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Abstract

Novel Techniques for High Performance
Field Programmable Logic Devices

by

Narasimha B. Bhat

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Ernest S. Kuh, Chair

Field programmable logic devices (FPLDs) are fast emerging as viable alternatives

to mask programmed parts because of their rapid time-to-market and low costs. Their

application has, however, been limited to implementing random logic, with non-critical

timing specifications. This work attempts to advance FPLD usage to high-performance

applications as well. A two-pronged approach is adopted. In the first part, CAD algorithms

aimed at improving routability and performance of designs mapped to existing look-up

table (LUT) based field programmable gate arrays (FPGAs) are developed. The concept of

a two-input LUT primitive cell is introduced. This reduces the number of library patterns

that require to be stored for an LUT library, and makes it feasible to extend performance-

driven library-based technology mapping techniques to LUT FPGAs. The performance-

driven mapping algorithm accounts for interconnect delay and provides area-delay trade

offs. Experiments on benchmark designs show the effectiveness of the new algorithms. In

the second part, a new FPLD architecture is introduced. The architecture is based on the

concept of time-sharing of logic and routing resources in an effort to have a fully routable,

CAD friendly FPLD with predictable timing performance and efficient silicon usage. Real

time reconfiguration of logic and routing resources implements a given circuit in a folded

pipe-line fashion, pipe-lining at the gate level. Several possible variations of the basic

architecture are discussed. A simple synthesis scheme is developed and experimental results

are reported. Area and timing analyses demonstrate advantages over existing FPGAs.

Prof. Ernest S. Kuh

Thesis Committee Chairman
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Chapter 1

Introduction and Overview

This thesis is about field programmable logic devices (FPLDs). As their name

implies, these devices are integrated circuits that can be programmed (i.e., configured) by

the user to implement digital logic circuits. First introduced in the mid-70's, they provided

a means for rapid prototypingof simple (consisting of a few 100 gates) logic circuits. Over

the years, these simple prototyping devices have evolved into sophisticated devices which

can be programmed to implement logic circuits having several thousand gates.

Programmable logic technology was dominated in the past by devices based on

a PLA-type architecture. The basic PLA architecture consists of a programmable AND

block (popularly called AND plane) and a programmable OR block (OR plane). A given

circuit to be implemented using such a device, is first represented in a two-level AND-OR

form. The PLA AND-plane is then configured to implement the AND part, and the PLA

OR-plane is configured to implement the OR part. Variations and evolutions of this basic

architecture have resulted in several kinds of programmable devices. Some have a fixed

OR plane instead of a programmable one; some use a NOR-NOR representation or NAND-

NAND representation, some use more complex gates instead of a basic AND gate for the

product term, similarly some use complex gates instead of the basic OR gate for the sum

term and some provide features such as invertible outputs, registered outputs, configurable

I/O, etc. All these devices, which look like a PLA, are popularly called PLDs. Figure 1.1
shows a logic diagram of a popular PLD.

With advances in IC technology, it has become feasible to produce larger and

larger devices based on the PLA-style architecture. However, in terms of silicon usage and

speed of circuit operation, it is not efficient to implement large logic circuits by means of
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1.1. FPLD CLASSIFICATION 3

an AND-OR type of two-level implementation. In the case of large circuits, a multi-level

implementation can be a better solution. Just as the foundry-based design styles evolved

from the PLA into the standard cell and gate-array styles, so also the programmable logic

technology evolved from PLDs into Field Programmable Gate Arrays (FPGAs).

FPGAs consist of a two-dimensional array of configurable logic cells, connected by

means of a configurable interconnection network. The first of the current FPGA families,

the logic cell array (LCA) was introduced by Xilinx, San Jose, CA, USA in 1985. In 1988

Actel introduced a configurable array architecture based on the structure of a channeled

gate array. Today, the third generation of FPGAs is in the market. Figure 1.2 shows the

Xilinx LCA.

FPLDs vary not only in architecture, but also in the programming technology.

Early PLDs use bipolar technology, similar to PROMs, and are one-time programmable.

These are manufactured with all connections intact,and programming consists of "blowing

off" undesired connections. The configurable connections have a fuse link that is "blown

off" in the programming process. With advance in technology, PLDs witherasable program

ming, like the Altera EPLD [Altera 85], are now available. These devices use EEPROM

technology, and can be programmed several times. FPGAs also come in two flavors: the

one-time programmable andthe re-programmable kinds. Acteluses anewtechnology, called

the anti-fuse, which is used to make a connection (as opposed to break a connection). The

Actel devices are one-time programmable. Xilinx uses an SRAM technology to store the

logic cell and interconnection configurations; the Xilinx devices can be programmed many
times.

1.1 FPLD classification

There are several FPLD vendors, and many different kinds of devices in the market

today. In Figure 1.3, an attempt has been made to classify the various FPLDs based on

their underlying basic architecture. The chiefpurpose of Figure 1.3 is to give a feel for the

different devices already existing, and also put in perspective, the new FPLD architecture

being introduced in this thesis. It should be noted that Figure 1.3 is not intended to be

complete, nor is it the only way to classify FPLDs. No standards for FPLDs have been

estabhshed, and vendors have come up with ad-hoc nomenclatures that could be quite

confusing. For example, a PLA-type architecture, with the outputof the OR plane feeding
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back into the AND plane can be used to implement multi-level logic circuits, and FPLDs

with such an architecture are also called FPGAs by their vendors. However,for the purposes

of this thesis, 'FPGA' is used to mean a device having a two-dimensional array architecture,

consisting of configurable logic cells.

Figure 1.3 is based on Charles Small's [Small 91] high-density FPLD family tree.

For this classification, only FPLDs with capacity to implement large logic circuits are con

sidered. Prior to the new FPLD architecture of this thesis, the devices could broadly be

classified into two: those that use the PLA-style architecture (classified as PLDs in the

figure), and those that use the two-dimensional array (classified as FPGAs in the figure).

PLDs can be further sub-divided based on the AND plane and OR plane architectures and

FPGAs can be sub-divided based on the granularity of the logic cell. The Dharma architec

ture is a new programmable style, which performs a real-time re-configuration of the logic

cells and interconnection patterns, so as to implement a multi-level circuit in a two-level

manner. Detailed description of Dharma forms part II of this thesis. Since the Dharma

style does not fall under either the FPGA or the PLD, a new branch at the root needs to be

grown. It is possible that the Dharma architecture style will foster several devices varying

in type of logic cell structure, interconnection techniques, etc.

1.2 CAD for FPLDs

The highly complex nature of current FPLDs necessitates the need for computer

aided design (CAD) tools to design with, and program, such devices. The large number of

possible interconnection strategies, and also the many different ways of distributing a given

logic circuit among the configurable logic cells of FPLDs, makes it almost impossible to

manage manually. Hence CAD tools become a necessary accessory to FPLDs.

Figure 1.4 is a flowchart to illustrate the various phases in the design of a cir

cuit using FPLDs. In the figure, the logic optimization, mapping into FPLD modules,

placement and routing, and the device programming steps are accomplished using CAD

tools. The logic optimization and mapping steps are together referred to as logic synthesis.

The design begins with a circuit specification, in terms of a register-transfer level descrip

tion or a circuit schematic diagram. Using additional tools (not shown in Figure 1.4), one

can also specify the circuit by means of a high level description (behavioral specification).

The logic optimization tool takes as input the register-transfer level description. Logic
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optimization is the process of manipulating the circuit structure and functionality of sub-

circuits, while maintaining the specification, in a manner such that some parameters such

as area of the overall circuit, and/or delay from inputs to outputs are optimized. A large

body of work has been done in logic optimization for standard cell and gate array design

styles [Brayton 90], and some FPLD optimization tools are based on these ideas. Some

of these techniques, such as literal minimization (minimizing literals implies minimizing

active cell area for standard cells and gate arrays) are not relevant to certain FPLDs such

as LUT FPGAs, and in such cases, new optimization tools and techniques have emerged

[Francis 92, Fujita 91, Murgai 90]. The next step in the design flow is mapping (also called

packing or technology mapping). In this step, the architecture specific details are taken into

consideration, and circuit structure is modified (maintaining the specification, of course)

such that each gate or node in the circuit's network can be implemented by the logic

modules of the FPLD on which the design is to be implemented. For PLDs, this step is

usually simple and straight-forward. In the case of FPGAs, mapping is an area of active

research [Bhat 92, Cong 92, Ercolani 91, Francis 91a, Francis 91, Karplus 91, Karplus 91a,

Murgai 91a, Murgai 91, Murgai 90, Schlag 92, Trimberger 92, Woo 91]. Mapping is fol

lowed by placement and routing. In the placement step, the nodes in the mapped circuit

are assigned positions on the FPLD (two-dimensional placement in the case of FPGAs),

and the routing step figures out the path taken by the interconnections among the nodes.

Following this, the actual programming of the FPLD is done (eg., loading l's and 0's into

the memory associated with the device, in the case of re-programmable FPLDs; orblowing

fuses, anti-fuses in the case of one-time programmable FPLDs). The device nowimplements

the circuit specification.

The steps of logic synthesis, placement and routing, and device programming are

together called a design iteration. Since the circuit specification could be faulty (as humans

usually tend to make errors), it may be necessary to go through several design iterations

before a satisfactory circuit has been realized. The testing step in Figure 1.4 consists of

plugging in the programmed device in the application it is intended for, and running several

tests to check proper functionality 1. If the test results are unsatisfactory, the specification

is modified and another design iteration is performed. A typical design iteration could take

about a day, on a personal computer such as the IBM 386 PC.

*In the case of fuse based devices, a "programming test" may also be necessary to make sure that the
required links have been fused.
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Figure 1.4 outlines only a typical design flow; modifications are possible. For

example, in [Murgai 90], the authors recommend keeping the optimization and mapping
together, as a single step. In [Bhat 92], mapping is combined with placement and routing.

Vendor tools in the market do not perform logic optimization; the circuit specification

(usually a schematic entry) is directly input to the mapping step (as shown by dashed lines

in Figure 1.4), and the design iteration consists of mapping, placement k routing, and
device programming. This is done because logic optimization tends to destroy the original
circuit structure, which will make it almost impossible to pin-point design errors on the

schematic.

1.3 Programmable logic system

The downside to the necessity of CAD tools in an FPLD based design is that the

effective usage of the programmable device in a silicon-efficient and performance-optimized

manner becomes the responsibility of the CAD tools. And unless CAD algorithms can use

the special features of the FPLDs that they are assigned for designing with,the full potential

of these devices cannot be effectively utilized. Because of the major role played by the CAD

software in an FPLD based design, it is more appropriate to think of a programmable logic
system (PLS), consisting of the FPLDs and their associated design tools.

Desirable features of a PLS are:

1. CAD tool features

(a) Fully automated: In view of the rapid time-to-market requirement, manual in

tervention is not desirable.

(b) Fast: In the absence of foundry fabrication time, and since programming the

device takes the order of milliseconds, the time required to synthesize the design

for the FPLD's architecture defines the design cycle time, and the CAD tools

run-time is the real bottleneck in an FPLD design.

(c) Performance-driven: The circuit to be implemented on the FPLD can have

timing constraints, and the CAD tools must be able to honor these constraints.

2. Device features
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(a) Efficient silicon usage: The programmable nature of the device requires routing

and logic resources to be available in sufficient quantity so as to allow all pos

sible circuits to be implementable on the programmable device. But excessive

resources could result in silicon wastage. Less resources could result in unroutable

circuits or excessively lengthy CAD tool run-times.

(b) Low interconnect delays: Programmable switches on the interconnection net

works introduce significant delays, and can cause interconnection delays to exceed

logic delays.

1.4 FPLD advantages

Along with increased complexity, there has also been a corresponding increase in

the application areas for FPLDs. Application Specific Integrated Circuit (ASIC) users are

now considering programmable logic devices as viable alternatives to foundry-based de

sign styles such as gate arrays (now renamed as mask programmed gate arrays, MPGAs, to

distinguish them from the FPGAs), sea-of-gates and standard cells. FPLDs offer two advan

tages for the ASIC user. The short design cycle of a PLS shortens the time-to-market, which

is a critical factor in an ASIC's success. Also, since device costs are low, any design changes

or design error fixes can be accommodated with negligible overhead (zero overhead for re

programmable devices). Gate arrays and sea-of-gate design styles require expensive mask

fabrication, and changes and error corrections increase costs further. The non-recurring en

gineering (NRE) costs, which include mask fabrication and design changeiteration costs, are

absent in the case of FPLDs. Figure 1.5 shows the cost advantage of an FPGA [Xilinx 89]

over foundry-based design styles. In addition to the ASIC market, re-programmable FPLDs

have created new application areas such as hardware emulation [Quickturn 93], hardware

acceleration [Hastie 90] and reconfigurable fast computers [Waugh 91].

1.5 Focus

This thesis focuses on the usage of FPLDs in the ASIC market, with the goal of

extending their usage to applications which dictate timing performance. Complex circuits

are now implemented on FPLDs instead of on gate arrays and sea-of-gates. However, in

addition to being able to just holdthe design within a programmable part, it is alsonecessary
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to be able to perform the circuit functions fast. Only if the FPLD can meet the timing

specifications of the logic circuit being implemented on the FPLD, can the FPLD be a

viable alternative design style for ASIC users.

In this work, the emphasis is on the overall PLS. Both CAD and architecture

aspects are considered. It may be possible to use existing FPLDs in high-performance

applications by developing CAD tools that take timing performance into account when

performing their design tasks. To explore this possibility, we choose a popular FPLD archi

tecture, look-up table (LUT) FPGAs, and investigate the timing performance improvement

by changing the structure of the mapped solution (of course, the logic function equality

is maintained). In other words, we concentrate only on the technology mapping phase of

logic synthesis, and propose a new performance-oriented mapping algorithm for FPGAs.

For this part of the research, we restrict ourselves to combinational circuits only. This is

justifiable since combinational circuits are easier to handle, and the ideas and algorithms

can be easily extended to sequential circuits as well. The other possibility for overall PLS

enhancement is to study architectural aspects. A new FPLD architecture, which is silicon

efficient, performance-oriented and CAD friendly is proposed. As seen in Figure 1.3, this

new architecture is different from existing FPLD devices and portends a new branch in the

FPLD family tree.

We concentrate on single devices - i.e., we consider only those circuits that can be

accommodated within a single programmable part. Circuits which cannot fit into a single

part, will need to be partitioned across several parts, and this will require recourse to logic

partitioning and physical partitioning techniques. Although these techniques have been

extensively discussed in the literature [Donath 88, Yeh91] for standard cell and gate array

based design styles, FPLD based partitioning techniques are still in their infancy, and merit

further research.

1.6 Thesis overview

Definitions and glossary of more commonly used terms can be found in Chapter

2. The rest of this thesis is modeled after the PLS, in that it has two components. Part I

has the software related work and Part II has the device architecture related work.

Part I deals with performance-oriented synthesis for LUT based FPGAs. By syn

thesis, we mean the mapping phase of Figure 1.4. The goal it to improve the performance of
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a LUT FPGA. by modifying the mapped solution. Two aspects of the mapped solution are

considered: ease of routing, and timing performance. The first sub-division of Part I deals

with a routable mapping algorithm. Here, we combine the mapping step with the place

ment and routing step, using simulated-annealing. This approach yields mapping solutions

that have lesser un-routed nets. The second sub-division of Part I presents a library-based

performance-oriented mapping algorithm. This approach uses a concept of a 2-input LUT

as a building block for the LUT library patterns and results in a very small library, several

orders of magnitude smaller than previously documented LUT libraries [Francis 92]. This

small library is used along with conventional library-based technology mapping techniques

[Brayton 90] to give mapped solutions that haveimproved timing performance. The special

nature of the library patterns is also exploited to yield faster pattern matching during the

mapping process. The mapping algorithm also provides area-delay curve solutions, giving

the user a family of solutions rather than a single best-area or best-delay solution.

Part II deals with the new Dharma architecture. We present the architecture, dis

cuss CAD aspects for this new architecture and outline new research avenues. The central

ideaof Dharma is reconfiguration of the interconnections and the logic modules during run

time (hence the architecture is dynamic). A multi-level circuit is implemented in a level

by level manner, with inter-levelconnections accomplished using a crossbar interconnection

network. The crossbar structure provides full routability, and the run-time reconfigura

tion allows reuse of the same crossbar to implement different net connections, making the

architecture silicon efficient and practical. The net and logic delays are both predictable.

This means that the synthesis step can make accurate estimate of the final (after device

programming) timing behavior.

The final chapter concludes this thesis with a summary and future directions.
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Chapter 2

Terminology

In this chapter, terms commonly used in the rest of the thesis are described.

The chapter is meant to be used more as a reference, and hence the terms are arranged

alphabetically. Terms and definitions specific to a chapter are defined in their respective
chapters.

Boolean function

B = {0,1} is a Boolean space, and a variable that takes values 0 or 1 is a binary
variable. A Boolean function, F maps an n-dimensional Boolean space to an m-dimensional

Boolean space, i.e.,

F:{0,l}n-{0,l}m

A Boolean function is also called a logic function or simply function.

The AND function is represented by a V or a space, the ORfunction is represented

by a *+' and logical inversion is represented by a single quote after the variable, or an
exclamation sign *P before the variable.

Boolean Network

A Boolean networkis a directed acyclic graph (DAG)used to represent amulti-level

logic function. Each node tin the DAG isassociated with a variable y{ and a representation
/, of a logic function. Figure 2.1 illustrates a Boolean network implementing the following
multi-level logic function.

x = q + r'
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PRIMARY INPUT

PRIMARY OUTPUT

Figure 2.1: A Boolean Network is a DAG to represent a multi-level logic function.

y = a + m

m = PQ

V = a + b

o = bc + d

T = d+e

In Figure 2.1, a, 6, c, d, e are the Pis and x, y are the POs of the example multi-level

logic function.

The fanins of a node to of a Boolean network is the set of nodes i whose output is

directly connected to an input of n. In Figure 2.1, 6,c,d are the fanins of node q. Pis do

not have a fanin.

The fanouts of a node n is the set of nodes o that have an input directly connected

to the output of n. m,x are the fanouts of q. POs do not have a fanout.
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DECOMPOSE

abed

Figure 2.2: Decomposition is the process of re-expressing a single function as a collection
of new functions.

DAG

DAG stands for Directed Acyclic Graph. A Boolean Networkis a DAG.

Decomposition

Decomposition ofa function is the process ofre-expressing a single function as a
collection ofnew functions. For example, re-expressing

F = ac' + be' + ad + bd

as

F = x \j

x = a + 6

y = cd'

is decomposition (see Figure 2.2).
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a b c F

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0

1 1 1 1

Truth table for F
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addr value
a

0 1

b
1
2

0
0

3 1

c 4 1
5 1
6 0
7 1

3-input RAM

Figure 2.3: A look-up table (LUT) implementation of a 3-input Boolean function

Decomposition can be used to create a multi-level representation of a given logic

function, specific to an application. For example, to represent the logic function as a DAG

in whicheverynode has < m inputs, where m is a specified integer constant; or to represent

the logic function as a DAG in which every node's function is either a NAND or INV; etc.

Logic module

A logic module is a piece of circuitry used to implement logic functions. In the

case of LUT based FPLDs, Hke the Xilinx FPGAs, and the AT&T ORCA, logic modules
are constituted from LUTs.

Look-up table (LUT)

A look-up table (LUT)is a random access memory (RAM) module, used to imple

ment a logic function. Inputs to the function are presented as address value to the RAM.

The function's value corresponding to a particular input combination is stored in the mem

ory location addressed by that particular input combination. Thus, when presented with

an input combination, the RAM "looks up" the value of the function it is implementing,

and presents this value at the RAM output.

In Figure 2.3, a three input function F is specified by means of a truth table. On

the right side of Figure 2.3, a 3-input RAM module, with values stored to implement F is

shown.

An m-input, 1-output LUT has 2m locations, each of which can be individually

set to a 0 or 1, and therefore the LUT can be used to implement any function of m inputs.
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An m-input, n-output LUT can implement any multiple-output Boolean function with < n

outputs and < m inputs.

Multi-level logic

Multi-level logic refers to any multiple-output Boolean function represented by a

set of interconnected functions. If F is the multiple-output Boolean function represented

as a multi-level logic, the inputs to F are called primary inputs (Pis) and the outputs of F

are called primary outputs (POs). See Boolean Network for an example.

Packing

Packing is technology mapping in the context of FPGAs.

Performance

Generally, three metrics are used to measure the performance of an implementa

tion: the silicon area used, the timing delay, and the power consumed. However, in this

thesis, we use the term performance interchangeably with timing performance.

Placement

Given a netlist, i.e., a list of modules and the manner in which they are connected

to each other, placement is the process of assigning a location to each and everymoduleon

a two-dimensional plane. Placement tries to place the modules in a manner such that after

the subsequent routing step, the modules and interconnections use up minimal possible

resources and/or the worst-case timing delay is minimized.

Primary input (PI)

See Multi-level logic.

Primary output(PO)

See Multi-level logic.

Routing

Given a netlist of placed modules, the routing process determines the path for the

interconnections. Routing is usually performed in two steps: global routing and detailed
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routing.

Technology mapping

Technology mapping or mapping is the process of representing a given Boolean

network in terms of logic functions specific to a given technology. The software which

performs this task is called the mapper. When the given technology is FPGA, this process

is also called packing, and the corresponding software is called a packer.

The mapping process takes as input a Boolean network, called the input network

and gives as output another Boolean network, called the mapped network. Each node in

the mapped network can be implemented by the gates or logic modules of the technology

for which the mapper is designed. For example, in the case of an m-input, 1-output LUT

mapper, the mapped network has nodes with < m inputs each.

Timing delay

The timing delayis a measure of the time required for signalsto propagate through

the physical implementation of a given circuit or Boolean network. A circuit's delay has

two components: delay through the logic modules (gate delay), and delay through the

interconnection (net delay).

We use a linear delay model to model the delay through a logic module. In this

model, the delay from an input pin i of a logic module, to an output pin o is given by a

linear equation,

Li,o + Rif0F

J,,0 models the intrinsic delay through the module, from pin i to output o, T represents

the capacitive loading at output o, and the coefficient iZtf0 represents the delay per unit

capacitive load at o. The delay through the interconnection can also be incorporated into

the above model. A net is approximated as a lumped capacitance, T,. Tt- is then added to

the output load of the module which is the source of the net.

Consider the situation depicted in Figure 2.4. Let the signals arrive (i.e, settle to

correct value) at pins a and 6of logic module L at time instants ta and fy, respectively. L

fans out to pins p and q of logic modules M and JV, respectively. Let the arrival time of

the output of Ir, i, at pins p and q be denoted by tp and tq, respectively. In the worst-case
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Figure 2.4: Example to illustrate worst-case delay analysis

delay analysis,

tp = tq = max{{ta + Ia%x + Ra,TT), (th + 76,,. + Rb,xT)}

where,

r = n + Cp + C9

fi represents the capacitive loading due to the interconnection, and Cp and Cq are the
parasitic capacitances at the pins p and q, respectively.

The capacitive loading due to the interconnection can be modeled as being pro
portional to the number of sinks (input pins) on the net.
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Part I

Performance-oriented Synthesis
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Chapter 3

Overview

In this part of the thesis, the focus is on improving the CAD for existing FPLDs.

As already mentioned, a PLS has a software component and a device component. The

FPLD vendors have always introduced a device first, and then tried to develop the software
to support the device. As a result, there are several FPLDs in the market, whose full

potential has not been realized because their CAD tools have not yet matured.

The question we are attempting to answer is as follows. Given an FPLD, how
best can we design the CAD tools so as to get the maximum usage and performance out of
this device? This is a very general question, and because of the large number of different

FPLDs, and different phases in the design flow (see Figure 1.4) it is almost impossible to
have a single answer to this question. We therefore concentrate only on a single type of
FPLD and only on certain phases of the design flow.

The most popular (in terms of number of units sold) FPLD is the LUT based

FPGA (devices such as the Xilinx XC3000 family, XC4000 family and the AT&T ORCA

family). We choose these kinds of devices as our "given FPLD". In the design flow, we
concentrate on themapping phase. Ideally, one could also look at the placement and routing
phases. However, these require intimate knowledge of the device architecture, which is

usually proprietary information. Also, placement and routing must be fine-tuned to specific
architectures. Our purpose is to address a class of devices, hence it is not in the interest of

this research to get bogged down by the idiosyncrasies of a specific device.

Two different aspects of the mapped solution are of interest. One is the timing
behavior of the solution, and the other is the ease of routing.
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3.1 Performance-oriented mapping

In applications where timing performance (henceforth called performance) is crit

ical, the circuit specification is accompanied by timing constraints on the various output

pins, in relation to the input pins. If the mapped solution is unable to meet these con

straints, the device cannot be used for that particular application. For the purposes of our

research, we impose the timing constraints in a slightly different manner. Given a circuit,

our aim is to synthesize a mapped solution whose worst-case timing delay is minimal. In

our experiments, all inputs are assumed to be present at the same time and the time delay

at the latest arriving output signal is minimized. The reasons for this modification are as

follows.

1. It is easier to benchmark different performance-improvement techniques, since the

technique which yields the lowest worst-case delay is the better technique.

2. Our technique does not require timing constraints to be a part of the circuit specifi

cations. Standard benchmark circuits do not have accompanying timing constraints.

3. Applications which supply timing specifications can still use the outcome of our re

search. If the mapped solution's timing delays are less than the specification's timing

requirements, then the solution can be used for that particular application. If not, it

means that the specifications have to be relaxed, since the solution provided is the

best possible.

The delay through a circuit has two components: delay through the logic, and de

lay through the interconnection. With regard to LUT based FPGAs, prior efforts [Cong 92,

Francis 91a, Murgai 91a] on performance-optimization have been concentrated on minimiz

ing the delay through the logic. However, because of the limited amount of interconnection

resources, LUT based FPGAs are characterized by dominant interconnect delays, which are

difficult to estimate. Hence, mere logic delay minimization does not suffice. The delay of the

final circuit (after placement & routing) is the relevant delay, and should be the objective

being optimized.

A second consideration is that we are interested in addressing a class of devices,

all based on LUTs. So, the mapper should be useful across the entire class of devices, with

minor alterations to suit any particular architecture within this class.
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A third consideration is that a family of mapped solutions is desirable. FPGA

devices come in families, devices within a family differing in pin count and number of logic

modules (larger devices are more costly). Circuit delay and circuit area (measured as the

number of logic modules required to implement the circuit) bear an inverse relation: a circuit

with better timing can only be obtained at the expense of more circuit area. However, if

the mapper can provide a host of solutions, differing in area and delay, the user gets to

choose a solution which is cost-effective and performance-optimized.

The above three requirements (accounting for net delay, using a single mapper

acrossdifferent architectures, and providing area-delaysolutions) are not new to technology-

mappers. Technology mappers used for standard-cell and gate array design styles have

all the above features. Our idea is to extend these mappers to LUT FPGAs. However,

these mappers use the concept of library-based mapping [Detjens 87, Keutzer 87]. Simple

extension of the library-based approach to LUTs results in prohibitively large, impractical

library of LUTs [Francis 92, Trimberger 92a]. We introduce the concept of a 2-input LUT

as a building block (or primitive cell) for the library pattern, and demonstrate that this

reduces library size by orders of magnitude, thereby making the library-based approach

feasible and practical.

Using the new library patterns, and the old ideas of library-based mapping, our

performance-oriented, library-based mapping algorithm can be set to optimize for depth

(just to compare with previous work),delay, and to provide a family of solutions. Moreover,

by simple alteration, the algorithm can be used for different LUT based architectures.

However, our approach suffers the very bane of library-based mappers: sensitivity to initial

decomposition. This disadvantage makes the area-minimization solutions inferior compared

to other area-minimization based LUT mapping algorithms.

3.2 Routable mapping

Although it may seemthat ease-of-routing has got nothing to dowith performance-

oriented synthesis, the mapping solution becomes useless if the placement and routing tools

cannot complete the routing. In many instances, countless hours spent to manually route

the circuit end up in vain because the mapping solution is truly impossible to route within

the interconnection resource constraints of the device. Therefore, the first sub-division of

this part of the thesis addresses this basic feasibility problem, and provides a technique to
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alleviate the problem of unroutable circuits.

In our approach, we concentrate only on the objective of making the circuit

routable, without regard to timing performance or area. Starting with a mapped solu

tion to be placed and routed on a given FPGA device, we assume that the unused logic

modules in the device are at our disposal, and we then re-distribute the logic, trading off

logic block count for routability. Our algorithm integrates synthesis and physical design,

much hke [Pedram 91a, Pedram 91], but we use simulated annealing.

To make the integration of logic synthesis and physical design possible, we need to

be able to treat the logic and routing resources in a unified manner. We model the FPGA

architecture as an array of qblocks to be able to do this abstraction. This modeling forms

the cornerstone of the routable mapping algorithm, which is called RFR, Re-synthesis For

Routability.

3.3 LUTs and logic modules

In the next two chapters, we use the terms LUTs and logic modules interchange

ably. In commercially available FPGA devices, logic modules are composed of intercon

nected LUTs. A logic module can have several outputs, and its constituent LUTs can share

inputs. The manner in which the LUTs are interconnected, the number of inputs to the

LUTs, and the number of outputs for the logic module varies from one family to another,

and also from one vendor to another. Since our objective is to be able to address a class of

devices, we restrict our mapping to consider only a single-output LUT. A network of single-

output LUTs can be modified to fit into a specific architecture, using merging [Murgai 90]

or hbrary-based mapping (described in Chapter 5), and hence our restriction does not have

any undue shortcomings. However, the library-based mapping approach of Chapter 5 can

not be extended to multi-output LUTs by any simple extension (therefore, merging will

be required in such cases). The routable mapping technique does not depend on the LUT

outputs or the logic module structure, and can actually be used for other types of FPGAs

as well (non-LUT based).



29

Chapter 4

Routable Technology Mapping

This chapter concentrates on the routing feasibility of the mapped solution. As

in the rest of this thesis, we have limited our attention to LUT based FPGAs. However,

the ideas presented here are general enough that they can be extended to other types of

FPGAs as well1.

Our approach to the routable mapperis based on a philosophy of integrating phys

ical design and logic synthesis. Our ideas are along the lines of [Pedram 91a, Pedram 91],

where technology mappingand logic restructuring/decomposition are performed along with

placement. Here, we go one step further, and include routing during the mapping process,

using simulated annealing to tie all three (mapping, placement and routing) together.

We first motivate the need for taking routing into account. Terms used are then

described. A key to make possible the integration of routing with mapping is the modeling

of the FPGA architecture, and weintroduce the concept of a qblock. Our routable mapper,

RFR (Resynthesis For Routability) is then described. Experimental results, demonstrating
theeffectiveness of theapproach, are presented next. The last section outlines shortcomings
of our approach and discusses possible avenues to further this work.

4.1 Motivation

Routability is a primary concern with current FPGAs. This concern involves two

factors: the routing needs to be 100% complete and correct within the given resources,

1Among currently available FPGAs, routability isa problem only for LUT based FPGAs, like the Xilinx
XC3000. The 100% routability in other FPGAs is more because ofgreater availability of routing resources,
and is not because of any routing driven mapping.
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and it must not add so much delay that critical paths are delayed beyond the applications

requirements. When CAD tools fail to provide a completely routed circuit, one has to

manually intervene. Designers spend hours (and sometimes days) trying to complete the

routing, by manually changing the routing and the distribution of logic among the FPGA

logic modules. Manual intervention prolongs the design cycle time, and the FPGA 'rapid

time-to-market' advantage is lost. Further, manual intervention does not always prove

successful.

4.1.1 Cause of incomplete routing

There are only two reasons why a given circuit, to be realized on a given FPGA,

results in a situation where some of the nets cannot be routed.

1. Existing CAD tools are not good enough.

2. Insufficient routing resources on the FPGA.

If the CAD tools are the best possible, and yet there are circuits which cannot be

routed, then it is clear that the problem lies with the device itself, and its architecture needs

to be altered to incorporate additional routing tracks and programmable connections. Our

hypothesis is that the CAD tools are not good enough, and we proceed to improve them to

enhance the possibility of obtaining fully routed circuits.

4.1.2 Problem with existing CAD tools

Let us examine the development of CAD tools for FPGAs. In Figure 1.4, we

showed the design flow for FPGAs. This flow is very similar to the traditional design flow

for standard cell and gate array design styles. In Figure 1.4, we see that mapping is followed

by placement, and routing is done last. Thus, the synthesis and physical design tools have

developed independent of each other. The assumption is that, whatever be the mapping

solution, the placement and routing steps can provide correct solutions, be it in meeting

timing specifications or in completely routing all nets.

This assumption is valid for standard cell and gate array designs. In such cases,

an accurate estimate of the wire-length can be made [Kuh 90] using standard measures

such as perimeter of bounding box, length of spanning tree, etc. A good router can then

yield a routing solution that is close to these estimates. The problem of unrouted nets is
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virtually absent, since the router has the flexibility of moving cell-rows apart to make room

for additional routing tracks. Hence, the traditional design flow, of mapping followed by

placement and routing, works well for these design styles.

The same is not true of LUT FPGAs, however. The router does not have the

flexibility to move logic modules to makeroom for extra routing. It has to deal with a fixed

amount of tracks and programmable connections. Even with the best possible placement

and routing tools, it may still be impossible to complete the routing, because the routing

was not accounted for, during the synthesis step.

As an example, consider a hypothetical FPGA, V. Let each logic module in V

be a 3-input, 1-output LUT. Consider the implementation of the following multiple-output

function, F.

X = a + b+c + d+e + f + g

Y = fg

Figure4.1 shows one possible mapping, Mi of F, and V after mapping, placement

and routing. Figure4.2 shows a second mapping, jM2 of F, and the corresponding V after

placement and routing. Bycomparing Figure 4.2 and 4.1, we see that M 2uses lesser routing

tracks compared to M\. Thus, this example shows that by changing the mapping solution

we can change the routing characteristics.

4.1.3 Our strategy

We are motivated by the above example to improve the routability by changing

the mapping solution. Previous techniques [Francis 91, Francis 90, Karplus 91a, Murgai 91,

Murgai 90, Woo 91] for FPGA technology mapping have addressed the goal ofminimizing
the number of LUTs or configurable logic blocks (CLBs). In our approach, we diminished

the relative weight of this constraint. Our motivation is to use the available resources (both

routing and LUTs) for an FPGA ofgiven size (where size is specified by number ofLUTs)

in an optimal manner. Current FPGA vendors have only a limited number of different

sized FPGAs, and one can easily extend our algorithm to choose the smallest sized FPGA

by stepping through the different sizes, arranged in ascending order, and picking the next
higher size whenever the current choice is infeasible.

Our approach is based on performing mapping along with placement and routing.

Eachmapping step is followed by an incremental routing step. Thus, there is an integration
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f g

Figure 4.1: Mi implemented on V
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of physical design with logic synthesis, in our approach. This philosophy of integrating phys

ical design and logic synthesis is relatively new. In [Pedram 91a, Pedram 91], the authors

describe techniques to perform technology mapping, logic restructuring and decomposition

alongwith placement. In [Abouzeid 90], the authors use an estimation of the routing factor

to perform logic synthesis operations. In [Murgai 91], a placement based technique to per

form timing optimized logic synthesis for FPGAs is used. Unlike our approach, however,

none of these integrate routing with synthesis.

4.2 Terminology

A qblock is a single cell of the FPGA. The FPGA is constructed as a two-dimensional

array of qblocks. Section 4.3 elaborates on the qblock.

Placking (PLAcement and paCKING) refers to the process of performing place

ment, routing and packing in tandem.

Iota of logic (IOL) is a small chunk of logic that is moved, or swapped amongst

LUTs by the RFR algorithm. It can be a combinational function with a small number (1,

2 or 3) of inputs or a sequential element.

A packing is said to be feasible if the LUT can realize the logic assigned to it.

Feasibihty can be checked by comparing the corresponding number of inputs and outputs

of the LUT and the logic function, e.g., it is feasible to assign a 3-input, 1-output function

to a 4-input, 1-output LUT, but it is not feasible to assign a 5-input, 1-output function to

the same LUT.

RST is an acronym for a Rectilinear Steiner Tree. An RST for a set A of points in

the plane is a tree composed of vertical and horizontal lines which interconnect all members

of A. Figure 4.3 shows a set of points A = {a,6,c,d,e}, connected by an RST. An optimal

RST for A is one in which the lines have the shortest possible total length. Typically,

there will be many optimal RSTs for A. The problem of finding an optimal RST is NP-

complete [Garey 77], and many heuristic algorithms have been proposed [Hanan 66, Aho 77,

Cohoon 90, Yang 72, Lee 76, Hwang 79, Lee 88, Ho 90].
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Figure 4.3: A = {a,b,c,d,e} connected by an RST
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4.3 FPGA Model

We first need to abstract the FPGA architecture in a manner such that plack-

ing is possible. Here, we introduce the concept of a qblock, which can model any FPGA

architecture by merely changing its parameters.

The FPGA architecture that we haveassumed for our algorithm has four types of
components:

1. LUTs

2. Latches

3. Configurable interconnection points and

4. Routing tracks.

4.3.1 FPGA model

In our abstraction, we model the FPGA as an array of identical qblocks (see

Figure 4.4). The qblocks are symmetric, and abut each other in the horizontal and vertical

directions. At the abutment, the horizontal tracks abut in the horizontal direction, and

the vertical tracks abut in the vertical direction, as seen in Figure 4.4. Not shown in the

figure are programmable switches to split the tracks into separate segments. In addition
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Figure 4.4: FPGA model. The FPGA is assumed to be an array of identical qblocks.

to these sphttable tracks, there can also be continuous tracks (eg., long lines in the Xihnx

architecture) and clock routing tracks.

4.3.2 qblock

Each qblock has the following resources.

1. Memory resources to implement LUTs

2. Latches for sequential logic

3. Routing resources

(a) Horizontal tracks

(b) Vertical tracks

(c) Corners to connect horizontal and vertical tracks

Figure 4.5 shows a pictorial representation of this abstraction. The size of the

memory, the number of inputs and outputs to the memory, the number of shared inputs,

the number of latches and the quantity of routing resources axe parameters of the qblock

and can be set according to the commercial FPGA architecture being modeled. All qblocks

are identical, in that they have the same number of resources.



4.3. FPGA MODEL

i i i

; i i

• * •

.1.'.*.

LUTs

horizontal tracksizontal li
• • • I

ira

latch

ii

vertical tracks

Figure 4.5: Internals of a qblock. The qblock has LUTs, latches and routing.
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In Figure 4.5, the inputs and outputs of the LUTs and latches can be connected

to any of the horizontal and vertical tracks, and this is illustrated by the extra routing lines

(dotted). These extra lines are only for the purpose of illustration, the global router in our

algorithm abstracts a qblock connection to lie directly on either the horizontal or vertical

(or both) track(s). It is also assumed that the LUT outputs can be connected to latch

inputs without going through the horizontal/vertical tracks.

4.3.3 Look-up table

The LUTs are configurable from the memory cells in a qblock. It is assumed that

the memory cells are restructurable (by means of programmable switches), so that LUTs

with varying number of inputs can be implemented. As an example, if there are 32 memory

cells, then these can be structured as a 5-input, 1-output LUT, or a 4-input, 2-output LUT,

or a 3-input, 4-output LUT, and so on. Additionally, two 4-input, 1-output LUTs (with no

common inputs) and four 3-input, 1-output LUTs, and so on, are possible.

This model for the LUT is very general. We can restrict the number of inputs,

number of outputs, number of shared inputs and the number of memory cells to model the

LUTs of commercial LUT based FPGAs.

4.3.4 Routing resources

There axe three kinds of routing resources: horizontal tracks, vertical tracks and

corners. The number of such resources axe fixed for each qblock, and all qblocks axe assumed

to have the same number of these resources. These axe not supposed to represent the actual

number of resources seen by the detailed router; they axe for the purposes of global routing

only. The algorithm is general enough to allow additional resources hke connection points,

long lines, etc.

4.4 Overview of our approach

We start from an initially optimized network, or from a mapped solution, eg., the

output of Chortle-crf [Francis 91]. Each node in the input network is decomposed into IOLs.

The IOLs are then re-organized in a manner such that the resulting network is easier to

route, as compared to the input network. This re-organization is performed by swapping
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INPUT
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Figure 4.6: Overview of the RFR algorithm flow

IOLs, performing anincremental routing, and choosing the swap using a simulated annealing

approach. After this re-organization, the new mapping solution is placed and routed using

the vendor's commercial tools. Figure 4.6 shows the overall flow, and the placking step is

explained in detail in the next section.

4.5 RFR algorithm

The algorithm for doing an integrated synthesis, placement and packing proceeds

as follows.

1. Start from an initially optimized network [Murgai 90, Fujita 91].

2. Decompose the optimized network into a network of IOLs.
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3. Pack the IOLs such that each cluster can be implemented using the latches and re-

configurable LUTs within a qblock. i.e., obtain a feasible packing.

4. Place the feasible packs on the FPGA plane, using some placement program, so that

each pack is assigned to one of the qblocks in the FPGA (this step is done because

we require an initial solution before we begin simulated annealing).

5. Perform an RST global routing. The global routing populates the horizontal, vertical

and corner routing resources of each qblock.

6. Randomly pick an IOL, and evaluate the cost of swapping it with another IOL, or

moving it to another qblock. By swapping, we mean that the IOLs swap both their

positions and their qblocks.

7. Either chooseor discard the swap, using a simulated annealing cost function.

8. Repeat the swapping process till no further congested channels remain (in case the

design cannot be implemented within this FPGA, we will have to terminate after a

sufficient number of iterations).

9. At termination, we will have a packed, placed and globally routed FPGA, which is

ready for detailed routing.

4.5.1 Decomposition into IOLs

This is a crucial step, since the nodes in the decomposed network form the iota

of logic that is swapped amongst clusters. The smaller the number of inputs, the greater

is the possibility of performing feasible, cost reducing moves. We decompose into 2-input

and 3-input nodes, allowing all possible functions, with a bias towards the more complex

EXOR and EXNOR functions.

4.5.2 Global routing

An RST based global routing is performed using the separable minimum spanning

tree to Steiner tree conversion algorithm presented in [Ho 89]. The qblock resources axe

populated based on the path of the route. For example, if a route starts at qblock located

at (1,4) in the FPGA array, and runs horizontally to (3,4), and then vertically to (4,4),
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Table 4.1: Updating J7f and U0, considering input nets.

the route is assumed to occupy one horizontal track in each ofqblocks at (1,4), (2,4) and
(3,4); one vertical track in qblocks at (3,4) and (4,4) and one corner in the qblock at (3,4).
The global routing is performed sequentially on a net-by-net basis; each net is processed
independent of the routing performed on the other nets before it.

4.5.3 Checking logic feasibility

Swapping ofIOLs h 6 A and J2 GB, where A,B axe qblocks, is a 2-step process:
(1) Remove Ii from A and insert it into B. (2) Remove I2 from B and insert it into A. At

the end of the swap, Aand B should be feasible, i.e, the LUTs and latches should satisfy
the constraints of the target FPGA architecture.

Consider the case ofcombinational IOLs. For checking feasibility, we have to keep
a running count ofthe number of "used-up" LUT inputs and outputs. When one (or both)
of these exceeds the target architecture's constraints, we have an infeasible LUT. Since we

perform the swap in 2-steps, we need to consider only the consequences of removing or
inserting a single IOL from or into an LUT.

Let Ir be an m-input, 1-output IOL being removed from LUT L. Let £/,, U0 be the
number ofused-up inputs and outputs of I. For each input net ofIr, one offour possibilities
can occur, as tabulated in Table 4.1. Three possibilities arise at the output net, as listed

in Table 4.2. In Table 4.1, J* is the source of the input net, and in the second column,
'Other fanouts' means fanouts (of Ik) other than Jr. 'Increment' means 'increment by 1'
and 'decrement' means 'decrement by 1'.

From Table 4.1 and 4.2, we see that, as a consequence ofremoving Ir from L, U,
can increase byat most 1 and decrease byat most m and U0 can decrease byat most 1and
increase by at most m.

WTe can similarly list the possibilities for IOL insertion. These will be identical to
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Table 4.2: Updating Ui and U0, considering output net.

Tables 4.1 and 4.2, except that the consequence of insertion will be the reverse of removal,

i.e., in Tables 4.1 and 4.2, we replace 'increment' by 'decrement' and vice versa. In this

case, U{ can increase by at most m and decrease by at most 1 and UQ can increase by at

most 1 and decrease by at most m.

For sequential IOLs, feasibihty check involves checking whether the number of

sequential elements exceeds the qblock resources and also checking for compatibility of

control signals.

The above method is suitable for simple LUT feasibihty checking. Commercial

FPGAs, however, have complex interconnection of LUTs which share certain inputs, with

some outputs being connected to sequential elements, etc. In such cases, it is more suitable

to have a feasibility check function specific to an architecture. The function takes as input

a logic mapping and produces a yes/no output depending on whether or not the mapping is

feasible. One such checking function will be needed for each commercial architecture, and

the user is required to select the appropriate one.

4.5.4 Simulated annealing

The simulated annealing [Vecchi 83, Sechen 88] is straightforward. We start at a

high temperature T, and evaluate P = exp^~c°8ttT\ where cost is the cost of the swap.

The swap is then chosen with probability P. The cost term consists of a weighted linear

combination of two quantities: the wire-length and the congestion cost. The congestion cost

is proportional to the difference between the congestion if the swap were implemented, and

the present congestion. Congestion is quantified as the numberof excess routing resources

needed. At high temperatures, we can allow infeasible qblocks (i.e., the combinational

function is allowed to have more than the allowed number of inputs/outputs, number of

latches axe allowed to exceed the logic cell quota, etc.). In such cases, the 'amount of

infeasibility' is also combined into the cost function.
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Let 1,0, M,D be the number of LUT inputs, outputs, memory cells and latches

respectively, as specified by the target architecture. Let Ui, U0, Um and Ui be the num

ber of inputs, outputs, memory cells and latches used-up when a logic sub-network N

is assigned to qblock Q. Then, the infeasibility in mapping N onto Q is quantified as

MAX(A'0,Xi,Xm,Xi), where X0 = MAX(0, (U0 - 0)) is the excess number of LUT out

puts, A", = MAX(0, (#,-/)) is the excessnumber of LUT inputs, Xm = MAX(0, (Um-M))

is the excess number of LUT memory bits and Xi = MAX(0, (Ui - D)) is the excess number

of latches.

Therefore, if costl = aW + fiC, and cost2 = 7/, where W, C and I are the

wire-length, congestion and infeasibihty costs, then cost = costl if the swaps do not cause

infeasibilities, and cost —costl + cost2 if there axe infeasibihties.

4.5.5 Re-synthesizing a packing solution

Instead of having a technology independent optimized network as input in step

1, we could start with an already packed FPGA and then make it routable. In this case,

we decompose each pack into IOLs in step 2 and skip step 3. The rest of the algorithm is

unaltered. Since we axe swapping (or moving) IOLs around, the final logic network may

have an altogether different structure, and the number of logic cells will usually change,

when compared to the input network.

4.6 Experimental results

A versionof the algorithmhas been implementedin the SIS [Brayton 87,Sentovich 92]

framework. The algorithm can run in two modes -

1. Perform placement, routing and mapping simultaneously.

2. Perform placement and mapping simultaneously (no routing at each swap). Here the

cost of the swap is measured using a bounding box wire-length.

The second mode can be used as a pre-processing step before running mode 1 (the

actual algorithm of Section 4.5), since it is much faster.

The second mode also allows us to illustrate the effect of integrating physical

design and logic synthesis. Specifically, we carried out an experiment to demonstrate how
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the algorithm makes a trade-off between the number of qblocks and total wire-length, as

the size of the FPGA is increased. Figure 4.7 illustrates our observation. We implemented

a benchmark circuit (planet.kiss2 in the MCNC benchmark set) on FPGAs of different

sizes, using simulated-annealing placement and packing. Since the input/output pins axe

restricted to the boundary of the chip, larger FPGAs will require larger total wire-length

for implementing a given design. RFR reduces this increase in wire-length by increasing

the qblock count. In Figure 4.7, the x-axis has the FPGA size in terms of number of

qblocks, and the y-axis plots the qblock count and wire-length, normalized to their value

corresponding to an FPGA of size 14 x 14.

If the qblock count were kept fixed, the total wire-length would increase with

FPGA size, since the separation between the input/output pins would increase. This is

illustrated in Figure 4.8. We perform the placement using simulated-annealing. In Fig

ure 4.8, the x-axis has the FPGA size in terms of number of qblocks, and the y-axis plots

the wire-length, normalized to the value corresponding to an FPGA of size 14 x 14.

In Figure 4.9 we show the results obtained by running the algorithm in mode 1. We

start with an initial random solution, and with the routing congestion as shown, and then

run the algorithmto yield a packing with less,or no, routing congestion. Figures 4.9(a) and

(c) show the routing congestion before running RFR, and Figures 4.9(c) and (d) show the

congestion after the algorithm was run. The results axe for the MCNC benchmark circuit

exl .kiss2 on a 10x 10 FPGA. The congestion is shownby means of black rectangles within

each qblock - the x-dimension of the black rectangle corresponds to the number of excess

horizontal tracks and the y-dimension corresponds to the number of excess vertical tracks.

In Figure 4.9(a)and (b), the FPGA has 8 horizontal and 8 verticaltracks per qblock. In this

case, the algorithm is unable to remove all the congestion. We then increased the routing

resources to 12 horizontal and 12 vertical tracks per qblock and Figure 4.9(c) and 4.9(d)

show the congestion before and after running the algorithm, respectively. In this case, we

get a congestion free solution. The total wire-length was 967 for 4.9(b) and 910 for 4.9(d).

The above experiments illustrate the effect of the algorithm for hypothetical FP

GAs. We also interfaced RFR with Xilinx tools [Xilinx 89], to test the advantage of using

the plackingconcept fora real,commercial FPGA. Our interface only handles combinational

circuits.

We used the Xilinx XC3000 series chips as our taxget architecture. To test our

algorithm, we needed examples with difficult routing characteristics. A few of the Chortle-
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Figure 4.7: Effect of integrating physical design and logic synthesis. The algorithm trades-

off qblock count for minimizing total wire-length. The x-axis has the FPGA size in terms

of number of qblocks, and the y-axis plots the qblock count and wire-length, normalized to
their value (of 177 and 2683 respectively) corresponding to an FPGA of size 14 x 14.
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Figure 4.8: Illustrates how the wire-length would have increased with FPGA size, had the

qblock count of the implementation been kept constant. The x-axis has the FPGA size in

terms of number of qblocks, and the y-axis plots the wire-length, normalized to the value

corresponding to an FPGA of size 14 X 14.
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Figure 4.9: Routing congestion before [(a) and (c)] and after [(b) and (d)] running the

algorithm in mode 1. (a) and (b) have 8 tracks, and (c) and (d) have 12 tracks. The total

wire-length was 967 for (b) and 910 for (d).
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mapped solutions [Francis 91] had such characteristics, i.e., when these examples were

placed and routed on Xilinx 3000, using apr (Xilinx's place and route tool), some of the

nets remained unrouted 2.

Our experimental procedure consisted of (1) reading in the Chortle mapped ex

amples (2) performing placking(as described in 4.5.5) (3) and finally doing place and route

using apr. We used a = 1.0 and /? = 4.0. Allowing infeasibilities did not help much.

We used Chortle's AND and OR nodes as our IOLs. Table 4.3 shows the results. The

algorithm trades-off CLB count for routability. The CPU time shown is for the DEC 5000.

The last column lists the Xilinx part used. duke2 and alu2 could also be fitted into 3030,

but there was no improvement in routing, after RFR.

Example
Input circuit After RFR Xihnx Part

(CLBs available)CLBs Nets CLBs Nets Time (s)
duke2

alu2

alu4

92

93

152

15

7

51

108

101

171

8

2

17

3005

3120

4488

3042 (144)
3042 (144)
3064 (224)

Table 4.3: Results of running RFR for XC3000.

From the table, we see that there is a significant reduction in the number of

unrouted nets (by a factor of 50%) or more, for all the 3 examples. The placking scheme

is only partially effective, since the output of RFR still has unrouted nets. Since the IOLs

axe decomposed at the beginning, and the decomposition is kept fixed during the rest

of the algorithm, it may be possible that the initial decomposition limits the number of

different mapping solutions possible. Dynamically changing the decomposition, based on

routing congestion information, during the course of the simulated annealing could make

the algorithm more effective.

4.7 Conclusions

In this chapter, we presented heuristic techniques to alleviate the problem of ob

taining routable FPGAs. These techniques axe based on performing placement and packing

in tandem, a process we call "placking." Global routing using RSTs is also done during

placking, to measure routing congestion as the packing progresses. Simulated annealing

2The single output mapping solutions of mis-pga [Murgai 91] had very few unrouted nets for these
examples.
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has been used to bring together placement, routing and packing. Other techniques, hke a

greedy approach which chooses the best of allpossible exchanges at each step, or one similar

to Kernighan-Lin partitioning can be investigated.

We have not addressed timing issues directly (indirectly, by minimizing the wire-

length, we decrease the delay in the route). An extension of this work would be to incor

porate timing into the simulated annealing cost function. This would necessitate a timing

analyzer to estimate the delay through an RST global route.

The final solution is dependent on the initial IOL decomposition. There are dif

ferent ways to decompose the input Boolean network into IOLs, and we need to choose

one that has favorable routing characteristics. Instead of keeping the decomposition fixed,

one could dynamically vary it during the course of the annealing, using congestion and

placement information.
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Chapter 5

Performance-oriented Mapping

In this chapter, we present a mapping technique, for LUT FPGAs, which takes into

account the delay in the nets during the mapping process. Hence the name performance-

driven mapping. The algorithm is called dpmap, ttdp" standing for dynamic programming
(on which the algorithm is based). As outlined in Chapter 3, our approach extends the

ideas of library-based mapping (LBM) used in standard cell and gate array designs. Since

the LBM ideas form the core of dpmap, we first review the tree-covering approach used
in standard cell mappers [Keutzer 87, Detjens 87], which use LBM. The important advan

tage of the tree-covering approach is that it can be used to optimize area, delay or their

combination, just by changing the cost computation appropriately. Performance oriented

technology mapping [Touati 90] and optimizing area under delay constraint [Chaudhaxy 92]
axe extensions ofthe hbrary-based mapping approach. Why then,has the Hbrary-based ap

proach not been used for LUT FPGA mapping? This question is answered in the following

section. We then show that the problems associated with the LBM approach can be over

come by appropriate choice of a primitive cell, namely a 2-input LUT (TIL). We alsoshow

how the mapping process can be made faster by taking advantage of the special structure

of the library patterns. This is followed by a description ofour experimental procedure and

results. Finally, we conclude with a list of shortcomings and possibilities to be investigated.

5.1 Motivation

Routing(net) delays axe significant in LUT FPGAs and should be accounted for

during the mapping phase. However, because of the inabihty ofmost LUT FPGA mappers
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to handle net delays, current delay optimization is limited to depth optimization [Cong 92,

Francis 91a], where the number of logic levels in the mapped network is minimized.

If a network has L levels of logic, the delay through the network *£>, using the

delay analysis technique of Figure 2.4, is given by,

to = L x tLM -rtp + tj,

where tLM represents the delay through a logic module (this corresponds to J,,0 in Fig

ure 2.4, assuming identical intrinsic delay Vi, and Vlogic modules), tp represents the delay

through the input and output pads, and tj represents the delay through the (L + 1) levels

of interconnect. If tj is ignored, then to = Lx tLM + *P> and minimizing L, minimizes to,

since tp is a constant quantity.

However, delay through the interconnection is significant, and at times dominates

the logic delay. To demonstrate this point, we have tabulated the worst-case delays for some

combinational benchmark circuits 1. These delays are after place and route on the smallest

Xihnx [Xihnx 89] XC3000 series chip that has enough number of CLBs to fit the design.

Each logic module has 8ns delay (i.e., tiM = 8ns), and input and output pads together

have 33ns delay (i.e., tp = 33ns). Two tables list our results, Table 5.1 and Table 5.2. All

circuits in Table 5.1 have 3 levels of logic each, and all circuits in Table 5.2 have 4 levels of

logic each.

Consider the 'Delay' column of Table 5.1. Although each circuit has 3 levels of

logic, the delayvariesby a factor of about 60%. The delay through the logic modules, t LA/.

and the delay through the input and output pads is the same for each of these circuits.

8 x 3 + 33 = 57ns. But, the delay through the interconnect, tj, is different and is the cause

of this wide variation. We define a quantity, the routing delay per level, tja, given by

ti
tRL -

(L + l)
tp-tp - LX tLM

(L+l)

For example, for the benchmark circuit 9symml, to = 72.8ns, L = 3, tp = 33ns, and tLM
= 8 ns, giving

72.8 - 33 - 3 x 8
tRL =

(3+1)

1We have used MCNC [MCNC] benchmark circuits. In the tables, examples beginning with the letter *c\
except for clip and count, are combinational parts of sequential benchmark examples. For example, cex2 is
the combinational part of sequential benchmark ex2.
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Circuit Delay (in ns) Routing delay
per level (ns)

9sym 69.3 3.1

clion9 70.2 3.3

cs8 70.6 3.4

9symml 72.8 4.0

rd84 77.1 5.0

misex2 93.3 9.1

cex2 95.3 9.6

cdkl6 102.8 11.5

b9 107.2 12.6

53

Table 5.1: Worst-case delays for some benchmark examples. All the circuits have 3 levels

of logic each. Each circuit is placed and routed on the smallest Xihnx 3000 series chip that
has enough number ofCLBs to fit the design. The circuits have been arranged in ascending
order of delays.

Circuit Delay (in ns) Routing delay
per level (ns)

cex7 86.3 4.3

cex5 94.0 5.8

cex4 99.5 6.9

cs420 102.0 7.4

f51m 109.3 8.8

clip 120.5 11.1

count 133.1 13.6

apex7 168.6 20.7

Table 5.2: Worst-case delays for examples with 4levels of logic each. Compared to Table 5.1,

some circuits have lower delay than 3-level circuits.
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15.8

4

= 3.95 ns

In the second column of Table 5.1 and 5.2, we tabulate the tRL for each circuit. If

tRL were the same for circuits with same number of levels, then minimizing the number of

levels would indeed minimize the total delay, to, and this is the implicit assumption made

by depth minimizing algorithms. However, as seen in the second column, this is not the

case; tRL varies widely.

As a result of this variation in tRL, we see that some circuits with 4 levels of logic

(cex7, cex5, cex4 and cs420) have lesser delay than circuits with 3 levels of logic (cdkl6,

b9).

The conclusions from the above experiment axe that the interconnection delay

cannot be assumed to be a constant (hence, it cannot be ignored during the mapping), and

that this delay could well be the dominating delay (eg., for apex7 in Table 5.2, L xtLM+tp

= 65 ns, whereas t/ = 168.6 - 65 = 103.6 ns).

We proceed to account for the interconnect delay during the mapping phase, in a

manner similar to the performance-driven technology mapping approach [Touati 90] used

for standard cell design styles. This approach uses hbrary-based mapping, which offers us

three main advantages.

Firstly, we wish to have a single mapper that can be used across an entire class

of devices based on LUTs. There axe many such FPGAs in the market (eg., the Xihnx

2000, 3000, 3100 and 4000 series chips, and the AT&T ORCA chips) and more may be

coming soon. Implementing a mapper from scratch for each architecture is not the desired

approach. Handling several technologies in the case of standard-cell and gate array design

styles has been achieved by using the hbrary-based mapping approach. We would hke to

use a similar approach for LUT FPGAs.

Secondly, as already explained above, interconnect delay needs to be taken into

account during mapping. The hbrary-based approach provides a simple mechanism to

account for net delay estimates during the mapping phase.

Thirdly, FPGA devices come in families, devices within a family differing in pin

count and number of logic modules (larger devices cost more). The user must be given

the flexibihty to choose amongst these devices. Hence, the mapper should provide the

user with the flexibihty to choose from several different solutions, with different areas and
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delays, instead of providinga single best-area [Francis 91, Murgai 91] or best-delay [Cong 92,

Francis 91a, Murgai 91] solution. In other words, the mapper should provide a mechanism

for area-delay trade-off. Again, the hbrary-based mapping approach provides this facility.

5.2 Terminology

LBM stands for Library-Based Mapping. LBM is the process of implementing a

given Boolean network (input network) using a given set of gates, called the gate library.

TIL is the acronym for a Two-Input LUT, having one output. Figure 5.1 shows

the symbohc representation of a TIL.

r^

Figure 5.1: Symbohc representation of a 2-input LUT (TIL).

TINN stands for a Two-Input Nodes Network. It is a network in which every

internal node has exactly 2 inputs. There is no restrictionon the function being implemented

by a node.

A primitive cell or base cell is a simple function or structure, from which every

other function or structure can be constructed. For example, in the case of standard cell

mapping, the input network, and the hbraxy gates axe represented as a network of INVs

and 2-input NANDs. The INVs and 2-input NANDs axe primitive cells.

A library pattern is a representation of a hbraxy gate in terms of primitive cells.

The subject graph or subject network is the representation of the input network in

terms of primitive cells.

5.3 Review of library-based mapping

In the case of standard cells and gate arrays, technology mapping is the process

of implementing a given Boolean network (input network) using gates from a given library.
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A successful technique for solving this is based on an approximation of the DAG covering

problem, first proposed by [Keutzer 87]. The input network is decomposed into a forest of

trees, and each tree is optimally covered using patterns representing the library gates. In

this section, we review this basic tree-covering algorithm. The dpmap algorithm uses this

very algorithm, and hence this background is essential to understand the new approach.

5.3.1 Tree covering algorithm

The first step is to represent the input network in terms of primitive cells (eg.,

2-input NANDs and INVs). This network, consisting only of 2-input NANDs and INVs,

but logically equivalent to the input network, is called the subject graph. Each hbraxy gate is

represented as a tree of primitive cells (if there axe many such trees, each tree is stored). The

gate representations will be called hbraxy patterns. Associated with each library pattern is a

cost. The subject graph is partitioned into a forest of trees, and each tree is then optimally

covered by the hbraxy patterns [Detjens 87]. The optimal covering is based on a dynamic

programming algorithm.

In Figure 5.2, we show hbraxy patterns for an example library consisting of 4 gates,

viz., 2-input NAND (nand2), an INV (inv), 3-input NAND (nand3) and a 3-input AND-

OR-INVERT (aoi). These gates axe represented in terms of the primitive cells, 2-input

NAND and INV. For ease of explanation, we assume every gate has unit area cost.

The dynamic programming based covering algorithm proceeds from the leaves to

the root (i.e., depth-first traversal). At each node, all the hbraxy patterns that match at

this node are enumerated, and the cost of each match is evaluated. The matching pattern

with the least cost is stored at the node. After processing the root node, in this manner, a

simple back-tracing will yield the mapped solution.

Consider the mapping of Boolean function

Y = a,c'+ b'c' + d+efg+h

using the example library of Figure 5.2. In Figure 5.3, on the left half, we show the subject

network corresponding to Y, and on the right half, we show the mapped network, where

each shaded region corresponds to a gate in the example hbraxy. The numbers on the left

correspond to the best cost stored, for a minimum-area cost mapping.

The cost computation is based on the metric being optimized. For example, for a
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nand2 inv aoi

Figure 5.2: Example gate Ubraxy with 4 gates. The hbrary patterns axe trees of INV and

2-input NANDs.

minimum-area solution, the cost of the match, m, at a node, n, is given by

cost(m) =area(m) + ]P cost(vi).
Vi€inputs(m)

Primary inputs have zero cost.

For a minimum-depth solution,

cost(m) = 1+ max (cost(vi)).
vi€input8{m)

Primary inputs axe at zero depth.

Using the delay model of Chapter 2, a minimum-delay solution can be obtained

by computing the cost as

cost(m) = 7 x #fanouts(n) + max (cost(vi) + delayv.(m)),
Vi€inputs(m)

where 7 is an estimate of the delay per fanout. delayv.(m) is the propagation delay from

input Vi to the output, for gate m, and #fanouts(n) is the number of fanouts of node n.

A combination of area and delay costs can be computed by using a linear combi
nation, eg.,

cost(m) = w X areajcost(m) + (1 - w) x delayjcost(m)

where 0 < w < 1.
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Figure 5.3: Tree covering for standard cells.
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5.3.2 Partitioning DAGs

There are many ways in which the input network can be partitioned into a forest

of trees. One approach is to partition at every node that has multiple fanouts (eg., see

Figure 5.4). This could result in a lot of small trees, and the approach does not allow logic

duphcation. Another approach, single-conepartitioning, uses only primary outputs as roots

of trees [Detjens 87]. This allows logic duplication (where the trees overlap). Usually, this

approach yields better results for timing optimization.

Figure 5.4: Partitioning a DAG by a break at every multi-fanout node

5.4 Why has this not been done before?

There have been attempts to extend the LBM approach to LUT mapping [Francis 92].

However, these did not meet with much success, since it was thought that the number of

hbrary patterns required to represent the LUT would be impractically large.

To quote from [Francis 92]: The major obstacle to applying library- based technol

ogy mapping to LUT circuits is the large number of different functions that a K-input LUT

can implement. The function implemented by a K-input LUT is determined by the values

stored in its 2A memory bits. Since each bit can independently be either 0 or 1, there are

22 different Boolean functions of K variables. For values of K greater than 3 the library

required to represent a K-input L UT becomes impractically large.

A 4-input LUT can implement all the 65,536 functions of 4 variables. A 5-input

LUT can implement all the 4,294,967,296 functions of 5 variables. The number of patterns
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to be stored in the library can be reduced by noting that some patterns axe equivalent after

a permutation of inputs. Further reduction is possible by allowing functions differing by

input or output inversions to share the same representation. In spite of this reduction, the

number of functions is still impractically large. For the reader's convenience, the table of

pattern count from [Francis 92] has been reproduced here as Table 5.3.

without with with

K permutations permutations permutations
and inversions and inversions

2 16 12 4

3 256 80 14

4 65536 3984 232

Table 5.3: Previous hbrary sizes, for A"-input LUT mapping

5.5 TIL based LUT library

Previous attempts to use LBM for LUT mapping implicitly assumed that the

hbraxy patterns would have to be represented in terms of 2-input NAND and INV primitive

cells. However, the tree covering algorithm does not dictate the choice of primitive cells.

By choosing the primitive cells appropriately, the number of hbrary patterns can

be significantly reduced. This section shows how to use a 2-input LUT (TIL) as a primitive

cell, and the advantages thereof.

5.5.1 TILs as primitive cells

A TIL can implement all functions of 2 variables. Hence it can cover any node

with 2 inputs. Figure 5.1 introduces the symbol for a TIL.

A 3-input LUT can be decomposed into a tree of TILs. There axe only 2 such

trees: one with the root node having a left child as leaf and right child as a node with

2 children leaves; and the other with the root node having a left child as a node with 2

children leaves and the right child as leaf. Figure 5.5 shows these decompositions.

A 4-input LUT can similarly be decomposed into a tree of TILs. There axeonly 5

such trees. Figure 5.6enumerates all the tree patterns that need to be storedin the mapping

Ubraxy, for a 4-input LUT based FPGA mapping. This hbraxy includes the 3-input and

2-input LUT patterns, since functions with 2 or 3 inputs can also be implemented in a
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Figure 5.5: 3-input LUT as trees of 2-input LUTs

A'-input Total

A' LUT

Patterns

Patterns

2 1 1

3 2 3

4 5 8

5 14 22

6 42 64

7 132 196

8 429 625

9 1430 2055

10 4862 6917

Gl

Table 5.4: Number of patterns required to be stored for various values of A', where K is

the number of LUT inputs.

4-input LUT. There are 8 patterns in all (For a A'-input LUT mapping, patterns for all

LUTs with < A' inputs must be stored).

5.5.2 Small library

Table 5.4 tabulates the number of patterns per A'-input LUT, and the total number

ofpatterns required to be stored in the hbrary,for values ofA' < 10. The number ofpatterns

required for a A'-input LUT is given by

A'-i

N(K)= Y, N(i)N(K - i),
t=i
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Figure 5.6: Library patterns for a 4-input LUT mapping
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with jV(1) = A'(2) = 1. A A'-input LUT hbrary will have S(A') patterns, where

K

S(A-) = J>(i).
i=2

Compared to Table 5.3, we note that this hbrary is significantly smaller.

5.6 dpmap Algorithm

To use the concept of the TIL as primitive cell, the subject graph should be such

that each node in the subject graph can be covered by any TIL. In other words,everynode

in the subject graph should have exactly two inputs. The node can have any function, the

only restriction is to limit the number of inputs to 2. Such a graph is called a TINN (for

Two-Input Node Network). Once the subject graph has been converted into a TINN, the

tree covering algorithm can be used to cover the TINN by the LUT patterns (of the previous

section). The complete mapping procedure therefore has the following main steps.

1. Convert the input network into a TINN.

2. Represent the LUT in the manner shown in the previous section.

3. Use the tree-covering approach to cover the TINN with the LUT patterns.

5.6.1 Input network -> TINN

As a simple extension of the standard cell based technique, the input network can

be converted into a TINN in the following manner (see Figure 5.7).

1. Decompose the input network into 2-input NANDs and INVs, using the same tech

nique as for standard cell technology mappers.

2. Absorb each INV into its fanout or fanin gate, whicheveris convenient (eg., if an INV

fans out to multiple nodes, absorb it into its fanin).

An alternate technique would be to have a complete 2-input hbraxy, as used by

conventional standard cell mappers. The input network is first mapped into the gates of

this hbrary, using a standard cell technology mapper.
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ab cdefgh

nand-inv network

I T I I

ab c d ef gh

2-input node network

Figure 5.7: The network of Figure 5.3 is converted into a TINN by absorbing the inverters.
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5.6.2 Tree covering

We set the cost for match m, at node n, as

cost(m) = w x areajcost(m) + (1 - w) x delay.cost(m).

The areajcost is computed as

area.cost(m) =1+ ^ area.cost(vi),
vi€input8(m)

where the '1' represents the cost ofa single LUT. The delay.cost is computed as

delay.cost(m) = dLUT +7 x #fanouts(n) + max (delayjcost(vi)),
u,-6«nput«(m)

where 7 represents the delay per fanout and dLuT represents the delay through the LUT.
#fanouts(n) is the number of fanouts of n.

Using the above cost functions, four different mapping solutions axe possible:

!• Performance-driven: Net delay is taken into consideration by setting an appropriate
value for 7.

2- Area-delay trade-off: Stepping through different values of w, solutions with different
areas and delays axe obtained.

3. Minimum depth: wisset to0,7 is set to0and dujT isset to 1. This gives a mapping
solution with minimal topologicaldepth.

4. Minimum area: w is set to 1. This gives a mapping solution withminimal LUTcount.

Figure 5.8 shows how the network of2-input nodes ofFigure 5.7 is covered by the
LUT patterns of Figure 5.6.

5.6.3 Handling reconvergent fanout

Consider the DAG of Figure 5.9. Nodes 6 and c have 2 fanouts each. The fanouts

of b reconverge at node Y. Let us assume that we axe using a 3-input LUT hbraxy (see
Figure 5.5). The function at Y can be expressed as a 3-input function with inputs a, band

c, thereby implying that a 3-input LUT pattern with inputs a, b and c should match at

node Y. However, using the hbraxy patternsof the Section 5.5, we will need a 5-input LUT

pattern (see Figure 5.10) to cover the nodes of the 3-input LUT match at node Y.
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a b c d e f g h

LUT count minimization

a b c d e f g h

Depth minimization

Figure 5.8: 4-input LUT mapping
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Figure 5.9: A 5-input LUT pattern is required to cover a 3-input LUT match, because of

reconverging fanouts.

Unless we use the 5-input LUT pattern, this match at node Y will not be found.

This example suggests a general strategy to handle reconverging fanouts. If we axe perform

ing a A'-input LUT mapping, wemust usea (A" +s)-input LUT hbrary during the matching

process. Here, s (> 0) is called the safety-factor. For each (A* -I- i)-input LUT match, mk+i,

where 0 < i < s, the actual number of inputs, nact, is counted using the formula

nact = K + %- nj0.

nj0 is the numberof fanins that fan out to more than oneof the match'sinputs. If nact > A',

the match is discarded. Otherwise, the match is treated as valid and its cost is computed.

Experiments show that values of s > 5 do not alter the mapping solution, and
hence s ** 5 seems a reasonable value for the safety-factor.

5.7 Fast tree matching

It can be observed that the LUT patterns are very regular. A LUT with A' inputs
has patterns constructed from patterns of LUTs with x inputs, x < K. For example, in
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Figure 5.10: This 5-input LUT pattern can cover the nodes in Figure 5.9.

Figure 5.6, the 4-input LUT patterns axe constructed from 2-input LUT patterns and 3-

input LUT patterns. Using this observation, we can speed up the pattern matching process

in the following manner.

5.7.1 Principle

At each tree node, an array of best costs is stored. The array index corresponds

to the number of inputs in the matching pattern. At index i, we store the combination 2 of

the fanin costs of the best match with i inputs. To find the best K input pattern match at

node n, we combine the best x input pattern cost of the left child of n with the best A' - x

input pattern cost of the right child of n, for x = 1.. .(A' - 1), and store the pattern with

the best cost. The best cost amongst all patterns with i inputs, 1 < i < A" is stored at

index 1. The cost at index 1 includes the cost of the matching pattern, whereas the costs

at the other indices represents only the fanin costs. For example, consider the case of LUT

count minimization. Let N be the node under consideration. If c(i) represents the cost at

2The manner in which the fanin costs are to be combined is dependent on what is being optimized. If it
is LUT count, then the combination is an arithmetic sum of the fanin costs; if it is delay, then the combining
operation chooses the maximum of the fanin delays.
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index i, then the minimum fanin cost is given by

m = min {c(i)l,

then

c(l) = m + Ai,

where A/ (= 1) is the area of a LUT.

An t-input pattern match requires (t - 1) cost computations, and since a A'-input

LUT mapping requires (A' - 1) pattern matches, at each node we require

»=2 Z

cost computations. Thus the number of pattern matches axe 0(A'2). This means that the

effective hbrary size is 0(K2) as a consequence of fast-matching.

5.7.2 Example

The fast matching technique is best illustrated by means ofan example. Consider

Figure 5.11 where we show the mapping procedure, for the TINN of Figure 5.7. The
objective is to obtain a minimum area (LUT count) mapping solution. At each node, an
array ofbest costs is shown. The array index is denoted by i, and runs left to right. The
area cost (i.e., LUT count) is shown below each index. All theprimary input nodes (i.e., a,
6, etc.) have 0 area cost. For example, consider the array at the left ofthe 2-input NAND
gate 5. There is only one LUT pattern matching at this gate, and that is the 2-input LUT
pattern. The fanins to this pattern axe a and 6, and each has a fanin cost of 0. Hence, the

sum of the fanin costs (since we axe minimizing area, the combination is a sum) is 0, and
thisis stored at index 2. Assuming all LUTs have the same axea cost of1, the best cost at
S, stored at index 1, is = 0 + 1 = 1.

As a more detailed example, consider the computation of the best 4-input LUT
pattern match at node N in Figure 5.11. The following costs have to be first computed.

1. C13, corresponding to the left child's 1-input and right child's 3-input costs, as shown
in Figure 5.12.

2. C22, corresponding to the left child's 2-input and right child's 2-input costs, as shown
in Figure 5.13.
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1 2 3 4

3 2 2 2

§ A1 2 3 4

2 2 2lJ

1 2 9 4

1 1 1 0

1 2 3
1 1 0

A

n

a b c d

1 ? 3

1 1 0 6
1 ?

1 o 6
e f g h

Figure 5.11: Example to illustrate fast tree-matching
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fanin cost = 1+0 = 1
total cost =1 + 1=2

Figure 5.12: Computing cost C13.

71
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fanin cost = 1 + 1=2
total cost =2 + 1 =3

a b c d e f g

Figure 5.13: Computing cost C22.

3. C31, corresponding to the left child's 3-input and right child's 1-input costs, as shown

in Figure 5.14.

Each cost computation involves just two memory look-ups and one addition, and

is hence computationally inexpensive. The minimum of Ci3, C22 and C31 is stored as the

fanin cost at index 4, for the array at node N in Figure 5.11.

5.7.3 Drawbacks

The fast tree matching approach gives optimal results when the subject graph is a

tree, with leaves having only one fanout each. If the leaves have more than one fanout, then

the approach can givesub-optimal results. Consider the mapping shown in Figure 5.15(a).

The tree shown is a part of a larger circuit. The best costs, for area minimization, axe shown

in parentheses at each node. Nodes a, b, e and / are multi-fanout nodes, and we assume
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fanin cost = 1 + 1
total cost =2 + 1

a b

Figure 5.14: Computing cost C3J

e f
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that the DAG has been partitioned into trees by breaking at such multi-fanout nodes (see

Figure 5.4).

In Figure 5.15(a), consider the 3-input LUT matching at node w. Two matches

are possible, as shown by the ovals in the figure. However, the shaded oval has lower cost

(5) compared to the unshaded oval (6). Hence the shaded oval is stored as the best 3-input

match, at array index 3 at node w. However, this locally optimal solution (locally at w,

that is), is not globally optimal. Consider node x, where the multiple fanouts of node 6

recon verge. Let us consider a 4-input LUT matching at node x. Three possible 4-input

LUT matches are possible, as shown in Figures 5.15(b), 5.15(c) and 5.15(d). Figure 5.15(d)

has the least area cost; but the fast matching approach cannot find this match. This is

because the best match is obtained by combining the unshaded oval match at node w with

the 2-input match at node p. However, fast match stores only a single match at each index.

Since the unshaded oval was discarded in favor of the shaded oval at node w, the best

4-input LUT match at node x is lost.

5.8 Experimental results

The dpmap algorithm has been implemented in the SIS framework. Experimental

results axe reported in this section. We have compared our performance-driven mapping

results with mis_pga. Area-delay results are also reported. In addition, for sake of compari

son with prior work, we also ran the mapper with depth minimization and area minimization

options.

For all our experiments, we started with a network optimized by standard methods

[Saldanha 89]. We decomposed the input network into a network of 2-input nodes, using a

2-input hbrary (the second approach described in the Section 5.6.1). The network was then

partitioned into a forest of trees and the tree-covering algorithm was used on each such tree.

We tried both techniques of partitioning a DAG into trees (as described in Section 5.3.2).

and we have reported the better of the two results (since dpmap is fast, it is easy to try

both techniques). We performed a 5-input LUT mapping (i.e., A" = 5) and used fast tree

matching. To account for reconvergent fanouts, we set the safety factor, s, to 5. Our

MIS script is: readJibrary 2ip.genlib, map, dpmap. (dpmap performs the LUT mapping).

dpmap is fast, and in general takes less than a minute of CPU time, on a DEC 5000.
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cost = 8

e(1) f(1) e(1) f(1)

cost = 8 cost = 7

e(1) f(1)

c(0) d(0) c(0) d(0)

(c) (d)

Figure 5.15: Example to illustrate the fast matching drawback
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5.8.1 Performance-driven mapping

In this experiment, the net delays are incorporated into the cost computation

by using the delay model of Chapter 2. The mapping solutions were placed and routed

on the Xihnx XC3090 [Xihnx 89], using Xilinx's apr software and a delay analysis was

performed using Xilinx's XDelay timing analyzer. Table 5.5 shows the delays for some

MCNC examples (we have shown only examples with delays more than 100 ns, and those

that could fit into the 3090). Our results axe compared with mis_pga. It was found (by

trial and error) that a 7 of 1.7 ns/fanout gives a good estimate of the net delay, when the

number of logic blocks is less than 60% of the maximum. The Xihnx part used had a CLB

delay of 5.5 ns, and hence dnjT was set to 5.5 ns.

Example dpmap mis_pga delay
delay (ns) (in ns)

sao2 104.9 96.6

alu4 187.2 207.3

duke2 132.1 176.0

C499 118.8 216.8

apex2 104.0 124.0

Table 5.5: Performance-driven mapping results of dpmap. Delays axe tabulated after place

and route.

From the table, it can be observed that dpmap does significantly better, in all

examples except sao2. A single value of 7 has been used for all the benchmarks. This value

may not be suitable for some examples, and sao2 is one such case.

5.8.2 Area-delay trade-off

LBM provides a framework to do effective area-delay trade-offs. In Figure 5.16,

we see that by varying the value of w, the relative weights of the area and delay costs (see

Section 5.6.2), dpmap generates solutions with different number of LUTs and levels. The

experiment was conducted with 7 = 0 and dnjT —1, as in the case of the minimum depth

experiment.

5.8.3 Minimum depth

To put this work in perspective with published techniques, we compare the min

imum depth mapping solution of dpmap with flowmap[Cong 92] in Table 5.6. flow map
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Number of levels

100.00 150.00 200.00

I e64

-T38T
apex2*
alu2~

_3uke2
apex6

~ alu4

1

1 Number of LUTs
250.00

Figure 5.16: Area-delay trade-off.
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Example dpmap flow map

LUT dpt
2ip lib dmig

LUT dpt LUT dpt

z4ml 8 3 7 2 5 2

misexl 14 3 18 3 19 3

vg2 34 3 33 3 52 4

count 40 5 38 5 43 5

9symml 51 4 63 4 96 5

9sym 69 5 88 5 148 5

apex7 78 4 91 4 100 4

rd84 38 4 54 4 70 4

e64 126 9 132 9 132 9

C880 132 8 152 8 146 8

apex2 91 6 112 6 192 5

alu2 155 10 175 10 168 9

duke2 150 4 203 4 203 4

C499 74 4 78 4 78 4

apex6 243 5 305 5 397 6

alu4 145 9 142 9 253 9

sao2 47 6 42 6 77 7

rd73 25 4 27 4 30 5

misex2 36 3 54 3 53 3

clip 36 5 40 4 52 4

b9 52 3 54 3 92 3

Table 5.6: Minimum-depth mapping solutions. LUTs columns list the number of 5-input

LUTs and depth columns list the maximum topological levels.

gives the optimal depth mapping solution for a given input network, flowmap was run

in the default mode. Before executing flowmap, the input network must be feasible, i.e.,

the number of inputs for every node should be less than the LUT inputs. Typically, the

number of inputs is restricted to 2. The flowmap package has a command dmig to convert

the input network to a feasible network. However, we found that our 2-input Ubraxy based

conversion yields better results. Both methods axe listed in Table 5.6. From the table, we

observe that dpmap produces the minimum depth solution (comparing with the 2ip lib

column of flowmap) in all but 2 cases (z4ml and clip). The LUT count is lesser by 11%

in the case of dpmap.
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Example dpmap mis.pga chortle-crf Xmap
z4ml 6 5 7 9

misexl 13 11 11 11

vg2 25 20 21 24

count 43 31 31 31

9symml 46 7 44 55

9sym 65 7 59 73

apex7 67 60 60 65

rd84 37 10 35 36

e64 95 80 80 80

C880 101 82 88 103

apex2 73 67 64 81

alu2 125 109 116 126

duke2 130 110 111 127

C499 81 68 89 75

apex6 214 182 198 231

alu4 86 55 70 98

sao2 33 28 27 37

rd73 21 6 16 21

misex2 34 28 28 28

clip 35 28 31 38

b9 45 39 41 48

79

Table 5.7: Minimum-area mapping solutions. The table lists the numberof 5-input single-
output LUTs

5.8.4 Minimum area

Table 5.7 shows the number of 5-input LUTs needed to implement several bench

mark examples. Results are compared with mis_pga[Murgai 91], chortle-crf[Francis 91]

and Xmap[Kaxplus 91]. The numbers for these other algorithms are taken from [Murgai 91].
All use the same starting network.

dpmap alwaysdoes worse than mis_pga (mis_pga has better area results because

it performslogic optimization for LUTs along with mapping), and does worse than chortle-

crf in all but one example (C499). But it is encouraging to note that our simple covering

technique gives comparable results. Different decomposition techniques for the 2-input

network generation, and logic optimization techniques for LUTs need to be tried to improve
the results.
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5.9 Conclusions

In this chapter, we showed how to extend the performance-driven mapping and

area-delay trade-off capabilities of standard cell based mappers to LUTs. We introduced

the 2-input LUT primitive cell, and used it as a building block to generate a small, prac

tical hbrary. Using a linear delay model, we accounted for net delays during the dynamic

programming based mapping algorithm, and hence made the dpmap LUT mapper a truly

performance-driven mapping algorithm. The hbrary-based approach gives the mapper the

abihty to be used across a class of LUT based FPGA architectures. The special structure

of hbraxy patterns was exploited to reduce effective hbrary size to 0(K2), for A'-input LUT

mapping.

Experimental results indicate that the timing delays, after place and route are

better than mis_pga by about 17.5%. Area-delay trade-offs show that the solutions can

span across as many as three Xihnx chips; thus giving the user the choice between area,

speed and dollars. Depth minimization results axe as good as the flowmap results in all

but two examples; and dpmap has 11% less LUTs.

dpmap suffers from the disadvantage that the solution is dependent on the initial

decomposition of the network into 2-input nodes, a problem inherent with LBM techniques.

This explains the poor area-minimization results. A second disadvantage is that the LBM

approach cannot handle multi-output gates. Most of the LUT based FPGAs have multi-

output logicmodules (eg., the XC3000 has 2-output LUTs). Mappingfor such architectures

has to proceed in two steps:

1. Map for single output LUTs

2. Combine the mapped LUTs, using techniques described in [Murgai 91].

This workcan be extended to integrate mappingwith placement(as in [Pedram 91])

for better net delay estimations. Since LBM is widely used for standard cells, there is a

large body of researchers in this field, and any new developments can be easily incorporated

into dpmap. Libraries for other LUT based architectures, hke the Xihnx XC4000 series

and the AT&T ORCA need to be developed. The TIL need not be the only primitive cell;

number of patterns built from 3-input LUTs axe also small, and the mapping using these

patterns needs to be investigated.
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Chapter 6

Overview

In this part of the thesis, we focus on the device architecture of FPLDs. In Part

I, the question we tried to answer was: Given a class of devices (viz., LUT FPGAs), how

best can we design the mapping software? In Part II, our question becomes more general:

Given that we need to design a PLS, how best can we design the device?

In Chapter 1, wehsted the desirable features of a PLS, viz., automatic, performance-

driven, fast CAD tools and a silicon-efficient, low-delay FPLD. But, CAD and the device

axe interlinked. We cannot design fully automated CAD if the device architecture is very

complex and causes nets to remain unrouted. Nor can it be made performance-driven, if

delays in the interconnect are hard to predict. Similarly, the silicon-efficiency of a device

depends on how well the resources can be utilized by software aids. It is easy to design an

architecture which results in intractable solutions for the software.

Keeping in mind that the fixed quantity of logic and interconnect resources on a

device limits the freedom of the software, an architecture that is simple and easy to design

with and at the same time utihzing sihcon efficiently and having predictable interconnect

delays is needed. We further motivate the need for a new architecture in Chapter 7.

Routing is the stumbling block for FPLDs. Device architects have come up with

complex routing architectures, as can be seen in the XC4000 and the AT&T ORCA devices.

These require intelligent and complex routing software. And to ensure that routing comple

tion does not become a problem, abundant routing tracks axe being provided in the newer

devices, resulting in sihcon wastage. We design our new architecture, Dharma, with the

intent of keeping routing simple. The simplest way is to provide full connectivity, allowing

any logic module to be connected to anyother. Of course, if we bluntly apply this idea, the
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device will end up having nothing but routing! To make this full connectivity possible, it

should be possible to time-multiplex the routing hardware. In Chapter 8, we introduce the

concept of levelize-and-hold, and show how interconnect resources can be time shared. The

idea is to implement the multi-level combinational part of the circuit in a folded-pipeline

manner, re-configuring logic and interconnection in real time. The Dharma architecture is

then described in the same chapter.

To illustrate the Dharma architecture better, three example circuit implementa

tions are shown in Chapter 9; one sequential and two combinational circuit examples axe

shown.

As brought out in Chapter 1, the idea of real time reconfiguration can foster

families of FPLDs. Several variants of the basic architecture axe possible, and some of these

axe described in Chapter 10.

Synthesis techniques for Dharma axe then described in Chapter 11. We consider

only physical synthesis. Given a net-list, we need to allocate the logic modules to different

time shces, in a manner such that on-chip resources axe not exceeded. We show that this

problem can be formulated as an integer programming problem. We also show a modified

Kernighan-Lin technique to solve the allocation problem, and present experimental results

for this approach.

Chapter 12 presents analysis of the new architecture. Area and timing analyses

axe performed, and timing equations axe presented. Several circuit examples axe compared

with the XC3000 performance, using the delay equation.

The chapter on "Unexplored terrain" discusses potential ways to further the ar

chitecture related work. Dharma is a CAD-oriented architecture, the motivation being to

capitalize on software strengths, while avoiding software weaknesses. We point out two

synthesis problems which, if solved, can result in improved Dharma devices.
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Chapter 7

Why Another Architecture?

This part of the thesis presents a new architecture for an FPLD. Before we intro

duce the new architecture, we must examine the need for another architecture. As seen in

the FPLD classification tree (ignoring the shaded portion), Figure 1.3, there axe already
many different kinds of FPLDs, and one may have the erroneous impression that there are

enough devices out there already. In this chapter, we bring out the shortcomings of these

devices, justify the need for a better device, and also list the features that axe desirable in

an FPLD. The next chapter will then present the new architecture that meets these desired

features.

As described in Section 1.3, the programmable device forms a part of the PLS,

and for it to become a viable alternative to other ASIC design styles, the PLS must have

capabihties to meet high performance application requirements.

But, if we examine the history of FPLD evolution, we observe that these devices

started off as a means for fast prototyping, essentially to verify the design's logic function

correctness, with no regard to timing correctness. Over the yearsmany different architecture

styles have cropped up, with increased complexity, and more features, but without any real
consideration for the overall PLS improvement or performance improvement.

Let us concentrate on FPGAs, because at the present time only they have the

capabihty, albeit limited, to meet the high-performance ASIC maxket requirements. PLDs

axe not complex enough to implement large circuits.

Designing circuits on FPGAs has proceeded very much along the lines of MPGAs

(see Figure 1.4):

9**iuc**. £; . ?*-•. — •
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1. Map the circuit gates into the logic blocks of the FPGA chip.

2. Place the logic blocks on the FPGA plane.

3. Route the connections using the FPGA programmable routing resources.

If performance (clock speed of the FPGA-implemented circuit) is made a criterion,

at present there is no commercial FPGA chip and accompanying CAD tool which can guar

antee a given clock speed, or perform the above 3 steps while taking into consideration both

logic and routing delays. As a result, it is not yet possible to fully utihze a programmable

chip in high-performance designs.

Three kinds of drawbacks arise in current FPGAs 1 which use these steps in the

design process. We discuss them under the subheadings of Routing issues, Timing issues

and CAD issues.

7.1 Routing issues

As outhned in Section 4.1, the programmable interconnection in current FPGAs

presents two kinds of problems, routing completion (discussed in this section) and dominant

timing delay (discussed in the next section).

Two approaches have come up to tackle the routing completion problem:

1. Architecture approach

2. CAD approach

7.1.1 Architecture approach

In the architecture approach, the behef is that the routing completion is not a

real problem, and it arose simply because there were inadequate routing resources on the

chip. Therefore, the solution is to increase the routing resources and routing flexibihty.

Consider the Xihnx FPGA chips. Designers complain of routing completion in the XC3000,

but not in the case of the XC2000 or the XC4000. When XC3000 evolved out of the

XC2000, logic modules were made more complex, and the number of modules per chip

was increased, but the routing -structure was left unchanged. However, the latest XC4000

1We concentrate on LUT FPGAs, since these are the most popular (in terms of number of units sold).
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chips have significantly greater routing resources. Compared to the previous families, the

XC4000 has twice as many horizontal and vertical Long Lines that can carry signals across

the length or width of the chip; and the number of globally distributed clock signals has

been increased from two to four. Compared to the XC3000 family, the XC4000 family

has more than double the routing resources, and they are arranged in a more regular

fashion [Alike, Hsieh 90]. Figure 7.1 (from [Hsieh 90]) shows the routing flexibihty and the

four kinds of routing resources, viz., single hnes, double lines, long hues and switch matrix,

of the XC4000 family.

Similarly, the AT&T ORCA series of chips also have an abundance of routing re

sources [ORCA 93]. ORCA routing resources axe made from metal segments called resource

routing nodes (R-nodes). These R-nodes axe connected together at configurable intercon

nect points (CIPs) to form user-defined nets. There axe two types of R-nodes: internal and

inter-PLC (programmable logic cell). The internal R-nodes axe used to route signals within

the PLC. Internal R-nodes consist of programmable function unit (PFU) input R-nodes,

PFU output R-nodes, switching R-nodes, and bidirectional R-nodes. Inter-PLC R-nodes

axe used to route signals from one PLC to another. These axe known as xl R-nodes, x4

R-nodes, xL R-nodes, and direct R-nodes (see Figure 7.2). The xl R-nodes axe one PLC

long, the x4 R-nodes axe 4 PLCs long, and the xL R-nodes span the entire length or width

of the ORCA chip. The direct R-nodes allow high-speed connections to directly adjacent

PFUs on all four sides without using inter-PLC routing resources.

From Figures 7.1 and 7.2, we see that the architectural approach favors increase in

the routing resources and routing flexibihty. This eases the task of the router, and routing

completion is usually possible. However, sihcon resource has been wasted, and because of

larger number of switches per track, the parasitic capacitance on the track is quite large,

and hence causes poor timing performance.

7.1.2 CAD approach

In the CAD approach, the CAD tool designer assumes that the problem with rout

ing is because of ineffective CAD tools, and hopes to rectify the problem by modifying the

CAD tool. One such CAD approach has been discussed in Chapter 4. Other approaches

[Schlag 92, Trimberger 92] also use a similar principle, and try to modify the synthesis so

lution to alleviate the problem of incomplete routing. All these approaches have met with



88

iiiinii

~T~Programmable Interconnect Point

(a) CLB connections to single-length lines

(c) Switch Matrix connections

CHAPTER 7. WHY ANOTHER ARCHITECTURE?

4
6 pass
transistors
per point

(b) Double-length lines

global
long lines

switch
matrices"

(d) Long Line resources

long lines

Figure 7.1: XC4000 family routing resources. This family has more than twice the routing

resources of its predecessor, the XC3000 family.
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Figure 7.2: AT&T ORCA family routing resources. Figure shows the inter-PLC R-nodes.
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limited success. There is no single quantity that can be effectively used as a routability

measure, to determine apriori (i.e., before complete place and route) the routing character

istic of a synthesized solution, and having a variety of routing resources only increases this

problem.

7.1.3 Summary

To sum up, routing completion is a problem in FPLDs. The architecture approach

hopes to solve this problem by increasing the number of routing resources, but this could

result in sihcon wastage and increased parasitic capacitance. The CAD approach tries

to modify the mapping solution to improve routability, but it has met with only limited

success.

7.2 Timing issues

The second issue of concern with current LUT based FPGA devices is the propa

gation delay in the interconnections. This concern involves two factors.

1. Interconnection delay is the dominant delay.

2. Interconnection delay is difficult to estimate.

Let us study each in turn.

7.2.1 Dominant interconnect delay

We performed an experiment to study the interconnection (or routing) delay. We

used the Xihnx XC3000 series chips as a test bed. Several MCNC combinational benchmark

circuits were placed and routed on these chips. These circuits were mapped to Xihnx using

the mis-pga mapping technique [Murgai 91a]2. The mapper generates an output circuit

with 1-output LUTs, each having < 5 inputs. We assign one such LUT to each CLB on

the Xihnx chip. Each benchmark circuit is placed and routed on the smallest possible

XC3000 series chip (i.e., the smallest chip which satisfied the condition, # CLBs > #

LUTs). However, if there wereunrouted nets on such a chip, the next larger chip is used.

2It is possible that the results obtained could be different if a different mapping is used. However, the
objective here is to just get a feel for the routing delay. We are not interested in obtaining the best possible
answer.
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Example LUTs Levels CLB Routing R/C Xihnx CLBs

delay (ns), C delay (ns), R Part available

5xpl 21 2 16 38.8 2.4 XC3020 64

C499 199 8 64 249.3 3.9 XC3064 224

C880 259 9 72 237.9 3.3 XC3090 320

alu2 121 6 48 106.4 2.2 XC3042 144

alu4 155 11 88 195.5 2.2 XC3064 224

apex7 96 4 32 103.6 3.2 XC3042 144

b9 49 3 24 50.2 2.1 XC3020 64

bw 28 1 8 34.6 4.3 XC3020 64

chp 54 4 32 55.5 1.7 XC3020 64

count 81 4 32 68.1 2.1 XC3030 100

duke2 164 6 48 114.2 2.4 XC3064 224

e64 213 5 40 130.5 3.3 XC3090 320

f51m 23 4 32 44.3 1.4 XC3020 64

misex2 37 3 24 36.3 1.5 XC3020 64

sao2 46 5 40 52.4 1.3 XC3020 64

vg2 100 8 64 54.9 0.9 XC3042 144

Average 2.4

Table 7.1: Results from an experiment demonstrates that therouting delay is,on an average,
2.4 times the logic delay, for the XC3000 series.
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The results of this experiment are tabulated in Table 7.1. The second column

lists the number of 1-output LUTs in the examples, and the third column lists the number

of levels of logic on the path with maximum delay. Ah Xihnx parts were of speed grade

'70' (i.e., maximum speed of operation is 70MHz), and the CLB delay is 8ns for such

parts. Hence, the CLB delay, C, in column 4, is obtained by multiplying the corresponding

numbers in column 3 by 8. After place and route, using Xilinx's apr software, timing

analysis was done using Xilinx's XDelay timing analyzer. Column 5, in Table 7.1 lists the

worst-case routing delays, R, obtained from XDelay. We compute the ratio of routing to

logic delays, R/C, and this is tabulated in column 6. Column 7 hsts the part name of the

Xihnx part, on which the example circuit was placed and routed and column 8 hsts the

number of available CLBs in that part.

From the R/C column, we see that the interconnect delay is significantly larger

than the logic delay. Over the 16 examples hsted in Table 7.1, the routing delay is, on the

average, 2.4 times greater than the logic delay.

7.2.2 Widely varying interconnect delay

As shown in Section 5.1, the interconnect delay varies widely from circuit to circuit.

For circuits with the same number of logic levels, the routing delay varies by a factor

of about 60%. Our performance driven mapping algorithm, dpmap, tries to model the

interconnection delay, using the equation d(N) oc s(N), where d(N) is the delay on net

N, and s(N) is the number of sinks on net N. However, there is no single constant of

proportionality that works well. For the XC3000 series, the value 1.7 was found to work

well only when the chip was less than 60% populated. This wide variation is due to the

nature of the programmable interconnect resources. If two points on the chip, close to each

other, need to be connected, and if the interconnect resources in the interveningspace have

been used up, then the connection will have to be madein a round-about fashion, resulting

in a very different net delay.

7.3 CAD issues

The 3 steps, on page 86 are the responsibility of the CAD tools accompanying

the architecture. In case of failure to achieve satisfied routing the user may be required to

change placement and routing manually which is both tedious and time consuming.
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Steps 2 and 3 present two kinds of problems. Firstly, placement and routing tools

perform badly for FPGAs, when timing specifications need to be considered. Although there

have been new advances in timing-driven placement and routing techniques for standard

cell and gate array design styles, these techniques have not yet been successful for FPGAs.

This is partly because the synthesis procedure is unable to make an accurate estimate of

net delays, and partly because the programmable routing structure makes it difficult for the

placement tools to predict the router's behavior. Secondly, placement and routing tools are

time consuming, and constitute the main bottleneck in the programmable logic system's

design cycle time reduction.

In applications where the programmable device is used for prototyping, a different

problem arises. Whenever small changes to the design are made (either specification mod

ification or correcting errors), the steps have to be repeated. Not only does this process

take time, but the new solution produced after place and routemay be completely different

from the previous solution. From performance standpoint, this new solution could very

well invalidate the small change, and this means that additional design iterations will be

required to obtain the desired result. This can be quite frustrating to the designer.

7.4 Desired features

Keeping the above three issues in mind, we list the features desired in any FPLD

architecture.

1. Guaranteed routability. The programmable interconnect architecture should be such

that a given net can easily be routed.

2. Fast interconnections. Guaranteed routability may imply that there should be an

abundance of routing resources. However, for the FPLD to be useful in applications

with performance constraints, the routing architecture should be such that the delay

in the nets is as low as possible.

3. CAD friendly. With the overall PLS in mind, the architecture should be amenable,

from the CAD point of view. This means that the routing delays should be easy to

estimate, and that the CAD tools should be able to perform their function in a fast

manner.
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In other words, the chip architect has to acknowledge that certain problems are

too difficult to solve for the CAD tool, and hence design the programmable chip such that

these problems do not occur. Research in the area of combining architecture and CAD

is ongoing in the universities [Tseng 92, Brown 92]; but the efforts therein have been to

modify existing FPGA architectures.

7.5 New architecture

We present an entirely different architecture. It has programmable routing ele

ments and programmable logic elements hke current FPGA chips. However, the architec

ture has been designed such that steps 2 and 3 on page 86 are reduced to almost trivial

steps, and the CAD tool's responsibility now lies only in performing step 1. This means that

the mapping solution in itself decides the performance of the circuit. The new architecture,

named Dharma is presented in the next chapter.
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Chapter 8

New Architecture

This chapter describes the new architecture, Dharma. The chapter is divided into

three sections. In the first section, we explain the concept of levehze and hold, the central

principle on which Dharma hinges. The next section explains the architecture itself. The

last section describes the procedure involved in Dharma's internal operation.

8.1 Principle of levelize and hold

In this section, we develop the central idea on which Dharma is based. Our idea is

to time-share routing resources. We start by describing signal propagation in logic circuits,

and then showhowlevelization and the addition of latches can makeit possibleto time-share

routing.

8.1.1 Signal propagation in logic circuits

In Figure 8.1 we show the general model of a sequential logic circuit. It consists of

a combinational logic block and sequential elements(latches). The output of the latches are

fed as input to the combinational logic block, and some outputs of the combinational logic

block are fed back as inputs to the latches. In addition to the outputs from the latches, the

combinational block also gets inputs directly; and some of its outputs need not feedback

to the latches. The speed of this circuit is defined as the rate at which the latches can be

clocked. For correct operation, if Tc is the time-period of the clock, D the delay through

the combinational block and T8d the latch set-up plus latch delay times,

TC>D + Ted.
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Figure 8.1: A general model of a sequential logic circuit.

What do we mean when we say that the combinational block has delay 2?? Let

the inputs to the combinational block assume their correct value at time instant t,. Then,

if the time instant at which all outputs have assumed their correct values (as determined

by the function the combinational block is implementing) is t0, then D = t0 - i,. Some

of the outputs may assume their correct values earlier than the other outputs, but in the

definition of the delay D, we require all the outputs to have settled to their correct values.

How do signals flow in such a circuit? Assume that at some instant of time tx;, the

latch outputs and other inputs to the combinational block are ready. After D units of time,

the outputs of the combinational block are vahd, and after another T8 (latch set-up time)

units of time, the values can be latched. After Td (latch propagation delay) units of time,

the latch outputs are valid, and the signal flow cycle repeats.

Let us now observe how signals propagate through the combinational block. When

the number of inputs and outputs are large, the combinational block is typically imple

mented as a multi-level circuit, as shown in Figure 8.2.

The nodes of the directed acyclic graph (DAG) in Figure 8.2 represent single

output combinational gates, and the edges represent the interconnection between them.
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Figure 8.2: Multi-level implementation of combinational logic block.

The symbols within the nodes represent the delay through the gates and the interconnection

delay is marked by symbols on the edges.

For ease of explanation, and without loss of generality, let us assume the gatedelay

to be the same for all gates, and let it be S. Similarly, let us assume the interconnect delay

to be the same for every source-sink pair, and let it be 7. With these assumptions, we can

immediately see that the delay of the entire combinational block, D is given by

D = LS + (1+1)7,

where L is the maximum number of levels in the DAG.

In Figure 8.3 we show how the signals propagate with time. In the first time

interval 7, the signals propagate through the first level of interconnect, following which

they propagate through the first level of logic in 6 time units. Hence, at the end of 7 + S

units of time, after inputs are valid, the signals have reached the outputs of the first level

of logic. Similarly, the signals propagate through the other levels of logic and finally reach

the outputs of the Lth. level after time L(6 +7). One additional 7 time interval is required

to propagate through the interconnection to the output (or latch inputs).

Consider Figure 8.4, wherewe have introduced latches at all the inputs and at the

outputs of all the nodes of Figure 8.2. For the present, let us assume that these latches

are ideal, and have no set-up/hold times, nor any propagation delays. Let the inputs be

latched at time instant tj. After-time interval 7+6, the outputs of the first level of logic are

latched. At time instant *,- + 2(7+ 6), the outputs of the second level of logic are latched,
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Figure 8.3: Signal propagation in Figure 8.2 and the identification of 'idle' resources. Lightly

shaded regions correspond to time-intervals during which the logic or interconnect resource

is not in use, when ideal latches are used to hold output logic levels, as illustrated in

Figure 8.4.
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Figure 8.4: The DAG of Figure 8.2 is redrawn here with ideal latches at the outputs of

every node and also at the inputs to the combinational logic block.

and so on. Since the latches make available the signal value to higher levels of logic, the

interconnect and logic resources at level i perform useful work only during the time interval

U + (i - 1)(6 + 7) to ti + i(6 + 7) and are 'idle' (not producing anything new) for the rest

of the time during a clock cycle tj to (tj + D).

In Figure 8.3, we have used 2 different shades. Each resource, be it interconnect

or logic, is shaded black when signals are propagating through it for the first time. At the

end of the black shaded region, signals are available for use by the next resource (logic or

interconnect, as the case may be). The hght (grey) shade is used to show that the resource

is, in some sense, 'idle', since it is not producing anything new. Our aim is to reuse the

resource during its idle period.

8.1.2 Levelize-and-hold

From the above observation, we can develop a strategy for time-sharing resources.

We first perform a topological levelization of the DAG representing the combinational block

of the input circuit. Nodes at the same level cannot be time-shared since they evaluate their

outputs in parallel. Nodes at different levels can be time-shared, i.e., nodes at level i + 1

can use the same logic resource used by nodes at level i, since the nodes at level i +1 cannot
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start their function evaluation until the nodes at level i have completed their evaluation.

Similarly, the interconnect resource connecting level i to i + 1 can be used to connect level

i + 1 signals to level ? + 2.

Hence, Dharma needs to have one level of interconnect, one level of logic, and

latches to hold the values of signals generated. We also need a means to change the in

terconnection and logic function, when the next level of logic and interconnect are to be

implemented. In the next section we describe how this is achieved in Dharma.

8.1.3 Sequential elements

So far we only described how the combinational block of Figure 8.1 can be imple

mented by time-sharing logicand interconnection. Do the sequential elements of Figure 8.1

pose a problem? No, they do not, since they are required to latch the values of the outputs

of the combinational block, and make them available as inputs when the next clock period

begins. In our levehze-and-hold scheme, this function is already being performed by the

latches of hold. Thus, using levehze-and-hold, the only difference between combinational

and sequential circuits is that the last level is fed back to the first level in the latter, but

not in the former.

8.2 Dharma Architecture

In this section, we describe the new architecture. We first give an overview using

a high-level block diagram and then look at the detailed block diagram. The sub-blocks are

then explained in turn.

8.2.1 High-level block diagram

The central idea of Dharma is the time-sharing of sihcon area, especially the

interconnection resources. This is made possible because of the topological levehzation of

the input circuit being implemented on Dharma. Dharma consists of four main blocks (see

Figure 8.5):

1. A one-dimensional array of dynamic logic modules (DLM)

2. A one-dimensional array of pass-buffers
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Figure 8.5: High level block diagram of Dharma
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3. Dynamic Interconnection Array (DIA)

4. Latches

A circuit to be implemented on Dharma is first levelized. Let / be the number

of levels. Then the implementation of this circuit on Dharma is a cyclic repetition of /

internal cycles. In internal cycle i, the logic modules are configured to implement the
* *.'*••

functions in level i of the circuit, and the interconnection block is configured to implement

the connections between level i and i + 1. We use the term dynamic, to describe the logic

modules and the interconnection, because the function implemented by the logic modules

and the interconnection structure is dynamically re-configured at every level. Note that

programming of a circuit onto Dharma consists of a one-time compilation of the values to

be loaded into the DLMs and DIAs. These values are then loaded onto the chip at power-on

or 'boot time'.

A DLM generates an output which is a combinational function of its inputs. To

allowthe possibilityof realizingany function, the DLMis an LUT (see Section 10.1 for other

types of DLMs). All the DLMs can perform a look-up (based on the input configuration)

in parallel. Hence, each level of logic of the input circuit can be evaluated in parallel by

the DLM array (provided, of course, the number of functions being evaluated is less than

the number of DLMs). The DIA connects the outputs of the DLMs and pass-buffers to the

inputs of the next levelof logic, through latches. Toallow 100% routability,with predictable

performance, the DIA blockis designed such that all required connections are possible. The

latches are used to store the signals between levels, and they also function as storage for

state variables, in sequential circuit implementations. The pass-buffers are required to pass

signals through levels; eg., if signal X is generated in level 2 and required in level 4, X will

pass through level 3.

Based on the above four blocks, Dharma can be parameterized by the following

variables (assigning different values to these variables will generate a chip-series).

1. Number of DLMs, C.

2. Number of inputs per logic DLM, K.

3. Number of pass-buffers, B.

4. Number of levels, L.
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The number of internal latches would then be KC + B.

8.2.2 Detailed block diagram

Figure 8.6 is a detailed block diagram of the Dharma architecture.

In addition to the four main blocks illustrated in Figure 8.5, Figure 8.6 has the

following:

1. Level Generation Circuitry, to count the level being implemented at the current clock

instant.

2. Internal Clocking Circuitry, to generate the internal clock in synchronization with the

external clock.

3. Memory Write Circuitry, to program the chip for a particular circuit.

The DIA block is split into two portions, an i-crossbar and a 2?-crossbar. The

X-crossbar connects the outputs of the DLMs and the pass-buffers to the latches at the

DLM inputs. The 5-crossbar connects the pass-buffer outputs (after they are multiplexed

with the primary inputs) to the latches at the pass-buffer inputs.

A DLM output which has to pass through to the next level is directly connected

to a unique pass-buffer. This is a hard-wired connection. However, this connection is made

to pass through a 2-to-l multiplexer. The other input to the 2-to-l multiplexer is from

the 5-crossbar. These 2-to-l multiplexers are called Buffer Muxes and are shown in the

lower right hand portion of Figure 8.6, to the left of the pass-buffer input latches. This

interconnection scheme allows the pass-buffer to be used to pass other signals, when its

corresponding DLM's output is not required at higher levels. In addition to the hard-wired

connections, there are pass-buffers which are not associated with any DLM, and these are

used to pass signals from pass-buffer outputs (the hard-wired connection is used to pass a

signal the first time it is generated, i.e., by the DLM).

The chip's inputs (primary inputs) are latched into the Primary Input Registers.

These latched signals enter the interconnection matrix through 2-to-l multiplexers, called

PI Muxes, shown atop the X-crossbar. The primary inputs are multiplexed with DLM

outputs and pass-buffer outputs before entering the Ir-crossbar.

The outputs are latched into the Primary Output Registers (shown on the right

side of Figure 8.6). The outputs can be from the DLMs directly, or can come through the
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Figure 8.6: Detailed block diagram of Dharma
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pass-buffers.

In Figure 8.6, the DLMs are 5-input, 1-output LUTs. Other kinds of DLMs are

possible, and are explained in Chapter 10.

The Level Generation Circuitry keeps count of the level, and is controlled by the

internal clock, the FPC signal, and the Mode bit (explained in Section 8.2.9). The current

level is broadcast to the rest of the chip in the form of level bits.

The L XBAR Dynamic Configuration Memory block stores the configuration bits

of the i-crossbai*, and the B XBAR Dynamic Configuration Memory block stores the cor

responding bits for the B-crossbar. These configuration bits are changed every level, and

are addressed by the level bits.

The PI Mux Select Memory stores the select control for the PI Muxes. Each

multiplexer requires 1 select bit, and this has to be changed at every level. Hence the PI

Mux Select Memory is also addressed by the level bits. The Buffer Mux Select Memory

block, likewise, stores the select control bits for the Buffer Muxes. These bits are also level

dependent, and hence this block is also addressed by the level bits.

At power up, the Memory write circuitry loads in the values of the four memory

blocks (PI Mux Select, L XBAR Dynamic Configuration, Buffer Mux Select and B XBAR

Dynamic Configuration), the DLMs, and the level register in the Level Generation Circuitry

(see Figure 8.11). These values are loaded in a serial manner from an external non-volatile

memory (eg., an EPROM). The number of bits to be loaded into a chip is dependent

on the on-chip resources (number of DLMs, number of pass-buffers, etc.). However, this

number is invariant of the circuit being implemented on the chip, and hence can be preset *

at manufacture time. The memory write circuitry loads in the preset number of bits from

external memory, and then stops. At completion, it signals the level generation circuitry to

start the level count.

8.2.3 Clocking scheme

The Internal Clock Generator generates the internal clocks, labeled as Int clock

and PIO clock. These clocks are synchronized with the external clock signal. The latches

at the DLM inputs and the pass-buffer inputs are clocked by Int clock. PIO clock latches

the chip inputs and outputs. There are two possible schemes of clocking.

1. EFP clocking scheme
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2. S clocking schme

These clocking schemes are illustrated in Figure 8.7. The Extended First Period

(EFP) scheme requires a non-uniform Int elk. The Simple or Slow (S) clocking scheme is

simple, but results in a slower circuit. In the EFP scheme, the first period of the internal

clock, following the rising edge of Ext elk, is longer compared to the rest of the periods.

This first period is slowed down to accommodate the time required for the inputs to get

latched into the input registers (see Section 12.2). Also, Int elk is 180° out of phase with Ext

elk. PIO elk follows Ext elk exactly. However, the Internal Clock Generator must generate

this explicitly (and not simply tie it to Ext elk) since there are applications (eg., a pure

combinational circuit) which do not provide Ext elk. The S clocking scheme requires one

additional Int elk cycle compared to the EFP scheme, for any circuit. Hence the "Slow"

prefix. But, this scheme does not require the complex circuitry to generate extended first

periods, and hence is very simple and straightforward. Here, Int elk is in phase with Ext

elk.

8.2.4 Multi-chip operation

The FPC and TNC signals facilitate multi-chip operation. Such an operation may

be desired when a circuit's levels exceed the maximum levels on a single chip, L. Let / be

the number of levels in the circuit, and let / > L. If the number of DLMs in a level d,

#(d), is such that #(d) < C, Vd, where C is the number of DLMs on a chip, then, although

the circuit cannot be implemented on a single Dharma chip, its implementation can be

spread across multiple Dharma chips. The number of such chips required would be \l/L].

These chips are connected in a chain-like fashion, with the first chip implementing levels (0

...(L— 1)), the second chip implementing levels (L .. .(2X —1)), and so on. The outputs

from the first chip will be connected as inputs to the second chip, the outputs from the

second chip will be connected as inputs to the third chip, and so on, and finally the outputs

from the last chip will be connected to the inputs of the first chip. Figure 8.8 shows this

multi-chip interconnection scheme.

FPC stands for From Previous Chip and TNC stands for To Next Chip and it is

obvious from Figure 8.8 why they are named thus.

The Dharma chips in Figure 8.8 have L = 4 each, and the circuit being imple

mented has / = 10. Hence fl0/4l = 3 chips will be required, assuming that #(d) < C,
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Figure 8.8: Multi-Dharma interconnection scheme. In this example, / = 10, and X = 4.

Vd. Chip Dl implements levels 0 to 3, chip D2 implements levels 4 to 7 and chip D3 im

plements levels 8 and 9. The waveform sketches for the TNC and FPC signals are shown

in Figure 8.12 and further explanation can be found in the subsection on Level Generation

Circuitry.

A Mode bit is provided on each chip to select between single chip and multi-chip

operation. See the Level Generation Circuitry subsection (Section 8.2.9) for more details.

8.2.5 Dynamic logic modules

The logic module has to be general enough that it can be programmed to perform

any combinational function of its inputs. Among the known logic modules are PLAs, look

up tables and MUX based modules. Among these, only the look-up table based modules

can perform all the combinational functions of its inputs. Xihnx series of chips have used

look-up table based logic modules, in various configurations, and also with more than one

output per module. From the logic synthesis point of view, logic modules with just one

look-up table with a single output, have been easier to handle, and mapping for delay, has

been shown to be optimal, in this case [Cong 92]. In Dharma, we have chosen the logic
module to be a A'-input, 1-output LUT. However, it should be noted that the architecture

is general enough to allow other types of logic modules (see Chapter 10). The advantages

of using more complex configurations would depend on how well the synthesis tools handle

such logic modules.
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Each logic module may have to perform a different function at each level. A A'-

input, 1-output LUT requires 2K bitsofmemory to implement any function ofA'-inputs. If
a single chip can be used to implement circuits of at most L levels, then each logic module

will require Lx2h bits. A detailed diagram ofthe DLM is shown in Figure 8.9. There are
manyways in which the level select lines and the K address lines can be combined together,

and the figure shows one way. Which is the best one to use will depend on the area usage

and memory read time, which would depend on the technology being used. Combining the

level-selects and the A' inputs together, is in essence making eachDLM a (K-rlog2L)-input,

1-output LUT, and this LUT should be designed such that area usage is kept down while

giving timing performance as close to the A'-input LUT as possible.

8.2.6 Pass-buffers

The pass-buffers are used to pass signals through levels, as already described in

the previous section. The pass-buffer is only a pedagogical aid to deal with such signals. In

the actual implementation, the pass-buffer can be replaced by a wire 1.

'The pass-buffer should not be confused with the line drivers required to drive signals at the inputs of
the crossbars. Such line drivers will be needed in the actual implementation of the Dharma chip, and are
not shown in Figure 8.6 or 8.5.
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8.2.7 Dynamic interconnection array

Figure 8.10 is a cut-out of the interconnection related circuitry, from Figure 8.6.

The breakup into two crossbars is done so as to reduce the number of crosspoints.

Let us analyze how this reduction occurs. To keep the analysis general enough,

let us assume that each DLM has m outputs, and A' inputs. If there are C DLMs and

B buffers, then (mC + B) output signals need to be connected to KC + B input latches.

If a single crossbar were used to perform this routing, there would be (KC+B)(mC+B)

crosspoint, assuming a full crossbar. Instead, by using two crossbars (the A-crossbar and

B-crossbar), as shown, the number of crosspoints is reduced to (mC + B)KC + B2 (again,

assuming full crossbars). Hence this reduces the number of crosspoints by mCB. If we

assume that the number of buffers B is related to the number of DLMs C, by the relation

B = PC, then the reduction in crosspoints, V.^ is

_ mCB
*" " (KC + B)(mC + B)

mC(PC)
(KC + (3C)(mC + 0C)

mP

(K-rP)(m-rP)

For example, if A' = 5, m = 1 and P = 2 (i.e., the number of buffers is twice the number of

DLMs), then,

2
Hep

If, instead m — 2, then,

Kop =

(5+2)(l-f-2)
2_

21

9.5%.

2x2

(5+2)(2 + 2)
4_
28

= 14.3%.

The circuit inputs enter the interconnection matrix, multiplexed with the DLM

and pass-buffer outputs. Input signals that are required at higher level in the circuit can be

multiplexed with pass-buffer outputs (those pass-buffers that do not have a Buffer Mux at
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their input latch). In such cases, the input can be used directly (by setting the multiplexer

select hne to choose the input instead of the pass-buffer output) when that particular level is

being evaluated. If the number of input signals required at higher levels exceeds the number

of such pass-buffers, then some of the input signals will have to go through pass-buffers at

lower levels.

There are many different ways in which to implement the crossbars, so as to reduce

the number of switches and area occupied. Several such techniques are listed in Chapter 10.

Whatever be the technique used, the idea is the same, to be able to connect the outputs of

level i to the inputs of level i + 1, so that all nets are routed.

8.2.8 Latches

The number of internal latches on the chip equals the number of inputs to the

DLM and pass-buffers, i.e., KC + B. These latches serve 2 purposes:

1. To store the intermediate signals across levels

2. To store state variables of sequential circuits

The latches are clocked by the internal clock at a frequency of //. The latch value is

unchanged during the level evaluation.

8.2.9 Level generation circuitry

An exploded view of the Level Generation Circuitry block of Figure 8.6 (upper

left corner) is shown in Figure 8.11 2. It has the following components.

1. Number of circuit-levels register.

2. Level counter.

3. Mode bit, to choose between single chip and multi-chip operation.

4. Decision and control circuitry to controloperation of the levelcounter and to generate

the TNC signal.

2This diagram is slightly different from the one shown in [Bhat 93]. However, both perform the same
function.
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The circuit-levels register stores the value of the number of levels the circuit has.

This value must not exceed the maximum number of levels, L. The level counter's value is

compared with this stored value and the counter is reset to zero when the two are equal.

For example, if the circuit has 4 levels, then the level counter counts 0, 1, 2, 3, 0, 1, 2,

3, etc. This comparison operation is performed within the decision and control block. In

Figure 8.8, chips Dl and D2 have the value 4 loaded in to their circuit-levels register, and

chip D3 has a value 2 in its circuit-levels register.

The level counter counts at every internal clock tick, when the incr signal is as

serted. In single-chip operation, the incr signal is always asserted. In multi-chip operation,

incr goes low when the count reaches a number which is one less than the value stored in

the circuit-levels register.

The Mode bit selects between single chip and multi-chip operation. Although

shown as a separate bit in Figure 8.11, it can be an external pin on the chip, which is pulled

high or grounded, depending on how the chip must function.

Figure 8.12 shows the timing relationship amongst the FPC and TNC signals, for

the example situation of Figure 8.8. The level counters in Dl and D2 count from 0 to 3,

whereas the level counter in D3 counts 0 and 1. The values of the level counters are shown

symbolically by means of multi-level waveforms in Figure 8.12. Dl's level counter starts

counting after its FPC T3 goes high. DVs TNC (same as D2's FPC), Tl goes high after

it's level counter reaches 3. This starts D2's level count at the next clock. DPs level count

then stops and waits for its FPC to go high. Tl is lowered after one clock cycle. Similarly,

D2's TNC (same as D3's FPC), T2 goes high after D2's level counter reaches 3, and D3's

level counter starts counting at the next clock. Finally,when D3's count reaches 1, its TNC

(i.e, T3) goes high and the cycle repeats.

The decision circuitry senses the FPC signal when the Mode bit is asserted (multi-

chip operation). If the signal is high, then the level counter is reset, and tncr is asserted.

The FPC signal is then ignored. When the count reaches a number which is one less than

the value stored in the circuit-levels register, the decision circuitry asserts the TNC signal,

and de-asserts tncr. TNC is de-asserted in the next clock cycle. The decision circuitry

again senses the FPC signal, tncr remains de-asserted till FPC is asserted, after which the

cycle repeats.

The MW Done (memory write done) signal is from the Memory Write block. On

power up, the level counter is reset. The decision circuitry then waits for MW Done. When
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this signal is asserted, tncr is asserted, and the level counter starts counting from 0.

8.3 Operating procedure

To use Dharma to implement a given circuit design, the user must first convert the

design specification into Dharma's logic blocks, using a design flow similar to Figure 1.4,

using software tools (see Chapter 11). The Device Programming software generates the bits

that go into the various memory blocks and DLMs (see Figure 8.6). These bits are then

stored in a non-volatile memory, such as an EPROM.

On power-up, the memory write circuitry of Figure 8.6 addresses this external

memory (external to the Dharma chip, that is), and reads in the stored values therein. The

bits are then loaded into the various memory blocks. This loading procedure will have to

be repeated every time the poweris switched on, since the memory bits on the Dharma are

volatile 3. After all the bitshave been loaded (a fixed number for a given chip), thememory

3For this discussion, we have assumed that Dharma uses an SRAM technology. Depending on the DIA
and DLM architecture, it is possible to have a non-volatile memory on the Dharma chip, in which case the
loading procedure would be replaced by a one-time programming procedure to program the non-volatile
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write circuitry's task is complete, and it remains idle for the rest of the time.

After the memory configuration bits are loaded, Dharma implements the circuit

in a level by level fashion. Figure 8.13 illustrates the mechanism for a circuit with 3 levels.

The figure shows the activities starting from power-up. In the figure, we assume an EFP

clocking scheme (see Figure 8.7). After the memory bits are loaded, the MW Done signal

is asserted. This signals the Level Generation Circuitry to start the level counter. The DIA

is first configured to connect the Primary Inputs to the first level of logic (i.e., signals from

Level 0 to Level 1). In the figure, this is shown on the row labeled DIA Recnfg as 'L0-L1',

and we assume that this configuration takes half the internal clock cycle. At the negative

edge of Int clock, the DIA is ready. The Primary inputs are latched at this instant. In the

figure, this time instant is labeled Latch PI4.

During the negative half cycle, the primary input signals propagate through the

DIA. At the next positive going edge, the signals are latched at the DLM and pass-buffer

inputs (marked Latch inputs in the figure). As the DLMs evaluate the functions, the DIA

is reconfigured to connect the next level, L1-L2. The signal propagation through the DLM

and the reconfiguration of the DIA occur in parallel. The DLM is assumed to be a LUT,

hence it does not have a reconfiguration time. However, if it were a different type of DLM

which needed reconfiguration, such a reconfiguration could be done in parallel with the

DLM propagation period. The operation continues in similar fashion, till power is turned

off.

After the DLM has evaluated the uppermost level of logic (Level 3), the output

signals can be latched into the Primaryoutput registers, and the new primary input signals

can be latched into the Primary input registers. The dynamic operation is transparent to

the external world. Note that the rate at which the PI and PO registers can be latched (i.e.,

the rate of the external clock), is r^jr times slower than the rate of Int clock, as explained
in Section 12.2, equation 12.8.

The time instants marked e are referred in Chapter 9.

The DIA and DLM propagation times times need not be equal. The duty cycle of

the internal clock is set to the ratio ma>ftp»tn)i where trj is the sum of the DLM and latch

propagation times, tR is the sum of DIA reconfiguration time and latch hold time, and t/

is the sum of DIA propagation time and latch set-up time (see Section 12.2). A duty cycle

memory bits.
4In the label Latch PI and Latch inputs, the word Latch is used as a verb, and not as a noun.
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other than 50% does not change the activities described above in any way.

From Figure 8.13, we see that there is no necessity for any global control logic, to

supervise the chip operations. All operations are synchronized with respect to the internal

clock and the level bits.
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Chapter 9

Examples to Illustrate Dharma

In this chapter, we illustrate Dharma by means of simple examples. We have chosen

two combinational and one sequentialexample, with a small number of logic elements, and

we demonstrate by means of figures, how the circuits are realized on a Dharma device.

For the purposes of the illustration, we have chosen a simphfied version of Dharma. This

simphfied architecture, called Simple Dharma, is discussed first. Simple Dharma retains

the main concept of Figure 8.5, viz., levelizing and time sharing of resources. However,

the number of DLMs and the size of the DIA is kept small, so as to help understand the

concepts better. The first example is very simple, and is more of a warm up exercise. The

second example is more involved. The third example demonstrates that sequential circuit

realization is very much hke the combinational one.

9.1 Simple Dharma

Dharma consists of DLMs, DIA, pass-buffers and latches. The number of inputs

and outputs per DLM, the number of DLMs, the number of pass-buffers,the interconnection

structure of the DIA, the number of levels that can be implemented, etc., can all be set to

different values so as to yield a family of Dharma chips. For this simpleillustration,we use

a hypothetical, simple architecture. This architecture has the following features:

• All DLMs are identical.

• Each DLM has 3 inputs (K = 3) and 2 outputs.

• There are 3 DLMs (C = 3).
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• There are 5 pass-buffers (B = 5).

• The B-crossbar and X-crossbar are implemented as full crossbars.

• There are 5 chip inputs and 6 chip outputs.

• L = 5, levels of logic can be implemented (i.e., each crossbar point has 5 bits of

memory to choose the configuration, and each DLM has 23 x 2 x 5 = 80 bits to store

the logic functions).

Figure 9.1 is a block diagram of this simple architecture. The crosspoints in the

i-crossbar and B-crossbar are shown as shaded circles. The shaded circles represent the

switch at the crosspoints and the memory bits required to configure the switch (to be

either on or off). The chip inputs enter the interconnection array via multiplexers. In the

figure, the inputs are shown to be multiplexed only with the pass-buffer outputs. As in

Figure 8.6, inputs can also be multiplexed with DLM outputs, but for the purposes of this

simple architecture, those multiplexers are unnecessary. Each multiplexer is individually

selected. The multiplexer selection memory has 5 bits per multiplexer. The DLM outputs

are connected to the pass-buffer inputs by means of multiplexers. Each of these multiplexers

also has a separate select signal, controlled by 5 memory bits per multiplexer. To keep the

diagram simple, the multiplexer selection memory is not shown. The DLM and pass-buffer

inputs are latched; and these latches are clocked by an internal clock.

9.2 Combinational example 1

This is a very simple example, and is meant more as an introduction. Figure 9.2

shows the schematic diagram for this example circuit. There are 5 inputs, a, b, c, d and e,

and 2 outputs x and y.

In terms of boolean equations,

G = a+b+c

E = de

x = GH' + G'H

y = c+H
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PIO clock

PIO clock

Figure 9.1: Simple Dharma

Figure 9.2: Schematic diagram for Example 1
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Figure 9.3: DLM values for Example 1

From Figure 9.2, we see that the circuit has 2 levels of logic. The realization of

this example on Simple Dharma is explained in the following figures. Figure 9.3 shows the

memory bits stored in the DLMs. In the first level inputs a, 6, c, d and e are connected

to the DLMs, and outputs G and H are generated. In the second level, G, H and c are

connected to the DLMs to generate the outputs x and y.

Consider the bits stored to generate function G. G is the OR of its inputs a, b and

c. Hence it takes the value 1 whenever any input is 1, and takes the value 0 only when all

the inputs are 0. The memory addressed when a, b and c are all 0, is 0, and hence a 0 is

stored at location 0. All the other memory locations have a 1 stored in them.

Next consider function H. H is the AND of its inputs d and e. Hence it takes the

value 1 only when both inputs are 1. Since the DLM is a 3-input LUT, and H has only 2

inputs, half the memory locations are a duplicated. Signals d and e are connected to the



9.3. COMBINATIONAL EXAMPLE 2 123

least significant bits of the memory address, and the most significant bit is not needed (an

unused input can be connected to either Vcc or ground), d and e, both being 1 corresponds

to memory addresses 3 (Oil) and 7 (111). Hence Is are stored in these two locations. The

rest of the memory bits are Os.

The functions a: and y are similarly programmed.

Figures 9.4and 9.5 show the interconnection structure corresponding to Example

1. The signal values marked in these figures correspond to the time instants marked e in

Figure 8.13. That is, the DLM has just generated signals at a particular level, and the DIA

is configured to connect the next level. A black crosspoint represents a connection between

the horizontal and vertical lines. A white crosspoint imphes that the crossing hnes are

not connected. Multiplexer selection is shown by means of a line through the multiplexer

symbol. This line connects the selected multiplexer input to the multiplexer output.

9.3 Combinational example 2

Figure 9.6 shows the schematic for Example 2. There are 5 inputs, a, b, c, d and

e, and 3 outputs, x, y and z.

In terms of boolean equations,

G = ae

H = cd'-rc'd

I = bd

F = ae' + a' e

J = IH'F

K = bc+bd+cd

x = G K + J

P = cd

y = H'F'b + H'Fb' + H F'b' + H Fb

M = FHb'-rFH'b

N = K+G+M

O = bc'd + bcd'
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PIO clock

a b c d e

Figure 9.4: Example 1. DIA: Primary inputs -»level 1; DLMs : Level 2.
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PIO clock

a b c d e

Figure 9.5: Example 1. DIA: Level 1 -• Level 2; DLMs : Level 1.
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Figure 9.6: Schematic diagram for Example 2
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Q = GP-rGO

z = NJ'Q'

From Figure 9.6, we see that the circuit has 4 levels of logic. Note that topological

levehzation (schematic Figure 9.6 has been drawn topologically levelized - gates having the

same topological level (see Chapter 11), from primary inputs, are vertically aligned) cannot
be used to realize this circuit directly on Simple Dharma, since level 1 has 7 gates, and
there are only 6 DLM outputs per level. In Figure 9.7, we show the level assignments to the

various functions, after doing a temporal partitioning (Chapter 11). Figure 9.7 also shows

the DLM memory bits required to perform the assigned functions.

In Figure 9.7, we note that x and y have been assigned to level 4 (topological level

of x was 3, and that of y was 2). Also, K, I and G have been moved to level 2, and Q and
J have been moved to level 3. Functions that share common inputs have been assigned to
the same DLM (eg., H and 0; and K and I).

Figures 9.8, 9.9, 9.10 and 9.11 show the interconnection configuration for the

various levels. As in Example 1, the signal values correspond to the time instants marked

€ in Figure 8.13.

9.4 Sequential example

Figure 9.12(a) shows the circuit schematic of a simple sequential circuit (this is a
bus arbitration circuit, and is amodified version ofan example in [Alford 89]). The inputs
are Rl and R2 and outputs are Ol and 02. Signals Si and S2are the state variables. The

(b) part of the figure shows only the combinational part of the finite state machine shown

in (a). PSO and PSl are the previous (hence the prefix T') of the state variables SO and

Si respectively. The circuit has a two-phase clock. This example therefore also serves to

illustrate how multi-phase clocked circuits can be mapped to Dharma.

Figure 9.12(c) shows the phase relationship between the two clocks, <j>l and <f>2.
The positive edge of <f>2 must lag the corresponding edge of <f>l by 61. 61 corresponds to the

time required to generate signals Si and S2. Similarly, the next positive edge of <pl should

arrive only after a time delay of 62, where 62 includes the latch propagation time and the

propagation through the rightmost combinational gates in Figure 9.12(b). The input and

output registers are clocked by the positive edge of 4>1 and the state registers are clocked
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PIO clock

a b c d e

Figure 9.8: Example 2. DIA: Primary inputs -> Level 1; DLMs : Level 4.



130 CHAPTER 9. EXAMPLES TO ILLUSTRATE DHARMA

PIO clock

-O—-o—o—<v_o— _

PIO clock

a b c d e

Figure 9.9: Example 2. DIA: Level 1 -> Level 2; DLMs : Level 1.
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PIO clock

a b c d e

Figure 9.10: Example 2. DIA: Level 2 -» Level 3; DLMs: Level 2.
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PIO clock

a b c d e

Figure 9.11: Example 2. DIA: Level 3 -> Level 4; DLMs: Level 3.
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Figure 9.12: Sequential Example

133
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by the positive edge of c/>2.

Figure 9.13 shows the LUT values corresponding to Figure 9.12(b). The Dharma

realization has 3 levels and requires only one phase of the clock, <j>l. This clock can run at

approximately one-third (see Section 12.2) the speed of the internal clock. Figures 9.14, 9.15

and 9.16 show the DIA configuration bits, and DLM signal values corresponding to time

instants marked 6 in Figure 8.13. These are very similar to the combinational examples,

except that the state variables are fed back into the DIA, at the last level, and become the

PSi (i = 0 or 1) signals.
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Figure 9.13: DLM values for the sequential example

13:
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PIO clock

R1 R2

Figure 9.14: Sequential Example. DIA: Primary inputs, state variables -> Level 1; DLMs:

Level 3.
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PIO clock

R1 R2

Figure 9.15: Sequential Example. DIA: Level 1 -> Level 2; DLMs: Level 1.
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PIO clock

R1 R2

Figure 9.16: Sequential Example. DIA: Level 2 -• Level 3; DLMs: Level 2.
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Chapter 10

Variations and Modifications

In Chapter 8 we presented the Dharma architecture. The detailed block diagram
(Figure 8.6) is just one possible way of realizing the dynamically reconfigurable folded
pipeline of Figure 8.5. In fact, Figure 8.5 can bethought of as ageneric architecture. Several

variants to the specific architecture of Figure 8.6 are presented in this chapter. Variations
and modifications of the DLM are grouped together inone section; similarly variations and
modifications of the DIA are grouped together in another section. The DLM variations and

the DIA variations are independent, unless stated otherwise. Therefore, each of the DLM

variations can be used with each of the DIA variations; further, some variations within a

group can be used along with the other variations in the same group. Hence, a large class
of dynamically reconfigurable architectures is possible (see shaded region of Figure 1.3).
The last section in this chapter describes how certain circuits with number of topological
levels greater than the maximum number of levels allowed on a single Dharma chip, can be

implemented on one chip, by means of modifications to the generic architecture.

10.1 Dynamic logic module

In Figure 8.6, we have shown the DLM to be a A'-input, 1-output lookup table.

Dharma is not necessarily limited to this kind of logic module. In general, any logic struc

ture, which can be repetitively changed to implement different functions, can replace the

A'-input, 1-output LUT. In this section, we present complex LUT DLMs, multiplexer based

DLMs, PLA based DLMs and heterogeneous DLMs.
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Figure 10.1: An example of a complex LUT DLM

10.1.1 Complex LUT DLMs

The A'-input, 1-output LUT is one specific, simple manifestation of a broader class

of reconfigurable logic modules based on the lookup table. A A'-input m-output (m > 1)

LUT and interconnected LUTs are other such logic modules in this class; and can replace

the A'-input 1-output LUT in the Dharma architecture.

As an example, Figure 10.1 shows one possible complex DLM with 6 inputs (a,

b, c, d, e and /) and 2 outputs (x and y). P and Q are 4-input 1-output LUTs and R

is a 3-input, 1-output LUT. P and Q share two inputs (b and c) and P and R share one

input (d). Any two of P, Q and R can be selected as the DLM outputs by means of a

mini-switching network on the output lines. The black dots represent crosspoints, which

are similar to the crosspoints in a crossbar. Each output line has to be connected to at

least and at most one of the LUT outputs. Hence exactly one switch on each output line is

going to be on, and the other is going to be off. This implies that only one bit is required

per output line, when the bit is set to T, it turns on one of the crosspoints, and when it

is set to '0\ it turns on the other. P and Q require 16 bits each, R requires 8 bits and the
crosspoints require 2 bits - giving a total of 40 bits per level of logic.

Several other LUT interconnections are possible, Figure 10.1 is meant toonly give
a feel for what is possible. Xilinx CLBs [Xilinx 89] and the ORCA PLC [ORCA 93] are
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good examples of complex DLMs '.

10.1.2 Multiplexer based DLMs

The DLM is not restricted to use only LUTs. Like the Actel [Actel 91] logic
module, the DLM can be constructed from multiplexers. Unlike the Actel logic modules,
the programmable elements will be read/write memory bits in Dharma, and not anti-fuses.

10.1.3 PLA based DLMs

A two level AND-OR logic plane can be used for the DLM. That is, a mini-
PLA or mini-PAL or any such other programmable AND-OR block can function as the
reconfigurable logic module. Figure 10.2 shows a symbohc diagram of a 5-input, 2-output
DLM with programmable AND plane and programmable OR plane. There are 5 product
terms, and each output OR gate has these 5 terms as inputs. The inputs enter the AND
plane inboth true and complement form. The connections from the input lines to the AND
gates, and the connections from the AND gate to the OR gate are programmable, and are
controlled by means ofstored configuration bits. An input can be present in either true or
complement form (and not both) inany product term, orit need not be present at all. This
imphes that each intersection point requires a bit (i.e., we cannot use the bit saving scheme
that was used in the mini-crossbar of Figure 10.1). For the example shown in Figure 10.2.
the AND plane requires 50 bits, and the OR plane requires 10 bits, giving a total of 60 bits
per level of logic.

Several other programmable AND-OR types of circuits (eg., fixed OR plane, in-
vertible outputs, etc.) are possible, and Figure 10.2 serves only as an illustration of what
we mean by a PLA based DLM.

10.1.4 Heterogeneous DLM array

The above discussion assumes that all DLMs in the logic module array (see Fig
ure 8.5) are identical. This need not be the case. The array can be composed of different

types of DLMs, with a couple of each type. The logic module array in Figure 10.3 has

5 DLMs, 2 of which are 3-input AND gates, 2 are 5-input 1-output LUTs and one is an

'Only the combinational part of the CLB or PLC can be used as a DLM. The latches in the CLB and
PLC do not serve any purpose in the DLM.
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Inputs

• • • p w

OR

T 1 T 1 plane
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Programmable ^ \
connection point

• II

Outputs

Figure 10.2: An example of a PLA based DLM

OUTPUTS

INPUTS

Figure 10.3: A heterogeneous DLM array
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interconnection of 2-input multiplexers. The 3-input AND gate is not reconfigurable, and

may seem out of place, but usually many combinational functions are simple ANDs or ORs.

and by having these fixed functions in the DLM array, it is possible that there will be a

saving in sihcon area.

10.1.5 Technology dependent modifications

Modifications are also possible in how the actual implementation of the DLM is

made, eg., a A'-input, 1-output lookup table can beimplemented using SRAM, DRAM, etc.,

technology. The dynamic nature ofthe DLMs is especially attractive to DRAM technology,
since the refresh rate of the memory cells can be synchronized with the level addressing.
Real-time reconfiguration does not imply that the memory has to have a 'write' capability.

Read-only memories can also be used to store the configuration bits, the appropriate bits

being chosen at each level by proper addressing using the level bits.

10.2 Dynamic interconnect array

The dynamic interconnect array has a large number of variations possible, both in

terms of the overall architecture, and the actual implementation thereof. We have discussed

below many of such variations.

10.2.1 Shift register at crosspoint

Each crosspoint of the crossbar has L bits of memory, a bit being used per level.

These bits could be arranged in the manner of a shift register so that the change of level

would just mean shifting one bit. Figure 10.4 shows a portion of the i-crossbar which uses

this scheme. The connection at each crosspoint is achieved by means of an NMOS pass

transistor, and each shift register has 4 bits (i.e., L = 4). Lines a, b and c enter the crossbar

from the PI muxes (see Figure 8.6), and the output lines x and y go to the latches at the

DLM inputs. Connection between the horizontal and vertical lines is established whenever

a '1' is present at the gate of the pass transistor.

The shift registers are clocked by the internal clock, and at the clock-edge all bits

shift by one to the right. The rightmost bit loops back to the first bit. Figure 10.4(a) shows

the bits at level d, and Figure 10.4(b) shows the bits shifted right by one, for the next
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Figure 10.4: An example of I-crossbar which uses shift registers
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level (d-r 1). In (a), vertical hue a is connected to horizontal Hue a\ and vertical line c is

connected to horizontal line y. Similarly, in (b), 6is connected to x and y 2.

The disadvantage in such a shift register based DIA would be that the entire L

bits will have to shift through before returning to the first level, and hence only circuits
with / levels, where / is a perfect divisor of X can be implemented. However, this may not
pose any real problem. The chip manufacturer can provide a series of chips with different

X. The user then has to pick the chip with the appropriate X(i.e., X such that it is equal
to the circuit's levels / or is an exact multiple of /). For example, a chip with X = 6 can

implement a circuit having 1= 2, 3, or 6. The / = 2 and / = 3 circuits, however, will be
wasting a third, and a half of the resources, respectively.

10.2.2 Multiplexer based crossbar

Assume we are using a A' input, 1-output LUT as a DLM. Let there be C such

DLMs and B pass-buffers. Since there are (B + C)KC crosspoints in the X-crossbar, we
will require (B +C)A*CX memory bits. However, a signal fans out to at most one pin of
the DLM. In other words, the (B +C) signals need to connect toonly one ofthe A" inputs
per DLM. This means that the A* bits can be reduced to log2 K bits per signal, reducing
the total bits to (B + C)(log2 A*)CX. However, this would warrant a decoder at every
DLM, for each of the (B + C) lines. A more inteUigent way of designing the crossbar is to
recognize that at each LUT input we need, not a (B+C)-to-K crossbar, but a (B-r-C)-to-A'

multiplexer. A (B+C)-to-l multiplexer requires log2(£ +C) select lines, and we require A*

such multiplexers. Each select line needs abit per level, therefore we need KCLlog2(B + C)
bits and KC (B + C)-to-l decoders. This would be more area efficient if

KCL log2(£ + C) + KC(B + C)6 < KCL(B + C), where 6 is the bit-equivalent

of a decoder and gate.

Le.,«<«l-i#8P).
Since the DLMs and interconnections both require decoders, there could perhaps

be a sharing of decoders possible. This could require extra latches at the DLM outputs,

and could also increase the routing delay.

2It is an error to have more than one vertical line connected to a horizontal line in the same level.
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10.2.3 Partially hard-wired DIA

A further decrease in the number of crosspoints can be achieved if we allow certain

hard-wired connections. Each DLM can have a hard-wired connection to A* DLMs, and

each DLM will have hard-wired inputs from K DLMs, preferably those that are adjacent

to it. This would imply that the crossbar (or multiplexer, as the case may be) would

then be reduced to a (B + C - K) x KC crossbar, and there would be KC additional

2-input multiplexers (one at each DLM input), with associated A'CX select bits. This

interconnection scheme would decrease the number of fanout points from the DLM output

to (C —K)K + K, instead of the earlier KC. However, the delay in the interconnect could

increase, since the signal has to pass through an additional multiplexer (2-to-l multiplexer).

Figure 10.5 shows the hard-wire connections from DLM D3 to its adjacent DLMs.

A* = 5 in this figure. The output of D3 is hard-wired (through the 2-to-l multiplexer) to

input 5 of Dl, input 4 of D2, input 3 of D3, input 2 of D4 and input 1 of D5. The output of

D3 is connected to other DLMs (other than Dl... D5), through the X-crossbar. Figure 10.6

shows a portion of the X-crossbar corresponding to the example of Figure 10.5. As a result

of the hard-wire connections, several crosspoints are now unnecessary. For example, the

output of DLM D3 has no crosspoints at the input lines corresponding to DLMs Dl ... D5.

If D3 needs to connect to Dl, for example, then the hard-wire connection must be used.

10.2.4 Binomial concentrator based DIA

A different type of interconnection strategy can be adopted for LUT DLMs based

on the following observation: the DLM inputs are all equivalent. Hence, the interconnection

switch at the inputs is, by circuit switching terminology, a (B + C)-to-A* concentrator. In

other words, we need to select any A" ofthe (B+ C) signals. This can be achieved byusing a

two-level sparsely connected crossbar, called a binomial concentrator [Masson 77]. The chief

advantage of using such an interconnection strategy is that the number of crosspoints are

reduced andas a result the number ofbits used for storage arereduced. Thedisadvantage is

that the signals now have to pass through two crosspoints in series. This could increase the

interconnect delay (this is not clear at this point, simulation studies have to be performed

to arrive at a definite answer - the reduced crosspoints imphes that the signals have to be

connected to lesser switch inputs, and this will reduce the parasitic capacitance, and could
improve speed).
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Figure 10.7is a 15-to-4 binomial concentrator. This could be used as a part of the

X-crossbar when K = 4. The crosspoints are distributed in such a manner that any four of

the DLM and pass-buffer outputs can be connected to the DLM input lines.

10.2.5 DIA as a Copier

The above discussion has centered on using the crossbar to implement a real con

nection, i.e., the interconnect switch connects its inputs to its outputs (say through tran

sistors). This type of connection is required in the case of analog signals, where the input

signals can have different values. However, in our case we are dealing with digital signals,

which take on only two values, either 0 or 1. So, the switch will still be functioning properly

if its outputs are set to the value of the inputs they are supposed to be connected to. In

essence, the switch is required to perform a one time copy of a selection of the inputs (those

that are to be connected to the outputs) to the outputs. Can we take advantage of this fact

to speed up the connection and reduce interconnect area? One answer to this question is

delineated in the next paragraph.

Consider the case of just one switch output (DLM input). It can be connected to

any one of the (B + C) signals (switch inputs) coming from the previous level. That is,

its value should be set to the value of one of the (B + C) signals. This is equivalent to a

memory read operation, where the memory consists of (B + C) bits, and one of them has
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to be read onto the switch output. So, the selection can be performed by using precharge

circuitry and sense amplifiers. The (B + C) signals correspond to one column of memory,

and one of the cell select transistors is chosen by means of a decoder or local memory bit.

There are both area and speed advantages in using this style of implementation. The cell

select transistors are of minimum size as opposed to the large pass transistors that would

have been required if a direct connection between switch input and output were required.

And using the sense amp, the read operation can be performed fast. Further, the precharge

time of the memory can be interleaved with the DLM propagation time, thus shortening

the interconnect delay even further. This would mean that the interconnect delay would

be of the same magnitude as an LUT based DLM (since the logic module delay is also a

memory read operation). It could be even less, since the logic module is a 2^ X bit memory

(in the case of LUT based DLM) whereas the interconnect is a (B + C) bit memory3.

Figure 10.8 shows a section of the X-crossbar which uses this idea. The transistors

shown in this figure can be much smaller (and are usually made of minimum dimensions)

than those in Figure 10.4. The small squares sitting on the gate of the transistors represents

the configuration bit at a given time instant (this can be presented at the gate using the shift

register scheme, or the regular scheme of Figure 8.6). These are gated by the internal clock,

so that they will be connected to the gate only after the vertical lines have a valid signal

on them. All horizontal lines are precharged simultaneously. At the clock, the transistors

with a *r on their gate will try to equalize their respective horizontal line's voltage to that

of their vertical line, and this causes a swing in the voltage on the horizontal line. The

sense amplifiers detect the direction of the swing and set their output (going to the DLM

inputs in Figure 10.8) to a '0' or T accordingly. This precharge/sense scheme requires that

the voltage on the (highly capacitive) horizontal lines swing by only a tiny amount, which

causes the propagation delay through the crossbar to be small. For the values shown in the

figure, c gets connected to x and z, and bgets connected to y.

10.2.6 Sparsely connected Jv-class DIA

So far, we only discussed fully connected switches, where it is always possible to

connect any switch input to any switch output. These switches tend to be expensive in

terms of area. It could be possible to decrease the area requirement of the DIA, by giving

'There are KC such (B + C) bit memories.
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Figure 10.9: K-class DLMs reduce crosspoints

up the full connection flexibility. We discuss below a smart way of reducing the number of

crosspoints, while maintaining a high probability of routing completion.

This scheme requires that the DLM have all inputs equivalent, as in the case of

the LUT. Assume there are C. DLMs, each with K inputs and 1-output. We divide the

DLMs into A* classes. Each class will haveat most \C/k] and at least [C/K\ modules. A

module in class j, j = 1.. .K, is connected to the .7th input of each DLM (instead of to

every input). This will decrease the number of crosspoints and memory bits by a factor

of K. It has been found that for all the benchmark circuits tested, it is always possible

to achieve complete connectivity using this connection strategy. Note that, we could still

have some DLMs connected to every input, just in case it is not possible to complete the

connections.

Figure 10.9 shows a portion of the X-crossbar which uses the sparsely connected

Ji'-class method. Here A" = 4. The outputs of DLM 1 and 5 connect only to the first input

lines of all DLMs; similarly output of DLM 2 connects only to the second input hues; and
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10.2.7 Functional DIA 4

In addition to performing a connection, it is possible to design the DIA such that

a logic operation, such as AND or OR, can be performed together with the connection.

Figure 10.10 explains this concept. A portion of the X-crossbar is shown. The

crosspoints are designed such that when more than one vertical line is connected to the

horizontal hne, an ANDing operation takes place. The connections (from vertical hne to

horizontal Hne) are programmable, as before. In the figure, a dark circle at the crosspoint

represents a connection. Therefore,

X = acd!

y = bed

z — a

4Dr. Kamal Chaudhary originated this idea.

&.
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Each wired AND gate can have < (B + C) inputs, thereby making this scheme

very powerful. Since every logic function can be expressed in the sum-of-products form,

the products (i.e, ANDing) can be formed in the DIA, and the sum (i.e., ORing) can be

performed in the DLM. In other words, the DLMs can just be OR gates. As a result of

the wired ANDing, it has been possible to reduce the number of levels in the circuit by

15-20% [Chaudhary 93].

To realize the full potential of this scheme, the signals may have to enter the

crossbar in both true and complement form (eg., d and d'). This increases the size of the

crossbar. Also, to achieve the wired AND, the number of transistors at each crosspoint will

be doubled, compared to the normal case.

10.2.8 Technology dependent modifications

Like the DLM, the DIA is also easily suited to many different technologies. For

example, if one were to use a DRAM technology, there would be considerable savings in

area, without any complexity increase, since the DRAM refreshing could be synchronized

with the level addressing. Like the DLM, a non-volatile memory technology (ROM) can

also be used for the DIA. The shift register scheme can benefit in area if a technology such

as a charge-coupled device (CCD) is used.

10.3 Level expander

Consider a feasible network Af (i.e., each node has < K inputs) with 5 nodes,

and / levels. We wish to implement this circuit on a Dharma chip with C DLMs, each

with A" inputs, and X levels. If CX < 5 but / > X, then the chip has the resources (in

terms of total logic modules, and interconnection configuration bits) to implement Af, but

the architecture of Figure 8.6 needs to be modified to allow this. We call this modification

the Level Expander circuitry. By using this modification, the number of levels that can be

implemented in an Xlevel chip can be raised to T, T > X, without increasing the crossbar

and DLM configuration memories (the PI Mux and Buffer Mux select memories will need

to be enlarged).

10.3.1 Example
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The principle of level expansion is best illustrated by means of a simple example.

Let us consider a tiny Dharma which has 3 DLMs, and has X = 2. We wish to implement

the DAG of Figure 10.11 on this tiny chip. The DAG has 5 = 6 nodes, but / = 3. Therefore,

CX = 5 = 6, and I > L. Without level expansion, it would not be possible to implement

this DAG on the tiny Dharma. The circuit has only 2 nodes per level, although the chip

has 3. This imphes that 1 DLM would go wasted per level, leaving us with 2 wasted DLMs,

and 2 unimplemented nodes. The level expansion idea is to assign the unimplementable

nodes to the wasted DLMs. To see how this is done, consider the rows Dl, D2 and D3 of

the waveform diagram in Figure 10.11. Ignore the rest of the waveforms for the present.

In the first time step, DLMs Dl and D2 perform functions a and b, respectively. In the

second time step, DLMs D2 and D3 perform functions d and c, respectively, and in the

third time step, DLMs Dl and D3 perform functions e and /, respectively. This assignment

ensures that each DLM performs only 2 functions (since each DLM has resources for only

2 levels), and hence the circuit of Figure 10.11 can be realized on the tiny Dharma. To

allow this to happen, however, DLMs Dl and D3 must be prohibited from implementing

their second function (i.e, e and /, respectively) in the second step. Similarly, DLM D2

must be prohibited from changing back to its first function in the third step. This will not

be possible if all the DLMs are addressed by the same level bits. Therefore, each DLM

needs its own local level counter. The level bits of the local level counter address the DLM

configuration memory, and the crossbar memory at its inputs.

10.3.2 Expander circuitry

Figure 10.12 shows the related circuitry to make this possible. Compare this

figure with Figure 8.6. The X-crossbar dynamic configuration memory (shortened to DCM

in Figure 10.12) has been partitioned into n parts, where n is the number of DLMs. Each

partitioned memory (Ll, L2, ...) addresses the crosspoints at the inputs of a single DLM

(Dl, D2, ..., respectively). Similarly, the 5-crossbar DCM is also partitioned into m parts

(Bl, B2, ...), where m is the number of pass-buffers. This partitioning scheme does not

alter the number of memory bits, or routing resources. Each DLM and associated DCM are

addressed by local level bits, generated by a Local Level Generator. Each buffer DCM is

alsosimilarly addressed. Hence there are a total of (n+ m) locallevel generators. The Level

generation circuitry block of Figure 8.6 nowfunctions as a global levelgenerator. The level
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Figure 10.13: The Local Level Generation circuitry

bits generated by it are termed global level bits. Let T be the maximum number of circuit

levels that can be implemented on the chip. Then, the global level counter (i.e., the level

counter of Figure 8.11) is a divide-by-T counter. The local level generators are addressed

by the global level bits. The Reset signal of Figure 8.11 is now made globally available to

all the local level generation blocks.

The multiplexer select memories (PI Mux select and Buffer Mux select) are ad

dressed directly by the global level bits, and these have to be enlarged to T bits each. Since

each mux is individually selected, the local level generation scheme will increase the number

of bits used, rather than provide a saving, and hence the original addressing scheme is better

in this case.

Not shown in Figure 10.12 are the input latches. These have to be clocked only

when the DLM function is to change in the next clock, and hence their clock has to be

gated by the tncr bit of their respective local level generator.

10.3.3 Local level generator

All the local level generators are identical. Figure 10.13 shows a detailed diagram

of the circuitry. Each local level counter is a divide-by-X counter. Each local level generator

has T bits of control memory that is addressed by the global level bits. One bit of memory is

output every clock cycle (labeled incr in the figure). The local level counter is incremented
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at the clock, when uteris asserted. Going back to Figure 10.11, the global level generation

circuitry broadcasts a reset signal every 3 cycles, since the circuit being implemented has

3 levels. The local level counters in Gl and G3 hold their count at 0 in the second step,

and the local level counter in G2 holds its count at 1 in the third step. The incr bit is

de-asserted in their respective control memories to make this pause in the count possible.

Note that the function c computed by DLM D3'm step 1 (wliich gives an erroneous value for

c, since a and bare not yet ready) is ignored, since c is computed again in step 2. Although

Figure 10.12 and Figure 10.13 may imply that the T bit control memories are distributed,

in actual implementation, it can be single block of memory with (m + n) bit outputs going

to the various local level generators.
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Chapter 11

Synthesis for Dharma

This chapter deals with mapping designs onto Dharma. We consider only the basic

architecture of Chapter 8, and assume that the DLM is a K-input, 1-output LUT. The first

section gives an introduction to what is required in a synthesis tool for Dharma. We look

at one aspect of the synthesis, namely, the temporal partitioning1 problem, where we assign

nodes in the input network to levels (i.e., we assign a time slot to each). This problem can

be formulated as an integer programming problem; the second section shows how that is

so. However, we do not use the integer programming problem to do the level allocation -

instead we solve it by using a heuristic algorithm; that is the subject of the third section.

The last section presents results for the heuristic approach.

11.1 Introduction

Let us consider a Dharma chip with X levels and C DLMs. There are two aspects

to the synthesis for Dharma. On one hand we need to generate a circuit such that the

number of levels in the circuit / is minimized, since the worst case delay is proportional to

/ (see Chapter 12). On the other hand, the maximum number of nodes in any level, G,

should be such that G < C, otherwise the circuit cannot be implemented on a single chip.

We tackle this problem in a two-step manner.

1. Given an input circuit specification, transform it into a DAG such that the number

of inputs at every node < A", and the maximum number of topological levels / is

minimized.

'Credit goes to Dr. Rajiv Shah for coining this term.
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2. Allocate levels to the nodes obtained in Step 1, in a manner such that G < C (temporal

partitioning).

Techniques for doing Step 1 are already known, for the case when the DLM is a

LUT (see [Cong 92, Murgai 91a, Francis 91a] and Chapter 5). Hence we concentrate only

on step 2. Note that it may not always be possible to satisfy the condition that G < C

in Step 2. If so, we allow / to be increased. In Chapter 8, it was suggested that the

input DAG be topologically levelized to allocate nodes to DLMs. Topological levelization

is one method of doing the level allocation, but there are other methods too. From the

requirements of step 2, topological levehzation may not give a satisfactory result, since the

levelization process does not consider the G < C constraint. Hence, the need for a different

levelization procedure.

Before discussing the details of the new levelizing scheme, we first define what

exactly we mean by topological levelization.

11.1.1 Topological levelization

There are two ways of doing topological levehzation.

Starting from the primary inputs, the levelization proceeds in the following man

ner.

Primary inputs are assigned level 0.
Level of a node = MAX(level of its fanins) + 1

Figure 11.1(a) shows level allocation using this algorithm for a very simple DAG example

(although not shown in the figure, the edges are directed, and are from left to right).

Levehzation from the primary outputs is similar, and is described below (for a

DAG with M levels). Starting from the primary outputs, the levehzation goes as follows.

Primary outputs are assigned level M .
Level of a node = MIN(level of its fanouts) - 1

Figure 11.1(b) shows the level allocation using this algorithm for the same DAG

of Figure 11.1(a). Note that it is possible, and is usually the case, that the two level

assignments wiU be different. Only nodes on the maximum path (i.e., a path from input to

output with maximum length, length measured in terms of number of nodes) will have the

same level assigned by both schemes. In the figure, nodes c and d are assigned to different

levels by the two schemes. We call these nodes slack nodes, since there is some slack allowed

in their level assignment. Slack nodes cannot lie on maximum paths.
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11.1.2 Temporal partitioning

We need to detennine which node functions can be evaluated in parallel, and at

what time instant. That is, the nodes have to be partitioned in time. Hence the name

temporal partitioning. More simply, each node has to be allocated a level, which could be

different from its topological level. This cannot be solved by simple topological levelization

always, as will be apparent from the discussion below.

Assume that the logic network is a feasible network (i.e., each node in the network

has < A" inputs). Let the combinational part of the feasible network be topologically

levelized. Let / be the number of levels, 5 the total number of modules and G the maximum

number of modules in any level. Note that G is dependent on the levelization scheme used.

Let ti(n) be the topologically assigned level of node n, and let ai(n) be its allocated level,

wliich will be assigned by the temporal partitioner.

If / < X and if the topological levehzation has G < C, then there is no need

for temporal partitioning, since each node can be assigned a level that is the same as its

topologically assigned level, i.e., ai(n) = t/(n),Vn.

If, however / < X, and topological levelization has G > C, with S < CL, it may

still be possible to implement this circuit on Dharma by a judicious choice of levels for the

slacknodes. These nodes can be assigned a new level (different from their topological level);

i.e., they are moved in time.

Consider the DAG of Figure 11.1. Assume it is to be implemented on a tiny

Dharma chip which has C = 2 and X = 3. The DAG has 5 = 6 and / = 3. The topological

level assignment from primary inputs (Figure 11.1(a)) has G = 3 (level 1 has three nodes a,

b and c), and the topological level assignment from primary outputs also has G = 3 (level

3 has three nodes c, d and /). This may suggest that it is not possible to implement this

DAG on the tiny Dharma. However, the level assignment in Figure 11.1(c) has G = 2, and

this imphes that it is indeed possible to implement the DAG on our tiny Dharma. Note that

the levelization of Figure 11.1(c) can be derived from Figure 11.1(a), by moving c alone to

level 3, and leaving the rest of the nodes unaltered. Similarly, we can derive Figure 11.1(c)

from Figure 11.1(b), by movingnode d to level 2, and leaving the other nodes unchanged.

The process of identifying nodes to be moved, and moving them appropriately in

an effort to keep G within C, is what we call temporal partitioning.
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11.1.3 Handling other designs

If / > X, with S < CL, then it may still be possible to implement the circuit on

Dharma by grouping together modules across several levels. Each such group can then be

realized in more than one internal cycle, before switching over to the next group. This has

been discussed at length in Section 10.3. Techniques to choose which nodes can share a

level, in such cases, need to be developed, and are not discussed here.

Note that if S < CL, and G > C, even after temporal partitioning, then it may

still be possible to realize the design within a single chip, at the expense of increasing the
number of levels.

When we deal with designs that do not fit on a single chip, 5 > CX, we will have

to split it across several chips. In such cases, if G < C (for some levehzation scheme), then

the multi-chip interconnection scheme ofSection 8.2.4 can be used to realize the design. If,
however, the design is such that G > C, in spite of temporal partitioning, then sphtting
across chips could necessitate duplication of logic.

11.2 Levelization as an integer linear program

This section described how the level allocation problem can be formulated as an

integerlinear program (ILP). The objectiveis set as minimizing the maximumof the number

of modules per level, G, without violating the fanin and fanout constraints of any node.

This objective may seem counter-intuitive, since the constraint imposed by Dharma is to
have

#(rf)<C, W (11.1)

#(</) is the number of modules in level d. However, if the ILP's solution is < C, then the

level allocation solution will automatically satisfy 11.1 since #(<f) < G, W, by the definition

of G. If however, the ILP's solution is > C, then it imphes that it is impossible to satisfy
11.1 without increasing the number of levels.

We consider the level assignment for slack nodes only, since the levels of other

nodes cannot be changed.
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11.2.1 Upper and lower level limits

Let /, denote the level assigned to node i, using the topological level assignment

scheme, starting at the primary inputs. Then, /,• specifies the lowermost level that node i

can be assigned to. Similarly, let w, denote the level assigned to node i, using the topological

level assignment scheme, starting at the primary outputs. «,• specifies the uppermost level

for node i.

11.2.2 Level variable

We define a variable X{j, to be associated with node i. The j index corresponds

to the assignment of node i to level j. Xij is allowed to take only one of two values, 0, 1.

If X{8 takes the value 1, then it means that node i is assigned to level s. Since a node can

be assigned to only one level, only one of the / x^s can take a value 1. Therefore, for each

node i, we have the constraints that

Also, since node t cannot be assigned a level below /,-,

xn = 0, 0 < j < /,.

Similarly, node i cannot be assigned a level above it,-. Therefore,

x^ = 0, Ui < j <l.

Combining the above three equations, we obtain,

and

11.2.3 Level of a node

X>0 = 1 (H.2)

5>fi+ £ xli =0 (11.3)
J=l J=u,+1

If ai(i) denotes the level allocated to node i, then the following equation expresses

ai(i) in terms of artJ.

a/(0 = X!.?'*•; (11.4)
i=i

This follows directly from the definition of a;,-_,-.
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11.2.4 Fanin constraints

The circuit specification imposes fanin and fanout constraints. If node i has a

fanin k, then the level assigned to node / should always exceed the level assigned to A: by at

least 1. Similarly, if node / has fanout /, then the level assigned to node / should always

exceed the level assigned to i by at least 1.

However, if we specify the fanin constraints for every node, the fanout constraints

become redundant, since Vs fanout constraint willbe coveredby /'s fanin constraint. Hence,

we need to look at only the fanin constraints 2.

So. for node i, with fanin k,

ai(i) > ai(k) + 1

Using equation 11.4, and re-arranging the terms,

53i(sij-*jy)> I-
i=i

Since x,j and Xkj are both 0 for 0 < j < lk and u, < j < I, because of the

upper-limit and lower-limit constraints,

£j(*.;-z*j)> I- (11.5)

11.2.5 Nodes per level

At each level j, the number of nodes must be less than G. This is expressed as.

n

£*.j<G, (11.6)

where n is the number of nodes in the circuit.

11.2.6 Complete ILP

Using equations 11.2, 11.3, 11.5 and 11.6, the complete integer linear program is

as follows.

2If the fanout node is not a alack node, the constraint imposed by it is the same as that imposed by the
Ui constraint.
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minimize G

Subject to:
Ui

J2xij = i. v*'
/. /

>=1 j=Ui + l

X>i < G, Vj
t=i

Ui

^2j(xij ~ xkj) > 1, Vfc, fc € fanin(f)

x,j > 0

Zij < 1

11.3 Temporal partitioning

In the previous section, we showed how to formulate the level allocation problem

as an integer linear program. In this section, we present a simple heuristic for the level

allocation problem. This heuristic is very fast and effective, and can handle other constraints

(such as pass-buffer minimization) in addition to Constraint 11.1. Experimental results are

presented in the next section.

11.3.1 Uniform DLM distribution

As before, let there be C DLMs. Let the input circuit (level minimized) have /

levels and S modules. Then, the best possible way to distribute the modules is to have at

most f^l modules per level. If such a module distribution can be obtained, then there will
be a maximum utiUzation of chip resources. It may not be possible to achieve this kind of

a distribution for all circuits, because of the constraints imposed by the fanin, fanout and

non-slack nodes; however, it is something that is to be aimed for.

We choose this distribution as our objective. That is, given an input circuit,

allocate the modules to levels in a manner such that the number of modules in a level i,

#(i), is as close as possible to the number of modules in another level j, for all values of i

and j. This is to say that we wish to have a uniform distribution of DLMs across the levels.

Mathematically, our objective is to minimize the variance of the DLM distribution.
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11.3.2 Modified Kernighan-Lin heuristic

We try to achieve a uniform distribution of DLMs, by using a modified version

of the Kernighan-Lin heuristic [Kernighan 70]. Our approach resembles the scheduling

techniques used in high-level and data-path synthesis [Park 91], although our constraints

and objectives are slightly different.

Kernighan and Lin proposed an algorithm to solve the graph bi-partitioning prob

lem, i.e., given a partition, find two partitions A and B such that the number of edge-

crossings are minimum. The Kernighan-Lin (KL) heuristic is based on an iterative im

provement scheme. Starting from an arbitrary initial partition A and B, the algorithm

seeks to find a group of elements in A to be swapped with a group of elements in B, such

that the resulting partitions are optimal. In each iteration of the KL algorithm, a set of

movements are selected and carried out, and the next iteration is performed upon the re

sult of the previous iteration. The movements that give the best possible gainimprovement

(even if negative) in a particular iteration, are the movements that are carried out in that

iteration. Allowing negative gain improvements (in other words, an inferior solution) gives

the algorithm capabihty to climb out of local minima. The cumulative gain improvement

(sum of the gains in each iteration) is tracked. This gain starts at zero, at the first iteration,

and returns to zero at the last iteration (when all elements have changed placed). In be

tween, it will have reached a peak. The sequence of movements up to this peak are retained,

and the rest are discarded. The resulting partition is then set as the initial partition, and

the entire procedure is repeated until a stage is reached when the initial partition can no

longer be improved (this typically takes 2 to 3 iterations in most cases).

In our case, we are performing an /-way partitioning, and the objective is to have

uniformly sized partitions. We start from an initial level allocation that satisfies the fanin

constraints. Such an allocation can be obtained using topological levehzation. Assume we

use topological levehzation starting from primary outputs. All the slack nodes are identified

and formed into an active set. Only members of the active set are considered for movement.

A move consists of moving a node from its initial level to a new level, without violating

fanin or fanout constraints. The cost function of the move is set to minimize the variance

of the DLM distribution.

Figure 11.2 outhnes our procedure in C-like pseudo-code. Variable ix is the move-

index, and is incremented after every move. The variable Q keeps track of the peak cu-
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repeat{

ix = 1;

Q = 0; /* peak cumulative gain */

J = 0; /* index corresponding to peak cumulative gain */

cumjgain = 0; /* cumulative gain */

Build an activejset;

while (activeset not null) {

Select node i with maximum move.gain;

Move node i;

Remove node i from activejset\

cum-gain = cum-gain + movejgain;

if cumjgain > Q {

Q —cumjgain',

X — ix;

)
Increment ix;

}

Only treat the first J moves, from 1 ...J,

as valid, and undo the rest of the moves.

} until (Q < 0)

Figure 11.2: Temporal partitioning procedure
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mutative gain, and J stores the move-index corresponding to this gain. To start with, an

active-set is created. This comprises of the slack nodes. While there are nodes in this set.

a node whose move that maximizes the gain is chosen. It is moved, and then removed from

the activeset. The cumulative gain is incremented by the gain of this move. If the resulting

gain surpasses its previous peak value, Q and I are updated. After all the nodes have been

moved, the inner while loop terminates. Only the sequence of moves from index 1 to J are

valid, and the other moves are discarded. The procedure within the outer repeat loop is

repeated until the moves do not cause any further improvements.

11.3.3 Move selection

The criterion for move selection is to minimize the variation of the DLM distribu

tion. Let the current distribution be such that there are d,- DLMs allocated to level i, for

i = 1.../. Let us consider the cost of moving DLM m from its current level cur to a new

level new. Let the number of modules currently in level cur be c, i.e., dcur = c. Similarly,

let dnew = n. If this move is made, then dcur = c- 1 and dnew = n + 1. Let \i represent the

mean value of the DLM distribution, i.e., \i = S/l. If v^ and vnew represent the current

and new variances, then,

/

Vcut = ]£[<*, ~ V?
i=l

/

= [dcur - »Y + [dnew - »?+ £ [dt ~ //]2
i=l,t?£neu>,ctir

= [c-^ + [n-^+ £ [dt-tf (n.7)
i=l,i£new,cur

Similarly,

vnew = [(c-l)-»]2 + [(n+l)-ti]2+ Yl \di-lA2 (11-8)
i=l,t?£new,cur

Vcur and vnew are non-negative. Hence, if we define Vv as

T>v ~ Vcur - Vnew, (11.9)

then, Vv > 0 whenever vnew is less than v^y.. Since we wish to minimize the variance, we

choose a move that maximizes Vv. Using equations 11.7 and 11.8 in 11.9,

V, = [c-^ + ln-^-Kc-U-^-Kn + D-d2
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= c2 - 2c/i + n2 - 2/i/t - (c- l)2 + 2(c- 1)// - (n + l)2 + 2(n + l)fi

= c2-rn2 - 2n[c + n - (c - 1) - (n + 1)] - c2 + 2c + 1 - n2 - 2n - 1

= 2c - 2n - 2

= 2(c-n-l)

= 2(ucur — uneu> — 1)

From this result, we observe that the variance minimizing move is independent of //, and

is dependent only on dcur and dnew. Figure 11.3 outlines our move procedure in a C-hke

pseudo-code. This procedure is called to perform the function of the first hne within the

inner while loop of Figure 11.2. The procedure loops through all nodes in activeset. For

each node n, the gain is computed using the above formula (the multiply by 2 can be

dropped, since we are interested in computing only the maximum, both for the move-gain

and the cum^ain (Figure 11.2)). All the possible levels to which the node can be moved

to, are considered, and the gain is computed for each level. Since a node's level has to be

greater than all its fanins, levels below(imax(w) +1) axe not considered. imax(n) is the level

of the fanin of n with the maximum level, i.e.,

Wr(n) = t max x{a/(/)}.
/€/antn(n)

Similarly, a node's level has to be lesser than all its fanouts. Hence levels above (om;n(7i)-1)

are not considered, where

Omin(n) = min la/(/)}.
j€Janout(n)

The procedure returns the node with the maximum move gain, and its new level position.

11.4 Experimental results

Table 11.1 tabulates the results ofusing procedures 11.2 and 11.3 on a set of MCNC

benchmark examples. The examples were first mapped to 5 input LUTs, with minimum

levels, using mis_pga[Murgai 91a] 3.

The second columnhsts the total number of modules, C, in the example, and the

third column hsts the number oflogic levels, /, along the longest path. The \C/t] column is

3Any other mapper can be used, like [Cong 92] or dpmap of Chapter 5. These experiments were run
before dpmap was discovered. Since the aim is to study the level distribution, it was felt unnecessary to
re-run using other mappers.
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/* Input is the activeset */

/* Outputs are the node to move, its new level and the move's gain */

Move_select() {

Mg = 0; /* peak move_gain */

foreach node n 6 activeset{

cur=ai(n); /* n's current level */

/* imaAn) is the max fanin level */

/* omin(n) is the min fanout level */

for (new= (imaAn) + l)...(omaAn)-l),new^cur) {

/* consider all possible new levels */

move.gain = dCUr —dnew —1;

if (move-gain > Mg) {

Mg —move-gain;

V = n; /* store module to move */

Af = new; /* store new level */

}

}

}

Return Mgi V and Af.

Figure 11.3: Move selection procedure
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to give an idea about the number of modules that would be in each level, if the distribution

were perfectly uniform. We start from a topologically levelized graph, levelizing from the

primary outputs. The columns under the 'Before' heading correspond to the distribution

statistics for this type of levehzation. 'Min' is the minimum of the DLMs in any level,

and 'Max' is the maximum number of DLMs in any level, a is the standard deviation of

the distribution. The columns under 'After' correspond to similar statistics after temporal

partitioning. The last column records the time taken, in CPU seconds, on a DEC 5100, to

run the algorithm.

The results are tabulated in ascending order of standard deviation values of the

DLM distributions after temporal partitioning. The algorithm is quite successful, and gives

phenomenal improvements in several examples (des, rot, apex6, C5315). Figure 11.4

shows the results for the C5315 example, in graphical form.

A few of the examples, however, hke C499 and alu2, cannot be partitioned suc

cessfully. In such cases, the number of levels may have to be increased to get a more uniform

distribution (at the expense of slowing down the circuit), or logic synthesis techniques may

be required to synthesize the circuit in a manner that is more suitable for Dharma (see

Chapter 13).

11.5 Conclusions

In this chapter, we first described an integer linear programming approach to the

level allocation problem, and then developed a heuristic for level allocation. The heuristic

is called temporal partitioning. Temporal partitioning uses a cost function similar to the

Kernighan-Lin heuristic. Experimental results show that the heuristic can yield a fairly

uniform DLM distribution for several MCNC benchmark examples.

The move selection procedure (see Figure 11.3) can be modified to take into con

sideration number of buffers per level, in addition to the number of DLMs per level. Any

other types of architectural constraints can also be easily incorporated. This flexibihty is

the main advantage of the temporal partitioning heuristic.
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Number of DLMs

6

Level

I
10

Figure 11.4: DLM distribution before and after temporal partitioning, for the MCNC bench

mark example C5315.
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Example Modules

C

Levels

/

\c/i] Before After Time

CPUsMin Max a Min Max o

des 1397 11 127 6 244 69.6 127 127 0.0 135

rot 322 7 46 15 83 22.3 46 46 0.0 4

apexC 274 5 55 9 98 33.5 54 55 0.4 4

apex7 95 4 24 6 36 11.9 23 24 0.4 0

f51m 23 4 5 2 8 2.5 5 6 0.4 0

C5315 643 10 65 15 106 29.0 64 65 0.5 21

misex2 37 3 13 4 18 6.0 12 13 0.5 0

b9 49 3 17 13 18 2.1 15 16 0.5 0

rd84 13 3 5 2 7 2.1 4 5 0.5 0

9sym 7 3 3 1 5 1.9 1 3 0.9 0

duke2 164 6 28 1 48 16.2 25 28 1.1 1

C880 259 9 29 7 41 10.5 30 25 1.4 2

count 81 4 21 5 34 10.9 16 22 2.5 1

sao2 46 5 10 4 15 3.5 4 12 3.0 0

e64 213 5 43 5 67 24.1 40 46 3.0 4

dip 54 4 14 5 21 5.7 5 18 5.1 0

vg2 100 8 13 6 24 6.3 6 20 5.8 0

alu4 155 11 12 3 30 9.0 5 21 6.1 1

apex2 116 6 20 3 33 11.1 3 26 9.0 0

alu2 121 6 21 6 39 13.1 6 31 10.9 1

C499 199 8 25 4 51 14.8 15 42 11.1 1

Table 11.1: DLM distribution statistics before and after temporal partitioning



177

Chapter 12

Architecture Analysis

Since we are proposing a new architecture, we must analyze the pros and cons, and

compare with existing architectures. We perform the analysis under the following sections:

1. Area analysis

2. Timing analysis

3. Experimental verification

12.1 Area analysis

We do a comparison of the area requirements of one particular implementation

of the Dharma architecture, with existing FPGA devices. We show that the new Dharma

architecture's area is comparable with the Xihnx and AT&T ORCA devices, and it is

therefore feasible to implement Dharma.

12.1.1 Assumptions

We proceed with the following assumptions for the Dharma chip:

1. DLMs are A'-input, 1-output LUTs.

2. There are C DLMs and L maximumlevels; assume A" « log2 L.

3. There are B buffers; assume B = 2 x C.
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4. The DIA is implemented as a one-level crossbar, with two crossbars, the I-crossbar

and the .0-crossbar. The DLMs are divided into 2 classes, those that connect to even

pins, and those that connect to odd pins of DLMs at the next level.

5. There are B input lines, which enter the i-crossbar and 5-crossbar through 2-to-l

multiplexers.

6. The chip uses a global level counting scheme as in Figure 8.6.

If the DIA is implemented as a two-level crossbar (hke the binomial concentrator)

or hke a copier (see Section 10.2), it is possible that area requirements will reduce. A

sparsely connected A*-class DIA will also reduce area requirements. A complex DLM, with

interconnected LUTs could also reduce the area (but will increase software complexity).

12.1.2 Area components of Dharma

Following are the chief components to be considered for the area analysis:

1. DLM area

(a) Number of bits (2K x L bits per DLM)

(b) Decoder area (one A'-input and one (/o#2-£)-input decoder per DLM)

(c) Multiplexer area (one mux per DLM)

(d) Output buffer area (one buffer per DLM, to drive crossbar)

2. DIA area

(a) L-crossbar

i. Number of bits ((B + C)-input, (A' x C)-output crossbar, L bits per cross-

point)

ii. Number of pass transistors (one per crosspoint)

iii. Number of lines (one per input and one per output)

(b) B-crossbar

i. Number of bits (5-input, B-output crossbar, L bits per crosspoint)

ii. Number of pass transistors (one per crosspoint)

iii. Number of hues (one per input and one per output)
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iv. Multiplexers (one per primary input and one per DLM output)

3. Latch area (a latch at each DLM and buffer input)

4. Memory configuration circuitry area

5. Buffer area (B buffers to drive crossbar)

12.1.3 The analysis

Configuration bits

HB = 2C

DLM bits

L-crossbar

B-crossbar

PI Mux select bits

Buffer Mux select bits

=

(2hL)xC
(B+C)(I\C)L

(B)(B) x L
BxL

CxL

2hLC
3C2KL

4C2L

2CL

CL

Total = H Of- + (2K + 1)C+
B2 + B + K(;B}

LC{( 2f+ 4)C+
(2K + 3)}
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Table 12.1: Number of configuration bits

The \ term in the L-crossbar arises from the odd-even classification of DLMs.

DLM decoders

Assuming an x-y decode scheme, each DLM wiU have 2 decoders; one A'-input

decoder to decode the actual DLM inputs, and one (/op2^)-input decoder to decode the

level bits. Assuming A" « log2L *, there are 2C A'-input decoders.

DLM Muxes

Under the x-y decode scheme, we will require a 2A-to-l multiplexer per DLM,

hence C such multiplexers are required.

'Typically, A' < log^L. So this is a conservative estimate.
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Pass transistors

Lines

if B = 2C

L-crossbar pass transistors =
B-crossbar pass transistors =

(B+C)(Kc)

(B)(B)

3C2I<
2

AC2

Total = KCB . D2 . AC2
2 -t--° -r , (3£+4)C2

Table 12.2: Number of pass transistors

if B = 2C

L-crossbar lines = B -f C + KC
B-crossbar hnes = B + B

(3+A')C
AC

Total = 35 + (A' + l)C (7 + K)C

Table 12.3: Number of routing hnes

We assume that each hne spans the width or height of the chip (conservative
estimate).

2-to-l multiplexers

C Buffer muxes and B PI muxes are required, giving a total of (B -f C) (= ZC\
2-to-l multiplexers.

Latches

if B = 2C

DLM input latches = KC
Buffer input latches = B

KC

2C

Total = B + KC (A'+2)C

Table 12.4: Number of latches
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Memory configuration circuitry

This circuitry performs the initial configuration of the bits into the configuration

bits, in a serial fashion. Hence, the overhead associated with this circuitry can be assumed

to be proportional to the number of bits. Let the constant of proportionality be (,*• Hence,

area = LC({(2if + 4)C + 2K + 3}.

Buffer area

(B + C) (= 3C) output buffers to drive crossbar lines.

12.1.4 Comparison with Xilinx 2000 series

The XC2000 has 4-input LUTs and hence the DLMs are directly comparable to

these LUTs. Each CLB has 2 outputs (these are different when the LUT is broken into two

3-input LUTs), one latch, three 2-to-l multiplexers, and three 3-to-l multiplexers.

The XC2000 has 3 kinds of interconnection resources: general purpose intercon

nect, long hnes, and direct connections.

For the purposes of comparing interconnect resource area, we assume that both the

Dharma and the XC2000 chip have the same die size. The interconnect lines are measured

in terms of chip width and height. Specifically, we assume a square die (width = height),
and normalize the interconnection line length to the chip width. In the analysis, it will turn

out that Dharma will have comparable area to the Xihnx chip (Dharma will have smaller

area), and hence the assumption of same die size is valid (the assumption is conservative,
and favors Xilinx).

The XC2000 has 5 vertical general purpose interconnects 2and 2vertical long hnes
per column: 4 horizontal general purpose interconnects and 1 horizontal long hne per row;

and 1 direct interconnect in horizontal and vertical direction per CLB (connecting adjacent
CLBs). If the chip has P CLBs, there are 5+ 2+ 4+1+1 + 1 = 14\/P chip-width hnes.

Each hne can be connected to the CLB inputs/outputs and other hnes by means

of programmable interconnect points (PIPs). The Xihnx data book does not specify the
number ofpass-transistors, but as a lower bound, we assume that each PIP has one pass-

2iEach general purpose interconnect line is segmented, segments being connected by means of switch
matrices. One column(row) of such segments {y/P segments) is treated as one chip-width line in this
comparison.
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Area component XC2064

Number of bits 11254

Decoders 64, 4-input

DLM Mux None

Pass transistors 74 x 64

= 4736

Lines 14x8

= 112

2-to-l mux 3x64

= 192

3-to-l mux 192

Latches 64

Memory config 11254C
Buffer 2x64

= 128
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Dharma

8x8{(^fi + 4)8+24 + 3}
= 6336

16

8, 16-to-l

(3|i + 4)g2
= 640

(7+4)8
= 88

3x8

= 24

None

(4+2)8
= 48

6336C
3x8

= 32

Remarks

Xihnx data book

8 (of 16) are 3-input
for Dharma

(mux + decoder) area
for Dharma <

XC2064 decoder area

same overhead / bit

Table 12.5: Dharmd's area comparison with XC2064

transistor 3. From the XACT software's plot of the Xihnx chip, we count 50 PIPs sur

rounding each CLB. There are 2 switch matrices per CLB, and each switch matrix is 2 x 2.

Assuming 2 switch points per matrix, with 6 pass transistors per point, we have 24 pass-

transistors per CLB, in the switch matrix. Thus we have a total of 74P pass-transistors.

We assume 2 output buffers per CLB, resulting in 2P buffers.

XC2064

The XC2064 has 64 CLBs, therefore P = 64. We compare it with a Dharma chip

with C = 8;K = 4;L = 8 (note: K < log2 L).

Table 12.5 shows the comparison. The Dharma resources use less area. It is

reasonable to assume that the DLM mux and decoder areas for Dharma will sum up to be

less than the decoder areas of the XC2064.

*This may bea poor lower bound, since PIPsmay have more than one pass transistor to allow connections
in different directions. However, we choose to err on the safer side.
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Area component XC2018 Dharma Remarks

Number of bits 17238 10x 10{(*f* + 4)10 + 24 + 3}
= 11900.

Xihnx data book

Decoders 100. 4-input 16, 4-input
DLM Mux None 10, 16-to-l (mux + decoder) area

for Dharma <

XC2018 decoder area
Pass transistors 74 x 100 (3|4+4)102

= 7400 = 1000

Lines 14 x 10 (7 + 4)10
= 140 = 110

2-to-l mux 3x 100 3x 10

= 300 = 30

3-to-l mux 300 None

Latches 100 (4+2)10
= 60

Memory config 17238C 11900C same overhead / bit
Buffer 2x 100 3x 10

= 200 = 30

Table 12.6: Dharmd's area comparison with XC2018

XC2018

The XC2018 has 100 CLBs, therefore P = 100. We compare it with a Dharma

chip with C = 10; A' = 4; I = 10 (note: CL = P and A* < log2X). Table 12.6 shows the
comparison. It is reasonable to assume that the DLM Mux and decoder areas for Dharma

will sum up to be less than the decoder areas of the XC2018. Again, the Dharma resources
use less total area.

12.1.5 Comparison with Xilinx 3000 series

The Xihnx 3000 series chips use an interconnect pattern similar to the 2000 series.

The CLBs are different, however. Each CLB has 2 latches, one 5-input LUT that can be
configured to implement two 4-input functions, seven 2-to-l muxes, two 3-to-l muxes and
one 2-input OR gate.

As in the 2000 series, we assume that XC3000 chip and Dharma have similar die

sizes, and normalize hne lengths tochip-width. There are 5general purpose vertical hnes and
3 vertical long hnes per column, and 5 general purpose horizontal hnes and one horizontal
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Area component XC3090 Dharma Remarks

Number of bits 62668 16 x 20{(^ + 4)20 + 25 + 3}
= 84800.

Xihnx data book

Decoders 320, 5-input 40, 5-input
DLM Mux None 20, 32-to-l
Pass transistors 100 X 320 (3|5+4)202

= 32000 = 4600

Lines 9 X 20 + 7 x 16 (7+5)20
= 292 = 240

2-to-l mux 7x320 3x20

= 2240 = 60

3-to-l mux 2x320

= 640

None

Latches 640 (5 + 2) x 20
= 140

Memory config 62668C 84800C same overhead / bit
Buffer 2x320 3x20

= 640 = 60

Table 12.7: Dharmas area comparison with XC3090

long hne per column. A direct interconnect from a CLB output connects to adjacent CLBs

in the horizontal and vertical directions. Hence there are a total of (5+3+l)r+(5+l +l)c =

9r + 7c chip-width hnes, where r is the number of rows and c is the number of columns.

Each hne can be connected to the CLB inputs/outputs and other hnes by means

of PIPs. We use the number of PIPs as the lower bound on the number of pass-transistors,

although each PIP may have more than one pass transistor to implement connections in

various directions. From the data book and the XACT software's detailed diagram of the

XC3000 series, we calculated the number of pass-transistors to be 100P, where 30P pass-

transistors are used in the 5x5 switch matrix (5 switch points, with 6 pass transistors per

point), and 70P PIPs surround CLBs. There are 2P output buffers to drive the lines.

XC3090

The XC3090 has 320 CLBs, each with a 5-input LUT. Therefore, P = 320. There

are 20 rows and 16 columns, which imphes r = 20 and c = 16. We use Dharma parameters

as C = 20; A* = 5;L = 16 (note: CL = P and K < log2 L).

Table 12.7 shows the comparison. Since it is difficult to make a comparison directly,
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Component XC3090 Dharma

Bits

Decoders

62668

320 x 64

84800

40 x 64

DLM mux

= 20480

0

= 2560

20 x 32

Pass transistor 16000

= 640

2300

2-to-l mux 2240 60

3-to-l mux 640x4 0

Latches

= 2560

640x3 140 x 3

Memory config
Buffer

= 1920

62668

640x2

= 420

84800

60 X 2

= 1280 = 120

Total 169816 175700

Table 12.8: Gate equivalent area comparison with XC3090

Area component
Number of bits

Pass transistors

Dharma

16x20{(2f* + 4)20 + 25 + 3}
= 56000.

(3|5+4)202
= 2800

Table 12.9: A'-class DIA fares better

ISi

weuse gate equivalent analysis. We assume that each bit is equivalent to 1 gate, each DLM

mux is equivalent to 32 gates (wired OR, uses column select from column decoder), each

decoder is equivalent to 64 gates, each latch is3gate equivalents, each memory configuration
overhead is 1 gate equivalent per bit, each buffer is 2 gate equivalent, each 2-to-l mux is 1

gate-equivalents, each 3-to-l mux is 4 gate-equivalents, and each pass transistor is 0.5 gate
equivalent. We then have the gate-equivalent totals as in Table 12.8.

Thus, the Dharma chip is bigger by a factor of 3.5%.

If we use a A'-class division, for the DLM connections to thenextlevel DLM inputs
(i.e., each DLM output connects to only one input of the next level DLM), the number of
bits and pass transistors changes as tabulated in Table 12.9.

Therefore, the gate equivalents decrease by 2(84800 - 56000) +0.5(4600 - 2800) =
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Size XC4000 Dharma

64 35956 C = 8; L = 8; K = 5
8x8{(2f5. + 4)8+25 + 3}

= 8128

100 51788 C= 10; I = 10; A'= 5

10 x 10{(^ + 4)10 + 25 + 3}
= 15000

196 92092 C = 20; L = 10; A' = 5
10 x 20{(2f$ + 4)20 + 25 + 3}

= 53000

324 143916 C = 20; L = 16; A' = 5

16 x 20{(^ + 4)20 + 25 + 3}
= 84800

400 174148 C = 25; I = 16; A' = 5

16x25{(^p + 4)25 + 25 + 3}
= 12900

Table 12.10: Dharmtfs configuration bits comparison with XC4000

58500, and becomes 117200, 31% less than the XC3090.

12.1.6 Comparison with Xilinx 4000 series

A direct one-to-one comparison with the XC4000 series is not possible because of

the significant difference in the CLB structure. We cannot compare one CLB with one DLM.

unless we change the DLM structure itself. However, from the analysis so far, it is clear

that the dominating factor is the number of bits, and we hence tabulate, in Table 12.10.

the number of bits for the XC4000 series chips and the Dharma chips (odd-even class

interconnection) with CL = P, where P is the number of CLBs in the XC4000 series chips.

W7e assume a 5-input LUT for the DLM.

From the table, we observe that Dharma uses far fewer configuration bits.

12.1.7 Comparison with the AT&T ORCA

The comments on comparison with the XC4000 apply to the AT&T ORCA chips

as well. We just hst the number of bits in Table 12.11. Again, Dharma uses far fewer

configuration bits.
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Size ORCA Dharma

100 42816 C - 10; I = 10; K = 5

10 x 10{(^ + 4)10+25 + 3}
= 15000

196 81048 C = 20;X= 10;A' = 5

10 x 20{(^ + 4)20 + 25 + 3}
= 53000

IS'

Table 12.11: Dharma's configuration bits comparison with AT&T ORCA

12.2 Timing analysis

In this section, timing equations for Dharma are derived. The equations aredepen

dent on the clocking scheme used, and hence there are two equations, EFP timing equation

and S timing equation. Each equationgives the total time required for signals to propagate

from the inputs to the outputs, for an / level circuit, when the circuit is implemented on a

Dharma chip.

12.2.1 Notation

The following hsts the symbols used in the timing equations.
Defp Delay from input to output for EFP clocking.
Ds Delay from input to output for S clocking.
Je Ext elk frequency.
// Int elk frequency.
/ Number of levels in the circuit being implemented.
Tj Clock period of Int elk.
Th Time duration for wliich Int elkis high.
Ti Time duration for which Int elk is low.

tdim Worst-case propagation time through DLM.
Uia Worst-case propagation time through DIA.
tircfg Reconfiguration time for DIA.
tLrcfg Reconfiguration time for DLM (= 0 for LUT DLM).
tid Latch/Register propagation time.
Uh Latch/Register hold time.
tis Latch/Register set-up time.
"Imux Worst-case propagation time through a 2-input multiplexer.
txbL Worst-case propagation time through the L crossbar.
txbB Worst-case propagation time through the B crossbar.
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12.2.2 EFP timing equation

Consider Figures 8.7(a), 8.13 and 12.1.

In Figure 12.1, the path from input register to output register has been unfolded.

The unfolded path has been drawn in a snake hke fashion. AU possible connections (DLM

to DLM, DLM to buffer, buffer to buffer, andbuffer to DLM) havebeen shown in the figure.

The vertical dotted hne, labeled H corresponds to the time instant at which Int elk goes

high, and the vertical dotted hne labeled L corresponds to the time instant at which Int

elk goes low. The various components havebeen drawn such that they are aligned to these

two time instances. The jog in the vertical hne L corresponds to the extension in T/, the

low portion of Int elk, to account for the delay through the primary input registers.

In Figure 8.13, the reconfiguration time of the DIA is time,-shared with the prop

agation time through the DLM, and this occurs when Int elk is high. The DIA can be

reconfigured after a delay of <//,, after latching the inputs, for proper latch operation.

From Figure 12.1 and 8.13,

Th > tlrcjg + tih

Th > tdlrn + Ud

Combining these two equations,

Th > max{(tIrcfg + tlh),(tdim + tid)} (12.1)

From Figure 12.1, the worst-case delay through the DIA is given by

tdia = max{(tmux + txbL), (2 x tmux + txbB)}. .• • (12.2)

Since the B crossbar is much smaller than the L crossbar, it is likely that tdia = tmux + txbL-

After signalshave propagated through the interconnect, an additional duration of

tis is required before Int elk can go high. Therefore,

TtZtdia + U, (12.3)

For the first period, however, Int elk has to remain low for an extraduration oft id (propa
gation through the primary input register).

Combining equations 12.1 and 12.3,

Td = Th'+Ti

> max{(t/rc,ff + tth), (tdim + tid)} + tdia + tls (12.4)
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For an / level circuit, there are / durations of T/,, and / durations of T/, in the EFP

scheme. The first T/ is extended by //</. Hence, the delay from input to output,

Defp = IxTh + lxTi + tid

= IxTd-rtid (12.5)

Substituting equation 12.4 in 12.5, and assuming that Int elk operates at the

maximum rate,

Defp = / x [max{(*Ircfg + Uh), (tdim + tid)} + Uia + tu] + Ud (12.6)

Equation 12.6 is the EFP timing equation. The delay through the implemented

circuit varies linearly as the number of logic levels, /. This is a key feature of the Dharma

architecture.

If {tircfg + tih) < (tdim + Ud) (as will usually be the case, especially if the DLM is

an interconnection of LUTs), then

Defp = / x [tdim + tdia + tu + tu] + tu (12.7)

Equation 12.5 gives the minimum clock period of Ext elk. If /; is Int elkfrequency,

and Je is the Ext elk frequency,

1
!e =

Defp
1

IxTd-r Ud
1

Td(l-rS)

fE = y^ (12-8)
where 6= ^. Thus, Ext elk is slower than the Int elk frequency by a factor of j^j

for EFP clocking.

12.2.3 S timing equation

Figure 12.2 shows the unfolded signal path for the S clocking scheme. Comparing

with Figure 12.1, in Figure 12.2 the PI and PO registers are clocked in phase with the input

latches, and hence are placed vertically aligned to the H dotted hne. As a result of this shift
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in time, the propagation time through the primary input register (t^) is now in phase with

the propagation time through the input latches, and hence does not cause an extension of

the clock period. However, this phase alignment increases the number of Int elk cycles to

(/ + 1), as shown in Figure 8.7(b). The rest of Figure 12.2 is similar to Figure 12.1. The

derivation of Td remains unchanged, and is exactly as given in equation 12.4. The S timing

equation, for an / level circuit implemented on Dharma is given by

Ds = (l-rl)xTd (12.9)

Substituting equation 12.4,

Ds = (I + 1) x [max{(t/rc/ff + tih), (tdim + tid)} + tdia + *iJ (12.10)

If (tircfg + Uh) < (tdim + tid), then

DS = (/ + 1) X [tdim + tdia + Ud + tu] (12.11)

From equation 12.9,

h = j~y (12.12)

So, Ext elk is j^j- times slower than Int elk in the S clocking scheme.
Comparing equation 12.11with 12.7, the circuit will be slower by tdim + tdia + tu.

Hence the "slow" prefix for this clocking scheme.

12.2.4 Remarks

The time required by a A'-input LUT CLB for logic function evaluation will be less

than the time required by a DLM of equal functional capabihty, since the DLMis essentially

a (A* + /o</2£)-input LUT. However, since there will be fewer decoders (by a factor of L),

they can be made larger to provide the same speed as that of a A'-input LUT CLB.

The interconnect delay (see equation 12.2) is a constant predictable delay, whose

value depends on the crossbar implementation (several types are possible, as described in

Section 10.2). Typical values of 4 to 5 ns delay for tdia is expected [Horng 92]. The sum

of the latch set-up and propagation times is of the order of 3 to 4 ns. Thus, the latch

and interconnect together introduce a latency of about 7 to 9 ns. While the Xilinx style

architecture boasts of a much smaller interconnection delay, experiments over actual circuits

show that routing delay could be as high as 48 ns.
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12.3 Experimental verification

We performed a comparison of Dharma's timing behavior with that of the Xihnx

3000 series chips. Our experiment is conducted in the following manner: Several MCNC

combinational benchmark circuits were mapped to Xilinx using the mis.pga mapping tech

nique [Murgai 91a]. The mapper generates an output circuit with 1-output LUTs, each
having < 5 inputs. One such LUT is assigned to each CLB on the Xihnx chip. Each

benchmark circuit is placed and routed (using the Xilinx place and route tool apr) on the

smallest possible XC3000 series chip (i.e., the smallest chip which satisfied the condition,

# CLBs > # LUTs). However, if there were unrouted nets on such a chip, the next larger
chip is used.

The results are tabulated in Table 12.12 (see Table 7.1 also). The second column

lists the number of 1-output LUTs in the examples, and the third column hsts the number

of levels of logic on the path with maximum delay. The 'Xihnx delay' column hsts the
worst-case delay as computed by Xilinx's timing analyzer XDelay.

The temporal partitioning technique of Section 11.3 is used to levehze the LUTs

for Dharma. Columns 'Max DLMs' and 'Max buffers' hst the statistics after temporal
partitioning. 'Max DLMs'is the maximum number of DLMs in any level, and 'Max buffers'

is the maximum number of buffers in any level. A Dharma chip with appropriate C and B
is selected to implement the circuit, based on these numbers. The delays for the Dharma
implementation are calculated using equations 12.7 and 12.11 for the EFP and S clocking
schemes respectively, and these are hsted in the columns towards the right hand side of

Table 12.12. The Xihnx delay numbers include IOB delays; hence additional IOB delays
areadded to the Dharma delay numbers as well. The percentage decrease in Dharma delays,
as compared to the Xihnx delays are hsted in the '% impr.' columns.

In computing the expected delay on Dharma, we make the following assumptions.

1. Xihnx CLB delay = Dharma DLM delay (tdim) = 8 ns.

2. Xihnx IOB delay = Dharma IOB delay = 6 + 27 = 33 ns.

3. Dharma interconnect delay (tdia) = 5 ns

4. Dharma latch set-up delay (t/5) = 0.2 ns.

5. Dharma latch propagation delay (tid) = 3.8 ns.
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Example LUTs Levels Max

DLMs

Max

buffers

Xihnx

delay
Dharma

EFP clock S clock

delay % impr. delay % impr.
5xpl 21 2 11 7 87.8 71.0 -19.1 84.0 -4.3

C499 199 8 42 59 346.3 173.0 -50.0 186.0 -46.3

C880 259 9 30 110 342.9 190.0 -44.6 203.0 -40.8

alu2 121 6 31 24 187.4 139.0 -25.8 152.0 -18.9

alu4 155 11 21 42 316.5 224.0 -29.2 237.0 -25.1

apex7 96 4 24 53 168.6 105.0 -37.7 118.0 -30.0

b9 49 3 16 38 107.2 88.0 -17.9 101.0 -5.8

bw 28 1 28 0 75.6 54.0 -28.6 67.0 -11.4

dip 54 4 18 18 120.5 105.0 -12.9 118.0 -2.1

count 81 4 22 43 133.1 105.0 -21.1 118.0 -11.3

duke2 164 6 28 72 195.2 139.0 -28.8 152.0 -22.1

e64 213 5 46 90 203.5 122.0 -40.0 135.0 -33.7

f51m 23 4 6 13 109.3 105.0 -3.9 118.0 8.0

misex2 37 3 13 24 93.3 88.0 -5.7 101.0 8.3

sao2 46 5 12 14 125.4 122.0 -2.7 135.0 7.7

vg2 100 8 20 17 151.9 173.0 13.9 186.0 22.4

Average -22.1 -12.8

Table 12.12: Table showing results of an experiment comparing Dharma with Xihnx's 3000

series. Xihnx results were obtained after place and route, using apr, followed by Xdelay's

timing analysis.D/mrrrca results are from the timing equations 12.7 and 12.11.
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From these estimated delays for Dharma, we observe an average improvement of

22.1%. if the EFP clocking scheme is used, and an improvement of 12.8% if the S clocking
scheme is used, for the 16 MCNC benchmark circuits.

Since faster DIAs are possible, there is a further scope for improving the Dharma

delay numbers. Also, the mapping for Dharma has only been done using temporal partition

ing; i.e, no real logic synthesis has been performed (see Chapter 13 for a possible approach

for logic synthesis for Dharma). Logic synthesis geared for Dharma can further reduce the

timing delay, and also reduce resource utilization (number of DLMs and buffers used).

12.4 Conclusions

In this chapter, the new Dharma architecture's silicon area usage and timing be

havior were studied. We compared Dharma's area usage with existing reconfigurable ar

chitectures, such as the Xihnx series of chips and the AT&T ORCA. We derived timing

equations for Dharma, which provide timing delay and clock rates for circuits implemented

on Dharma.

Our area analysis showed that the sihcon area of the Dharma device is expected to

be smallercompared to the XC 2000 series chips, for the samelogic capabihty. Dharma has

about the same area as the XC 3090 and Dharma has far fewer configurable memory bits

(and switches) compared to the XC 4000 and AT&T ORCA FPGAs. Timing performance

estimates of Dharma compared to the XC 3000 series show that circuits implemented on

Dharma can be faster by about 13% if the S clocking scheme is used, and by about 22% if

the EFP clocking scheme is used.

One may tend to argue that the Dharma numbers show only a few percent im

provement, and it may therefore not be worth the effort to go for a Dharma style FPLD.

However, it must be pointed out that in our analysis, we have taken a conservative ap

proach in favor of Xihnx. It was necessary to be conservative, since our approach is based

on estimates (a Dharma device has not yet been implemented). Estimates can sometimes

be offby a few percent, and it is best to err on the safer side; so that errors in the estimate,

if any, can only be to Dharma's advantage. Thus, our analysis yields the worst-possible

numbers for Dharma. Synthesis results are sub-optimal; synthesis tailored for Dharma can

improve timing behavior. We have assumed an SRAM technology - since this is the one

used by Xihnx and AT&T. However, as discussed in Chapter 10, the Dharma architec-
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ture is amenable to other technologies such as DRAM and CCD, which can result in area

savings and better timing performance (Xihnx and ORCA devices cannot readily benefit

from these other technologies). DIA size can be reduced by using the full A'-class DIA (see

Section 10.2.6), and interconnect delay can be reduced by using the precharge and sense

scheme (see Section 10.2.5).

In spite of the conservative approach, Dharma has better sihcon area and timing

performance. With a suitable choice of technology and architectural modifications (from

amongst the several hsted in Chapter 10),and with a set of CAD tools specifically developed

for Dharma. it is expected that a Dharma based PLS will have clear-cut advantages.
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Chapter 13

Unexplored Terrain

The purpose of this chapter is to point out potential avenues for furthering the

workon the Dharma architecture. Oneis to build a prototypedevice. This may be straight

forward for expert designers, and is not discussed here. Chapter 11only discussed synthesis

as a level allocation problem. In the first section here, we describe the logic synthesis re

quirements for Dharma. Next, we look at improvements possible in the overall architecture,

if software techniques are available to solve certain special problems that arise. Our objec

tive is overall PLS improvement, and architecture improvements that cannot be exploited

by the accompanying software are not real improvements. We describe a synthesis problem

which, if solved, can cause an improvement in the area and performance of the device.

13.1 Logic synthesis for Dharma

From a logic synthesis viewpoint, Dharma poses a unique problem. Given a circuit

specification, the synthesizer should generate a network with the following objectives.

1. Number of levels must be minimized.

2. Number of modules in any level d, Md = max(#((i)), must be minimized.

3. Number of inter-level signals (signals that travel more than one level) must be mini

mized.

Minimizing the number of levels improves the performance since the delay through

the Dharma realization is proportional to /, the numberof circuit levels. Minimizing / also
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minimizes the number of configuration bits, since these are also proportional to / (i.e., by

minimizing /, one can use a smaller Dharma chip).

The circuit is implemented on a Dharma device which has C > A/j. Thus, min

imizing Md allows one to use a smaller chip. Similarly, the number of inter-level signals

determines the number of on-chip pass-buffers required, and again minimizing this number,

can allow a smaller chip to be used for the circuit realization.

Our approach in Chapter 11 partitioned the above objectives into two. Objective

1 was solved with no regard to the other two constraints. However, we conjecture that

a logic synthesizer that considers all the three objectives together can give better results

compared to those reported in Chapter 11.

One possible approach to this synthesis problem, is along the hnes of [Kim 93].

Although the approach used in [Kim 93] is for wave-pipelined circuits, the objectives are

somewhat similar. In the case of wave-pipelining, the logic synthesis solution should be

such that the resulting circuit is balanced. That is, the shortest and longest paths at every

node, from the primary inputs, must be equal. One way of achieving this balance is to add

delay buffers to the shorter path so that it becomes as slow as the longer path. However,

this is not the best way, as the simple case in Figure 13.1 (taken from [Kim 93]) illustrates.

Figure 13.1(a) is one possible implementation of the function

y = ((a + b) c + d) e + d g.

To balance this circuit requires 10 delay buffers. However, the same function can be realized

as in Figure 13.1(b). The second realization is balanced with only one delay buffer. The

authors in [Kim 93] present a balancing algorithm which restructures a given circuit into a

balanced circuit, keeping the area(areadue to gates plus delay buffers) and delay minimum.

The balancing algorithm first decomposes the input circuit into a network of 2-

input gates. Then the algorithm starts at the most unbalanced (largest difference between

longest and shortest paths) output node. This node is collapsed, with a limit on the size

of the collapsed node. Unbalanced fanin nodes are recursively balanced. The collapsing is

followed by a balanced decomposition.

The balanced decomposition is the key step in the balancing algorithm (and it is

this step that needs to be modified for Dharma). For a balanced decomposition, the kernel

and co-kernel nodes must have equal logic depths, which is one less than the remainder

node's logic depth. The cost function to choose a kernel for decomposition is set using
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(a)

Figure 13.1: Unbalanced and balanced implementation of function y.
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n = (a+b) ce + de+ dg

r = de + dg

n = ace + bee + de +dg

p = a+ b q = ce

Figure 13.2: Example of balanced decomposition.

this requirement. In Figure 13.2, function n is being decomposed. A candidate kernel is

p = (a + b). The corresponding co-kernel is q = c e and the remainder is r = d e + d g.

Hence, if p and q have the same level (i.e., logic depth), and r is at the next level, then this

decomposition results in balancing node n.

Therefore, the quality of a kernel p for the decomposition of node n is chosen as

cost(n,p) = || delay(p) - delay(q) || +

|| delay(r)- MAX(delay(p), delay(q)) - gatejdelay \\

A kernel with the least cost is chosen for the decomposition.

For Dharma, balancing is relevant since it minimizes pass-buffer usage. In addition

to balancing, in Dharma, the number of nodes per level must be minimized. This must be

incorporated into the kernel selection cost function. One way to do this could be to compute

Uost(n,p) = #(/eve/(p))+ #(level(q)) + #(/eve/(r),

where #(d) is the number of nodes at level d. Ijcost could then be added to cost(n,p)

with a weighting factor. The estimation of delay is straightforward in the case of Dharma,

because of the linear relationship to the logic level (this is not the case for standard cells and

other design styles, for which the above algorithm was intended, and the authors describe

heuristics to estimate delay in such cases). The number of inputs per node, and the type

of kernel selection will also have to be modified for Dharma, based on the logic function
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capabilities of the DLMs. For example, if the DLM is a A'-input LUT, then LUT based

decomposition strategies can be incorporated.

13.2 Repetitive structures

In Chapter 10, we discussed the sparsely connected A'-class DIA. This technique

reduces the number of cross-points by almost a factor of A'. However, it necessitates a

graph-coloring type of placement algorithm to perform the placement of the modules in

such a manner that there are no unrouted nets.

Herewediscuss a verysparsecrossbar (VSC) DIA. Sucha crossbarrequires sophis

ticated synthesis techniques to make sure that the given circuit can be fully routed. Unless

such techniques are developed, the VSC cannot be used. In this section, we motivate the

principle behind the VSC, and outline synthesis requirements for the same.

13.2.1 Principle

If the combinational part of a circuit can be synthesized in a manner such that

there is a repetition of interconnection patterns, then part of the reconfigurable crossbar

can be made of fixed connections instead of programmable connections. Let Vi be a matrix

of O's and l's such that the rows of Vk correspond to the horizontal hnes of the DIA and

the columns to the vertical hnes. An element a,j = 1imphes that vertical hne j connects to

horizontal hne i at level k, and a '0' imphes that there is no connection. If we cansynthesize

a mapping such that the Vfs are as identical as possible, i.e.,

II V2 - V, ||* 0,|| V3 - V2 ||« 0,|| V4 - Vz ||« 0,•••,

then it means that certain configuration bits in the interconnection remain the same every

level, and can hence be fixed instead of programmable. Which portion is to be kept fixed
is dependent on the abihty of the synthesis algorithm.

13.2.2 Example

As an example, consider the tiny Dharma architecture of Figure 13.3. Each DLM

is a 2-input LUT, with 1 output. The I-crossbar has only 8 programmable points. There

are four fixed connections. Let us assume that there axe no buffers, for the purposes of this
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©n.

Matchirlg patterns

Figure 13.3: Tiny Dharma with VSC.

illustration. DLMs Dl and D2 are connected to DLM Dl through fixed connection points

(through the PI muxes). These connections can implement a portion of the circuit that has

the repetitive pattern shown on the right side of Figure 13.3.

Similarly, DLM D3 is connected to D2, and vice-versa, using fixed connections.

Portions of the circuit that match the pattern on the right hand side*of Figure 13.3 can be

mapped on to D2 and D3, using these connections. * ••>

The programmable connections allow other portions of-the circuit to be realized

(we cannot expect every part of the circuit to have repetitive patterns).
• ••*'•••'

Let x and y be two functions, as specified below, which are to be realized on this

tiny Dharma architecture.

x = acd + bed+ edgh'i' + cdg'hi' + e + /

y = cde'fgh'i'j + cde'f'g'hi'j

The task of the synthesizer is to transform this input specification in a manner

such that the resulting network has the repetitive patterns shown in Figure 13.3. Consider
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the following solution.

x = u + l'

y = vu?

/> = a + b

q = cd

o = gh'-rg'h

r = />?

* = e + f

t = oq

u = r + s

v = i'<

w = js'

Figure 13.4(a) shows this network in graphical form. Figure 13.4(b) identifies the

patterns of Figure 13.3 in this network, and this guides which function will be implemented

in which DLM, and at what time instant.

13.2.3 Remarks

The example shows just a couple of repetitive patterns. Several more are possible,

especially when the number of DLM inputs are more than 2. The synthesizer requirements

are similar to those of a hbrary-based mapper, which matches patterns in a given input

specification. However, the pattern matching is more involved here, since patterns share

common nodes. For example, the two patterns of Figure 13.3 share D2. Patterns that can

be easily handled by the synthesizer must be chosen, and these set the location of the fixed

connections.

Another possibility to investigate is to have not only repetitive connection patterns,

but also repetitive function patterns. For example, if the function a + b' is used in every

level, then the DLM realizing this function need have only configuration bits for one level.
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Figure 13.4: An example DAG with repetitive structures.
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instead of for every level. A heterogenous DLM array (as in section 10.1.4) will be useful if

a synthesizer with such a capability can be developed.
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Chapter 14

Conclusions

This thesis addressed the use of field programmable devices in applications with

timing performance constraints. FPLDs provide rapid time-to-market capabilities, and at

a low cost - two key features for the success of ASICs. Existing FPLDs are used more

for prototyping and for implementing circuits with non-critical timing specifications. With

the increasing need for faster circuits, FPLDs and their accompanying software must be

able to implement circuits with timing constraints on programmable devices; and this work

addresses just such a need.

In Part I, we presented performance-driven synthesis techniques for existing LUT

based FPGAs. Two issues were addressed independently - routing feasibihty, and tim

ing performance. We presented the RFR algorithm which performs synthesis (mapping),

placement and routing in tandem within a simulated annealing algorithm. Experimental

results showed how the approach reduced the number of unrouted nets. We showed how the

performance-driven mapping and area-delay trade-off techniques of standard cell hbrary-

based mappers can be extended to LUTs. The concept of a two-input LUT primitive cell,

which reduces the hbrary size for LUT libraries by several orders of magnitude, was intro

duced. The special structure of the LUT hbrary patterns was exploited to reduce effective

hbrary size even further, to 0(K2), for a A'-input LUT hbrary. Experiments showed that

thisdpmap algorithm produces faster circuits, and provides useful area-delay trade-off fea

tures, dpmap can be extended in several directions. Libraries for the recently introduced

LUT FPGAs need to be developed. A three-input LUT can also be used in addition to

the 2-input LUT as a primitive cell. Integrating placement with hbrary-based mapping can
give better estimates ofnet delay (as compared to the linear delay model used in dpmap).
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The initial decomposition into two-input nodes, which is the starting point for the dpmap

algorithm, is an open problem and merits further study.

In Part II, we introduced a new FPLD architecture, Dharma. Dharma is based on

the concept of time-sharing of resources in an effort to have a fully routable, CAD friendly

FPLD with predictable timing performance and silicon efficiency. Real-time reconfiguration

of logic and routing resources is used to implement a circuit in a folded pipe-hne fashion,

pipe-lining at the gate level. We explained the operation of Dharma and discussed several

possible variations of a basic Dharma architecture. We introduced a synthesis scheme

for Dharma based on temporal partitioning and presented experimental results. Area and

timing analyses of Dharma were done, and we showed that even a worst-case Dharma device

has advantages, both in terms of area and timing. The Dharma architecture presents many

interesting challenges and avenues for research. Firstly, a prototype device needs to be

built. Dharma is a memory intensive design, amenable to many technologies. The DIA has

to be made small and fast, and the Copier idea (see Section 10.2.5) may be helpful. Sparse

crossbars, along with hard-wired connections give area and speed benefits, but require

inteUigent synthesis tools to ensure routabihty. A family of Dharma devices, each differing

in DIA and DLM architecture can be fabricated, as shown in Figure 1.3. Secondly, as

outhned in Chapter 13, development of logic synthesis algorithms for Dharma can give

better timing performance and reduce resource utilization. Thirdly, the Dharma idea can

be extended to the system level, instead of just at the device level, to allow large sections

of a system to be reconfigured whUe other sections are performing useful tasks.

FPLDs have so far been used mainly to implement "glue logic". Rapid time-to-

market, and low cost are only two of the features of programmable devices that have been

exploited so far. The third feature of field programmable devices is their ability to be

reconfigured in real-time. The Dharma architecture exploited this feature to its advantage.

But Dharma has only scratched the surface of potential uses for real-time reconfiguration.

Properly put to use, real-time reconfiguration (dynamic/virtual\o%\c, or logic recycling) can

foster new computing paradigms, and create a revolution in logic design.
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