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COLOR SEGMENTATION WHERE INTENSITY SEGMENTATION FAILS

Figure 25: Simplified example ofthe added usefulness ofcolor edge detection in a boundary detection system.

a)Photograph of the full-color image. The red-green-blue-green stripes are all at equal intensity values.

b)Result of running Canny edge detector on the R+G+B intensity image. No boundaries are detected since there are no intensity
changes over the image.

c) The pooled magnitude result of running the Color edge detector using the three bands R,G, and B.

d) The segmentation result of Color edge detector
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ANDES: COLOR AND INTENSITY SEGMENTATION OVER SHADOWS
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Figure 26:

a) Color image of Andes. The white areas are made up of appro;^imalely equal amounts of Red, Green, and Blue.
b) The Red, Green, and Blue color bands for the Andes image.
c) The color-opponency bands G-R and B - 1/2(R+G) bands.
d) The intensity images R+G and R+G+B.
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Figure 18: Photographs of color images used in Qiapter IV

Section IVIA. and IV.B. Multichannel approach:

a)Portion ofL&nna

b)Portion of Lizard

c) Portion of Mandrill

d) Portion of Peppers

Section IV.C. Comparisons Among Intensity, Color, Texture:

e) Portbn of ADay in the Park by Seurat

0 Yellow foreground textureover bluebackground, of equal intensities. The threeboundary detectors yieldverydifferent results,

g) Portion of OldMill.Intensity. Texture, and Cobr boundary detectors givedifferent results.
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color bands are R-G, =(R+G)-B, R+G+B. The three color bands are analogous to the stage of PIR

images in the texture model. The color edge detection steps are:

*for each RGB. smooth the images.

• Calculatex and y derivatives
• Calculate edge magnitu^

*local non-maximum suppression to eliminate Inoad edges.

L Basic setup: Results for several images

Figure 19 shows the block diagram for this implementation. Initially, the smoothing/derivatives

stage (Canny step I) blindly used a = 8.0, Figure 21. The color boundary detector did well at

n/n

i(x,y>

Canny Stages IIII

BandO '
. wadient

(x- and y-)
Edge

Magnitude

Bandl
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^gradient
(x- and y-,

wadient
(x- and y-)

Edge
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Edge
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Canny Stage ill
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Max-^

Non-
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Figure 19: Block diagram for main Color Edge Detection scheme.

defimng the color boundaries in the lenna image. It misseddistinguishing the upper eyelidfrom

the brim of the hat, but this can be explained by the widesmoothingfunction. It did not give the

results expected at first glance for the lizard image; in this case, the detector fotmd boundaries

between the lizard and the rock, shadows and sunlit areas, but didn't find boundaries between

the lizard and the background. This basically shows how well the lizard blends into the back

ground rather than pointing out weaknesses in the algorithm. The mandrill image gave bound

aries about the eye and the cheek, the two main color areas besides the background (the face). It

did miss the extra color rim around the ^e and the boundaiy between the upper nose and face,

but these again are due to scale - smoothing blends the two boimdaries together. Finally, the
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Abstract

This report investigates the development iji a gen^alized boundary detector for twonlimeisional imagpg. Three
typesof boundary detection (intensity, cokir, and texture) together give a cmnplete segmentation which does not
depend on the typeof input image. The Malik-Perona texture segmentation algorithm, which takesa multi-scale,
multi-channel fUtering approach, forms the initial basis of the texture implementation for this report. Good
segmentation results are obtained using this approach. Several variations on die algorithm and their effects on the
segmentation are presented, with good results for many variatioiis. The color segmentation algorithm follows
essentiallythe same format as the last several steps of the texture algorithm,with the three C(dor bands of an RGB
image serving as the individual channels. Theresults for thismethod arequitegood and often work on images for
which intenaty differences by themselves are not useful for segmoitation. Variatimis are applied to the base color
a^orithm to diow that they maintain the effectiveness ofthe boundary detection. The third type ofsegmentation
finds boundaries based upon intensity differences; the basic Canny Edge Detector is used for this purpose on
several images. In fact, the Canny Edge Detector is a common denominatoramong the three boundary detection
components,as it servesin a modified form as a back-endedgeoperator to the textureand coloralgorithms.Each
of the segmentation processes reducesto the detection ofedges in an intenaty imageafter preprocessing stages.

L INTRODUCTION

A. Boundary Detection

Computer vision techniques often seek to accomplish tasks modeling those performed by the

human visual system; among these tasks is the perception of boimdaries in natural and artifi-

cisd images. Boundaries provide much of the information needed for humans to recognize be

able to interact with objects, '^tness the ability ofhumans to recognizeolgects by their outlines

alone. The human visual system may effortlessly, or preattentively, discriminate boundaries

between different textures (e.g., a bed of rocks nest to a field of grass); it may see a boimdary

between color regions; it may infer boundary edges based on intensity changes in a gray-scale

image; or it may find differences due to stereo vision and optical flow fi*om motion changes.

This paper focuses on the first three of these five visual cues from which boundaries can be
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detected. The function of a boundary detector is simply to find perceived edges. The combina

tion, or fusion, of the outputs of various types of boundary detectors can give more complete

information over the use of a single boimdary detector. A photograph taken of a nighttime scene

with a visible-light camera, for instance, and a photograph of the same scene taken with an

infrared camera will each differ in informational content; the first might find street lights and

the moon, the latter might ^see" a car's engine, or an animal. The fusion of the photographic

images could give more complete information about the scene than either one alone [1]. More

interestingly, however, any single one of the five visual cues alone is often sufdcient for gather

ing information and detecting boundaries without aid from another cue.

B. Applications

Texture analysis in general finds many uses in quality control appHcations. For example, defects

often show up as textural aberrations in textiles, paper, and electronic components. Wood sur

faces often have blemishes which are undesirable to the end-user; these can often be detected

with vision processes [2]. Recent research [3] utilizes texture segmentation in a quality control

setting for automotive finishes. In particular, the paint finish on a car must typically be uniform

and aluminum particles which are added to the paint can be used to judge textural quality.

While many defects occur as variations within a single texture, such as a worn-out area of car

peting, they can be redefined as a second texture within the first, and segmentation methods

can then be applied.

n. INTENSITY EDGE DETECTION

Edges in two-dimensional images can be described as curves across which exist sharp changes

in image intensity. This can be a sudden change in intensity occurring on a small scale, or a

gradual change in intensily, occurringon a larger scale.The processby whichedges are detected

is typically to smooth and then to differentiate the image. The smoothing serves to avoid the

amplification of noise caused by differentiation; the differentiation amplifies large intensity

changes and attenuates small changes. Boundaiy detection problems can be reduced to the

problem of intensity edge detection. By contrast, edge detection has been used in the past as a

front end to vision models, such as for stereopsis, in order to lessen the amount of information to

be processed without removing the relevant information. In the implementations of this report,

images are preprocessed to create intensity images, followed by edge detection as a back end.
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The Cannyedge operator [4] lends itself to segmentation oftexture, color, or intensily images.
Generally, the operator is used to detect boundaries based upon intensity differences among
regions of an image. In texture segmentation, the idea behind the use of the Canny edge opera

tor is to pre-process the texture image to the point where regions of like texture become suffi

ciently differentiable in pixel value (intensity) from one another so that a *T)order" between

regions can be found. Obvioiisly, without preprocessing, the csinny operator applied to a texture

image would yield outlines of the individual textiu*e elements, or texels, rather than a segmen

tation between regions. The preprocessing as performed in this paper takes a multiscale filter

ing approach, where the image is convolved with a bank of multiple filters, processed

independently and in parallel, and then combinedat some point during the Canny stages. It is

the approach taken by Fogel and Sagi [5], Himer [6], and Malik-Perona [7,8], for example. This

has some foundation in physiological research in early stages of vision which suggests that the

human visual system processes information via multiple channels; the filters used in the imple

mentation model several types ofvisual cells. In color segmentation, the image is separated into

its three color bands for processing; in this way, for instance, a boundaiy will be foimd between a

region of"high" blue value adjacent to a region of"low" blue value.

The Canny operator on an image I(x,y) is composed of three general steps:

I] Calculatedirectionalderivatives in the x- and y- directions on an imagel(x.y) whichhas been smoothed (described
as gradients with large standard deviation a').

The smoothing is necessary to avoid the large q>iky re^onses that occur when differentiatinga "noisy" sig
nal. Equivalently, we can convolve I(x.y) with gaussian first-derivatives since the smoothing and differenti
ating steps can be grouped.

n] Calculate edge magnitude via a peak-finding algorithm. Mark the maviiniini points which are connected.

m] Eliminate non-edge points through non-maxima suppression.

The Canny edge detector is used as the intensity edge detector. The texture boundary and color

boundary detectors require multiple channels (as in the three color bands) and hence the Canny

edge operator might be applied multiple times, once to each channel independently of the oth

ers; or, the channels may be combined into a single image according to a chosen norm prior to

applying the edge operator. The pooling process can occur at many stages of the algorithm. We

label the possibilities as follows [9]:

OM: Combine thechannels using ann-nonn crit^ia priorto applying all steps ofthecanny operator to theresulting
single image.
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Va: Apply stepI ofthe Canny Operator to each independentchannel, then combineusing an n-nonn, and apply steps n
and m to the resulting single image.

n/a: Apply steps I and n of the Canny Operator to eadi independentchannel, then combineusing the n-norm, and then
apply step m.

m/a: Applyall stagesof the CannyOperatorto eachindependent channel,thencombinetheboundaries detectedusing
the n-norm.

Here* n refers to the norm which is applied pixel-wise whenever two or more images are com

bined:

1-norm, sum of absolute values; for instance:

(1)

2-nomi, Euclidean norm; for instance:

(x, y) + ix, y) + {x,y)) (2)

oo-notin, max of absolute values; for instance:

max(Ir (x,y) I+ |g (j:.y) I+ |b (x,y) I) (3)

The Perona-Malik paper utilizes II/» in its algorithm. This also works quite well for the color

edge detector.

in. TEXTURE BOUNDARY DETECTOR

Texture segmentation is generally considered the most difficult task of the three boundary

detection types because there is no single definition for texture or how different textures must

be in order to be segmented. Thecriteria often becomes the ability ofhumans to preattentively
(with no effort) segment textures, or is entirely dependent on the application at hand and not

subject to generic guidelines.

A Texture

What constitutes a texture region and what differentiates one region from another? Texture

does not have one standard definition. Essentially, what may look like a sharp variation in

intensity at one scale may recur with some spatial organization such that, at a larger scale,

these variations are perceived as a unified texture region. The "sharp variation in intensity"

might then be called the texture element, or texel. Various characteristics may distinguish one
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texture from another: proximity and spacing of the texture elements, polarity, intensity or

brightness, orientation, phase or discontinuities, etc. Thecriteria onwhich to base the quahty of

a segmentation can be task-dependent. A vision system designed to inspect the quality of timber

will look for different texture characteristics than one designed to inspect metallic finishes.

Another valid answer as to whether one texture regiondiffers firom another is to examineempir

ical results obtained fi'ompsychophysical tests on human perception of boundaries between tex

ture regions. Some textures are more difficult to distinguish from other textures. Various

theories about differences in texton (line segment) crossings (for instance, an and a are

both composed of two lines which cross at different locations), firequency content, mean value,

and tesel density have been put forth to explain the differences in texture discriminability (e.g.,

JuleszflO], Beck [11]). The goal in texture segmentation, then, is to at least match the perfor

mance of humans in delineating between texture regions. Research has been done in texture

classification, but for texture segmentation the properties of the individual textures are not as

useful as the differences between regions. Criteria for the goodness of a segmentation include:

the smoothness of curves and connections, the lack of spurious edges, no missed edges, and good

location of found boimdaries.

B. Previous work - multiscale filtering approach

Many useful results in vision research indicate that the multiscale, multichannel approach

gives an excellent model of visual perception. In this approach, "channel" refers to the process

ing results associated with the convolution of the image with a filter of a given type, scale, and

orientation. It is called "multichannel" whenever the image is filtered with multiple filters and

the individual results processed in parallel. We discuss an interesting model which has been

presented by [5] using Gabor filters, which are sinusoids within a gaussian envelope. Gabor fil

ter responses to different tyi>es of texture and image variations are highlighted in [6]. In partic

ular, section C details the construction of the model based on the paper by Malik-Perona.

L Fogel and Sagi

Fogel and Sagi [5] present a model for texture segmentation based upon Gabor filters. Gabor fil

ters, described in 1946 by Gabor and extended to two-dimensions in 1980 by Daugman, have the

property of optimal joint resolution in the spatial and firequency domain. This makes them good
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texture discriminators since texture elements can be classified as difTering in spatial proximity,

size/frequency, or density. Their first stage is the convolution of the texture image with an even

and an odd Gabor filter to discriminate based upon intensity differences. This is followed by

smoothing with a gaussian, thresholding to remove noise, and differentiating using a Laplacian

(second derivative) of Gaussian step. The paper addresses the multi-frequency nature of the

human visual system, but does not truly integrate this into the algorithm. Instead of utilizing a

set of parallel channels, th.e ideal case is to choose initially the Gabor filters with the correct

parameters for a given texture image such that a segmentation is immediately identified.

Should this fail, they state, change the parameters and run the algorithm again. This makes the

algorithm far from automated, although basic segmentation concepts are included in their

model. The paper does provide an iterative procedure rather than a parallel procedure. One

other weakness in the algorithm is the use of only four orientation in the filters; better resolu

tion could be obtained by adding a few more orientations. The one-at-a-time approach does seem

to have justification for images with only two texture regions; as we find in the experiments in

this report, the segmentation of two textures is typically due to a single channel, ^^th increased

numbers ofregions, the segmentation would be improved by combiningresults of multiple chan

nels.

2. Turner

Thmer [6] shows that Gabor filters respond differently to different textures and identifies what

textures may be considered "different''. The msgor contribution from this paper is to categorize

the various properties oftexture regions which make them discriminable. These properties are:

*Intensity. The Gabor filter ouq)uts high values across changes inintensity, but outputs nothing over regions ofcon
stant intensity.

*Phase shift. When a subjective boundary isformed byshifting a texture, the gabor filter gives high output at the
boundary.

*Orientation. Tripartite field ofL*s T'sand tilted T*s. The Gabor filter produces CTmilar responses tothe preattentively
similar L and T and different for the tilted T.

*Second-order statistics: micropatfem regularly spaced in random noise. Differences in second orderstatistics can be
detected with Gabor filters.

*Regularity: regularly placed region vs.markov-generated region. Gabor filters give highfr le^onses toregularly
placed pixels than to random pixels.

C. Malik Perona Implementation:

Malik-Perona combines the concept of multi-firequency filtering as well as the model of texture

vision as bar, blob, and ring detectors, descriptions used in Marr's "primal sketch." This section
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Figure 1: Texture imag^ used for the ite^^

a) +/o image.
b) CrosseslSquares image.
c) Arrows/Triangles image.

d) UM image.
e) Patch image.
f) Adele image.

g) +/r image.
h) R/R image.
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FILTER BANK SET USED IN TEXTURE SEGMENTATION IMPLEMENTATIONS

BASIC SET:

DOOG filters (0,30,60 shown; 90, 120,150 not shown)

Filter #0

Filter #8

Filter #16 #17 #18

Fnter#24 #25 #26

f: \ V
Filter #32 #33 #34

DCXjI filters DC)G2 filters

#30

#38 #39

ADDITIONS FOR IMAGE 1:



includes an implementation and results based upon the Malik-Perona algorithm. Some license

may have been taken in portions of the algorithm which were not specifically detailed in [7,8], or

were left as open parameters. Discussion of the effects of changing various parameters serves to

give insight into the texture segmentation process. Note that no a priori knowledge is required

about the individual textures, nor of the total number of textures in the image. The set of tex

ture images is shown in Figure 1. The stages of the implementation are as follows:

i. the filtering stage, which inputsone textureimage and outputs multiple, parallelchannels. This stage can be viewed
loosely as a bank of matched filters designed to respond to features with certain characteristics.

ii. Twosuccessive nonlinearities applied to each independent channel,one a pointwisenoniinearity and the other an
inter-channelnoniinearity, and

iii. Canny edge detection. It is in this last step that the channels can be combined into the final image segmentation.

The implementation in this section follows block diagram (a) in Figure 3.

1. Filtering stage. Although much research has been done on texture classification^ texture seg

mentation does not necessarily presume, nor look for, knowledge about the individual texture

elements. Recent trends in texture segmentation are moving away from the investigation of var

ious properties of individual texture elements, and towards a filter-based approach where global

texture properties such as frequency content might differentiate texture regions. When a tex

ture image is convolved with a bank of filters, those filters which are well-matched with one of

# • • •

filter #23 filter #17

Figure 4: Demonstration of filtering the +/o texture image (a) with a filter well-matched to one of
the textures (filler 23) and (b) with a filter not matched well with any texture (filter 17). The larg
est magnitude value in (a) is double that for (b).

the texture regions in terms of shape and scale of texture elements will yield a larger positive or

negative response in that region. Those filters which do not match a texture region will give

smaller, more uniform responses across the texture boundary. In a sense, the filter bank serves

as "matched filters" to features in the texture image shaped like the filters themselves. The filter

set used and example convolution responses are shown in Figure 2 and Figxire 4, respectively.
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Figure 3: "Afox"step indicates either norm 1, norm 2. or nonn oo.

a)Vn: applythefirststq) of thecanny operator toeachindependent channel, thenpooltheresults using an
n-noim criterion. Thefinal twosteps of thecanny operator areapplied to theresulting single image.

b)0/n: combine theFIR images using ann-nonn criteria, and then ai^lyallst^s ofthecanny operator to
die resulting single image.

c) HAi: qiply diefirstandsecond st^s of thecannyoperator toeachindependent channel, andthenpoolthe
results using an n-norm criterion. The third and last st^ of the canny operator are ^plied to the renting
single image.
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Hubel and Weisel [12] originally described visual cells as linear feature detectors matched to

multiple scales and orientations; Campbell and Robson [13] described miiltiple channels all pro

cessing in parallel. Atkinson and Campbell's work suggests that phase information could be

excluded without great detriment to visual perception[14]. This information suggests a model

such as the implementation presented here.

In this implementation, a bank of 40 filters (8 classes of filter at 5 scales), operating essentially

in parallel, are convolved with the input image to produce 40 channels of processing. The three

types of filter implemented in the filter bank (Fig. 2) are referred to as D00(j<6,a) (difference of

offset ^aussians), DOGl(a) (difference of two concentric ^r^ussians), and D0G2(a) (difference

of three concentric ^aussians), where 6 refers to the orientation and a refers to the size of the

gaussians used. The DOGG filters occur at six equally-spaced orientations per scale. These fil

ters are essentially matched filters to detect 1) bars at various orientations (six used here), 2)

blobs, and 3) rings, respectively. These 40 filters are not to be considered a full set, as only 5

scales are implemented due to the computation and time expense and the fact that these 40 fil

ters are quite effective for a large number of texture images. The 40-filter set is referred to here

as the ^asic" set.

The DOGG and DGG filters were described by Young as a computationally simplified means of

implementing gaussian derivative filters [17]; In the limit as the gaussians of the DGG

approach the other in size, the DGG becomes V^Gaussian. Gaussian derivatives model the point

response profile of VI simple cells in the human visual cortex. Young shows that the DGGG fil

ter, a sum of three spatially offset gaussians, match gaussian second-derivative functions

extremely well. DGGn (number ofgaussians = n+1) filters match concentric gaussian-type filter

profiles; these second-deiivatives-of-gaussians are sometimes referred to as Laplacians. These

filters are simpler since they are combinations of gaussians rather than of their derivatives. The

general equations, where 6 is measured firom 0 to indicate the rotation of the DGGGs, are:
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-2a
+ 2na,Oy

°®®2(c)= 2^„p[-((±)%(2)'))+̂e,p[-((|.)%(Z)^) <8,

+ „,(-(<£,% <2,*))2.075a

2na,a^

0 € {0,30,60,90,120, ISOdegrees] and a € {1,2,3,4,6pixels). The choice the number of filters to

implement is based on a tradeoff between computation time and adequate representation of

scale and orientation. The initial choice of using 40 filters worked well for most of the artificial

textures such as +/o, crosses/ squaresy and arrows Itriangles. Inspection of the largest center-

surroimd (DOG) filters and the adele image, however, reveals that these "ring detectors"are not

quite large enough to fully respond to the ring-shaped patterns in the image. In the interest of

savingcomputationaltime, an extra scale ofcenter-surround DOG filters was added and imple

mented only for this image, especially to test whether an improvement could indeed be found in

the segmentation. Similarly, many smaller texture elements will be well-represented in this

basic filter set. The choice offilter scale must inherently be based on an assumption ofthe scale

oftexture elements whichwould be encountered; althougha finiteset offilters mayform a basis

for representingthe image, time is a practical consideration in potentially reducing the set.
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2. Nonlinearity 1. Applying both a positive and a negative half-wave rectification on the fil

tered images preserves sign information which might be discarded from a full-wave rectification

Figure 5: Image +10. a) thepositive halfwave-rectified andb) the negative half-wave rectified image
corresponding to filter 23. The segmentation ultimately comes from the channel corresponding to (b).
Compare with the halfwave-rectifications for filter 17 c) and d); no distinction is made between the two
texture regions.

or squaring nonlinearity. This step, as mentioned in [5], is particularly useful for texture regions

which contain patterns that are negative images of each other. With half-wave rectification, a

separate channel is created for each sign. The 40 channels have been further split into 80 chan

nels. Figure 5 illustrates the information retained by halfwave-rectifying the images of Figure 4.

3. Nonlinearity 2. The implementation in this section follows the Malik-Perona paper in using

the following two equations:

where

max muxr,Uo.yo)= ^

max I .

T = thresholds under which responses will be suppressed

PIR = the resulting "Post-Inhibition response"

f yo) = inhibition neighborhood about which pixels can affect other pixels: chosen according to Table 1.
aji = weighting factor for the inhibition; chosen according totype ofchannels interacting. Table 2.
S ss suppression neighborhoodfrom whichmaximum valuesare chosen to generateeach PIR image.

+ = positive halfwave symbol.

In this nonlinearity stage, inter-channel interactions occur but only among certain combinations

of channels. Intuitively, the PIR equation suppresses any pixel value which lies below the T, or
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threshold, value (as indicated by the positive halfwave-rectification symbol). This is based upon

the assumption that spurious responses to non-matched filters occur and are less than

responses to matched filters. It also "spreads around" the larger (and presumably legitimate)

responses into the local vicinity of radius S, the suppression neighborhood^ of those points. The

best results are obtained when the S radius of suppression is chosen large enough that the cir

cles (Fig. 6) are somewhat overlapping; presumably similar texture elements will give similar

responses to a given filter, and the overlapping circles will then create a fairly uniform intensity

surface within regions of similar texture elements. Figure 6 shows circles with the S radius a bit

too small for the +/o image; tiie next step of finding texture gradients will find sharp discontinu

ities in locations where texture boundaries do not exist. Also shown in Figure 6 are examples of

an ideal radius for the same images. Contrast this with image arrows Itriangles, where the tex

ture elements are not (radially) symmetrical. The arrows, for instance, when filtered with DOG

symmetrical filters, will give a higher response at the intersection of the lines. Since the arrows

are pointing in random directions, the high response points will not be evenly distributed. In

this case, the best results are obtained with an S radius even larger than for the +lo image of

Figures 4 and 5 and the crosses !squares image, which have very symmetrical texture featimes.

14of 48

+/0 image:
filter 17 channel: filter 23 channel

filter 17 channel: filter 23 channel

Figure 6: Choice of S, the"suppression radius" forPlRs.A radius which is too small (a, b) will
lead to intra-lexture gaps; an appropriate radius (c, d) will create a better "tiling" over a texture
region, lending itself to edge-finding at coirect boundariesdue to intensity differences in the next
stage, (a) and (c) correspond to filter 17; (b) and (d) correspond to filter 23 which alone contributed
to the final segmentation.
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Note that the calculations ofT(x,y) and PIR(x,y) for a given channel i are not dependent upon all

other channels; instead, they are segregated according to scale and orientation. While the

description in [91 gives a plausible biological rationale for this segregation, it does not preclude

all combinations of segregation. The implementation used here adheres to the following algo

rithm and variables in Tables 1 and 2 for deciding which channelsJ are considered in the calcu

lations ofT(x,y) for channel i, as follows:

• channel i and j must be the same scale in this impiftTnantfltinn

• ifchannel i is of type DCX)G. channel j must be: a) DOOG of the same orientationand the halfwave pair of i, or b)
DOGlorDOGZ

• if channel i is of type DOGl or D0G2. channel j nuy be DOOG. DOGl. or DOG2, as long as i .

• otherwise, channel j is not considered in these calculationsfor channel i.

Tables 1 and 2 of weighting coefficients and radii for the PIR inhibition neighborhoods are

shown here:

Table 1. Weighting coefficients a., for inhibition,eqn 7.

channelj

channeli DOGKap D0G2(ap D00G2(a^..r.ep

DOGKa.) 0.2 0.45 0.15

D0G2(a,.) 0.45 0.25 020

D00G2(a,./,-.e.) 0.15 0.20 0.656(0., ep

Table 2. Radius for inhibition neighborhoods Iji, eqn7.

channelj

channel i DOGHOj) D0G2(o:.) DOOG2(a^..r.0.)

DOGKa.) 2a. 1.5 a^. 1.25a^.

D0G2(a.) 2a. 15aj 1.25a^.

DOOG2(a./f.0.) 2a. 15a. 1.25a^.

4. Canny edge detection. As mentioned above, the Canny edge operator can be separated into

three stages. Given the multiple channels of processing, there must be, at some point, a pooling
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CANNY STAGE I & II EXAMPLES FOR TWO CHANNELS

Channel 47 (filter 23 channel)

Channel 34 (filter 17 channel)

Figure 7: Image+/0.ThePIR images in all channels areconvolved with gaussianfirst-derivativefilters in thex- andy-
directions. This is essentially the step>edgedetector which gives the largest response at the junction of two regions of
differing intensity values, and zero response over constant-intensity regions.

a,b) gaussian derivative filter in x-direction (a), and y-direction (b).

c,d) Channel 47, corresponding to filter 23/negative halfwave-rectification, after stage I of the Canny edge operation.
The image is convolved with the gaussian derivative in the x-direclion (c) and with the gaussian in the y-direction (d).
The largest magnitudevalue is four times larger in the top image than in the bottom, as expected.

e) The magnimde image for this channel, obtained by summing the squares of the x and y images.

f.g.h) Channel 34, corresponding to filter I7/positive halfwave-rectification, after stage I of the Canny edge operation.
Since the FIR image did not distinguish among the two texture regions, no boundaries will emerge from this step. The
largest value in the magnitude for channel 47 (e), is four times the largest value for channel 34 (h).
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of responses in order to obtain a single image. This pooling can be done at any of the three canny

stages; in this section, the implementation uses Stage I of the canny operator applies a

smoothing function - typically a wide gaussian - followed by a gradient operator. This, in effect,

averages out intensity values over fairly large areas giving larger responses at the jimction of

areas whose "smoothed average values" are different, and near-zero responses over more con

stant areas. This first step is equivalent to convolving the PIR images in the x- and y- directions

with wide first-derivatives-of-gaussians. The resulting output can be considered to be an image

whose pixels are vector-valued [x,y]; in stage 11yvarious norms (the Euclidean norm is used

here) can also be taken of the vector-valued image(s) to obtain magnitudes for each channel; in

stage Illy non-maximum suppression ferrets out the high-magnitude edges, which correspond to

the segmentation. Results for two channels are shown in Figure 7.

Two thresholds are used in the implementation of step III. All pixels below the lowest threshold,

tl, are eliminated. Points above the upper threshold, t2, are marked as a possible edge starting

point. The remaining pixels are designated "edge" points only if they are adjacent to previously

marked edge points. The two thresholds were chosen in the experiments as follows: once a

pooled magnitude response is found, it is normalized to [0,255] and its histogram taken. Often,

there is a double-peak shape to the values. The saddle point is taken to be the value of the lower

threshold, since presumably the values above it represent values along the high-valued segmen

tation border. The upper threshold may be taken to be the value at which there are most pixels.

These are scaled back to their original values (equivalently, the normalized pooled magnitude

image can be used). This method of choosing thresholds worked quite well in guiding choices

leading to the best segmentation.

5. Segmentation Results Summary: The pooling is used in this implementation: steps I

and II of the canny operation are applied to each independent channel, the channels pooled,

then apply step ni to the resulting single image. Some results are shown in Figures 8-13. The

segmentation results are all based on texture images normalized to 255. This ensures that an

adequate range ofvalues were represented in the image. Some research substantiates the abil-

ify of humans to discriminate much better when the amount of contrast between figure/groimd

is higher, as well as being of "opposite" signs (corresponding to dark/light compared to the mean

value of the image) [11]. Processing the texture images with normalized gaussians significantly

reduces the range of values for the filtered images, and this may be a partial explanation of the

need for high contrast.
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+'8 and Os image. Figtire 8 is the magnitude image of the pooled channel responses, c) is the

histogram of b, with arrows indicating where low and high thresholds were chosen for finding

the edges, d) The segmentation produced for this texture is excellent. The boimdary between the

texture regions is found, and no spurious responses are generated. Figure e) shows which chan

nel produced the segmentation. In this case, only chaimel 47, which corresponds with filter 23,

contributes to the segmentation. It is informative to compare the texture image with filter 23.

Notice that the filter is, in effect, a "'matched filter^ to the Os texture in both shape and scale.

Crosses and SqtMores image. Figure 9. The boundary between the two textures has been found,

although a spurious edge is also apparent. The true boundary is found from channels corre

sponding to filters 3 and 23; filter 3 is shown and is an excellent match with the horizontal

"Ibars" in the crosses texel. Channel 0 contributes to the spurious line, which may be explained

by the predominance of vertical lines in the leftmost column of squares as compared with the

second column of squares; filter 0 is essentially a "small vertical line detector.*"

Ls and Ms image. Figure 10. This segmentation is excellent. The correct boundary has been

found at its true location, the line is smooth, and no extra edges are included. The channel lead

ing to the segmentation decision corresponds with filter #0. Inspection shows that this vertical

DOOGfilter matches to vertical lines of the "L" texture. A diagonal DOOG does match the "M"

texture but its response is not as strong.

THangles and Arrows image. Figure 11. A larger value for the inhibition radius, S=10.0, pro

duced a very good segmentation. Channel 31, or filter 15, is the sole contributor to this segmen

tation. There are also two spurious edges which are attributable to filters 0 and 3. The upper

spurious edge is easily explained with the match of a horizontal line in the arrow to filter 3; the

lower edge has no obvious reason for being.

Patchwork image. Figure 12. A larger value for the S radius produced a very good segmenta

tion. Channel 31, or filter 15, is the sole contributor to this segmentation.

Portion ofAdele.^Yvgaxe 13. The basic filter set is used to obtain a segmentation; the results

are rather good, with the exception of a spurious edge in the lower left halfcomer. Upon inspec

tion, however, it appears that the basic filter set doesnot contain radially symmetric filters large

enough to accurately match texture elements such as the spirals and the squares, lb test if an

improvement can be made, two extra filters, DOGl and D0G2, are added to the set at scale
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RESULTS FOR +10 IMAGE

o o o
o o o

O Oo
o OO

Figure 8:

a) Texture image +/o.

b) Magnitude image pooled from all channels for image -t-Zo.

c) Histogram of pooledmagnitudes withall channels contributing. Arrows indicate x-axis location of upperand lowerthresholds.
Normalization factor = 97.7.

d) Segmentationresults. From histogram,tl = 2.25, t2 = 2.5.

e) Ima^e which takes on value corresponding to channel number contributing topooled magnitude image. Bymasking with theseg-
menlaUon image,it becomes apparent thatonlychannel 47, i.e., filter 23,contributes to thisparticular segmentation.
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RESULTS FOR crossesisquares IMAGE

Figure 9:

a) Texture image crosseslsquares and filters #3 and #23.

b) Magnitude image pooled from all channels for image crosseslsquares.

c) Histogram of pooledmagnitudes of all channels. Arrows indicate x-axis location of upperand lowerthresholds. Normalization
factors 181.56.

d) Segmentation results. From histogram, tl = 1.05, t2 = 1.1.

e) Image which takes on value corresponding to channel number contributing to pooled magnitude image. By masking with the
segmentation image, it becomes apparent that channels 6 and 47. i.e., filters 3 and 23,contribute to this particular segmentation.
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RESULTS FOR UM IMAGE

Figure 10:
a) L/M image at C = 8.0. Filter #0 which leads to segmentation.

b) Pooled magnitude result, square in imagel.

c) The average over all rows of (b); The texture boundary is taken to be the {X'onounced maximum. The peak is larger
than the noisy sidelobes by 5.8 dB and larger than the vall^ points by 10.4 dB.

d) Segmentation result
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RESULTS FOR triangles/arrows IMAGE
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Figure 11:

a) Texture imagetriangles/arrows and filter #15.Notice theasymmetry for which a largerS radius is beneficial.

b) Magnitude image pooled from all channels for image iriangles/arrows.

c) Histogram of pooled magnitudeimage firom aU channels.Arrowsindicatex-axis locationof upper and lower thresholds.
Normalization factor = 322.28.

d) Segmentation results. From histogram, tl - 034, t2 = 0.69.

e) Imagewhich takeson valuecorresponding to channel number contributing to pooledmagnitude image. By masking with
the segmentationimage, it becomesapparent thatchannel31, or filter 15,contributes to this particular segmentation.The spu
rious lines are attributed to channels 1 and 7. or filters 0 and 3.
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RESULTS FOR PATCHWORK IMAGE
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Figure 12:

a) Texture patchwork image, and filtei^ #19 and #22.

b) Magnitude imagepooledfrom all channels; PIRsuppression radiusS - 10.0 andgaussian C*- 8.0.

c) Histogram of pooledmagnitudes. Arrows indicate x-axis location of uj^r and lowerthresholds.

d) Segmentation results.

e) Image which takes on value conesjwnding tochannel number contributing topooled magnitude image. Bymasking with
thesegmentation image, it becomes apparent thatchannel 39,or filter 19,contributes mostto thisparticular segmentation.
Other contributingchannels include 22,23, and 33 (filters 11 and 16).
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RESULTS YORAdele IMAGE:

Figure 13:

a) Image of the painting byGustav KJimt,of Adele image, and additional DOGl, DOG2 filters #A,#B at O =8.0.

b) Pooled magnitude result using basic filter set.Notice thespurious edgein lower lefthalfcomercorresponding to thesquare in image.
From Figure2, noticethat thebasicset of radiallysymmetric filters area bit toosmall to be a perfectmatchfor thosesquareelements.

c) To test if improvements could be made, the two extra filters shown in (a) are added to the set Observe the better match to the texture
elements in the left half of image. The results are similar, but the spuriousedge, lower left is gone. Notice that a new line has been
detected, uppermiddle. On close inspection, however, one could arguethat thecheckerboardregion is composed of a clear checkerboard
pattern, and a smeared checkerboard pattern, and that this line indicates the border.
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a = 8. Observe the better match to the larger texture elements. Indeed the new segmentation

appears to be better and the spurious edge is gone. Notice that an extra edge has been detected

in the upper middle region. On close inspection, however,one could argue that the checkerboard

region is composed of two regions: a clear checkerboard pattern, and a smeared checkerboard

pattern, and that this new line indicates the border. Filters which are large enough to exactly

match the textiures would produce even more improvement in the segmentation.

These results indicate that the current algorithm along with the basic filter set effectively seg

ment many textiires. A more complete filter set, however, encompassing both smaller and larger

scales than those presently used, will give good results for a wider range of scale of textiire ele

ments. The Malik-Perona algorithm, for instance, utilizes 96 filters, more than twice that of this

implementation. It is a simple matter to increase the filter set but a compromise between filter

number and computational expense sways us towards the reduced filter set.

+*8 and Tb image: This texture pair is easily segmentable by humans. This is an example, how

ever, for which the filters in the basic filter set are not quite small enough to distinguish well

between the textures. This is an obvious problem which is remedied by adding smaller-scaled fil

ters.

Rs and backward Rs image: This texture pair is NOT preattentively segmentable by humans.

Similarly, no change in scale of the filter set will cause a segmentation to result from the algo

rithm. A filter shaped like an ''R" or backwards R would cause a segmentation, but this is a

ridiculous proposition if the algorithm is to model the human visual system.

D. Variations of Malik-Perona Algorithm

Figure 3 shows block diagram descriptions of the procedures tested. Each of these are a varia

tion on the use of the canny edge operator as a back-end to the algorithm. As mentioned above,

they are named I/n, Il/n, IWn and 0/n where the first number indicates at which step the pool

ing mechanism is used prior to continuing the remaining canny steps, and tiie n indicates the

pooling norm. In addition, one test was done where the PIR step, which is computationally

expensive and potentially time-consuming, is replaced by a simpler procedure. This procedure

simply takes an image as its input, and replaces each pixel with the largest neighbor value

within a given circular vicinity.This spreads out the largest values in the input image and effec-
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Figure 14: a) +/fJ image.

VARIATION: largest neighbor in place of PIRs
RESULTS FOR +/(? IMAGE:

' 1

b) Pooled magnitude result using basic filter set, replacing the FIR second nonlinearity with asimpler step. Without suppressing smaller
responses, the largest value found ina neighborhood ofeach pixel istaken to bethe new pixel value. Notice the spurious edge inlower left
half comer corresponding to a spurious response which became magnified atthe gradient stage.

c)Segmentation produced. The correct texture boundary isfound, but so are two non-relevant edges. Largest neighbor radius was 12.0,
the gaussian & = 12.0.

d)The true boundary isdetected through filter 23 (channel 47), exactly as in the implementation ofsection c; the upper left spurious edge
is due to filler 3 and thelower leftspurious edge isdue to filter 0 (channel 1), all from negative halfwave-rectified channels.

e) Pooled magnitude result using laigest neighbor and adding anormalization ofchannels. Itremoves atleast the upper spurious edge.
Now, channels conUibuting to texture segmentation include filter 22(channel 45)also.

f)Segmentations due to largest neighbor replacement plus normalization across channels. The true boundary isfoutKl and only one spuri
ous edge remains.

g,h) Channel 1,channel 47, after largest neighbor replacement and normalization ofchannels. It is easy tospotwhere theerror appears,
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tively deletes the smaller values when larger values are nearby. By choosing a radius equal to

the suppression radius used in the PIR procedure, the effects are similar..

L Changing nonlinearities

The Malik-Perona algorithm utilizes two distinct nonlinearity steps in the early processing of

texture boimdaries. How might the segmentation results change if these nonlinearity steps are

changed? The first nonlinearity, hal^ave-rectification, seems to be very useful since it retains

both positive and negative information in the channels. Fullwave-rectification, another form of

nonlinearity, would discard this information.

a. Replacing second nonlinearity with local maximum step

The second nonlinearity (PIRs), which inhibits lesser responses in neighborhoods of larger

responses, is replaced by an intuitively similar step. This step simply replaces each pixel value

with the largest value foiind in a circular neighborhood aroimd it; in effect it "spreads out" the

large values, but does none of the complicated suppression of lower values fotmd in the PIR step

(Figure 14). The result is that in general the boundaries are detected, but several spurious edges

are detected as well. The obvious explanation is the lack of thresholding/suppression.

b. Replacing second nonlinearity with squaring operation

Finally the PIR step is replaced by a squaring operation. \^ion research indicates that a nonlin

earity definitely exists along the visual path and the PIR step is but one hypothesis. If the half-

wave-rectified imagesare calledR then the results ofthis step are simplyR^. The results for the

test case on the +/o image are in Figure 15. The value ofthe suppression variable remained the

same at S=^.0, but the lack of suppression and "spreading" in this variation meant that a larger

smoothing constant is reqiiired. The choice of a' « 16.0 worked fairly well. The revised texture

segmentation algorithm found the essential texture boundary. The quality of the segmentation

is lower because the edge is slightly off-center by 4 pixels from the (human) perceived boundary,

and a few spurious lines exist. One advantage, however, is the straightness in the detected

boundary. The main change in procedure required with the use of this step is to greatly increase

the size of the smoothing fimction of Step I for the Canny operation.

2. changing pooling location
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Figure 15:

a) Pooled magnitude image for +/o. The basic algorithm is thesame, with replacement step
FIR =R^, where Ris a halfwave-rectified channel, and larger gaussian o' = 16.0 in Canny
step I.

As described in the Canny section, there is no set requirement as to when to combine the results

ofmtiltiple channels into a single pooled image. The MaHk-Perona algorithm combines the inde

pendent channels after the Step II of the canny operation, or Il/norm. The results can signifi

cantly change when the pooling location is changed.

a. 0/n and comparison

Sample pooled FIR results for this change in pooling location are shown in Figure 16. The FIR

channels for the +/o image are pooled using norm=0, norm=l, and norm=«>o. Regardless of the

norm used, the pooled image is much less defined along the texture border than the individual

FIR images. One expects big differences among the FIR images; combining the PIRs at this

stage is premature because this averages a few good channels with many poor but nonzero chan

nels. Because of this loss in definition, the Cannyedge operator applied to this pooled image
jrields poor results. The conclusion is that the pooling location0/normis far from optimal.

b. I/n and comparison

Sample pooled magnitude imagesfor this pooling location on the +/o image are shownin Figure

17. All three norms were applied, with very different results. The best norm to use in creating

the pooled image from the channels is the 2-norm. The «»-norm gives good results as well;

although an extra line is detected, it is nearly negligible. The 1-norm gives a poor magnitude
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Figure 16: Pooled PIR images for pooling location OIn. All PIR images are pooled according to norm n € {0,1, o®} , and the Canny operator
applied to the resulting single image.

a) Norm 2 resulting PIR for image +/o. Wthout a big intensitydifferencein the two regions, no texture boundarycan be extracted.

b) Norm 1 resultingPIR. No textureboundary can be extracted from thisimage.

c) PIR usingnorm.Cannyoutput shown in d); evenwith larger CT', the boundary can not be found.

Figure 17: Pooled magnitude images forpooling location //n. The x-gradientand y-gradlentis taken for each channel of PIRs.

a) Norm 2 pooled magnitude image and b) resulting segmentation. This slightlyrough segmentationis as good as the standard implementation.

c) The norm 1 pooled magnitude is too nondescript to be of any use.

d) Norm o®, max-pooted magnitude image, e) the average of all row values for pooled magnitude image; the left sidelobe is 2.5 dB down from the
peak while the right sidelobe is 7.7dB down from the peak, and 0 resulting segmentation with only a small artifact in the left side.

Image Boundary Detection via IntensKy,Color, and Texture Segmentation



image which does not segment the texture boundaries. A good pooling combination is the 1/2

pair.

IV. COLOR EDGE DETECTION / SEGMENTATION

Why should one include color in a computer vision system? Color is useful in multiple applica

tions, such as: 1. object recognition, 2. image segmentation, as we are doing here, and 3. separat

ing highlights and specularity from actual changes in surface. While a large amount of

information can be garnered from intensity edge detection and other features ofa visual system,

some information can only be obtained from color cues. We show with an example that a color

edge detector can give improvements over an intensity edge detector or a texture boundary

detector alone. Enhanced results occur primarily when the color regions are basically equivalent

in intensity levels but differ in hue. This is shown in section IV.C.

The Canny edge detection operator can be applied to color edge detection [9]. For an RGB image,

color edge detection often performs better than standard edge detection. Color images can be

described with each pixel value being the vector C=[R G B], each component indicating the

intensity value of the Red, Green, or Blue bands. The preprocessing required prior to applying

the Canny Operator is to separate the image into separate 'l^ands." At least three bands must be

used to represent perceived color combinations. Red, Green and Blue bands corresponding to

short, medium, and long wavelengths are a common separation scheme, the ^trichromacy^ the

ory often attributed to color vision research by Helmholtz and others. A second theory of color

vision attributable to Hering, called ''color opponency," describes four variables which occur in

pairs: red-green, and blue-yellow [20]. These are paired according to colors which conflict with

and cancel out one another perceptually; red and green are not often used together to describe a

given hue, and blue and yellow are not often used together to describe a given hue. While these

two theories may appear to be in conflict, they are both valid; Helmholtz's theory describes an

earlier stage ofvision and Hering's theory describes a later stage.

A. Multi-channel implementation - Canny edge operation basis

This implementation utilizes the same combination of edge processing steps as did the texture

segmentation implementation. Instead of preprocessing the image by convolving with multiple

filters, the image is separated into three channels corresponding to its three color bands. If the

three color bands are R, G, B, this corresponds to an earlier stage in the visual model than if the
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Figure 20: Loss of detail by use of gaussianwith scale too large (Mandrill, of Figure 18c)

a,b) The intensity image for mandrill, (a), and lizard, (b)

c,d,e) A guissianof a = 8.0, (c). Theresult ofconvolution with gaussian, (d), (e). Notice thelossof detail around
the pupil, eye rim, and cheek, and most of the lizard.

f, g, b) A gaussian of O = 2.0, (0> Theimproved resultof convolution with smaller gaussian, (g),(b). Notice that
more detail is retained while noisy areas have been smoothed.

peppers image is very interesting; it definitely finds the boundaries due to color difTerences. It

does not find boundaries of the individual red and green peppers, as we might do; it does not dis

tinguish among distinct "objects" in the image, only distinct colors. In its function this color

boundary detector did quite well. However, given the variety of images and the missed edges in

all, a smaller smoothing function should be used, especially if "blindly" rather than chosen by

hand. An illustration of this is shown in Figure 20 for o = 8.0, and the more appropriate a = 2.0.

These color edge detector results missed closely aligned edges in particular and did not generate

spurious edges. This problem is indeed fixed by lowering the o used, which coxild generate big

ger problems in the texture boundary detector rather than here. Examine Figure 22 which

shows the effects of changing the sigma size; more and more of the small-scale detail comes out

as we smooth with a lesser-sized gaussian; at o = 1, the smallest used, finally some non-essen

tial edges are detected. Therefore smaller smoothing functions are beneficial for color edge
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COLOR SEGMENTATION ON R+G+B INTENSITY IMAGES

Figure 21: Effects ofan excessively large smoothing gaussian. Shown are the R+G+B intensity images, the pooled
magnitude result, andthesegmentation result. Color photographs shown in Figure 18.

a) Lenna image.

b) Lizard image.

c) Mandrill image.

d) Peppers image. Notice thattheregions are indeed separated bycolor. The upper leftcomer has three green peppers
which are slightly highlighted inthe magnitude image, but donot readily appear in the segmentation without tweaking of
thresholds.
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MANDRILL COLOR SEGMENTATION AT SUCCESSIVELY SMALLER SCALES

37 of 48

Figure 22: Refer to Figure 18c for color photograph.

a) a = 4.0. Some improvementcan alreadybe seenover the previous O = 8.0 results.

bl G = 2.0. This scale finds many essential details in the mandrill image, including the pupil and the
curves about die nose.

c) G = 1.0. This scale is small enough to define details but with the side effect of picking up non-
essential color edges. Note the rim of the eye and the speckle in the pupil.

Image Boundary Detection via Intensity. Color, and Texture Segmentation



COLOR SEGMENTATION RESULTS USING COLOR-OPPONENCY BANDS

^.8

Figure 23; Color edge detection using opponent coding bands for "A Day in the Park" by Seurat. Photograph inFigure 18e.

a)The blue-yellow band. Positive (light) areas indicate higher blue, while negative (daric) areas indicate higher yellow.

b)The green-red band. Positive areas indicate higher green, while negative areas indicate higher red. Notice the alternating light and dark dots due to
thepointilliststyleof thepaintingin which red andgreencolors areside-by-side.

c) The intensity image formed by R+G. Blue is a smallerproportion of human visualcolor cells.

d) Thepooledmagnitude image from thecoloredgedetector.

e) Thecolor segmentation produced by thecoloredgedetector.
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detection; it is commonly accepted that a value of o = 2 may be used with impunity in most

applications. Hence this value, o = 2, is used in all subsequent experiments for this paper.

B. Variations on this process and Results

As with the texture model, the color algorithm can be modified in several ways and yet perform

quite well. Here we show the effects of poolingat locations 0/» and I/® in the Color edge detec

tor. As with the texture case, pooUng prior to applying any of the three steps of the Canqy oper

ator is premature and gives relatively poor segmentation results. In the color case, the pooled

image is too much like an intensity image to find several pertinent boundaries. Pooling at I,

however, gives a good color segmentation (Figure 24), especially at the waterline.
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Figure24: Comparison with pooling locations I and HI: norm «> used in all cases.

a,b) 0/o«: The pooled image is simply max(R,G3)(x,y) for each pixel point. The Canny edge operator is applied
to this image. The pooling gives an image much like the intensity image, so the expectation is a similar, and not
very good, segmentation.

c.d) 1/w>: The x- and y- gradients on the three input bands are firstpooled, and then the magnitude and segmenta
tion are produced. This gives very good results.
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C) Comparison With Other Two Boundary Detectors

Figure 25: Equal-intensity color bands. The intensity image produces no segmentation while the

Color edge detector finds the boundaries. This is a simplified demonstration of the effectiveness

ofincluding a Color edge detector scheme in a generalized boundary detector.

Figures 26, 27: A view of the Andes. The billowing smoke is particularly interesting, as it

appears to be multicolored across the shadowed and lit regions. IV^ue shadows have no color

changes (images e and g), but do have intensity changes (image c).

Figure 28: A Day in the Park. This demonstrates the same ideas as Figure 25 with a more inter

esting image. There are several regions of the painting which differ in color but are of similar

intensity. Notice especially the waterline; the intensity edge detector misses this edge while the

color edge detector finds it easily. Several other such instances can be found by examining the

two segmentation results, images b and d.

Figure 29: Colored texture image +/os. This image gives different results for each of the three

boundary detectors. It is composed of a blue background and a yellow foreground, both of equal

intensities. The intensity edge detector gives no output. The color edge detector finds the indi

vidual texture element outlines; but the texture segmentation algorithm finds only the texture

boimdary.

Figure 30: The Old Mill. The coloredge detector gave the clearest edges for this image. This is

somewhat imexpected, because the image contains obvioustexture regions as well as shadowy

changes in intensity.

Figure 31: A Day in The Parky revisited. Demonstrates the usefulness of including a color edge

detector in a general boundaiy detection scheme. Comparison ofA Day in the Park: Figure [a]:

segmentation using texture boundary detector. Inspection of this image shows there are no

clesu'ly definable texture regions. Hence one would expect that the texture segmentation would

not produce boundaries which closely match human detection of boundaries. This is not the

case. While the main locations of the fisherman, the woman, and the tree are foimd, the bound

aries are not very accurate; in addition, some relevant regions of the image have been missed.
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(ANDES CONTINUED)

RESULTS: CANNY EDGE DETECTION AND COLOR EDGE DETECTION

Figure 27:
CANNY EDGE DETECTOR RESULTS ON VARIOUS BANDS
The individual R,G,Bbands do not p-oduce edges; this isbecause of the general whiteness of theimage, implying equal amounts
of the three hues.

a) For Green-Red band, the only real dividing line is alongthe mountain edge.
b) For Blue-Yellow band, muchof the difference is found in the billowing smoke.
c) This is the R-Kj intensity image; notice the delineation between lit and shadowed areas.

COLOR SEGMEITOTION RESULTS ON VARIOUS BAND COMBINAnONS
d,e) The three R,G,B bands were used inthe texture segmentation algorithm The boundaries around the smoke and the snowy
mountains are found.

f.g)The threeopponent-coding bands wereusedin thetexture segmentation algorithm. Notice thatareaswhich "lookdifferent" in
colorbecause of shadows arenotfound in thissegmentation. Inparticular, notethesmoke above themountain; the lefthand-side of
the smoke looks much brighter than the front-side, simply because the sun islighting one side. No color changes, only intensity
changes, occur across a shadow. The mountainous regions dohave color changes between snowy andbare slopes.
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Effectiveness of CoJor Edge Detector
over Intensity Edge Detector for same-intensity color boundaries

Figure 2S: Refer to Figure 18e for color photograph.

a) Intensity image. Portion of "A Day in the Park." The intensity image is formed by adding the R,G, and B bands.

b) The ou^ut of the Canny Edge Operator. Notice only the edges due to sharp intensity changes are detected.

c) The pooled magnitude image from the Color Edge Detector.

d) The output of the Color Edge Detector.Notice that perceived boundariesdue to color differences are easily found by this detector; notice that
the waterline, for instance, is found here whereas the intensity edge detector missed it since only the color; not the intensity, changes over that
boundary. Several other instances are observable in comparing edge ouq>utsb and d.
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UNIQUENESS OF TEXTURE SEGMENTATION ON A COLOR IMAGE
Yellow features against blue background

ORIGINAL IMAGE AND RESULTS OF: CANNY EDGE DETECTOR

a) I I

R+G+B intensity image

COLOR EDGE DETECTOR

TEXTURE BOUNDARY DETECTOR

Figure 29: Comparison of intensity, texture, andcolorsegmentation on an interesting case.

a)Texture/Color image: yellow features against blue background.This is the R+G+B image forwhich intensity values are
constant for each pixel, hence appearing blank, with value 100 - white.

b) Canny Edge Detector finds nothing since there are no intensity changes.

c) Color Edge detector pooled magnitude result

d) Color Edge Detector output; result is essentiallyas expected.

e) TextureBoundaryDetectorpooled magnitude result.

f) Textiue Boundary Detector result. Only thisalgorithm found thetexture boundary rather than theindividual elements.
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COLOR AND TEXTURE: Mill

R+G+B intensity image

sigma = 1 sigma =2

Figure 30: Refer to Figure 18g for color photograph,

a) Mill R+G+B intensity image
Canny EdgeDetector result with b) Q = 1.0 ,c) O = 2.0 ,d) O = 3-0

e) Texture Boundary Detector pooled magnitude image

f) and Resulting Texture Segmentation

g) Color Edge Detector pooled magnitude image.
h) Color Edge Detector results.

sigma = 3
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Texture and Intensity Segmentation: A Day in the Park revisited

Figure 31: Refer to Figure 18e for color phoiograpn.

a) The R+G+B intensity image, and

b) the R+G intensity image. There is less definition in the latter image.

c) The texture segmentation algorithm is applied to the image. The result shows that a few key outlines are found. This image
does not have clearly delineated texture regions. The tree trunk, the woman's outline, the fisherman, and a small portion of the
waterline are fouitd, but little else.

d) Superposition of found bouixlaries with image.

e) Two of the filters leading to the segmentation: They match well with the "stq> edges" in intensity along the tree, the woman,
and the fisherman.

f) The texture segmentation.

g) The Canny edge detection result for comparison.
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VI. CONCLUSION

This report examined the development of three types of boundary detection: intensity, texture,

and color. Each of these kinds of boundary detection, as well as stereo vision and optical flow, are

cues which enable humans to interact with and perceive the world around them. A computer

vision system may include some or all of these cues to gather essential information. The texture

segmentation algorithm implemented in this paper followed the multichannel theoiy of process

ing. The results were quite successful for the sample textimes tested. In addition, a number of

variations in processing stages will still lead to good segmentation. These include replacing non-

linearity steps with others, such as squaring, and halfwave-rectification. Indeed, the experi

ments showed that good results could be obtained with multiple variations in a basic algorithm.

The color segmentation implementation also followed the multichannel model. Three channels

were used, with either the R,G, and B bands serving as input images, or with the color-opponent

bands which measure the differences between red and green, blue and yellow. The results were

quite good, and several examples serve to demonstrate the additional benefits a color segmenta

tion algorithm can provide to a boundary detection scheme. Similar to the texture algorithm,

variations in the algorithm can lead to equally successful color segmentation.

While any individual visual cue provides a wealth of information, a computer vision system can

benefit from the addition of an intensity, color, or texture boxmdary detector. Further consider

ations of the integration of these methods will help define a generalized boundary detector.
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