, this connection passes through a multiplexer,
allowing the buffer to be used to pass other signals, when the DLM at its input does not require to
have its output passed through.

The circuit inputs enter the interconnection matrix, multiplexed with the DLM and buffer out
puts. Input signals that are required at higher level in the circuit can be multiplexed with buffer
outputs (those buffers that do not have their inputs multiplexed with DLM outputs). In such cases,
the input can be useddirectly (by setting themultiplexer select line to choose the input instead of
the bufferoutput) when that particular level is being evaluated. This would save bufferusage at
lower levels. Thus (B —C) input signals can be allocated for such usage. If there are more than
these number of input signals being required at higher levels, they willhave to pass through buffers
at lower levels.

There are many different ways inwhich toimplement the crossbars, soas toreduce the number
of switches and area occupied. Several such techniques are listed in Section 5. Whatever be the
technique used, the idea isthe same, to be able to connect the outputs oflevel i to the inputs oflevel

10
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i + 1, so that all nets are routed.

4.5 Latches

Thenumberof internal latches onthe chip equals the number of inputs tothe DLM, i.eM KC. These
latches serve 2 purposes:

1. To store the intermediate signals across levels

2. To store state variables of sequential circuits

Therate atwhich these latches are clocked depends on the delay for one level evaluation. This delay
is given by

Tivi = TdlM + Tint + Tsetjup + Tiau
where TDLm is the DLM delay, Tint is the interconnection delay, and TBetuP Tlat are the set-up

and propagation times for the latch. The latch value is unchanged during the level evaluation. In
the case of sequential circuits, the rate at which the external clock can operate will be amultiple of
the internal clock. Precisely, the external clock can operate at a frequency ficlU where fie is the
frequency of the internal clock, and / is the number of levels in the circuit.

5 Architecture Analysis

Since we are proposing a newarchitecture, we must analyze the pros and cons, and compare with
existing architectures. We perform the analysis under the following sections:

1. Area analysis

2. Timing analysis

3. Experimental verification

5.1 Area analysis

We have to determine how effectively silicon is being used by Dharma as compared to existing com
mercial architectures. We consider the area usage for logic and interconnect separately. Consider
the implementation of a circuit, which has / levels and N logic modules.

Let us compare this with a Xilinx-style architecture, where we have a 2 dimensional array of
CLBs. Let the number of CLBs be X. If there are C LUTs and L levels in Dharma, then we have
actuallygot CL CLBs. Let X above, be suchthatX = CL. In this case, siliconused forthe purposes
oflogic modules is almost the same, except that in Dharma, since we can re-use the K-to-1 decoder,
we would need only C K-to-1 decoders, insteadofCL. So thereis a net area benefit ofC(L-l) K-to-1
decoders.

In the Xilinx-style, any circuit with N < X can fit in. This is far too optimistic, since usually
only 50% to 75% of the CLBs can be used, to make routing completion possible. In this case, the
number of levels 1has no consequence on area.

13



clear at this point, simulation studies have to be performed to arrive at a definite answer - the
reduced crosspoints implies that the signals have to be connected to lesser switch inputs, and
this will reduce the parasitic capacitance, and could improve speed).

5. The above discussion has centered on using the crossbar to implement a real connection, i.e.,
the interconnect switch connects its inputs to its outputs (say throughtransistors). This type of
connection is required in the case ofanalog signals, where the input signals can have different
values. However, in our case we are dealing with digital signals, which take on only two
values, either 0 or 1. So, the switch will still be functioning properly if its outputs are set to
the value of the inputs they are supposed to be connected to. In essence, the switch is required
to perform a one time copy of a selection of the inputs (those that are to be connected to the
outputs) to the outputs. Can we take advantage of this fact to speed up the connection and
reduce interconnect area? One answer to this question is delineated in the next paragraph.

Consider the case of just one DLM input. It can be connected to any one of the (B + C)
signals (switch inputs) coming from the previous level. That is, its value should be set to the
value ofone of the (B + C) signals. This is equivalent to a memory readoperation, where the
memory consistsof (B + C) bits, andone of them has to be read onto the switch output So,
the selectioncanbe performedby usingprecharge circuitry andsenseamplifiers. The (B+C)
signals correspond to one column of memory, and one of the cell select transistors is chosen
by means of a decoder or local memory bit. There are both area and speed advantages in
using this style of implementation. The cell select transistorsareofminimum size as opposed
to the large pass transistors that would have been required if a direct connection between
switch input and output were required. And using the sense amp, the read operation can be
performed fast. Further, the precharge time of the memory can be interleaved with the DLM
look-up time, thus shortening the interconnect delay even further. This would mean that the
interconnect delay would be of the same magnitude as the logic module delay (since the logic
module delay is also a memory read operation), and could be even lesser. (The logic module
is a 2KL bit memory,andthe interconnect consists of KC(B + C) bit memories).

6. So far, we only discussed fully connectedswitches, where it is always possible to connect any
switch input to any switch output. These switches tend to be expensive in terms of area. It
could be possible to decrease the area requirement of the DIA, by giving up the full connec
tion flexibility. We discuss below a smart way of reducing the numberof crosspoints, while
maintaininga high probability of routingcompletion.

For the sake of this discussion, assume there are C DLMs, each with K inputs and 1-output.
We divide the DLMs into K classes, with [C/K\ modules per class. A module in class j,
j = 1... K, is connected to the j* input ofeach DLM (instead of to every input). This will
decrease the number of crosspoints and memory bit by a factor of K. It has been found that
for all the benchmark circuits tested, it is always possible to achieve complete connectivity
using this connection strategy. Note that, wecould still have some DLMs connected toevery
input, just in case it is not possible to complete the connections.

7. A further decrease in crosspoints is possible bycombining modifications 3 and 6 above.

18



7 Mapping Designs onto Dharma

In the following paragraphs we briefly outline how logic circuits can be mapped onto Dharma.
We assume that Dharma has L levels and C modules. We assume that the logic network being
implemented is a feasible network (i.e., each node in the network has < K inputs). If not, logic
synthesis techniques can be usedto transform it intoone. Let thecombinational partof thefeasible
network betopologically levelized. LetP bethenumber of levels, 5 bethetotal number ofmodules
and G be the maximum number ofmodules in any level.

If P < L and G < C, then the mapping is straightforward, with one level of the circuit being
evaluated in every internal cycle of Dharma.

If P > L, with S < CL, then it may be still possible to implement the circuit on Dharma by
grouping together modules across several levels. Each such group canthen berealized inmore than
one internal cycle,beforeswitching over to the nextgroup.

If G > C, and 5 < CL, then the design could still be realized within a single chip, at the
expense of increasing the number of levels.

When wedeal withdesigns thatdo not fitona singlechip, S > CL, we willhave to splitit across
several chips. If thepartitions areindependent (i.e., they donotshare anycommon signals), then the
splitdoes not pose any problems. Butconsider thecase where we haveP levels of combinational
logic, with C modules per level, to be implemented on Dharma-styte chips, with only L(L < P)
levelsof C modules each. Then, we will require \PL] chips, and a mechanism to synchronize their
levelcounting circuitry. In Figure4.3, we show twosignals, To next chip andFrom previouschip
meantfor this purpose. Thesesignals areconnected indaisychainfashion, so thatchip Q connected
after chip C,_i begins its level counter only after chip C,_i has reached its maximumlevel.

If the design is such that G > C, then splitting across chips could necessitate duplication of
logic.

8 Conclusions

In this report we have presented a new architecture for a Field Programmable Logic Device. A new
concept of dynamically changing modules and interconnections has been introduced to implement
the given circuit in a folded-pipeline fashion. The dynamic architecture allows the reuse of silicon
resources and makes the device completely routable. The performance of the device is fully pre
dictable during synthesis and the architecture eliminates the need for complex place and route tools.
This reduces time-consuming design iterations usually required for getting the desired performance.

Several alternatives for the architecture have also been delineated in the report. A particular
variation may be chosen depending on the technology of the implementation. It may also be possible
to use the concept of dynamically changing resources as a part of a larger programmable device.
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Appendix I

Here we illustrate Dharma by means of two simple examples. We havechosencombinational
circuits with asmall number of logic elements, and we demonstrate by means of figures, howthis
circuit is programmed onto Dharma. For the purposes of the illustration, wehave simplified
Dharma. The simplified architecture is discussed in the next section. Note that we have retained
the main concept, i.e., levelizing and time sharing of routing resources, in thesimplified version.
However, wehave kept the number of DLMs and the size of the DIA small, soas tohelp inunder
standing the concepts better. Section 3describes the example circuits chosen. The circuits are pre
sented both interms of equations and circuit diagrams. The last section shows how the example
circuits are implemented onthe simple Dharma. Notations used for the diagrams are described in
Table land Table 2.

2 Simple Dharma

Dharma consists of DLMs, DIA, buffers and latches. The number of inputs and outputs per
DLM, the number of DLMs, thenumber of buffers, theinterconnection structure of theDIA, the
number of levels that can beimplemented, etc., can all beset todifferent values soas to yield a
family ofDharma chips. For this simple illustration, weuse ahypothetical, simple Dharma archi
tecture.This simple architecture has the following features:

All DLMs are identical

Each DLM has 3 inputs (K = 3) and 2 outputs

There are 3 DLMs (C = 3)

There are 5 pass-buffers (B = 5)

The B-crossbarand L-crossbarareimplemented as full crossbars

There are 5 chip inputs and 11 chip outputs

L =5, levels of logic can be implemented [i.e., each crossbar point has 5 bitsof memory to
choose the configuration, and each DLM has 23 *2*5=80 bits to store the logic function].
The figure on the next page (Figure 1) showsa blockdiagram of the simple Dharma architecture.
The crosspoints in the L-crossbar and the B-crossbar are shown as shaded circles. These shaded
circles represent the switch at the crosspoints and the memory bits required to configure the
switch (to be eitheron or off). The chip inputs enter the interconnection array via multiplexers.
Each multiplexer has a separate select signal. 5 bits of memory are required to control each of
these select signals. Outputs of the DLMs are connectedto the buffer inputs by means of multi
plexers. Each of these multiplexers is also separately selected (again, 5 bits of memory are
required). The DLM inputs and the buffer inputs arelatched; and these latches areclocked by an
internal clock. The multiplexer selection bits have not been shown in the figure, to keep the dia
gram simple.



Notation

DLM

Description

A 2-output, 3-input DLM

most significant
input . —

least significant
input

DLM

output

DLM A DLM configured to implement logic functions x and y

-2— The values stored ina DLM configured
to implement x and y. The column '#' represents

- the addresses, x and y are functions of a, b, c.
The *0' and *V at each address are stored in such
a manner so that the DLM implements functions
x and y.

# y X

0 0 1

1 i 0

2 i 1

3 0 1

4 i 1

5 i 1

6 i 0

7 i 0

A latch. input

A latch holding the value of c

A pass-buffer

Table 1

output

clock



Notation

+

+

*

*-

*

^

Description

A configurable crossbar connection,

with its associated memory bits
From signals
source -'

To signal
destination

Crossbar connection configured so as to perform a connection

Crossbar connection configured so as to disconnect the wires

A 2-to-l multiplexer. *
select line

inputs J J" 0UtPut

The multiplexer is configured so as to connect the top input to
output.

The multiplexer is configured so as to connect the bottom input
to the output.

A 2-to-l multiplexer shown in sideways position. Notation similar
to above is used to show how it is configured to connect input to
output.

Latched pad (at chip inputs and outputs)

Table 2
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3 Examples

We have selected 2 examples for the purposesof this illustration. Both arecombinational cir
cuits. The first example is extremely simple. The second example is alittle more complex. In the
textual description, weuse the symbol'+' todenote the ORoperator, '*' todenote the AND oper
ator and an T symbol to denote Inversion.

Example I

This example has 5 inputs a, b, c,d and e and 2outputs, x and y. There are 2 levels of logic.

G*sa + b + c
H*d*e
x*G*!H*!G*H
y~c+H

The figure below shows schematic of Example 1.

D-



Example 2

This example has 5 inputs a, b, c, d and e and 3 outputs, x, y and z. There are 4 levels of logic.

G-a*e ,

H»e*ld + lc*ti , ss /

X*b *& :& s % %-:: " , " "' >%.. ,j^;a, "%.

F*a*te**a*e *\ / y" /*:

K«b*c*bfd+c*d \, , ;;^-; % T*' ^\^'
x~{j*K*J ;*, , <'-<*£ >
P«c*d , '.»'*'- > '••

»y*«*IF*lH'!H'>F*l6*H*»* ib-*H*F«ir
M = F*H*!b+F*JH*b - %*:' "• s \C ' t«, , s

N«K+G+M ^ , , •, -

0 = b*!c*d + p*c*Jd % 4' '%

Q-G*P+G*0
z = N*2J*!Q - * o* /,

The figure below shows schematic of Example 2.

Example 2



4. Implementation

We show the implementation of the two examples, by showing the values of the memory bits that
change during each level of implementation.

Example 1

This has 2 levels oflogic. The first level connects inputs a,b,c,d and e tothe DLMs togenerate
signals Gand H. The second level connects G, Hand c to the DLMs togenerate x and y. The val
ues stored in DLMl and DLM2 are as shown below. The interconnection structure is shown in the

next 3 pages.
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