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Abstract

We analyze the long run dynamics of queues in which customers undergo self selec
tion. We describe the structure and local stability of equilibria for the various capacity
adjustment procedures and solve the problem of global stability for the limiting cases. The
intermediate cases can be quite complicated. We show that one such case leads to chaotic
dynamics.
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1 Introduction

In this note we analyze the dynamics of queues with customers undergoing self-selection. In a

previous paper [7] weexamined the short-run dynamics of such queueing systems. In this paper

we focus on the long-run dynamics, in which the operator of the queue varies the processing

rate of the queue in order to induce efficient operations. We show that if the operator updates

the processing rate either very often or very rarely then the analysis is straightforward, and the

system is wellbehaved; howeverin the intermediate cases the analysis can be quite complicated,

and the dynamics can be chaotic.

In the following section we give a brief review of the problem and its motivation. However,

for a more complete survey we refer the reader to our previous work [7] and Sidham's original

analysis [12].
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2 The Model

Consider the case of a queueing system in which customers decide whether or not to enter

based on a entry charge p and a delay cost which depends on the number of other customers

also requesting service. We represent these customers by their arrival rate A. The customers'

delay cost D(r) is a convex increasing function of their (subjective) expected waiting time r.

The operator of this system chooses the service rate fi (e.g. the number of workers in a

repair shop, or the speed of the CPU or network in a computer system) in order to maximize the

total social utility of the queue. This service rate affects customers through the queueing delay

G(\,/i) which increases for higher arrival rate of customers A and decreases as the capacity (fi)

is increased. However, there is a cost to the operator associated with increased capacity, B(fi).

Thus the operator must balance the cost of increased capacity against the benefits received by

the customers, while at the same time trying infer the preferences of the customers from their

arrival rate.

The question of how customers predict their expected delay can be very complicated; the

subject of learning has received much study both in psychology and economics (e.g. [3, 9, 2]).

In this note we follow Stidham [12] and our previous work [7] in assuming static expectations.

This implies that the expected delay in period n -f 1 denoted rn+1 is simply the observed delay

in period n, e.g. rn+i = G(An,^n). In economics this is known as Best-Reply (or Cournot)

dynamics, and has been extensively studied [4, 1, 10]. Recently Rump and Stidham [11]

have analyzed the case of adaptive expectations, for the short run model, and show that the

dynamics in this model may be much more complex than that of static expectations. In fact

they have shown that the system may become chaotic. However, Friedman [6] has shown that

if the static expectations model is stable, then any model with 'weakly-rational' expectations

is also stable for the short run model.

Formally we define the following functions:

1. The density of job values: r(v) is continuous, positive, and bounded with bounded sup

port.



2. The arrival rate function: L(c) = /c°° r(v)dv.

3. The 'demand function':

V(A) = f°° vr(v) dv

where A= £(vm(A)) defines vm(A). Define the marginal value function v(A) = V'(A).

4. The delay function: G(A,/i) which is positive, decreasing and convex. As in Stid

ham [12] we assume that e%^ + aG^*'̂ = 0, which is satisfied by many queues

including the M/M/l and M/GI/1. We also assume that lim^o© G(A, /x) = 0 and

limM-oo 0G?(A,/i)/fyi = 0.

5. The delay cost function: D(t) is convex, increasing, and non-negative.

6. Linear capacity cost: B(fi) = 6/j, with b > 0.

First we note that we can simplify the form of C?(A, /z).

Lemma 1 Define G(ft - A) = G(0,/i - A). Then G(fi - A)= G(\,fi).

Proof: Integration along the line from (^ - A,0) yields (/z, A) we get

However the integrand is zero by assumption and therefore G(\,n) = G(n - A,0). D

In order to simplify notation we define

S(x) = D(G(x))

and note that H(x) is positive, decreasing, and convex. We also let h(x) = E\x).

The short run dynamics is defined by the customers' self-selection problem in which cus

tomers whose job value (v) is greater than the total cost (H(fi —A)+ p) will enter the queue.

Under the assumption of static expectations we see that

An+1 = L(H(n - An) + p) = T„(An) (1)

The key property of the mapping TM is that it is positive and decreasing. In [7] we presented a

detailed study of the properties of T^. We restate here a result from that paper for later use.



Theorem 1 There exists an p, such that for fi > /t the dynamics of (1) always converges to

the equilibrium arrival rate E(fi) defined by

E(fi) = T^EM), (2)

Proof: See [7].

2.1 Stidham's Example

In [12], Stidham considered a model with an m/m/1 queue (G(A,/j) = (fi—A)-1),linear delay

cost (D(r) = hr), and a uniform distribution of customer values (r(v) = A/a for v 6 [0,a] and

r(v) = 0 otherwise). This leads to

T„(A) =A'(l-^) (3)
where A' = [a'/a]A and a' = a —p. He shows that for fi> A! the system has a unique globally

attracting equilibrium. In [7] we show that for fi < A' all orbits (except for those starting at

the equilibrium) will run into the boundary. We note that this second property only holds for

the specific mapping (3) and is not typical of mappings of the type (1).

3 Long Run Dynamics

The long run dynamics arise in the problem of maximizing social welfare in both arrival rate

(A) and capacity (fi):

max [V(X) - XH(fi - A) - 6d. (4)
n,\

In this case the system operator chooses service rate (fi) and entry charge (p) and the customers

enter the queue based on self selection, i.e. a customer will enter the queue when his value v

exceeds his cost H(fi —A) + p. It is shown in Dewan and Mendelson [5] and Stidham [12] that

the operator should charge a price equal to the marginal cost of additional capacity (p = b)

when fi = fi* in order that the optimal arrival rate A* is the equilibrium of the short run

problem. Thus it makes sensefor the operator to chargep = b. From Equation (2) we see that

for p = b the operator's problem reduces to

max [V(E(fi)) - E(fi)E(fi - E(fi)) - bfi] (5)



First we examine some properties of the optimal solution.

Lemma 2 E(fi) is increasing in fi.

Proof: Differentiate (2) with respect to fi to get

E'(fi) = L'-h.[l-E'(fi)].

Rearranging terms we see that

and note that both the numerator and denominator are positive. O

Now assume that A is fixed and the operator wishes to compute the optimal capacity. This

requires the operator to solve

max [V(\) - \S(fi - A) - bfi].

for fi. Call this maximum M(X).

Lemma 3 M(X) —A is increasing in A.

Proof: The first order condition for M(X) to be a maximum is

Xh(M(X)-X) + b= 0

Differentiate this with respect to A to get

dX[MW " A] =A/i'(M(A)-A)
which is positive since both the numerator and denominator are positive. O

Note that for Stidham's example we have M(X) = A + y/Xh/b and A(ft) = [fi + A' —

y/(fi + A')2 —4A'(/z —/i/a')]/2, which agree with the above lemmas.

Now there are several possibilities for the operator's behavior. (See [12] for a more detailed

description.) For example, every period the operator could adjust the capacity to be optimal

assuming that the arrival rate will remain constant. This corresponds to setting fi = M(X).



Alternatively, the operator might prefer (due to technological restrictions) to update the ca

pacity less often, for instance once every k periods. If we track the arrival rate only when the

operator changes the capacity, we see that the dynamics is defined by the new mapping

AW =2&W(A). (6)

where T* represents the composition of TM with itself k times.

For example, using the techniques in [7] we can show that for Stidham's example

rj\) M./Wb ^-+1-^+1)NAH7i-(7^+1-7-7;+1)PkW _a+y/xh/b (< _^)VWb _(7+7„ _7_7„}

where

X+y/Xh/b-A' IX+y/Xhfb-A' A'h
7±~ 2 V( 2 >+ a' '

For k = 1 the behavior of this map is quite simple. This is because the map Pi =

A'(l —y/bh/Xa12) is strictly increasing in this example. However, this is also true in general.

Theorem 2 Pi (A) is strictly increasing in A.

Proof: Note that Pi(A) = L(H(M(A) —A)+ 6). Differentiate with respect to A we get

P{ = L'-h~(M(X)-X)

which is positive by Lemma 3. D

The properties of increasing maps arequite simple as has been shownin [6]. Everything is

completely determined by the maps fixed points and local stability. In Stidham's model the

mapping Pi is concave and is always less than A'. In Figure 1 we show the three possibilities

for maps of this type. Case (a) is trivial as all trajectories go to zero. In case (b) it is clear

that the larger fixed point A" is stable, while the smaller A' one must be unstable (since its

slope is greater than 1). Globally, this implies (see [6]) that for all Ao > A' the arrival rate will

converge to A" while for Ao < A' the arrival rate will converge to zero. Finally, the degenerate

case (c) has a single fixed point A; and for Ao > A' the arrival rate converges to A' and zero

otherwise. Thus it is easy to understand the mapping when k = 1.



In the case where Tm(\) has a globally stable equilibrium (which is always true for A

sufficientlylarge, as show in Lemma 3) we can define the map for k = co as Poo(A) = A(M(A)).

Thus

limPfc(A) = P00(A)
k—»oo

only when Im(a) has a unique globally attracting fixed point.

However, on the region for which it is defined Poo is an increasing map, and its behavior is

identical to that of Pi.

Theorem 3 Poo(X) is increasing in A.

Proof: Differentiate with respect to A and use lemmas 2 and 3. D

Thus the analysis of Poo is straightforward. (In fact, using the techniques we develop in

the next section, the proof becomes trivial.)

When 2 < k < oo, P* is not monotonic and the behavior can be quite complicated as we

discuss in the next section.

3.1 Chaotic Dynamics

Consider the mapping P2 for Stidham's example with A' = 1, a' = 1, h = .1, and 6 = 1.2. This

mapping is plotted in Figure 2a. We plot the third iterate of this map in Figure 2b. From this

figure we see that the map P2 must have four 3-cycles. It is well known that any mapping of

the interval [0,1] into itself with a 3-cycle is chaotic (in the topological sense) [8]. However,

this chaos is not strictly relevant since it occurs on a set of measure zero. It remains an open

question whether measurable chaos occurs in these mappings. (For example in [11] it is shown

that a simple model of queueing system dynamics leads to measurable chaos.)

However, in all the cases the properties of the fixed points is important; particularly for

the cases when k = 1 ot k = oo'm which the local properties of the fixed points determine the

global behavior of the map. We study this structure in the next section.



4 Fixed Points and Stability

In this section we show some properties of the fixed points of the various mappings P* for

different fc's.

Define the set of fixed points for P* by S* = {A | P*(A) = A}. Note that this set can

contain a large number of points. Note that by definition A € 5* if and only if Ais a Ar-cyde

°f Tm(a)J however, if k is odd then all fc-cydes of TM are fixed points since TM is a decreasing

map. If k is even then the fc-cydes ofTM(A) are either fixed points or 2-cydes. Thus we have

the following theorem.

Theorem 4

1) Ifk is odd then 5* = S\.

2) If k is even then 5* = 52.

3)S00 = S1.

4) Si C 52.

Note that there is a significant difference depending on whether k is odd or even. Now we

analyze the stability of these fixed points.

For Stidham's specific example, wesee that $i = S2 UA' where M(A') = A' since this is the

only case where Tm(A) has a 2-cyde.

Let Abe a fixed point of Pi (A € 5i). Then we know that Amust be a fixed point for all

Pit (X € Sk) by Theorem 4. We can compute the stability of this fixed point Afor all of the

mappings P*.

Lemma 4 Let a = T'M(l^(X) and /3 = -aM'(A), then

Pi(A) = afc +/3 1-a*

l-o

andnote that P^ = /?/(l - a) when it is defined.

Proof: Note the following identity among the P*'s

ft(A) = lM(A)(ft-,(A)).
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It follows by differentiating that

JftA) = aJS_,(A) + /J. (7)

This is a decreasing linear mapping for P*(A) which we can solve analytically with the initial

condition P/(A) = a + /? to prove the above results. D

Note that (4) is a linear decreasing mapping. Thus we can easily understand its dynamics

to provefurther relations between the stability fixed points of the various mappings P*. First

recall that the condition that a fixed point Abe stable is |P*(A)| < 1. Thus we can show the

following:

Theorem 5

l)If X is stable fork = l and k = oo then Xis stable for all odd k, but not necessarily ifkis

even.

2) There exists a k such that fork>k the stability of Xunder P* is the same asfor P^.

3) If Xis unstable for P^ and stable for Px then it is unstable under P* for all even k.

4) If X is stable for P^ and unstable for Pi then P*(A) is positive for all odd k, but may be

negative for certain even k.

Proof: First note that both s\ = P[(X) > 0 and ««, = Poo(A) > 0 by Theorems 2 and 3.

1,4) All even iterates of (7) must lie between s\ and s^.

2) This is true because the iterates of (7) converge to its equilibrium s^.

3) All even iterates of (7) must be larger than Soo.

Once again the differences between even and odd k are significant. For example part (4)

of the above theorem has an interesting corollary.

Corollary 1 Assume that k is odd. Then for all X€ S* = S\t PjJ(A) > 0.

The above statement may be false when k is even. Thus, while the limiting cases (k = 1

and k = co) are well behaved, the intermediate cases (2 < k < oo) can be quite complicated,

even chaotic, and the dynamics depends precisely on the specific modd chosen.
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Figure 1: The three possibilities for Pi(X) and their stability diagrams.
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Figure 2a: Plot of P2 for A'=l,a'=l, b=1.2, h=.l.
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Figure: 2b: Plot of the third iterate of P2 for A'=l, a'=l, b=1.2, h=.l.
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