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Abstract

This paper gives a control law for stabilizing multiple input chained form

control systems. This extends an earlier result [10] on stabilizing the above

class of systems which have two inputs. Along the way, we constructa trans

formation from general chained form systems with multiple generators to a

power form. A control law which stabilizes the origin of a three-input control

system that models the kinematics of a fire truck is simulated, confirming

the theoretical results.



Chapter 1

Introduction

We are interested in stabilizing control laws for control systems of the form

£=90(£)U0 +0l(£)wl +''' +9m(0Um (1.1)

arising from systems with nonholonomic, or non-integrable, linear velocity

constraints where f in aopen set U C Rn is the state of the system, u(£, t) €

R are the inputs and gi are smooth linearly independent vector fields.

A special case of the two-input problem was presented in [4]. In previous

work [10] we proposed acontrol law motivated by [8,11] which stabilized the

control system to a point in the state space for a special class of two-input

nonholonomic systems that could be transformed, by a coordinate trans-
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formation and state feedback, to a two-input single-chain single-generator

chained form:

&o = vq

i? = vi

x\0 = x\\

•2 _ 1
I10 — «ioV0

in—2 _ n.f^~341X1Q — JCjq VQ

It was then shown that there exists a coordinate transformation to the power

form

tfo = v0

Vi = «i

*io = 2fo«i

;n~2 — '-• v*-2_.



Introduction

whose origin was stabilized. This paper is motivated by the desire to extend

this work to the general (m+l)-input, m-chain, single-generator case.

The extended problem can be stated as follows: given a nonlinear control

system of the form in equation (1.1), find a control law u(£,t) which makes

the origin globally asymptotically stable.

The major contributions of this paper are the presentation of the trans

formation from a (m-fl)-input, m(m+l)-chain, (m-j-l)-generator chained

form system into a power form and the proof of a stabilizing control law

that makes the origin of a (m+l)-input, m-chain, single-generator power

form control system globally asymptotically stable.

The outline of this paper is as follows: in Section 2, the transformations

to chained formand power form aregiven fora (m+l)-input, m-chain, single-

generator case along with the power form transformation from a general

chained form system. In Section 3, a stabilizing control law is given for

(m+l)-input, m-chain, single-generator control systems in power form. In

Section 4, a three-input example, the fire truck, is used to illustrate the

theoretic results. In Section 5, conclusions are made.



Chapter 2

Transformation to Power

Form

We are interested in stabilizing the origin of control systems represented in

power form. To transform the original system in equation (1.1) into power

form, we present a two-step algorithm. The first step is to transform the

(m+l)-input original system into a m-chain single-generator chained form

as described in [2]. The second step is to transform this chained form system

into a power form. We choose not to prove the one-step transformation from

the original system to power form since the first transformation exists and

is provenin the literature and the second transformation is straight forward



2.1 Original System to Chained Form

once the system is in chained form. We also give the transformation from a

system in general chained form that has m+1 inputs, m(m+l) chains and

m+1 generators to power form.

We suggest Chapter 1 of [6] for reference on distributions and Lie brack

ets.

2.1 Original System to Chained Form

We now present sufficient conditions underwhich the (m-l-l)-input system in

equation (1.1) may be transformed into a m-chain, single-generator chained

form.

The general idea is to construct m+2 distributions usingthe vector fields

9o,9u "-,9m and various Lie brackets. We then check the conditions of full

rank on the distribution that contains all of the vector fields

£Oi£li..>»£mf

ad5opi, ad5o02, •••, adSo$m,

ad2o(71,ad2oflr2,...,ad^m,...,

*d?09u*%2092,...Mng?9m



6 Transformation to Power Form

where ad*0</» is the fc*A-order Lie bracket [po,[tfo,[• ••k times...[<7o> &]]]]•

The m+1 other distributions, A;, defined as in the proposition below need

to be checked for involutivity, i.e., f,g G A,- =>> [/,#] e At-. The following

proposition is proven in [2].

Proposition 1 [2]Converting (m+l)-input Systems to m-Chain, Single-

Generator Chained Form

Given the system

Z= 0o(OwO + •••+ gmiOUm ,

with £ € U C Rn, Ui(£,t) € R and the gi smooth linearly independent vector

fields. Construct the following distributions:

Ao := span{po,adpj^; rj = 0,..., nj\ j = 1,..., m}

Ai := span{adj{5ij; rj = 0,...,ny, j = 1,...,m}

A2 := span{ad2ft; ri = 0,...,ni-l; r,- = 0,...,nj i = 2,...,m}

A3 := span{adjjpj; ri = 0,...,ni-l; r2 = 0,...,n2-l; ?*i = 0,...,rij j = 3,...,m}

Am+i := spanladjj^; rj = 0,...,^-- 1; j = l,...,m}



2.1 Original System to Chained Form

where J^x nj + w» + 1 = n.

If first we have that Ao(f) = Rn and second Aj for 1 < j < m + 1 are

involutive, then there exists a local feedback transformation

x = $(0

u = fi(()v

such that system is in m-chain, single-generator chained form:

£g = t>o

£j = ui x% = v2 ...

x\0 = xfyo •^20 = x2°®
...

xm0 = xmv0

xio — ^io vo £2o — *20 ro smo — xmo vo

The notation uses the convention that Xjt is the state for the kth level of

chain j using state i as the generator. The state x°i is the top of chain j.
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2.2 Chained Form to Power Form

Given a general chainedform system with m+1 inputs, m(m+l) chains and

m+1 generators:

X°- = Vj 0 < j < TO

x)i = x°jVi j > i and x\j := x^x® - x){

*% - xjflvi 1<*< nj> 0< j, i < m; j ^ i ,

the global transformation to power form is given as follows:

Vj = Sj 0 < j < TO

1 < k < rij, 1 < j < to, 0 < i < to . (2.1)

We identify x^ = x*j as the tops ofthe chains. Using this transformation,

the general chained form equation is converted to the power form dynamics:

Vj = Vj 0 < j < TO

zkji = —(yi)kvj l<k<nj, 1< j < to, 0<t < to . (2.2)



2.2 Chained Form to Power Form 0

In this paper, we will be using the single-generator version of the power

form. To find this form, we use the following transformation on the single-

generator chained form system

yj = x°j 0 < j < to

Z% = (-l)*^ +̂ (-l)»^i-^(«0)*-W,»| l<*<7lj, l<j@.»)

which yields the single-generator power form:

yj = Vj 0 < j < to

z% = Jj(yo)kVj l<fc<nj, l<j<m. (2.4)



Chapter 3

Stabilization

We generalize the control law given in [10] to the multiple input case. The

simplicity of the law is bought at the expense of the complexity of the proof.

Proposition 2 Given an (to + l)-input, m-chain, single-generator control

system whose evolution in time is given by:

jfj = vj for 0 < j < to

Zj0 = -7-\ (#>)* vj forl<k<nj and for 0<j<m, (3.1)
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The origin (y, z) = 0 is locally asymptotically stable under the action of the

controls:

t>o = -3/0 + p(z) (cos(t) - sin(i))

vj = -Vi + 53 cjzjo cos(At) for 1< j < to (3.2)
ft=l

wfcere />(*) =jyjLi T>lLi (zjo)2 ^d each c) <0.

Proof: The outline of the proof is as follows: first we find an approxima

tion to the resulting time-varying center manifold and then we examine the

dynamics on this reduced space. After an averaging transformation on this

reduced space we may utilize the direct method of Lyapunov to conclude

that the origin of the system under the inputs (3.2) is locally asymptotically

stable. We will try to follow closely [10] whenever possible.

We will now solve for the closed-loop dynamics of the system (2.4). The

dynamics under the controls (3.2) are described by (for 1 < j < to):

3/o = -3/o + p(z) (cos(t) - sin(t))

Vi = -yj + J2cJzjocos(ht)
h=i

4o = £j (3/o)fc I-Vj +53 c)z% cos(fo)Jfor 1<k<nj (3.3)
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Notice that the time-varying terms in (3.3) are linear in the state; therefore

we cannot directly apply center manifold theory. In order to apply this

theory, we will first transform the system into one which has higher-order

time-varying terms. We start with the coordinate 3/0•

yo = 3/o - P(z) cos(t)

Now we solve for the dynamics of jtq:

£0 = -3/0 +p(z)(cos(t) - sin(t)) +p(z) sin(t) - (j^p(z)) cos(t)

= - (3/o - p{z) cos(t)) - \jtP(z)) cos(*)

= -yo-go(y,z,t)

with the function go(y, 2, i) being

0o(y,M) = \-£p{z)j cos(t)
m ni 1 / ni \

= 2£ £ 4>TJ (*)* "3/i + 53 C^jo COs(fc) cos(t) .
i=lfc=l K' \ h=l )

Note that go(y,z, t) is at least cubic in the state (3/, z). This fact will aid us

in estimating the time-varying center manifold. Now we will transform the
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other yj coordinates.

ni ( -he* -.c* \
ft = 2/i +53 4> [1+ff Bi<ht) +1^cos(/rf) Jfor *-j -

Once again, we solve for the dynamics of yj\

TO

yj = -3/j +53cMocos(^) +

ni / -he* -c* \
^ ^° Î t+Ip cos^" ^T+t* sin(^) 1+#(0'*» *)

=- [vi+£4> [y^28m(^)- (^rin^+c?) cosw)) +*(»'*>*)
/ nJ / _/>cfc _c/l \ \

= - Ui +£ *io Ij^j sin(^) +17X2 «»(**)) J+9j(v, z, t)
= -~V + 9j(v,z,t)

where the term </j(j/, 2, J) is given by

*ifo. *. *) = E ]Jj (2/o) I"3/i +£ ci*>o cos(^)J( j^sin (/it) +Yj^ cos (ht) J.

Again note that <7j(y,z,t) is at least quadratic in the state (3/, z). All of

the gj(y, z,t) may be rewritten in terms of y, with no corresponding loss of

(3.4)
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order. Call these functions £j(y,z,t).

We will now introduce a generalization of the center manifold theorem

which appears in [10]. The following statement uses the notation of [3]

so that /'(0,0, w) refers to the partial derivative of / with respect to all

variables and evaluated at (y,z,w) = (0,0, w).

Lemma 1 ("Time-varying" Center Manifold) Consider the system:

y = By + g(y,z,w)

z = Az + f(y, z, w)

w = Sw (3.5)

with y € Rm+1, z € Rn-m_1, andw € Rp andwhere the eigenvalues of A and

S have zero real part. The functions ftg and h are C2 with /(0,0, w) = 0,

/'(0,0, w) = 0, flr(0,0, w) = 0 and <jr'(0,0, w) = 0 . Then, given M > 0, there

exists a center manifold for (3.5), y = h(z,w) for \\w\\ < M, \\z\\ < 6(M),

for some 6 > 0 and dependent on M, where h(z, w) is C2 and h(0,w) = 0

and h'(0,w) = 0.

Toapply this result to our system, create the vector u>, with w[ —cos(jt)

and w32 —sin(jt). Note that the dimension of u>, given by p, is then twice
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the maximum nj for 1 < j < to. The differential equation describing the

evolution of this vector may be written as w = Sw, with the eigenvalues of

S having zero real part. We can then substitute an element of the vector

w for each of the time-varying terms in the equations. In this form, we

may apply the "Time-varying" Center Manifold theorem. The time-varying

center manifold is then given by (with the time dependencies resubstituted):

yo = hQ{z,t)

yj = /&j(*,*) for 1 < j < to .

Since go(y, z, t) is at least cubic in the state (y,x) it maybe verified that

by calculation that /ig(0, t) = 0. We will check the stability of z = 0 by

solving for the dynamics of z on the center manifold. It is useful to note

that

vo = -3/0+ p(z)(cos(t) - sin(*))

= -% - p(z) sin(*) .
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And for the cases 1 < j < to, we find

"3

vi = -yj + ^CjZjoCOsiht)
h=l

nj (-he* ( -c* \ \= -ft +£ z% [jjv 8in(^)+ [h^2 +ciJ™(ht))
= "ft +£ 7Tfc2zjo (sin(fa) - hcos(ht)) .

The dynamics on the reduced space are then given by:

zjo = ^(MM) +p{z)cos(*))* I-hj(z,t)+53 ^j^^jo (sin(fa) - hcos{ht))\

and because of the higher order nature of the hi\ we may write that

4> =//o(M)=^p(*)*cos* /nj -he* \
W(£ Y^tf z% (sin(^) " h™<ht))\ +0(2j +2) .

Induction may be used to verify that:

t

cos*(t) = 53a*» cos([* - 2(* -1)]<)
1=1

(3.6)
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where ajb» > 0 and I— \ ifkis even and Mj^- ifkis odd. As we do not have

exponential stability of the averaged system nor high frequency sinusoidal

terms [7] we cannot apply averaging to the terms of equation (3.6) and

conclude stability. Alternatively, one might notice that each chain (denoted

by the index j) is decoupled from the effects of the others except through

the positive semi-definite term p{z). We would like to apply the results of

for the single chain case repeatedly to argue local stability.

Lemma 2 ("Averaging" Transformation) Consider the time-varying non

linear system

x = /(*,*) (3.7)

where f is of period T , Cr, and where the Ith entry of the vector f sat

isfies fi = 0(x)2k+1, with k > 1. Then there exists a Cr local change of

coordinates x = y + W(y,t) under which (3.7) becomes

y = /(») +/(»,*)

where f is the time average of f and fi(y,t) = 0(y)2k+2 and of period T.
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Remark: Lemma 2 closely resembles lemma 2.2 of [10], except now there

is no dependence between the position and the order of an element /,- of the

vector /. Note that if we permute the vector x and hence the vectors / and

3/, the order of the element /,- of the vector / of the previous result will no

longer necessarily of order 2i + 1. In fact, if the element /,- were of order

2k +1, the previous lemma would have asserted /; to beorder 2k +1 and fo

to be order 2k + 2. The order of fc and / is then determined by the order

of fi. However, a formal proof is still required.

Proof: The proof closely resembles a result described in [5]. We will divide

f(x,t) into its time average, given by /(a:), and the remainder f(x,t). We

make the coordinate change:

x = y + V(y,t)

with Psi(y, t) specified later. We now solve for the dynamics of y.

(I +DVV) y+-7jjr = x= f(y +V) + f(y+y,t)

y=(I+Dy*)-1 (f(y+V) +/(3/ +<M) -^)
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Set ^ = /(3/,t). As f(y,t) has zero mean, $ is a bounded function oftime.

Furthermore, this implies that ¥ is of higher order, thus the coordinate

change is valid locally. Expanding the terms, we see:

y = (/ + Dy*)-1 (/(») + f{y + ¥,«)- /(»,*))

=(/- Dy9 +0(||DV*||2)) (/+B,/t +0(||t||2))

= /(») + /(»,*)

Now we will check the order of /,-.

/ = Dyfy-DyVifW+My + y^-fifat)) (3.8)

As the order of the element /t- is 2Ar + 1, the elements of the corresponding

row of Dyf are of order 2k. The lowest order in $, as it is the time integral

of /, is 3 from the case k = 1. We conclude that the first term is of order

2k + 3. The same argument holds for the second term, as the element $,• is

of order 2k + 1, the elements of the corresponding row of Dy% is of order

2k. The product is then at least of order 2k + 3. •.
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With lemma 2 in mind wewill define the vectors z, f(z,t) € Rn-m_1.

* = (*io,4) ••• *8.4> ••• zmi)T

/(*.*) = (/io,/i2o '•• /ToS/lo '•• i»)T (3.9)

Note that by equation (3.6) z satisfies:

z = /(*,*) (3.10)

By lemma 2 here exists an locally valid averaging transformation. In spirit

with the earlier notation, we will write the transformations maps z —• z.

*% = &(i) +&(M)

Further, f^0(z) is the time average of /*0(£, t) and /$,(;?, t) is of order 2k +2.

Now we will recall the case specific Lyapunov result from [10]:

Lemma 3 (Case Specific Lyapunov Result) Consider the time-varying

nonlinear system

V = /(y)+ /(»,*) (3.11)
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where y € Rn. If

||/(2/,t)||<A||3/||2(1+i)

for all y in some open neighborhood of the origin and

f(y) = A<ij>(y)

where A is a square lower triangular matrix with an < 0 for i = l,...,n

and

*(») = wll»ll*

then the origin of (3.11) is locally asymptotically stable.

The same kind of permutation argument can now be applied to Lemma

3 as was applied to Lemma 2, except in this caseit wouldbe wiseto preserve

the order within each chain in order to retain the the lower block diagonal

structure of the matrix A. For our case, matrix A will then have the block

diagonal form (recall that the chains are decoupled except for the function
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/>«):

A =

Ax 0 ••• 0

0 A2 :

Stabilization

where Aj € Rnj*nj has a lower block diagonal form. The diagonal terms of

the matrix Aj are denoted by akk and are given by,

kk 1 " k
a' = "2A!TTFauC>

similar to those in [10]. As aifccjf < 0, we may conclude local asymptotic

stability.

Remark 1: Corollary 2.1 of [10] may be easily extended to the multiple

input case. We may therefore conclude that the controls (3.2) will locally

asymptotically stabilize the chained form system as well the power form.

Remark 2: As the chains are decoupled, we may can make the stability

global by using saturation functions as described in [10]. The example will

incorporate this strategy. The controls with saturation functions incorpo-
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rated are given by:

vo = -3/o + o (p(z)) (cos(t) - sin(*))

v3 = -3/i + £cJa(z^0)cos(^)forl<i<TO (3.12)

with c* < 0 and with a : R -» R C3 and nondecreasing. The function

is the identity map near the origin but never greater in magnitude than

some e > 0. Provided this e is small enough, the origin will be globally

asymptotically stable.

Remark 3: These control laws may be adapted in order to regulate a class

of mechanical systems. It has been shown in the literature [1, 9] that a large

number of mechanical systems with nonholonomic velocity contraits may be

written as:

t=l

U = V

The first equation describes what is sometimes refered to as the kinematic

system. Wehavedeveloped controls laws uj(£,t) which render£ = 0globally

asymptotically stable, solving the kinematic point stability problem for a
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class of mechanical systems. Since Ud(f, /) is a Cl function of £ and t we

we may apply the following control law in order to render the point (£,u) =

(0,0) globally asymptotically stable,

v((,u,t) =_(.-^,,))+(*^(0.+ *^)

To demonstrate that this control law stabilizes (0,0), examine the dynamics

of the error of the input e —u —ttj(£, /).

e = u-u({,t)

= —e

Note that if we view the state of the system as (e, £), the equations will

look like £ = fir(£Hf(f>*) +9(0€- The linearly stable coordinates will then

contain not only the terms due to Ud(f,t) as before but alsothe entire vector

e. In the center manifold, e = 0. Consequently the the equations for the

dynamics on the center manifold are exactly the same as in the kinematic

case thus we may conlude stability.



Chapter 4

An Example

The stabilization method presented in this paper will be illustrated by a

simple three-input example. The example we use is the fire truck, or tiller

truck shown in Figure (4.1). The kinematic equations were derived in [2] to

have the following form:

/ . \
x

y

4*

v*x,

l

tan#o

0

tan <fto
/o cos 0o

0

\ /l COS 4>i COS 0Q J

Ml +

/ \
0

\0/

«2 +

V

U3

\°;
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/

Figure 4.1: Configuration Space of the Fire Truck

The system has six states which are the Cartesian location of the center of

the rear axle of the cab, (x, y); the steering angle of the front wheels relative

to the cab's orientation, 4>q; the absolute cab orientation with respect to the

horizontal axis of the inertial frame, 6q\ the steering angle of the rear wheels

with respect to the trailer body, <f>i\ and the absolute trailer orientation, 6\.

The constants Iq and l\ correspond to physical parameters of the system.

The three inputs tti,Us and 113 correspond to the driving velocity, the cab's

steering velocity and the trailer's steering velocity, respectively.

The coordinate transformation [2],

Xr\ — x
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0 __ tan<ftp
1 lo cos3 6q

S0 = -sin(^i-^o + ^i)
2 /i COS <j>\ COS 00

a; J0 = tan Oq

^20 = 0i

x\o = 3/

is used to put the system into a two-chained single-generator form:

Xq = Vq Xl - Vi 3°» = V2

xl -x10 - xfyo ^20 = ^2^0

r2 -X10 - x\0v0

Using equation (2.3), we calculate the coordinate transformation

3/o — x0

3/1 = *!

3/2 = 4

z10 — —xl0 + XqXx

*io = Sio-«o*i + 2^0) xi

(4.1)
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•A — ~i _i_ «.o„o
*20 — *~*20 "t" •c0*c2

to give us the power form

3/o = vq 3/1 = Vi 3/2 = v2

z1 -
no — yon Z20 = 3/0^2

z2 -
no — \M\ . (4.2)

We now present the simulation of the fire truck system. The simulation

was performed on the system in power form with the states being stabilized

to the origin from a given initial point by using the following control laws:

*>o = -3/0 + po (cost - sin t)

Vi = -3/i + Ci p\ cost + c2 p2 cos 2t

V2 = -3/2+ c3 pz cost. (4.3)

The Ci,C2,C3 are constants and Pup2ip3ip4 are saturation functions de

signed to yield global stabilization results and defined as follows:

po =(* (V(*fo)2 +(4>)2 +(4>)2))2
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Pi = ff(*io)

P2 = <T(zlo)

PZ = O-(^20) •

where a(z) is a saturation function linear between (—€, e).

The coordinates in power form were then transformed back into the

original coordinates for analysis and a movie animation. Then the inverse

coordinate transformation from power form to the original coordinates is as

follows.

x = y0

y = z2Q +2/03/1 - -^(yofyi

<f>o = tan"1 (j0 yi cos3(tan_1(y03/i - z}0)))

$o = tan"1 (2/03/1 - z\0^
^ = 1

cos (y0y2 - z{0 - tan"1(j/03/i - 4o))

xtan-1 {lxy2 cos (tan"1 (2/03/1 - *io)) +sin (2/02/2 - 4> - tan_1(y02/i - *io)))
0i = 3/02/2 -z{0 (4.4)

Figure 4.2 shows nine frames from a movie of the simulation results for
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^^3n 22

2LZ ^ ^^
<*- -

Figure 4.2: Movie of Parallel Parking Trajectory
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a parallel parking maneuver, starting from an arbitrary initial point that

illustrates the control law. The fire truck is being stabilized to the origin.

The 2/ = 0 line is shown in the plots and we see that after 8000 iterations,

the fire truck is heading towards the origin.

Figure 4.3 showsthe x-y plot for the samemaneuver. In this plot we see

the Lissajous figures nicely.

Figure4.4 showsthe trajectories of the body angles and y position of the

center of the rear axle of the cab for the same parallel parking maneuver.

We can see the success of the stabilization after 8000 iterations in the y

position plot.

Figure 4.5 shows the saturation functions used in equation (4.3). For the

parallel parking trajectory, we chose e = 0.5.
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1.1 i 1 1 r i r

Figure 4.3: X-Y Trajectory of the Parallel Parking Maneuver
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#o vs. t $i vs. t

Figure 4.4: Trajectories of the Parallel Parking Maneuver
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1000 1200
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Figure 4.5: Saturation Functions for Parallel Parking Maneuver



Chapter 5

Conclusion

In summary, our contributions are the presentation of a transformation from

most general chained form to power form and a control law for a class of

multiple input nonholonomic control systems without drift. In addition, we

illustrated our results with an example from the literature, solving inciden

tally the parallel parking problem.

It is important to notice that the control laws presented here are smooth

and, thus, are easily adapted to dynamical control systems. Furthermore,

the convergence in the coordinate directions can be modified by changing

the coefficients of the control law.

Possible future work includes finding a control law that asymptotically
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stabilizes to the origin an (m-f l)-generator control system. We are also

looking to enlarge the class of nonholonomic control systems which we may

transform into chained form.
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