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Abstract

For systems of interacting finite state machines (FSM's), manual designs sometimes use information
derived from the other components to optimize one of them. An associated problem is to find the set of
permissible sequential functionalities thatcanbe implemented at a component whilepreserving the behavior
of the total system. Mostconventional approaches attempt to find such a set usingthe notionof don't care
sequences, but in general, the complete set of permissible finite statemachines aredifficult to compute. As
a result, only small subsets are derived and used in designinginteractingcomponents. However, there is no
knowledge ofhow much optimality is lost using these subsets.

This paper proposes a method for computing and representingthe complete set ofpermissible finitestate
machines. We show that the complete set can be computed and represented by a single non-deterministic
finite state machine, called the E-machine. The computation is different from any based on don't care
sequences. The transition relation ofthe E-machineis obtainedby a fixedpoint computation. The procedure
has been implemented and initial experimental results are given.

"This research is supportedin part by the National Science Foundation and the Defense Advanced ResearchProjects Agency
under contract number NSF/DARPA-MIP-871-9546. We also thank AT&T, DEC, IBM, Intel, and Motorola for their support.



1 Introduction

In combinationallogic synthesis, a common procedure focuses on a node of a logic network and derives a
set of don't cares[\]. Associatedwith each node is the current logic implementation (completelyspecified
Boolean function) which gives an initial representation. The don't care set provides the condition ofthe rest
of the network under which one can alter the functionality of the node while preserving the functionality
of the entire network. Such a functionality of the node is said to be permissible[\3]. The resulting node
functionis then treated as an incompletelyspecifiedBooleanfunction,to locallyoptimizethe node. Intensive
researchhas been made on how to derive the don't care conditions as well as how to optimize the resulting
node functions[l, 2, 8,10,13]. More recently, these ideas have been generalized to networks where each
node may have more than one output (and hence multi-valued variables are allowed), and the specification
on the functionalityof the entire network is given as a Boolean relation between the primary inputs and the
primary outputs of the network[3,16]. One wants to derive and represent all possible permissible functions
of a particular node of the network. It is known that in the combinational domain, the set of permissible
functions can be represented by a single Boolean relation for each node[3,16].

For sequential logic synthesis, the analogous concept is an FSM network, where associated with each
node is a completely specified deterministic finite state machine (FSM) and the network's specification is
given by a non-deterministic finite state machine. Each finite state machine is represented by its transition
relation (a Boolean relation), relating inputs, outputs, present states, and next states. This situation is shown
in Figure 1. The only distinction between this and the combinational logic situation is what each node
represents - in one case a finite state machine, in the other a pure Boolean function.

As an analogy to the combinational case, one wants to derive and represent all possiblepermissiblefinite
state machines for a particular node ofan FSM network, where a completelyspecifiedfinitestate machine is
saidto bepermissible if it can be implemented at thenodewhile the resulting sequential functionality of the
entire network stillmeets the specification. Thisset of permissible machines is thenused in some optimal
search procedure for a best choice.

The problem of finding permissible finite state machines at a given node of an FSM network can be
viewed as an interaction between two finite state machines, as shownin Figure 2, where Mi is the initial
machine associated withthenodebeingoptimized, Mi represents the functionality of the restof the network,
and M gives the specification. This problem has been studied extensively[6, 9, 15]. Mostwork is based
ondon't care sequences; sequences of the inputs of Mi which never occur and sequences ofoutputs of Mi,
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Figure 2: Interaction between Two Machines

given sequences of the network inputs x, such that the resultingnetwork outputs z meet the specification
M. However, approaches based on don't care sequences have several limitations. First, sincethe inputs
of Mi (outputs of M2) may depend on the outputs of Mi, the sequences that appear at the inputs of Mi
canbe controlled by changing the functionality of Mi, which then defines a differentset of input don't care
sequences. Thus the previous work either makes an assumption on the topology of the network of Mi and
M2, such as cascaded machines where Mi is independent of Mi, or restrict themselves to computeonly
a subset of don't care sequences[6, 9, IS]. Furthermore, due to complexity, often the sequences are only
partially considered, up to a certain, typically small, length. As a result, even though one finds the best
machine among the set of permissible machines computed, there is no guarantee that the machine is best
among all permissible machines; the search for an optimum is severely limited.

Inthis report, we ask ifit is possibleto compute andrepresent easily the complete setofpermissible finite
statemachines at Mi. The answer is yes and it can be represented by a single non-deterministic finite state
machine, which we call the E-machine. The result is obtainedby a simple fixed point computation which
provides the transition relationofthe E-machine. The procedurehas been implemented and the E-machines
for a small set of artificial examples ofmoderate size have been derived.

There are acouple ofproblemsor applications thatcanbe viewed asavariation ofthe focusofthis report.
One such problem is to find the set of permissiblebehaviorsofthe outside component M2 when the internal
component Mi andthe global behavior M are given. This problem canbe solvedin exactly the samewayas
the original problem,since the interaction shownin Figure 2 canbe redrawn as shownin Figure 3-(a),which
yields to the same picture of Figure 2 by modifying Mi so that the globalinput X andthe global output Z
passthroughMi. This is illustrated in Figure 3-(b). Such a problem arises in a rectification problem[7,17],
where the designer wants to change the functionality of the design by attaching a small logic around the
original circuitry.

Another related problemis a supervisorycontrolproblem fordiscreteevent processes[14]. The problem
is that for a given generatorof discrete events and a specificationon the generated events, we observe the
events provided by the generator and control them by feeding control events to the generator so that the
resultingoutput events meet the specification. If the generator and the supervisor are synchronizing, this



problem canbe deemed asavariation of ourproblem, asshownin Hgure 4, where Mi is the generator, M2
is the supervisor, and V and Z areidenticalwhile Mi may be a non-deterministic machine.

Finally, the core problem that we are dealing with is the division of finite state machines; given M
and Mi, find the quotient Q of the two (See Figure 5). This is the central problem of factorization and
decomposition of finite state machines.

r

!

M2

Ml

I__
M

M2
• D

Ml

M

(•) (b)

Figure 3: Application for Rectification Problem
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Figure 5: Application for FSM Division



2 Terminology

In this section, we definebasic terminologyused throughoutthe report.
Definition: Finite State Machine

A finite statemachineis a 5-tuple (J, 0, S,T, r), where I is thesetof (binary) input variables,
0 is the setof (binary) output variables, S is thesetof states, T : S x B^ x tfl°l x S -+ B
is a characteristic function with# = {0,1},andr is anelement of S. Themachine stays in an
exactly one state, say sp, ofS atany given time. The machine takes asinput aminterm i € J?'7',
by which a transition is caused. A transition at a state sp consists of a pairof stateandanoutput
minterm, (snio) e S x 2?'°l, which indicates that the machine moves from the state sp to the
state sn and outputs o. It is assumed that a transition takes no time. The function T defines the
validtransitions of themachine, i.e. T(sp,i, o, sn) = 1if and onlyif the transition (sn,o) can
be caused at the state sp by the input i. There exists at least one (couldbe more than one) valid
transition foreachstate sp andan inputi. Thestater, defined in the5-tuple, designates thestate
at which the machine stays initially, and is called the reset state.

Thefunction T : S x B^ x £l°l x S -> B is called thetransition relation of the finite state machine1.
For a given state s0 e S and a sequence oy = (io,..., it—i) of the input minterms, where ij e £'7' for
each j = 0,.. .,* - 1 and t > 0,2 there exists a sequence ofoutput minterms <r0 = (oq, ...,ot-\) and a
sequence of states aa = (s0,6i,...,5t)with theproperty that T(s,, ij, Oj, sj+i) = lforallj = 0,...,*-l.
Sucha sequence of outputminterms (a sequence of states, respectively) is called an outputsequence (state
transition) defined at s0by <?;. In particular, if s0 is set to the reset stater, we saythat the sequence a,- leads
the machine to the state st. hi this case, we also say that the pair (a,-, cr0) is realized by the machine. The
integer t of the sequence a is called the length of a and is denoted by \a\.

Definition: Deterministic Finite State Machine

Afinite statemachine (/, 0,5, T, r)is saidtobedeterministic if there exists apairof functions,
A: S x BW -h. {0,1,*}'°I and 6 : S x B^ _ S U{*}, such that for all (sp,i,o,3n) €
S x BW x £l°l x 5, r(«p, i,o,5n) = 1ifand only if

(1) o C A(sp, i) and
(2) 6(sPi i) = *or 6(sp, i) = sn,

where for 6 = \(sp, i), o C 6 designates that foreach output variable j, dj / * implies that
Oj = dj.

Adeterministic finite state machine issaid tobecompletely specified if"for all (spi i) € 5 x i?'7',
A(sp, i) € 2?l°' and S(sp, i) G5. Otherwise, the machine is said to be incompletely specified.

By definition, the valid transitions of a deterministic finite statemachine can be represented usingthe
functions Aand6given above. Therefore, wemayrepresent themachine bya 6-tuple (/, 0,5, A, 6,r). Note

1We make no distinction between a set andits characteristic function.
2Such asequence a% iscalled an input sequence. If t = 0,the sequenceisnull



that at each state, the output sequenceand the state transitiondefined at the state by a given input sequence
are unique for a completely specified deterministic machine.

A deterministic finite state machine (7,0,S,A,tf,r) is called a Moore machine[\2] if for each state
sp e 5, there exists aunique o € {0,1, *}'°' such that A(sp, i) = o for all i € 2?'7L Otherwise, itiscalled a
Mealy machine[\1]. Note that the function Aof a Mooremachine dependsonly on the states S and not on
the inputs J?!7'.

A finite state machine that is not deterministic is said to be non-deterministic.

Definition: Reachable States

Givena completely specified deterministic finite statemachine (J, 0,5, A, «5, r), a state s € Sis
said to be reachable if there exists a sequence ofthe input minterms which leads the machine to
s.

A state that is not reachable is said to be unreachable.

Definition: Equivalent States

Givena completely specified deterministic finite statemachine(J, 0,5, A, 6,r), a pair of states
(s,s) £ S x S is said to be equivalent if for all sequences of the inputminterms, say ot the
output sequence defined by a at s is identical with that defined at 3.

A set of statesof S is said to be equivalent if everypair of states in the set is equivalent in M.

The set of states 5 can be uniquely divided into a set of disjoint classes, where each class consists of
maximal number of equivalent states. Each such class is called an equivalentclass.

Definition: Equivalent Machines

Two completely specified deterministic machines M = (J, 0,5, A, 6, r)and St = (J, 0,5, \, S, f)
are equivalent if for all sequencesof the inputminterms, say <r, the output sequence define at r
by o in M is identical with that defined at f by o in M.

In this report, we often discuss the behaviors of finitestate machines. Intuitively,a behavior between the
inputvariables I and the outputvariables 0 is the set of pairsof inputandoutputsequences realized by a
completely specifieddeterministic finite state machine with the input I and the output 0. In this sense, we
say that the machine representsthe behavior. Although this intuitive definition will suffice to understand the
report, we provide a formal definition of a behavior using notion of finite automata.

Definition: Finite Automaton

A (deterministic) finite automaton is a 5-tuple (X, 5,6, F, r), where X is the set of (binary)
input variables, S is the setofstates, 6 : S x l?'*' -* S isthe transition function, F C S is the
set of final states, and r € S is the reset state.

A finite automaton (X, 5, £,F, r) hasaone-to-one correspondence withacompletely specified determin
istic finite state machinewith a singleoutput o, (X, o, 5, A, <5, r), whichhas the identicaltransitionfunction
6,where A(s, x) = 1 if and only if 6(s,x) e Fin theoriginal automaton. Hence, terminology, defined for
finite state machines, will be used for finite automata as well. A sequence on X which leads the automaton
to a state in F is said to be acceptedby the automaton. We now define a behavior as follows.



Definition: Behavior

Givena set of inputvariables / anda set of output variables 0, a behavior between / and 0 is
a set of pairs of input and output sequences, B = {(at,a0) | \o{\ = \o0\}, which satisfies the
following conditions:

1. For an arbitrary sequence <rt onI, there exists aunique pair inBwhose input sequence is
equal to <?{.

2. Foranari^tiaiypairp = to,a0)€5,where^
t > 0,let&i - (io,.. .,i*_i)and &0 = (©o,...,o*_i). Then (fr;,fr0) € B.

3. For an arbitrary pairp = (aiyo0) € £, where a{ = (io,...,it)and<70 = (oo,...,ot)with
t > 0, leto{p) be a sequence on J U0 defined as <r(p) = (iooo,...,ito*). Then there
exists a finite automaton with the input J U0 which accepts all and only the sequences of
thesetgiven by {<r(p) \p € B}.

For each pair (cr,-, a0) ofa behavior, we say that (a,, o0) isrealized bythe behavior.
For a non-deterministic finite state machine, there mightexistmore thanone valid transition for some

state and aninput. Inthis sense, wecan regard that anon-deterministicmachine represents asetofbehaviors
represented by a set of completely specified deterministic machines. We call each of such behaviors a
contained behavior.

Definition: Contained Behavior

Given a finite state machine T = (1,0, S,T,r% a behavior between / and 0 is said to be
contained inT if every pairof input and output sequences ofthebehavior is realized byT.

Bydefinition, if T is a completely specified deterministic machine, there is a unique behavior contained
in it.

3 The Maximum Set of Permissible Behaviors

3.1 The Problem and Assumptions

Considerthe case of two interacting finite state machines shownin Figure2. Mi takes input u and outputs
v, whileM2 takes inputx and v andoutputs u andz. M is a finite statemachine withinputx andoutputz,
which represents the behavior of the entire system composed of Mi and M2.

Specifically, let M = {X, Z, 5, T, r) and M2 = (X UV,U UZ, 52,A2, h, r2) be given. We assume that
M may be a non-deterministicmachine while M2 is deterministic. By allowingnon-determinismon M, we
can specify a set of behaviors, rather than a single behavior, for the entire system. In the sequel, we often
discuss whichoutputscanbe obtained from M at a particular stateand a particular input For this purpose,
letusintroduce two functions A: 2'5' x #1*1 -• 2'B|Z|I and A :2'5' x B'*' -> 2'5' defined as follows:

A(s*,x) = {*€£!*! | 3(M)€«*xS:T(*,x,*f*)=l}
4(s*,x) = {5eS|3(3,z)6s*x£lzl:T(3,x,z,5)=l},

where we denote by s* asubset ofstates ofM and by 2'5' the power set ofS.



Note that the output of the function A2 is a pair ofminterms (u, z) € B^ x B'z'. In the sequel, we
may represent A2 using two functions A2tt): 52 xB&uV\ -• B^l and A2z): 52 xBl*uVl -• BW such that
A^xv) = (^fejxv),^^^))-

We are interested in finding a set of behaviors represented by finite state machines permissible at Mi.
Here, we assume that a circuit implementationof Mi and M2 does not contain a combinational loop, i.e.
a cycle without a register. Note that in general, if both Mi and M2 are Mealy machines, since the outputs
depend on the inputs, there might exist a variable of V which depends on a variable of U in Mi, while
the variable of U depends on the variable of V in M2. We exclude this situation and consider only the
machinesthat can be implemented at Mi without introducingcombinationalloops. Specifically, we define
implementable machines as follows.

Definition: Implementable Finite State Machine

Given M2 = (X U V,U U Z, 52, A2, Si, r2), a completely specified deterministic finite state
machine (U,V,S\,\\,6i,ri) is said to be implementable at Mi if thereexistsa pair of circuit
implementations of Mi and M2 respectively such that no combinational loop is created by
connecting them together at U and V.

We will discuss implementability in more detail in Section 3.4 and provide a necessary and sufficient
condition under which Mi is implementable. Wesay a behaviorbetween U and V is implementable at Mi
if there exists an implementable machine at Mi. Note that for an implementable machine Mi, and for an
arbitrary sequence of2?'x', say o = (xo,..., x*), ifwe denote by (&\, s2) € $1 x 52 the pairofstates ofMi
and M2 led by (xo,.. .,xt_i), then xt defines the pair (u, v) e B^ x B'v' such that u = A^tt^(s2,xtv)
and v = Ai(*i,ii).

Foranimplementablemachine Mi = (U,V,S\, Ai, Si,ri), wedefine theproductmachine of Mi andM2,
denoted byMi x M2, asa completely specified deterministic finite state machine (X, Z,Sp, Ap, Sp, rp) such
that Sp = Si x Si, rp = (rt, r2), and for astate (si,$2) € Sp and aminterm x G2?,x', Ap((si, s2), x) = z
ifand only ifthere exist u 6 B^ and v € B'v' such that Ai(*i, u) = v and A2(s2,xv) = (u,z). Similarly,
*p((*i>*2)»x) = (8uh) if and only if there exist u e B^ and v € B^ such that Ai(*i,u) = v,
A2tt)(s2,xv) = u,and (^i(si,u)A(s2,xv)) = (Si,32).

We now define a permissible machine as follows.
Definition: Permissible Finite State Machine

Given M = (X,Z, S,T, r) and M2 = (X UV, UUZ,52, A2, ^, r2), a completely specified
deterministic finite state machine Mi = (U,V, 5i, Ai, #i, ri) is saidto be permissible if Mi is
implementable and the behavior of Mt x M2 is contained in M.

The behavior represented byapermissible machine iscalled apermissible behavior. Our objective is to
find the complete set ofpermissible behaviors atMi. Note that we are not interested infinding the complete
setofpermissiblemachines atMi;we need enough machines which represent the complete setofpermissible
behaviors. We show that the complete set ofpermissible behaviors can becomputed and represented by a
single finite state machine, which we call the E-machine.



3.2 Prime Machines

Our objective is to show how the complete set of permissible behaviorscan be computed and represented
by a single finite state machine called the E-machine. The key idea is to represent the behaviorof a machine
implementable at Mi using a special deterministic machine called a prime machine. In this section, we
present the definition ofprime machines.

Forgiven M = (X, Z,S, T,r) and M2 = (X UV, U UZ,S2, A2, Si,r2), consider an implementable
machine Mi = (U,V,Si, \i,Si, ri).

Definition: Z{sut)

For a state si € ^i and an integer t > 0, let E(si,t) be a subset of 52 x 2'5' such that
(si,s*) e Si x2|s| is in 27(si, t)ifand only ifthere exists asequence ofB^ with the length t
which leads Mi x M2 to (si, si) and M to all and only thestates of s*. As a special case, we
define E(si, -1) = <^ for all si € Si.

£(s\,t) consists of all possible states of M2 and M that can be associated with si after t transitions
starting from the reset states.

Definition: N(3i,£,u,si)

Given si € Si, Si € Su u € B^UK and E C 52 x 2'5I, let N(si,E,vl,s{) bea subset of
Si x 2|5' given by

N(3i,Z,u,si) ={(s2,s*) eS2x2™ |3x 6BW,(h,*) ** : °=̂ h^ 11^fr"!' h
52 — ^2\S2,'XV), S — Z\[S ,X)

where v = Ai(Si,u).

Intuitively, N(3i,E,u,s\) defines all possible states of M2 and M such that Mi x M2 (respectively
M) can move from (Si, 32) (respectively from s*) in a singletransition for some (3i,s*) € 27, where the
transition causes Mi to move to s\ with the input minterm set to u.

Definition: Prime Machine

An implementable machine Mi = (U,V,Si, Xi,Si,ri) is said to be prime if for each state
s\ e Si, there exists a subset £(si) C 52 x 2'5' with the following property:

(1) Vt>0:£(8i,t)?<l>=>E(si,t) = E(si)
(2) Vu € BW,3i eSnsi= *i(Si,u) =* JV(5i,27(3i),u,si) = £(*,)
(3) fit > 0 : E(3Ut) ±<f>* E(si) = {<£}

In other words, each state of a prime machine, whenever it is reached, is identified with exactly one
subset of Si x 2'5'. Note thatif M is a completely specified deterministic machine, then £(s\) is a setof
pairsof statesof M2 and M, i.e. a subsetof 52 x 5.

Theorem 3.1 For an implementable machine Mi, there exists an equivalentprimemachine.



Wepresenttheproofof this theoremin theAppendix. The theorem claimsthat the setof primemachines
provides the complete set of implementablebehaviors. Hence only prime machines need to be considered
in order to be able to represent all permissible behaviors. Let us present another property that holds for
permissible prime machines. We use this property in constructing the E-machine.

Theorem 3.2 Suppose aprime machine Mi ispermissible. Considera states\ e Si suchthat E(si,t) £ <j>
for some t > 0. Thenthefollowing propertyholds.

V(52,5*) € 27(«0,Vk € B™ :A^xv) € A(s*,x),
where v GB\v\ isthe outputminterm ofMi uniquely definedfor the inputxat the state («i, ^) ofMi x M2.

Proof: Suppose for contrary that Aif'(s^xv) $. yl(s*,x). Since E(si,t) ^ <f> for some t > 0 and since
($2, s*) e £{s\), there exists a sequence a on X which leads Mi x M2 to (si, s-i) and M to the states of
s*. Thenat the state (s\, s2), theoutput of Mi x M2 with the inputx is different from anyoutput thatcan
be obtained by M at a state of s* with the same input x. It follows that the behavior of Mi x M2 is not
contained in M, whichis conflictwith the fact that Mi is permissible. This completes the proof. •

Example 1 Consider Mi and M shown in Figure 6, where each ofX, V, U, and Z consists of a single
variable, whilea nodeand an edge represents a stateand a transition, respectively. The label associated
with an edgeshows theminterms oftheinputs andthe outputsfor thetransition corresponding to theedge.
Thelabel associatedwitha node is the nameofthecorresponding state. TheresetstatesofMi and M are
the state 1 and the state A, respectively.

Three permissible machinesfor these Mi andM are shown in Figure 7-(a), (b), and(c), respectively.
For each machine, the one shown on the right-hand side is an equivalent prime machine, where the label
associated with eachstates\ is E(si).

33 The E-machine and its Properties

3.3.1 The E-machine

Consider the transition relation of a non-deterministic machine given by the following computation. Let
£(0) = {(r2, {r})} and compute TC+1) and «S<1+1) for agiven S& CS2x 2'5'. Let Ep and En be subsets
of S2 x2|5|» respectively, and uand vbe minterms of B^ and B'VL T^l\Ep, u, v,En) = 1ifand only
if the following three conditions are satisfied:

(1) 27p€5(')
V(x, 32,5*) eB^xSiX 2'5I : (S2, &) € Ep and u= A2u)(^, xv)

<2> ^ (a) >iM)(h,*y)eA(*,x)
(b) (h(h,xv),A(*,*))eEn

V(«2,0€&x2l5l : (*2,s*)eEn:
=> 3(x,32,s*)G£l*lx52x2l5l

(a)te,3*)€i7p
(b)u = A2tt)(32,xv)
(c)52 = ^2(32,xv)
(d)sm = A(s*,x).

10

(3)



xv/uz

-0/00

Figure 6: Example of M2 and M

M

(b)

(0

Hgure 7: Permissible Machines Mi (u/v)

11



Hgure 8: The E-machine T

In each computation, S^ is a set of subsets of S2 x 2'5L Note that the empty set {<£} may be in S^\
Given T<'+1), we compute «S<'+1) as follows. S^t+l\Ep) = 1if and only if S^(EP) = 1orthere exist
£p € S(*\ u € £M, and v e 5|v| such that T^t+l\Spi u,v, Ep) = 1. Intuitively, what we are computing
is a transition relation that on each step is being extended to a new set of states, where each state corresponds
toasubsetof52 x 2'5'. These states are added tothe transition relation. This iscontinued until nothing new
is seen.

Let Kbe the smallest positive integer such that S^K\EP) = S^K~X\EP). Such K always exists since
the numberofthe elements ofthe set 5Wisnot decreasing during the computation and the numberofsubsets
of S2 x 2'5' isfinite. Let S = 5^ U{<£}.

Let T:S x B^ x B^ x S -> Bbe arelation such that T(EP, u,v, En) = 1ifand only if

(1) Ep = En = {</>} or
(2) T(K\Ep,u,v,En) = l.

We finally define the E-machine as a 5-tuple T = (U,V, S, T,Er),where ET = {(r2,{r})}. We recall
that each state ofthe E-machine represents a subset ofS2 x 2'5'. Note that if M is acompletely specified
deterministic machine, a state of the E-machine is a set ofpairs of states of M2 and M.

Example2 ForM2 and M inExample 1, the transition relation ofthe E-machine is shown inFigure 8.

Notethat in casethemachine M is deterministic, eachstateof theE-machine corresponds to a subsetof
S2 x S, rather than 52 x 2|5L

332 Properties of the E-machine

Theobjective inthissection isto show thattheE-machine captures thecomplete setofpermissible behaviors.
Morespecifically, a behaviorimplementable at Mi is permissibleif andonlyif thebehavioriscontainedinthe
E-machine. We first claim that a behavior implementable at Mi contained intheE-machine ispermissible.

Theorem 33 Abehavior implementable at Mi contained inthe E-machine ispermissible.

12



Proof: Consider an arbitrary sequence a = (xo,..., x*) of£'*!. Let at = (xo,..., x<) be the subsequence
of a with thelength t + 1, where 0 < t < k and we define <t_i as thenull sequence. Since thebehavior
is implementable, at uniquely defines the pairofsequences of B^ and 5|v|,say (aft, ofi) where o$ =
(uo,..., ut) and tr"' = (v0,..., vt), such that (<t£\ o$) is realized by the behavior and for each i,
0<•< t, u, = A2u)(4°,xtvt) and s2i+l) =fc(4°. w). where 4°* = r2. Let us define (ai"1^"1*)
as the pair of null sequences. Note that M2 is led to 4*+1) by applying <?t. Also, for t >0, let s* CSand
s* C 5 bethesetof states to which M is ledby <rt and fft_i, respectively, where incase t = 0, we define
* = w.

We showby induction on t > 0 that by applying thesubsequence ou

1. Aj*)(4°,x«vt)€il(i'*,xf)laiid

2. There exists aunique state 27('+1) gS to which the E-machine is led by (cr£\ <rP).

3. Forthe E^t+1) defined above, (4*+1)>**) € i7<t+1).
Rrst, if we denote E^ = 27P, then E^ is the unique state ofthe E-machine to which the E-machine

can be led by (<rlTl\ 4_1)), where we see (r2, {r}) €E®\ Also, by the induction hypothesis, there exists
aunique E& to which the E-machine can be led by (<ri'"1),ai'""1)). Furthermore, (4*)»5"*) € £<*). It
follows that EW^{<f>}.

Since (4°,*) 6 2?W and u, =A^'W,), r<*>(27W,u,v,{#) =0. However, since the
behavior is contained in T and since E& is the unique state to which the E-machine can be led by
(<?u~l\<4<_1)), there must exist astate i7<<+1) € S such that T(E^\u,v,I***1)) = 1. It follows that
r<*>(rW,u,v>2#+1>) = 1. Therefore, by construction, 4*)(4*),X|Vt) € il(*,xt). Since 4*+1) =
tf2(4 ,x«vt) and 3* = 4(i\xt), we also see by construction (4*+1\«*) € E^t+l\ It remains to show
that such 27J*+1) is unique. Since we know the uniqueness of E®t the proof is done ifwe show that for
any E 6 S such that T(E^\u,v,E) = 1, £ = X('+1). Consider an arbitrary such E. By the argument
above, E £ {<£}, and thus T^K\E^,u,v,E)= 1. Then by the condition (3) ofthe construction ofiW
shown inSection 3.3.1, for an arbitrary pair fa, s*) e X", there exist x 6 i?'*' and (32, s*) e E® such that
u = A2u)(S2,xv), 32 = tf2(32,xv), and 5* = 4(i\x). Then since T^K\E^,u,v,E^t+^) = 1, by the
condition (2) ofthe constructionofT^K\(s2tam) must be amemberofE^t+1\ ThusX C E^t+lK The same
argument holds to claim that J7<t+1) C E, and thus we see that E(t+l) with the property above is unique.
This completes the proof for the induction step.

Hence, the sequenceof the global output Z realized by the behaviortogetherwith M2by o is realized
by M. Since a is arbitrary,the behavior is permissible. •

We now claim that all the permissible behaviors can be captured by the E-machine. Let us first introduce
a machine contained in the E-machine defined as follows.

Definition: Contained Machine

Givena finite statemachineT —(U, V,S, T, XV), acompletely specified deterministic finite state
machineMi = (U,V,S\,\\,6i,r\)is contained in T if thereexistsa mapping<p: S\ -> S such
that<p(ri) = Er and for all sx € Sx and u € BW,T(<p(si), u,Ai($i,u), (p(Si(>i,u))) = 1.

We first claim that the behavior represented by a contained machine is contained in the E-machine.
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Lemma 3.1 Consider a machine Mi = (U,V,Si,\i,Si,ri) contained in the E-machine. The behavior of
Mi is contained in the E-machine.

Proof: Weshowby inductionon t > 0 that for an arbitrary inputsequence on U withthe length t, the output
sequenceof Mi given by the input sequencecan be realized by the E-machine. The claim is trivially true
when t = 0. Consider the case where t > 0. Let <ru be an arbitrary sequence on U with the length t - 1
and let u e B^ beanarbitrary minterm. Let 3i bethe state of Mi to which au leads Mi. Letav bethe
sequence of V givenby Mi for the inputsequence ou. By the induction hypothesis, (<ru, av) is realized by
the E-machine. Since Mi is contained in the E-machine, T(<p(3i), u, Ai(3i, u),(p(Si(3i, u))) = 1. Thus
the pair of sequences (cuu, <7vA(3i, u)) is realized by the E-machine, which completes the proof for the
induction step. Hence the behavior of Mi is contained in the E-machine. •

By this lemma, all we need to show is that for an arbitrary machine Mi that is permissible, there exists
an equivalent machine contained in the E-machine.

Theorem 3.4 ForapermissiblemachineMi, there existsan equivalentmachinecontainedin theE-machine.

Proof: ByTheorem 3.1, there exists aprime machine M{ = (U,V, Si, Ai, Si,ri) which isequivalent to Mi.
Let <p : Si -*• S be a mapping suchthat foreachstatesi 6 5i, (p(si) = E(si). Notethat y>(ri) = Er. We
claim that M[ is contained in T under<p.

Note first that since M[ is prime, for a state 3} for which there is no t > 0 such that E(3i,t) ^ <f>,
E(3i) = {$}. Then for an arbitrary u € B^u\ and for the next state si = S\{3\, u), N(3i, E(3i), u,si) =
E(si) = {<£}. Thus bytheconstruction of theE-machine, T(<p(5i), u, Ai(5i, u), <p(si)) = 1forsuch 3i.

We now show by induction on t > 0 that for all states 3i 6 S\ such that E(3i,t) ^ <f> and for all
u € B&K T<<+1>(<p(3i),u,v,¥>(si)) = 1, where v = Ai(3i,u) and *i = *i(3i,u). We also prove that
if E(sut + 1) # <f>, then <p(si) € «S('+1\ where <S<<+1> is defined in Section 3.3.1. We show that each
condition forconstructing theE-machine, given in Section 3.3.1, is satisfied, where Ep = <p(3i) = E(3i).

(l)Rrst,smceMiMs prime, foritsreset state ri,<p(n^ € S®\
Inthe induction step fora general t, theinduction hypothesis implies that <p(h) € S^\

Consider an arbitrary x e B^ and (32,6*) € X"(3i) such that u = A^fexv). If there is
no such x and (32,3*), then the conditions (2) and (3) are trivially true with En = {<f>}. Therefore,
T(t+1\(p(3i), u, v,{<£}) = 1. Since in this case N(Si, E(3i), u, si) is empty, the primeness of M[ implies
that X"(5i) = {<£}. Therefore T^t+l\(p(3i), u,v, (p(si)) = 1, and the proof for this case isdone.

Suppose suchx and (32, s*)exist Notethat in thiscase, E(si, t + 1) ^ <f>. We first consider the second
condition.

(2) Since M[ is permissible,Theorem 3.2 implies that A^fe* scv) €A(s*, x). Also, since M[ is prime,
E(si) is equal to N{3i, E(3i),u, si), which is denoted by N hereafter. The definition of N implies that
(S2(32,xv),A(s*,x)) € N. Therefore, (^(S^xv^^x)) € E(si). Since E(si) = (p(si), the second
conditionholdsfor En = (p(s\).

(3) By the equality between E(si) and N given above, for all (&i, s*) € E(sx), (s2, s*) e N. It follows
that the condition(3) is satisfied for En = <p(si).

Therefore, r('+1)(y>(3i),u,v,y>(si)) = 1. It follows that X'(si) € S^t+l\ and thus the claim above
holds. Note that bythis induction, we see that for each «i € Si, <p(si) € S. Hence, bythe construction of
T,r(Y>(3i),u,v,<p(3i)) = 1forall 3i € Si and forall u € B^. m

We have now reached the key statement of the E-machine.
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Corollary 3.1 Abehavior implementableatMi ispermissible ifandonly ifitiscontained in the E-machine.

Thus, thecomplete setof permissible behaviors can becaptured by the E-machine. By Theorem 3.4,
however, wesee thattheE-machine contains thepermissible behaviors using contained machines. In this
sense, wecansaythattheE-machine tellsnotonlywhich behavior ispermissible, butalsohowthebehavior
can berealized by a finite state machine. Inother words, the following claim holds for permissiblemachines.

Corollary 32 Afinite state machine implementable at Mi ispermissible if and only if there exists an
equivalent machine contained in the E-machine.

Proof: IfMi isapermissible machine, then by Theorem 3.4, we see that there exists an equivalent machine
contained inthe E-machine. Suppose that for an implementable machine Mi, there exists an equivalent
machine contained in the E-machine. Lemma 3.1 implies that the behavior of Mi is contained in the
E-machine. Thus,by Theorem 3.3, Mi is permissible. •

333 The Structure of the E-machine and a Non-Deterministic Construction

As seen sofar, the E-machine is ingeneral anon-deterministic finite state machine, i.e. for agiven state and
input, the next state and the corresponding outputmay not beunique. This nature allows ustorepresent aset
ofbehaviors byasinglemachine. However, we note that the E-machine isaspecial type ofnon-deterministic
machine. Namely, fora given state Ep 6 S and pair of input and output minterms (u, v) € B^ x 2?IvI,
if there exists a next state En such that T(EP, u, v, En) = 1, then such En is unique. In other words, if
we introduce a set of new symbols and replace each pairof input and output minterms of the E-machine
by one of the symbols, then the resulting machine is a deterministic finite automaton3. This is true since in
the construction of theE-machine, we uniquely define the next state, if exists, fora given pairof input and
output minterms.

Onemay askwhether it ispossible toconstruct theE-machine, sothat theautomatoncorresponding tothe
machine isnon-deterministic and accepts thesame language with the original. Inotherwords, ifweperform
the subset constructionto determinize the non-deterministically constructed E-machine, where we assume
each pairof inputandoutput minterms is a single symbol, thencanweobtainexactly thesameE-machine as
theonedefined in Section 3.3.1? It is interesting to construct and represent theE-machine thisway, since it
isknown thatthesubset construction, or determinization, introduces anexponentially large number of states
ingeneral. Thus we expect thatthenon-deterministically constructed E-machine has a smaller state space;
the completeset of permissiblebehaviorsis then represented in the morecompactway.

Inthis section, weconsider the casewhere theglobal machine M is a completely specified deterministic
machine, and present a procedure, suggested by Alex Saldanha, which generates a machine such that by
performing an operationsimilar to the subsetconstruction we obtainthe E-machine as originally defined.
We recall that in case M is a deterministic machine, a state of the E-machine defined in Section 3.3.1
corresponds to a set of pairs ofstates of M2 and M. A state of the machine which we will construct (called
the NDE-machine)corresponds to a pair ofstates of M2 and M, rather than a set ofpairs.

The procedure is a fixed point iteration. We denote the transition relation and the set of states at

the t-th step by T$ and <SJy respectively, where the subscript N implies that the construction leads to

We call a finite state machine with this property apseudo non-deterministic finite state machine.
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Figure 9: The Non-Deterministic E-machine

a non-deterministic E-machine in the sense above. Initially, SN' = {{t2,t),<j>,k), where r2 and r are
the reset states of M2 and M while <f> and « are newly introduced states. The initial transition relation

TN): siN x 5|t/| xBm xS{$ -+B is defined as T§\<;p, u, v,?„) =1ifand only ifeither ?p =?n =<£ or
Sp = sn = «. i.e. we start with only self-loops on <f> and k. In general for the step (t +1), Tfi+ \<;p, u,v, cn)
is defined when ?p € «$$' - {0,«}, i.e. the present state cp is apair ofstates ofM2 and M, say ?p = {&i, 3),
which has been introduced as astate in the transition relation T$. Then Tjy (?P, u,v, ?n) =1ifand only
if one of the following three conditions holds:

(a) Vx e B\xI: u # Aitt)(32, xv)and <„ =&or
(b) 3x €£l*l: u=Ai^fexv) and A^S^xv) ^ A(5,x) and c„ =«, or
(c) Vx € #1*1: u=\r(32,xv) =» A2z)(^,xv) =A(3,x) and

3x e £'*': u=A2u)(32,xv) and <„ =(fc($2,xv),*(*,x)),

where X: S x B^ -> l?'2"' and S: S x B\x\ -» 5 are the output and the next state functions of M, which
are defined since M is deterministic. Condition (a) saysthatif there is no x which causes M2 to output u
at the state 32 for the input v, then we cause a transition to <f>. Condition (b) means that if there exists an
x which causes M2 to output u at 32 for v but the z output is not allowed, then we cause a transition to k.
Finally (c), if all possible z outputs are allowed and ifthere is at least one x that makes M2 and M transit to
?», then this transition is put in T$+ '.

Let7V bethe transition relation of the fixed point of thecomputation. Namely, for positive integer K,
if S{P = S$~l\ then TN = TJP. Similarly, let SN =S$\ Call the resulting finite state machine
(U, V, Sn,Tn,cr) the non-deterministic E-machine, or NDE-machine for short, where ?r = (r2, r). The
transition relation of the NDE-machine for M2 and M used in Example 1 is shown in Figure 9, where the
states <f> and « aredenoted respectively by {} andk. Notethatunlike the E-machine, the NDE-machine has
a property that fora state ?p and pair of inputand output minterms (u, v), there mightexist morethan one
state ?„ such that Tn(<;p, u,v, ?n) = 1. Itisbecause ofthe global input X. Namely, for diflFerent global input
x GB\x\ M2 and Mmay go to diflFerent next states with the same (u, v).

Now, for agiven NDE-machine (U, V, Sn, Tn, ?r), consider a finite state machine (U, V, So,TD, EDr)
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defined as follows. The state space Sd is the set of subsets of Sn thatcontain <f> and not contain «. The
reset state Eor is thesubset {cr,$}. The transition relation TD:SDx B^ x 2?'vI x Sd -* B is defined
asTd(Edp> u, v, Eon) = 1if and only if

EDn = {^n € Sn I3cp € X^p : TN(<;P, u,v,cn) = 1} and k # EDn

This construction is the subset construction, or determinization, of a non-deterministic finite automaton,
where thestate k is theunique non-accepting state, meaning that a string which can lead theautomaton to
a is not accepted. Only subsets, generated in the subsetconstruction, which do not contain k are allowed
next-state subsets. In this way, we end up with a finite state machine which contains only permissible
behaviors.

Let S'D be the union of the state {</>} € Sd and the setof states of TD reachable fiom the reset state
EDr. Let TD : SD xB^ xB^ xS'd -»• Bbe the transition relation of TD restricted to the states S'D.
We then claim that the restricted machine T'D = (U, V, S'D, TD, EDr) isthe E-machine. More specifically,
TD and the E-machine are isomorphic, i.e. there exists aone-to-one mapping / from the state space ofthe
E-machine tothat ofTD such that T(EP, u,v, En) = 1ifand only ifTD(f(Ep), u,v, f(En)) = 1.

Theorem 3.5 The machine T'D and the E-machine are isomorphic.

Proof: Given a subset E ofpairs ofstates of M2 and M, let f(E) bethe subset given by adding the state
<f> to X", i.e. f(E) = E U{<£}. For the special case for the empty set {<£}, we define f({#}) = {<£}. By
definition, / is a one-to-one mapping and thus the inverse of / is also defined. We claim that TD and the
E-machine are isomorphic under the mapping /.

Suppose T(EP, u, v, Xn) = 1 holds in the E-machine. If Xp = {#}, then by the definition of the
E-machine, En = {<£}. Byconstruction of the NDE-machine TV, for the present state <f> € Sn, <f> is the
unique state that satisfies TN((f>,vL,v,<l>) = 1. Therefore, TD({<f>},vL,y,{<j>}) = l. Since f\{<f>}) = {<£},
T'D(f(Zp), *, v, f(En)) = 1,andtheclaim holds.

Consider the case where Xp ^ {<£}. We show T'D(f(Ep), u,v, /(£„)) = 1under the assumption that
/(Xp) € S'D. This assumption does not affect the claim, since TD{f(Ep), u, v, /(X"n)) = 1implies that
f(En) e SD and for thereset state Er = {(r2, r)}, f(Er) € S'D. By construction of the E-machine, the
nextstate En from X*p under u/v is givenby

En ={{si,s)6SixS\3xeBW,(3i,3)eEp: »=^Wv), ^=tf2(52,xv), }

Consider arbitrary x € -B1*1 and (32,3) € X"p such that u= A2tt)(32, xv). If there are no such xand (h,5),
then27n = {<f>}. mthiscase,foranaibitrarypairofstatesofM2andMcontainedm^^
holdsinthedefinitionof theNDE-machine. Therefore, forallelements cp € /(X*p),?n = </> is theuniquestate
which satisfies 2V(?P, u, v, cn) = 1. Thus weobtain f(En) = {c„ | 3cp € /(X"p): T7v(cp,u,v,Cn) = 1}.
Hence TD(f(Ep),vi,v,f(En)) = 1.

Suppose there exist such x and (h^) € X'p with the property that u = A^ti^(32,xv). Then by the
definition of the E-machine, X^'(32, xv) = A(3, x). Therefore, in the definition of the NDE-machine, the
condition (a) and (b) do not hold and the first half of the condition (c) holds. Hence, En given above can be
rewritten as

£n = {(s2,s) eS2xS\ 3(32,3) e Ep : ^((S^^v,^*)) = 1}.
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Thusby definition of TD, TD(f(Ep), u, v, f(En)) = 1.
Conversely, suppose TD(EDp,u,v,EDn) =1. We will show T(f'l(EDp),u,y,f-\EDn)) = 1,

where f~l isthe inverse of /. Note that the function /-1 (Edp) simply removes the state <f> € Sn from the
subset Edp, where incase Edp = {$}, f~l(EDp) = {<t>}. We employ the assumption that f~l(EDp) € S.
Theassumption does notaffect theclaim for thesame reason above. If Edp = {</>}, then Xx>„ = {<£}. Since
T({4}, u, v, {#}) = 1,the claimholds.

Consider me case where Edp # {<!>}. Since /-1(Xdp) g 5, there exists some t such that f~l(Eop) €
£('), where «S^ isdefined in Section 3.3.1. Wewillshow that conditions (2) and (3) defined inthedefinition
ofr<*> in Section 3.3.1 hold, and thus T^l\f-l{EDp), u,v, f~\EDn)) = 1. Hereafter, let us denote
Ep = f-l(EDp) and En = f~l(EDn). Consider arbitrary x € B|x| and (hyS) € S2 x S such that
(32,3) £ Edp and u = AJ^S^xv). Ifthere are no such x and (32,3), then the condition (2) trivially
holds. Also in this case, for each cp = (32,3) € Edp* only the condition (a) holds in the construction of
the NDE-machine Tn* and thus Ed„ = {<t>}. Since condition (3) triviallyholds if En = {<£}, we obtain
T^t+1\Ep,u,v,En) = i.

Suppose such x and (32, 3) exist. Since k £ Enn, condition(b) does not hold for this pair (32,3) in
the definition of the NDE-machine. Thus the first half of the condition(c) holds,and X2(32, xv) = A(3,x).
Since (S2(32,xv),S(3,x)) € Xi>n, by definition of Td, (^2(32,xv),S(3,x)) € En> and the condition (2)
holds.

For condition (3), consider an arbitrary (&1, s) £ En. Since («2, s) € Xx?n, there exists (%, 3) € i^u,,
such that 7V((32,3), u, v, (s2, s)) = 1. Hence, condition (c) in the definition of the NDE-machine holds,
and there exists x € B^x\ such that u = X^'fa, xv) and (s2, s) = (^(32, xv), S(3, x)).Thus condition (3)
holds, and we obtain T^t+1\EP, u,v, Xn) = 1. •

Thus, we see that the E-machine can be obtained by applying an operation similar to the subset construc
tionto the NDE-machine T/v. Onemight wonderwhy the operation like the subsetconstruction is necessary.
In other words, how is the set of behaviors contained in the E-machine related to that of the NDE-machine?

The answeris that the NDE-machinecontains more implementable behaviors than the E-machine. Specif
ically, in the NDE-machine, an implementable behavioris not permissible if there exists a pair (<7U, av) of
sequences of U and V in the behavior which can lead the NDE-machine to the state k, since it means that
thecorresponding sequence onthe global output Z is inconsistent withwhat is required by M.4 Therefore,
we need to know the set of pairs that have a possibility to lead the NDE-machine to k. It is analogous to
finding the set of strings that have a possibilityto leada non-deterministic finite automaton to an accepting
state. Hence, we employ the subset construction to remove those additional behaviors, and then guarantee
that an arbitrary implementable behaviorcontained in the resulting machine(E-machine) is permissible. It
is illustrated in the following example.

Example 3 Consider M2 and M shown in Figure 10, which are slightly different from those used in
Example 1. The correspondingE-machine and the NDE-machine are shown inFigure 11-(a) andFigure 11-
(b) respectively.

Consider a behavior atMi which always outputs Ofor allinput sequences. This isequivalent to setting
the variable V to a constant 0, and thus the behavior is implementable. However, the behavior is not

4Note that the pair (<ru ,<rv)i& notallowed even if itcan also lead the NDE-machine toastate other than n.
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Figure 10: Example of M2 and M

(4 B-bicUm (b) NDE-MmUm

Figure 11: The E-machine (left) andthe NDE-machine (right)

permissible since if a sequence ax of the global input X is set to (0,0), then the corresponding pairof
sequences (ou, av) on Uand V realized by the behavior and M2 is given by <ru = (1,0) and av = (0,0),
and thus the globaloutput sequence az is obtained as <r2 = (0,0), while the globalmachine M requires
that <rz must be (0,1). It is easytosee that thepair (au, av) above canleadthe NDE-machine to the state k
through the states IA and IB. Note that this behavioris not containedin theE-machine.

3.4 Implementability of Interacting Machines

3.4.1 Implementability

As we have seen in the previous sections, the permissibility of Mi requires that Mi is implementable, i.e.
there exists a pair of implementationsfor Mi and M2whereno combinational loop is created by connecting
them together at U and V. Therefore, when a permissible machine is sought, we need to check whether the
machine is implementable or not hi this section, we provide a condition on the implementability.

Let a completely specified deterministic machine M2 = (X UV,UUZ, S2,X2, S2, r2) begiven. We want
to know if a givencompletelyspecified deterministic machine Mi = (U, V,Si, Xi,Si, ri) is implementable
for the M2. The key idea to check the implementabilityis the dependencies. Let us firstpresentthe following
definition.
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Definition: Dependencies

For a set of Booleanvariables X = {xi,..., xn} considera function/: Bn -* B defined with
the inputX. Givenan inputvariable Xi € X,f is dependent on 2; if f\Xi=o i=- /Ui=i, where
/U,=o designates the cofactorof / withrespect to X{ = 0.

If / is not dependent on a?,-, we say that / is independent of £,-. The dependency of / for an input zt-
is related to whether it is possible to implementthe function / with no combinationalpath from zt- to the
output, where we definea combinationalpath as a sequenceofgates which does not contain registers. More
specifically, the followinglemma is known.

Lemma 32 Given afunction f: Bn -* B with theinput X = {xi,..., xn}, there exists an implementation
for f suchthatthere is no combinationalpathfrom &,- to theoutput ifandonlyiff is notdependent on xt-.

Proof: Suppose there exists such an implementation. Then for an arbitrary minterm x e 2?n, the output
value /(x) doesnotchange evenif we flip thevalue of X{ in theminterm x. Thus/U=o = /U,=i-

Conversely, suppose that / is not dependenton &,-. Consideran implementation of /. If the implemen
tation does not contain a combinational path from zt- to the output, the proof is done. Suppose there is a
combinational path. We claim that the implementation given by setting &,- to a constant value, say 0, still
implements /. Let / bethe function defined by the resulting implementation. Note that / does not depend
on X{. The proof is done if we show that /(x) = /(x) for allx € Bn. Suppose /(x) ^ /(x). Then the
value of Xi inthe minterm x must be 1since / isobtained by setting z, = 0 in /. Then f\Xi=o # /U,=i,
which is conflict with the fact that / is not dependent on X{. m

We now present a condition under which Mi is implementable. Consider a directed bipartite graph
G(U UV,E), wherethe nodeset of G is divided intotwo classes U and V and a nodeof U (respectively a
node of V) corresponds to a variable of the input variables U (respectively the output variables V) of Mi.
The edges of G are defined as follows:

[ui, Vj] e E «#• Aj •"depends on Ui,
[vj, Ui]eE & A^1*' depends on Vj,

where we denote by X^j) the function ofthe j-th output variable Vj in Mi.

Theorem 3.6 Mi is implementable ifandonlyifG is acyclic.

Proof: Suppose Mi is implementable. Then there exists a pairof implementations (C\, C2) for Mi and M2
respectively which does not create a combinational loop. Let GC(U UV, Ec) be a directed bipartite graph
with the same node set of G where the edges are definedas follows:

[uf, vj] e E <$ there exists acombinational path from ut- to Vj inC\,
[vj, Ui] e E <& there exists acombinational path from vj to ut- in C2.

Since the implementation does not contain acombinational loop, Gc is acyclic. Now, ifA[Vj^ depends on u„
Lemma 3.2 implies that Ci has acombinational path from ut- to vj. Asimilar argument holds for X^{\ and
we see that E C Ec. HenceG is a subgraph of GCt and G is acyclic.
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Conversely, suppose Gisacyclic. Ifwe implementthefunction Ap' independentlyforeach Vjt weobtain
an implementation C\ ofMi where there isacombinational path from U{ to vj if and only if X\V} depends
on u^ Similarly, let C2 be an implementation of M2suchthat there is a combinational path from v,- to it,- if
and only if A^u'' depends onvj. The proof isdone ifwe show that (Ci,C2) does not create acombinational
loop. Suppose forcontrary that there exists a combinational loop c = (v^, u,0,..., Vjk,Uik, Vj0). Then for
each /, 0 < / < k, A,Vj' depends on «,,. Similarly, A '̂1 depends on vJJ+1, where we define Vjk+l = «Jo.
Thus the cycle c exists in <?, whichis conflict withthe factthat G is acyclic. •

Since the cyclicity of a directed bipartite graph can be checked in polynomial time of the size of the
graph, wecan efficiently checkthe implementability of Mi. Notethat if eitherMi or M2 is of Moore type,
then G is always acyclic, and Mi is implementable.

3.4.2 Unimplementable Machines in the E-machine

In general, not all the machines contained in the E-machine are implementable. By definition of imple
mentable machines, if a machine Mi contained in theE-machine is not implementable, thenanyimplemen
tation of Mi will create a combinational loop for that particular Mi. Thus, for given M and M2, if the
resultingE-machine containsno implementable machines, we see that it is impossible to realizea behavior
of M without combinational loops, as long as the behavior of M2 is used.

Inthissection, wediscuss whatwecandowithunimplementablemachines oftheE-machine. Specifically,
we showthat for a machine Mi containedin the E-machine that isnot implementable, if Mi satisfiesa certain
condition, thenit is possibleto realizea behaviorof M withnocombinational loops,aslongasweareallowed
to modify the behavior of M2.

Let Mi = (U,V,Si,Xi,Si,ri) be a machine contained in the E-machine. Suppose that Mi is not
implementable. Suppose also that Mi satisfiesthe followingproperty:

Property 3.1 Forallpairsofstates,(si,^) € SixS2,andforall\e £|x|, there exists (u,v) € B^xB^
such that v = Xi(si,u)andu = A2(s2,xv).

Consider a pair of implementations Ci and C2 for Mi and M2, respectively. Since Mi is not imple
mentable, the implementation made of C\ and C2 creates a combinational loop. Now, we firstassumethat
wecanscanthe registers of C\% i.e. it is possible to observe externally thestatein which Mi stays. Thenwe
modify C2 so that the resulting implementation hasno combinational loopandrealizes a behavior of M.

Considera function whose inputsaretheglobal inputs X andthestatesof Mi andM2, andtheoutputs are
U. We denote the function by / : Sx x S2 x £'*! -• BW. For given (si, si) € Si x S2 and x € J?1*', the
output u = /(5i, 52, x)has aproperty that thereexists v e i?'1''such thatv = Ai($i,u)andu = A^s^xv).
Since Mi satisfies Property 3.1, f(si, s2,x) is defined for every input. Let C$ be an implementaton of /.
Note that C3 is a combinationallogic. Webreak the connection from C2 to Ci at U and let C3 drive C\, as
shown in Figure 12. Since all the feedbacks from Ci to C3and from C2to C3 are to see the states of Mi and
M2,there is no combinational loop in the resulting implementation.

Let us regard the circuit made of C2 and C3 as an implementation of a singledeterministic finite state
machine M2. Note that the state space of M2 is identical with that of M2. By the construction of the
function /, it is guaranteed that for all pairs of states, (si,$2) £ S\ x S2l and for all x € 2?'*', the pair
(u,v) e BW x B^ realized by Mi and JCf2 has the property that v = Ai(si,u) and u = A2(s2,xv).
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Figure 12: Modification for Unimplementable Machines

Furthermore, the statetransition of M2 does not dependon the statesof Mi. Namely, for a given state s2 of
Mi and input xv € B^XuV^t the next state to which Mi moves is uniquely defined and isgivenby62(42, xv).
Since Mi is contained in the E-machine, exactly the same proof ofTheorem 3.3 holds to claim that for an
arbitrary sequence cr of i?'*', the output sequence realized byMi x M2 can be realized byM, and therefore
the behavior of Mi x M2 is contained in M. We state this fact as a theorem below.

Theorem 3.7 Fora machine Mi contained intheE-machine, suppose Mi is notimplementable andsatisfies
Property3.1 above. Thenforanarbitrarypair ofimplementations Ci andC2for Mi andM2, ifanadditional
circuitry C$ given above is attached, the resulting circuitry has no combinational loop and its behavioris
contained in M.

4 Implementation and Experiments

The method of computing the transition relation T of the E-machine has been implemented. The current
implementation employs a restriction that the global machine M is deterministic, and thus a state of the
E-machine corresponds to a subsetof pairs of states of M2 and M. Binarydecision diagrams (BDD's) [4]
are used to represent the transition relations of M2 and M, where the set of states of each machine was
represented by binary variables using log-based encodings. All the set operations, such as intersection,
union, complement, set comparisons, aswell asquantifications, are performed on BDD's. We first compute
the relation T(K) and then T. One straightforward way ofcomputing T^ is to first compute the relation
given by thecondition (2) and (3) of the definition of T^ shown in Section 3.3.1, and then restrict it to
the states that T can beled toby some sequences of B^UK However, since the total number of states of the
finite state machine givenby the conditions (2) and (3) is exponential in |52||5|, the BDD representing the
transition relation ofthe machinemay be too large. Instead, we performa fixed point computationas stated
inSection 3.3.1, where at each step t, instead of the set S^\ weuse asetwhich contains S® n -*S(f~l\ is
contained in S^\ and is represented byaminimal-sized BDD. Such aset iscomputed byaBDD operation
similar to the oneknown as generalized cofactor [5]. During the computation, we needto see ifa given pair
of states (32,3) € S2 x S is amember of Ep. For this purpose, weuse acharacteristic function x(h,3, Ep)
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M2 M T

Time IterationsIn Out State In Out State In Out State

mc9 3 5 4 2 3 16 2 1 3 0.2 3

s2a9 11 3 18 10 1 72 2 1 2 1.9 2

e4t1 6 9 14 2 2 294 7 4 5 3.4 5

e69 5 8 8 4 6 32 2 1 7 22.3 3

s3t2 7 7 13 3 2 273 5 4 35 136.6 12

e4bp1 6 9 14 1 4 336 5 5 10 149.3 10

e4at2 7 9 14 2 4 294 5 4 13 449.4 13

s3p1 7 7 13 2 2 312 5 5 37 669.5 11

s2b9 11 3 18 10 1 72 2 1 19 4132.3 18

Table 1: Experimental Results

which is equal to 1 if and only if (32,3) € S2 x S is a member of Ep. However, a BDD representing the
function itself, or a BDD obtained at an intermediatestage of the computationsusing the function, could be
fairly large in practice. Therefore, we represent x by multiple number of BDD's so that the union of these
BDD's forms the function x. We modified theformula given in (2)and (3) in thedefinition of T^ so that
the union of these BDD's are taken as late as possible by applying other commutativeoperations earlier.
These heuristics seem to be effective in keeping the size of BDD's as small as possible.

Usingthe procedure implemented as stated above, we conducted somepreliminary experiments. They
are preliminary in the sense that the examples are not obtained during a practicaldesign processof digital
systems. We used mcnc91 benchmark examples. The objectiveof the experiment was to determine the size
of machines M2 and M that can be handled by the current implementation, and the size of the resulting
E-machine T sinceits state-space sizecould be exponential in |52||5|. We first chose a pair of finite state
machines, one for Mi, the other for M2,andobtained M bytakingtheproductof these,wherea subsetof the
inputvariables (theoutput variables, respectively) of M2 was arbitrarily chosen to connect withtheoutput
(the input,respectively) of Mi. Then M2 and M were used as inputs of the procedure. The procedure first
computes the set of statesreachable from the resetstateforeachmachine, and thencomputes the transition
relations ofthe machines as well as the function x described above. Itcomputes the relation TlK) bya fixed
point computation, and finally computes the transition relation T.

The results on these examples are shown in Table 1. Each row of the table corresponds to a single
experiment, where In, Out, and State designate the number of input variables, the number of output
variables, and thenumber of states respectively. Time is theCPU time used foreach experiment in seconds
onaDECstation5000/240. Iterations shows the numberofiterations required inthefixed pointcomputation
of T^K\ As shown in Table 1, we can handle moderate sized examples with the current implementation.
During theexperiments, werealized that thesize of the resulting E-machine T and therequired CPU time
vary by changing theconnections between Mi and M2. Forexample, we used exactly thesame machines
Mi and M2 forthe experiments S2a9 and S2b9 with different connections. Alarge difference inCPU time
and numberofstates isobserved between thetwo experiments. Thus, we can notmake any general statement
on thesizeof T thatwecanhandle in practice. Nevertheless, forthese experimental results, weseethatthe
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numberofstates ofT is negligibly smallerthan 2'*"5L This is not surprising in the sense that astate «i ofT
corresponds toasubset of Si x S with the property that M2 and M are led toexactly the states of the subset
by the input sequences ofB^ and the sequences of2?'v' realized by transitions from the reset state ofT to
si. Thus if there exists a pair of states (si, s) not led toby any input sequence, then any of the subsets of
Si x S whichcontains the pair willnotappear in Tt where there are 2*™sl~1> suchsubsets.

5 Conclusions

In this paper, weaddressed the problem ofcomputing and representing the complete set of permissible finite
state machines, where two finite state machines are interacting with each other as shown inFigure 2. We
showed that the complete set can be computed and represented by a single non-deterministic finite state
machine. The machine is called the E-machine and its transition relation is computed by a fixed point
computation. We also considered the problem of implementing interacting finite state machines without
introducing combinational loops, and provided a necessary and sufficient condition under which given
machines are implementable. The proposed procedure for computing the E-machine was implemented and
experimental results were presented.

In the future, we intend to address the problem of minimizing the E-machines, i.e. finding the best
permissiblebehaviorof Mi for given M2 and M.
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Appendix
A Proof of Theorem 3.1

In this Appendix, we prove Theorem 3.1.
Theorem 3.1 For an implementable machine M\t mereexists an equivalentprime machine.

Proof: We prove the theorem by presenting a procedure which takes as input an implementable ma
chineMi = (U,V,Si, Xi,Si, ri) and returns an equivalent prime machine M{. Theprocedure is shown in
Hgure 13.

Theprocedure first duplicates Mi, where S[ is setto Si, A' and S' areidentical withXand6, respectively.
Thetransitions of M[ arethenmodified during theprocedure. Thefunction E(s\), usedin theprocedure, is
defined for a state s\ e Si. E(s\) designates the equivalent class that s\ initiallybelongs to in Mi. When
Mi is copied to M[ at the beginning of theprocedure, weassume that E(s\) is associated witheachstates\
of S[. Furthermore, N'(3i, E, u, $i) is given by

^•^=«*•«*>e **2lsl i*e "".ft-*)6 s•• l=St*t 2:5&X}-
where v = X[(Si, u). When a new state $i iscreated inM[, we set S[(Si, fi)«- #i(si,0) for each u € i?'*7',
where s\ is die next stateof Si in M[ under the input u. Note that it is always true that the next state s\
is a statewhichoriginally existed in M[ when Mi wasduplicated. Therefore the statecorresponding to s\
also exists in Mi, which wedenote also by a\. Hence, by S[ (§i,fl) <- Si («i, fl), wemean S[ (Si,ft) is setto
thestateof M{ which corresponds to the stateof Mi given by Si (s\, ft). In otherwords, the transitions of a
newly created state §i are made identical with those defined at s\ in Mi.

We first claim that the procedure maintains the invariance that a state s\ of M{ is equivalent to every
state ofE(si) ofMi. Namely, for all sequences aofB^u\ the output sequence defined at si by a in M[ is
identical withthat defined at a stateof E(si) in Mi. The invariance is trivially true in the beginning since
the function E is so defined. Supposethat the invariance holds immediately before a state Si is processed.
Consider the case where Si isprocessed for a minterm u £ B^UK Suppose a new state Si is created. Since
thetransitions defined at Si in M[ are identical with those of s\ defined in Mi, Si of M[ is equivalent to
5i of Mi. Since E(§i) is set to E(si)f the invariance holds for the state Si. Also, if thestate 6{(Si,u) is
changed from si to another already existing state Si, then E(§i) = E(s\) holds by construction. Since the
output values of Si do not change during the process, Si obtainedafter the process for u is still equivalent to
a state of E(3i) of Mi. Thus theinvariance holds. Therefore, M[ obtained immediately after processing Si
is equivalent to Mi.

Secondly,the procedure terminates since every state is processedexactly once and a new state is created
onlyifthereisnostateSi equivalentto «i withi7(Si) = TV, whilethenumberof statesofMi and the number
of subsets of Si x 2|5' arebothfinite.

It follows that M[ obtained at theendof the procedure is equivalent to Mi.
Finally, we claim that M[ is a prime machine. The condition (2) shown in the definition of prime

machines holds for M[ since all thestates of M[ are processed and theset N used in theprocedure is the
one defined by N(3X, E{3{), u, $i) in the definition, and we set E(si) equal to N for eachnext state. For
the condition(3), there are two classes of states s\ for whichthere is no t > 0 such that E(si, t) ^ <f>; one
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is those which are not reachable in M{ and the other is those which are reachable in M[ butnotwith the
existence of M2. For a state s\ in the first class, £(s\) remains undefined untilit is explicitly setto {<j>} at
the end of the procedure, and thus the condition holds. For a state s\ ofthe second class, the condition holds
ifthe conditions (1) and(2) hold, sincein this case, the procedure sets N to {<f>}.

Hence, the proofis done if we prove the condition (1), i.e. for each s\ e S[, if E(si ,t) ^ <j>, then
27(«i, t) = E(si). We claim it by induction on t > 0. Consider thecase where t = 0. Onlythe state si such
that 27(«i»0) ^ <f> is thereset state n. The procedure sets E(ri) = {(r2, {r})}, which isequal to E{r\, 0).

In the induction step, let 5i be a state such that E(si,t) ^ <f>, where t > 0. Consider an arbitrary
u € BW and Si € 5{ such that 5t = S{(3i,u) in M[. We claim that if E{3ut - 1) is not empty,
then N\3i,E{3i,t - l),u,5i) = E(si). Note that the non-emptiness of E(si,t) implies that there
exists at least one such Si. It follows that E(si,t) = E(s\) since E(ai,t) is given by the union of
N'{3i,E(5i,t- l),u,5i) over allu € B^andaUSi € S[ with 5i = £{(5i,u) and since if i7(Si,t-l)is
empty, then N'(3i,E(3i,t - l),u, 5i) is also empty. Bythe induction hypothesis, E(3i,t - 1) = 27(Si),
and thusN'(3i, E(3i, t -1), u, 5i) isequal to N defined intheprocedure for Si and u. Sinceattheendof the
procedure, theexistenceof thetransition 5i = #[ (Si,u) implies that E(si) = iV^JV^SijI^Si^-lJjUjSi) =
27(5i). This completes the prooffor thecondition (1). Hence M[ is a prime machine. •

Note that the procedure shown in Figure 13 is presented for proving the theorem above, and there is no
need to use it for computing the E-machine.

26



function prime(Mi = (U,V,Si, Xu6\,r\))
f*lttM{ = {U,V,Si,X'l,S[,ri)*/
M[ <- cqpy(Mi);
for(each 5i € 5{){

27(5i) <-undefined;
}
27(ri)<-{(r2,{r})};/*r, 6 5,'*/
markri;

start:

while(there exists Si € S[ thatis marked){
for(eachu€JBlyl){

/*let v = A;(Si,u) and 52 = S[{3i,u)*/
N+-N'(3i,E(3i),u,si);
if(3S, € S[: 27(Si) = N and£(*i) = £(5i)){

S[(3i,u) <-h;
}
else if(27(5i) = undefined){

27(5i) - JV;
mark s\;

else{
/* create a new state Si */
S[ «- S[ U{Si};
for(each fl 6 fl|t7|){

^(Si,fl)^^i(5i,fl);
A,1(5i,«i)*-Ai(5i,fl);

}
^i(5i,u)^S,;
E(Si)^N;
E(3i) - E(si);
mark Si;

}
}
remove the mark of Si;

>
for(each s\ 6 S[ suchthat 27(5i) = undefined){

}
if(there is a marked state) goto start;
return M[;
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