

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

COMBINED HIERARCHICAL APPROACHES

TO INTEGRATED CIRCUIT LAYOUT BASED

ON A COMMON DATA MODEL

by

Brian Douglas Ngai Lee

Memorandum No. UCB/ERL M93/81

22 November 1993

COMBINED HIERARCHICAL APPROACHES

TO INTEGRATED CIRCUIT LAYOUT BASED

ON A COMMON DATA MODEL

Copyright © 1993

by

Brian Douglas Ngai Lee

Memorandum No. UCB/ERL M93/81

22 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering '^
University of California, Berkeley

94720

COMBINED HIERARCHICAL APPROACHES

TO INTEGRATED CIRCUIT LAYOUT BASED

ON A COMMON DATA MODEL

Copyright © 1993

by

Brian Douglas Ngai Lee

Memorandum No. UCB/ERL M93/81

22 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Ill

To Donna

for her love and inspiration

Abstract

Combined Hierarchical Approaches to Integrated Circuit Layout Based on a
Common Data Model

by

Brian Douglas Ngai Lee

Doctor of Philosophy in

Electrical Engineering and Computer Science

I'nivcrsity of California at Berkeley

Professor A. Richard Newton. Chair

The integratod circuit layout problem i> tiie specification of fabrication patterns that iin-
pipinent a given circuit de>crii>tion Mibjcct to manufacturing and performance constraints.
The iiieii complexity of integrated circuits lia^ made ii nece.^sary to decompose the layout
problem into a set of Mibproi)lem>. and tlm typical layout process uMially solves a seciuence
of subprobbmis corre^ponding to the >tepv of floor i)Ianning. placement, channel definition,
global routing, detailed routing. ;ind comi>action. f.acli s\ibproblem (b^pend.^ on the so-
lution> of the previou> subproblem- and iteration over the s(-(pience of problems may be
retpiired to find a feasible layout xilution. Tnfortunately. iterative improvement of layout
solutions i^ very difficult becau>e a >ide effect of the partitioning i.> that feedback between
subjiroblem^ is hard and not well llnder^t<Jod.

Amerged hierarchical appr(jach to layout is presentetl that provides a means of
investigating the relationshii) beiwe.m placement and routing to improve current layout
methods. A common data model is used to integrate layout phases and to simplify and
enhance information flow within the layout process. The data model induces a structure to

the layout process for e.xperiinenting with feedback and information management.
Alayout system ba.scd on a 2x2grid-graph abstraction that combines placement

and global routing has been implemented ba.sed on this paradigm. E.xamples from sea-of
gates designs are used for benchmark comparisons.

Prof. A. Richard N^Vron
Dissertation Committee Chairman

Ill

To Donna

for her love and inspiration

Vlll

List of Tables

1.1 Example characteristics 13

3.1 Relative edge weights by abstract net type and edge 37
3.2 Comparison of linear versus nonlinear objective function 45
3.3 Statistics on the number of non-integer programs solved during the branch-

and-bound solution of integer programs 45
3.4 Effects of applying a simple re-route procedure 51

4.1 Total net length comparisons between the separate phase 2 x 2 algorithms
and TimberWolf (5.1 59

4.2 Area and aspect ratio comparisons between the separate piiase 2 x 2 algo
rithms and TimborW'olf G.l 50

5.1 Edge capacity violations as a function of the number of levels of cell assign
ment performed ahead of route assignment QS

5.2 Edge capacity violations and total net length for the immediate and gradual
methods of pseudo-pin assignment 7Q

6.1 Merged placement and routing versus separate phases 81
6.2 Coupled placement and routing versus separate pha.ses 86
6.3 Hybrid placement and routing versus separate phases 92

IX

Acknowledgements

First, I would like to thank Professor Richard Newton, my research advisor, for
his generous and constant support and patience throughout my graduate school years.
His vision and ideas maintained my interest, provided encouragement, and spurred my
creativity.

I am grateful to Professor Carlo Sequin and Professor Charles Stone for reading
this dissertation and for being on my committee.

I also thank Professors Robert Brayton, Richard Newton, Donald Pederson, and
Alberto Sangiovanni-Vincontclli for creating the enjoyable and stimulating research environ
ment called the Berkeley CAD group. 1especially thank Professor Sangiovanni-Vincentelli
for serving as my qualifying exam committee chairman and Professor Pederson for starting
me. as a freshman, on the path liiat eventually led to this degree.

Many other members of the Berkeley CAD group, both past and present, con
tributed beneficially to my graduate school experience. To mention but a few. 1thank .Mark
Beardslee. .Jeff Burns, Andrea Casoiio. Wayne Christopher. David Harrison, Chuck Knng,
Tom l.aiilig. Peter .Moore. Tom (Juarles, Kllen Sentovich. (:r(\g Siukin. and Rick Spickelmier
for ail their lime and help and for generally making my stay here fun and worthwhile. I
am especially grateful to Kllen Sentovich and Mark Beardslee for their support, advice, and
friendship these [)ast lew years.

This research was sponsored in part by the D<'fense Advanced Re.soarch Projects
Agency, the Digital Kipiipment Corporation, and the Semiconductor Research Corporation.
Their support is gratidully acknowhulged.

Thanks also go to my friends in the Berkeley Hang Gliding Club for aiding and
alxHting my much needed escapes from reality to freedom in the air. Iwish them all good
lift and safe (lights.

I am also grateful to the extended "Pajaro Dunes Gang" for their support, encour
agement, and gentle nagging.

Aspecial thanks goes to my parents and family for their constant love and faith.
They put up with much and never gave up on me.

Finally, and with much love, I thank Donna for being there at the end to help me
finish.

VI

List of Figures

1.1 Gate array design structure 5
1.2 Standard cell design structure 6
1.3 Macro-cell design structure 7
1.4 Sea-of-gates design structure 8
1.5 Typical layout system design flow 10

2.1 Cla.ssification of chip level integrated placement and routing methods 16

3.1 2 X 2 data model 26

3.2 Problem hierarchy created by a hierarchical decomposition 28
3.3 P.Kample decomposition step 30
3.4 Basic quadrisection algorithm pass 35
3.5 Possible routes on the 2 x 2 abstraction 38

3.6 2 X 2 net types and configurations 40
3.7 Uneven route distribution 43

3.8 Immediate pseudo-pin assignment 49
3.9 Gradual pseudo-pin assignment 50

4.1 Placement constraints for terminal propagation 54
4.2 Subproblem abstraction on a placement grid 56

5.1 Subproblem abstraction sequence for solving a routing level immediately after
the corresponding placement level 64

5.2 Subproblem abstraction sequence for solving one more level of placement
before routing 65

5.3 Subproblem abstraction sequence for solving all levels of placement before
routing 66

6.1 Merged approach subproblem abstraction sequence 78
6.2 Routing and pseudo-pin assignment influence on placement 80
6.3 Effect of re-placement on net connected components 82
6.4 Initial coupled approach subproblem abstraction sequence 84
6.5 Remaining coupled approach subproblem abstraction sequence 85
6.6 Initial hybrid approach subproblem abstraction sequence 88

Vll

6.7 Remaining hybrid approach subproblem abstraction sequence
89

IV

Contents

List of Figures vi

List of l^uLles viii

1 Introduction X

1.1 Integrated Circuit Layout Problem Definition 2
1.2 Design Styles 4

1.3 Typical Layout Process 9
1.4 Problems with the Typical Layout Proce.ss 12

1.5 Goals 13
1.6 Benchmark IC.xamples 13

2 Background 15

2.1 Coupled Placement and Routing 17
2.2 Merged Placement and Routing IS
2.3 Unified Placement and Routing 22
2.4 Summary 22

3 Algorithms 24

3.1 Hierarchical Decomposition 25
3.1.1 Common Data Model 25
3.1.2 Problem Reduction 26

3.2 Subproblem Solution 32
3.2.1 Cell Assignment 33
3.2.2 Route Assignment 38

3.3 Pseudo-pin Assignment 46
3.4 Rip-up and Re-route 48

4 Separate Placement and Routing 52
4.1 Placement 52
4.2 Routing 55
4.3 Results 57

mmmr

•srtm

5 Placement and Routing Communication 61
5.1 Routing

5.1.1 Placement Resolution 62
5.1.2 Routing Decision Resolution 69

5.2 Placement

6 Combining Placement and Routing "^6
6.1 Unified Approach
6.2 Merged Approach
6.3 Coupled Approach oy

6.4 Hybrid Approach

94
7 Conclusion

97Bibliography

Chapter 1

Introduction

Tlie physical design of integrated circuits re(iuires the transfonnation of a circuit

description into Uiyoiil. the set of geometric j)atterns neetled to generate tiie fabrication

masks used in very large scale integration (VLSI) manufacturing processes. This layout

g<Mieration step is a diilicidt stage in tlu? design pro(x*ss of an int(?gratod circuit and the
elfecliveiK'ss of layout g<>neration systems affects both the cost and performance of the final

product. The r(^search presented in this dissertation is intended to indicate layout |)aradigm
modifications that will j)rodiice higher (luality layout solutions.

The layout j)roblein is to produce layout that implements a given circuit descrip

tion subj(»ct to manufacturing and performance constraitits. Current circuits may contain

millions of devices, residiing in complex atid diffi<'ult layout problems. lotLiv s maiket

[)ressures make continual improvement in layout solution ([ualily an imperative foi cm rent
layout systems.

The physical design stage of an integrated circuit has an important impact on the
performance and cost of the final product. /Vs the last step in the circuit design piocess,

layout generation is the closest stage to the manufacturing process and its function as
the major link between design and production makes it a crucial determinant of ultimate
circuit performance relative to the underlying fabrication technology. The effectiveness of
the layout solution process directly affects design cycle time and thus total design cost.
Layout solution quality directly affects yield and thus manufacturing cost. Both design cost
and manufacturing cost are major components of the final product cost.

Unfortunately, the combinatorial nature of the layout problem makes the gener
ation of layout a difficult task. Exact solution methods are prohibitively expensive except

for trivial cases, so layout algorithms tend to rely on heuristics and approximations to find

reasonable solutions. The typical layout system solves a layout problem by decomposition

into an ordered set of simpler subproblems and then sequential solution of the subproblems.

These subproblems are referred to as layout phases and may include stages called floor

planning, placement, channel definition, global routing, detailed routing, and compaction.

Because of the difficulty and complexity of generating layout, this decomposition is often

considered essential and is usually assumed implicitly in any discussion of layout algorithms.

Despite the problem reduction, the "simpler" subproblems are actually still difficult combi

natorial optimization problems. The phases are easier only in the sense that heuristic and

approximate methods have been found which produce acceptable solutions for them.

The difficulty of the individual phases has focused layout research on solutions

for each phase. An unfortunate side effect of this emphasis is that the interaction and

dependencies between phases have been neglected. Information flow and feedback between

phases is often nonexistent or ad hoc. Ideally, a layout algorithm would solve the layout

problem as a single problem, but since some form of problem decomposition is required

to make tiie proi)lem tractable, enhancing communication between subproblem solution

processes is critical for improving the effectiveness of the whole approach. The goal of this

research is to obtain better layout solution.s by modifying the standard layout decomposition

paradigm to allow more structured and effective information management. In particular,

integration of placement and routing phases and mechanisms for feedback are investigated.

In the remainder of this chapter, more introductory material is presented on the

layout problem, the characteristics and problems of typical layout processes, and the goals

for improving these processes. A discu.ssion of previous work in combining layout phases is

given in Chapter 2. The major algorithms used are described in Chapter 3 and reference

results are presented in Chapter 4. Placement and routing interaction is di.scussed and

analyzed in Chapter 5 and e.xperiments in integrating placement and routing based on a

common 2x2 data model are detailed in Chapter 6.

1.1 Integrated Circuit Layout Problem Definition

Current VLSI manufacturing processes create circuits by building layers of dif

ferent materials. The patterns and combinations of these layers create electrical devices

and the interconnections between these devices. Fabrication requires a set of geometric

patterns for each layer, and the patterns are used to create the templates or masks for

processing each layer. The layout problem is to transform a circuit description into the

appropriate geometric patterns for generation of fabrication masks. For the typical layout

system, this transformation requires taking a circuit description and determining circuit

element positions and wire positions that implement the circuit subject to manufacturing

and performance constraints.

The net list is a common form of circuit description. It consists of a set of inter

connections between circuit elements. The interconnections specify which elements must

be electrically connected to each other. Each interconnection is called a net and represents

an electrically equivalent point in the circuit. Hence, circuit descriptions presented as col

lections of interconnections are called "net lists". Circuit elements may be single devices

like transistors or collections of devices such as logic gates or other circuit building blocks.

These elomoiits are ofl(Mi referred to as nJls or modiih s. The term "net" is also used to

reler to the wire or wire patt«M*ns that implement an interconiK'clion. Wires connect to cells

at specilic locations called pins or (frniiiials. so a net may be associated with a .set of cells

that re(|nire interconnection or with the corresponding .set of pins.

Cells or circuit <dem<Mits are often used miiltiph* times within a design and across

designs, so the sets of g»'<)nn>t tie patterns that itiipletiieni particular circuit eletnetits are

usually predelined. However, the patterns that itupletiietil the wiritig correspotiding to each

nrU ar(^ not predefined because iti general these ititercotJtiectiotis are iitii(iue to each circuit.

I'ortutiately. the ititercotitieci ion patt(>rtis cati ofteti be derived frotn specification of simpler,

abstract wire positiotis. Thus, solvitig the layout probletii involvajs assigtiing cell positions

atid detertnitiitig abstract wire positiotis. The process of assigning cell positions is called

plnrcnicnt and the process of a.ssigning wire positions is called routing. This information

is usually sufficient to generate the set of geometric patterns r<!(|uired for generation of the

actual fabrication templates.

The solution of a layout problem requires that the final geometric patterns satisfy

certain problem specifications. These specifications may be grouped into manufacturing

constraints and performance constraints. Proper fabrication requires that certain require

ments be met on the size, shape, and relative positions of the geometric patterns both within

layers and between layers. These recjuirements are referred to as design rules. Typically,

these rules arc translated into constraints on cell and wire positions such that a feasible

set of positions may always be transformed into a set of design-rule correct geometry. Per-

formance constraints are usually specified with respect to the fabricated circuit. The most

common example is timing requirements on the circuit inputs and outputs. Unfortunately,

it is often diflicult to relate constraints of this type to the specification of layer patterns.

Often, accurate testing of constraint satisfaction is only possible after complete specification

of the layout. This kind of dependence makes finding layout solutions difficult.

Strictly speaking, a feasible layout solution must meet all design constraints. How

ever, because of the simplifications and approximations made by many layout systems, a

feasible layout solution often refers only to a solution that may be correctly manufactured.

In these cases, the performance constraints have been ignored and the usage is usually clear

from context.

1.2 Design Styles

Gate array, standard cell, and macro-cell layout are the most common design styles

implemented by automatic layout systems. A brief review of tlie.sc stylos follows to provide

context for the subsequent discussion on layout phases. The examples and layout system

in this dissertation are ba.sed on a specific type of gate array layout called sea-of-gates.

Gate array designs are also referred to as master-slice designs or uncommitted

logic arrays. Each design is based on a two dimensional array of transistor blocks. This

structure is depicted in Figure 1.1. The array is completely prefabricated except for the

interconnection layers. Each transistor block consists of a solid group or array of transistors.

Circuit elements or functions are implemented by customization of interconnect patterns

within each local transistor group. The interconnect patterns for common circuit functions

are stored as templates in cell libraries. Connections between circuit elements are made in

the predefined wiring areas or channels left open between transistor blocks. Though the

use of partially fabricated standard arrays is advantageous for manufacturing, it creates

difficult constraints on the layout problem. In particular, because of the predefined and

fixed areas for routing, the complete connection of circuit elements may not be possible for

a given assignment of elements to transistor blocks.

Standard cell designs are characterized by rows of cells separated by wiring or

routing channels. This structure is illustrated in Figure 1.2. Cells are custom-designed to

implement circuit functions on the level of simple logic gates, flip-flops, and latches, and

are often constrained to have uniform height to simplify wiring between rows and power

•Vj ii-L' l^U-.

'''

"ppiy 1,
rails ->-'

11

?r ,

Transistor block

Wiring area

[•'igiirc 1.1: Gate array design strucliire

- \ T r V i-^itil'liiiiiiiinrlTiii^iVlttrriiiWiM

iMdSeSflSeffiri

Power and around rails

X/

Wit

Wiring area

I'i!iiir<' l..{: Macro-ci'll {lf»si<>;ii slriicliirc

(li^lribiilion aNnig rows. 'lypically. all wirin.i^ IxUwocii cells i.s coiidtiod lo llio chaiiiiols

l)elwc'(Mi rcjws and any conned jun.- iliat cross rows iiiiisl use re.ser\'ed spacc.s belweoti cells.

'I liese .sj)aces are called fi(and are oIumi mo(iel<Ml as a special type of cell. More

sophisticated systems an? cajjuble of wiring over or lliroiigb cells to make connections across

rows. I. nlike gale arrays, siandard cell designs si)e(;ify <h'sign-dependent geometry on all

mask layers. This <;liara{;t<?risiic permits the number of feed-tliroughs and the amount of

wiring area between rows to be adju.slcd as nece.ssary and guarantees that feasible wire

assignments for all nets can always be generated.

Macro-cell or building-block designs differ from standard cell designs in that each

cell implements a much larger amount of functionality and the cell topology is less con

strained. While each standard cell typically implements a simple logic function, each

macro-cell usually implements a major circuit function. In fact, the predefined patterns

of the macro-cells are occasionally generated using standard cell design. Macro-cells may

vary widely in size and shape and may be positioned in any non-overlapping configuration.

Figure 1.3 shows an example macro-ccll design structure. Similar to standard cells, the

Transistor block

I I

Power and around rails

I'lgnro l.l: Soa-()r-«^ar,(\s dosign .striictiiro

patterns lor inter-cc>ll wiring connecLious ar(.' spcciliod in the regions between and around

cells. 1 hese wiring spaces can be atljiistfHl as retiiiiiuHl to allow complete spo)cification of the

lavoiit.

Sea-of-gate.s (u- •"channel-less" gate-array designs are gate arrays without any re

served wiring area IxM.wceii transistor blocks. This structure is illustrated in Figure 1.4.

Connection patterns within ceils are usually sparse and inter-cell wiring patterns are spec

ified both througii cells and over ceils. In the desired interconnection regions, extra area

for wiring can be obtained by not utilizing some of the transistor blocks for circuit element

implementation. :\. goal of sea-ol-gates design systems is to use as few transistor blocks as

po.ssible for this extra interconnection area, resulting in a maximal amount of functionalitv

implemented for a given array size. Relative cell positions are unconstrained except for
the grid restrictions which force spacing between cells to occur in multiples of transistor

blocks. Ofcourse, simplifying restrictions could be added to force the use of cell rows, but

this would artificially limit the number of cells and thus, the amount of functionality that

could be implemented on a sea-of-gates array, invalidating a major reason for attempting

sea-of-gates designs. The unconstrained situation is both advantageous and disadvanta

geous. The freedom in choosing cell positions may allow very good solutions which use a

large percentageof the available transistor blocks for circuit element implementation rather

than interconnection implementation, but this same lack of enforced cell placement struc

ture makes finding feasible solutions more difficult. Allocating routing area and solving the

subsequent routing problems is especially difficult. Unlike a standard gate array, predefined

routing areas do not exist and unlike a standard cell design, no simplifying constraint ex

ists on the positioning of cells to make the formation of routing areas straightforward and

predictable. .Also, moving cells apart may incur a largo area penalty becau.se of the grid

restrictions and often may require a complete re-placement of the design. Maximizing the

use of transistor blocks for circuit, cell implementation leads to arbitrarily shaped routing

areas and re<|uires heavy use of inlerconneclioti area over and through cells, resulting in

diflicult. general routing prol)lems. As in the standard gate-array design style, there is no

guarani<'e that it. will be possible to cotiii)lelely connect a particular assignment of cells to

blocks.

1.3 Typical Layout Process

L'ypical layout systems .solve tin' layout problem in several phases. The phases arc

seciuential and dependent. The common phases and their relationship in a typical layout

design (low is shown in Figure I..').

Sometimes, circuit cells do not have their corresponding geometric patterns com

pletely specilied. This occurs in macro-cell design where a cell is a major circuit function

consisting of multiple sub-circuits or devices. The functionality of the cell is known, but not

its layout. The floor planning phase handles these kinds of specifications. Given bounds

on cell areas, the floor planning phase determines relative cell positions and if necessary

shaj)es for cells. The process allocates routing area both between cells and within cells

and determines pin locations on the newly assigned cell shapes. Subsequent phases solve

the layout problems delineated by the now defined macro-cell regions. For this phase, the

generation ofa certain chip aspect ratio is a typical constraint and the minimization oftotal

chip area is a common objective function.

10

Floor Planning

Placement

'

Channel Definition

'

Global Routing

'

Detailed Routing

1

Compaction or Spacing

Figure 1.5: Typical layout system design flow

11

The placement phasespecifies cell positions on the chip or within regions specified

by the floor planning stage. Cells are not allowed to overlap and constraints on relative cell

positions depend on the design style being implemented. For example, gate array styles

require cell assignments on specific grid locations while other styles are less constrained.

Typical placement goals are minimization of area, total net length, or both while producing

a feasible placement. The feasibility condition ultimately refers to the fecisibility of the

subsequent and resultant routing problem. Unfortunately, this condition is often impossible

to check without actually performing the routing step.

The channel definition step defines the wiring regions on the chip. Its name

originates in design styles where wires are routed in the "channels" between cell rows. More

speciKcaily, the term channel refers to a routing problem with two parallel boundaries. Pins

are specified at positions along these boundaries. N'ets may be assigned to enter or exit from

the open sides ofilu' channel, but iiejiiier the |)osition nor relative order of these net cro.ssings

are specified. The distance IxUween the parallel boundaries of a channel routing problem

is allowed to increase to provid(» more area to complete the interconnections, in standard

cell design. th(» clianind (hdiniiion occurs implicitly as a rcMidl of the routing. In macro-cell

layout, this step d(»t<M'mines e.xplicitly the siz(»s and positions of the routing areas between

cells. It is possible to constrain macro-cell placements so that the regions between cells

can always be partitioned into channels. In systems without this C(Mistraint. the channel

definition slag<? may al.so creal(» ><u'ilrlil)oj'(:.s. The cla.ssic swiichbo.x is a rectangular routing

region with pins .sj)eci(i(Ml on all borders. It can be thought of as a channel routing problem

where the distance IxHween channel boundaries is fi.x<?d and where pins are specified at

fixed positions along the op<Mi sides of the channel. In gate-array styles, routing also occurs

over and through cells and it, is more appropriate to think of the channel definition step as

routing area definition.

The routing pha.ses perform the actual assignment of inter-cell wire positions. This

is commonly performed in two pha.ses. The first phase, global or loose routing, assigns

nets to particular routing channels or routing areas. After this step, the path of each wire

is known with respect to the areas defined during the channel definition phase. The second

pluLse, detailed routing, assigns specific positions for the wires within the regions assigned

during global routing.

After routing, the circuit layout is basically complete. However, some systems

employ a final compaction or spacing step where all layout geometries are squeezed

I
rSl

12

together or re-spaced to generate a final layout of minimal area that still meets design rule

constraints.

1.4 Problems with the Typical Layout Process

The fundamental problem of the typical layout process is that it doesn't directly

solve the actual, desired layout problem. Instead of solving a single optimization problem

subject to the multitude of possible layout constraints, typical layout systems solve a se

quence of simpler optimization problems subject to a subset of the possible constraints.

Historically, this decomposition into layout phases and relaxation or omission of constraints

has been necessary in order to generate any layout solution. Unfortunately, this strategy

only solves an approximation of the desired problem and can not guarantee that a feasible

solution to the actual layout problem will be found.

Problems ari.se in the typical layout process from the manner and method in which

the decomposition occurs rather than from the decomposition into layout phases itself. As

in any sequential decomposition, the subproblem solved at each phase depends on the so

lutions of the previous phases and iteration over the se<[uence of phases may be required

to find a feasible layout solution. Unfortunately, iterative improvement of layout solutions

obtained in this manner is very difficult becau.se a side effect of the decomposition is that

feedback between subproblems is hard and not well understood. Each phase solves only

a portion of the whole layout problem. Each of these portions may be thought of as an

abstraction or approximation of the desired problem. As a result, each phase has its own

data model of the layout problem that is different from the other phases. For successful

iterative improvement, each phase needs some global information regarding decisions made

in previous phases. Typical layout systems have many barriers to the effective flow of this

information. Often, each phase is performed by a separate computer program which only

understands its particular data model. Any information from other phases must be trans

lated or interpreted relative to the current problem abstraction. In general, this translation

or interpretation is not well understood, and even in specific cases where the interpretation

is clear, differences between the data models may lead to information loss. Furthermore, the

separate programs tend to have simple interfaces which prohibit the exchange of the desired

global information. These factors inhibit and discourage the iterative feedback required to

find feasible layout solutions.

Example Oell Oount Pad Oount Net Oount Oell Area (A'̂)
€880 257 86 317 1989951
01355 292 73 333 2260956
misex3c 295 28 309 2284185
duke2 299 51 321 2315157
C1908 326 58 359 2524218
misex3 344 28 358 2663592
C3540 784 72 834 6070512

05315 1073 301 1251 8308239
07552 1365 315 1572 10569195
06288 2385 64 2417 18467055

Table 1.1: r^xainplo characteristics

1.5 Goals

13

I lie !iiain i^oal of this r«'.^<'ar(h is to find modifications to tiie standard layout

j)aradi^ni that vvill prodiicp IxUtpr layout solutions, 1his j '̂oal is pursued bv examining

plac(umMil and routing inl'M'arl icjti and informal ion exchange re(|uirenients to nnderstand

the relationship between the two phases IxUler. analyzing difler<Mit placement and rout

ing integration and feedback approaches, and evaluating the us(? of a common data model

to imj)rove communication and reduce informalion loss b(itween phases due to translation

or interpretation imdficicuicies. 1he investigations into th(?se areas are designed to indicate

methods for improving placement and routing through closer cou[)ling or merging ofthe two

phases. I he experiments are based on a layout system that hierarchically decomposes the
layout problem using a common data model. The resulting hierarchy provides a convenient

structure for observing placement and routing interaction and allows conipari.son.s of differ

ent hjvels of placement and routing integration from separate phases to concurrent solution.

Lhe common data model provides a common reference frame for observing placement and

routing communication and for experimenting with feedback mechanisms.

1.6 Benchmark Examples

The benchmark examples used in this research are characterized briefly in Ta

ble l.l. The examples arc derived from the MCNC and ISCAS logic synthesis benchmark

circuits [45]. Circuit functions include error correction logic, ALUs and their control logic,

a 16-bit multiplier, and generic control logic. Each circuit wzis processed using sis [33] and

mapped into the Mariner sea-of-gates library [23]. Sis is an algorithmic sequential circuit

optimization program. It was used both to optimize the examples using its standard set

of operations and to map the optimized circuits into the sea-of-gates library. The resulting

circuits have their cell, pad, and net counts listed in the table. The cells themselves range in

complexity from a simple NAND gate with four transistors to an AND-OR-INVERT gate

with eight transistors. There are two interconnection layers; the primary vertical intercon

nection layer is Metal 1 and the primary horizontal interconnection layer is Metal 2. The

library cells used by these examples have from four to six feed-throughs for through-the-cell

routing and from two to ten free tracks for over-the-cell routing.

15

Chapter 2

Background

Layout algorithms have been studied extensively for many years. Continued in

terest in tiiis area empliasizes the importance of layout generation to product design. In
addition to handling inrrea.sed circuit sizes and adjusting to rapidly changing manufactur

ing technologies and design styles, current layout .systems must al.so produce better layout

solutions. The discussion in this chapter is limited to previous work in combining place

ment and routing at the chip level. .More general discu.ssion and surveys on placement and

roiiling algorithms ran be found in [5, 37, 3-1].

.A major reason for the interest in combining placement and routing is the promi.se

of finding better layout solutions. In the past, research emphasis was concentrated on the

separate phases. This was a manifestation of the complexity of the layout problem and the

lack of understanding about the relationship between phases, (.'oncentrating on each phase

produced results more effectively than tackling the combined problem. Now, as computer

power increases, the complexity ofsome methods of combining pha.ses is becoming tractable,

and as the benefits of continued optimization of individual phases decrease, the potential

gain from investigating integrated processes increases.

Efforts to combine placement and routing at the chip level can be categorized

into three broad classes that span a continuum of algorithm integration possibilities as

depicted in Figure 2.1. Coupled approaches execute separate placement and routing phases

and then feed back between the two phases. During each phase, a complete solution is

found. For these classifications, a complete placement solution is a specification of all cell

positions relative to each other anda complete routingsolution is an assignment ofall nets to

global routing configurations. Merged approaches generate complete placement and routing

Placemeni

Placcmeni

Routing

Output

Less integration

Routing

Output

Placement

and

Routine

Output

More integration

Figure 2.1; Classification of chip level integrated placement and routing methods

-•-f.

solutions concurrently. These n.ethods are characterized by amore intense exchange of
mformation than in the coupled approaches. The level of feedback information is comparable
mmagnitude to the forward flow of information. Unified approaches determine placement
and routing together as asingle problem. Coupled methods are the least integrated and
untfied approaches are the most integrated. Recently, Adams [1] has worked on integrating
layout phases for macro-cell design. No attempt is made here to classify his or other cell-level
approaches.

2.1 Coupled Placement and Routing

C.'oupled placement and routing method.s con.si.sl mainly of .systems that feed back
routing information to re-.spt,re place,uents. Typically, the relative cell topology is main-
mined in a graph or other global ,lata .struct,,,e a„<l ,-outing infomtation is fed back to
adjust tho spacin.u; ix^twoon colls.

Sonpkup an,I lioyi,. [:i,S) p,-<.se„te(l a prototype bui|,li„g-b|ock layout system that
^""'".ittlic hack betoceu routing an.| place,,,™,. This .sy.stcn uses a

riiin-cul plaeeuieui algorithn, based on polar graph re|,rese„lal ious [-dlj to generate the
iuistc cell place,,,e„t topology, -l ite routing regions hetweei, cells ate rep,ese„ted as possibly
zero-b,ze,l rectangles and edges for the.so rectangles are iutrodnced into tlie polar graphs.
.S„l«eq„e.,t rottling provides size rcptirements for tite ronling rectangles. Though the basic
layoitt topology is not changed, size information is fed hack to the placement to effect cell
lo-spacing tlial accotiuiKxIates routing rGquiroiiionts.

Ihe Orca soa-of-gatcs system [17] uses a min-cut placement algorithm [19, 15] to
form a cut tree of relative cell topology. Locations and shapes of cell groups within this
cut tree are determined by a "shape-adding" approach [;J9]. Asimplified global router is
used to determine space reriiiiremonts in over-congested regions. Spacing information is fed
back to the placement by modifying the shape function of the appropriate cell group. The
'shape-adding" algorithm ami the global routing are iterated until the design can be routed

successfully at the detailed level.

2.2 Merged Placement and Routing

Most work on integrating placement and routing can be classified as merged ap

proaches. These are primarily hierarchical methods. Two exceptions are the systems of

Shragowitz, Lee, and Sahni [36] and Tzeng [43]. For the merged approaches, the term

hierarchical refers to a structuring of the process and data in terms of a hierarchy or tree

of decisions or subproblems. Placement and routing can be combined in these methods by

solving both placement and routing problems at each step or level of the hierarchy.

Burstein, Hong, and Pelavin [9] presented a merged placement and global routing

approach for gate array VLSI layout. The process is structured according to a bi-partitioning

hierarchy. Starting with a single super-grid corresponding to the entire layout region, each

set of subdivisions creates a new level of super-grids until the final level corresponds to the

gate array grid. All grid cells within a level are cut in the same direction, either horizontal or

vertical, and directions arc alternated between levels. When a super-grid cell is divided, the

cells previously assigned to that super-grid must be partitioned into twoparts corresponding

to the next level grid cells. An initial partition is formed by heuristically selecting one cell

at a time to be added to one partition block or the other. Then, the number of nets crossing

the partition boundary is compared to the number of available wiring tracks and a pairwi.se

interchange routine may be used to reduce the number of crossing nets. On each level, each

net is a.ssigiied a global route relative to the current super-grid. The global routing of a

net is initially restricted to a region projected from the net's assigned route path on tlie

previous level. A route path is defined by a set of grid cells and when it is projected onto

the next level, it covers twice as many cells. This now set of cells can be subdivided into

rectangles of width no greater than 2. Each of these rectangles is routed as a 2 x n grid

using Burstein and Pelavin's dynamic programming technique [10]. If a route can not be

found within this restricted set of cells, then maze routing is used across all the cells at the

current level to find a path.

Szepieniec [42] proposed a method of integrating placement and global routing

for slicing structures. The approach begins with a given slicing structure. In this slicing

structure, the number of slices, the relative sizes of slices, and the distribution of circuit

elements across slices are fixed. Within each slice, the placement of subslices is solved as a

linear placement problem. The objective of each linear placement problem is to minimize

the geometric span of all nets. Hierarchical global routing is performed top-down along

19

with the slice placement. The routing problem for eacli slice is formulated after subslice
placement by determining net entry positions along slice boundaries. Each entry position is
arange corresponding to the subslice being entered. The positions are chosen to minimize
the net's global bounding bo.x. Routes are determined using apattern router.

Dai and Kuh [12] described ahierarchical method for combining floor planning
and global routing for building-block layout. Abottom-up clustering foUowed by top-down
floor plan enumeration is used to determine block positions. The global routing is performed
during the top-down portion of the floor planning. At each level of the hierarchy, aparticular
floor plan template is chosen, and global routing is performed on connected subgraphs of
the inner dual graph corresponding to the template's floor plan graph. Each net is routed
by fimling aminimum .S.ciner tree on this global routing graph. The edges and vertices of
these trees are to ohl.uiu Ihe global routing graphs and the input and output pad
s^oaLs for t Ih' noxi Nh'cI.

The .Mariner sea-ofgaies system [I I] iulerleave.s placement steps and routing steps
to improve layout ipmlily. Though the placemen! algorithm is based on <|uadri.section [40]
and the routing algorithm is based •> x2routing (|()|. both ttse tnore cotnplicated data
models that accottut b,,- possible e.sierttal pin itositiotts. The interleaved global routing-
steps are u.sed prituarily to derive eottgestiot, metrics to tlirect the partitiouittg process.
l-tttal delatled is determiued using simulated atttiealiug attd a maze router is used
to obtain final global nniip.s.

Koitx. I ibnu.'l. and Stpgor [.}] n.sod a graph partitioning paradigm to combine
partitioning (global plaaMncnt) and global routing for soa-of-gatos designs. The algorithm
rornbines the tasks of partitioning cells into clusters, assigning these clusters to regions
on the chip image, and providing the global routes with respect to tho.se regions. The
paititioning is a recursive min-(iii bi-partitioning procedure and the global routing is solved
as the problem of packing Steiner trees for various terminal sets in a graph with specified
edge capacities. Ihe global routing algorithm handles partially routed nets so at each
iteration global routes are only updated in correspondence to the local change in the global
routing giaph. The partitioning cuts are chosen to be the "most critical" for the global
routing and the partitioning cost function encodes the global routing information.

Suaris and Kedem [41] built a standard-cell layout system that combines their
quadrisectioii placement algorithm with loo.se global routing in order to minimize the total
layout area. The global routing is divided into two pha.ses. The loose global routing pha.se

20

is combined with the placement and determines spanning trees for each net. The detailed
global routing phase is performed separately and finds the actual global routes for each
net. Finding these actual global routes includes determining the feed-through locations
for nets to cross intermediate rows. Placement and loose global routing are performed
as sequential operations for each problem abstraction of the quadrisection hierarchy and
terminal propagation is used to feed forward loose global routing information to guide
placement on subsequent abstractions. They are working on making the detailed global
routing hierarchical so that it may be combined with the placement. The new detailed
global router will find Steiner trees rather than spanning trees for each global route.

Muller [27] proposed ahierarchical method for combining floor planning and global
routing. Amin-cut partitioning process will be used to build acut tree of the circuit. The
partitioning will stop when the number of modules iu a partition is smaller than a certain
threshold. The partitioning structure of the roin.iiuiug subcircuits is to he determined
bottom-up with arlu.steriug techniciuo based on ama.\imum weighted matching algorithm.
Then, the cut tree will be procos.sed bottom-up to det,.rmi„e ,„i line orientation ami to
e.stimaie re,|uired routing are;,. The rotttittg are.i estimatiott i.s e.v|>e, t,ul to be acotttbiitat ion
ol statistical tttethods att.l actttal ghtbal roiitittg cotttpitttiti,,t,s. ..\ (itial tttp-ilowii pa.vs over
the cttt tree will be perf.irttted to detertttitte partition ordering with respect to each cut liite.
to distribitte rottlitt.g area, titt.l to act it,illy const met the global wiring.

Olttttttra. et al. (If); pre.sented a hierarchical lloor plannitig tttetho.l that also de.
terttttnes global routes. .Modules or cells are delined as either hard m soft. Hard modules
Ittive a defimrd shape and siae (area). .Soft modules have a tielitietl size, but an ttttktiowtt
shape. The appro.aclt consists of two phtuses. Tirst. an initial lloor plannitig phase is per
formed to detertttitte the basic topology of hard modules and sets of soft modules. It also
allocates routing area for critical wires. Secotitl. adetailetl floor platittitig phase is e.tecnted
to partition the .sets of soft modules, to determine (lositions for the soft modules, and to
assign global routes. The partitioning is performed so that the congestion of switchbo.tes
and channels on the ne.tt level of hierarchy is reduced. The heuristic used is to partition
each rectangular region such that the ratio of subpartition areas is equal to the ratio of nets
entering the subpartitions. Oniy nets that enter asubpartition from outside the rectangular
region and cross over an edge of the rectangular region that is parallel to the partition are
considered for this metric.

Recently, Bapat [4] presented amethod of merging placement and routing based on

21

a 3 X3 grid data model. The method computes and stores Steiner trees on the 3x3 grid for

later table look-up. The solution of the 3x3 placement and routing abstraction starts with

a random initial partition followed by random assignment of minimal length Steiner trees.

Next, a algorithm similar to the Kernighan-Lin-Fiduccia-Mattheyses [19, 15] partitioning

method is used to reduce net length through cell movements, to reduce congestion imbalance

through selection of alternative minimum length Steiner trees, and to reduce congestion

imbalance through cell movements. Problem abstractions within a level of hierarchy are

solved independently and then the 3x3 algorithm is applied to abstractions formulated

across the original decomposition boundaries to combine the partial solutions.

Shragowitz, Lee, and Sahni [36] developed a system to combine placement and

global routing for sea-of-gates design styles. A constructive placement is performed one slice

at a time from left to right. Slices are connected subareas of the set of unused cell positions

and need not be uniform or symmetric in either the horizontal or vertical directions. At

each step, nets that connect the new slice and the previously placed portion of the circuit

are assigned global routes. A maze router is used for the global routing and the position

and size of the new slice may be adjusted to accommodate the routing.

Tzeng [43] implemented a method of combining routing and placement adjust

ment. Wiring results are stored in a global data structure and cell positions are maintained

using a global triangulation graph. An initial constructive placement is derived using stan

dard methods. Next, routing and placement adjustment are iterated. The router is a

sophisticated area router based on a hierarchical 2 x n routing paradigm. The router is

able to re-route existing wiring assignments, so its input may contain overlapping wires and

partial routes. Placement adjustment is performed by using a one dimensional compaction

algorithm on the triangulation graph. Congestion metrics from the routing are translated

into spacing constraints on the graph. After placement adjustment, special care is taken

to preserve as much of the previous wiring as possible. The resulting routing problem with

possible conflicts and broken connections is presented to the router for another iteration. A

final compaction step is performed using a more sophisticated compaction algorithm than

in the placement adjustment phase.

22

2.3 Unified Placement and Routing

The unified placement and routing problem remains intractable because of the size

and complexity of current circuit designs. However, Burstein reported some attempts at

solving the unified problem. His work consists of a basic technique for performing placement

and routing in a plane [7] and a partitioning method to handle multiple wiring layers [8].

The basic technique consists of forming a planarized image of the circuit graph,

converting this image into an annular embedding, and then finding a geometric realization

of the circuit corresponding to the embedding. The last step is formulated as the problem

of finding a system of polyominos that corresponds to the annular embedding such that the

bounding box of the system is minimized. Channel or river routing must still be performed

between the layout rings. The planarization step uses a heuristic O(m^) algorithm (where

m is the number of edges in the circuit graph) that attempts to minimize the crossing

number of the graph. If input and output pins are required to be along chip boundaries,

certain embedding choices may be influenced by the distribution of these pins. This method

is interesting, but impractical for current circuits. Neither the planarization step nor the

reduction to an annular embedding directly address layout constraints or goals and the

transformations from planarized image to geometric implementation are overly restrictive.

The basic technique is extended to multiple layers by partitioning the circuit into as

many planar parts as there are wiring layers. When possible, nets are routed using a single

wiring layer; otherwise, vias are introduced and are treated as circuit cells to determine

their placement. Each plane is processed using the basic technique. Consistent placement

of cells and vias between planes can be guaranteed only if two wiring layers are used and if

the embedding on one of the layers is acyclic.

2.4 Summary

Merged approaches are interesting compromises in the attempt to integrate place

ment and routing phases. A unified approach would be ideal, but current unified problem

formulations are either too simplistic or too complex to be practical. Coupled approaches

have utility, but must restrict the possible placement modifications to avoid excessive re

routing. These restrictions place a premium on the performance of the initial placement

phase which must execute in the absence of routing information. The placement adjust-

23

ments primarily re-space colls with out changing the basic cell topology much. Merged

approaches are interesting because they can cover a wide range of integration possibilities.

This characteristics provides a flexible structure for investigating the relationship between

placement and routing and for exploring the possibility of solving a truly unified placement

and routing problem. At one extreme, a merged approach can mimic a coupled approach by

restricting permissible placement modifications. At the other extreme, a merged approach

can solve placement and routing concurrently with the routing solution starting simulta

neously with the placement solution. In between, lie many possibilities for placement and

routing interaction and communication. Ideally, this interaction and communication should

be used to avoid poor layout decisions or at least, to organize and structure the layout pro

cess for effective identification of poor decisions. Unfortunately, existing merged methods

do not adequately emphasize this communication between phases. They may use routing

information to influence subsequent placement decisions, but never use it to change previ

ous decisions. Communication is further inhibited by the differences in data models used

by each phcise, and routing results are not always easily translated into new placement

decisions.

The layout system presented in the foUowing chapters is a merged hierarchical

approach based on a common 2x2 grid-graph data model. The hierarchical framework is

used to analyze the relationship between placement and routing more closely than previous

work and to investigate and compare different integration possibilities. The use of a common

data model is intended to alleviate the communication problems of previous approaches and

to allow the implementation of effective feedback mechanisms.

24

Chapter 3

Algorithms

The basic algorithmic approach of this research to solving the layout problem is

to reduce or divide the original problem into smaller or simpler subproblems, solve the

subproblems, and then combine the partial solutions to form an entire solution to the

original problem. This approach is often referred to as a problem reduction or divide-and-

conquer method [2] and techniques of this class are often used to deal effectively with large

and complex problems. Within this framework, specific algorithms are used to solve the

layout subproblems and the constraints between subproblems and to implement a rip-up

and re-route capability.

Hierarchical decomposition is the particular form of divide-and-conquer technique

implemented. Its distinguishing characteristics are that the original problem is decomposed

into a set of subproblems of the same form and that the decomposition process is performed

recursively on each subproblem until the subproblems become simple enough to solve imme

diately. A novel feature is that the hierarchical decomposition for all aspects of the layout

problem uses the same 2x2 grid-graph data model.

Decomposition of a subproblem into the next set of subproblems requires solving

the layout problem for the corresponding 2x2 abstraction. A quadrisection [40] style algo

rithm is used to solve the 2x2 placement or partitioning problem and a linearly constrained

nonlinear integer program is solved to generate the 2x2 routing. This route assignment

algorithm is an extension of Burstein's switchbox router [10].

Constraints between subproblems must be enforced in order to guarantee that par

tial solutions may be combined into a physically possible solution. These constraints are

introduced through the use of special pin-pairs along the subproblem boundaries. These ter-

minals are called pseudo-pins and the specification of their locations represents the required

constraints on the partial solutions. The problem of determining pseudo-pin locations is

called the pseudo-pin assignment problem.

The hierarchical decomposition is a constructive approach and the rip-up and

re-route capability implemented is one example of a structured method for finding and

modifying poor heuristic decisions. The procedure is based on the same 2x2 abstraction

as the other algorithms.

3.1 Hierarchical Decomposition

The hierarchical decomposition performs problem reductions of the layout problem

based on a 2 x 2 data model. The reduction continues recursively until the grids of the

current data model abstraction correspond exactly to the desired final layout grid. Each

reduction is based on the solution of the current abstraction.

3.1.1 Common Data Model

The data model used for the hierarchical decomposition of the layout area is the

2x2 grid-graph. This graph was chosen as the simplest useful abstraction for layout sub-

problems. Using the same model for all aspects of the layout process simplifies management

of the interaction between phases and increases the opportunities for combining phases.

The 2 X 2 data model is depicted in Figure 3.1 as both a set of grid cells and the

standard grid-graph representation. The 2x2 grid-graph is the graph G(V^€), consisting

of vertices

V = {vi,V2,V3,V4}

and undirected edges

such that:

E = {€1,62,63, €4}

61 = (vi,t;4),

€2 = (v2,vi),

€3 = (V2,V3),

64 = (i;3,V4).

2G

V2 n

V3

(a) (b)

Figure 3.1: The 2x2 data model represented as (a) a 2 x 2 grid of ceUs and (b) the
corresponding grid-graph.

This labeling of vertices and edges will be used in all subsequent discussion.

Choosing a data model involves compromising between simple problem formulation

and useful progress towards a final solution. The 2x2 grid-graph is the simplest model that

captures enough information to make two dimensional layout decisions. The model can be

used to perform all aspects of layout from placement through routing, including feedback

between phases, rip-up and re-place, rip-up and re-route, and pseudo-pin assignment on

subproblem boundaries.

Improved layout quality requires effective communication between layout phases.

Better communication is possible with a common data model because it provides a common

reference frame for the different layout phases. A common reference frame simplifies and

enhances information flow by reducing the amount of translation and interpretation required

between phases. Using the same data model for all the layout phases provides opportunities

for integrating the different layout phases in that information from each phase can be

obtained for each subproblem abstraction concurrently.

3.1.2 Problem Reduction

Problem reduction techniques create a tree or hierarchy of subproblems. Char

acterizing the relationship between the parts of this problem hierarchy and the original

problem is useful for analyzing and describing algorithm features and effects. In these

experiments, the actual reduction is based on formation and solution of 2 x 2 layout ab

stractions and corresponds to a decomposition of the layout region into subregions. An

interesting feature of the problem hierarchy is that each subsequent level of subproblems

represents a more detailed view of the original problem.

Hierarchy Hierarchical decomposition creates a problem hierarchy where each node rep

resents the data model abstraction of the portion of the original problem corresponding to

the subtree rooted at that node. This relationship is Illustrated in Figure 3.2. The basic

decomposition step physically partitions the region allocated to the original circuit into

smaller subregions. The original problem corresponds to the root node, Rq^ of the problem

hierarchy. At the first decomposition step or level, the region of the original problem is

divided into four subregions, corresponding to the four children subproblems Ri, R2,

and R4, At the next level, subproblem R2 also is divided into four subproblems, R5 through

Rs, while subproblem R4 is reduced to two subproblems, Rg and Riq.

Decomposition The decomposition or reduction of a layout problem into simpler sub-

problems requires forming an abstraction of the layout problem based on the data model,

solving the abstraction, and then using the solution to create the appropriate subproblems.

In this research, 2x2 abstractions are formed based on a partitioning of the layout region

into subregions. The solution of the abstraction depends on the particular application of

the hierarchical decomposition method. Separate placement and routing phases can be im

plemented using this method or because the same data model is used for both phases, a

combined placement and routing phase can be implemented. In the case of separate phases,

subproblems are generated by solving the relevant aspect of the layout problem. However,

in the following example, solutions to both placement and routing are used to illustrate

the decomposition of the layout problem in general. Furthermore, in the case of routing,

more information is desired for the generation of subproblems than is specified by the 2x2

routing solution. Extra constraints on net crossing positions must be added to allow feasible

combination of partial routing solutions.

The 2 X 2 grid abstraction of a layout region depends on the determination of

subregion shapes and sizes. In general, hierarchical decomposition does not require grid

assumptions or straight partition boundaries [24], but in these experiments, for simplicity

and efficiency, an underlying grid is assumed and straight line segments are used to divide

2X

(a)

(b)

Figure 3.2: Hierarchical Decomposition- (a) The decomposition of a layout region and (b)
the corresponding problem hierarchy.

29

regions between grid positions. In general, two line segments are chosen to divide a region

into four subregions, corresponding to the four grid cells of the 2 x 2 abstraction. One

line segment partitions the region vertically and the other segment partitions the region

horizontally. Theline segment partitions are chosen to generate subregions ofapproximately

equal area. This leads to a problem hierarchy of shorter height and a smaller total number

of subproblems, reducing the amount of required computation. If the horizontal span of a

region ranges from grid 0 to grid in - 1, then a vertical line segment that lies between grid

i —1 and grid i is chosen, where

t =

An analogous calculation is performed to find the position of a horizontal line segment that

partitions the region vertically. A value of zero for i indicates a degenerate abstraction.

Degenerate 2x2 abstractions are problems that are really 1x 2 or 2x 1 grids. Adegenerate

abstraction may be created intentionally depending on the aspect ratio of the problem

region. If the height of the region is greater than or equal to twice the width of the

region, then only a horizontal line segment will be chosen to partition the region vertically.

Similarly, if thewidth ofthe region isgreater thanor equal to twice theheight ofthe region,
then only a vertical line segment will be chosen to partition the region horizontally.

Figure 3.3 illustrates the decomposition of a layout problem into its constituent

subproblems. Each decomposition stepmust reduce a problem to a setofsubproblems ofthe

same form. In general, this involves partitioning the layout region into subregions, assign
ing cells to each subregion, determining subnets for each subregion, and adding boundary
consistency constraints so that subproblem solutions can be combined to form the whole

solution.

Figure 3.3 (a) shows a small example problem. The problem has five cells and nine

nets. The cells are drawn with arbitrary positions for clarity and the curved lines connecting
cells represent the unrouted nets. Cells A and B are labeled and the net connecting them
is drawn with a different line style to help illustrate the decomposition process.

Figure 3.3 (b) shows the result of performing placement on the problem abstrac

tion. Each cell has been assigned to one of the four grid cells as drawn. For example, cell

A is assigned to the lower-left grid cell and cell B is assigned to the upper-left grid cell.

Figure 3.3 (c) shows the result of performing routing on the problem abstraction.

The routing problem abstraction is formed by mapping each net of the original problem

:K)

(a) (b)

B

J

b

(c) (d)

Figure 3.3: Example decomposition step

:n

in Figure 3.3 (a) into a corresponding abstract net. Since there are four possible locations

on the 2x2 grid, abstract nets may have one, two, three, or four terminals. An abstract

net has a terminal located in a grid cell if the original net has at least one terminal in the

corresponding subregion. Abstract nets with only one terminal are considered degenerate

with respect to the current abstraction and are ignored. The net connecting cell A to its

companion cell in the lower-left grid cell is an example of a degenerate net. In the figure,

route assignments are represented by line segments that are drawn crossing the grid cell

boundaries.

Figure 3.3 (d) shows the final reduction into subproblems. Each subproblem is a

layout problem for the subregion represented by its corresponding grid cell. The subcircuit

description for each subproblem is derived from the placement and routing results of the

current abstraction. The cells of a subproblem are those cells assigned to its corresponding

grid cell. Nets for each subproblem are derived from the route problem abstraction and the

route assignments. Also, extra constraints are added on some of the pins of the subproblem

nets so that the final solution may be realized. The reduction results in subproblems that

have the same form as the original problem.

Subnets are generated from both the degenerate and nondegenerate nets of a prob

lem. Degenerate nets of the current abstraction are nets of the subproblem corresponding

to their terminal's location. For example, the degenerate net connected to cell A is a net

of the lower-left subproblem. Whether or not degenerate nets are also degenerate with

respect to their new subproblem abstraction depends on the subsequent placement. Other

subproblem nets are derived from the current abstraction's route assignments. If the route

of a net uses a grid cell, then a subnet corresponding to that portion of the route is present

in the corresponding subproblem. For example, in Figure 3.3 (c) the net connecting cell A

and cell B is assigned a route that uses the upper-right, upper-left, and lower-left grid cells.

In Figure 3.3 (d), this net has been divided into three subnets and each subnet is included

in the appropriate subproblem. The pins of subnets are derived from two sources. First,

some pins are from the original net specification and are contained in the subproblem as a

result of region decomposition or cell placement. Second, some pins are added to represent

connection to other subnets. These pins are referred to as pseudo-pins and mark where

subnets enter and exit subproblems.

Consistency constraints must be enforced on subnet entry and exit locations in

adjacent subproblems to ensure the feasibility of combining partial solutions to form a

:V>

complete soiiitlon. Consider the net connecting cell A and cell B in Figure 3.3 (d). In

the final solution, the exit location of the net from the lower-left subproblem must be

consistent with its entry location into the upper-left subproblem. Similar constraints exist

for all net crossings of common subproblem boundaries. These consistency constraints are

introduced by assigning pseudo-pins in pairs corresponding to net crossings. Both pins

in a pair must always have the same position with respect to the axis of their assigned

boundary. Determination of this position is discussed in Section 3.3. Based on the 2x2

routing solution, a pseudo-pin's final position may lie anywhere along the extent of its

assigned boundary. In the figure, pseudo-pin locations have been refined just enough to

determine grid positions on the next level of subproblem abstractions. Pseudo-pins assigned

to a particular grid are drawn connected to the midpoint of the appropriate boundary.

Interpretation Hierarchical decomposition can be viewed as a gradual refinement of the

layout solution. At higher levels of abstraction, solving the 2x2 placement problem can be

thought of as solving the partitioning or global placement problem. Similarly, solving2x2

routing problem abstractions solves global routing problems. Subsequent decomposition

and abstraction in the hierarchy create more detailed views of the problem. Thus, the

solution to each subsequent level of subproblems represents a further refinement of the

solution to the original problem.

3.2 Subproblem Solution

The problem reduction step of the hierarchical decomposition depends on solving

the layout problem for each 2x2 abstraction. Solving placement and routing simultane

ously on each 2x2 abstraction would effect a unified approach to the layout problem. This

possibility is discussed further in Section 6.1, but unfortunately, still remains intractable.

Alternately, 2x2 placement and 2x2 routing may be solved separately. The level of

placement and routing integration can be managed by using the problem hierarchy to con

trol setup and feedback information for each subproblem abstraction. Solving placement

and routing immediately for each subproblem implements a kind of merged placement and

routing approach that solves the two phases concurrently, while solving the entire hierarchy

of placement subproblems before solving the routing subproblems is equivalent to using

separate phases.

3.2.1 Cell Assignment

Placement of a given circuit net list on the 2x2 grid-graph, G'(V,^), requires

that each cell be assigned to one of the four grid-graph vertices subject to admissibility

constraints. Given a circuit description, let

M - {mi,..

be the set of modules (or cells) and let

JV= {ni,...,njv},

be the set of nets. Placement is equivalent to partitioning M into four partition blocks such

that each block corresponds to a vertex of G*. In this research, the partition is normally

generated using a quadrisection algorithm similar to that described by Suaris and Kedem

[40]. The exceptions occur for small, detailed abstractions where an exhaustive search is

used instead.

Cell-to-vertex assignments are admissible if the set of cells assigned to a particular

vertex does not exceed the vertex's limit. Each vertex corresponds to a particular region of

the layout and the number of cells that may be placed legally within the region depends on

the size and shape of the region and the size and shape of the cells. Cell size and shape are

modeled as a single weight value. For a cell m^, this value is denoted weight(mi). The area

and design rule dependent constraints on legal cell placement are translated into limits on

the total cell weight that can be assigned to each vertex^ For a vertex this constraint is

denoted limit{vj).

Partitioning

The partitioning algorithm assigns cells to vertices of G by dividing M into four

disjoint sets of cells such that each set corresponds to a vertex of G'. If the set of cells

assigned to Vj is denoted as M vj^ then a partition of cells can be represented as the vector

P = (A4t,j, U21 At U3 7At V4) •

Define the area of a partition block Mvj as

area(Mvj) = w€ighi{mfi),

:m

and lei the area limit for a partition block M^j be the cell weight limit of vj,

limii[Mvj) = limii{vj).

Also, associate with each cell is a set of legal partition block assignments,

>Cm, = {Mvj \ cell rui may be assigned to Vj}.

In these experiments, the weight value of a cell is the number of placement grid locations

the cell occupies and the weight limit of a vertex is the total number of placement grid

locations contained in its corresponding subregion.

For uniform cell sizes, the definitions given above are sufficient to satisfy the place

ment admissibility constraints, but extra constraints on the the distribution of area between

partition blocks are often useful- Let

target{Mvj)

be the desired area of Mvj, and let e be the maximum error limit between the actual area

of a partition block and its target value.

The objective is to minimize the partition cut weight

W(P)= Y,

where u;„, is a weight function for the net n,- that depends only on t"', the abstract net type

of n,. With respect to an abstract net type is a subset of V and the abstract net

type for a net n, contains vertex Vj if the subregion corresponding to Vj contains at least

one terminal of ni.

Given a net list, the partitioning algorithm returns an optimal partition P* of

minimal cut weight W{P*) that satisfies:

ar€a{Mvj) < limit(Mvj) VVj ,

area{Mvj) - tO''''get{Mvj)\ < ^ VVj ,
Mvj € Crrn Vrrii € Mvj-

The quadrisection partitioning algorithm is a min-cut [19] class algorithm. The

algorithm starts by generating an initial partition of cells. Then, iterative improvement

passes are applied to the partition until no further reduction in partition cut weight results.

initialize;

while (a free cell can be moved) {

remove cell with largest gain from gain tables;

lock cell in new partition block;

update gains of aflfected cells;

keep track of best partition;

}

use best partition found;

Figure 3.4: Basic quadrisection algorithm pass

Each improvement pass can be performed in 0{P) time where P is the number of pins in

the circuit. In practice, the overall algorithm is quite fast because the number of required

improvement passes is usually less than four or five.

As in all min-cut style algorithms, the quality of the final partition is strongly

dependent on the starting partition. This algorithm generates an initial partition by per

forming min-cut bisection partitioning steps on the net list in both directions and then

merging and balancing the results. The initial partition for each bisection is chosen using

the following linear ordering method. First, all fixed cells are assigned to their appropriate

partition blocks. Then, unassigned cells are assigned successively to a target block. The

block with the largest number of fixed cells is chosen as the target block. If both partition

blocks have the same number of fixed cells, then the target block is chosen randomly. At

each step, the cell that shares the most nets with target block cells is selected. Cell selection

stops when acceptable partition block area ratios are achieved. If the target partition block

is initially empty, a seed cell is chosen randomly.

A pseudo-code description of the basic quadrisection algorithm pass is given in

Figure 3.4. The quadrisection algorithm pass iteratively modifies a given partition by

successively moving cells from one partition block to another. The number of iterations

is controlled by allowing cells to move only once during each pass. Cells that have not

moved are free and cells that have moved are locked. The gain of a cell move is defined as

the decrease in partition cut weight resulting from that move. Rapid cell move selection

is aided by the use of special gain tables to maintain an ordering of cell moves. At each

;i(j

iteration, the move with the best gain is chosen to transfer a free cell to some partition block.

The chosen move must be legal and the result of the move must satisfy the partition block

area constraints described earlier. Cells are moved even if the move will result in a higher

partition cut weight because the set of possible cell moves at each iteration is dependent

on the previous cell moves taken. Choosing a cell move that increases partition cut weight

may admit subsequent cell moves that will decrease partition cut weight by more than the

increase. Iteration control can be further optimized while preserving this effect. Cell moves

can be discontinued if the current lower bound on partition cut weight (or "locked" weight

[20]) is greater than the best partition cut weight seen so far. The lowerbound is calculated

as that component of W{P) contributed by locked nets. A net n, is locked if no free cell

moves exist that will change the abstract net type of ra,-.

To maintain the linear time complexity of each algorithm pass, each net weight

function must depend only on the abstract net type of n,- and must evaluate in con

stant time. Also, the maximum net weight must be bounded by some constant z. These

requirements are met by using weight function terms that are invariant during each execu

tion of the quadrisection algorithm. The terms may be recalculated between quadrisection

algorithm invocations to provide feedback to the placement process.

The net weight function is defined as

4 4

weight(vj) •usagetr^i{vj) + C2 ^ weighi(ek) •usagetni(ek)
j-i k=l

where weight{vj) and weight{ek) are vertex and edge costs, ukagetii(vj) is an indicator

variable for degenerate net types, usagetni^ek) represents the probability of edge €k being

used to route f"', and Ci and C2 provide a relative weighting between vertex and edge costs.

The usage value for a vertex with respect to an abstract net type is unity when the abstract

net type is the degenerate net type corresponding to that vertex and zero otherwise. The

usage value for an edge with respect to an abstract net type, usagetni{ek), is the average

number of times an edge is used per route in the optimal set of routes for the abstract net

type. For these purposes, an optimal route is a minimal length route, so

= {rlr is a minimal length route for f"'}

and

usageMck) =
I I

Type, / usageties) usageties) usagetiei) usagetieo)

•
0 0 0 0

•
0 0 0 0

• •
0 0 1 0

•
0 0 0 0

•

• 1

2

1

2

1

2

1

2

•
•

0 1 0 0

•

•

•
0 1 1 0

•
0 0 0 0

•

•
0 0 0 1

•
•

1

2

1

2

1

2
1
2

0
•

0 0 1 1

1 0 0 0

•

•
•

1 0 0 1

•
• •

1 1 0 0

•

•
•
•

3

4

3

4

3

4

3

4

Table 3.1: Relative edge weights by abstract net type and edge
*

%

Values for usaget»i{€k) areshown in Table 3.1. The values ofothercost function components

are discussed later.

Exhaustive Search

An exhaustive search method is used on small partitioning problems. The method

uses exhaustive enumeration in combination withheuristic pruning strategies and is invoked

only on problems with solution space sizes less than or equal to 128. This limit was chosen

empirically to optimize the trade-off between solution quality and run time. The pruning

techniques use knowledge of the enumeration order to prune sequences based on cost lower

o

a o

o

o

a -0

o

H

Figure 3.5: Possible routes on the 2x2 abstraction

bounds and feasibility conditions. The pruning strategies are heuristic in that problems
exist that will not have any states pruned. However, execution time benefits from any
pruning and the average percentage ofstates pruned during the solution ofa given circuit
example range from 53% to 64%.

3.2.2 Route Assignment

Routing a given circuit net list on the 2x2 grid-graph, (7(V, S),requires assigning
each net a route pattern or route configuration such that all assignments are admissible.
The assignment problem is solved in two phases. First, nets are classified into types based
on the location of their pins with respect to the cells ofthe 2x 2grid abstraction and route

patterns are assigned to sets of nets of the same type. Second, the route patterns assigned

to each set are assigned to specific nets within that set.

Route-to-net assignments are admissible if all nets are routed and all routing re
source constraints are satisfied. Nets are classified into abstract net types with respect to

G{V,£) as in Section 3.2.1. A route configuration G'(V\S') is a subtree of G' and connects

or routes a net n, if V is a superset of the abstract net type of n,-. Figure 3.5 shows an enu

meration of all possible routes for G. Routing constraints are modeled as edge and vertex

39

capacities in G. Edge capacities represent the number of usable routing tracks and columns

and vertex capacities represent the number of usable via locations. Assigning route G' to

a net is equivalent to embedding G' in G. The wiring for a net that is assigned a route G'

is assumed to change both direction and layer in the subregions corresponding to vertices

of G' that have two adjacent edges. When G' is embedded in 6', each edge of G' uses a
unit of capacity of its corresponding edge in G, and each vertex of degree two in G' uses

a unit of capacity of its corresponding vertex in G. A set of embeddings is admissible if

edge and vertex usage does not exceed capacity limits. Given capacity values for all edges
and vertices in G, a set of route-to-net assignments is admissible if the corresponding set of

embeddings is admissible.

Net Type Assignment

The problem of assigning routes to groups of nets is formulated as a linearly con

strained nonlinear integer program. The major differences from the formulation of Burstein

and Pelavin [10] are the use of a nonlinear cost function term to distribute route patterns
more evenly and the assignment of routes to all nets despite resource constraint violations.

The nonlinear formulation generates a better distribution ofwiring patterns and is less than
twice as slow as the corresponding linear formulation. The complete assignment of routes
is used to determine congested areas if a subsequent re-route phase is required.

Constraints The constraints on the integer program must reflect the assignment con
straints and the capacity constraints of the 2x2 route assignment problem.

Given the set ofpossible route configurations Tl= {rj} and the set ofpossible net
types T = let

Rt, = {T-jjrjis a permissible route for type U}

be the permissible route patterns for net type t,. For nondegenerate nets, the possible
types and their corresponding sets of possible routes are shown in Figure 3.6. Membership
in these sets can be restricted if desired. Also, let:

Nti = the number of nets of type t,-,

= number of nets of type U assigned route rj,

capacity{eI;) = the capacity of edge ejt,

•!0

Type Configurations

i I?

II

P »l

l^r

II II

si f I II

1^ IIII

Is II II

IIIIIIII

Figure 3.6: 2x2 net types and configurations

via.capacityivf.) = the via constraint on vertex Vf^..

The assignment constraints can be stated as:

^ 0» t," = 1,..., T , rj € Rt, ,

= ^tii V ti .
rjGRt,

The non-negativity constraints prohibit physically impossible solutions that have negative

numbers of route patterns assigned to net types. The other constraints guarantee one-to-one

assignment of nets to route patterns appropriate for each net's type and assign a full set of

route patterns to each net type regardlessof possible capacity violations. These assignments

represent the desired routes for each net type and if capacity violations occur, are used to

identify congested regions suitable for re-routing.

The capacity constraints are represented as:

T

H = capaciiy{ek), Vejt ,
»=1 {i|efcerj,rj€/Jt,}

T

+ = via.capacity{vk), V Vk ,

>0, V efc ,

>0, V Vik .' ^Vk

The first line of constraint equations reflect edge capacity constraints and the second line

represents via or vertex constraints. Capacity values, capacity[ek) s-iid viajcapacity(vk)^
are calculated using heuristics from Burstein and Pelavin [10].

The quantity

is the difference between the capacity of edge and the utilization ofedge €k. Since this

value is unrestricted, it is modeled as the difference of two restricted variables, st and s~

where 5+ represents the excess capacity ofedge ejt and represents the over-utilization

ofedge ek. Similarly, the difference between vertex capacity and usage for vertex Vk,

is modeled as the difference of restricted variables 5+, the excess capacity at v/., and s~^,
the over-utilization of vias at Vk.

42

These constraints do not actually force the integer program to find admissible

solutions. Instead the variables in these constraints are incorporated into the objective

function so that an admissible solution will be found if possible. If the problem is infeasible,

a complete route assignment is still produced to aid identification of congested areas for

re-routing.

Objective Function The objective is to minimize

cost = L-sZ,)
k=l 1=1

/ usagejci) _ usagejej) V
^ \capacity{ei) capacity(cj))

where

usage{ek) = capacity(ek) - (5+ - sjj.

The coefficients X~, and D are chosen to implement the following goals in

order of priority.

1. Avoid capacity violations.

2. Minimize net length.

3. Distribute edge usage evenly.

The linear terms represent the capacity violation and net length cost. In gen

eral, the shortest route is always chosen unless the choice would violate an edge capacity

constraint. If the shortest route will violate a capacity constraint, then a longer route is

assigned unless the assignment would violate an edge constraint. Since via capacity limits

are calculated conservatively, the coefficients have been set to allow assignment of a longer

route even if it results in a via capacity violation. Currently, the linear term coefficients are

set as follows:

Lt, = 2 Vei ,
X- = 13 Vei ,

ij, = 2
LZ, = 4 V-n-

The nonlinear cost function term is used to avoid assignments similar to Fig

ure 3.7 (a). Assuming all boundaries have equal capacity, the even distribution of routes

•i:j

(a) (b)

Figure 3.7: Assuming uniform and sufficient capacity, the uneven use of capacity (a) is
undesirable, and the even distribution of routes (b) is preferred because of its more favorable
effect on subproblem congestion.

reflected in Figure 3.7 (b) is preferred because it usually produces less routing congestion in

subsequent subproblems. Even distributions can be favored by minimizing the square of the

difference in usage-to-capacity ratios for all pairs of edges in the 2x2 grid-graph. In Figure

3.7, the benefit of even distribution is gained without any increase in net length. Since the

suggested distribution metric does not account for net length, the square terms are weighted

by an appropriate factor in the objective function so that the criterion is applied only when

a more even distribution of routes will not increase total net length. This is implemented

by setting the distribution weight factor, D, for each abstraction so that the distribution

term is less than unity.

Program Characteristics Excluding non-negativity conditions, the problem has

T-\-E + V = lH-4-1-4

= 19

constraints and with respect to the routes enumerated in Figure 3.6, it has

IK,r,}l + l{<}l + IKJI + IK}l + IK}l = 28 + 4+ 4+ 4+ 4
= 44

variables. As in the work of Biirstein and Pelavin [10]. the size of tlie programming problem

is constant and independent of the number of nets in the routing problem, and classification

of nets into types requires time linear in the number of nets. In practice, the solution

of this linearly-constrained, nonlinear integer program has been quite efficient. Integer

solutions are found using the branch-and-bound technique described by Papadimitriou [30].

At each decision point, a linearly constrained nonlinear program is solved using the MINOS

optimization system [28]. A special C-f-l- interface to MINOS has been written to setup

and call the internal FORTRAN routines directly instead of writing input files and reading

output files. As described in the next section, experimental results indicate that the solution

to the initial linearly constrained nonlinear program is often integer or close to integer and

that typically, few steps of the branch-and-bound algorithm are necessary to generate integer

solutions. This is similar to the results found by Raghavan [31] for a 0-1 integer program

formulation of the routing problem.

Results The performance of the 2x2 route assignment as a separate routing phase was

compared with and without the nonlinear cost function term on the benchmark examples.

Difficult routing problems were created from the circuit net lists by using the 2x2 cell

assignment in a separate placement phase to position the sea-of-gates cells in a minimum

area grid with aspect ratio as close to unity as possible. Details of the separate phase

algorithms are described in Chapter 4. Table 3.2 compares results and program execution

times for the router with and without the nonlinear cost function term.

Routing quality is measured by the number of edge capacity violations in the

final global routing graph. Each unit of edge over-utilization counts as a violation. The

nonlinear objective function worked well at improving routing quality. Using the nonlinear

objective function always reduced the number of capacity violations. On some circuits the

improvement is dramatic. For example, on circuit C6288, the number of violations dropped

from 189 to 13.

Execution time is measured in CPU seconds on a DECSystem 5900/260. The

results were obtained without the benefit of performing a re-routing phase in order to

guarantee that comparisons between the linear and nonlinear objective functions for the

same circuit example are based on the same number of integer programs. When using the

nonlinear objective function, execution time increased by a factor which varied from 1.18

to 1.96.

Example

Net

Count

Capacity Violations Execution Time

Linear Nonlinear Linear,(s) Nonlinear,(s) Nonlinear
T.inpar

misex3c 309 4 0 46 90 1.96

C880 317 10 5 37 70 1.89

duke2 321 2 0 47 82 1.74

C1355 333 13 9 39 71 1.82

misex3 358 4 0 54 95 1.76

C1908 359 12 6 47 82 1.74

C3540 834 71 46 166 248 1.49

C5315 1251 1255 1106 418 495 1.18

C7552 1572 857 589 521 647 1.24

C6288 2417 189 13 770 1153 1.50

Table 3.2: Comparison of linear versus nonlinear objective function

Objective Function Low Mean High

Linear 1 1.03 19

Nonlinear 1 2.74 99

15

Table 3.3: Statistics on the number of non-integer programs solved during the branch-and-
bound solution of integer programs

Table 3.3 compares statistics for the number of linear programs or linearly con

strained nonlinear programs solved during the branch-and-bound solution of integer pro

grams. Over the course of solving all the examples, 7039 integer programs were solved for

each objective function option. The integer linear program formulation has a structure such

that solving the corresponding linear program almost always results in integer solutions. For

these examples, the largest number of linear program solutions required is 19, but the aver

age number is very close to one. Fortunately, much of this structure remains unaltered after

the addition of the nonlinear objective function term. On many of the linearly constrained

nonlinear integer programs, solving the corresponding linearly constrained nonlinear pro

gram also results in integer solutions. Though the largest number of linearly constrained

nonlinear program solutions required is 99, the average number is only 2.74. This value is

2.66 times the average for the linear objective function formulation and is consistent with

the execution time results in Table 3.2.

Ad

Individual Net Assignment

The solution to the Integer program described above only assigns routes to net

types and not to individual nets. To complete the route assignment, the assigned routes

must be assigned to individual nets within each group. For each group, this problem is solved

as a linear assignment problem with the goal of minimizing net length. These problems are

defined with respect to the previous integer program as follows.

Let

Af' = }

be the set of nets of type and define:

cost{n'i,rj) = the cost assigning route rj to net nj,

1 if net nj is assigned route rj

Minimize

subject to:

Vn' ,T ~
^ '0 otherwise.

yn[,Tj — ®n|,rj Vfj € Rti ,
n'-eAT'

Y yn'i,rj = 1-

This assignment problem can be solved as a minimum cost flow problem [22] with an

algorithm implementation that runs in 0{NiJ time. The cost of assigning route rj to net

nj is calculated as an estimate of the wire length of net n'- resulting from using route rj.

Route configurations that detour across an axis have an extra length term which penalizes

these patterns if the terminals of the net are farther away from the axis. All lengths

are estimated with respect to the final detailed routing grid. Coarser estimates did not

adequately distinguish route assignment costs, increasing the net ordering dependence of

the algorithm.

3.3 Pseudo-pin Assignment

The pseudo-pin assignment problem is the determination of net crossing locations

along subproblem boundaries. Net boundary crossings must be consistent between sub-

problems to allow generation of the entire solution from final subproblem solutions. These

constraints are introduced by creating a pair of pins to represent each net crossing. Each

pin belongs to the appropriate subproblem on either side of the corresponding boundary

and is referred to as a pseudo-pin because it is not part of the original problem specification.

The consistency constraints are enforced by guaranteeing that the pseudo-pins of each pair

have the same position with respect to the axis of the corresponding boundary. Initially,

pseudo-pin positions are known only as the range corresponding to their assigned bound

ary. For the final layout solution, this range must be restricted to correspond to the final

layout grid. Several choices exist for performing this refinement. Location decisions may

be based on local or global information and positions may be restricted gradually or all at

once. These choices and possible algorithms are introduced in the following. Algorithm

comparisons are presented in Section 5.1.2.

The extreme case of determining pseudo-pin locations based on local information

corresponds to solving the pseudo-pin problem during subsequent subproblem solution.

Pseudo-pins may be treated as cells and assigning a pseudo-pin cell to a vertex of the

2x2 grid-graph corresponds to restricting the pseudo-pin's position to a portion of its

original range. Unfortunately, this approach makes the final layout solution dependent on

subproblem solution order because of the consistency constraints on pseudo-pin pairs. This

is an undesirable side-effect because the best subproblem solution order is not known and

it is possible that all possible solution orders will lead to infeasible subproblems. At best,

subproblems early in the order will be optimized at the expense of subproblems later in the

order.

Alternately, an algorithm can use more global information to determine pseudo-

pin positions. In this paradigm, pseudo-pin pair locations are computed taking into account

features of subproblems on both sides of the boundary. An advantage of this method is

its potential for making the final solution independent of subproblem solution order. The

minimum requirement for this independence is that at each level of the hierarchy pseudo-pin

positions must be refined enough to correspond to single grids on the next level of subprob

lems. One approach to meeting this requirement is to solve 2x2 abstractions that divide

each pseudo-pin range into the appropriate sections. This method was proposed by Brouwer

and Banerjee [6]. Pseudo-pin locations are determined by solving a tree of recursive 2x2

abstractions along the internal axes of each routing subproblem. Figure 3.8 shows how the

routing region is decomposed recursively along the axes of interest to completely determine

•IN

pseudo-pin positions. After a given 2 x 2 abstraction is solved, pseudo-pin locations are

specified on its internal boundaries by first recursive subdivision and solution along the

Y-axis down to the final grid level and then similar recursive subdivision and solution along

the X-axis.

The other pseudo-pin assignment choice involves the amount of refinement per

formed at each opportunity. The method of Brouwer and Banerjee described above assigns

pseudo-pins to final grid locations at the first opportunity. Instead of this immediate pseudo-

pin assignment, another possibility is to perform a more gradual refinement of pseudo-pin

locations. At each level of the problem hierarchy, pseudo-pin positions can be refined just

enough to make the final solution independent of the subproblem solution order on the next

level of hierarchy. This method solves the same abstractions as the immediate assignment

approach, but the abstractions are solved at different points during the solution process.

Figure 3.9 shows the sequence of subproblem abstractions that are solved when this tech

nique is applied to the example of Figure 3.8. The solution of the more detailed pseudo-pin

assignment abstractions is postponed to later in the overall solution process.

3.4 Rip-up and Re-route

Since the routing problem and byextension the layout problem is NPcomplete [18],

any constructive heuristic algorithm used for solution of these problems can not guarantee

success on all examples and a mechanism for backtracking and changing poor decisions

can be invaluable. A common example of this concept is the rip-up and re-routing of nets

[13, 26, 35, 44]. For this layout system, a simple re-route capability has been implemented

using the 2x2 route assignment algorithm.

The re-route procedure is based on re-routing nets within a sliding 2x2 window.

At each level of the hierarchy, any cluster of four routing cells which form a 2 x 2 abstraction

can be selected and the net segments passing through them re-routed. This selection only

occurs if subproblems corresponding to the current level can not be successfully routed and

an abstraction is chosen only if it is possible to reduce capacity violations on a particular

edge of the abstraction by re-routing nets onto adjacent edges with extra capacity. More

sophisticated selection of sliding 2x2 windows is planned for the future. Table 3.4 com

pares results and program execution times for the separate phase routing algorithm with

and without the re-route option. The examples and metrics are the same as those used for

l-i-'
h T n -

1 1 1 1

1 1 1 1

- r T n -|-

r + H-
_ X J _

1 1 1

- 1- + H -1-

_ L 1 _J _l_

L ' 'i_ T -1 -
1 1 i#i

- r T T -i-

1- + H- - 1- + H -1-

1. I_ l_ -1 J. l_

(a)

-U)

Figure 3.8: Immediate pseudo-pin assignment, (a) original routing problem (b) initial 2x2
abstraction (c) subproblem abstraction sequence for pseudo-pin assignment along Y-axis
(d) subproblem abstraction sequence for pseudo-pin assignment along X-axis

oO

Level 0: Initial Subproblem Abstraction

"I

Level 0: Pseudo-pin Assignment Abstractions

•|

Level 1: Subproblem Abstractions

"I

Level 1: Pseudo-pin Assignment Abstractions

•|

Level 2: Final Subproblem Abstractions

> sl.j' Sl^S J - + -

Si<^
-•

s

sl^?"S ?'S
- + - -i-j

Figure 3.9: Gradual pseudo-pin assignment

Example
Net

Count

Capacity Violations Execution Time, (s)
No Re-route Re-route No Re-route Re-route

misex3c 309 0 0 90 86

C880 317 5 3 70 73

duke2 321 0 0 82 83

C1355 333 9 9 71 68

misex3 358 0 0 95 97

C1908 359 6 5 82 80

C3540 834 46 43 248 265

C5315 1251 1106 1101 495 539

C7552 1572 589 584 647 650

C6288 2417 13 10 1153 1128

Table 3.4: Effects of applying a simple re-route procedure

ol

Table 3.2. Despite its limitations and simplicity, the re-route capability is still beneficial.

Though the reductions in capacity violations are limited, the increase in execution time is

small or negligible. A more aggressive use of the sliding windows should produce larger im

provements. In particular, no attempt is made currently to remedy capacity violations that

occur in pseudo-pin assignment problems. Also, in general, the sliding window technique

can be used to relieve and redistribute routing congestion before any actual edge capacity

violations become evident.

52

Chapter 4

Separate Placement and Routing

The effectiveness of different methods for combining placement and routing will be

measured by comparison with the standard layout paradigm of separate sequential place

ment and routing phases. The separate phase paradigm has been implemented with layout

phases that are based on the same basic 2x2 layout algorithms to provide consistent com

parisons between the methods. Ideally, the separate phase algorithms should be the best

possible so that any improvement found using a combined approach can be attributed to the

combination rather than poor separate phase solutions. The usefulness of the separate phase

implementation as a reference is evaluated by comparing it with the TimberWolf Version 6.1

layout system [32]. The TimberWolf placement and routing package is a widely available

layout system that is used frequently for benchmark comparisons. The results generated

by TimberWolf may be considered to represent currently attainable layout solutions.

4.1 Placement

The separate placement phase algorithm combines hierarchical decomposition and

the 2x2 cell assignment algorithm. Each reduction step is based on the solution of a 2 x 2

placement abstraction and solving the hierarchy of placement subproblems results in a com

plete placement solution. The process differs from the basic methods described in Chapter 3

in that global placement information is used to create each subproblem abstraction instead

of just parent abstraction information and in that the resulting subproblem solution in-

terdependencies are attenuated by iterating the solution of subproblems within each level.

These differences are discussed in the following along with a more detailed description of

ry.i

constraint and objective function calculations for the 2x2 placement abstraction.

Global information about external cell locations is propagated into problem ab

stractions based on a method introduced by Dunlop and Kernighan [14] called terminal

propagation. They report that using this enhancement reduces the number of required

routing tracks by as much as 30%. The method uses dummy cells to represent the global

information. A cell of zero weight is created for each cell outside a problem region that

is connected to a cell inside the region. The set of legal placement locations for the cell

is restricted to represent the direction of the external connection. The rules used in this

research for constructing dummy cell placement constraints are illustrated in Figure 4.1.

The region surrounding a problem abstraction is divided into areas based on the size of the

problem region. External connection location is based on the location of the terminal of

the external cell that is connected to a cell of the problem. Each area is labeled with a

placement condition that holds for the dummy cell if the closest edge of the corresponding

external terminal's bounding box intersects the area.

Unfortunately, using this external cell information creates dependencies between

the solution of a subproblem and the solutions of other subproblems on its level of the

hierarchy. Since the locations of external connections affect the constraints introduced to

each abstraction, the placement solution is dependent on the order of subproblem solution

within a level of the hierarchy. To reduce the effects of this dependency, the solution of all

subproblems in a level of hierarchy is iterated until combined solution improvement ceases.

Suaris and Kedem report that this iterative procedure improves the global minimal cut

weight by up to 10% and that the improvement is achieved in two to three passes.

The 2x2 cell assignment constraint values and objective function components are

determined as follows. Area targets for each partition block are set as

targei(M„)=^ weight(mk) x hmtt(v,)
fei E„i€V'"»»«(».)

This implements the goal of distributing cells in proportion to the size of the layout region

corresponding to each partition. The maximum error, c, is set to allow the cell distribution

to be out of proportion by at most one ceU. The net weight functions are made to implement

5-1

<e

n&m

legal

•OS

I & II legal

II legal I legal

II

III IV

w w w

III legal IV legal

I III & IV legal

Figure 4.1: Placement constraints for terminal propagation

I&IV

legal

a typical net crossing metric by setting

wei(jht[ek) --- 2, A' = 1.3

weight{efc) == 1, k = 2,4

weight{vj) -= 0, Vj ,

.).)

and

Ci = C2 = 1.

The edges that cross horizontal partition boundaries are assigned weights twice that of edges

that cross vertical partition boundaries to reflect the expected routing capacity distribution.

4.2 Routing

The separate global routing phase algorithm uses hierarchical decomposition and

the 2x2 route assignment algorithms. Routing is performed using the same hierarchy as

the placement phase and the placement grid is equivalent to the detailed global routing

grid, so performing route assignment and pseudo-pin assignment on the subproblems of the

placement hierarchy results in a complete global routing. Pseudo-pin assignment during

routing uses the immediate assignment method described in Section 3.3. The grid model

for routing capacity constraints and the heuristic capacity calculations are described in the

following.

The region corresponding to a 2 x 2 abstraction is an array of placement grids.

Associated with each placement grid location is a value for the number of feed-throughs

and the number of routing tracks that may pass through that region. If a cell has been

placed at a grid, then these values are determined by the number of feed-throughs and

tracks that may pass through or over the cell. Otherwise, the values are the maximum

possible. The number of tracks available for routing across a vertical boundary between

placement locations is considered to be the minimum of the number of available routing

tracks in two adjacent locations. Similarly, the number of feed-throughs that may cross a

horizontal boundary is the minimum ofthe number offeed-throughs that may pass through

the adjacent grid locations. The array of placement grids corresponds to a portion of

the detailed global routing graph. Each placement grid corresponds to a vertex and each

boundary between placement grids corresponds to an edge. The capacity of each edge is

the number of routes that may cross the corresponding boundary.

.•)G

(n.l) (n,p) (n,q) (n,m)

• •

•

•

•

(j.l) (j,P) (j,q) (i,m)

(i,l) (i,p) (i,q) (i, m)

• • • •

•

•

(1,1) (l.P) (l,q) (l,m)

Figure 4.2: Subproblem abstraction on a placement grid

Suppose that the subproblem boundaries are between columns p and q and rows

i and j. This situation is iUustrated in Figure 4.2. The capacity of edge €2 of the 2x2

abstraction is the number of routes that may cross the placement grid boundaries between

columns p and q over the range from row j to row n inclusive. If routing capacity distribution

is nonuniform, considering only the capacity of the placement boundaries corresponding to

the subproblem boundaries may cause routing problems. For example, if adjacent placement

grid boundaries have smaller routing capacities, an overly optimistic number of routes may

be assigned to cross the current subproblem boundary, resulting in subsequent capacity

violations on the adjacent boundaries. To avoid some of these problems, a heuristic proposed

••)<

by Burstein and Pelavin [10] is applied to calculate capacities. The calculations for edge C2

are presented to illustrate the method. Analogous conditions and calculations hold for the

other edges. Let the placement grid at row r and column c be

9(1',c)

and let the routing capacity between grids g(r,c) and g{r,c+ 1) be

capacity{r, c).

Calculation of the capacity of edge €2 first requires determining modified capacities

capacity^lr^c) r = i,.. c = 1,...,m —1

as follows:

capacity"{r^p) = capacity(T^p),

capacity"{r^c) = mm{capacity{ryC)^capacity"{r^c-\-\) c<p,

capacity"{r^c) = m\ii{capacity(r^c)^capacity"{r,c—I) Op.

Now, the capacity of edge €2 is calculated as

^ capacity"(r, c)
^ m-1
r=3

Via capacities are calculated using

via.capacity{vk) = v(capacity(ei), capacity(cj)) x C(n)

where e, and ej are the edges adjacent to Vk, n is the number of placement locations in the

region corresponding to v{a^b) is the minimal via capacity computed in [25], and

2a?

a: + 1

4.3 Results

The layout solutions of the 2x2 separate phase approach were compared with

solutions generated by TimberWolf 6.1 to measure the performance of the basic 2 x 2 al

gorithms. Whenever possible, both systems were given the same layout constraints and

results were generated as would be required in production practice. The goal was to use

•j<S

each system to find a minimal area layout for each example that admits a feasible global

routing of minimal length. Standard net length and area metrics are used to compare the

results generated by each method.

The 2x2 separate phase approach uses pad positions and a layout area boundary

definition as problem constraints in addition to the basic circuit description. Pad positions

are specified as fractional distances along specific chip edges. For all the examples, these

positions were generated using the OcUools[l^ padplace program. Since the hierarchical

decomposition is confined to the given layout region, many algorithm executions on regions

of different sizes and shapes may be required to find a feasible solution. This search was

performed by hand with a secondary goal of unity aspect ratio.

The TimberWolf placement and routing package is a widely available layout system

that is used frequently for benchmark comparisons. The system handles gate-array designs

by treating them as standard cell problems and its primary goal is to minimize layout

solution area for a given aspect ratio. For sea-of-gates designs, an additional post-processing

phase is required to translate the standard cell solution into a legal sea-of-gates placement.

Results for the TimberWolf system are based on its gate-array solution of the

circuit examples given an aspect ratio goal of unity and the same pad position specifications

as used for the separate phase 2x2 algorithms. Since the gate-array problem is really solved

as a standard cell problem, each cell template in the sea-of-gates library was represented as

a standard cell of the same dimensions and with the same number of routing feed-throughs

and free routing tracks. Horizontal routing segments were favored over vertical routing

segments by a factor of two to match the ratio of horizontal to vertical routing capacity in

a typical library cell.

The TimberWolf results require post-processing to generate legal sea-of-gates place

ments because the TimberWolf system is not capable of handling certain sea-of-gates design

constraints. Though TimberWolf can be constrained to place cells on grid locations within

ceU rows, it can not be coerced to space cell rows on placement grids. Also, the current

sea-of-gates array requires cells in odd-numbered columns to be placed mirrored about the

vertical axis. While TimberWolf has an optimization step that mirrors cells to improve

the layout solution, it can not handle mirroring cells based on their final location. The

post-processing step maps cells to sea-of-gates grids by placing cell rows on placement grid

locations while spacing the rows far enough apart to accommodate the appropriate max

imum channel densities specified in the TimberWolf output. Admissible odd column cell

Example

Semiperimeter Net Length (A)

TimberWolf Separate

C880 237956 177620 0.75

C1355 216006 194907 0.90

misex3c 242499 163422 0.67

duke2 290811 186062 0.64

C1908 264973 208189 0.79

misex3 276730 195043 0.70

C3540 907437 626381 0.69

C5315 2127501 2335723 1.10

C7552 2441560 1945577 0.80

C6288 1878856 1441928 0.77

of)

Table 4.1: Total net length comparisons between the separate phase 2x2 algorithms and
TimberWolf 6.1

mirroring was obtained by turning off the cell mirroring optimization step during Tim-

berWolf execution and then mirroring all cells in odd columns during the post-process

mapping step. Unfortunately, the post-processing changes the relative positions of net ter

minals and routing feasibility of the subsequent result can not be guaranteed. However,

since the spacing between cell rows is generally increased, the likelihood that the channel

routing problems will become infeasible is small and the post-processed TimberWolf results

represent reasonable approximations of currently attainable layout solutions.

Comparisons of the separate phase versions of the basic 2x2 algorithms and

TimberWolf 6.1 are presented in Table 4.1 and Table 4.2. Total net length and layout

area are the metrics used. The length of a net is measured as one-half the perimeter of its

bounding box and layout area is measured as the bounding box of the core cell area. The

separate phase algorithms performed better than TimberWolf6.1 on all examples except for

example C5315. The total net length obtained by the separate phase algorithms varies from

36% less to 10% more than the TimberWolf total net length results and the layout area varies

from 69% less to 54% more than the TimberWolf area. Example C5315 is a particularly

difficult example for the separate phase algorithms given fixed layout area constraints. This

example contains many dense, tightly coupled subcircuits and the placement algorithm

places them close together as desired. Unfortunately, the routing algorithm's predictions

of routing capacity are less accurate in the presence of such highly localized congestion

()0

Example

Aspect Ratio (h/u') Layout Area (A'̂)

TimberWolf Separate TimberWolf Separate

C880 29/26 = 1.12 17/19 = 0.89 5838222 2500989 0.43

C1355 27/27 = 1.00 17/24 = 0.71 5644647 3159144 0.56

misexSc 36/27 = 1.33 17/18 = 0.94 7526196 2369358 0.31

duke2 35/28 = 1.25 18/17 = 1.06 7588140 2369358 0.31

C1908 31/28= 1.11 18/24 = 0.75 6720924 3344976 0.50

misex3 36/29 = 1.24 19/19 = 1.00 8083692 2795223 0.35

C3540 62/42 = 1.48 32/35 = 0.91 20162772 8672160 0.43

C5315 70/49 = 1.43 66/80 = 0.83 26558490 40883040 1.54

C7552 76/55 = 1.38 55/69 = 0.80 32365740 29384685 0.91

C6288 101/73 = 1.38 48/51 = 0.94 57089139 18954864 0.33

Table 4.2: Area and aspect ratio comparisons between the separate phase 2x2 algorithms
and TimberWolf 6.1

and sometimes too many feed-through routes are assigned at the higher levels of routing

abstraction than can actually be wired, resulting in capacity violations on the final routing

grid. Overall, the results for the separate phase algorithms compare well with the results

for TimberWolf6.1 and this performanceindicates that using the separate phase algorithms

as reference cases will provide useful measurements of the utility of different methods of

combining placement and routing.

Chapter 5

Placement and Routing

Communication

GI

Improved communication between phases is an important element in integrating

placement and routing to obtain better layout solutions. A fundamental premise for com

bining placement and routing is that information derived in each phase is required by the

other to make better decisions. Routing is clearly dependent on placement because formu

lation of the routing problem requires the placement solution. The interesting aspect of this

relationship is how much the routing depends on the accuracy of the placement information,

especially since the most obvious methods of solving placement and routing concurrently

require the routing algorithm to use coarse or approximate placement data. Conversely,

placement is not so much dependent on routing as it is validated by it. The real goal of the

placement pha^e is to provide for a successful routing phase and feedback from the routing

algorithm should be useful for guiding placement decisions. If the layout process is viewed

as a search for a feasible solution, then the feedback can be viewed as an intelligent method

for guiding this search. In this context, the hierarchy provides structure to the search and

for the information flow and the common data model provides a common reference frame

for efficient information transfer.

5.1 Routing

The routing problem is to determine a minimal cost set of interconnection patterns

for a given circuit net list subject to particular routing problem constraints. The relevant

()2

constraints for this discussion are net terminal locations and capacity restrictions. The

wiring patterns must implement nets by connecting terminals at particular locations and

the collection of patterns must be selected so that a working circuit can be manufactured.

Decisions on interconnections are affected by the quality and granularity of data for ter

minal locations and capacity values. These data are determined by both placement and

intermediate routing decisions.

5.1.1 Placement Resolution

Routing depends directly on placement because the placement solution specifies

the routing problem. Since solving placement and routing concurrently requires making

routing decisions based on incomplete or approximate placement solutions, any attempt at

combining placement and routing should account for the dependency of the routing portion

of the approach on the granularity of the available placement information. This dependence

can be measured for the hierarchical decomposition approach by varyingthe number ofmore

detailed placement subproblem levels that are solved before solving a given level of routing

subproblems.

The major features of a routing problem, pin locations and routing capacity dis

tribution, are generated directly from the placement solution. Each cell has pins which

must be connected to pins on other cells. Each cell also has internal wiring patterns which

present obstacles to subsequent routing. Thus, cell positions specify net terminal locations

and determine the distribution of capacity throughout the routing region. The accuracy

of both terminal position data and capacity values is limited by the granularity of the cell

placement information.

The problem hierarchy generated by the hierarchical decomposition can be used

to explore the dependence of routing algorithm performance on placement information

resolution. Since each level of the hierarchical decomposition method represents a further

refinement of the solution and since both placement and routing use the same problem

reduction hierarchy, a level of the hierarchy is a convenient unit for measuring placement

data granularity. Routing dependence on placement granularity is examined by varying the

number of more detailed levels of placement that are solved before routing a given level.

The number of levels can vary from zero to the total number of levels in the hierarchy.

During solution, ceUs are assigned to partition blocks as in the separate 2x2 placement

(hi

phase, using the 2x2 cell assignment algorithm along with terminal propagation and iterative

improvement within each level. However, the terminal propagation is limited to nets defined

by the most detailed routing subproblems available. Routes and pseudo-pin positions are

assigned based on the current placement resolution.

The sequences of cell and route assignment abstractions solved for various levels

of more detailed placement are shown in Figures 5.1, 5.2, and 5.3. Route assignment is

delayed by the specified number of levels subject to fundamental abstraction constraints.

For each 2x2 abstraction, the route assignment requires resolution of each terminal to

within a specific grid of the abstraction. This applies to both routing and pseudo-pin

assignment abstractions. Routing subproblems require placement solutions commensurate

with the current grid abstraction and the subsequent pseudo-pin assignment subproblems

require at least one more level of detailed placement information. At each level, pseudo-

pins are refined as much as is possible given the current granularity of both placement and

routing solutions.

Figure 5.1 shows the sequence for assigning routes on a 2 x 2 abstraction before

cell assignment is solved on any more detailed levels of the hierarchy and corresponds to the

most parallel execution of placement and routing. The route assignment is possible because

the minimum resolution requirement on net terminal positions is that the terminals be

classifiable with respect to the 2x2 abstraction. This requirement is met after solving the

placement problem on the abstraction and represents assigning routes based on the most

approximate placement data possible.

Figure 5.2 illustrates the subproblem sequence for solving one more level of place

ment subproblems before routing a given level of subproblems. This situation differs from

the zero level case in that the routing subproblems are based on more refined placement

data. The pseudo-pin assignment subproblems are still basedon the samelevel of placement

refinement, but the overall ordering of subproblem solutions is slightly different because of

the delay in route assignment. For all of the cases based on an intermediate number of

more detailed placement levels, initial pseudo-pin assignment is performed immediately af

ter each level of routing subproblems and pseudo-pin locations are refined to a level of

detail commensurate with the current level of placement granularity. Pseudo-pin positions

are further refined after each subsequent level of placement solution. This approach to

pseudo-pin assignment provides the routing algorithm with as much detail as the current

level of placement resolution allows.

(i'l

Cell Assignmeni Route Assignment Pseudo-pin Assignment

Figure 5.1: Subproblem abstraction sequence for solving a routing level immediately after
the corresponding placement level

Cell Assignment Route Assignment

J Sl^ s
> r'S

- + -

s /\
> '^i>

s"I^
?\s
sT^

?

s
-1- - + -

Pseudo-pin Assignment

> S ' ^
K

-

s ^ 1N
^ 1~

—

05

Figure 5.2: Subproblem abstraction sequence for solving one more level of placement before
routing

6()

Cell Assignment Route Assignment Pseudo-pin Assignment

I

Figure 5.3: Subproblem abstraction sequence for solving all levels of placement before
routing

Figure 5.3 shows solving the complete hierarchy of placement siibproblems before

solving the first level of routing and corresponds to performing separate sequential phases of

placement and routing. Since the final cell positions are known exactly, routes are assigned

based on the most exact placement data possible.

Routing and pseudo-pin assignment subproblems are solved using the 2x2 route

assignment algorithm. The components of this algorithm that are affected by placement

granularity are the net length and capacity calculations.

The 2x2 route assignment algorithm uses net terminal locations to classify nets

into types and to estimate net length. If cell positions are known exactly, then the exact

terminal locations are used. Otherwise, the computations assume that terminals are located

at the center of the range determined by the current placement granularity.

Routing capacity values are derived as accurately as possible given the current level

of placement detail. The capacity heuristics assume an array or grid of routing cells and

the heuristics are applied to the routing super-grid corresponding to the most detailed level

of completed placement hierarchy. For example, in Figure 5.2, the first routing subproblem

uses capacity values derived from a 4x4 super-grid, corresponding to two levels of placement

solution. Each placement subproblem on a level is a node in a routing super-grid-graph and

the boundaries between the placement subproblems are edges in the graph. Since each

grid location in the super-grid may correspond to several individual placement locations,

the number of feed-throughs and tracks available for routing through and over a super-grid

location must be estimated. The estimates are based on the cells assigned to the placement

subproblem corresponding to the super-grid location. Each cell has a predetermined number

of feed-throughs and tracks available for routing over or through the cell. Capacity estimates

for a super-grid node Vk are calculated assuming that a cell with average values for its

number of available feed-throughs and tracks is placed at every placement location in Vk

and that routing resources are uniformly available across the region of Vk, The calculations

count empty placement grids as cells with all feed-throughs and tracks available. Let:

feedJhroughm, = the number of usable routing columns through cell rrii^

tracksm, = the number of usable routing rows over ceU m,-,

f eedJ,hroughgrid = the number of routing columns in a placement grid,

tracksgrid = the number of routing rows in a placement grid,

empty.grids = the number of empty placement grids in vjt.

(js

Example
Total

Levels

Edge Capacity Violations
0 levels 1 level 2 levels 3 levels 4 levels 5 levels

C880 4 8 2 2 5 5 5

CT355 4 25 16 7 10 9 9

misex3c 4 0 0 0 0 0 0

duke2 4 3 0 0 0 0 0

C1908 4 22 9 8 5 6 6

misex3 4 1 2 0 0 0 0

C3540 4 140 76 41 46 46 46

C5315 5 1507 1209 1165 1111 1067 1106

C7552 5 1161 802 728 616 619 589

C6288 5 93 25 38 12 12 13

Table 5.1: Edge capacity violations as a function of the number of levels of cell assignment
performed ahead of route assignment

If Vk corresponds to a placement grid region of h rows and w columns, then feed-through

and track estimates are calculated as:

empty.grids = {hxw-

eTnpty.grids x feedJhroughsgrid + feed.throughsmi
jeedJnrougns = w x ^

tracks = hx

hxw

empty.grids x tracksgrid + tracksmi

hxw

Via capacities are calculated based on edge capacities as for the separate phase algorithms

(Chapter 4).

The results for performing cell assignment different numbers of levels ahead of

route assignment are presented in Table 5.1. The examples were placed and routed as

described above on the same minimum area arraysused in Chapter 3. Routing performance

as measured by the number of global routing edge capacity violations generally improves

with increased number of levels of extra cell assignment. There is also a small tendency for

performance to decrease as the number of extra cell assignment levels approaches the total

number of levels in the hierarchy, but this characteristic can be attributed to the level of

intermediate routing decision refinement rather than placement data granularity.

The major relationship exhibited is for routing performance to improve with more

levels of cell assignment performed ahead of route assignment. This confirms that good

routing decisions require detailed placement information. The amount of improvement with

09

each extra level of placement refinement varies between examples, but often the majority of

the benefit occurs after one or two levels. The other interesting feature is that a difference

of one level of extra placement often makes a large difference in the performance of the

routing algorithm.

A minor trend displayed is for slightly degraded routing performance with more

levels of cell assignment. This is attributed to the policy of immediately refining pseudo-pin

positions as much as allowed by the current level of placement granularity and is verified in

the next section. Refining pseudo-pin locations based on insufficient local routing informa

tion may result in more difficult routing subproblems and lead to increased edge capacity

violations.

5.1.2 Routing Decision Resolution

Routing algorithm performance is also affected by intermediate routing decisions

made during the course of the algorithm. These intermediate decisions determine net ter

minal locations in subsequent routing subproblems and also affect capacity to the degree

that the algorithm tries to predict and avoid future wiring congestion. The decisions are

transmitted to subsequent subproblems through the specification of pseudo-pin positions.

The dependence of the 2x2 route assignment algorithm on the granularity of interme

diate routing decisions is explored by comparing the immediate and gradual methods of

performing pseudo-pin assignment described in Section 3.3.

Pseudo-pin locations may be refined gradually or specified completely. The op

tion chosen determines the granularity of the intermediate routing decisions presented to

subsequent subproblems. The immediate method of pseudo-pin assignment provides more

detailed information to subsequent subproblems by making more specific routing decisions

earlier. The gradual method of pseudo-pin assignment delays making the same routing

decisions and only provides approximate information to subsequent subproblems. The cost

of the immediate approach is more cell assignment work. Generation of detailed pseudo-pin

positions using the immediate approach requires a complete detailed placement. Also, the

early decisions on pseudo-pin locations may be suboptimal or infeasible, leading to prob

lems later in the decomposition process. The gradual approach is oneattempt at addressing

these issues. Only one extra level of placement hierarchy solution is required beyond the

current routing level to perform the gradual pseudo-pin cissignment and decisions on specific

Edge Capacity Violations Net Length (A)
Example Immediate Gradual Immediate Gradual

C880 5 4 — —

C1355 9 8 — —

misex3c 0 0 163422 163471

duke2 0 0 186062 186081

C1908 6 6 — —

misex3 0 0 195043 195035

C3540 46 36 — —

C5315 1106 1135 — —

C7552 589 610 — —

C6288 13 11 — —

Table 5.2: Edge capacity violations and total net length for the immediate and graduaJ
methods of pseudo-pin assignment

pseudo-pin locations are delayed until more local information is known.

Table 5.2 compares routing algorithm performance for the two different pseudo-

pin assignment methods. Routing performance is measured by the number of final global

routing graph edge capacity violations. If edge capacities were not violated for both cases,

the total net length is compared. The length of a net is measured as one-half the perimeter

of its bounding box. These results were obtained by applying the routing algorithm as

a separate phase to the minimum area grid examples of Chapter 3. Delaying pseudo-pin

decisions until more local information is known is often beneficial. Unfortunately, this

effect is example or data dependent and is not always exhibited. However, the pseudo-pin

assignment method comparisons are generally consistent with the placement granularity

results shown in Table 5.1. In particular, these results are consistent with the conclusion

that the degradation in routing performance with increased levels of cell assignment before

route assignment is a function of the pseudo-pin assignments rather than the placement

granularity. All the examples for which the gradual method of pseudo-pin assignment

performed as well or better also exhibited a degradation in routing performance with more

levels of cell assignment performed ahead of route assignment. Also, except for example

C5315, the examples for which the immediate method of pseudo-pin assignment produced

better results did not exhibit the degradation with more levels of cell assignment.

5.2 Placement

Routing feedback is the important communication issue for placement because a

true placement evaluation is not possible without routing information. Standard heuris

tics like net length and minimum area work well, but the ultimate measure of placement

quahty is the feasibility of the subsequent routing problem and the optimality of the sub

sequent routing solution. While routing information could be used by a specialized al

gorithm to modify the placement, more can be learned about combining placement and

routing by trying to provide routing information back to the cell assignment algorithm such

that re-applying the algorithm to the given placement subproblem results in a better so

lution. Knowledge about placement and routing interaction must be applied to determine

the appropriate feedback mechanism for improving placement performairce on subsequent

attempts. Unfortunately, this interaction is complex and not fully understood. For the

2x2 cell assignment algorithm, the possibilities explored for incorporating feedback are

modifying existing constraints and adjusting algorithm parameters.

When revisiting a placement subproblem, the feedback mechanism can either pro

hibit previous choices or encourage selection of different alternatives. Though prohibiting

certain selections is the more direct method of influencing decisions, identification of spe

cific bad decisions can be difficult, especially if algorithmic failure to find a feasible solution

results from a set or combination of decisions rather than a single choice. Attempts at avoid

ing a supposedly "bad" decision may lead to worse solutions. In particular, adding specific

constraints to the placement problem based on routing results is not well understood. For

example, prohibiting a particular cell from being assigned to a particular partition block

is not necessarily very meaningful or useful. It is more probable that a certain set of cells

should not be assigned to the same partition block or that a specific distribution of cells

among blocks is poor. To avoid these problems, no specific assignments are prohibited.

Instead, selection of alternate assignments is encouraged by changing problem constraints

and modifying algorithm parameters.

Two different problem constraints can be modified for the 2x2 cell assignment

algorithm. First, the general distribution of cells among the partition blocks can be influ

enced by modifying the target sizes for each block. For example, partition blocks which

correspond to congested routing subregions may have their target sizes lowered. Second, the

routing results can be used to generate the dummy cells for terminal propagation. Instead

72

of creating a dummy cell for each external cell connection, a dummy cell is created for each

routing edge that crosses the placement region boundary. The dummy cell partition block

membership constraints are based on the locations of their corresponding routing segments.

Routing information can also be used to modify the 2x2 cell assignment algorithm

edge and vertex weight parameters. Edge weights may be assigned such that edges with

higher utilization in the corresponding routing problem have proportionally higher values.

Similarly, vertex weights may be assigned such that vertices corresponding to more highly

congested routing subregions have proportionally higher values.

Feedback information is derived from both the placement and routing solutions.

Relevant data includes capacity values, edge utilization, and subregion routing congestion.

The capacity and edge utilization values come directly from the routing problem formula

tion and solution. Subregion routing congestion is measured heuristically. The congestion

calculations, feedback implementation details, and evaluation of feedback performance are

described and discussed in Chapter 6.

Chapter 6

Combining Placement and

Routing

The hierarchical decomposition framework allows exploration of the range of place

ment and routing integration possibilities. Different points along this range are examined,

taking into account the placement and routing dependencies discussed in Chapter 5. A

unified approach to placement and routing is analyzed, but the problem stih remains in

tractable. A merged approach to combining placement and routing is also tried in an at

tempt to provide more immediate feedback and closer coupling of the two phases. For this

method to be successful, the benefits of the feedback and coupling must overcome the dis

advantage of making routing decisions based on coarse placement information. Alternately,

route assignment can be based on more refined placement data. A coupled approach is ex

amined that makes routing decisions based on detailed placement informationand performs

re-placement based on every level of routing refinement. Finally, a hybrid approach is at

tempted to further investigate routing feedback to placement and to exploit a characteristic

of the route assignment's dependence on placement information. Route assignment consists

of two phases, net group assignment and individual net assignment. Only the individual

net assignment is dependent on detailed placement information. The hybrid approach feeds

back net group assignment information to placement and delays individual net assignment

decisions until detailed placement is complete.

6.1 Unified Approach

The hierarchical decomposition technique can be used to provide a unified place

ment and routing approach to layout if the the unified 2x2 placement and routing problem

can be solved. One possible formulation of this subproblem is presented in the following,

but even on the simple 2x2 data model, the unified placement and routing problem is still

too difficult. The unified 2x2 problem requires placing and routing a given circuit net list

on the 2x2 grid-graph, G{VyS). Each cell must be assigned to one of the four grid-graph

vertices and each net must be assigned a route configuration on the 2x2 grid-graph such

that all assignments are admissible and consistent.

As described in Chapter 3, cell-to-vertex assignments are admissible if the set of

cells assigned to a particular vertex does not exceed the vertex's limit and route-to-net

assignments are admissible if all nets are routed and all routing resource constraints are

satisfied. Route-to-net assignments are dependent on cell-to-vertex assignments because a

net's abstract type is a function of the vertex assignments of its cells. Route assignments

and cell assignments are consistent if each route connects the abstract net type defined by

the cell assignments for its assigned net.

The 2 X 2 placement and routing problem can be stated as follows. Let aU possible

routes on G be the set

Given a circuit description of modules (or cells)

M =

and nets

N = {ni,...,n7v},

denote the set of cells connected by net n, as Mm- Define decision variables

{1 if cell m, is assigned to vertex Vj
0 otherwise

and

J 1 if net n, is assigned route configuration rj
yn,,rj = ^

0 otherwise.

Let:

weight{mi) = the weight of cell m,-,

Hmit{vj) = the weight limit of vertex vj,

capacity{cf:) = the capacity of edge ejt,

capacity(vfc) = the capacity of vertex Vk-

Optimize the 2x2 layout subject to

4

3=1
M

^ weight(mi) • < limit{vj), j = 1,.. .,4 ,
i=l

R

^^yni,rj — 1)
i=i

N

^ capadij/(efc), A: = 1,...,4 ,
'=1 {i|efc€rj}
N

^ capacity(vk), A; = 1,..., 4 ,
1=1 {ijufcerj}

and

^mi,vj "H 2/nfc,r/ ^ V{i^j^k^l)^ Q,

where

I •>

Q — J? A:,/) I Tfix G ^ € A/") 7*/ € 72.}.

The first M + 4 constraints in the definition are the placement admissibility con

straints. The next N + 8 constraints are the routing admissibility constraints and the last

set ofconstraints are the consistency constraints on the placement and routing assignments.

The consistency constraints enforce the condition that if a cell is assigned to a particular

vertex, then no net that is connected to the cell may be assigned a route configuration

that does not include the vertex. The number of possible combinations of vertex choices

and illegal route configuration selections corresponds to the number of vertices not covered

by a route in Figure 3.5. Counting the four degenerate routes, R equals 16 for the 2x2

routing problem. Over these 16 configurations, the number of vertices left uncovered is 24.

These combinations must be considered for each cell of each net, so an upper bound on the

number of consistency constraints is 24MN.

Unfortunately, using tills problem formulation to solve the unified 2 x 2 placement

and routing problem is impractical. The formulation is an integer programming problem

that is linear in the size of the circuit. Current circuit designs are too large to allow

effective solution of this integer program using current linear programming packages. Also,

the integer program is difficult even on small circuits. A common practice is to relax the

integer constraints and solve the resulting linear program to obtain approximate results.

Unfortunately, relaxing the integer constraints on this particular formulation results in

trivial non-integer solutions of little value, making both rounding methods and branch-and-

bound algorithms ineffective.

6.2 Merged Approach

A merged approach to layout can also be implemented within the hierarchical de

composition framework. The merged or concurrent solution of placement and routing is an

attempt to provide more immediate feedback from routing to placement. The two phases

are merged as a result of solving both placement and routing on each 2x2 abstraction of

the decomposition and pseudo-pin assignment hierarchies. This approach to layout more

closely integrates placement and routing phases than the coupled paradigm which solves

the placement and routing subproblem hierarchies separately, but provides less integration

than a unified approach which would solve placement and routing simultaneously on each

abstraction. The 2x2 cell and route assignment algorithms are applied sequentially to

each subproblem abstraction, resulting in an interleaving of placement and routing func

tions over the course of the decomposition process. An approach similar to the gradual

method of pseudo-pin assignment is used to refine pseudo-pin locations for the next level

of subproblems and is the primary method of communicating routing information to the

placement process. Feedback between placement and routing results from both the pseudo-

pin assignment process and the use of pseudo-pin positions to implement a kind of terminal

propagation.

The parameters of the 2x2 cell and route assignment algorithms are set to make

the best use of the current level of problem information detail. The route assignment

algorithm is set up as in Section 5.1.1 to calculate net terminal positions and capacity

values based on the current level of placement detail. Since cell assignment is performed

for all subproblem abstractions, the cell assignment algorithm parameters must be adapted

more closely to the characteristics of individual siibproblems. To account for variations in

the shape of subproblem regions, the net weight functions are set to:

wei(jhi{ek) = , VA- ,
^e,g£" capocit!/(e,)

xvei(jht{vj) = 0 Vj ,

Ci = 1,

C2 = 1.

The partition area targets and maximum error limit are set as before. Namely,

tavget[My)=^ weight(mk) x hmit{vj)

and € = 1.

The sequence of subproblem abstractions solved for the merged approach is illus

trated in Figure 6.1. Since the pseudo-pin assignment abstractions overlap previous ab

straction boundaries, performing both placement and routing on each abstraction provides

a form of rip-up, re-placement and re-routing feedback. In addition to refining pseudo-pin

locations, the solution of the pseudo-pin assignment abstractions also allows modification of

previous global decisions based on more local information. For example, the solution to the

initial abstraction specifies cell assignments to the four possible partition blocks. The first

set of pseudo-pin assignment abstractions are designed to refine pseudo-pin locations along

the Y-axis, corresponding to the vertical internal boundaries of the initial abstraction. Since

the cell assignment algorithm is executed on these abstractions, a cell initially assigned to

block 1 may be restricted to sub-blocks of block 1 or assigned to sub-blocks of block 2.

Similarly, a cell initially assigned to block 2 may be restricted to sub-blocks of block 2 or

assigned to sub-blocks of block 1. Analogous conditions apply to cells in blocks 3 and 4

and with respect to the pseudo-pin assignment abstractions along the X-axis. Assigning

a cell to a different block rather than restricting its position within its current partition

represents a re-placement of that cell and the subsequent route assignment provides the

required re-routing. At more detailed levels of the hierarchy, cell assignment on the pseudo-

pin assignment abstractions both restricts and relaxes cell position ranges. For example,

the partitions of the first set of Y-axis pseudo-pin assignment abstractions for level 1 over

lap multiple partitions of the level 1 subproblems. Any cell whose range of positions has

been relaxed must have its range restricted again to allow formulation of the orthogonal

^1^

Sl<^
r + - 1

r'S

s'^
lI:
sV CO

:!>
Cl^

/•s ?"S ^'N

To be solved Solved

Figure 6.1: Merged approach subproblem abstraction sequence

set of pseudo-pin assignment abstractions and the next level of regular subproblem abstrac

tions. Fortunately, a careful ordering of the pseudo-pin assignment subproblems provides

this refinement without any extra effort.

Feedback between placement and routing also results from using pseudo-pin lo

cations to implement the terminal propagation constraints. Normally, external connection

information is represented by dummy cells whose legal partition assignments are constrained

heuristically based on the locations of the corresponding external connections. In this case,

each pseudo-pin is treated as a cell and the constraints on admissible partition assignments

reflect the range of possible pseudo-pin locations. Figure 6.2 illustrates how pseudo-pin

positions bias placement after route assignment and pseudo-pin assignment. After route

assignment, cells are biased towards the boundaries of pseudo-pins that are connected to

the same nets and after pseudo-pin assignment, the placement bias is directed toward a

specific portion of these boundaries.

Results for this merged approach have been compared with results for the separate
phase approach. The examples used are the minimum area grid arrays of Chapter 3. The
merged results were obtained asdescribed above and theseparate results were generated by
applying the separate placement phase algorithm followed by the separate routing phase al
gorithm using the immediate pseudo-pin assignment method. No re-routing was performed
during the execution of the separate routing phase procedure. Unfortunately, the perfor
mance of the merged approach is worse for all examples. Any benefit that may be derived
from the pseudo-pin terminal propagation and the pseudo-pin assignment re-placement and
re-routing is not enough to overcome the poor routing decisions made based onapproximate

placement data. Also, a limitation in the pseudo-pin assignment re-routing may also be a
contributing factor.

The suboptimality of route assignment decisions during the merged approach is
verified by applying the same routing procedure used for the separate phase results to
the placement generated by the merged method and comparing results. These results as

well as the original comparisons are presented in Table 6.1. The separate phase algorithm
results are listed under Separate Phases, the merged phase algorithm solutions areshown
under hderged Phases, and the results generated by applying the separate phase routing
procedure to the merged phase placements are under the heading Second Route. The
basic comparison metric is the number of capacity violations in the final global routing
graph. When no violations exist, total net length as measured by the semiperimeter of

•so

(a)

(b)

....0

(c)

"•T"

; /

Figure 6.2: (a) parent problem solution (b) placement bias from routing solution (c) place
ment bias from pseudo-pin assignment solution

Edge Capacity Violations Net Length (A)
Example Separate Merged Second Separate Second

Phases Phases Route Phases Route

C880 5 31 7 — —

CT355 9 88 11 — —

misex3c 0 7 0 163422 174692

duke2 0 12 0 186062 200726

C1908 6 39 6 — —

misex3 0 12 0 195043 197776

C3540 46 584 189 — —

C5315 1106 1379 1142 — —

C7552 589 1289 766 — —

C6288 13 396 29 — —

Table 6.1: Merged placement and routing versus separate phases

net bounding boxes is used. The merged approach produced significantly worse results

than the separate phase approach. While applying the separate phase routing procedure

to the merged placement generated much better results, the results are still worse than

those obtained from separate placement and routing phases. The improvement confirms

that poor route assignment decisions were made during the merged method. That the

separate phase placement and the merged placement are different shows that the pseudo-

pin terminal propagation and the pseudo-pin assignment rip-up, re-place, and re-route had

an effect. Unfortunately, since the influence these factors have on the placement are based

on the poor route assignment decisions, the effectiveness of these mechanisms for improving

placement quality can not be determined.

A limitation of the route assignment implementation may reduce the effective

ness of using pseudo-pin assignment abstractions to perform rip-up, re-placement, and re

routing. The intersection of a problem abstraction region with a net may result in multiple

connected components of the net. The route assignment algorithms treat each connected

component as a separate net. Normally this is fine because the nodes of each connected

component were selected optimally by previous route assignments. However, after rip-up

and re-placement, the optimal organization of a net's terminals into connected components

may change and using the original structure may cause difficulties. An example of this

situation is shown in Figure 6.3. Figure 6.3 (a) shows a route assignment for a particular

82

B

1

1

—i1

1

B;

1

1

(b)

(a)

1 1

1 1

1B ;

1 T ! / 1 w

L-.jrk V
i
1 1

1 1

1 1

(c)

Figure 6.3: (a) route assignment on a problem abstraction (b) pseudo-pin assignment
abstraction and connected components (c) suboptimal connected components after re
placement

S:\

net on some problem abstraction. In a subseciuent pseudo-pin assignment abstraction, this

net will be treated as two nets corresponding to the two connected components shown in

Figure 6.3 (b). Terminal A belongs to the upper connected component and terminal B

belongs to the lower connected component. Unfortunately, after re-placement and despite

the pseudo-pin terminal propagation bias, the cells containing terminals A and B may have

moved such that current connected component structure is no longer optimal. This situa

tion is shown in Figure 6.3 (c). Using the original connected component structure results

in a subproblem that is more congested and more difficult. Ideally, the route assignment

process on the pseudo-pin assignment abstraction would perform an analysis to re-group

the connected components if necessary. However, even if this improvement were added, the

route assignment decisions are still being made based on coarse placement information and

the pseudo-pin assignment rip-up, re-placement and re-routing may not be able to remedy

previous poor decisions.

6.3 Coupled Approach

The decomposition hierarchy can also be used to implement a coupled approach

to placement and routing. The motivation for this variation is to use routing to influence

subsequent placement and to improve the quality of the route assignment information by

always basing the decisions on detailed placement information. The basic method is to

perform a complete initial placement and then to perform re-placement after every level of

routing refinement. The separate phase algorithms are used in each step and the routing

feedback to placement occurs through the use of pseudo-pin terminal propagation.

Figures 6.4 and 6.5 show the sequence of subproblem abstractions solved for the

coupled method. Figure 6.4 shows the initial detailed placement and the first level of

routing and pseudo-pin assignment. The immediate method of pseudo-pin assignment is

used to refine pseudo-pin locations. After each level of routing and pseudo-pin refinement,

each subtree rooted at a current level routing subproblem is re-placed. This re-placement

process allows routing feedback to placement. The terminal propagation for each subtree

is relative to the nets defined in its corresponding root routing subproblem. The pseudo-

pins present in these nets represent previous route assignment decisions and feed back

routinginformation to placement through the propagation of their positions into subsequent

placement abstractions. Figure 6.5 depicts the remaining subproblem sequence for the

N-1

Cell Assignment Route Assignment Pseudo-pin Assignment

Figure 6.4: Initial coupled approach subproblem abstraction sequence

8')

Cell Assignment Route Assignment Pseudo-pin Assignment

Figure 6.5: Remaining coupled approach subproblem abstraction sequence

NO

Edge Capacity Violations Net Length (A)
Example Separate Coupled Second Separate Coupled Second

Phases Phases Route Phases Phases Route

C880 5 7 6 — — —

C1355 9 23 6 — — —

misex3c 0 0 0 163422 167916 167197

duke2 0 4 0 186062 — 188065

C1908 6 16 8 — — —

misex3 0 0 0 195043 197943 197297

C3540 46 78 13 — — —

C5315 1106 1161 1035 — — —

C7552 589 723 571 — — —

C6288 13 73 9 — — —

Table 6.2: Coupled placement and routing versus separate phases

coupled approach and Illustrates the re-placement between levels of routing refinement.

Results for the coupled approach are presented in Table 6.2. The examples are
the minimum area grid arrays from Chapter 3. The metrics are edge capacity violations in
the final global routing graph and semiperimeter bounding box net length as appropriate.
The results obtained from the separate phases algorithms are based on the basic separate
placement phase and a separate routing phase using the immediate method ofpseudo-pin
assignment and no re-routing. The coupled phases results were generated as described
above and the second route category lists the results ofapplying the separate routing phase
procedure to theplacement generated by the coupled approach. Though the overall coupled
approach produced worse results than theseparate phase algorithms, it was able to produce
better placements on several examples.

The poor performance of the couple approach compared to the separate phases

approach is another manifestation of route assignment dependence on placement informa

tion. Poor route assignment decisions during the coupled method are confirmed by the

universal improvement in results obtained by routing the placement generated by the cou

pled approach with the separate phase routing procedure. The coupled approach avoids

the problem of using approximate placement information in the routing process by always
having detailed placement data available. Unfortunately, the accuracy of these data can

not be guaranteed. Actually, the opposite can be almost guaranteed. Since placement mod-

X7

ifications based on routing decisions are desired, early route assignment decisions will be

often based on placement configurations different from the final detailed placement.

Routing feedback to placement is possible and effective. In particular, the use of

pseudo-pin terminal propagation to transmit routing information resulted in better place

ments on several examples. These examples are C1355, C3540, C5315, C7552, and

C6288. The improvement in placement quality is measured relative to the separate rout

ing phase algorithms and is confirmed by the improved results obtained by the application

of the separate routing phase procedure to the coupled approach placements.

6.4 Hybrid Approach

A hybrid approach to combining placement and routing can be used to account

for routing dependencies on detailed placement while still providing routing feedback to the

cell assignment process. The method exploits the differences in placement requirements for

the two portions of the route assignment procedure. The net group assignment portion only

requires placement information refined to a level commensurate with the current routing

grid abstraction, while the individual net assignment portion is highly dependent on final

cell locations. The sequence of subproblem abstractions for the hybrid technique looks

muchlike the sequence for the method of separate placement and routing phases. However,

after each placement abstraction is solved, its corresponding routing abstraction is solved

and congestion information from the net group assignment results are fed back to modify

the placement. This process provides an opportunity to investigate more explicit feedback

mechanisms based on modifying ceU assignment algorithm parameters and constraints.

The sequence of subproblem abstractions solved for the hybrid approach is illus

trated in Figures 6.6 and 6.7. First, cells are placed in a manner similar to the separate

placement phase procedure. Terminal propagation is based on the original global nets

and the solution of placement abstractions is iterated within levels. The difference is that

solving each placement subproblem consists of iteration between the cell assignment and

route assignment algorithms. The first application of the cell assignment algorithm uses the

same parameters as the separate placement phase version. Subsequent applications use the

results of the previous application as the initial partition and modified parameters based

on the net group assignment solution of the corresponding routing subproblem. Iteration

continues until the calculated cost stops improving. The cost metric used is the congestion

ss

Cell Assignment Route Assignment Pseudo-pin Assignment

Figure 6.6: Initial hybrid approach subproblem abstraction sequence

89

Cell Assignment Route Assignment Pseudo-pin Assignment

Figure 6.7: Remaining hybrid approach subproblem abstraction sequence

90

value of the most congested subproblem vertex plus the number of edge capacity violations

in the current subproblem abstraction. Congestion estimation is discussed later. This por

tion of the hybrid approach is illustrated in Figure 6.6. The modification ofcell assignment

parameters represents a feedback path from the routing process. However, the feedback in

formation is based only on routing predictions since the net group assignments are not kept
for later use. Once the final detailed placement is known, the final route assignment deci

sions aremade. This process is shown in Figure 6.7 and corresponds to the separate routing

phase procedure using the immediate method ofpseudo-pin assignment and no re-routing.
The mechanism for feeding back routing information to the placement process is to modify

cell assignment algorithm parameters and constraints. The parameters are the edge and

vertex weights in the placement cost function and the constraints are the partition block

target sizes. The parameters and constraints are modified heuristically based on usage and

capacity estimates.

Edge weights represent the relative cost of using different edges of a problem

abstraction. The costof using an edge is set inversely proportional to the relative utilization

of the edge:

^eightM =100^ <^o-9estion(e,)
L>eie£ congesiton{ei)

where

congestion(e,) = +1.
capacity{eft)

The capacity of an edge Ck is calculated as in Section 5.1.1 and the usage of an edge is

determined from the route assignment solution.

Vertex weights represent the relative cost of assigning degenerate nets to the dif

ferent vertices of a problem abstraction. The cost for each vertex is proportional to the

relative utilization or congestion of its corresponding subproblem:

where

weighUvj) =100^ '̂ ongeetioniv,)
Z^u,€V congestion{vi)

congestionivj) = ^
capacity(Vj)

Resource usage, usage{vj)^ in a subproblem vertex, vj, is the sum of usage costs over all

the subnets in the subproblem vertex. The usage cost of a subnet is estimated as one less

than the number of subnet terminals. Each cell on a subnet is counted as one terminal and

91

all dummy terminal propagation cells on a subnet are counted collectively as one terminal.

Subnets for each subproblem vertex are defined by the route assignment solution and each

edge of a route configuration contributes one terminal to the appropriate subnet in each

incident subproblem vertex. The capacity, capacity{vj)j of a subproblem vertex, vj, is
defined as the sum of the feed-through and track capacity estimates for the corresponding

super-grid location as described in Section 5.1.1.

The constants Ci and C2 define the relative importance of vertex and edge weights

to the partition cut weight. Currently, C'l equals one and C'2 is adjusted before each iteration

to ensure that the minimum edge cost is always greater than the maximum vertex cost.

The other mechanism for changing placement decisions is the modification of par

tition block area targets based on congestion information. Congested subproblems are

assigned fewer cells by setting

M 1

target(Mvj) =^weight{mk) x congestion(vj)
/:=! congestion{vi)

Congestion values are calculated as described earlier. The maximum error limit, e, may be

set to zero for better feedback control.

Comparisons between the hybrid approach and the use of separate phases is based

on the minimum area array examples of Chapter 3. The performance metrics are number of

edge capacity violations in the final global routing graph and total semiperimeter bounding

box net length as appropriate. The separate phase approach uses the algorithms described

in Chapter 4 as before. The separate phase routing procedure uses the immediate method of

pseudo-pin assignment and does not employ any re-routing. The comparisons are presented

in Table 6.3. The performance of the hybrid approach was measured for feedback through

edge and vertex weight modification only (Weight), feedback through partition block tar

get size modification only (Area), and feedback through both mechanisms simultaneously

(Both). Re-routing was not performed for any of the hybrid approaches.

Using the proposed feedback mechanisms produced comparable or better solutions

on almost all of the examples. The area-only feedback option generated better results for

all the examples and the weight-only feedback option and the combination of feedback

methods produced comparable or better results on all the examples except for example

C7552. When the methods were able to find feasible solutions, the total net length values

achieved were within 3% to 4% of each other.

fJ2

Example
Edge Capacity Violations Net Length (A)

Separate Weight Area Both Separate Weight Area Both

C880 5 1 2 5 — — — —

C1355 9 3 7 3 — — — —

misex3c 0 0 0 0 163422 168836 163099 167928

duke2 0 0 0 0 186062 192034 185537 192674

C1908 6 4 3 4 — — — —

misex3 0 0 0 0 195043 203497 194959 202432

C3540 46 3 21 3 — — — —

C5315 1106 769 954 715 — — — —

C7552 589 638 566 643 — — — —

C6288 13 4 8 6 — — — —

Table 6.3: Hybrid placement and routing versus separate phases

Thefeedback mechanisms presented have potential for improving layout solutions,
but more investigation is required to understand their interaction and relation to algorithm
performance. Two areas for further examination are the relative importance ofedge versus
vertex weights and control of the cell and route assignment iterations.

The relative importance of edge and vertex weights in the placement cost func

tion is controlled by the values of C\ and C2. When all the vertex weights are zero, the
placement cost function calculates a weighted partition cut cost. Historically, minimizing
cut cost has correlated well to minimizing net length and minimizing net length has been a
useful heuristic goal for producing good placements. Vertex weights correspond to conges
tion within partitions and the goal is to distribute this internal congestion evenly without
adversely affecting the external congestion as represented by the partition cut cost. Imple
menting this heuristic requires that the product of the maximum vertex weight and Ci is
less than the product ofthe minimum edge weight and C2 for a given application ofthe cell

assignment algorithm. While Ci and C2 are set dynamically to insure this condition, doing
so makes controlling the cell and route assignment iterations more difficult. Furthermore,

given fixed partition capacities, it may be possible that the desired partition will have a

partition cut cost that is higher than the minimum possible in order to alleviate congestion
in a particular partition block. This means that some increase in external congestion could

be allowed.

93

Another issue is the control of the iterative improvement both within a subprob-

lem abstraction and within a level of the hierarchy. Currently, the control is based on

minimizing the maximum congestion of subsequent subproblem abstractions. The goal of

this heuristic is to avoid creating highly localized congestion. Unfortunately, attempting this

optimization using a simple, greedy iterative process may not be the most effective. Also,

higher congestion in a particular subproblem is not undesirable unless there is insufficient

capacity to handle the congestion. The current heuristic attempts to check this condition,

but its effectiveness is limited by the accuracy of the capacity estimates. Further research is

required to obtain better capacity and congestion predictors for feedback iteration control.

0-1

Chapter 7

Conclusion

A layout system that uses hierarchical decomposition based on a 2 x 2 grid-graph
data model has been implemented to explore ways ofcombining or merging placement and
routing to produce better layout solutions. The major contributions of these experiments
area better characterization oftherelationship between routing and placement information,

confirmation of the usefulness ofa common data model for improving communication and
feedback between layout phases, identification ofeffective placement and routing feedback
mechanisms, and an improved routing algorithm.

An understanding ofthedependencies between placement and routing is crucial to
any attempt at optimizing the combined placement and routing problem, and the structure

induced by the hierarchical decomposition has proved useful for analyzing the dependence of
routing decisions on placement information. Based on the experimental results, good route
assignments for individual nets require final detailed placement information. Though the
simple statement of this dependency may be intuitive, the more important contribution is

the characterization ofhow quickly routing performance degrades with decreased placement
information accuracy. Further examination of the routing procedure led to the realization

that the dependence was not the same for all routing decisions. In particular, the assignment
of routes to individual nets is highly dependent on detailed placement information while

the assignment of routes to net groups is not. This difference can be exploited to feed back
useful routing information to the placement process.

The usefulness ofa common data model isdemonstrated by theease offormulating
feedback mechanisms and the different approaches to combining placement and routing.
The convenient calculations of routing usage and capacity correspond directly to placement

95

partition block boundaries or areas. In particular, the feedback modification of placement

cost function weights is a good example of the effectiveness of the common data model.

Using a common data model also results in the same problem hierarchy for both placement

and routing. None of the experiments in combining placement and routing could have been

implemented as easily without this feature.

A contribution to improving the standard layout paradigm is the identification of

effective feedback mechanisms from routing to placement. These mechanisms use routing

decisions to influence terminal propagation and to modify placement algorithm parameters.

Route assignments induce pseudo-pins in the problem hierarchy that can be used instead of

dummy cells to represent connections to cells outside of the current placement abstraction.

Since the legal placement partitions of the pseudo-pins are determined by the assigned

routes, subsequent cell placement is based on the proposed routing rather than simpler

relative position heuristics. Experimental results show that it is possible to generate better

placements using this technique. However, the method is dependent on the quality of the

proposed individual net route assignments and making these route assignment decisions

early in the placement process is difficult because final placement locations are not known

accurately. Routing decisions can also be used to modify edge and vertex weights in the

cell assignment cost function and to change the cell assignment partition block target size

constraints. These feedback paths are more useful because they only require the routing

decisions on assignments to groups ofnet types. These decisions require a minimal amount of

placement information and are not dependent on final placement positions. These feedback

methods were also able to produce better results than the standard layout paradigm of

separate placement and routing phases, though more research is required to understand

the trade-offs and relationships between the different placement parameters and routing

congestion.

A side benefit of these experiments on merging placement and routing has been

the development of an improved hierarchical router. This router retains the basic speed

and net-ordering independence advantages of previous hierarchical approaches while also

achieving large reductions in the numbers of routing capacity violations when routing fixed

areas. The improvement is obtained by solving a linearly constrained nonlinear integer

program that distributes wiring patterns in proportion to the available routing resources.

The efficient solution of this integer program is possible because standard solution methods

are able to exploit the structure of the corresponding linearly constrained nonlinear program

90

to find naturally solutions that are integer or close to integer.

The analysis of the relationship between placement and routing and the subsequent

experiments on various methods of combining and communicating feedback information

between the two phases have indicated potential techniques for ameliorating the effects of

the artificial decomposition of the layout problem into separate phases. Continued research

in this area should produce further progress towards more global optimization of the entire

layout problem.

Bibliography

[1] Glenn Adams. Non-Sequential Tool Interaction in the Context of Sea-of-Gates Module

Generation. PhD thesis, University of California, Berkeley, to be published.

[2] Alfred E. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] H. J. Promel B. Korte and A. Steger. Combining partitioning and global routing in

sea-of-cells design. In Proceedingsof the IEEE International Conference on Computer-

Aided Design., pages 98-101, 1989.

[4] Shekar Bapat. A Sharp Methodology for VLSI Layout. PhD thesis. University of

Virginia, 1993.

[5] M. Breuer. Design Automation ofDigital Systems., volume 1. Prentice-Hall, Englewood

Cliffs, NJ, 1972.

[6] Randall J. Brouwer and Prithviraj Banerjee. PHIGURE: A parallel hierarchical global

router. In Proceedings of the 27th Design Automation Conference, pages 650-653,1990.

[7] Michael Burstein. An approach to design automation of custom LSI chip layout based

on heuristic planarization and annular imbedding. In Proceedingsof IEEE International

Conference on Circuits and Computers, volume 1, pages 1056-1059, October 1980.

[8] Michael Burstein. A non-'placement/routing' approach to automation of VLSI layout

design. In Proceedings of IEEE International Symposium on Circuits and Systems,

volume 3, pages 756-759, May 1982.

9 s

[9] Michael Burstein, Se June Hong, and Richard Pelavin. Hierarchical VLSI layout:

Simultaneous placement and wiring of gate arrays. In Proceedings of the International

Conference on Very Large Scale Integration, pages 45-60, August 1983.

[10] Michael Burstein and Richard Pelavin. Hierarchical wire routing. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, CAD-2(4):223-234,

October 1983.

[11] Wayne A. Christopher. Mariner — A sea-of-gates layout system. Master's thesis,

University of California, Berkeley, May 1989.

[12] Wei-Ming Dai and Ernest S. Kuh. Simultaneous floor planning and global routing for

hierachical building-block layout. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, CAD-6(5):828-836, September 1987.

[13] W.A. Dees and P.G. Karger. Automated rip-up and reroute techniques. In Proceedings

of the 19th Design Automation Conference, psiges 432-439, 1982.

[14] A. E. Dunlop and B. W. Kernighan. A procedure for layout of standard cell VLSI

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, CAD-4(l):92-98, January 1985.

[15] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. In Proceedings of the 19th Design Automation Conference, pages 175-181,

1982.

[16] David S. Harrison, Peter Moore, Rick L. Spickelmier, and A. Richard Newton. Data

management and graphics editing in the berkeley design environment. In Proceedingsof

the IEEE International Conference on Computer-Aided Design, pages 20-24, November

1986.

[17] Mitsuru Igusa, Mark Beardslee, and Alberto Sangiovanni-Vincentelli. ORCA: A sea-

of-gates place and route system. In Proceedings of the 26th Design Automation Con

ference, pages 122-127, June 1989.

[18] D.S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 3:381-

395, 1983.

99

[19] B. VV. Kernighan and S. Lin. An efficient, heuristic procedure for partitioning graphs.

Bell System Technical Journal 49(2):291-307. February 1970.

[20] Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning VLSI

networks. IEEE Transactions on Computers, C-33(5):438-446, May 1984.

[21] Ulrich Lauther. A min-cut placement algorithm for general cell assemblies based on a

graph representation. In Proceedings of the 16th Design Automation Conference, pages

1-10, 1979.

[22] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-

hart and Winston, 1976.

[23] Lorraine S. Layer. Analysisof sea-of-gates template and cell library design issues. Mem

orandum UCB/ERL M88/8, Electronics Research Laboratory, College of Engineering,

University of California, Berkeley, CA, 94720, January 1988.

[24] Brian D. N. Lee. Experiments in hierarchical routing of general areas. Master's thesis.

University of California, Berkeley, May 1989.

[25] D. T. Lee, S. J. Hong, and C. K. Wong. Number of vias: A control parameter for global

wiring of high-density chips. IBM Journal of Research and Development, 25(4):261-

271, July 1981.

[26] Malgorzata Marek-Sadowska. Global router for gate array. In Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computers, pages 332-337,

October 1984.

[27] Rolf Miiller. A new approach for simultaneousfloorplanning and global wiring. Methods

of Operation Research, 62:287-289,1990.

[28] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.1 user's guide. Technical Report

83-20R, Systems Optimization Laboratory, Stanfurd University, 1983.

[29] Michiroh Ohmura, Shin'ichi Wakabayashi, Yoshihiro Toyohara, Jun'ichi Miyao, and

Noriyoshi Yoshida. Hierarchical floorplanning and detailed global routing with routing-

based partitioning. In Proceedings of the International Symposium on Circuits and

Systems, volume 2, pages 1640-1643, May 1990.

100

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo

rithms and Complexity, Prentice-Hall, 1982.

[31] Prabhakar Raghavan. Randomized rounding and di.screte ham-sandwich theorems:

Provably good algorithms for routing and packing problems. Technical Report

UCB/CSD 87/312, Computer Science Division, College of Engineering, University of

California, Berkeley, CA, 94720, July 1986.

[32] C. Sechen et al. TimberWolf 6.1 Manual. Yale University, September 1991.

[33] E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, and A.L. Sangiovanni-

Vincentelli. Sequential Circuit Design Using Synthesis and Optimization. In Proceed

ings of the IEEE International Conference on Computer Design: VLSI in Computers,

October 1992.

[34] K. Shahookar and P. Mazumber. VLSI cell placement techniques. ACM Computing
Surveys, 23(2):143-220, June 1991.

[35] Hyunchul Shin and Alberto Sangiovanni-Vincentelli. A detailed router based on incre

mental routing modifications: Mighty. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, CAD-6(6):942-955, November 1987.

[36] Eugene Shragowitz, Jong Lee, and Sartaj Sahni. Placer-router for 'sea of gates' design
style. In Proceedings of the IEEE InternationalConference oh Computer Design: VLSI

in Computers, pages 330-335, October 1987.

[37] Jiri Soukup. Circuit layout. Proceedings ofthe IEEE, 69(10):1281-1304, October 1981.

[38] J. Soupkup and J. C. Royle. On hierarchical routing. Journal of Digital Systems,
5(3):265-289, 1981.

[39] L. Stockmeyer. Optimal orientations ofcells in slicing floorplan designs. Information
and Control, 57(3):91-101, June 1983.

[40] P. R. Suaris and G. Kedem. Standard cell placement by quadrisection. In Proceedings
of the IEEEInternational Conference on Computer Design: VLSI in Computers, pages

612-615, October 1987.

lOJ

[41] Peter R. Suaris and Gcrshoii Kedem. A quadrisection-based combined place and route

scheme for standard cells. IEEE Transactions on Computer-Aided Design of.Integrated

Circuits and Systems, 8(3):234-244, March 1989.

[42] Antoni A. Szepieniec. Integrated placement/routing in sliced layouts. In Proceedings

of the 23th Design Automation Conference, pages 300-307, 1986.

[43] Ping-San Tzeng. Integrated Placement and Routing for VLSI Layout Synthesis and

Optimization. PhD thesis, University of California, Berkeley, 1992.

[44] Ping-San Tzeng and Carlo H. Sequin. Codar: A congestion directed general area router.

In Proceedingsof the IEEE International Conferenceon Computer-Aided Design, pages

30-33, 1988.

[45] Saeyang Yang. Logic Synthesis and Optimization Benchmarks User Guide Version 3.0.

Microelectronics Center of North Carolina, January 1991.

	Copyright notice 1993
	ERL-93-81

