
 

 

 

 

 

 

 

 

 

Copyright © 1993, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



A NEW APPROACH FOR THE SYNTHESIS

OF FSM'S FROM CONTROL-FLOW GRAPHS

by

Masatoshi Sekine, Tiziano Villa, Kenji Goto,
and Robert K. Brayton

Memorandum No. UCB/ERL M93/59

28 July 1993



A new approach for the synthesis of FSM's
from control-flow graphs

by

MASATOSHI SEKINE*1, TIZIANO VILLA*2, KENJI GOTO*3,

ROBERT K. BRAYTON*2

28 July 1993

*1:ULSI Laboratory, Toshiba Research Development Center,

*2:Electrical Engineering & Computer Science, UC at Berkeley,

*3:Ome Works, Toshiba Corpolation

ELECTRONICS RESEARCH LABORATORY

College of Engineering

University of California, Berkeley,

94720



A NEW APPROACH FOR THE SYNTHESIS

OF FSM'S FROM CONTROL-FLOW GRAPHS

by

Masatoshi Sekine, Tiziano Villa, Kenji Goto,
and Robert K. Brayton

Memorandum No. UCB/ERL M93/59

28 July 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A NEW APPROACH FOR THE SYNTHESIS

OF FSM'S FROM CONTROL-FLOW GRAPHS

by

Masatoshi Sekine, Tiziano Villa, Kenji Goto,
and Robert K. Brayton

Memorandum No. UCB/ERL M93/59

28 July 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A new approach for the synthesis of FSM's
from control-flow graphs

by

MASATOSHI SEKINE*1, TIZIANO VILLA*2, KENJI GOTO*3,

ROBERT K. BRAYTON*2

28 July 1993

*1:ULSI Laboratory,ToshibaResearch Development Center,

*2:Electrical Engineering & Computer Science, UC at Berkeley,

*3:Ome Works,Toshiba Corpolation

ELECTRONICS RESEARCH LABORATORY

College ofEngineering

University of California, Berkeley,

94720

-i



A new approach for the synthesis of FSM's
from control-flow graphs

by

MASATOSHI SEKINE*1, TIZIANO VILLA*2, KENJI GOTO*3,
ROBERT K. BRAYTON*2

ELECTRONICS RESEARCH LABORATORY

College of Engineering

Universityof California, Berkeley,

94720

ABSTRACT

This paper proposes a new approach based on loop constructs for the derivation of finite
state machines (FSM's) from high levelmodels(HLM's), and also for statecodes by using
weightsof eigenvectorsofstate transition matrices. As loops are closedand definedlocally,
they are primitive and robust under the transformation from HLM to FSM. The loops in
control flow-graphs(CFG's) have beentransformedto similar loops in FSM's in traditional
approaches, but these approaches are valid only as far as control in CFG's is suitable to
FSM's. Loops having complex control constructsover macro-sequences in CFG's must be
reformed in order to control micro-sequences in FSM's. The loop body decomposition by
Shannon expansion is proposed to obtain suitable micro-loops for FSMs. It generates recur
sive loop equations and micro-loop pieces from upper-level loop bodies. Since upper-level
loops are designed to control global paths ofdata-flowparts, some lower level loops control
global paths. These loops are desirable for global optimization. The global data-flow parts
selected by such loops are ordered and optimized incrementally according to the weight
order of the loops. Scheduling for each loop generates new control variables for the state
transitions in it instead of variables occurring in control-flow parts of the HLM. A mathe
matical basis is built to relate loops in the state diagrams and eigen-vectors or poles in pulse
transform functions. The relations between linear systems and Boolean circuits are derived

by combining a vector space and logic operations. The new approach based on loop body
decomposition provides no heuristic algorithm, but a deductive algorithm. It is shown that
the weights of the states are obtained in a general form if the state transition is a linear
group.



1.0 Introduction

Simple models are demanded for describing huge systems of tens of millions of gates in

chips by the end of this century. Systems are modeled as collections of concurrent abstract

modules: block, process, and function. It is necessary to formulate specifications with inte

ger numbers, floating, or complex numbers in order to express mathematical objects( four

elementary operations(+-x/), linear algebra, or differential equations). A key step in High

Level Synthesis (HLS) is to map control flow graphs (CFG's) to finite state machines

(FSM's). Some mappings are complex due to a large degree of freedom in searching opti

mum FSM's[l],[6]. Orders or priority weights of components are specified to exclude

unnecessary searches for solutions in a design space. As there is no intrinsic ordering in

Boolean equations, we introduce orderings in each design method. Each lower-level order

ing must be deduced from upper-level orderings. State assignment programs for FSM's,

such as NOVA[10], ASYL[7], and Mustang[ll], have been developed and their effective

ness to optimize entire FSM's with two-level and/or multilevel implementation is well

known. However, their implementations depend on the starting point In general, FSM's are

used to control data-path circuits, and control circuits depend on the data-path circuits con

trolled by them. On the other hand, in the high-level synthesis, some sophisticated methods

for scheduling and control allocation have been developed such as the condition vector in

the system Cyber[9], and relative control generation in the system Hebe[l]. They can oper

ate on the complex structure of control-flow graphs and generate a reduced schedule. How

ever, since they are based on the assumption that a control step is equivalent to a single state

of a FSM, each control step is simply assigned to one FSM. We must examine whether such

FSM is optimal. New approaches for utilizing regularity and symmetry in systems are

reported. Amann and Baitinger[3] proposed new-state-assignment algorithms by using

counters to implement the longest state transition chain. The state chains are coded so that

a maximum of the remaining codingconstraints are satisfied. Stok[4] discussed false loops

throughresource-sharing caused by both data-flow and control-flow. Both approaches used

more complex objects than Boolean variables for handling large structures. Nourani and

Papachristou[5] have introduced a Liapunov stability theorem using a transformation tech

nique between the design space and the dynamic system space.

This paper describes a new approach for the synthesis of FSM'sfrom control-flow graphs
byintroducing a loopbody decomposition relation with respect tovariables occurring more

frequendy in the control-flow. A new ordering is presented to distinguish loopsfrom each

otherwithrespect to theirweights. We treat theloops of statetransitions to beprimitive ele
ments which are robust under transformations from high level models(HLM's) to FSM's.

Then, we introduce linear algebra to describe them. The behavioral transformation algo-



rithm is realized with maps from one algebra to another. For this purpose we investigate

useful algebras which calculate equations for loops at the HLS level as Boolean algebra

does at the logic synthesis level. Some formulations are taken from Lie algebra.

2.0 Flow of the synthesis procedure
1. Hardware model*

Let a system be modeled with abstract components. Each component is described with

control parts and data flow parts regardless of its functionality described by means of a

declarative expression (called a block model) or of a procedural expression (called a pro

cess, a procedure, anda function model). There aretwo types ofcontrol-flowconstructs: 1)

branches {if-then-else, switch-case}, 2) loops {for-loop, while-doloop, repeat-until loop,

and Do while loop}. The data-flow constructsare assignments, function calls, statements,

and complex statements. A control-flow construct (Cu, Mu(Bk's, (Cv, Mv))) has a condi

tional expression Cu and an execution body Mu in which data-flow constructs Bk's or

nested control parts (Cv, Mv) are described. Data entities (constants and variables) can be

of control and data flow type. All the data entities appearing in conditionalexpressions of

the control-flow areof control type, and the others areof data flow type.

As an example, consider a simple behavioralmodel BM written in the C language.

k=(icd=add); i=(icd=mul); j=(icd=sop); P=0; resefc=0; ready=0;
whil^QMifiCP'&reset) ready=l; if(ready&icd) P=l;

if(P){if(k) s=b+c; else if (i) s=b*c;} if(P&j) s=b*c+d*e; if(eiror) P=0;} (1)

where "+" is an adder operator, "*" is a multiplier, and Cq=while(Q), Mq={if(P'..)..},

Br=(ready=l), Cp=if(p), Mp={if(k) s=...}, Bsi=(s=b+c). The variable Q, reset, ready, and

error are external. The other external variable icd stands for a command that specifies the

instructions of addition, multiplication, and sum of multiplications. The k, i, and j are log

ical variables defined by conditional expression of an equal operator "=". The top loop

construct while(Q) is necessary for BM to run permanently. The initialization of BM is

done successively by the first two expressions in the while loop. The variable P defines the

execution mode ofBM, and is set by the firsticd command. P appearsin conditional expres

sions with the execution bodies for the instructions. The last expression breaks the execu

tion mode when BM detects some errors, and BM runs into the initialization mode. The C

code of (1) represents a simple processor which decodes the comand icd, executes three

instructions, waits for the command arrival in the while(Q) loop, and interupts the execu

tion if error is detected.

2. Compilation

The inputof the compilation stage are complexcontrol-flow constructs including branches



and loops and data-flow parts. As we concern ourselves only with control generation, we

suppose that the data-flow parts are synthesized through traditional algorithms[6]. The tra

ditional approach (the reference stack algorithmin [6]) resolves constant and variableprop

agation, conditional assignment to variables, but it does not generate an FSM, but only a

control-flow graph(CFG), where vertices represent assignment or conditional statements

and edges represent the ordering of execution for each vertex. In our approach, the output

of the compilation stage is a 2-level descriptionbinding data-flow components andcontrol-

flow constructs. The flattening process for the conditional nestings stops works as follows:

(Cu, Mu(Bk's, (Cv, Mv)))=Mu(Cu&(Bk's), (Cu&Cv, Mv)), andifCu is branch, Mu=Mux

(Cu&(Bk's)) + Mu2((Cu&Cv, Mv)), where'+' denotes superposition ofexecution bodies.

The data-flow constructs Bk's arebroken down to simple data-flow expressions gk's having

one assignedvariableVj as follows: vpbj^. These Bk's can be expressed as a sum of gk's,

i.e., as a linear form. The compiler generates a vector space model LM (S,I,0) in a direct

product spaceV =V^ x Vp V^ is a vector spaceover GF(p) spannedby a statevector S,

an input vector I, and anoutput vector O. Vp is a Boolean spaceofconditionalexpressions.

Let M be a vector whose components are referred by the variables on the left hand sides of

the assignment operators "=", i.e., data-flow type variables in BM. For example, (M)s is a

vector component referred by the variable *s': (M)s= M1S+M2S+M3S= gSi+gS2+gS3=

(s=b+c)+(s=b*c)+(s=b*c+d*e). Let the conditional expressions Cu's be described with

Boolean variables Yj's. All the nesting of control-flow constructs are flattened to a sum of

productsof Yj's at the compilation stage,and the productsofYj's aredenoted by Boolean

variables Xi's. Let F be a n-dimensional Boolean vectorwhose i-th component (F)j corre

sponds to the Boolean variable XL A complex expression, i.e., a group of expressions

within the execution body selected by Xi, is denoted by Mi. The Xi control for simpledata

flow expressions Mi is expressed by multiplying Xi and Mi. Thus, one can add the data

flow expressions to LM, and thecompiler generates LM asa sumof products of Mj's and
Xi's:

LM=M+F= n Ciii&( I gkj )+F= X04^0+Xl&Ml+X2AM2+...+Xn&Mn+F(X1^2,...^n ), (2)

whereFis acontroller which bindthe Xi's to their conditional expressions so thatthere is

no conflict among components. For example, the compiler binds (F)n=P'&reset, (F)j=
ready&icd, and generates pairs of terms X0&(ready=l) and X0=P'&reset, Xl&(s=b+c),
Xl=P&k, for M and F. The true-body of the *if(k)' clause, k&(s=b+c), and theelse-body,
(k'&i)&(s=b*c) are added at the s-component of LM. The expression k&(s=b+c)+(k'&i)
&(s=b*c) stands for (M)s=k&(b+c)+(k'&i)&(b*c). Boolean variables do not have corre

sponding vector components, but vector components can refer to Boolean variables. For

example, (MJ^y can refer to the Boolean variable Y^y, but the reverse mapping is



inhibited. Here wedonot decompose nonlinearcomponents, butweconcern ourselves only
withlinear expression. Thebody of while(Q) of BM (1) can becompiled as follows:

M = (reset^')&(ready=l)f(P^)&(s=^

+(ready&icd)&(P=tnie)+(aror)&(^=felse) =X0&g0+Xl&gl+X2&g2+X3&g3+X4&g4 +X5&g5,
F=(X0;Xl,X2^fX4,X5)=reset^'^ (3)

where gi's stand for primitive graphs of arithmetic orlogical operators such as"+", "*",and
"&", not" *",and the variable Qisomitted for simplicity. The templates of the gi's are sup
posed tobepresent in alibrary. The linear form of Fis described with basic components of
F, and (F)i's correspond toconditional vertices in the CFG. The next transformation steps
consist of hardware allocation, module binding and scheduling, and control generation.

3. Derivationof loops from control-flow

Loops lp's are defined syntactically with conditions and loop bodies. For example,
while(Q) has acondition 'Q' and aloop body. Semantically, aloop consists of aloop body
and chains of in-coming edges defined with a condition. This definition is reasonable

because a machine must stay in a finite setof states permanently if conditional variables
Yi's do not change. The loops are utilized to make a finite state machine(FSM) in our
approach. Asystem has amain (top) loop lp°, and k-th level loops lpkj are appended to their
upper loops lpk-1j recursively. Traditional high level synthesis generates similar state tran
sition loops from the loops of a BM model by allocating controllers to the conditional ver

tices, butoptimal loops for the state transitions are notobtained by a simple mapping from
the loopsof the BM model. An optimal loopof the FSM, which is a least micro-sequence

ofmachineoperations with smallest hardware components, may be different fromthe loops

of the BM model which are macro-sequences to execute efficiently at the function level.

Therefore we must reconstruct the loops of the BM model with primitive loops of micro-

sequencies to get efficient micro-sequences.As some macro-equencesare selected by sub

sets ofYi's, they are substituted with their micro-sequences under the same subsets ofYi's

and other additional variables. The input of this stage is flattened codes and the output is a

subset of products terms selected by Yi. Let us expand the logical expression lpk byShan
non expansion with respect to the variable Yi which occurs more frequently in lp, then,

Ip^Yl^MpbVlPck|YT»-..)+Yl'(Za>ik+lp' bV+lp'cVh.) =Z^+riaPb^^lp^^..)
+ri'aPb'k+1+iPc'k+1+«),

where lpbk|Yi=lpbk+1, lp'bkIYr=lp'bk+1» ^d ^ka4s ^° not mcWM*e ^ ^d YT variables.
This relation denotes that lpk's are degenerated to lp^+Z1^ when Yi=l or to Ip'k+1+Zka4
for Yi=0. Then, the lpk+1*s are expanded with respect to othervariable Yj'srecursively, and
finally we get lp by composing the lpi's through Shannon expansionrecursively.



lp^Zik+Yi(&k+1+Yj(3k^^
Z^+Yi^+Y'iZ^+YiYj^ (4)

The equation (4) shows the loop decomposition. For example, a Shannon expansion of F

with respect to variable P, that occurs more often in equation (4), is

sFtaeset^^P&O^j^'toCF)^ =P*&lpl+P&lp2+Z, (5)

where F is binate in P.Both product terms are transformed into the loops lpl and lp2. Those

loops correspond to the primitive loop of the "while(Q)" and "if" statements in BM.

4. Hardware allocation

We define data flows by allocatingregistertransferlevel(RTL) templates. Our approach for

the data-flow partsgi's is a traditionalone, but we postpone allocatinghardware for the con

trol-parts to the logic synthesis step. Therefore we allocate no multiplexer but only function

blocks and registers, and some data-paths among them are also determined by themselves.

The data-flow parts gi's arereplacedby templates of the RTL Gi's. For example, a binding

of the data-flow parts gi's of equation (3) to Gi's is given by:

ready=true,P=true,P=false=>GO(Tnie,False, =, ready, P);
gl: s=b+c => Gl(+, Rl, Rd, Rd), 2xG2(=, D, Rl), G3(=, Rl, Rd), G7(=, Rd, s);
g2: s=b*c=> G4(*. Rl, Rd, Rd), 2xG2(=,D, Rl), G3(=,Rl, Rd), G7(=,Rd, s);
g3: s=b*c+d*e => 2xG4(*. Rl, Rd, Rd), G5(+,R2, Rd, Rd), 4xG2(=, D, Rl),

2xG3(=, Rl, Rd), 2xG6(=,Rd, R2), G7(=, Rd, s);

where the Gi's stand for primitive graphs with registers Ri's, function blocks V and '*',

and data paths'=' made with buses, multiplexers, or simple wire connections. The tem

plates of Gi's are registered as elements of a linear space VM, and they are described by
matrices. The gk's and Gk's are represented by connection matrices Mgk's and MGk's
whoseentries gk(i, j) andGk(i, j) denote edgesfrom j-inputto i-output, andfunction codes.

The substitution of gi's with Gi's meansthe change ofrepresentation frombehaviorto data

flow level, and the equation (3) can be written as

LM=Xl&(Gl+2G2^3^7HX2&(G4+2G24<}34<}7)+X3&(4G2+2G3+2G4+G5+2G6fG7)
+X0&G00+X4&G04 +X5&G05+P'&lpl+P&lp2+Z. ( 6)

5. Step allocation and scheduling

Minimum numbers of cycles Sgi'sQatencies) for Gi's are supposed to be available from a
library. Overall latences are computed as usual in abottom-up fashion, except for loops.
Latencies Sip's for loops lp's are defined as a maximum among latencies Sxi's for data
flows gi's which are activated by conditional variables Xi's, i.e., (F)j in lp. For example,
data-flow gO iscontrolled bythe loop lpl,and gl, g2 and g3 are controlled bylp2. Latencies
Sip's are computed from the equation (6) and latencies Sgi's. In the equation (6) Gi's are
replaced by (Gi, Sgi)'swithaone-to-one mapping.



LM=Xl&{(Gl,Sg1)+2(G2,Sg2MG3,Sg3MG7,Sg7)}+
+X3&{4(G2,Sg2>f2(G3,Sg3>f2(G4,Sg4)+(G5^g5>f2(G6,Sg6)+(G7,Sg7)}
+X0&((K)0,Sgoa)+X4&(G04,Sg(M)+X5&(G05,Sg05)+FaplA>2^, P) (7)

AsVM isavector space, wecan define anorm for the vector LM,and letdefine anorm with
respect to latency S be a sum of Sg components as ILMIs=iSgj. For example, norms
Sx1=Sg1+2Sg2+Sg3+Sg7, Sx2=Sg4+2Sg2+Sg3+Sg7, and Sx3= Sgi+4Sg2+Sg3+Sg4+Sg5+Sg6+Sg7 are
calculated, and arelation Sx1<Sx2<Sx3 holds because the latency Sgj for "+" is less than
the latency Sg4 for "*" and all the Sgi's are possitive. Alatency Slp2 equal to the largest
latency Sx3 is required for the loop lp2. There are many ways to implement the control
logic circuit for gi's with steps Sxi's, e.g. with hardware sequencers, adaptive control ele
ments, or FSM's. To get the optimal FSM, which consists of simplest transition conditions
with minimun numberof state transitions, wemust transform the control structures derived
from the CFG to suitable control structures in aFSM. For example, we must merge three
steps Sxlf Sx2 and Sx3 toone step Slp2 with branches placed at some states.

6. Scheduling of loops, Loops instate transition graphs

A new scheduling technique of the loop lp's for aFSM model isproposed in this and the
nextsections. AnFSM isdefined byastate transition graph (STG) which consists ofcontrol
inputs, acurrent state, and next state. Let us define LP to be a loop body ofafinite state
machine corresponding to the lp. The initial LP isgiven simply bydropping Gi's from the
equation (7):

U^F^O&Sg00+P&{Xl&(Sg1+2Sg2+Sg3+Sg7HX2(Sg4+2Sg2+Sg3+Sg7)+X3&(4Sg^^
+Sg5+2Sg6+Sg7)}+X4&Sgo4+X5&Sg(^FapUp2^ ( 8)

where P' and Pindicate explicitly control of the LP's. Thus, byusing loop body decompo
sition, we can divide LPinto smaller loops LPi's. The Sgi's in LP2 of equation (7 ) are
arranged inexecution order with respect todata dependencies as seen inusual procedures.
Terms arerearranged by factorizing out the Xi's.

l4>2=Xl(Sg2+Sg3+Sg2+Sg1+Sg7)+X2(Sg2+Sg3+Sg2+Sg4+Sg7)+X3(Sg2+Sg3+Sg2+Sg^
+Sg2+Sg4+Sg3+Sg6+Sg2+Sg4+Sg5+Sg7) =(Xl!X2!X3)(Sg2+Sg3+Sg^Sg2+Sg7)

+X3(Sg2+Sg4+Sg3+Sg6+Sg2)+XlSg1+(X2!X3)Sg4+X3Sg5 ( 9)

where symbols"!" mean 'or' operators, and mSgi's are divided separately because of the

linear condition: (ml+m2)Sg=mlSg+m2Sg. A similar equation for the Gi's holds by

replacing Sgi's with Gi's. The rearrangement meanshardware sharing in looplp2 Hardware

sharing in loop lpl and in Z is done separately. Though controls are separated into loops,

each loop controls global data-flows. Therefore hardware sharing over global data-flows is

obtained, and global optimizations are achieved. Each Boolean equation is optimized sep

arately.



7. State allocation and state transition control

To get an optimal FSM after rearrangement of Sgi's in execution orders, traditional

resource sharingis taken into considerationin many schedulingprocedures, for example, in

the As soon As Possible or As LateAs Possible algorithms and so on. The equation (9) is

divided into time slices by considering registers allocation and state cycle time as in tradi

tional scheduling algorithms:

l4>2=CKl!X2!X3)(Sg2+Sg3+Sg2)+X3(Sg2+Sg4+Sg3+Sg^Sg2)+XlSg14<X2!X3)Sg4^^

(Xl!X2!X3)Sg7= (Xl!X2!X3)([Sg2]s6+[Sg3^g2]s2HX3([Sgds2>[Sg2+Sg4]s5+[Sg3+Sg6+Sg2]S2'0
+[XlSg1+(X2!X3)Sg4]s3+[(X3Sg5+(Xl!X2!X3)Sg7)ls7 (10 )

where S6, S2, S2\ S2", SS, S3, and S7 are state labels (see next section's convention). In

our approach, one gererates the state transition chains S6>S2>S3>S7 for XI and X2, and

S6>S2>S2'>S5>S2">S3>S7 for X3 by tracing each Xi. The states S2, S2' and S" are

merged by traditional merging and folding algorithms to get the new state sequence

S6>S2>S5>S2>S3>S7, and finally the loop S6>S2>(S5>S2 for X3)>S3>S7>S6 is deduced

by merging same states. This causes hardware sharing. For example, G2, G3, and G6 are

shared at S2. Then state transition control variable I (lbit for this example) is generated to

control the branch at S2 from Xi's and P, and Xi's control steps Sgi's in each state. Thus, an

FSM is generated by combing I and Lp2. Similar equations for the other loop Lpl and Z are

obtained: Lpl=XO[Sg^]so» X4[Sg4ls4, X5[Sg5]s5- The loops are indexed by sets of the

state transition control variables( see section 2.1). Each state is ordered by weights of

resources. Also, the loops are ordered by the weights of states for use of optimization of

LM. The state transitions from one loop to another are added, and the control variables are

generated for newly specified transition conditions at the upper loop level. The loops are

divided into two types ofglobal and local types by their correspondingglobalor local data

flow parts. The global type loops specify global control variable Xi's which one can use for

global optimization of data-flows, linearity of loops insures noconflict with existing com
ponents Xj&Mj's when additional components Xn+j&Mn+j are appended to it Thisdefini

tion is different from the one of linear machines, but it still reflect the principle of
superposition.

2.1 FSM Example

Consider a simple example data-flow level model FSM1. It was first presented in [8] and
thecorresponding state table is described inTable 1.Theequation (10) is transformed to
it, assuming 1datainputportD(data), 3 registers, andone"+" or "*" foreachstate.

k=(icode=add); i=(icode=mul); j=(icode=sop); m=k'&i; n=k'&i'&j;
START: k=0; i=0; j=0; iffl) next S4; else next S6;
S4: Ri = 0; Ready=l; next S6;



S6: Rl = D(b); if( I) next S2; else next START, // G2
S2:Rd = Rl; R2= Rd;Rl = D(c! e); if(I) nextS3;elsenext S5;// G3+G6+G2
S5: Rd =Rd*Rl; Rl =D(d); if(I) next S2; else START; // n(G4+G2)
S3: Rd=k(Rd+Rl)+(m!n)(Rd*Rl); if (I)next S7; else next S5; //kGl+(m!n)G4
S7: s = n*Rd+n(Rd+R2); if (I)nextS6; else S5; // G7+nG5

where "!" stands for OR operators, "&"for AND operator, registers are "Ri", state identi
fiers are "Si", and next state designators "next". The thin font"+" operators arc used for
multiplexers or busses. The state transition matrix A is derived from the state transition

control parts ofFSM1. The STG has four loops: 1) Lpl: START <-> s6for condition (1=0);
2)Lp2: s6> s2> s3> s7> s6 for condition (1=1); 3) Lp3: s2> s5> s2; and 4) Lp4: START>
s4>s6> START.

Table 1: State Transitionof FSM1 example

Lp5

Current

state

Next state

1=0

Next state

1=1

Output

1=0

Output

1=1

START state-6 state-4 00 01
state-2 state-5 state-3 00 10
state-3 state-5 state-7 00 10

state-4 state-6 state-6 00 10
state-5 START state-2 10 00
state-6 START state-2 01 00
state-7 state-5 state-6 00 00

closed loops

open edges

The 7x7 dimensional matrix A is divided into two parts: the loops and chains of the edges.

The sub matrices of A for the loops Lpl, Lp2, Lp3 and Lp4 are described with non zero

entries xi's expressing state transitions, and edges: E^= (s3,s5), E7t5= (s7,s5), E^fit =
(s5,START) where E^ sj have one non zero entry in the sj-row and the Sj-column. Acom
plex loop Lp5 is obtained by binding them linearly,

=Xl\° xll( s6)+X2
\x2 QJKST)

0x3 0 0

0 0x4 0

0 0 0 x5

x6 0 0 0

si

53

s2

56

+X3

0x7 0

0 0x8

x90 0

+X4 [*0 xal ( 55 "j
\xb 0JU2J (ii)

J V

wherecoefficients Xi's are products of complex coefficients (Xq) and logical coefficient



(Xjj) respectively, and thesub matrices consist ofrowsincluding onlynon zero entries xi's
for simplicity. Eachrow of the submatrices corresponds to the samenext statedescribed in

the same row ofthe column vectors on theirright side. The same state will be written in dif

ferent forms within different loops Lpis, but they have to be self consistent so that we can

threadthe loops in a chain. If Lpi hasno changeofcondition XLi through all the statetran

sitionsin Lpi, the loop Lpi is saidaclosedn-stateloop with conditionXjj or a (n:XLi)-loop

in short The Table 1 shows mat Lpl with XLi(I=0) and Lp2 with Xl2(I=1) arc closed

loops. The closed loops arc distinguished by unique control conditions so that we rcgard

them asindexed loops. Lp3 andLp4 are not closed since Xl3=Xl3q(I=0' s4,s6)+Xl3i(I=1I

s4,ST) andXL4=XL4o(I=OI s2)+Xl4i(I=1I s5). State s4 with edges(START,s4) and(s4,s6)

belongsto Lpl, andthe s5 with the edgesof (s2,s5), (s3,s5),(s7,s5) and(s5,s2) does to Lp2.

The two other edges (s6,s6) and (s5,START) are paths from/to Lpl and Lp2. The states at

which the out-edges areattached, arcsaidgatedstates,and the loops with m gatedstatesare

saidm-gated loops or m-gatedopen loops.We note that the loops are irreducible compo

nents which cannot be represented in linear form.

2.2 Basic Structure of Algorithm

The basic structure of algorithm which we aredeveloping, is summarized here:

1. Find Loops in flow graph: classify the control flow graph(CFG) with respect to the
transition conditions. Build matrix M(i,k) with matrices Mi(i,k) for each data-flow
graph (DFG) and F(i,k) for conditions Q(ijk) and calculate resource weight

2. Find the initial loop Lp(i,k,0) in F(ijk) and set the loop level=0. Then find next loops
Lp(i,k,l+1) by Shannon expansion with respect to the more often occuring condi
tional variables in the current loop Lp(i,k,l) recursively. Compute the number of
branches B#(i), and specify the state control input I(n#). Calculate the number of
states in each loop S#(i), and specify state code width C#(i). Put weight W(ijjk).
Merge andreduce the loops to the diagonal elements of M(ij,k) by reducing related
rows and columns.

3. Find bridges among lower loops. Check merge conditions among loops. Delete a
loop if it is merged into anotherloop. MergeC#(i), I(n#)

4. Select the first loop in which the system starts, and also select the initial state. Allo
cate an initial state code with a code width C#(i), and calculate the state codes of a
subfield successively for all the states from the initial state. Find reachable loops,
and find statesconnected with bridge transitions. Allocate the most suitable code to
them. Then allocate codes to the successive states recursively.

5. Put the most suitable codes on the other states out ofloops. Hand over to astate assign
ment programs with state codes constraints for generating state transition circuits.

10



2.3 State coding experiments with Johnson Counters

Theoptimal random coding results byastate assignment program NOVA for thesymbolic
coverFSMl example is obtained as CASE-I [(sO s6 s4 s2 s5 s3 s7)=(110,000, 111, 010,
100, 001, 011)] in Table-H, where outputs=(O0, Ol), an input=(I), latch-inputs=(LIi's),
and latch-outputs=(Li's). Letusexamine the effects ofembedding counters into the system.
As anNbit-Johnson countercanexpress 2N states, FSMl needs4 Johnson counters atmost

If allloopsdo notintersect eachother, theyhave1-bit, 2-bit, 2-bitand 1-bitcodewidth.We

note that sequences of state codes are specified uniquely except an arbitrary code for the ini
tial state. If we choose initial statecodes to be 0, statecodes of counters aredefined as fol

low: Lpl:{0,l},Lp2:{00,10,11,01}, Lp3:{00,10,ll}, Lp4:{0,l). Ifwe take simply adirect
products of all thecoding fields, then wehave 6 bits width coding equal to 1+2+2+1. Itcan
satisfy the constraints of intersections between Lpl and Lp2 at s6, Lpl and Lp3 at START
and s6,orLp2 andLp4 at s5. The obtained coding is

Lpl: {START,s6}={0--00-, 10011-}; Lp2:{s6,s2,s3,s7}={10011-,-10-0,-11-,-01-};
Lp3:{START, s4,s6}={0--00-, —10-, 10011-}; Lp4:{s2,s5}={-10~0, 1};

The don't-cares (-)'s in the codes are fixed one after another by satisfying the constraints
under which each code can change only one bit value at one transition along any loop for a
racing free condition. The obtained result is

Lpl: {START,s6}={000000,100110}; Lp2:{s6,s2,s3,s7}={ 100110,110110,111110,101110};
Lp3:{START, s4,s6}={000000,000100,100110}; Lp4:{s2,s5}={ 110110,110111};

Thebitwidth is twice longer than the minimum one. FSMl runs from one loop toanother
loopunder onebit flip atonce. This property is necessary for hazardless controllers. NOVA

outputs the Case-II circuit under the above state codes constraints. It shows that the latch L0

is redundant because 100000 is an external don't care. A Johnson counter for the loop Lp2
is automatically allocated with LI andL2 latches. The longest chain under the condition
1=1 is theclosedloopLp2 with in-edge {START, s4,s6} andit produces the smallest circuit

with a 3bit Johnson counter {START,s4,s6,s2,s3,s7}={000,100,110,lll,011,001} and
s5={010}. The Case-Hi, with a Johnson counter, saves 4 product terms from the random

coding Case-I. Next we consider the second coding Case-IV with the largest loop
Lpl':{START, s4, s6, s2, s3, s7, s5}={0000,1000,1100,1110,1111,0111,0011} andLp2.
The system has a less efficient implementation with no Johnson counters, and also there are

7 violations at the state transitions{START, s6}, {s6, START}, {s7,s6}, {s5, START}, {s3,

s5}, {s2, s5}, {s5, s2}. The reason is thatthe loopis notaclosedloop,andthatthe transition

to the additionalstate s5 is inhibited under1=1. These examples imply that we must choose

the largest closed loop for embedding a counter as we expected. The Case-V is based on the

fact that Lp3 intersects Lpl in the states ST and s6, and so we can drop one bit for Lpl to

get a 5bit Johnson counter with the state codes

n



Lpl: {START,s6}={00000,01000},Lp2:{s6, s2, s3, s7}={01000,01100,OHIO,01010},
Lp3: {START,s4,s6}={00000,10000,01000},Lp4:{s2^5}={01100,01101}.

We note that the simplest circuit is obtained without feedbacks from the outputs. If we

delete open loops Lp3 and Lp4, we have the 3bit Johnson counter of Lpl:{START,s6}=

{000,100}, and Lp2:{s6, s2, s3, s7}={100,110,111,101}. The other states (s4, s5) can be

selected from the remaining codes (011,001,010).These are 6 possible cases:

(s4,s5lsop)=(001,010l 35),(001,011l37),(010,001l33),(010,011l38),(011,010! 33),(011,010l30)

The simplest circuit is obtained with the code (011,010130), but it has feedbacks from the out

puts.

Table 2: Synthesized results with state code assignments

Coding Nodes Latches Sops Stages
I 7 3 32 7
n 7 5 30 7

m 5 3 28 7

IV 6 4 38 7

V 7 5 29 7

VI 5 3 30 7

CASE I

O0 = IL3 [21]+IL3'[2ir+r LI L2'; 01 = 01X11Ul; Ul = Y LI' + I' L2' +L1[19];

LI2sIL2( + Ll[19] + L2'L3^U3sULC-i-[19];[19]slL2L3';[21] = Ll-i-L2(
—-CASE-H

O0 = lL31A' + VI£+TL2iOl = IU'+YLVLTlA;Ul = ILTlA + W;
U2 = ILlL5,;U3 = I + LI4;U4 = OrL4, + L2 + Ul;LI5 = IL2L5, + rL2

CASE ITJ

00=1 LI IJ3' + LI' L2 L3»LI3' + L3 U3:01=1 LI* L3' LI3' + LI L2 L3' LT3';
LIl=O0' 01'L3' +1LI3'; LI2= O0' 01' + 01' LI; LI3=I L2;

CASE IV

00=1 LI LI2' +1U4 + L2* LIl*: 01=1 LI' L4' + V L2 L3';
Ul= I LI' +1L2' +1 L4' +L2'LT; LI2= 01' LI1 +1LI3; LI3= L214* Ul + L2' L4 LI1+U4;
U4 = IL1L3 + FL2L3

00=1 L3 L5'+1 LI +1'L5; 01=1 LI'L2'+1'L2 L3'L4'; LI1=I LI'L2';

U2=aLl'I^TU, + W + U3;U3=IUW' + LI4;U4=II3L5';U5 = rUL5* + r^

00=1 L2U + L2L3'LI2* + L2U3 :01=1' LIL2*L3* + L2' LI3';
Ul=O0'Ll'LI2' + 01'I;LK=01'I'Ll+ IL3* ;LI3=IL1 L2 + IL1* L2';

3.0 Conclusions

This paper presents a framework for the high-level synthesis of FSM's from the control-

flow graphs and it links the domains ofLinear systems and digital systems. FSM's are syn
thesized from control anddataflow graphs by combining paths of state transitions, while
considering resource costs for the data paths. Amathematical base for analyzing high level
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design isproposed. Linear group theory iseffective toget symmetry orregularity inthesys
tem (the closed loops aredefined to be invariant underthe index condition). There is a lot

of work yet to do to get more efficient algorithms. We note that primitive loops must be
classified mathematically for the purpose of analytical approach in future.

REFERENCES

[I] D.CKu,G. DeMicheli,"High level Synthesis of ASICsUnder Timing and Synchronization Con
straints", Kluwer Academic Publishers 1992

[2] R£.Bryant,"Graph-Based Algorithms for Boolean Function Manipulation"JEEE Trans onComputers,
vol.C-35 No.8 August 1986

[31 R.Amann andU. G. Baitinger,"Optimal State Chains and State Codes in Finite State Machines", IEEE
Trans,on Computer-AidedDesign, ppl53-170, Vol. 8 No. 2 Feb. 1989

[4] L.Stok,"False Loops through Resource Sharing", Proc. of ICCAD'92, pp345-348, Nov. 1992

[5] M.Nourani and CPapachristou,"Move Frame Scheduling and Mixed Scheduling-Allocation for the
Automated Synthesis of Digital Systems",Proc. of DA conf.,pp99-105, June 1992

[6] MPotkonjak, J.Rabaey,"Maximally Fast and Arbitrarily Fast Implementation of Linear Computations",
Proc. of ICCAD'92, pp304-308, Nov. 1992

[7] C.Duffand G.Saucier, "State Assignment Based onthe Reduced Dependency Theory and Recent
Experimental Results",Proc. of ICCAD'91, pp222-225, Nov. 1991

[8] G.DeMicheli, R.K.Brayton/'Optimal StateAssignment for Finite StateMachines"JEEETrans, on
CAD, Vol. CAD^. No.3, pp.349-365, July 1985

[9] K.Wakabayashi, H.Tanaka, "Global Scheduling Independent of Control Dependencies Based Condi
tion Vectors", 29th DAC, 1992

[101T.Villa, A.Sangiovanni-Vincentelli, "NOVA:State Assignment of Finite State Machines for Optimal
Two-Level Logic Implementation", IEEE Trans. CAD, 1990

[II]S.Devadas, H. Ma, RJvfewton, A.Sangiovanni-Vincentelli, "Mustang: State Assignment of Finite State
MachinesTargeting Multilevel Logic Implementations", IEEE Trans. CAD, 1988

13


	Copyright notice 1993
	ERL-93-59

