
 

 

 

 

 

 

 

 

 

Copyright © 1993, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



AUTOMATIC TIME-SERIES MODEL

GENERATION FOR REAL-TIME

STATISTICAL PROCESS CONTROL

by

Hao-Cheng Liu

Memorandum No. UCB/ERL M93/45

8 June 1993



AUTOMATIC TIME-SERIES MODEL

GENERATION FOR REAL-TIME

STATISTICAL PROCESS CONTROL

by

Hao-Cheng Liu

Memorandum No. UCB/ERL M93/45

8 June 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



AUTOMATIC TIME-SERIES MODEL

GENERATION FOR REAL-TIME

STATISTICAL PROCESS CONTROL

by

Hao-Cheng Liu

Memorandum No. UCB/ERL M93/45

8 June 1993

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720



To my father, my mother and Stephanie

for their love and support.



Acknowledgment

I would like to express my deep appreciation and gratitude to my research advisor, Dr.

Costas J. Spanos, for his suppon and guidance through my graduate studies and the latter

portion of my undergraduate studies. I also thank Dr. John A. Rice for being a pan of the

project repon committee and for his valuable insights in time-series modeling.

Special thanks are due to two colleagues in the BCAM group: Mr. Eddie Wen, for his

work in developing the BCAM Real-Time SPC interface, and Ms. Sherry Lee, for sharing

her knowledge and expenise and providing insightful feedbacks and discussions. Their

help and friendship are greatly appreciated.

I would also like to extend my gratitude to the rest of the BCAM group for making my

graduate experience an enjoyable one. They are Mr. Eric Boskin, Mr. Eric Braun, Mr.

Raymond Chen, Mr. Sean Cunningham, Ms. Zeina Daoud, Mr. Kwan Kim, Mr. Sovarong

Leang, Ms. PamelaTsai, and Mr. Crid Yu. Special thanks arealso extended to past BCAM

members Mr. Ban Bombay, Ms. Haifang Guo, Ms. Lauren Massa-Lochridge, Mr. Tom

Luan, Dr. Gary May, and Mr. John Thompson.

I am also grateful to the Semiconductor Research Corporation and International Busi

ness Machines Corporation for sponsoring this work.



AUTOMATIC TIME-SERIES MODEL

GENERATION FOR REAL-TIME

STATISTICAL PROCESS CONTROL

by

Hao-Cheng Liu

ABSTRACT

As integrated circuit designs become more complex, in compliance with Moore's Law,

assuring the production quality of these complex integrated circuits becomes increasingly

difficult. Consequently, semiconductor manufacturers must focus on achieving tighter

real-time process control in order to obtain justifiable production yields as well as sustain

profitability in an increasingly competitive marketplace.

Traditionally, equipment and process faults are being discovered by "in-line"

measurements done between process steps. However, due to an increased pressure to

produce of a highly diverse product mixture in shoner cycle times, equipment and process

faults must be detected in real-time. However, because real-time process control requires

the analysis of real-time equipment sensor data, traditional statistical process control

(SPC) techniques [1] cannot be readily applied to the sensor data due to their non-

stationary, auto-correlated and cross-conelated characteristics.

The Berkeley Computer-Aided Manufacturing (BCAM) Real-Time SPC system

utilizes econometric time-series models [2] in order to filter real-time readings of any

existing autoconelations. In addition, multivariate statistics, in particular, the Hotelling's

T statistic [3], are then used in order tocombine the various cross-correlated signals into

asingle statistical score. This T2 statistic is monitored with asingle-sided control chart for

real-time SPC [4].



The objective of this project was to develop and implement an algorithm for

automating the time-series model generation process for real-time SPC. Furthermore,

modifications mustbe made to thereal-time SPC scheme inorder toaccomodate the batch

nature of single-wafer processing operations. As a result, the BCAM Real-Time SPC

scheme has been modified, and an automatic time-series model generator has been

developed. The model generator has demonstrated success in generating useful time-series

models for real-time sensor data filtering. Furthermore, the modified SPC scheme, which

involves generating separate T2 statistics for detecting within-wafer and wafer-to-wafer
faults, has shown to be superior in detecting processing faults than the originally proposed
methodology.
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Chapter 1 Introduction

1.1 Background

As technology continues to improve, integrated circuit designs become increasingly

complex. Consequently, semiconductor manufacturers must focus on achieving tighter

real-time control over critical manufacturing steps in order to obtain justifiable production

yields and sustain profitability. Furthermore, process control becomes even more critical

as the quality assurance testing of these complex integrated circuits becomes increasingly

difficult.

Currently, various statistical process control (SPC) techniques are being used in the

industry in order to detect equipment or process faults that might be detrimental to the

product. The most common SPC approach is to use in-line data measured at the end of

each process step and to place this data on a traditional Shewhan Control Chart. This of

course assumes that the data is identically, independently and normally distributed (IIND)

around a constant mean p. with a constant standard deviation a [1].

However, as semiconductor manufacturing processes become increasingly complex

and as production volume increases, it becomes imperative that equipment and process

faults be detected online (during the wafer run) instead of in-line (after the wafer run).

Therefore equipment manufacturers begin to realize the importance of building machines

that are capable of monitoring sensor data on a real-time basis. These real-time sensor

readings, however, cannot be placed directly on a traditionalcontrol chart because of their

non-stationary, auto-correlated and cross-correlated characteristics.

Time-series models can be used to filter non-stationary and auto-correlated sensor

signals. The residuals coming out of these filters should be IIND. If the residuals are

uncorrelated, then each can be placed on a traditional Shewhan Control Chan.
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The Berkeley Computer-Aided Manufacturing (BCAM) Real-Time SPC module

utilizes Seasonal Autoregressive Integrated Moving Average (SARIMA) time-series

models [2] for the filtration of the real-time sensor data. Because the filtered sensor data

tend to be highly cross-correlated, multivariate statistics, in particular, the Hotelling's T2

statistic [3], is used in order tocombine the various cross-correlated signal residuals into a

single statistical score. This T2 statistic is then placed on asingle-sided control chan for

real-time SPC [4].

«•

1.2 Motivation

Currently, ARIMA time-series models for the BCAM Real-Time SPC module, as well

as for other applications, are generated interactively using standard statistical analysis

tools. This procedure is time-consuming and requires specialized skills in time-series

statistics. An automated time-series model generator will make the BCAM Real-Time

SPC module, as well as several other advanced computer-aided manufacturing

applications, more robust and practical.

Furthermore, there is a realization that SARIMA models, although used successfully,

may not be ideal, or proper, for modeling semiconductor equipment sensor signals. These

signals usually have only a small time segment of useful information from each wafer for

SPC purposes. When one concatenates these small segments of data, the resulting time

series will no longer be continuous. However, the ARIMA time-series model can be

modified so that separate models can be generated for detecting within-wafer as well as

wafer-to-wafer time-series patterns, thus accommodating for the lack of continuity in the

concatenated sensor data. This modification must be built in to the proposed time-series

model generator in order to make the BCAM Real-Time SPC complete.

A modified real-time SPC scheme with automatic time-series model generation has

been developed and applied on the Lam Research Rainbow single-wafer plasma etcher.
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The model generation algorithm hasdemonstrated success in generating useful time-series

models for filtering the real-time sensordata. Furthermore, the modified real-time SPC

scheme, which involves generating separate T2 statistics for detecting within-wafer and

wafer-to-wafer faults, has proven to be superior in detecting processing faults than the

originally proposed methodology.

13 Organization

The BCAM Real-Time SPC scheme will be reviewed in Chapter 2. Chapter 3 will

introduce the readers to ARIMA time-series modeling, as well as to the theory and

algorithm for generating these models automatically. Modifications to the BCAM Real-

Time SPC system will be discussed in Chapter 4, along with the necessary modifications

to the automatic time-series model generation algorithm. Chapter 5 contains details in

regards to the implementation of the new BCAM Real-Time SPC system. Some

experimental results will then be presented in Chapter 6. The report will conclude in

Chapter 7 with a discussion about the effectivenessof the scheme and a proposal of future

work.
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2.1 Overview

Although the most popularmethods for SPC involve the use of the traditional Shewhan

control chart or the cumulative sum (CUSUM) chart, these methods cannot be readily

applied to rapid, real-time readings. This is because these methods assume that the data

being applied to these control charts are identically, independently and normally

distributed (IIND), which typically is not the case with rapidly collected, real-time

equipment sensor data.

The Berkeley Computer-Aided Manufacturing (BCAM) Real-Time SPC scheme [4]

attempts to apply seasonal econometric time-series models, in particular, the seasonal

ARIMA time-series models, as filters for real-time equipment sensor data. This eliminates

any non-stationarity and autocorrelations from the machine data. Figure 1 shows how real

time readings can be filtered to IIND residuals for some selected sensor signals from the

Lam Research Rainbow plasma etcher.



Chapter 2 The BCAM Real-Time SPC

Sensor Data Residuals
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Figure 1. Selected real-time sensor data and corresponding IIND
residuals from the Lam Research Rainbow plasma etcher [4J.
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In the case of multivariate control, there is a high likelihood of cross-correlations

existing among the various parameters being monitored. The BCAM Real-Time SPC

scheme utilizes multivariate statistics, in particular, the Hotelling's T2 statistic [3], in order

to combine the multiple IIND residuals intoa single, well-behaved statistical score, thus

accounting for any cross-correlations that might exist. Figure 2 shows the cross-

correlation that exists between two selected sensor signals from the Lam Research

Rainbow.
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Figure 2. Sample cross-correlated data: chamber pressure plotted

against Helium gas flow [4].
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1 •The T statistic is then plotted in on a single-sided control chart for real-time control

purposes. A T2 control chart is shown in Figure 3.
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Figure 3. Sample T2 control chart [4].
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The BCAM Real-Time SPC methodology can be summarized by Figure 4.

Multiple
Non-stationary

Raw Data

Auto- & cross-
correlated

Time

Series

Filter

Multiple
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Residuals
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Figure 4. Summary of the BCAM Real-Time SPC scheme [4].
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2.2 Problems

A couple of problems exist in regards to the real-time SPC scheme discussed in

section 2.1.First, one cannotreadily apply seasonal econometric time-series models to the

real-time equipment sensor data due to its lack ofcontinuity; and second, an algorithm for

automating the time-series model generation process must bedeveloped so that filters can

generatedreal time in a multi-product production environment.

The BCAM Real-Time SPC system processes the real-time equipment sensor data by

monitoring only a fixed step length of the data from the critical step of each wafer

processed with an appropriate delay applied. The delay is necessary due to the instability



Chapter 2 The BCAM Real-Time SPC

of the sensor data at the beginning of each processing step. An illustration of the real-time

equipment sensor data monitoring and delay analysis process is shown in Figure 5.

Delay Step Length
Yi l« H« H

Figure 5. Illustration of the real-time equipment sensor data

monitoring and delay analysis process

Time

It is obvious that the real-time equipment sensor data cannot be modelled with a

SARIMA time-series model, since the last monitored point for wafern and the first point

for wafer n+l are separated by a long unmonitored idle period. Becauseof this, the real

time sensordata fails the assumption of continuous seasons or periods. Therefore, the data

seriesusedin the BCAM Real-Time SPCscheme lack the continuity needed for SARIMA

modeling.

In contrast, the one-year periods in seasonal economic data need not be fixed to the

monthly data from within a calendar year; it can be any set of twelve continuous monthly
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data points regardless ofwhether all twelve points fall within one particular calendar year.

Furthermore, the points in an economic data series tend to be continuous through time.

Therefore, although itmay be ideal to use SARIMA time-series models for forecasting

economic data, it must be modified for application to the BCAM Real-Time SPC module.

See Figure 6 for a comparison of a continuous economic time-series data and a

concatenated non-continuous equipment sensortime-series data.

Continuous Seasonal Economic Data

{|K?IIIH!Sin"l!m5?SHSI!!l?m

1 i'i Is • • • . -". -t"--~;
Season Season

I I I I
Season Season

Non-Continuous Periodic Equipment Sensor Data
YxlO3

0.00 50.00 100.00 150.00 200.00

Period Period

250.00

Figure 6. A continuous economic time-series data vs. a non-continuous

equipment sensor time-series data [2].
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In addition, the modified time-series models must be generated automatically for

practical use in the BCAM Real-Time SPC. This is because in a production environment,

a variety of products are run through each piece of equipment in any given time. This

change in product lines might result in shifts and changes in the machine sensor readings,

thus requiring that new models be generated in between runs. Furthermore, the current

method of generating time-series models is time-consuming and requires specialized skills

in time-series statistics, as the models are generated interactively using standard statistical

analysis tools. Thus a methodology for automating the model generation process must be

sought. Such a methodology has been developed and is discussed in the next chapter.
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Chapter 3 Automatic Time-Series Model Generation

3.1 Background

Linear models can be, and have been, used in order to "forecast" future readings ofa

time series as a function ofpast readings and past forecast errors. This method ofusing

linear models for time-series forecasting is illustrated in Figure 7, where observation wt is

forecasted based on past observation wt_j with a forecast error ofat using a simple
autoregressive model.

Wt_j wt

Figure 7. Illustration of time-series modeling.

This method of time-series forecasting applies only to "stationary" data series. A

stationary time series has a mean, variance, and autocorrelation "structure" that are

essentially constant through time. (The autocorrelation function, which is a way of

measuring how the observations within a single data series are related to each other, will

be used to determine the autocorrelation structure of a time series.) Non-stationary

sequences are often differenced in order to achieve approximate stationarity.
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An Autoregressive Integrated Moving Average (ARIMA) model is an algebraic

statement showing how a time-series variable (zt) is related to its own past values (z,_/, zt.

2, zx_3,...), i.e. autoregression, and its past forecast errors (at_j, at_2, at-3* —). i-e. moving

average [2]:

p q

*t= 5>iwt-i-XejVj
i=l j=0

where wt = Vdzt (1)

Vd : rfth order ofdifferencing

where V]zt = z,^.,, V2zt = V(Vzt),...

This is the form of the ARIMA model that is used for Real-Time SPC.

One typically generates ARIMA time-series models interactively by first identifying

appropriate models, estimating the model parameters, and checking the models for

adequacy. This is time-consuming and requires significant skills in using standard

statistical tools.

The ARIMA model generation process can be automated if the "integration",

"autoregression" and "moving average" components can be separated and solved for

separately. This is typically done by first determining the differencing order necessary to

ensure that the data series is stationary, then determining the autoregressive order and

parameters using what is known as the modified Yule-Walker equations, and finally

applying some appropriate technique tofind the moving average order and parameters.

3.2 Stationarity and Time-Series Integration

ARMA modeling applies only for a stationary time series. By definition, a series is

stationary if allthe statistical moments of the series are constant through time. However, if
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the data series is not stationary, its statistics, and perhaps its mean will shift through time.

Therefore, it would be expected that the estimated ACF for this series will drop slowly

toward zero.

In order to determine whether a time series is stationary and if differencing is

necessary, one looks at the estimated autocorrelation functions (ACFs) of the time series.

An autocorrelation function, again, is away of measuring how the observations within a

single data series are related as a function of the time elapsed between the readings. The

autocorrelation function at lagk is defined as follows [2]:

n-k

h = ^ (2)
I ay

t= l

where zt = zt-z

and n = data count
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An example of the autocorrelation function (ACF) plot is shown below in Figure 8.
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Figure 8. An example of the autocorrelation function (ACF) plot.

15

If the estimated autocorrelations have absolute t-values ofgreater than roughly 1.6 (for

a 90% confidence inestimation) for the first five to seven lags, this isan indication that the

series may have a nonstationary mean and may need to be differenced [2]. An example
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comparing the ACF plot ofa stationary series and that ofa nonstationary series is shown

in Figure 9.
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Figure 9. Comparison of the ACF plots of stationary and nonstationary
data.

In order to determine the estimated t-values and test the significance of the

autocorrelation coefficients, one must first estimate the standard error of the ACFs. M.S.

Barlett [5] has derived an approximate expression for the standard error of the sampling

distribution of the autoregressive coefficient r^. This estimated standard error, designated

s(r0, is calculated as follows:
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k-1 Nl/2
-1/2

V j=i J
(3)

This expression is appropriate for processes with normally distributed random shocks

where the true MA order of the process is k-l.

Now one can use the estimated standard errors to test the null hypothesis H0: p*= 0

for k = 1,2,3,.... This hypothesis is tested by finding out how far away the sample statistic

r^ is from the hypothesized value p^ = 0. This distance is expressed as a t-statistic equal to

the equivalent number of estimated standard errors. Thus one can approximate the t-

statistic in the following fashion [2]:

rk"Pktrk =-^ (4)
rK s(rk)

3.3 The Yule-Walker Equations and AR Modeling

The Yule-Walker equations are used for determining the AR model for a known AR

process. These equations describe the linear relationship between the AR parameters and

the autocorrelation function. The solution of these equations is provided by the

computationally efficient Levinson-Durbin algorithm [6].

A relationship between the AR parameters and the autocovariance function Rxx of wt

is presented. This relationship is known as the Yule-Walker equation [7]. The derivation of

the Yule-Walker equation proceeds as follows [6]:

Rxx(k)£EE(wl+kwt)
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=Ewjj^.w^.-a^j (5)

= X*iRxx(k-i)-E(at+kwt)
i=l

where wt is the observation from astationary time series, at is the forecast error or noise,

and E[] implies the expected value.

We will define the following:

Rnx(k)SE(at+kwt) (6)

But Rrufk) = 0 for k > 0 since a future input to a causal, stable filter cannot affect the

present outputand at is "white" noise. In other words, since at is a white excitation, it is

uncorrelated with those wt occurring prior to /. Therefore, Expression (5) can be further

simplified as:

Rx,00 = \

X*iRxx(k-i),k>0
i=l

X<l>iRxx(k-i)+a2,k =0
i=l

(7)

Expression (7) is known as the Yule-Walker equations. To determine the AR

parameters, one need only choose the first/? equations from Expression (7) for k > 0, solve

for (<t>i, <|>2,..., <t>p), and then find a2 from Expression (7) for k=0. The set of equations
which require the fewest lags of the autocovariance function is the selection k = 1,2,..., p.

They can be expressed in matrix form as [6]:
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Rxx(0)

Rxx(l) Rxx(O)

Rxx(P-DRxx(P-2) •

Automatic Time-Series Model Generation

Rxx(-(P-D)" ♦i Rxxd)"
R»(-(p-2» 0>2

=

Rxx(2)

Rxx(O) .♦» .Rxx (P).

19

(8)

It should be noted that Expression (8) can also be augmented to incorporate the a2

equation, yielding

RxxW Rxx(-D •• Rxx(-P)
RxxO) Rxx(O) ...R»(-(p-D)

• • • •

• • • •

Rxx(p)Rxx(p-D .- RxxW

-1

♦l

LYPJ

0

0

(9)

which follows from Expression (7).

The Levinson-Durbin algorithm provides an efficient solution for Expression (9). The

algorithm proceeds recursively to compute the parameter set (<J>j j, G]2), (<J>2i, <t>22> <*22)> •••»

(%h %2> •••» %p> Gp )• Note that an additional subscript, p, has been added to the AR

coefficients to denote the order of each sequence. The final set at order p is the desired

solution [6]. In particular, the recursive algorithm is initialized by setting:

4>n =
R»(i)

R»(0)
(10)

r2 _ai= (J-hil^RxxW) (ID
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with the recursion for i = 2,3,..., p given by

k-l

RxxW +X^.^Ck-i)
4>kk = ^ (12)

4>kj = ^-ij +<Mk-i,k-j (13)

°k= d-l^kkl2)^-! (14)

It is important to note that (tykh tyk2l..., (j^, a*2), as obtained above, is the same as

would be obtained by using Expression (9) for/? =k. Thus the Levinson-Durbin algorithm

also provides the AR parameters for all the lower order AR model fits to the data. This is a

useful property when one does not know a priori the correct model order, since one can

use Expression (9) to generate successively higher order models until the modeling error

Ofc is reduced to the desired value.

Inparticular, ifaprocess isactually an AR process oforderp, then ((Jn+i^ =(jw for k=

1, 2,.... p and hence typ+ijt+i =0. In general for an AR orderp process, ^ =0and G*2 =

Op2 for k>p. Hence, the variance of the excitation noise is aconstant for amodel order
equal to or greater than the correct order. Thus, in theory, the point at which o*2 does not

change would appear to be a good indicator of the correct model order. This means that

a*2 first reaches its minimum at the correct model order [6].

3.4 The Modified Yule-Walker Equations and ARMA Modeling

The Yule-Walker equations can be modified in order to generate ARMA models. To

illustrate this, let wt be a stationary time series generated by the following ARMA

equation:
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*•= I>iwt-i+lv-j (15)
i=l j=0

Multiplying both sides of Equation (15) by wt.k and taking the expectations, we

obtain:

RxxW =ifiRu(k-l) +iejR01l(k-j) (16)
i= ] j = 0

where, once again,

Rxx(k)EE(wl+kwt) (17)

Rnx(k)sE(al+kwt) (18)

However, as pointed out in Section 3.2.3, one can assume that Rnx(k) =0 for &>0.

Therefore,

R„(k) = i

p q

I^iRxx(^i) +IejRnx(k-j),i =0,...,q
i= 1 j = 0

p d9)

X<t)iRxx(k-i)>i =q+l,q +2,...
i= 1

Thus the AR parameters can be estimated independently of the MA parameters if one

uses the Yule-Walker equations as given by Expression (19) [8].

A popular approach for determining the ARMA model and estimating its parameters is

to use i >q to find the AR parameters (<J)lf <J>2,..., (j)p) and then apply some appropriate
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technique to find the MA parameters (Gj, 62,..., Qq) or an equivalent parameter set. For

example, to find the AR parameters, using Expression (19) and i =q+1, q+2,..., q+p, we

solve the following matrix expression:

Rxx(q) Rxx(q-D
Rxx(q+D Rxx(q)

* •

Rxx(<J +P-l) Rxx(q +p-2)

IRxxl

Rxx(q-p+n ♦i Rxx(q+1)

Rxx(q-p+2)
*2 =

Rxx(q + 2)

Rxx(q) <t> Rxx(q + p)

(20)

These equations have been called the extended, or modified, Yule-Walker equations.

The AR order can be determined by testing the singularity of the correlation matrix

|Rxxl- Therefore, in order to choose an appropriate model order p for the ARponion of the

ARMA model, the property

det|Rxx| = 0 (21)

for dimension of |RXX| greater than the ARorder p can be used. The AR coefficients (<J>l5

te» •••» %)can tnen De solved using the linear system of equations in Expression (20).

Expression (19) can be used to determine the MA order q, since q is seen to be the

largest integer k for which

Rxx(k)-I*,R„(k-i)*0
1=1

(22)
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This process can be repeated with the new estimate of the MA order q. Furthermore, the

MA coefficients (0j, ©2, •••> ®q)can be determined using appropriate iterative optimization

techniques [8].

3.5 Modifications to Time-Series Model Generation Algorithm for Noise
Compensation

An inherent problem with automatic time-series model generation for the BCAM SPC

scheme is that the real-time sensor signals tend to be very noisy. This makes it very

difficult to determine the AR order using the matrix form of the modified Yule-Walker

equations:

RXx (q)
Rxx(q+1)

Rxx(q-D ...Rxx(q-p+n
Rxx(q) ...R„(q-p + 2)

Rxx(q + p-l) Rxx(q + p-2) ... Rxx(q)

|R XXI

where

det|Rxx| = 0

♦l

*2

J LYEJ

Rxx(q+1)
XX

I

kxxR..(q + 2)

RXx(q+p)

(23)

(24)

for dimension of |RXX| greater than the AR order/?. This is because it is very difficult to

test whether thedeterminant of thecorrelation matrix |RXX| hasreached zero.

However, Expression (19) can be used to determine the AR order as well as the AR

coefficients (fy, <j>2,..., <j>p) using simple linear regression. Expression (19) isrepeated here

for convenience:
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P

I*iRxx(k-i) +XejRnx(k-j),i =0,...,q
i = 1 j = 0

R*, 00 =
p

X<J)iRxx(k-i)»i =q+i»q+2,...
i=l

(25)

A linear regression can be fitted to the time series using Expression (19) for i >q with

an initial high AR order. The significance of the AR coefficients is then tested with the

insignificant highest-order AR coefficient omitted, and the regression repeated with a

lower AR order. This process is repeated until all AR coefficients determined using the

linear regression methodology are tested to be significant. (The significance testing of the

AR coefficients is typically done using an appropriate limit on the t-value of the

coefficients.)

This methodology has been tested using real-time sensordata and has shown to be

efficient in helping determine the AR order and coefficients of an ARMA process despite

noisy samples. This will bedemonstrated in the results shown in Chapter 5.
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3.6 Summary

The process of automatically generating ARIMA time-series models essentially boils

down to determining an optimal model order structure as represented by a point in a three-

dimensional space as shown in Figure 10.

AR order p
'1

Differencing order d

AKlMA{p9d,g)

MA order q

Figure 10. Algorithm for determining the structure of an ARIMA

model.

The model generation process starts by determining the appropriate differencingorder

needed in order to derive a "stationary" time series, thus reducing the problem down to a

search for an optimal point in a two-dimensional space. The modified Yule-Walker

equations are then used with a high initial guess for the MA order q in order to determine

the AR order p and the AR coefficients (fy, (t>2,..., fy). The same modified Yule-Walker

equations can then be used to estimate the MA order q as shown using Expression (22).

This process is then repeated with the new estimate of the MA order q until the process

converges. The MA coefficients (6j, 02,..., 0^) are then solved using iterative optimization

techniques.
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Chapter 4 Modified Real-Time SPC with Automatic
Time-Series Model Generation

4.1 Overview of Modifications

As explained in section 2.2, one cannotuse the seasonal ARIMA (SARIMA) model in

order to model equipment sensordata for real-time SPC purposes. However, one can

modify the method in which ARIMA models are generated in order to develop

satisfactory filters for real-time SPC. This is done by decomposing the original sensor

signal into two components, the within-wafer and wafer-to-wafer components, and by

developing two separate ARIMA models: onefor modeling the characteristics of the data

variation from within the critical step of each wafer and one for modeling the wafer-to-

wafer variation of the real-time sensor data. These models can be generated automatically

using the algorithm described in Chapter 3.

Thewithin-wafer and wafer-to-wafer residuals can then becombined intotwo separate

T2 statistics for SPC purposes. One will be used for detecting within-wafer processing
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faults while the other will be used for detecting wafer-to-wafer faults. An example of the

signal decomposition and filtering process is shown in Figure 11.
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Figure 11. Example of the signal decomposition and filtering process.

4.2 Within-Wafer Data Modeling and Filtering

Aftercarefully analyzing the equipment sensor data, it can be seen that the sensor data

display a distinctive auto-correlated pattern during each wafer processing step. This

pattern tends torepeat itself with every wafer processed. An ARIMA model can bebuilt in

order to model the characteristics of these within-wafer patterns by selectively looking at

only the time-series autocorrelations within each wafer. The within-wafer time-series
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models and filtered residuals can be used to detect slight problems in the wafer processing

step. Shown in Figure 12 is an example ofthis repeated pattern for select sensor signals

from the Lam Research Rainbow plasma etcher and the IIND residuals after filtering the

data withtheautomatically generated ARIMA time-series models.
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Figure 12. Selected equipment sensor data from the Lam Research

Rainbow plasma etcher showing the repeated auto-
correlated pattern for each wafer processed and their

correspondingIIND residuals after filtering. Sensor data
for each wafer have been de-meaned so that the within-

wafer time-series pattern can be seen more easily.

Modifications to the ARIMA model generation algorithm must be made in order to

generate an appropriate model for the de-meaned within-wafer data. The modifications

simply involve calculating the time-series statistics (i.e. the autocorrelation functions)

using selective samples that embody only the within-wafer time-series characteristics.



Chapter 4 Modified Real-Time SPC with Automatic Time-Series Model Generation 29

This means eliminating samples involving uncorrelated datapoints across wafers. An

illustration of this selective sampling process is shown in Figure 13.

.UncorrelatedCorrelated Sample
Sample r Correlated

Sample

Figure 13. An illustration of the selective sampling process for

determining within-wafer ARIMA time-series models.

4.3 Wafer-to-Wafer Data Modeling and Filtering

Although most sensor data show little autocorrelation across wafers, there are certain

signals that have significant autocorrelation from wafer to wafer. This wafer-to-wafer

correlation must befiltered with an appropriate time-series model. By looking at only the

correlations between the wafer averages, one can build time-series models that will be

able to filter these wafer-to-wafercorrelations. The wafer-to-wafer time-series models and

filtered residuals can be used to detect catastrophic problems in the wafer processing step

(i.e. a significant shift in the real-time sensor signal). Selected original equipment sensor
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data, wafer averages of the original data, and their corresponding IIND wafer-to-wafer

residuals are shown in Figure 14.

Sensor Signals Wafer Averages Wafer-to-Wafer Residuals

Da
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m
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^pm ^ tl-
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Figure 14. Selected equipment sensor data, wafer averages of the

original data, and their corresponding IIND wafer-to-wafer

residuals.

4.4 The Double-T2 Control Chart

The Hotelling's T2 statistic can be calculated for both the IIND within-wafer residuals

and the IIND wafer-to-wafer residual means. The T2 statistic is a well-defined variable

that represents a combined score for many cross-correlated variables, and is calculated by

grouping n readings from each ofp cross-correlated parameters [3]:
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T2 =n(X-X)V1(X-X)

where group mean X = [x^.Xp]

-T
nominal value X = [xla..xp] (26)

variance-covariance matrix S =
si - siP

?pi - sp.

The distribution of theT2 statistic is related to the F-distribution as follows:

2 P(n-l)
1a,p,n-l n_p ra,p,n-p

The T2 statistic defined above is optimal for detecting mean shifts under the

assumption of multivariate normality. Furthermore, it can be extended to guard against

shifts in the variance of the monitored data. However, it is not geared towards identifying

a shift in the variance-covariance matrix and will confound such a shift with a shift in the

mean vector.

This statistic takes a low value when the average values of the cross-correlated

variables are small. The T* score is very sensitive to any change in the mean of one or

more of the combined variables. This score can be used in conjunction with a one-sided

control chart whose limit is determined according to the numberof variables, the sample

(or group) size and the acceptable percentage of false alarms.

As noted above and in Expression (26), readings are grouped according to a specified

group size n and a T* statistic is calculated for each group. This grouping is necessary in

order to compensate for the occasional noise in the real-time data. Thus an occasional

noisy spike in the data will not cause alarge T2 alarm given that the fault is minor.
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The Double-T Control Chan is a one-sided control chart displaying both the within-

wafer and the wafer-to-wafer T2 statistics in order to determine if aprocess is in astate of

control. If a process goes out of control, one can determine whether the alarm was caused

by a within-wafer or wafer-to-wafer fault. An example of the Double-T2 Control Chart is

shown in Figure 15.

20.12 Double-TA2

16.096 •

nm -

Figure 15. An example ofa Double-T2 Control Chart. The line graph
plots the within-wafer T2 statistic with aspecified group
size. The bar graph shows the wafer-to-wafer T2statistic
for each wafer processed. (NOTE: The two T2 statistics

have been scaled so as to have the same control limit.)

4.5 Summary

In conclusion, an automatic ARIMA time-series model generator has been added to

the BCAM Real-Time SPC module in order to make the application more practical and

robust. Furthermore, the system has been modified so that two time-series models are

generated for each signal in order to filter the within-wafer and wafer-to-wafer variation
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separately. This in terms implies the generation of two separate T2 statistics for real-time

SPC: one for signalling within-wafer faults and the other for signalling wafer-to-wafer

faults. These two T statistics are scaled and plotted together on what is called a Double-

1 Control Chart. This scheme has been implemented in software and hardware, and is

discussed in the following chapter.
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Chapter 5 Implementation and Experimental Results

5.1 Implementation

5.7.7 The BCAM Real-Time SPC System

As discussed in the preceding chapter, the BCAM Real-Time Statistical Process

Control system first decomposes the real-time sensor signal into its within-wafer and

wafer-to-wafer components and filters them separately. The filtered residuals are then

combined into two separate T2 statistical scores that are then scaled and placed on a

Double-T Control Chart in order to detect abnormal within-wafer and wafer-to-wafer

variations.

A top-level description of the dataflow for the system is shown below in Figure 16.

SECS II

A
Process
Station

DOS 486

A

NFS Radon File System

Data
Distribution

UNIX

♦

<&
Tcl/Tk

Interface

Lam Research Rainbow

Plasma Etcher
Monitors the arrival of new

data and notifies the interface

Brookside Software:

Acquires machine data
in real time via SECS II

Analysis and User
Interaction

Figure 16. A top-level description of the dataflow for the Real-Time

SPC module
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The system has been implemented using the C and C++ programming languages in the

UNIX environment. A Tcl/Tk graphical user interface has also been built. The prototype

system is depicted in Figure 17.

Data Acquisition

(C++)

Model Generator (C)

Main UI (Tcl/Tk)

A

*T SPC Analysis (C)

7^

Text Output

Figure 17. Descriptionof the Tcl/Tk interface
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A screen dump of the Real-Time SPC graphical user interface is shown in Figure 18.

This interface includes a main panel, a model generation panel, and a Real-Time SPC

window.

Figure 18. Real-Time SPC screen dump
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5,12 Automatic ARIMA Time-Series Model Generator

The automatic ARIMA time-series model generation sequence for real-time SPC is

illustrated below in Figure 19.

Original
Sensor -
Data

Within-Wafer
Time-Series
Statistics

r
Wafer-to-Wafer
Time-Series
Statistics

lime-Series
Model
Generation
Algorithm

Figure 19. Flow chart for the automatic ARIMA time-series model

generation process for real-time SPC.

Within-
Wafer

"ARIMA
Model

Across-
.Wafer
ARIMA
Model

As shown in Figure 19, the within-wafer and wafer-to-wafer time-series statistics are

determined separately through selective samplingdescribed in sections 4.2 and 4.3. These

time-series statistics are then used in conjunction with the model generation algorithm

described in Chapter 3 in order to generate the appropriate within-waferand wafer-to-

wafer models for each real-time sensor signal.

The functionality of the time-series model generator has been demonstrated by

applying it to the BCAM Real-Time SPC system. The model generator has been

implemented using the C programming language in the UNIX environment and has been

integrated into the BCAM Real-Time SPC module that was described in the previous

section. This generator is capable of generating a pairof within-wafer and wafer-to-wafer
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ARIMA models in less than five seconds real timeand less than one second CPU time on

a Sun SPARCstation 2™.

5.2 Experimental Results

5.2.1 Summary ofExperiment

The following experiment wasdemonstrated in theSRC Real-Time Statistical Process

Control Workshop at the University of California, Berkeley, on May 10-11, 1993. It

involves the generation of five pairs of within-wafer and wafer-to-wafer ARIMA time-

series models for five signals. These signals were the Coil Position, the Impedance, the

Phase Magnitude, the Tune Vane and the Peak-to-Peak Voltage collected from the Lam

Research Rainbow plasma etcher in the Berkeley Microfabrication Laboratory. Twelve

polysilicon wafers were processed in order to produce the baseline data needed for the
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generation of the time-series models. The signals, along with their corresponding within-

wafer and wafer-to-wafer filtered residuals are shown below in Figure 20.
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Figure 20. Baseline data for five sensor signals along with their

corresponding within-wafer and wafer-to-wafer filtered

residuals.
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The within-wafer and wafer-to-wafer ARIMA time-series models generated using the

automatic time-series model generator is shown in Table 1.

Table 1:Within-Wafer and Wafer-to-Wafer ARIMA Models Used for Experiment

Signal Within-Wafer Model Wafer-to-Wafer Model

Coil ARIMA(2,0,1) ARIMA(2,0,1)

Impedance ARIMA(2,1,0) ARIMA(1,1,0)

Phase ARIMA(1,0,0) ARIMA(1,0,2)

Tune ARIMA(1,0,0) ARIMA(0,1,0)

Volt ARIMA(0,0,0) ARIMA(1,0,1)

Afterthe appropriate baseline models have been built, fourteen wafers were processed

and monitored using the BCAM Real-Time SPC scheme through the Tcl/Tk interface

described in Chapter 5. Known faults were introduced as follows in Table 2:

Table 2: Description of Wafers in Real-Time SPC Experiment

Wafer # Description

1-7 Clean wafers with blanketpolysilicon layer

8-9 Wafers with dirtypolysilicon film

10 Clean wafer with blanket polysilicon layer

11 Waferfrom wrong batch with photoresist remaining

12-14 Clean wafers with blanket polysilicon layer
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52.2 Within-Wafer Residuals

The original sensor signals and their corresponding within-wafer residuals are shown

in Figure 21.

Sensor Signal Within-Wafer Residuals
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Figure 21. Original Sensor signals and their corresponding within-
wafer residuals with a 3-a control limit.
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One can see significant within-wafer problems in wafers #9 and#11. This is obvious

because wafer#9 was deposited with dirty polysilicon film and wafer#11 came from the

wrong batch and contains unwanted photoresist. One can also see slight within-wafer

problems with wafers #3, #6, #8 and #10. (This ismost obvious bylooking at the original

signals and residuals of the Tune Vane, the Phase Magnitude and the Impedance.) Wafer

#8, like wafer #9, was also deposited with dirty polysilicon film. Wafers #3, #6 and #10

did not have any known problems.

Wafers #8, #9 and #11 are known to be faulty wafers and are correctly identified bythe

within-wafer residuals. Wafers #3, #6 and #10 might possess problems that were unknown

prior to the runs.
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52.3 Wafer-to-Wafer Residuals

The original sensor data and their corresponding wafer-to-wafer residuals are shown

below in Figure 22.

Sensor Signals Wafer-to-Wafer Residuals
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Figure 22. Original sensor signals and their corresponding wafer-to-
wafer residuals with a 3-a control limit
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The wafer-to-wafer residuals tend to detect catastrophic faults, since a large wafer-to-

wafer residual usually signifies a major mean shift in the sensor signal. It is therefore

obvious by looking at the original signals and the wafer-to-wafer residuals that there are

significant problems with wafer #11. This is easily seen by looking at the mean shifts in

the Tune Vane, the Peak-to-Peak Voltage, and the Coil Position. The mean shifts in these

signals are also reflected in their respective wafer-to-wafer residuals. Thus by looking at

the wafer-to-wafer residuals, one can detect a significant problem with wafer #11, which

contains some unwanted photoresist.

524 TheDouble-T2 Control Chart

The within-wafer and wafer-to-wafer T2 statistics are plotted on the Double-T2

Control Chart shown below in Figure 23.

Double-TA2

Figure 23. Double-T2 Control Chart from the experiment. (NOTE:
The line plots are the within-wafer T"s and the bar plots are.

the wafer-to-wafer T2s.)

One can see that the within-wafer T statistics were able to signal problems with

wafers #3, #6, #8, #9, #10 and #11, with numerous significant T alarms for wafers #9 and
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#11. Thus the within-wafer T statistics correctly identified the known problems with

wafers #8, #9 and #11. (These problems are itemized in Table 2.) The alarms for wafers

#3, #6 and #10 might be either false alarms, or they might signal slight problems with the

wafers, which were unknown prior to the run.

*\

The wafer-to-wafer T statistics clearly identified the catastrophic fault in wafer #11,

which is a wafer with unwanted photoresist. Since this was the only wafer that cause

significant mean shifts in the sensor signals, itwas the only one with an wafer-to-wafer T2

alarm generated.

52.5 Results

The experiment shows that the automatic time-series model generator was able to

generate satisfactory models for detecting wafer or processing faults in real-time.

Furthermore, the modified real-time SPC scheme is shown to be effective in detecting two

different types of faults: slight faults caused by within-wafer processing instabilities and

catastrophic faults resulting from major mean shifts in the sensor signals.
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Chapter 6 Conclusions and Future Work

The BCAM Real-Time Statistical Process Control scheme has been modified, and an

automatic time-series model generator hasbeen developed and integrated in the BCAM

SPC module. This modified scheme along with the automatic model generation algorithm

has beenapplied on the Lam Research Rainbow single-wafer plasma etcher. The model

generation algorithm has demonstrated success in generating useful time-series models for

filtering real-time sensor data. Furthermore, the modified real-time SPC scheme has been

shown to be superior in detecting processing faults than the originally proposed

methodology.

The modifications made to the BCAM Real-Time SPC scheme involve decomposing

theoriginal sensor signals intotwo separate components to beanalyzed independently: the

within-wafer and wafer-to-wafer time-series components. Separate T2 statistics for the

within-wafer and wafer-to-wafer analyses are then plotted on aDouble-T2 Control Chart.

This will allow one to not just detect processing faults, but also determine whether these

faults are minor problems resulting from within-wafer processing instabilities, or

catastrophic processing errors resulting from major mean shifts in the equipment sensor

signals.

The automatic ARIMA time-series model generation algorithm involves determining

the Integration, Autoregressive and Moving Averagecomponents of the model separately.

This algorithm is facilitated by the use of the modified Yule-Walker equations [6].

Furthermore, this algorithm has been modified so that the original equipment sensor

signals may be decomposed and separate models generated for the within-wafer and

wafer-to-wafer time-series data.
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The automatic time-series model generation algorithm has the potential of making

several other computer-aided manufacturing applications more practical and robust.These

applications include equipment modeling, real-time equipment control, wafer-to-wafer

control and real-time equipment diagnosis. Further studies will be conducted in order to

determine the feasibility of applying time-series modeling to the CAM applications

mentioned above.

In addition, other methods for filtering the sensor data for real-time SPC will be

studied. These include possible use of the Kalman Filters, the theory of principle

components or just simple exponentially-weighted moving averages.
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