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We study the approach to near-equipartition in an TV-dimensional FPU

Hamiltonian. We investigate numerically the time evolution of orbits with

initial energy in some few low-frequency linear modes. Our results indicate

a transition where, above a critical energy, one can reach near-equipartition

if one waits for a time proportional N2. Below this critical energy the time

is exponentially long. We develop a theory to understand the time evolution

and deformation of the actions of the oscillators based on a normal form

treatment of the resonances among the oscillators. Our theory predicts the

critical energy for near-equipartition, the time scale to near-equipartition and

the deformation of the actions below equipartition, in qualitative agreement

with the numerical results.



1 Introduction

There have been many studies of the "equipartition threshold" in the FPU

system. Fermi, Pasta and Ulam(FPU)[l] in 1954, performed the first numeri

cal study on a chain of nonlinear oscillators observing, for a particular initial

energy distribution, that the oscillators did not relax to the equipartition

state, but displayed a persistent recurrence to the initial condition, contrary

to the equipartition hypothesis of statistical mechanics. Their results were

later reproduced by Tuck and Menzel[2], who confirmed the recurrent be

havior for quartic and cubic nonlinearity, called the superperiod of the FPU

system. This recurrence was later understood as a consequence of the linear

independence of the linear frequencies, and the superperiod was theoretically

calculated using perturbation theory[3, 4]. The first theoretical prediction of

a threshold to equipartition was obtained by Izraelev and Chirikov[5] us

ing an overlap criterion for the fastest resonances. They predicted a critical

energy of the initial excitation for widespread stochasticity. Subsequently

there have been many studies of the interchange of energy among modes,

and thresholds to give approximate equipartition among modes[6, 7, 8]. In

particular Pettini and Landolfi[8] have studied the dependence of the relax

ation time on the energy of the excitation. We note here that equipartition

is related to the time one waits, for example the equipartition predicted in

[5] should happen on a time scale of the order of the inverse of the smallest

linear frequency, which is a time proportional to TV, the number of particles

in the FPU chain.

The usual numerical experiment on the FPU consists of distributing all

the energy among some few of the lowest frequency linear modes and waiting



for it to spread. If the nonlinear terms are smallenough then the energy shell

is a hypersphere and ergodicity over the energy shell implies equipartition

of energy among the linear modes, a well known result of microcanonical

statistical mechanics. Equipartition is usually taken as a numerical test for

ergodicity, even though it doesn't imply it.

A useful approximation to study the FPU Hamiltonian is the Birkhoff

normal form perturbation theory[9]. Using normal forms a canonical trans

formation to new variables is made in which the quartic couplings between

the linear modes can be removed and put into the next order, divided by

a denominator in which frequency differences between modes appear. At

small enough energies these frequency differences are sufficiently large, ex-

ept in small regions of the phase space, that the ordering is preserved. As

one raises the energy the most important nonlinear couplings of neighboring

modes with the smallest frequency differences in the denominator can be

come resonant. We call these the " major resonances". At moderate energies

it is useful to remove all the other terms and leave only the major resonances,

obtaining the so called resonant normal form. In section 2 we introduce the

FPU Hamiltonian, classify its quartic resonances and develop a theory for

overlap of these major resonances. In section 3 we show numerical results on

the FPU, and in section 4 we study the deformation of the linear modes and

the coupling to the high-frequency modes.



2 Nonlinear Couplings and Resonances

The FPU Hamiltonian, representing a linear chain of equal masses coupled

by nonlinear springs is

»={g \p' +|(»fi -*)8 +J«*« "9.T }• (1)
We consider only the case of fixed boundaries q0 = qjsj+i = 0. In the linear

case (/? = 0) the chain of oscillators maybe put in the form of N independent

normal modes, and is therefore integrable and non-ergodic. Those normal

modes are[3, 5] :

*" V^SSin(Ha)i0a *=l,-,tf (2a)
QQ = 2sin(-fca) (2b)

k = tt/(JV+1), (2c)

where fiQ is the frequency of the ath linear mode and Qa its amplitude. We

transform to these normal mode coordinates using a canonical transformation

with generating function

F=VITa? .? y/^sm(kir)giPr. (3)
so that the old momenta are given by

Pi = dF/dqj

=y^EMKr)yfcpr. (4)
For algebraic convenience we will also use complex canonical coordinates

defined by

Z} s \y/%(Qi +iPs)



Z-i £ -\MQj-iPj), (5)
where Z-j is the variable canonically conjugate to Zj, and as the P's and Q's

are real at all times it can be seen from (5) that Z, is the complex conjugate

of iZ-j. The Hamiltonian in these complex coordinates is[10]

N

H = Yj^iZiZ-i-c Y. G(r,s,m,n)ZTZ5ZmZn, (6)
f=l r,s,m,n

where the indices in the last sum run from —N to N, zero excluded, c =

25fiv+i) an<^ ^ne couPnng strength G is

G(r,s,n,m) = ArA5AnAm^5(r + 5+ n + m), (7)
p

where AQ = sign(a)«/n|a|, and B is defined by

B(a) = i
1 if a = 0

-1 ifa = ±2(AT+l)
0 otherwise

(8)

and Y^p m (7) represents the sum over all the eight permutations of sign of

5, n, m. The quartic term brings nonlinear corrections to the frequency as well

as quartic couplings . According to the harmonic part of (6) the amplitudes

Za evolve like exp(iflat) and the amplitudes Z-Q of negative index evolve

with a negative frequency like exp(—i£lat). In this way we can generalize

equation (2b) to negative index and then the amplitudes Za have frequency

Qa, for a negative or positive.

The quartic term is a sum of products of four amplitudes with indices

respecting some selection rules (7). We designate the indices are r,s,myn.

The frequency of this monomial is Aft = ftr + fts + ftm + ftn. Now assume

all these indices are small enough that the dispersion relation can be approx

imated by its linear part plus cubic correction. Expanding Aft in powers of



k using (2) we obtain

Aft = -k{r + s + m + n)

+5^3(r3 +**+ m3 +n3) +0(ifc5)- (9)
Because we want the smallest values of Aft we see that we can make the first

orderin k equal to zeroby setting r+s+n+m = 0 and this also automatically

makes these four indices satisfy the selection rule(7). Eliminating the index

r = —s — m — n from Aft we obtain

Aft = -fc3(m +n)(s +m)(s +n)+0(ks). (10)
o

For fixed m,n this is a parabola in s with minimum at 5 = —\(m + n) and
minimum value Aft = \kzri2, where i = \(m —n). We call this resonance
involving modes r,r +1, and r —i a, major resonance. Because Aft is propor

tional to i2 we limit ourselves to the resonances where i = 1 as they are more

important at small energies. We will explore the approximation in which

the nonlinear coupling at moderate energies can be expressed by a resonant

normal form containing only these major resonances.

It is well known that the new actions for the coupled problem have only

an asymptotic expansion due to the presence of the resonances. Because

the perturbation is a quadratic function of the energy, the deformation of

the actions is a monotonic function of the energy. One has to be careful to

separate this deformation from diffusion due to nonintegrability.

We now construct an order parameter for nonlinear deformation of the

actions, which can be related to the formation of resonances. The parameter

is also related to overlap of these islands and accompanying stochasticity. We

want to understand the situation where the excitation involves only a few



modes and therefore study the casewhere only two resonances are important.

As we will see, systems with only twoprimary resonances can easily be stud

ied numerically by the method of surface of section. One major resonance

involves three consecutive modes and since we want two resonances it is nat

ural to pick four consecutive modes as our model. Wewill call this subsystem

the 1234 system. Assuming that the energy stays in those four modes and all

the other modes have ignorable amplitude we then study the four degree of

freedom system obtained by putting all the other coordinates equal to zero

in the FPU Hamiltonian (6) [11]. We can transform the Hamiltonian in (6)

back to the real P and Q coordinates using (5) so that the Hamiltonian for

the subsystem is

i z

% 1 i>j

+^ft1ft2ft3Q1Q2Q3 +dyJn2nin4Q2Q2Q4
+2dy/nln2Q3n4Q1Q2Q3Q4. (11)

In the above equation dis defined as d= ^^• We have used the real P'sand
Q's for convenience of the numerical integration algorithm. The frequencies

are the first four consecutive frequencies in the low wavelength part of the

dispersion relation, where the frequency can be approximated by expansion

up to cubic order in powers of k. This can be generalized to any set of four

consecutive modes a + l,a + 2,a + 3,a + 4 where a is any positive integer

small compared to N . The frequencies are then renamed as

ft; = 2sin(-*(i + a)), t = l,...,4 (12)



and Q{ stands for the coordinate of mode a + i. The two slow angles of the

major resonances are 0S = 0\ + 03 - 202 and 0ap = 02 + 64 —203 , where 0;,

i = 1,... ,4 is the angle of ith oscillator of the subsystem(ll) , which comes

from the (i + a)th mode of the FPU chain. We refer to the appendix where

we use normal forms to remove all the fast nonlinear angle dependent terms

except the ones that depend on 0a and 0ap. We are left with two adiabatic

constants of motion plus two coupled degrees of freedom, with slow angles

9a and 0sp, that can be studied numerically in a surface of section. In the

following we will also study an approximation to this Hamiltonian as a means

to understand the deformation of the slow actions.

The canonical transformation to slow actions is accomplished by the gen

erating function

F = J.(0, + 03 - 202) + J3P{02 + 04- 203)

+Jc03 + Jd04- (13)

The explicit transformations of the actions are:

J\ = Ja

J2 = Jap — £Js

Jz = Ja— 2Jap + Jc

Ja = Jsp + Jd- (14)

The actions on the left sides of (14) have to be positive, which imposes a

domain for the values of Jap and Ja , represented by the shaded area in figure

1. The adiabatic constant Jc is a positive function of the original actions

given by

Jc = 3J,+2J2 + J3. (15)

8



The actions Ja and Jap are conjugate to the two slow angles 0a and 0ap and

Jc and Jd are conjugate to the angles 03 and 04 respectively. In the appendix

we use a normal form expansion to obtain the Hamiltonian in terms of the

slow variables. If we divide the Hamiltonian (A10) by *(3 + a)k3Jc and

scale the slow actions to Jc, the resulting Hamiltonian depends only on a

single parameter R. This parameter, measuring the quotient of the quadratic

energy of the slow actions to the linear energy of the slow actions, is

R = 4d{3 + a)Uc/k2. (16)

R is an order parameter for the size of the first order correction to the slow

frequencies. Note that R depends on a only via the combination (3 + a)kjc

which is the initial linear energy. The quantity R is proportional to N times

the initial linear energy put in mode (3 + a).

We now develop an approximation to the motion under this 1234 Hamil

tonian. We observe numerically that the two slow angles drift with almost

the same speed in most of the energy shells. As an approximation to calcu

late the beats of the two slow angles we assume that the slow angle 0sp drifts

at a constant speed u> and that the angle 0S moves by 0S = wt + #&, where 0&

is the beat angle.

We now make a canonical change from the slow angle 0S to the beat angle

06, which adds the linear term -uJs to the Hamiltonian (A10). The action

conjugate to the beat angle is still Ja. Although the orbit of 0sp is a near-

constant drift at speed w, the slow action Jap oscillates with frequency u>

and amplitude \ijc around some value Japo, (Jap = Japo + fiJccos(ujt) ). The

numerical value for u is u ~ O.^Rk3 for most orbits in the energy shells

of figure 2. Substituting this assumed orbit into the Hamiltonian (A10) we

obtain a time dependent Hamiltonian for Ja and 0a, which we average over



time to obtain a pendulum Hamiltonian for the beat angle 06

Ha =-[0.25 +H(0.5 - 4Japo)]7fc3J, +^R^yPj2
o

-^iRk3J2 cos(06). (17)
In the above equation 7 is defined as 7 = (3 + a) with a defined in (12). To

obtain the term in cos(0t) we have expanded the Hamiltonian (A10) to first

order in fi and averaged the time dependence away. The result still depends

on Japo and Ja and we substituted it by a typical value. The minimum value

of R for the appearance of a fixed point of Js for the Hamiltonian Ha of (17)

in the allowed range of the actions is R = 0.33. Numerically, the surface of

section of the Hamiltonian (49), shown in figure 2, indicates that the fixed

point appears at R ~ 0.5.

The constant \i depends on the oscillatory term of Jsp and requires knowl

edge of the orbit. We calculate it numerically from the frequency of the beat

angle 06 at the center of the island

ft6 = 0.27flfc3 (18)

and fi is calculated to be 0.85. We choose an initial condition Js = 0.055JC,

Jsp = 0.527JC and 0a = 0sp = 0 which defines an energy shell for a given

R. In the numerical integration of (A10) we used N = 256 and a = 36.

We start several initial conditions on this energy shell and plot Js versus

0S in a surface of section at 0ap = 0 for R = 0.5, R = 1.5, R = 4.5 and

R = 10.0. We normalize all the actions to Jc so that Jc can be taken to be

one. From figure 1 we see that Ja can vary from zero to 0.33JC . In figure

2 for the energy shell at /?=0.5 the slow action is nearly constant for most

of the phase space, and the first resonance island has just been born. We

10



call this the near-linear regime. Above R = 0.5 the topological change in

the surface of section, which has taken place, grows in importance. These

islands are the well known superperiods of the FPU chain[2]. At R = 1.5

there are two islands present but no noticeable stochasticity. At R = 4.5

and above there is considerable stochasticity. Increasing the energy in the

normal form of the 1234 system above R = 10.0 does not significantly change

the phase space since the quartic terms in the Hamiltonian [see Appendix,

Eq(A10)]dominate over the quadratic part such that the parameter R factors

out of the Hamiltonian. In this parameter range, the frequency of the motion

around a fixed point is proportional to (3 + a)Rk3 as in (18). In the FPU

Hamiltonian the energy can leave the 1234 system, as there is coupling to all

the other modes. As the energy is increased more modes will be involved in a

significant way, but we assume that as long as the energy is concentrated in

a small number of modes around mode 3+ a, the characteristic frequency for

the beats of the slow angles of low frequency modes will still be proportional

to (3 + a)Rk3 as in (18).

3 Numerical Results for the FPU System

We discuss some numerical calculations performed on the FPU system. We

use initial conditions for which all the energy is concentrated in some few

modes around some mode 7 = 3 + a. We use two different initial conditions

here called A and B. Initial condition A corresponds to Jd = 0, Ja = 0.0315Jc

and Jap = 0.066JC in the 1234 model. Initial condition B corresponds to

Jd = 0, Ja = 0.083JC and Jsp = 0.457Jc. The energies of all the other modes

but modes i -f or, i = 1,..., 4 are all set to zero. Initial condition A has most

of the energy (91%) in mode 3 + a, and the energy shells of figure 2 were

11



defined by the energy of initial condition B. Also we take /? equal to 0.1,

as was done by other authors [6, 7, 8]; this value can always be rescaled to

any positive finite number by a linear rescaling of the distances in the FPU

chain. The numericalintegrations are performed on a supercomputer CRAY

C90 using a fourth order symplectic integration algorithm[13]. The error in

the energy was monitored to be less than one part in a thousand for all the

runs.

As we remarked in section 2, for small values of R the nonlinear defor

mation is small and will involve only some few modes. For an FPU system

with many degrees of freedom, if the initial energy is in mode 7 we might

expect it to couple successively to the nearby modes until the " local" value

of R is less than 0.5. By this reasoning we should expect that the number of

modes excited by the nonlinear deformation should be proportional to R. At

the energies we are studying the quartic part of the full FPU Hamiltonian is

k2 times smaller than the harmonic part so that the functional form of the

Hamiltonian is effectively harmonic. Because of this, if the system is ergodic

on the energy shell, then the linear mode energies should all have nearly the

same time average. In our numerical experiments we always calculate the

time average of the linear energies, here referred to as £,-, i = 1,..., N.

We introduce the information entropy[7, 14, 15]

5 =ln(£ £;)-££>£,-, (19)
»=1 t=l

and define the effective number of modes by

ne/ = exp(S). (20)

If the motion is ergodic on the time scale considered then nej will be equal

to N. As we saw in (18), for large enough R the characteristic frequency of

12



oscillation for the amplitude of the low frequency modes is 0.2jRk3, which

can be written as 0.657 fc2i?/( AT + !)• As we will see later, there is another

important frequency related to the resonance of the high frequency modes

which is proportional to 7A:2 . Then, for fixed R/{N + 1), the only frequency

scale in the system is jk2. Therefore we chose the natural time scale to plot

the solutions for the integrations of the FPU at fixed values of R/(l + N)

(figures 4,5,6) to be 3/7A;2. (The 3 was chosen such that for the lowest value

of 7 = 3 the time scale is \/k2.) In the following numerical experiments we

integrate the system for times up to 208000 times S/yk2. In figure 3 we show

a histogram of the average mode energy over a time of 4000(3/7&2) starting

with energy corresponding to R = 2.9 in mode 3. We can see from figure 3

that the energy stays mostly in mode 3 and its immediate neighbors. The

value of nej from (20) is 3.26. If we start with larger values of R/{N + 1),

the number of modes found to share the energy is proportionately larger.

In figure 4, using initial condition A, we plot the effective number of modes

versus scaled time for three values of R. There appears to be a transition near

R/(N 4- 1) w 0.2 such that for smaller values the spreading among modes

will saturate, while for larger values the system evolves to near-equipartition.

We also use the initial conditions around mode 3 + a with nonzero integer a

and find that the evolution of ne/ as a function of scaled time is independent

of a for a small compared to N. The solid curve in figure 4, for the case

of7 = 3 + a = 6 lies on the curve with the same R and 7 = 3. With

the two different initial conditions the results were quantitatively similar,

showing the formation of a plateau for R/{N + 1) below 0.17 while above this

value evolution to near-equipartition occurs. In all numerical experiments

we observed that the number of modes evolved from one at t = 0 to a

constant final value in times of less than 100(3/7fc2), f°r values of R/(N + 1)

13



for which saturation occurs. This suggests that these low frequency modes

close to the mode in which most of the energy is placed obtain energy by

deformation rather than diffusion to the final steady plateau. In figure 5 we

repeat the results for the same values of R/(N + 1) and initial condition A

but for N = 64. We observe that the transition values are quite similar,

indicating that R/(N + I) is the controlling parameter. Note also that the

value of (nej —l)/N obtained at a given normalized time, for a given value

of R/(N -f 1) above the transition, is approximately the same for N = 32

and N = 64. In figure 6 we have plotted (nej —l)/N versus normalized time

for N = 16, N = 32, N = 64 and N = 128. We oserve that all the points

stay close to a universal curve.

In figure 7 we plot the height of the plateau versus R for different N

values and initial condition A, after a time of t = 2000(3/7&2). We observe

that for a given N the value of nej in the plateau is proportional to R up to

a critical value Rc. This value Rc is found numerically to be proportional to

N. We see in the figure that for AT = 16 it is 2.9 and for AT = 32 it is 5.8.

For Af = 64 the transition occurs at Rc = 11.6 (see figure 5). For all of these

values we find the transition at RC/(N + 1) = 0.17. For values of R larger

than Rc the number of modes appears to evolve towards near-equipartition.

In figures 8 and 9 we show the average mode energy on a logarithmic scale

for two different values of R. The average linear energies were normalized

so that the total average linear energy is one. We see that for R = 2.9 and

N = 32 the initially zero energies of the high frequency modes, which rapidly

evolve to values near or below exp(-lO), are found to remain at these low

values for much longer times. At R = 8.0 and N = 32 some high frequency

modes acquirea much larger energyof orderexp(-5) in a relatively short time,

and continue to increase in energy, with energy being transferred to other

14



modes on a longer time scale. We can observe this longer time approach

to near-equipartition at R = 8.0 and N = 32 in figure 10. This process of

transferring energy selectively to certain high-frequency modes is treated in

the following section.

4 Coupling and Diffusion to High Frequency
Modes

The initial energy in a low frequency linear mode will spread to all the other

linear modes via the quartic coupling. We assume that most of the energy

is initially in mode 7 = 3 + a with all other modes having much smaller

energies. We also note that the linear mode 7 is not an exact mode of the

nonlinear system because it is coupled to all the other linear modes. The

selection rule for the coupling in Hamiltonian (6) requires that permutations

of the signs of the four mode indexes must add to zero for the term to be

present in the quartic coupling. In the approximation that all the energy is

in the linear mode 7 the only coupling for the high-frequency mode h is to

modes h ± 2y to first order in |Z7|2. The major resonance coupling treated

in section 2 is important only for the interaction of a few neighboring low-

frequency modes. In the approximation that most of the energy is in some

low-frequency mode the dominant nonlinear interaction with high-frequencies

is via a quartic coupling involving two high-frequency modes and the low-

frequency mode 7 which contains most of the energy. Inspecting the quartic

part of Hamiltonian (6) we find that the high-frequency mode h is coupled

to modes h —2f and h + 27 via

H4 ~ Y,2Ai<£l^h\Z^\2Z-h(Zh-2T + Zh+2J. (21)
h

15



where we have approximated the frequencies of modes h —2'y and h + 27 in

(21) by ft/i, the frequency of mode h. There is a coupling of the same type

from mode h to itself but it only changes the frequency of the modes by a

fixed small amount and we have omited it. Considering Z7 in (21) to be

constant, then (21) is a quadratic coupling among the linear high-frequency

modes. We then rediagonalize the Hamiltonian to obtain the new normal

modes, by using normal forms[9]. The coupling is removed in fourth order

by a canonical transformation with generating function[9]

F4 = 22rAZ_fc + 6A|Zy|2Z-A(«il_a7 + 2fc+27). (22)
h

The coefficient bh, isobtained by the condition that the term H4 of (21) is can

celed from the quartic order by the quasi-identity canonical transformation.

The coefficient &fc|Zy|2 is found to be

bh = -24cfySlh/(nh+2y - fl*). (23)

Because the new coordinates Zh are uncoupled to quartic order it turns out

that theiramplitudes \zh\ are constant over times of order 27r/(0/l+27 —fl/i) «

2ir/^k2 in the case that bh is small. The old coordinate Zh is defined by

Zh = dF4/dZ-h

= Zh + bh^Wzh-^ + Zh+iJ. (24)

At t = 0 the value of the old coordinate Zh is zero unless h = 7, in which

case it is equal to the initial amplitude Zy. If we assume 6/JZ^2 to be small

it can be seen from (24) that the new coordinate zy at t = 0 is approximately

equal to Z7. We use this value of z7 and (24) with h = 27 to obtain the

value of z2y ~ 62-y|Z7|2Z7. In this way we solve for all the amplitudes z7, 23^,

16



2^,... which are found to decay geometrically according to

Zh = PhZh-2i, (25)

where ph is given by

Ph = |6*|Je, (26)

and Jc = |Zy|2 is the action of mode 7, assumed to contain almost all of the

energy. Thus if we put the initial energy in mode 3 (7 = 3) the amplitude z9

is a small factor p3 times z3 and then another small factor p9 for zi5 and so

on. Because the factors are not all the same, we evaluate the average factor

p defined by

pN^ = pyp3l...pN-2^ (27)

approximated for large N. We now eliminate Jc in favor of R using (17) and

substitute (23) into (26), with the frequency Qh given by (2a), to obtain the

formula for the factor of index h

,kR. , £(2/1 + 7),ph » (_)tan(_L_UZ) (28)

The average logarithm of the tangent with h running from 1 to N is zero, so

the average factor is

» = (fKFTT))- (29)
This approximation is valid for the assumption that all the high-frequency

modes have a much smaller amplitude than mode 7, and so it is valid only

if the factor p is much smaller than one, that is, if R/(N + 1) is small. Now

within the approximation that the amplitudes Zh have a constant modulus

17



and according to (24) and (25) the average linear energies ft/JZ/J2 will also

decay in a geometric progression

Eh a p2Eh-2>y. (30)

In figure 11 we plot the natural log of the average energies for two values of

7. We see that mode h is mainly coupled to mode h —27 because the mode

energies show an exponential decrease superposed to an oscillation of period

27. The solid line in figure 11 is the geometric progression calculated from

(30) and (29); the crosses are the numerical calculations. Due to machine

round-off the average mode energies after mode 32 are all given by exp(-26).

In figure 11 the equations of motion were integrated for a short time of the

order of Qjy —Qn-2-y ~ 7&2- This is in contrast with figures 8 and 9 in

which the integration was over a much longer time, such that the oscillation

of period 27 in the mode energies was washed away. In figure 9, a larger

value of R/(N + 1) was used so that the asymptotic approximation (29) does

not hold.

For larger R/(N + 1), where the above approximation does not hold,

we must use another method to calculate the effect of the coupling (21).

In the following we provide an estimate of the effect of terms of type (21)

on the coupling to high-frequency modes for large R/(N + 1) where from

section 2, we expect stochastic interaction among neighboring low-frequency

modes. We make the following assumptions regarding the orbit of the low

frequency modes: We use the approximation of section 2 and assume that

the dynamics of the beat angle is in a stochastic region; we also assume the

trajectory is sufficiently close to a separatrix that the separatrix equation for

the Hamiltonian (17)

0ax = 4arctan(enfct)-7r (31)
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Js = Jao +4Jc(p/24)1'2cos(?f)i (32)
describes the motion. Here Jc is the constant action defined in equation (12)

and p is defined below (17). Substituting this separatrix orbit of Ja and the

periodic orbit of Jsp, assumed in (17), into (14), we find the variation of J3.

Setting |Zy|2 = J3 we obtain

\Z2\ = Jc + Jso —2Jspo —2pJc cos(uft)

+U(^),/2coS(^). (33)
We then consider the term H4 of ( 21) plus the linear part of (6) to obtain

the equation of motion for Z^,

-j± = iQhZh +24icQyQh\Z^\2(Zh-2T +ZA+a7). (34)

We introduce slow variables Yh(t) by

Zh(t) = eiQhtYh(t), (35)

and substitute (33) and (35) in (34) to obtain the differential equation for Yh

dYh
— ~ c-ft-^ + c+n+i-y, (36)

where

c_ = 24icQhQy(Jc-2Japo-2pJccos{ut))ei*Qht

+96icQhQM7^)1/2eiAQt cos(tf«/2) (37)
and AQh = (Qh-2-t —^a)« Assuming that the amplitudes Yh-2y and Y^+2-y

stay constant going around the separatrix, the kick AV^ is calculated by

integrating (36) over the separatrix orbit, with the leading term

An = Ac_27n_27, (38)
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where Ac_ is given by

Ac_ = %icQhQyJc(^r)1/2 f°° cos(%)e-,An^^ (39)
24 J—oo 2

The integral is an Melnikov-Arnold integral described by Chirikov[12] which

when evaluated in (39) gives

where

Xh = (Qh - Qh-2i)/Qb * 1.59(Ar + l)(AT + l-/*)/#•

If we assume that the amplitudes Yh wereinitially described by the geometric

progression of (25) then

Yh = pYh-2^ (41)

Substituting (41) and (40) with h = N into (38) the kick in Y^ can be written

as

A* = ]0S^f/2{1/l)e-^ (42)

where x = 0.4R/(N+l). The functional form (42) obtained for the stochastic

kick is exponentially small up to R/(N + 1) « 0.25 and then grows rapidly

to order one above this value. The mechanism then is that random kicks

are given to the high-frequency modes by their resonant interaction with the

beat modes. The period of the kicks is that of the average beat motion in

the stochastic region. This mechanism, known as Arnold diffusion, has been

described by Chirikov[12]. According to the mechanism, energy is pumped

into the high frequency modes above the critical value of R/(N + 1) « 0.25.
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This is verified computationally in figures 4, 5 and 6 which show similar

behavior for the same values of R/(N + 1) with TV = 32 and 64. The

numerically determined critical value from figure 7 is R/(N + 1) = 0.17.

The Arnold diffusion scaling close to the critical value is very hard to test

numerically because of the very long computational times required. We have

tested this exponential scaling for values above the critical value. For example

one can see from figure 5 that for R = 17.2 and N = 64 the value (ne/ —

1)/N = 0.63 is reached in a normalized time of 40000. For R = 11.6 using

an approximate exponential scaling with R at fixed Af, a normalized time of

40000exp(17.2/11.6) = 176000 is predicted. Numerically, this time is found

in figure 5 to be 208000.

5 Conclusion and Discussion

To gain further understanding about the route to equipartition by coupling

to the high frequency modes we note that the frequency difference between

the two high frequency modes of numbers N —j and N —j —27, which are

the ones that couple according to the selection rule, is

Afi, = 7*20+J), (43)

which is a multiple of the fundamental frequency Afi0 = yk2. According to

equation (18) the frequency of the beats of the low frequency modes for large

enough R is Q(, = 0.2jRk3. These two frequencies determine the two time

scales in the route to equipartition. After a time t of integration, we might

expect the number of modes excited to be given in the form

(ne/-l)/iV = <7(ft6*,Aft0*), (44)
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It is therefore natural to expect the parameter controlling equipartition to

be the ratio of the two time scales ftfc/Ano ~ R/{1 + N) . This explains

our finding that Rc is proportional to N + 1 and is also in agreement with

numerical results of Livi and Ruffo[16] that equipartition is reached at a fixed

energy independent of N. [R/(N+l) is the linear energy of the FPU system].

Also, for a fixed ratio fyAno = 0.65/2/(1 + AT), (nc/ - l)/N should be a

universal function of AQQt. This is in agreement with the computational

results which can be seen in figure 6 where we plotted (ne/ —\)/N versus

-ykH for R/(N + 1) = 0.25 and AT=16, 32, 64 and 128.

Our results indicate a transition where, above a critical energy, equipar

tition can be reached if one waits for a time of the order of 3/7fc2 . Below

this critical energy the time will be exponentially long. The critical energy

for equipartition was found to be independent of the low-frequency mode 7

used as an initial condition. This is consistent with having ergodicity on the

energy shell as it then should not matter what initial conditions are chosen.

The exponentially long time scale for interchange of energy between res

onances with well separated frequencies does not depend on the special

assumptions we have made here; it was shown by Benettin, Galgani and

Giogilli[17] that one can decouple a set of fast oscillators, in our case the

high-frequency modes, from a mechanical system with slower frequency, here

0.6bjRk2/(N +1) as seen in (18). By using a set of canonical transforms one

can reduce the coupling to the fast oscillators to a size exponentially small in

the ratio of the frequencies. This is in agreement with the result we obtained

using the approximation of driving motion in a separatrix layer.
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Appendix: Normal forms

In this appendix we show how to remove the fast angles from the 1234 Hamil

tonian (11) with the use of normal forms[9]. First we go back to the complex

coordinates of (5)

Zj = )f/2i(Qj +iPj)
Z.j = -l^Qi-iPj), (Al)

where i is the square root of minus one and j = 1,... ,4. This is a canonical

transformation with inverse

Pi =^/2(Zj +Z.j)
Qi = (Zj - Z.j)l^i. (A2)

Substituting those complex variables into the Hamiltonian( 11) we get a

harmonic part plus a quartic polynomial

4

H = Y^jQiZjZ-i + quartic polynomial (A3)

To remove fast terms from the quartic polynomial a canonical transformation

to new variables 2_j and Zj is performed using a generating function 54

Z.j = z.j + dS4fdZj

zj = Zj + dS4/dz.j. (A4)

For example if we want to remove a generic quartic monomial like t4 —

cZ^lZ^2Z^Z^Zi\Z%Z%Zi\ then we use the generating function S4 =
—i(t4)/AQ where AD is defined by :

Afi = (a,-A)n1 + (aa-A)n2 + (a3-ft)ft3 + (a4-A)n4.

(A5)
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The Hamiltonian in the new variables cancels the quartic polynomial 24,

retaining the same linear part plus a sixth order term, and we say the quartic

term has been "removed". This procedure can be carried only if Aft is

nonzero.

It can also be seen that for this canonical transformation to be a quasi-

identity transformation, Aft must be larger than the maximum absolute

value of t4. Because of this, when the value of t4 is of 0(k3) we can safely

remove all the monomials where Aft is of 0(k). For example the coupling

term Q1Q2Q3Q4 when written in terms of the Z's is

1Q1Q2Q3Q4 = (•^)2(Z1-Z.1)(Z2-Z.2)(Z3-Z.3)(Z4-Z.4).

(A6)

It can be found by inspection that the only monomial in the above equation

that has Aft of order 0(k3) is

*i234 = {)-)\ZxZ4Z-2Z-3 +Z-XZ-4Z2Z3\ (A7)
Ll

which we call the normal form of the term. Analogously the normal form of

the other terms can be found. The term Q\Q\Q3 has normal form :

*i223 =(^)2(ZiZ3Z2_2 +Z-1Z-3Z2). (A8)
The normal form of the 1234 Hamiltonian (11) can be calculated to be

Hn = E^+iEi^Mf+E^^^^l
/=1 l 4 /=1 4 l>s

rfl d2 dZ
+-7"ti234 + "Tr*1223 + -£-*2334- (A9)

where d = 3/?/(2Af +2), d\ = 2dy/HJl2Jl3JUi d2 = dyjQxQ22Q3, c?3 =
d\lQ2Q3Q4 and Jk = {Pi 4- Ql), k = 1,...,4 are the actions of the nor

mal modes. We now write this normal form Hamiltonian in terms of the

24



slow actions Ja and Jap, the two constant actions Jc, Jd and the slow angles

0a and 0ap :

Hn = ei +^2 +\d(3 +a)2k2(3Ja2 +3Ja2p-4JaJap +JcJs-2JcJSp)
—\JJ\J2J3Ja cos(0ap +0a)

d2 /„,, ,„ , <*3^\fjJVz^s{0a) +jy/j2JiJ4Cos(0ap) (A10)

where the linear energy is

e/ = ft3«/c + ft4^-T(2 + a)fc3J5--(3 + a)A;3J5p (All)

and Ji through J4 are functions of Jc, Jj ,J5 and Jsp through (13) and(14).

Finally we mention the symmetry that for large a if we rescale time by the

factor 1/(3+a) and scale all the actions to the constant action Jc this normal

form will depend only on the parameter R = 4d(3+ a)Jc/k. In other words

all the 1234 normal forms with the same R are equivalent, independent of a.
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Figure 3: Average mode energy after t = 12000/7&2, R = 2.9.
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Figure 7: Effective number of modes versus R after t = 2000(3/7&2); pluses
N = 16 , crosses N = 32 ; circles, N = 64.



-18.066
16 24

Mode#

32

Figure 8: Logarithm of average energies after t = 200(3/7A:2) f°r R = 2.9,
AT = 32.



-0.909

-9.605

Figure 9: Logarithm of average energies after t = 200(3/7fc2) for R = 8.0,
AT = 32.



-2.5

ft
8
.« -5

»
-7.5

-10

(C)

-2.5

u

O

9
~* -7.5

•10

+

+ ♦

+

+ +

+ ♦

-2.5 •

16

Mode*

24

(b)

32

(d)

++ ++ ♦+ ++++++♦+♦♦++•'• ++
+ + +

B
S
O .5

++++++++++++++++*++++++*'

16

Mode#

24 32

»
-7.5

-10
16

Mode#

Figure 10: Log of average energies at R = 8.0, N = 32 and four consecutive
times T(3/7ik2); (a)T = 200, ne/ = 6.24; (b) T = 1000, ne/ = 8.67, (c)
T = 4000,ne/ = 18.99, and (d) T = 7800, nc/ = 25.48.

10

24 32



8
o

o

""* -21 h

s?

o

bJO
O

-7 -

A

1 1 1

+ \ (Y=3)

+++N
+

\ +
\ +

\ +
. \ 44*f+

\ +

—1 a—1 1
-28

16 32

Mode#

48 64

Figure 11: Average energies after t = 6/(jk2) for /? = 8.0 and N = 64.
Initial energy in mode 3(7 = 3) and initial energy in mode 5(7 = 5). The
solid line is the geometric progression of (30)

11


	Copyright notice 1993
	ERL-93-92

