Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE MAXIMUM SET OF PERMISSIBLE
BEHAVIORS FOR FSM NETWORKS
-Synthesis of Interacting Finite State Machines-

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M93/61

3 August 1993

THE MAXIMUM SET OF PERMISSIBLE
BEHAVIORS FOR FSM NETWORKS
-Synthesis of Interacting Finite State Machines-

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M93/61

3 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

THE MAXIMUM SET OF PERMISSIBLE
BEHAVIORS FOR FSM NETWORKS

-Synthesis of Interacting Finite State Machines-

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M93/61

3 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

The Maximum Set of Permissible Behaviors for FSM Networks
- Synthesis of Interacting Finite State Machines -

Yosinori Watanabe and Robert K. Brayton*
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA

Abstract

For systems of interacting finite state machines (FSM’s), manual designs sometimes use information
derived from the other components to optimize one of them. An associated problem is to find the set of
permissible sequential functionalities that can be implemented at a component while preserving the behavior
of the total system. Most conventional approaches attempt to find such a set using the notion of don’t care
sequences, but in general, the complete set of permissible finite state machines are difficult to compute. As
a result, only small subsets are derived and used in designing interacting components. However, there is no
knowledge of how much optimality is lost using these subsets.

This paper proposes a method for computing and representing the complete set of permissible finite state
machines. We show that the complete set can be computed and represented by a single non-deterministic
finite state machine, called the E-machine. The computation is different from any based on don’t care
sequences. The transition relation of the E-machine is obtained by a fixed point computation. The procedure
has been implemented and initial experimental results are given.

*This research is supported in part by the National Science Foundation and the Defense Advanced Research Projects Agency
under contract number NSF/DARPA-MIP-871-9546. We also thank AT&T, DEC, IBM, Intel, and Motorola for their support.

1

1 Introduction

In combinational logic synthesis, a common procedure focuses on a node of a logic network and derives a
set of don’t cares[1]. Associated with each node is the current logic implementation (completely specified
Boolean function) which gives an initial representation. The don't care set provides the condition of the rest
of the network under which one can alter the functionality of the node while preserving the functionality
of the entire network. Such a functionality of the node is said to be permissible[13). The resulting node
function is then treated as an incompletely specified Boolean function, to locally optimize the node. Intensive
research has been made on how to derive the don’t care conditions as well as how to optimize the resulting
node functions(1, 2, 8, 10, 13]. More recently, these ideas have been generalized to networks where each
node may have more than one output (and hence multi-valued variables are allowed), and the specification
on the functionality of the entire network is given as a Boolean relation between the primary inputs and the
primary outputs of the network[3, 16]. One wants to derive and represent all possible permissible functions
of a particular node of the network. It is known that in the combinational domain, the set of permissible
functions can be represented by a single Boolean relation for each node[3, 16].

For sequential logic synthesis, the analogous concept is an FSM network, where associated with each
node is a completely specified deterministic finite state machine (FSM) and the network’s specification is
given by a non-deterministic finite state machine. Each finite state machine is represented by its transition
relation (a Boolean relation), relating inputs, outputs, present states, and next states. This situation is shown
in Figure 1. The only distinction between this and the combinational logic situation is what each node
represents - in one case a finite state machine, in the other a pure Boolean function.

As an analogy to the combinational case, one wants to derive and represent all possible permissible finite
state machines for a particular node of an FSM network, where a completely specified finite state machine is
said to be permissible if it can be implemented at the node while the resulting sequential functionality of the
entire network still meets the specification. This set of permissible machines is then used in some optimal
search procedure for a best choice.

The problem of finding permissible finite state machines at a given node of an FSM network can be
viewed as an interaction between two finite state machines, as shown in Figure 2, where M; is the initial
machine associated with the node being optimized, M, represents the functionality of the rest of the network,
and M gives the specification. This problem has been studied extensively([6, 9, 15]. Most work is based
on don’t care sequences; sequences of the inputs of M) which never occur and sequences of outputs of M;,

x.

Specification
FSM Network

Figure 1: FSM Network and its Specification

|

|

|

u v |

x —lL— - M1 > —-:——z

! |
[[
{ I
| M2 l
| :
e] M _ 1

Figure 2: Interaction between Two Machines

given sequences of the network inputs x, such that the resulting network outputs z meet the specification
M. However, approaches based on don’t care sequences have several limitations. First, since the inputs
of M, (outputs of M2) may depend on the outputs of M, the sequences that appear at the inputs of M,
can be controlled by changing the functionality of M), which then defines a different set of input don’t care
sequences. Thus the previous work either makes an assumption on the topology of the network of M) and
M,, such as cascaded machines where M, is independent of M, or restrict themselves to compute only
a subset of don’t care sequences[6, 9, 15]. Furthermore, due to complexity, often the sequences are only
partially considered, up to a certain, typically small, length. As a result, even though one finds the best
machine among the set of permissible machines computed, there is no guarantee that the machine is best
among all permissible machines; the search for an optimum is severely limited.

In this report, we ask if it is possible to compute and represent easily the complete set of permissible finite
state machines at M;. The answer is yes and it can be represented by a single non-deterministic finite state
machine, which we call the E-machine. The result is obtained by a simple fixed point computation which
provides the transition relation of the E-machine. The procedure has been implemented and the E-machines
for a small set of artificial examples of moderate size have been derived.

There are a couple of problems or applications that can be viewed as a variation of the focus of this report.
One such problem is to find the set of permissible behaviors of the outside component M, when the internal
component M; and the global behavior M are given. This problem can be solved in exactly the same way as
the original problem, since the interaction shown in Figure 2 can be redrawn as shown in Figure 3-(a), which
yields to the same picture of Figure 2 by modifying M) so that the global input X and the global output Z
pass through M. This is illustrated in Figure 3-(b). Such a problem arises in a rectification problem(7, 17],
where the designer wants to change the functionality of the design by attaching a small logic around the
original circuitry.

Another related problem is a supervisory control problem for discrete event processes(14]. The problem
is that for a given generator of discrete events and a specification on the generated events, we observe the
events provided by the generator and control them by feeding control events to the generator so that the
resulting output events meet the specification. If the generator and the supervisor are synchronizing, this

3

problem can be deemed as a variation of our problem, as shown in Figure 4, where M, is the generator, M,
is the supervisor, and V' and Z are identical while M; may be a non-deterministic machine.

Finally, the core problem that we are dealing with is the division of finite state machines; given M
and M,, find the quotient @ of the two (See Figure 5). This is the central problem of factorization and
decomposition of finite state machines.

= . ==
|
|
x z x —f z
| v [] | v a
1 ==t M2 —o ' el M2 LN
I |
| i
M1 : M1 I
M | : M |

() ®)
Figure 3: Application for Rectification Problem

M1

Figure 5: Application for FSM Division

2 Terminology

In this section, we define basic terminology used throughout the report.
D ﬁ 2 I e . E. (] I Sl | ! ! ! o

A finite state machine is a 5-tuple (1, 0, S, T,), where [is the set of (binary) input variables,
O is the set of (binary) output variables, is the set of states, T : § x Blfl x Blol x § — B
is a characteristic function with B = {0, 1}, and r is an element of S. The machine stays in an
exactly one state, say sy, of S at any given time. The machine takes as input a minterm i € B!'!,
by which a transition is caused. A transition at a state s, consists of a pair of state and an output
minterm, (35,0) € § X BIOl, which indicates that the machine moves from the state s, to the
state s, and outputs o. It is assumed that a transition takes no time. The function T defines the
valid transitions of the machine, i.e. T(s,,1,0,3,) = 1if and only if the transition (s,,0) can
be caused at the state s, by the input i. There exists at least one (could be more than one) valid
transition for each state s, and an input i. The state 7, defined in the 5-tuple, designates the state
at which the machine stays initially, and is called the reset state.

The function T : § x B!l x BI9 x § — B s called the transition relation of the finite state machine!.
For a given state sp € S and a sequence o; = (i, ...,i:-1) of the input minterms, where i; € BY! for
each j = 0,...,t — 1 and ¢ > 0.2 there exists a sequence of output minterms o, = (0p,...,0:—;) and a
sequence of states 0, = (s, 31, . .,) with the property that T'(s;, 1;,0;, 8;41) = 1 forall j = 0,...,t—1.
Such a sequence of output minterms (a sequence of states, respectively) is called an output sequence (state
transition) defined at sp by ;. In particular, if sp is set to the reset state r, we say that the sequence o; leads
the machine to the state s;. In this case, we also say that the pair (0;,0,) is realized by the machine. The
integer ¢ of the sequence o is called the length of o and is denoted by |o|.

Definition: Deterministic Finite State Machine

A finite state machine (I, O, S, T', 7)is said to be deterministic if there exists a pair of functions,
A: S x Bl — {0,1,+}1% and 6 : S x Bl » § U {+}, such that for all (s, i,0,s,) €
S x B x Bl x §, T(sp,1i,0,s,) = 1if and only if

(1) o C A(sp,i)and

(2) 6(sp,1) = *0r é(sp, i) = sy,
where for & = A(sp,1), 0 C & designates that for each output variable j, 3; # * implies that
0; = 0;.
A deterministic finite state machine is said to be completely specified if for all (s, i) € S x Bl
A(sp,1) € B9l and d(sp,1) € S. Otherwise, the machine is said to be incompletely specified.

By definition, the valid transitions of a deterministic finite state machine can be represented using the
functions A and § given above. Therefore, we may represent the machine by a 6-tuple (1,0, S, A, §,). Note

'We make no distinction between a set and its characteristic function.
2Such a sequence g; is called an input sequence. If t = 0, the sequenceis null.

that at each state, the output sequence and the state transition defined at the state by a given input sequence
are unique for a completely specified deterministic machine.

A deterministic finite state machine (1,0, S, A, 6, r) is called a Moore machine[12] if for each state
sp € S, there exists a unique o € {0, 1, +}!°! such that A(sp,i) = o forall i € B/, Otherwise, it is called a
Mealy machine[11]. Note that the function A of a Moore machine depends only on the states S and not on
the inputs B/l

A finite state machine that is not deterministic is said to be non-deterministic.

Definition: Reachable Stat

Given a completely specified deterministic finite state machine (1,0, S, A, §,7),astate s € S is
said to be reachable if there exists a sequence of the input minterms which leads the machine to
s.

A state that is not reachable is said to be unreachable.
Definition: Equivalent States

Given a completely specified deterministic finite state machine (1,0, S, A, é,7), a pair of states
(s,3) € § x § is said to be equivalent if for all sequences of the input minterms, say o, the
output sequence defined by o at s is identical with that defined at 3.

A set of states of S is said to be equivalent if every pair of states in the set is equivalent in M.
The set of states .5 can be uniquely divided into a set of disjoint classes, where each class consists of

maximal number of equivalent states. Each such class is called an equivalent class.
Definition: Equivalent Machines

Two completely specified deterministicmachines M = (1,0, S, A, 6,r)and M = (I,0, 8, },3,7)
are equivalent if for all sequences of the input minterms, say ¢, the output sequence define at 7
by o in M is identical with that defined at ¥ by o in M.

In this report, we often discuss the behaviors of finite state machines. Intuitively, a behavior between the
input variables I and the output variables O is the set of pairs of input and output sequences realized by a
completely specified deterministic finite state machine with the input I and the output O. In this sense, we
say that the machine represents the behavior. Although this intuitive definition will suffice to understand the
report, we provide a formal definition of a behavior using notion of finite automata.

Definition: Finite Automaton

A (deterministic) finite automaton is a 5-tuple (X, S, §, F,), where X is the set of (binary)
input variables, S is the set of states, § : § x BIX| - § is the transition function, F C § is the
set of final states, and 7 € S is the reset state.

A finite automaton (X, S, 6, F, r) has a one-to-one correspondence with a completely specified determin-
istic finite state machine with a single output o, (X, 0, $, A, é,), which has the identical transition function
6, where A(s,x) = 1 if and only if 6(s,x) € F in the original automaton. Hence, terminology, defined for
finite state machines, will be used for finite automata as well. A sequence on X which leads the automaton
to a state in F' is said to be accepted by the automaton. We now define a behavior as follows.

Definition: Behgvior

Given a set of input variables I and a set of output variables O, a behavior between I and O is

a set of pairs of input and output sequences, B = {(0i,0,) | |oi| = |0,|}, which satisfies the
following conditions:

1. For an arbitrary sequence o; on I, there exists a unique pair in B whose input sequence is
equal to o;.

2. For an arbitrary pair p = (05,0,) € B, where 0; = (ig, . . .,i;) and 0, = (0, . . .,0¢) with
t>0,let&; = (io,...,it-1) and &, = (oy, ...,0;—1). Then (5;,d,) € B.

3. For an arbitrary pair p = (03, 0,) € B, where 0; = (lo, . . ., i;) and 0, = (0y, ..., 0;) with
t > 0, let o(p) be a sequence on I U O defined as o(p) = (igop, . . .,i:0;). Then there
exists a finite automaton with the input I U O which accepts all and only the sequences of
the set given by {o(p) | p € B}.

For each pair (03, 0,) of a behavior, we say that (o}, 0,) is realized by the behavior.

For a non-deterministic finite state machine, there might exist more than one valid transition for some
state and an input. In this sense, we can regard that a non-deterministic machine represents a set of behaviors
represented by a set of completely specified deterministic machines. We call each of such behaviors a
contained behavior.

ition: Contai

Given a finite state machine T = (1,0, S, T,r), a behavior between I and O is said to be
contained in T if every pair of input and output sequences of the behavior is realized by 7.

By definition, if T is a completely specified deterministic machine, there is a unique behavior contained
init.

3 The Maximum Set of Permissible Behaviors

3.1 The Problem and Assumptions

Consider the case of two interacting finite state machines shown in Figure 2. M, takes input u and outputs
v, while M takes input x and v and outputs u and z. M is a finite state machine with input x and output z,
which represents the behavior of the entire system composed of M) and M>.

Specifically, let M = (X, Z, S,T,r)and M = (X UV,U U Z, S3, A2, 82, m2) be given. We assume that
M may be a non-deterministic machine while M, is deterministic. By allowing non-determinism on M, we
can specify a set of behaviors, rather than a single behavior, for the entire system. In the sequel, we often
discuss which outputs can be obtained from M at a particular state and a particular input. For this purpose,
let us introduce two functions 4 : 2!S! x BIX| — 218!l and A ; 2151 x BIX| _, 215 defined as follows:

A(s*,x) = {ze B?l|3(3,s)€s*x85:T(3,x,2,8) =1}
A(s*,x) = {s€§|3(3,2) € s* x B2l . T(3,x,2,8) =1},

where we denote by s* a subset of states of M and by 25! the power set of 5.

7

Note that the output of the function), is a pair of minterms (u,z) € BIUl x BIZl, In the sequel, we
may represent)z using two functions A{*) : §, x BXWI _, BVl ang M7 : 8, x BXUVI _, BIZl quch that
da(s2,%v) = (A)(2,%v), AL (82, xv)).

We are interested in finding a set of behaviors represented by finite state machines permissible at M;.
Here, we assume that a circuit implementation of M; and M, does not contain a combinational loop, i.e.
a cycle without a register. Note that in general, if both M; and M, are Mealy machines, since the outputs
depend on the inputs, there might exist a variable of V which depends on a variable of U in M;, while
the variable of U depends on the variable of V in M;. We exclude this situation and consider only the
machines that can be implemented at M; without introducing combinational loops. Specifically, we define
implementable machines as follows.

Definition: Implementable Finite State Machine

Given M; = (X U V,U U Z, S5,)3, 8, 12), a completely specified deterministic finite state
machine (U, V, Sy, A1, 81, 71) is said to be implementable at M, if there exists a pair of circuit
implementations of M; and M, respectively such that no combinational loop is created by
connecting them together at U and V.

We will discuss implementability in more detail in Section 3.4 and provide a necessary and sufficient
condition under which M is implementable. We say a behavior between U and V is implementable at M,
if there exists an implementable machine at M;. Note that for an implementable machine Mj, and for an
arbitrary sequence of B/X|, say o = (xo, . . ., x:), if we denote by (s1, 5;) € §) X Sy the pair of states of M;
and M; led by (o, - - -,X¢—1), then X, defines the pair (u,v) € BVl x BVl such that u = z\g‘)(sz,xtv)
and v = Ay (s, u).

For an implementable machine M; = (U, V, 81, A1, 81, 71), we define the product machine of M; and M,
denoted by M; X My, as a completely specified deterministic finite state machine (X, Z, Sp, Ap, 6p, 7p) such
that S, = 8y X 83, 1, = (71,72), and for a state (31, 52) € Sp and a minterm x € BIXI, \,((s,),x) = 2
if and only if there exist u € BIV! and v € B! such that A;(s;, u) = v and Ay(s3,xv) = (u, z). Similarly,
65((31,%2),x) = (31,83,) if and only if there exist u € BVl and v € B! such that A1(s1,u) = v,
2 (52, %v) = u, and (§y(s1,), ba(52,xv)) = (31,).

We now define a permissible machine as follows.

ition; Permissible Fini i

Given M = (X, Z,5,T,r)and M = (X UV,U U Z, 53,)3, 62, 12), a completely specified
deterministic finite state machine M = (U, V, 81, Ay, 61, 1) is said to be permissible if M, is
implementable and the behavior of M; x M, is contained in M.

The behavior represented by a permissible machine is called a permissible behavior. Our objective is to
find the complete set of permissible behaviors at M. Note that we are not interested in finding the complete
setof permissible machines at M); we need enough machines which represent the complete set of permissible
behaviors. We show that the complete set of permissible behaviors can be computed and represented by a
single finite state machine, which we call the E-machine.

3.2 Prime Machines

Our objective is to show how the complete set of permissible behaviors can be computed and represented
by a single finite state machine called the E-machine. The key idea is to represent the behavior of a machine
implementable at M) using a special deterministic machine called a prime machine. In this section, we
present the definition of prime machines.

For given M = (X,Z,5,T,r)and M = (X UV,U U Z, $,,)3, 63, 2), consider an implementable
machine M; = (U, V, S1, A\, 61,11).

Definition: X(s,,1)

For a state 3; € S and an integer ¢ > 0, let £(s;,t) be a subset of S, x 215! such that
(82,8%) € S5 x 28lis in (s, ¢) if and only if there exists a sequence of B!X| with the length ¢
which leads M) x M3 to (s1,52) and M to all and only the states of s*. As a special case, we
define X(s),—1) = ¢forall s; € 5.

Z(s1,t) consists of all possible states of M and M that can be associated with s; after ¢ transitions
starting from the reset states.
Definition: N(3;,X,u,s;)

Given 1 € S1, 31 € S;, u € BVl and £ C 8, x 215, let N(3;, %, u, 3;) be a subset of
S5 x 25! given by

(u)
N(31,Z,u,8) = {(s2,5%) € $2x2!¥! | 3x € BX|, (3;,8*) € & : u=2A"(%,xv), 8 =é&(3,u),
CZime) =) € a3 e B B €), = A)

where v = A;(31, u).

Intuitively, N (31, X', u, 31) defines all possible states of M, and M such that M; x M, (respectively
M) can move from (3, 3;) (respectively from s*) in a single transition for some (3;,$*) € X, where the
transition causes M) to move to s; with the input minterm set to u.

g ﬁ .Il n: g £d !! !)

An implementable machine M; = (U,V, 5, A1,6;,71) is said to be prime if for each state
81 € 8}, there exists a subset £(s;) C §5 x 2!5! with the following property:

(1) Vt20: X(s1,t) # ¢ = Z(s1,1) = T(s1)
(@ Vue BlY,3 € 8 :8 = 6,(81,u) = N(31, 2(51),u,8) = Z(s)
(3) At>0:Z(s1,t) # ¢ = X(s1) = {#}
In other words, each state of a prime machine, whenever it is reached, is identified with exactly one
subset of S x 2!5|. Note that if M is a completely specified deterministic machine, then X(s;) is a set of
pairs of states of M> and M, i.e. asubsetof $2 x S.

Theorem 3.1 For an implementable machine M, , there exists an equivalent prime machine.

We present the proof of this theorem in the Appendix. The theorem claims that the set of prime machines
provides the complete set of implementable behaviors. Hence only prime machines need to be considered
in order to be able to represent all permissible behaviors. Let us present another property that holds for
permissible prime machines. We use this property in constructing the E-machine.

Theorem 3.2 Suppose a prime machine M, is permissible. Consider a state s, € S\ such that £(sy,t) # ¢
Jor some t > 0. Then the following property holds.

V(s2,8") € Z(s1),¥x € B 3 (5,xv) € A(s",x),
where v € B\V! is the output minterm of M, uniquely defined for the input x at the state (3, 82) of My x M.

Proof: Suppose for contrary that /\g")(sz,xv) & A(s*,x). Since X(s;,t) # ¢ for some ¢t > O and since
(82,8%) € X(s1), there exists a sequence o on X which leads M) x M; to (s;,52) and M to the states of
s*. Then at the state (s, 33), the output of M; X M, with the input x is different from any output that can
be obtained by M at a state of s* with the same input x. It follows that the behavior of M; x M, is not
contained in M, which is conflict with the fact that M) is permissible. This completes the proof. =

Example 1 Consider M, and M shown in Figure 6, where each of X, V, U, and Z consists of a single
variable, while a node and an edge represents a state and a transition, respectively. The label associated
with an edge shows the minterms of the inputs and the outputs for the transition corresponding to the edge.
The label associated with a node is the name of the corresponding state. The reset states of M and M are
the state 1 and the state A, respectively.

Three permissible machines for these M2 and M are shown in Figure 7-(a), (b), and (c), respectively.
For each machine, the one shown on the right-hand side is an equivalent prime machine, where the label
associated with each state s; is X(s)).

3.3 The E-machine and its Properties
33.1 The E-machine

Consider the transition relation of a non-deterministic machine given by the following computation. Let
8O = {(r5,{r})} and compute T(*+) and S+ for a given S®) C S, x 25!, Let £, and X, be subsets
of S, x 215, respectively, and u and v be minterms of B! and BIVI, T(+1)(5, u,v, £,) = 1 if and only
if the following three conditions are satisfied:
1) Z,es0
V(x,32,5*) € BXI x 5, x 2151 : (%,5) € Z,andu= ,\;")(sg,xv)
@ o @ M(3m,xv) € A, %)
®) (82(32,xv), A(s*,x)) € 2,
V(s2,8*) € Sp x 2151 . (82,8") € Xy :
= 3(x,3,5*) € BIXl x §, x 2151
(a) (32’ 5‘) € Zp
3)
() u = A (3, xv)

(©) 82 = 2(32,xv)
) s* = A(s*,x).

10

(C]

Figure 7: Permissible Machines M; (u/v)

11

Figure 8: The E-machine T

In each computation, S is a set of subsets of $3 x 2!5l. Note that the empty set {¢} may be in S
Given T(*+1), we compute S(**1) as follows. SE+1)(Z,) = 1 if and only if S®)(Z,) = 1 or there exist
£, € 8W, u e BVl and v € BV such that T(*+1)(£,, u, v, £,) = 1. Intuitively, what we are computing
is a transition relation that on each step is being extended to a new set of states, where each state corresponds
to a subset of 52 X 2151, These states are added to the transition relation. This is continued until nothing new
is seen.

Let K be the smallest positive integer such that S¥)(Z,) = SIK-1)(.,). Such K always exists since
the number of the elements of the set S(*) is not decreasing during the computation and the number of subsets
of S x 251 is finite. Let S = SK) U {4}.

LetT: S x BVl x BVl x S — B be a relation such that T(Z,, u, v, £,,) = 1 if and only if

1) Z,=5%,={¢}or
@ TE(Zpu,v,2,)=1.

We finally define the E-machine as a 5-tuple T = (U, V, S, T, Z,), where X, = {(r2,{r})}. We recall
that each state of the E-machine represents a subset of S3 x 25!, Note that if M is a completely specified
deterministic machine, a state of the E-machine is a set of pairs of states of M, and M.

Example 2 For M, and M in Example 1, the transition relation of the E-machine is shown in Figure 8.

Note that in case the machine M is deterministic, each state of the E-machine corresponds to a subset of
Sz X S, rather than Sp x 2151,

3.3.2 Properties of the E-machine

The objective in this section is to show that the E-machine captures the complete set of permissible behaviors.
More specifically, a behaviorimplementable at M is permissible if and only if the behavioris contained in the
E-machine. We first claim that a behavior implementable at M) contained in the E-machine is permissible.

Theorem 3.3 A behavior implementable at My contained in the E-machine is permissible.

12

Proof: Consider an arbitrary sequence o = (%o, . .., xx) of BX!. Let o; = (xo,...,x;) be the subsequence
of o with the length £ + 1, where 0 < ¢ < k and we define o as the null sequence. Since the behavior
is implementable, o, uniquely defines the pair of sequences of B!Vl and BIV|, say (09, o{)) where o) =
(ug,.-.,u) and o) = (vo, - - -, Vvt), such that (a,(f),a,(f)) is realized by the behavior and for each 1,
0<i<t,yy = ,\g‘)(sg),x.-v;) and s;'.“) = &(sgi),x;v.-), where s%o) = 1. Let us define (ag(;_l),oq(:_l))
as the pair of null sequences. Note that M; is led to s5' ") by applying o;. Also, for ¢ > 0, let s* C § and
:{‘ c f’ l})ethe set of states to which M is led by o; and o, respectively, where in case ¢ = 0, we define
s* = {r}.
We show by induction on ¢ > 0 that by applying the subsequence o,

L A%z)(sgt)’ x¢ve) € A($*,x;), and
2. There exists a unique state £(+1) € S to which the E-machine is led by (017, o{?).
3. Forthe Z(*+) defined above, (s{/*), s*) € Z(t+),

First, if we denote £ = X, then £ is the unique state of the E-machine to which the E-machine
can be led by (a.(,"l), a,(,"l)), where we see (72, {r}) € £©). Also, by the induction hypothesis, there exists
a unique £®) to which the E-machine can be led by (o$' ™", 6! "). Furthermore, (.sg) ,) e 2®, 1t
follows that £(®) £ {¢}.

Since (s{?,5*) € £® and u, = M, xove), TEN(Z®, u,v,{$}) = 0. However, since the
behavior is contained in T and since X(*) is the unique state to which the E-machine can be led by
(o™, a,(f_l)), there must exist a state £(+1) € S such that T(Z(®), u, v, 1) = 1. K follows that
THE)(£®,u,v, £¢+)) = 1, Therefore, by construction, A{(s{?, x,v:) € A(s*,x;). Since s =
62(s£‘),xtvt) and s* = A($*,x;), we also see by construction (s(H'l),s") € T+, It remains to show
that such £(**1) is unique. Since we know the uniqueness of Z“"), e proof is done if we show that for
any ¥ € S such that T(2®), u,v, X) = 1, ¥ = Z(+1), Consider an arbitrary such £. By the argument
above, = # {4}, and thus T(K)(Z(*), u,v, £) = 1. Then by the condition (3) of the construction of TX)
shown in Section 3.3.1, for an arbitrary pair (s2, s*) € X, there exist x € B!X| and (3,, §*) € Z such that
u= z\é“)(.’s‘z,xv), 8 = 85(32,xv), and s* = A($*,x). Then since TH)(Z), u,v, Z(t+1) = 1, by the
condition (2) of the construction of TX), (s,, s*) must be a member of £(t+1). Thus & C Z(+1), The same
argument holds to claim that £(**1) C X, and thus we see that Z(*+1) with the property above is unique.
This completes the proof for the induction step.

Hence, the sequence of the global output Z realized by the behavior together with M, by o is realized
by M. Since o is arbitrary, the behavior is permissible. =

We now claim that all the permissible behaviors can be captured by the E-machine. Let us first introduce
a machine contained in the E-machine defined as follows.

Given a finite statemachine T’ = (U, V, S, T, X,), acompletely specified deterministic finite state
machine M; = (U,V, S}, Ay, 61, 1) is contained in T if there exists amapping ¢ : S} — S such
that ¢(ry) = X, and forall s, € S; and u € BIUl, T(¢(sy), u, \1(81, u), ¢(d1(s1,u))) = 1.

We first claim that the behavior represented by a contained machine is contained in the E-machine.

13

Lemma 3.1 Consider a machine My = (U,V, Sy, A1, 61,71) contained in the E-machine. The behavior of
M, is contained in the E-machine.

Proof: We show by inductionon ¢ > 0 that for an arbitrary input sequence on U with the length ¢, the output
sequence of M) given by the input sequence can be realized by the E-machine. The claim is trivially true
when ¢ = 0. Consider the case where ¢ > 0. Let o, be an arbitrary sequence on U with the length ¢ — 1
and let u € BV be an arbitrary minterm. Let 3; be the state of M; to which o, leads M;. Let oy, be the
sequence of V' given by M, for the input sequence o,,. By the induction hypothesis, (¢4, 0,) is realized by
the E-machine. Since M, is contained in the E-machine, T(¢(3;), u, A1(3;, u), ¢(61(31,u))) = 1. Thus
the pair of sequences (oy,u, d,A(31, u)) is realized by the E-machine, which completes the proof for the
induction step. Hence the behavior of M is contained in the E-machine. =

By this lemma, all we need to show is that for an arbitrary machine M that is permissible, there exists
an equivalent machine contained in the E-machine.

Theorem 3.4 For apermissiblemachine M, , there exists an equivalent machine contained in the E-machine.

Proof: By Theorem 3.1, there exists a prime machine M{ = (U, V, Sy, Ay, 61, 71) which is equivalent to M.
Let ¢ : 51 — S be a mapping such that for each state s; € S1, ¢(s1) = Z(s;). Note that ¢(r) = Z,. We
claim that Mj is contained in T" under ¢.

Note first that since Mj is prime, for a state 3; for which there is no ¢ > 0 such that (3;,t) # ¢,
Z(31) = {¢}. Then for an arbitrary u € BIU, and for the next state s; = &;(3,u), N(31, £(31),u,8;) =
X(s1) = {¢}. Thus by the construction of the E-machine, T'(¢(31), u, A\1(31, u), ¢(s1)) = 1 for such 3;.

We now show by induction on ¢ > O that for all states 3; € S; such that X'(3,t) # ¢ and for all
u € BVl T+ ((5),u,v,¢(s1)) = 1, where v = A;(3;,u) and s; = 6,(5;,u). We also prove that
if Z(s1,t +1) # ¢, then ¢(s;) € StHY), where S(+1) s defined in Section 3.3.1. We show that each
condition for constructing the E-machine, given in Section 3.3.1, is satisfied, where X, = ¢(3;) = X(3;).

(1) First, since My is prime, for its reset state 71, (r{) must be equal to {(r2, {r})}, and thus ¢(r;) € S©,
In the induction step for a general ¢, the induction hypothesis implies that ¢(3;) € S®).

Consider an arbitrary x € B™! and (3,5*) € 2(3;) such that u = Ag”)(sz,xv). If there is
no such x and (32,s*), then the conditions (2) and (3) are trivially true with £, = {¢}. Therefore,
T#+)(p(3;),u, v, {¢}) = 1. Since in this case N(3;, Z(31), u, 1) is empty, the primeness of M implies
that X(s;) = {¢}. Therefore T(*+1)((3;), u, v, ®(s1)) = 1, and the proof for this case is done.

Suppose such x and (3;, $*) exist. Note that in this case, X'(sy,t 4+ 1) # ¢. We first consider the second
condition.

(2) Since M is permissible, Theorem 3.2 implies that /\g) (832,%xv) € A(8*,x). Also, since M] is prime,
X(s1) is equal to N(3), X'(31), u, s1), which is denoted by N hereafter. The definition of N implies that
(62(32,xv), A(5*,x)) € N. Therefore, (8,(32,xv), A($*,x)) € (s). Since £(s;) = ¢(s;), the second
condition holds for X, = ¢(s;).

(3) By the equality between £'(s;) and NV given above, for all (s, s*) € X(s), (s,5*) € N. It follows
that the condition (3) is satisfied for £, = ¢(s;).

Therefore, T¢+1)(p(31), u, v, ¢(s1)) = 1. It follows that £(s;) € S+, and thus the claim above
holds. Note that by this induction, we see that for each s, € Sy, ¢(s;) € S. Hence, by the construction of
T,T(¢(31),u,v,p(s1)) = 1forall 3, € Sy andforallu € BV, @

We have now reached the key statement of the E-machine.

14

Corollary 3.1 A behavior implementable at M, is permissible if and only if it is contained in the E-machine.

Thus, the complete set of permissible behaviors can be captured by the E-machine. By Theorem 3.4,
however, we see that the E-machine contains the permissible behaviors using contained machines. In this
sense, we can say that the E-machine tells not only which behavior is permissible, but also how the behavior
can be realized by a finite state machine. In other words, the following claim holds for permissible machines.

Corollary 3.2 A finite state machine implementable at M, is permissible if and only if there exists an
equivalent machine contained in the E-machine.

Proof: If M, is a permissible machine, then by Theorem 3.4, we see that there exists an equivalent machine
contained in the E-machine. Suppose that for an implementable machine M;, there exists an equivalent
machine contained in the E-machine. Lemma 3.1 implies that the behavior of M; is contained in the
E-machine. Thus, by Theorem 3.3, M, is permissible. =

3.3.3 The Structure of the E-machine and a Non-Deterministic Construction

As seen so far, the E-machine is in general a non-deterministic finite state machine, i.e. for a given state and
input, the next state and the corresponding output may not be unique. This nature allows us to represent a set
of behaviors by a single machine. However, we note that the E-machine is a special type of non-deterministic
machine. Namely, for a given state &, € S and pair of input and output minterms (u,v) € BVl x BIVI,
if there exists a next state ¥, such that T(X,,u, v, Z,) = 1, then such X, is unique. In other words, if
we introduce a set of new symbols and replace each pair of input and output minterms of the E-machine
by one of the symbols, then the resulting machine is a deterministic finite automaton>. This is true since in
the construction of the E-machine, we uniquely define the next state, if exists, for a given pair of input and
output minterms.

One may ask whether it is possible to construct the E-machine, so that the automaton corresponding to the
machine is non-deterministic and accepts the same language with the original. In other words, if we perform
the subset construction to determinize the non-deterministically constructed E-machine, where we assume
each pair of input and output minterms is a single symbol, then can we obtain exactly the same E-machine as
the one defined in Section 3.3.1? It is interesting to construct and represent the E-machine this way, since it
is known that the subset construction, or determinization, introduces an exponentially large number of states
in general. Thus we expect that the non-deterministically constructed E-machine has a smaller state space;
the complete set of permissible behaviors is then represented in the more compact way.

In this section, we consider the case where the global machine M is a completely specified deterministic
machine, and present a procedure, suggested by Alex Saldanha, which generates a machine such that by
performing an operation similar to the subset construction we obtain the E-machine as originally defined.
We recall that in case M is a deterministic machine, a state of the E-machine defined in Section 3.3.1
corresponds to a set of pairs of states of Mz and M. A state of the machine which we will construct (called
the NDE-machine) corresponds to a pair of states of M, and M, rather than a set of pairs.

The procedure is a fixed point iteration. We denote the transition relation and the set of states at
the i-th step by T,(J) and S}? respectively, where the subscript N implies that the construction leads to

3We call a finite state machine with this property a pseudo non-deterministic finite state machine.

15

Figure 9: The Non-Deterministic E-machine

a non-deterministic E-machine in the sense above. Initially, 81(3) = {(r2,7),9,k}, where r, and r are
the reset states of M; and M while ¢ and x are newly introduced states. The initial transition relation
TO . 59 x BV x BVIx SO _, Bisdefined as T (s, u,v,n) = 1if and only if either ¢, = ¢, = ¢or
S = Sn = K, i.e. we start with only self-loops on ¢ and . In general for the step (£ + 1), T+ (6p, 1, v, n)
is defined when ¢, € S,(\;) — {¢, k},i.c. the present state ¢, is a pair of states of M and M, say ¢, = (32, 3),
which has been introduced as a state in the transition relation 7). Then T**")(s,, u, v, x) = 1 if and only
if one of the following three conditions holds:

(@ Vxe BX:u# MY (3, xv)ands, = ¢, or
®) 3Ixe BXl:u=)\ u)(Sz,xv) and Aé’)(sz,xv) # M3,x)and ¢, = K, 0r
© Vxe BXl:u=x"(5,xv) = A?(5,xv) = A(3,x) and

3x € BX! : u = AM(8,,xv) and , = (62(82,xv), 6(3, %)),

where A : § x BX! — BlZl and § : § x BIX| — § are the output and the next state functions of M, which
are defined since M is deterministic. Condition (a) says that if there is no x which causes M, to output u
at the state 3; for the input v, then we cause a transition to ¢. Condition (b) means that if there exists an
x which causes M3 to output u at 3; for v but the = output is not allowed, then we cause a transition to x.
Finally (c), if all possible z outputs are allowed and if there is at least one x that makes M, and M transit to
Sn» then this transition is put in T +Y),

Let Ty be the transition relation of the fixed point of the com%mtation. Namely, for positive integer K,
if S§? = S, then T = T). Similarly, let Sy = S{. Call the resulting finite state machine
(U,V, 8N, TN, sr) the non-deterministic E-machine, or NDE-machine for short, where ¢, = (r2,7). The
transition relation of the NDE-machine for M and M used in Example 1 is shown in Figure 9, where the
states ¢ and « are denoted respectively by {} and k. Note that unlike the E-machine, the NDE-machine has
a property that for a state ¢, and pair of input and output minterms (u, v), there might exist more than one
state ¢, such that Tn(¢p, u, v, 6n) = 1. It is because of the global input X. Namely, for different global input
x € BIXl, M; and M may go to different next states with the same (a,v).

Now, for a given NDE-machine (U, V, Sn, Tn, <;), consider a finite state machine (U, V, Sp, Tp, Zp,)

16

defined as follows. The state space Sp is the set of subsets of Sy that contain ¢ and not contain . The
reset state Xp, is the subset {<;, ¢}. The transition relation Tp : Sp x BVl x BVl x Sp — B is defined
as Tp(Zp,,u,v, Xp,) = 1if and only if

Ep,={sn €Sn |35 € Zp, : Tn($pyu,V,6n) =1} and s € Tp,,

This construction is the subset construction, or determinization, of a non-deterministic finite automaton,
where the state x is the unique non-accepting state, meaning that a string which can lead the automaton to
K is not accepted. Only subsets, generated in the subset construction, which do not contain x are allowed
next-state subsets. In this way, we end up with a finite state machine which contains only permissible
behaviors.

Let Sp be the union of the state {¢} € Sp and the set of states of T reachable from the reset state
Zp,. Let Tp : Sp x BVl x BVl x S}, — B be the transition relation of 7 restricted to the states S
We then claim that the restricted machine T7, = (U, V,S8p, Tp, Ep,) is the E-machine. More specifically,
T}, and the E-machine are isomorphic, i.e. there exists a one-to-one mapping f from the state space of the
E-machine to that of T, such that T(Z,, u, v, £;) = 1 if and only if TH(f(Zp), u, v, f(Z,)) = 1.

Theorem 3.5 The machine T, and the E-machine are isomorphic.

Proof: Given a subset X' of pairs of states of M, and M, let f(X') be the subset given by adding the state
¢to X, ie. f(X) = 2 U{¢}. For the special case for the empty set {¢}, we define f({#}) = {¢}. By
definition, f is a one-to-one mapping and thus the inverse of f is also defined. We claim that T4 and the
E-machine are isomorphic under the mapping f.

Suppose T(Xy,u,v, X,) = 1 holds in the E-machine. If X, = {#}, then by the definition of the
E-machine, £, = {¢}. By construction of the NDE-machine T}, for the present state ¢ € Sn, ¢ is the
unique state that satisfies Tn(¢, u, v,¢) = 1. Therefore, Tp({#},u,v,{¢}) = 1. Since f({¢}) = {4},
Tp(f(Zp), u,v, f(Z,)) = 1, and the claim holds.

Consider the case where X, # {¢}. We show Tp(f(Z}),u, v, f(Z,)) = 1 under the assumption that
f(Zp) € Sp. This assumption does not affect the claim, since T, (f(Zp), w, v, f(£,)) = 1 implies that
f(Zn) € Sp and for the reset state X, = {(r2,7)}, f(£,) € Sp. By construction of the E-machine, the
next state X, from %, under u/v is given by

_ @ _
To={(s2:8) € S x § | Ix € B, (5,,8) € 5, : :;6"(23 f)z”“')’ 52 = &(%,xv), y,

Consider arbitrary x € Bl ang (32,3) € Zpsuchthatu =)\5”)(32, xv). If there are no such x and (3,, 3),
then X, = {¢}. Inthis case, for an arbitrary pair of states of M and M containedin f(,), only condition (a)
holds in the definition of the NDE-machine. Therefore, forall elements s, € f(), s» = ¢ is the unique state
which satisfies Tn(sp, u, v, ¢n) = 1. Thus we obtain f(2,) = {s | I € F(Zp) : Tn(Sp, u, v, 6n) = 1}.
Hence Tp(f(Zp),u,v, f(Zn)) = 1.

Suppose there exist such x and (3;,3) € X, with the property that u = /\g")(sz, xv). Then by the
definition of the E-machine,)\;’)(32, xv) = A(3,x). Therefore, in the definition of the NDE-machine, the
condition (a) and (b) do not hold and the first half of the condition (c) holds. Hence, X, given above can be
rewritten as

Lo ={(s2,8) € 52 x 5| 3(32,3) € Zp : Tn((%2,8),u,v,(82,8)) = 1}.

17

Thus by definition of Tp, Tp(f(Zy), u, v, f(Xy)) = 1.

Conversely, suppose Tb(EDp,u,v, Xp,) = 1. We will show T(f’l(Z'Dp), u,v, f"(SD,,)) =1,
where f~! is the inverse of f. Note that the function f~!(Zp,) simply removes the state ¢ € Sy from the
subset £p,_, where in case Xp, = {¢}, f~1(Zp,) = {#}. We employ the assumption that f~1(Zp,) € S.
The assumption does not affect the claim for the same reason above. If Xp, = {4}, then Zp,, = {4}. Since
T({¢},u,v,{¢}) = 1, the claim holds.

Consider the case where Xp, # {¢}. Since f~1(Zp,) € S, there exists some ¢ such that f~!(Zp,) €
S®), where S®) is defined in Section 3.3.1. We will show that conditions (2) and (3) defined in the definition
of TK) in Section 3.3.1 hold, and thus T(*+1)(f~1(Zp), u,v, f~(Zp,)) = 1. Hereafter, let us denote
Z, = f(¥p,) and Xy, = f~Y(Zp,). Consider arbitrary x € BXI and (3,,3) € S x S such that
(32,3) € Xp,and u =)\g‘)(sz,xv). If there are no such x and (32, 3), then the condition (2) trivially
holds. Also in this case, for each ¢, = (32,3) € Zp,, only the condition (a) holds in the construction of
the NDE-machine T, and thus Xp, = {¢}. Since condition (3) trivially holds if £, = {¢}, we obtain
Tt Ly, u,v, 5,) = 1.

Suppose such x and (3;, 3) exist. Since & ¢ Zp,,, condition (b) does not hold for this pair (32, 3) in
the definition of the NDE-machine. Thus the first half of the condition (c) holds, and A2(3;,xv) = A(3,x).
Since (82(32,%xv),8(3,x)) € Xp,, by definition of Tp, (2(32,xV), 8(3,x)) € X, and the condition (2)
holds.

For condition (3), consider an arbitrary (s2,s) € Z,.. Since (s2,8) € Zp,, there exists (%,3) € Zp,
such that Tn((32, 3), u, v,(s2,8)) = 1. Hence, condition (c) in the definition of the NDE-machine holds,
and there exists x € B suchthat u = z\g")(sa,xv) and (s, 8) = (8(3;,xv), 8(3,x)). Thus condition (3)
holds, and we obtain T(*+1)(Z,,u,v, L) =1. =

Thus, we see that the E-machine can be obtained by applying an operation similar to the subset construc-
tion to the NDE-machine 7. One might wonder why the operation like the subset construction is necessary.
In other words, how is the set of behaviors contained in the E-machine related to that of the NDE-machine?
The answer is that the NDE-machine contains more implementable behaviors than the E-machine. Specif-
ically, in the NDE-machine, an implementable behavior is not permissible if there exists a pair (o, o) of
sequences of U and V in the behavior which can lead the NDE-machine to the state &, since it means that
the corresponding sequence on the global output Z is inconsistent with what is required by M.* Therefore,
we need to know the set of pairs that have a possibility to lead the NDE-machine to . It is analogous to
finding the set of strings that have a possibility to lead a non-deterministic finite automaton to an accepting
state. Hence, we employ the subset construction to remove those additional behaviors, and then guarantee
that an arbitrary implementable behavior contained in the resulting machine (E-machine) is permissible. It
is illustrated in the following example.

Example 3 Consider Mz and M shown in Figure 10, which are slightly different from those used in
Example 1. The corresponding E-machine and the NDE-machine are shown in Figure 11-(a) and Figure 11-
(b) respectively.

Consider a behavior at My which always outputs 0 for all input sequences. This is equivalent to setting
the variable V to a constant 0, and thus the behavior is implementable. However, the behavior is not

*Note that the pair (0w, 0) is not allowed even if it can also lead the NDE-machine to a state other than x.

18

Figure 11: The E-machine (left) and the NDE-machine (right)

permissible since if a sequence o of the global input X is set to (0,0), then the corresponding pair of
sequences (0y,0y) on U and V realized by the behavior and M, is given by o, = (1,0) and o, = (0,0),
and thus the global output sequence o is obtained as o, = (0,0), while the global machine M requires
that o, must be (0, 1). It is easy to see that the pair (0, 0,) above can lead the NDE-machine to the state &
through the states 1A and 2B. Note that this behavior is not contained in the E-machine.

3.4 Implementability of Interacting Machines
34.1 Implementability

As we have seen in the previous sections, the permissibility of M; requires that M is implementable, i.c.
there exists a pair of implementations for M; and M, where no combinational loop is created by connecting
them together at U and V. Therefore, when a permissible machine is sought, we need to check whether the
machine is implementable or not. In this section, we provide a condition on the implementability.

Let a completely specified deterministic machine Mz = (X UV, U U Z, 53, A3, 82, 2) be given. We want
to know if a given completely specified deterministic machine My = (U, V, Sy, A, 81, 1) is implementable
for the M3. The key idea to check the implementability is the dependencies. Let us first present the following
definition.

19

Definition: Dependencies

For a set of Boolean variables X = {z1,...,2,} consider a function f : B® — B defined with
the input X. Given an input variable z; € X, f is dependent on z; if f|;;=0 # f|z;=1, where
flz;=0 designates the cofactor of f with respect to z; = 0.

If f is not dependent on z;, we say that f is independent of z;. The dependency of f for an input z;
is related to whether it is possible to implement the function f with no combinational path from z; to the
output, where we define a combinational path as a sequence of gates which does not contain registers. More
specifically, the following lemma is known.

Lemma 3.2 Givenafunction f : B* — B withtheinput X = {z\,. .., 2.}, there exists an implementation
for f such that there is no combinational path from z; to the output if and only if f is not dependent on z;.

Proof: Suppose there exists such an implementation. Then for an arbitrary minterm x € B", the output
value f(x) does not change even if we flip the value of z; in the minterm x. Thus f|z,=0 = f|z;=1-

Conversely, suppose that f is not dependent on z;. Consider an implementation of f. If the implemen-
tation does not contain a combinational path from z; to the output, the proof is done. Suppose there is a
combinational path. We claim that the implementation given by setting z; to a constant value, say 0, still
implements f. Let f be the function defined by the resulting implementation. Note that f does not depend
on z;. The proof is done if we show that f(x) = f(x) for all x € B™. Suppose f(x) # f(x). Then the
value of z; in the minterm x must be 1 since f is obtained by setting z; = 0 in f. Then flz;=0 # flz;=1,
which is conflict with the fact that f is notdependentonz;, =

We now present a condition under which M; is implementable. Consider a directed bipartite graph
G(U UV, E), where the node set of G is divided into two classes U and V and a node of U (respectively a
node of V') corresponds to a variable of the input variables U (respectively the output variables V') of M.
The edges of G are defined as follows:

[ui,v;]€EE & Ag"” depends on u;,
[vj,wi]e E & z\g“) depends on v;,

where we denote by ,\ﬁ"") the function of the Jj-th output variable v; in M.

Theorem 3.6 M, is implementable if and only if G is acyclic.

Proof: Suppose M is implementable. Then there exists a pair of implementations (Cy, C3) for M; and M;
respectively which does not create a combinational loop. Let G.(U U V, E;) be a directed bipartite graph
with the same node set of G' where the edges are defined as follows:

[ui,v;] € E <« there exists a combinational path from ; to v; in C,
[vj,ui] € E ¢« there exists a combinational path from v; to u; in C,.

Since the implementation does not contain a combinational loop, G. is acyclic. Now, if Af”j) depends on u;,

Lemma 3.2 implies that C has a combinational path from u; to v;. A similar argument holds for ,\g""’ ,and
we see that E C E.. Hence G is a subgraph of G, and G is acyclic.

20

Conversely, suppose G is acyclic. If we implement the function ,\i"’) independently for each v;, we obtain
an implementation Cy of M; where there is a combinational path from ; to v; if and only if A{"?) depends
on u;. Similarly, let C; be an implementation of M, such that there is a combinational path from v; to u; if
and only if «\g“") depends on v;. The proof is done if we show that (C, C>) does not create a combinational
loop. Suppose for contrary that there exists a combinational 1oop ¢ = (v, Uiy, . - -5 Vs, , Uiy » V). Then for
eachl,0 <1<k, /\sv’") depends on u;,. Similarly, ,\;"") depends on v;,,,, where we define vj, ., = vj,.
Thus the cycle c exists in G, which is conflict with the fact that G is acyclic. =

Since the cyclicity of a directed bipartite graph can be checked in polynomial time of the size of the
graph, we can efficiently check the implementability of M;. Note that if either M; or M; is of Moore type,
then G is always acyclic, and M is implementable.

34.2 Unimplementable Machines in the E-machine

In general, not all the machines contained in the E-machine are implementable. By definition of imple-
mentable machines, if a machine M contained in the E-machine is not implementable, then any implemen-
tation of M, will create a combinational loop for that particular M;. Thus, for given M and M,, if the
resulting E-machine contains no implementable machines, we see that it is impossible to realize a behavior
of M without combinational loops, as long as the behavior of M, is used.

Inthis section, we discuss what we can do with unimplementable machines of the E-machine. Specifically,
we show that for a machine M contained in the E-machine that is not implementable, if M; satisfies a certain
condition, thenit is possible to realize a behavior of M with no combinational loops, as long as we are allowed
to modify the behavior of M.

Let M; = (U,V, 51, 1,61, 1) be a machine contained in the E-machine. Suppose that M, is not
implementable. Suppose also that M satisfies the following property:

Property 3.1 For allpairs of states, (1, 52) € S1 X S2,andfor allx € BX\, there exists (u,v) € BIVIxBIVI
such that v = A\j(s1,u) andu = Ay(s3,x%v).

Consider a pair of implementations C and C; for M; and M,, respectively. Since M is not imple-
mentable, the implementation made of C; and C; creates a combinational loop. Now, we first assume that
we can scan the registers of Cy, i.e. it is possible to observe extemally the state in which M stays. Then we
modify C; so that the resulting implementation has no combinational loop and realizes a behavior of M.

Consider a function whose inputs are the global inputs X and the states of M and M, and the outputs are
U. We denote the function by f : §; x S x BIX| = BIUl, For given (s1,5;) € $) X Sz and x € BIX|, the
outputu = f(sy, 32, x) has aproperty that there exists v € B!V | suchthat v = Aj(s;, u)and u = Ay(sz,xv).
Since M) satisfies Property 3.1, f(s1, 82, x) is defined for every input. Let C3 be an implementaton of f.
Note that Cj is a combinational logic. We break the connection from C, to C) at U and let C; drive C), as
shown in Figure 12. Since all the feedbacks from C; to C3 and from C; to Cj are to see the states of M, and
M3, there is no combinational loop in the resulting implementation.

Let us regard the circuit made of C; and C3 as an implementation of a single deterministic finite state
machine M,. Note that the state space of M, is identical with that of M,. By the construction of the
function f, it is guaranteed that for all pairs of states, (s1,9;) € Sy x S, and for all x € BlX, the pair
(u,v) € Bl x BIV| realized by M; and M, has the property that v = A;(sy,u) and u = Ay(sp,xv).

21

S, 'J
— ¢ u \ 4
X —>r i M1 —r — 2
—
S2
e M2

Figure 12: Modification for Unimplementable Machines

Furthermore, the state transition of M, does not depend on the states of M. Namely, for a given state s, of
M, and input xv € BIXUV|, the next state to which /7, moves is uniquely defined and is given by &,(s2,xv).
Since M) is contained in the E-machine, exactly the same proof of Theorem 3.3 holds to claim that for an
arbitrary sequence o of BIX|, the output sequence realized by M; x ¥, can be realized by M, and therefore
the behavior of My x M, is contained in M. We state this fact as a theorem below.

Theorem 3.7 For a machine M, contained in the E-machine, suppose M, is not implementable and satisfies
Property 3.1 above. Then for an arbitrary pair of implementations Cy and C> for My and M5, if an additional
circuitry C3 given above is attached, the resulting circuitry has no combinational loop and its behavior is
contained in M.

4 Implementation and Experiments

The method of computing the transition relation T' of the E-machine has been implemented. The current
implementation employs a restriction that the global machine M is deterministic, and thus a state of the
E-machine corresponds to a subset of pairs of states of M, and M. Binary decision diagrams (BDD’s) (4]
are used to represent the transition relations of M; and M, where the set of states of each machine was
represented by binary variables using log-based encodings. All the set operations, such as intersection,
union, complement, set comparisons, as well as quantifications, are performed on BDD’s. We first compute
the relation 7(K) and then T. One straightforward way of computing TK) is to first compute the relation
given by the condition (2) and (3) of the definition of TK) shown in Section 3.3.1, and then restrict it to
the states that T can be led to by some sequences of BIUl. However, since the total number of states of the
finite state machine given by the conditions (2) and (3) is exponential in | S2||S|, the BDD representing the
transition relation of the machine may be too large. Instead, we perform a fixed point computation as stated
in Section 3.3.1, where at each step ¢, instead of the set S*), we use a set which contains S® N ~S(¢-1), is
contained in S®), and is represented by a minimal-sized BDD. Such a set is computed by a BDD operation
similar to the one known as generalized cofactor [5]. During the computation, we need to see if a given pair
of states (32, 3) € S> x § is amember of X, For this purpose, we use a characteristic function x(32, 3, 2,)

22

I M, M T

In [Out | State || In | Out | State || In | Out | State | Time || Iterations
[med [3] 5| 4 2| 3| 16| 2| 1| 3| o2 3
s2a9 |[11| 3| 18[10| 1| 72| 2| 1| 2| 19 2
edti 6] 9| 14| 2] 2] 2%4| 7| 4 5 34 5]
e69 | 5| 8| 8| 4| 6| 32 2| 1| 7 223 3
sa2 || 7| 7| 13 3] 2| 23| 5| 4| 35| 1366 12
edbpl | 6| 9| 14| 1| 4| 33| 5| 5| 10| 1493 10
edat2 || 7| 9| 14| 2| 4| 294 5| 4| 13| 4494 13
s3pl || 7| 7| 13] 2| 2| 312 5| 5| 37| 6695 11
s269 |11 3| 18| 10| 1| 72| 2| 1| 19| 41323 18

Table 1: Experimental Results

which is equal to 1 if and only if (3,3) € S x S is a member of X,. However, a BDD representing the
function itself, or a BDD obtained at an intermediate stage of the computations using the function, could be
fairly large in practice. Therefore, we represent x by multiple number of BDD’s so that the union of these
BDD’s forms the function x. We modified the formula given in (2) and (3) in the definition of T() so that
the union of these BDD’s are taken as late as possible by applying other commutative operations earlier.
These heuristics seem to be effective in keeping the size of BDD’s as small as possible.

Using the procedure implemented as stated above, we conducted some preliminary experiments. They
are preliminary in the sense that the examples are not obtained during a practical design process of digital
systems. We used mcnc91 benchmark examples. The objective of the experiment was to determine the size
of machines M, and M that can be handled by the current implementation, and the size of the resulting
E-machine T since its state-space size could be exponential in |.Sz||.S|. We first chose a pair of finite state
machines, one for M), the other for M3, and obtained M by taking the product of these, where a subset of the
input variables (the output variables, respectively) of M, was arbitrarily chosen to connect with the output
(the input, respectively) of M. Then M and M were used as inputs of the procedure. The procedure first
computes the set of states reachable from the reset state for each machine, and then computes the transition
relations of the machines as well as the function x described above. It computes the relation 7X) by a fixed
point computation, and finally computes the transition relation T'.

The results on these examples are shown in Table 1. Each row of the table corresponds to a single
experiment, where In, Out, and State designate the number of input variables, the number of output
variables, and the number of states respectively. Time is the CPU time used for each experiment in seconds
on a DECstation 5000/240. Iterations shows the number of iterations required in the fixed point computation
of T'¥). As shown in Table 1, we can handle moderate sized examples with the current implementation,
During the experiments, we realized that the size of the resulting E-machine T and the required CPU time
vary by changing the connections between M) and M,. For example, we used exactly the same machines
M, and M, for the experiments $2a9 and 2b9 with different connections. A large difference in CPU time
and number of states is observed between the two experiments. Thus, we can not make any general statement
on the size of T that we can handle in practice. Nevertheless, for these experimental results, we see that the

23

number of states of T is negligibly smaller than 2!52/1S1, This is not surprising in the sense that a state s, of T
corresponds to a subset of S X S with the property that M, and M are led to exactly the states of the subset
by the input sequences of BIX! and the sequences of B! realized by transitions from the reset state of T to
8. Thus if there exists a pair of states (32, s) not led to by any input sequence, then any of the subsets of
S2 x § which contains the pair will not appear in T', where there are 2(521151-1) gych subsets.

5 Conclusions

In this paper, we addressed the problem of computing and representing the complete set of permissible finite
state machines, where two finite state machines are interacting with each other as shown in Figure 2. We
showed that the complete set can be computed and represented by a single non-deterministic finite state
machine. The machine is called the E-machine and its transition relation is computed by a fixed point
computation. We also considered the problem of implementing interacting finite state machines without
introducing combinational loops, and provided a necessary and sufficient condition under which given
machines are implementable. The proposed procedure for computing the E-machine was implemented and
experimental results were presented.

In the future, we intend to address the problem of minimizing the E-machines, i.e. finding the best
permissible behavior of M, for given M, and M.

6 Acknowledgements

The authors thank Dr. Alex Saldanha who indicated an application for the supervisory control problem and
suugested the procedure presented in Section 3.3.3.

24

Appendix
A Proof of Theorem 3.1

In this Appendix, we prove Theorem 3.1.
Theorem 3.1 For an implementable machine M., there exists an equivalent prime machine.

Proof: We prove the theorem by presenting a procedure which takes as input an implementable ma-
chine M = (U,V, 8y, A1, 61, 1) and retumns an equivalent prime machine M. The procedure is shown in
Figure 13.

The procedure first duplicates M, where 5] is setto Sy, A’ and &' are identical with) and 4, respectively.
The transitions of M| are then modified during the procedure. The function E(s;), used in the procedure, is
defined for a state s; € S;. E(s;) designates the equivalent class that s initially belongs to in M;. When
M, is copied to M{ at the beginning of the procedure, we assume that E(s;) is associated with each state s
of Sj. Furthermore, N'(3;, X, u, 8;) is given by

(u) !
. 18| X1 (g, 3+ =2y"(82,xv), 8 = §(31,u),
N'(31,Z,u,81) = {(s2,8") € $2 x 2! | Ix € B!, (8;,8*) € Z': 32 B, & = Al), 1

where v = A|(31,u). When a new state 3; is created in M], we set §,(3,,1i) — & (s;, 1) foreach & € BlUI,
where 3 is the next state of 3; in M| under the input u. Note that it is always true that the next state s
is a state which originally existed in M| when M was duplicated. Therefore the state corresponding to s
also exists in M}, which we denote also by s1. Hence, by 61 (3, 1) «— &(s;,1i), we mean 6{(3), @) is set to
the state of M which corresponds to the state of M; given by 61(s,1i). In other words, the transitions of a
newly created state 8; are made identical with those defined at s; in M.

We first claim that the procedure maintains the invariance that a state s) of Mj is equivalent to every
state of E(s;) of M;. Namely, for all sequences o of BIUl, the output sequence deﬁned at s by o in M{ is
identical with that defined at a state of E(s;) in M;. The invariance is trivially true in the beginning since
the function FE is so defined. Suppose that the invariance holds immediately before a state 3; is processed.
Consider the case where 3; is processed for a minterm u € BlU|, Suppose a new state 3; is created. Since
the transitions defined at 8 in M are identical with those of s; defined in M), 8; of M| is equivalent to
sy of M. Since E(8;) is set to E(s;), the invariance holds for the state 3;. Also, if the state 6](3;,u) is
changed from s; to another already existing state §;, then E(3;) = E(s;) holds by construction. Since the
output values of 3; do not change during the process, 3; obtained after the process for u is still equivalent to
a state of E(3;) of M. Thus the invariance holds. Therefore, M| obtained immediately after processing 3;
is equivalent to M.

Secondly, the procedure terminates since every state is processed exactly once and a new state is created
only if there is no state 3; equivalent to s; with X'(8;) = N, while the number of states of M; and the number
of subsets of S, x 2!5! are both finite.

It follows that M{ obtained at the end of the procedure is equivalent to M;.

Finally, we claim that M] is a prime machine. The condition (2) shown in the definition of prime
machines holds for M{ since all the states of M| are processed and the set N used in the procedure is the
one defined by N(3;,X(3;),u, s1) in the definition, and we set X(s;) equal to N for each next state. For
the condition (3), there are two classes of states sy for which there is no ¢ > 0 such that X'(s;,t) # ¢; one

25

is those which are not reachable in M| and the other is those which are reachable in M| but not with the
existence of M. For a state s; in the first class, X(s;) remains undefined until it is explicitly set to {¢} at
the end of the procedure, and thus the condition holds. For a state s; of the second class, the condition holds
if the conditions (1) and (2) hold, since in this case, the procedure sets N to {¢}.

Hence, the proof is done if we prove the condition (1), i.e. for each s, € S, if Z(s),t) # ¢, then
Z(s1,t) = Z(s1). We claim it by induction on ¢ > 0. Consider the case where ¢ = 0. Only the state s; such
that X'(s;,0) # ¢ is the reset state 1. The procedure sets £(r;) = {(r2, {r})}, which is equal to Z(ry,0).

In the induction step, let s; be a state such that X(s;,t) # ¢, where ¢ > 0. Consider an arbitrary
u € Bl and 3, € S} such that s; = &{(3;,u) in M]. We claim that if (3;,t — 1) is not empty,
then N'(3;, X(31,¢t — 1),u,81) = X(s;). Note that the non-emptiness of (s;,t) implies that there
exists at least one such 3;. It follows that X(s1,t) = Z(s;) since X(s;,t) is given by the union of
N'(31,2(31,t — 1),u,81) overall u € BlUl and all 3, € S} with s; = §{(3;,u) and since if £(3;,¢ - 1) is
empty, then N'(3;, £(31,t — 1),u, 8;) is also empty. By the induction hypothesis, 2(3;,t — 1) = X(3;),
and thus N'(3;, 2(3;,t—1),u, ;) isequal to N defined in the procedure for 3; and u. Since at the end of the
procedure, the existence of the transition s; = 6(3;,u) impliesthat X'(s;) = N, N'(3;, 2(3,t—1),u,s;) =
X(s1). This completes the proof for the condition (1). Hence M is a prime machine. =

Note that the procedure shown in Figure 13 is presented for proving the theorem above, and there is no
need to use it for computing the E-machine.

26

function prime(M; = (U, V, 81, A1, 61,71))
[¥let Ml’ = (U, V, Si’ ,11 iarl) */
My — copy(M);
for(each s; € S)){
X(s1) < undefined;

}
B(ry) — {(ras (DB Ty € 44
mark ry;
start:
while(there exists 3; € S} that is marked){
for(each u € BIVl){
/*letv = X{(31,u) and sy = 61(31,u) */
N« Nl(gla 2(31)7"’ 31);
if(3% € S{ : X(8)) = N and E(8)) = E(8))){
6{(31’11) -8

}
else if(X(s1) = undefined){
X(s1) « N;
mark 81,
}
else{
/* create a new state 8; */
S1 — Sju{a}
for(each &l € BIUl{
61(81,11) — 6y(sy,1);
Xi(81,8) — M(s1,8);
}
6{(§1,ll) - 5];
Z(%)« N;
E(8)) — E(s1);
mark 8;;
}
}
remove the mark of 3;;

}
for(each s; € S such that ¥(s;) = undefined){
2(s1) « {#}; mark s;;

if(there is a marked state) goto start;
return M;;

27
Figure 13: Procedure to Generate a Prime Machine

References

[1] K. Bartlet, R. Brayton, G. Hachtel, R. Jacoby, C. Morrison, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang. Multi-level Logic Minimization using Implicit Don’t Cares. IEEE Transactions on
Computer-Aided Design, CAD-7, June 1988.

[2] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984.

[3] R.K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic Networks.
In International Conference on Very Large Scale Integration, Munich, August 1989.

[4] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers, Vol. C-35(No. 8):677-691, August 1986.

[5] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on Symbolic
Execution. In Proceedings of the Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, France, 1989.

[6] S. Devadas. Approaches to Multi-Level Sequential Logic Synthesis. In 26th ACM/IEEE Design
Automation Conference, 1989.

[7] M. Fujita. Methods for Automatic Design Error Correction in Sequential Circuits. In The European
Conference on Design Automation with The European Event in ASIC Design, February 1993,

(8] S.J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A Heuristic Approach for Logic Minimization. /BM
J. Res. Develop., pages 443458, September 1974.

[9] J. Kim and M. Newbomn. The Simplification of Sequential Machines with Input Restrictions. /EEE
Transactions on Computers, C-21:1440-1443, December 1972.

[10] E.J. McCluskey Jr. Minimization of Boolean Functions. Bell System Technical Journal, Vol. 35:1417-
1444, November 1956.

[11] G. Mealy. A Method for Synthesizing Sequential Circuits. Technical Report J. 34, Bell System Tech.,
1955.

[12] E. Moore. Gedanken-experiments on Sequential Machines. In C. Shannon and J. McCarthy, editors,
Automata Studies. Princeton University Press, 1956.

[13] S.Muroga, Y. Kambayashi, C. H. Lai, and J. N. Culliney. The Transduction Method - Design of Logic
Networks based on Permissible Functions. JEEE Transactions of Computers, 1989.

[14] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes. SIAM
Journal of Control and Optimization, Vol. 25(No. 1):206-230, January 1987.

[15] J. Rho, Hachtel G., and F. Somenzi. Don’t Care Sequences and the Optimization of Interacting Finite
State Machines. In International Workshop on Logic Synthesis, 1991.

28

[16] H.Savoj and R. Brayton. Observability Relations and Observability Don’t Cares. In IEEE International
Conference on Computer-Aided Design, November 1991,

[17] Y. Watanabe and R. K. Brayton. Incremental Synthesis for Engineering Changes. In IEEE International
Conference on Computer Design, October 1991.

29

	Copyright notice 1993
	ERL-93-61

