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Abstract

We present a method for partitioning expository texts into coherent multi-paragraph
units which re
ect the subtopic structure of the texts. Using Chafe's Flow Model of
discourse, we observe that subtopics are often expressed by the interaction of multiple
simultaneous themes. We describe two fully-implemented algorithms that use only
term repetition information to determine the extents of the subtopics. We show that
the segments correspond well to human judgements of the major subtopic boundaries
of thirteen lengthy texts, and suggest the use of such segments in information retrieval
applications.

1 Introduction: Multi-paragraph Segmentation

The structure of expository texts can be characterized as a sequence of subtopical discussions
that occur in the context of a few main topic discussions. For example, a text called
Stargazers, whose main topic is the existence of life on earth and other planets, could be
judged to consist of the following subdiscussions (numbers indicate paragraph numbers):

1-3 Intro { the search for life in space
4-5 The moon's chemical composition
6-8 How ancient nearness of the moon shaped it

9-12 How the moon helped life evolve on earth
13 The improbability of the earth-moon system

14-16 Binary/trinary star systems make life unlikely
17-18 The low probability of non-binary/trinary sys-

tems
19-20 Properties of our sun that facilitate life

21 Summary

�This research was sponsored in part by the Advanced Research Projects Agency under Grant No.
MDA972-92-J-1029 with the Corporation for National Research Initiatives (CNRI).
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Subtopic structure is sometimes marked in technical texts by headings and subheadings
which divide the text into coherent segments; (Brown & Yule 1983) (p 140) state that
this kind of division is one of the most basic in discourse. However, many expository texts
consist of long sequences of paragraphs with very little structural demarcation. In this paper
we present fully-implemented algorithms that use lexical cohesion relations to partition
expository texts into multi-paragraph segments that re
ect their subtopic structure. In
essence, our goal is to let the meaning of the text determine its structure. We introduce the
use of multiple simultaneous themes as an indicator of subtopical extent and we compare
the results of two segmentation algorithms against an upper bound of reader judgements
and a lower bound baseline measurement.

Most discourse segmentation is done at a �ner granularity than that suggested here. How-
ever, for lengthy written expository texts, multi-paragraph segmentation has many poten-
tial uses, including the improvement of computational tasks that make use of distribu-
tional information. For example, disambiguation algorithms that train on arbitrary-size
text windows (e.g., (Yarowsky 1992), (Gale et al. 1992b)) and algorithms that use lexical
co-occurrence to determine semantic relatedness (e.g., (Sch�utze 1993)) might bene�t from
using windows with motivated boundaries instead.

Information retrieval algorithms can use subtopic structuring to return meaningful portions
of a text if paragraphs are too short and sections are too long (or are not present). Motivated
segments can also be used as a more meaningful unit for indexing long texts. (Salton et al.
1993), working with encyclopedia text, �nd that comparing a query against sections and
then paragraphs is more successful than comparing against full documents alone. They
also discovered (personal communication) that comparing �rst against sections and then
against paragraphs worked better than comparing against paragraphs alone in the cases in
which adjacent paragraphs should have been grouped together because their content was
similar. We have preliminary results, described in (Hearst & Plaunt 1993), that indicate
that multi-paragraph segmentation helps improve results like these, especially in texts less
well-behaved than encyclopedia articles.

Finally, (Mooney et al. 1990) have found multi-paragraph units useful for text generation,
implying that this unit of segmentation should be useful for recognition tasks as well.

In what follows, Section 2 describes the discourse model that motivates our approach,
Section 3 describes two algorithms for subtopic structuring that make use only of lexical
cohesion relations, Section 4 presents the evaluation of these algorithms, and Section 5
discusses future work and summarizes the paper.

2 The Discourse Model

Many discourse models assume a hierarchical segmentation model (e.g., attentional/intentional
structure (Grosz & Sidner 1986), Rhetorical Structure Theory (Mann & Thompson 1987)).
Although many aspects of discourse analysis require such a model, we choose to cast expos-
itory text into a linear sequence of segments, both for computational simplicity and because
such a structure is su�cient for the coarse-grained tasks we are pursuing.1 In doing this, we
are in
uenced by (Skorochod'ko 1972), who suggests determining the semantic structure of
a text (for the purposes of automatic abstracting) by analyzing it in terms of the topology
formed by semantic interrelations found among its sentences, as shown in Figure 1.

Since our goal is to identify sequences of subtopical discussions, we are concerned principally
with the last topology; it represents sequences of densely interrelated discussions linked
together.

Figure 1 illustrates the important point that a subtopical discussion consists of several

1Additionally, (Passonneau & Litman 1993) concede the di�culty of eliciting hierarchical intentional
structure with any degree of consistency from their human judges.
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Figure 1: Skorodch'ko's text structure types. Nodes correspond to sentences and edges
between nodes indicate strong term overlap between the sentences.

di�erent themes discussed simultaneously. This theoretical stance bears a close resemblance
to Chafe's notion of The Flow Model of discourse (Chafe 1979), in description of which he
writes (pp 179-180):

Our data : : : suggest that as a speaker moves from focus to focus (or from
thought to thought) there are certain points at which there may be a more or
less radical change in space, time, character con�guration, event structure, or,
even, world. : : : At points where all of these change in a maximal way, an
episode boundary is strongly present. But often one or another will change
considerably while others will change less radically, and all kinds of varied in-
teractions between these several factors are possible.2

Although Chafe's work concerns narrative text, we feel the same kind of observation ap-
plies to expository text. Our algorithms are designed to recognize episode boundaries by
determining where the thematic components listed by Chafe change in a maximal way.

Many researchers have studied the patterns of occurrence of characters, setting, time, and
the other thematic factors that Chafe mentions, usually in the context of narrative. In
contrast, we attempt to determine where a relatively large set of active themes changes
simultaneously, regardless of the type of thematic factor. This is especially important in
expository text in which the subject matter tends to structure the discourse more so than
characters, setting, etc.3 For example, in the Stargazers text, a discussion of continental
movement, shoreline acreage, and habitability gives way to a discussion of binary and unary
star systems. This is not so much a change in setting or character as a change in subject
matter.

Therefore, to recognize where the subtopic changes occur, we make use of lexical cohesion
relations (Halliday & Hasan 1976) in a manner similar to that suggested by Skorodch'ko.

2Interestingly, Chafe arrived at the Flow Model after working extensively with, and then becoming
dissatis�ed with, a Longacre-style hierarchical model of paragraph structure (Longacre 1979).

3cf. (Sibun 1992) for a discussion of how the form of people's descriptions often mirror the form of what
they are describing.
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This di�ers from the work of (Morris & Hirst 1991) in several ways, the most important
of which is that our algorithms emphasize the interaction of multiple simultaneous themes,
rather than following single threads of discussion alone. Main topics are themes that con-
tinue on throughout the ebb and 
ow of the interacting subtopics.

(Morris & Hirst 1991) use lexical cohesion relations of semantically related terms, via a
thesaurus, to �nd Grosz and Sidner-style intentional structure in short texts at the phrase
level. Their algorithm �nds chains of related terms; the extent of the chains correspond to
the extent of a segment. They also incorporate the notion of \chain returns" { repetition of
terms after a long hiatus { to close o� an intention that spans over a digression. Bearing in
mind that the goal of their algorithm is to �nd �ner-grained distinctions than those desired
here, the model is not set up to take advantage of the fact that multiple simultaneous chains
might occur over the same intention. For example, in Text 4-3 of (Morris 1988), a discussion
of the role of women in the USSR as embodied in the life of Raisa Gorbachev, two di�erent
chains span most of the text: One consists of terms relating to the Soviet Union and the
United States, and the other refers to women, men, husbands, and wives.

Furthermore, chains tend to overlap one another extensively in long texts. Figure 2 shows
the distribution, by sentence number, of selected terms from the Stargazers text. The �rst
two terms have fairly uniform distribution and so should not be expected to provide much
information about the divisions of the discussion. The next two terms occur mainly at the
beginning of the text, while terms binary through planet have considerable overlap from
sentences 58 to 78. There is a somewhat well-demarked cluster of terms between sentences
35 and 50, corresponding to the grouping together of paragraphs 10, 11, and 12 by human
judges who have read the text.

From the diagram it is evident that simply looking for chains of repeated terms is not
su�cient for determining subtopic breaks. Even combining terms that are closely related
semantically into single chains is insu�cient, since often several di�erent themes are active
in the same segment. For example, sentences 37 - 51 contain dense interaction among
the terms move, continent, shoreline, time, species, and life, and all but the latter occur
only in this region. Few thesauri would group all of these terms together. However, it
is the case that the interlinked terms of sentences 57 - 71 (space, star, binary, trinary,
astronomer,orbit) are closely related semantically, assuming the appropriate senses of the
terms have been determined.

3 Algorithms for Discovering Subtopic Structure

Many researchers (e.g., (Halliday & Hasan 1976), (Tannen 1989), (Walker 1991)) have noted
that term repetition is a strong cohesion indicator. We have found in this work that term
repetition alone, when used in terms of multiple simultaneous threads of information, are
a very useful indicator of subtopic structure. This section describes two algorithms for
discovering subtopic structure using term repetition as a lexical cohesion indicator as an
approximation to Chafe's Flow Model.

The �rst method compares, for a given window size, each pair of adjacent blocks of text
according to how similar they are lexically. This method assumes that the more similar two
blocks of text are, the more likely it is that the current subtopic continues, and, conversely,
if two adjacent blocks of text are dissimilar, this implies a change in subtopic 
ow. The
second method, an extension of Morris's approach (Morris & Hirst 1991), keeps track of
active chains of repeated terms, where membership in a chain is determined by location
in the text. The method determines subtopic 
ow by recording where in the discourse the
bulk of one set of chains ends and a new set of chains begins. Figure 3 illustrates the two
approaches.

Through experimentation we discovered best results for the block similarity algorithm are
obtained with a block size of 6 sentences. In our previous experiments we weighted the
terms by their frequency in a block times the inverse frequency of the number of blocks
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-------------------------------------------------------------------------------------------------------------
Sentence: 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
-------------------------------------------------------------------------------------------------------------
14 form 1 111 1 1 1 1 1 1 1 1 1 1
8 scientist 11 1 1 1 1 1 1
5 space 11 1 1 1
25 star 1 1 11 22 111112 1 1 1 11 1111 1
5 binary 11 1 1 1
4 trinary 1 1 1 1
8 astronomer 1 1 1 1 1 1 1 1
7 orbit 1 1 12 1 1
6 pull 2 1 1 1 1
16 planet 1 1 11 1 1 21 11111 1 1
7 galaxy 1 1 1 11 1 1
4 lunar 1 1 1 1

19 life 1 1 1 1 11 1 11 1 1 1 1 1 111 1 1
27 moon 13 1111 1 1 22 21 21 21 11 1
3 move 1 1 1
7 continent 2 1 1 2 1
3 shoreline 12
6 time 1 1 1 1 1 1
3 water 11 1
6 say 1 1 1 11 1
3 species 1 1 1
-------------------------------------------------------------------------------------------------------------
Sentence: 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
-------------------------------------------------------------------------------------------------------------

Figure 2: Distribution of selected terms from the Stargazer text, with a single digit frequency
per sentence number (blanks indicate a frequency of zero).

they appear in. In these more recent experiments we found that weighting the terms by
simple frequency works better. To compute similarity between blocks, term counts are
placed in vectors which are compared using the cosine distance measure, yielding a score
between 0 and 1. The best variation on the chaining algorithm allows gaps of up to six
sentences before the chain is considered to be broken. For both algorithms, sentences are
actually blocks of 20 words (ignoring punctuation) rather than real sentence boundaries, in
order to avoid normalization problems. Additionally, morphological analysis (in
ectional)
is used to normalize di�erent word forms and a stop list of 898 words is used to eliminate
common words from the calculations.

The results of both algorithms are plotted as similarity against sentence gap number.
Boundaries are scored according to the relative depths of the valleys in the resulting plots,
thus breaks in similarity adjacent to high strong peaks (indicating dense cohesion relations)
are considered stronger boundaries than those near lesser peaks. The actual values of the
similarity measures are not taken into account; the relative di�erences are what are of con-
sequence. The valley depth must exceed a threshold; by experimentation we devised one
that scales with the size of the text and is a function of the average and standard deviations
of the valley depths for each text. The block algorithm works best with one iteration of
average smoothing with a window size of 3; chaining works best with no smoothing.

4 Evaluation

One way to evaluate these segmentation algorithms is to compare against judgements made
by human readers, which we do here. Another is to see how well the results improve a
computational task; we report preliminary work in this vein in (Hearst 1994). A third
possible evaluation { comparing the algorithms against texts pre-marked by authors { is
not possible since the kinds of texts we are interested in working on by de�nition are not
pre-marked in this way.

5



x−−x−−−−−x
x−−−−−x−−−−−x
x−−x−−x
x−−−−−−−−x
x−−x−−−−−x
       x−−x−−x−−x
              x−−x−−−−−x
                           x−−x−−−−−x
                           x−−x−−x    
                                  x−−x
                           x−−x−−x−−x
                                               x

(b)(a)

A
B
C
D
E
F
I
J
K
L
M
N

A

B

C

D

E

A

C

E

F

G

B

C

F

H

I

A

D

F

I

B

I

J

K

L

M

K

L

M

N

O

J

M

N

P

Q

B

F

J

K

M

1     2     3    4     5    6     7    81      2        3      4        5     6         7     8

Figure 3: Illustration of the two proposed lexical cohesion comparison algorithms. Letters
signify lexical items, numbers signify sentence numbers. (a) Similarity comparison of adja-
cent blocks with a window of size 2. Arrows indicate which blocks are compared to yield
scores for sentence gaps 2, 4, and 6. Blocks would be shifted by one sentence for similarity
measurements for gaps 3, 5, and 7. (b) Accumulating counts of chains of terms: `x' indicates
that the term occurs in the sentence, `-' indicates continuation of a chain, and arrows cut
through the active chains that contribute to the cumulative count for sentence gaps 2, 4,
and 6.

4.1 Reader Judgments

We obtained judgements from seven readers for each of thirteen magazine articles which
satis�ed the length criteria (between 1800 and 2500 words)4) and which contained little
structural demarkation. The judges were asked simply to mark the paragraph boundaries
at which the topic changed; they were not given more explicit instructions about the gran-
ularity of the segmentation.

Figure 4 shows the boundaries marked by seven judges on the Stargazers text. This format
helps illuminate the general trends made by the judges and also helps show where and how
often they disagree. For instance, all but one judge marked a boundary between paragraphs
2 and 3. The dissenting judge did mark a boundary after 3, as did two of the concurring
judges. The next three major boundaries occur after paragraphs 5, 9, 12, and 13. There is
some contention in the later paragraphs; three readers marked both 16 and 18, two marked
18 alone, and two marked 17 alone. The outline in Section 1 gives an idea of what each
segment is about.

(Passonneau & Litman 1993) discuss at length the considerations that must go into the
evaluation of segmentation algorithms according to reader judgement information. As Fig-
ure 4 shows, agreement among judges is not perfect, but trends can be discerned. In our
evaluation we follow the suggestions of (Passonneau & Litman 1993); we determine which

4One longer text of 2932 words was used since reader judgements had been obtained for it from an earlier
experiment. Note that this represents an amount of test data on the order of that used in the experiments of
(Passonneau & Litman 1993). Judges were technical researchers. Two texts had three or four short headers
which we removed.
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Figure 4: Judgements of seven readers on the Stargazer text. Internal numbers indicate
location of gaps between paragraphs; x-axis indicates sentence gap number, y-axis indicates
judge number, a break in a horizontal line indicates a judge-speci�ed segment break.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5: Results of the block similarity algorithm on the Stargazer text. Internal numbers
indicate paragraph numbers, x-axis indicates sentence gap number, y-axis indicates simi-
larity between blocks centered at the corresponding sentence gap. Vertical lines indicate
boundaries chosen by the algorithm; for example, the leftmost vertical line represents a
boundary after paragraph 3. Note how these align with the boundary gaps of Figure 4
above.

boundaries have been marked by a signi�cant 5 proportion of the judges and label those
paragraph gaps as \true" segment boundaries. The remaining gaps are considered non-
boundaries. The algorithms are evaluated according to how many true boundaries they
select out of the total selected (precision) and how many true boundaries are found out of
the total possible (recall) (Salton 1988). The recall measure implicitly signals the number
of missed boundaries (false negatives, or deletion errors); we also indicate the number of
false positives, or insertion errors, explicitly.

5In Passonneau and Litman's data, if 4 or more out of 7 judges mark a boundary, the segmentation is
found to be signi�cant using a variation of the Q-test (Cochran 1950). We found similar results but included
boundaries marked by only three judges, which in general better suited our task. Furthermore, for purposes
of evaluation, paragraphs of three or fewer sentences were combined with their neighbor if that neighbor was
deemed to be followed by a \true" boundary, as in paragraphs 2 and 3 of the Stargazers text.
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Precision Recall
avg sd avg sd

Baseline 33% .44 .08 .37 .04
Baseline 41% .43 .08 .42 .03
Chains .64 .17 .58 .17
Blocks .66 .18 .61 .13
Judges .81 .06 .71 .06

Table 1: Precision and Recall values for 13 test texts.

4.2 Results

Figure 5 shows a plot of the results of applying the block comparison algorithm to the
Stargazer text. When the lowermost portion of a valley is not located at a paragraph gap, the
judgement is moved to the nearest paragraph gap.6 For the most part, the regions of strong
similarity correspond to the regions of strong agreement among the readers. (These results
were �fth highest out of our 13 test texts.) Note however, that the similarity information
around paragraph 12 is weak. This paragraph acts as a summary paragraph, summarizing
the contents of the previous three and revisiting much of the terminology that occurred
in them all in one location (in the spirit of a (Grosz & Sidner 1986) \pop" operation).
Thus it displays low similarity both to itself and to its neighbors. This is an example of a
breakdown caused by the assumption about the linear sequence of the subtopic discussions.
It is possible that an additional pass through the text could be used to �nd structure of
this kind.

The �nal paragraph is a summary of the entire text; the algorithm recognizes the change in
terminology from the preceding paragraphs and marks a boundary; only two of the readers
chose to di�erentiate the summary; for this reason the algorithm is judged to have made
an error even though this sectioning decision is reasonable. This illustrates the inherent
fallibility of testing against reader judgements, although in part this is because the judges
were given loose constraints.

Following the advice of (Gale et al. 1992a), we compare our algorithm against both upper
and lower bounds. The upper bound in this case is the reader judgement data. The lower
bound is a baseline algorithm that is a simple, reasonable approach to the problem that
can be automated. We determined from our test data that boundaries are placed in about
41% of the paragraph gaps, and wrote a program that places a boundary at each potential
gap 41% of the time. We ran the program 10,000 times for each test text and computed
precision and recall for the average of the results; these scores appear in Table 1 (results at
33% are also shown for comparison purposes).

Table 1 shows that the blocking algorithm is sandwiched between the upper and lower
bounds. The block similarity algorithm seems to work slightly better than the chaining
algorithm, although the di�erence may not prove signi�cant over the long run. Table 2
shows some of these results in more detail.

In many cases the algorithms are almost correct but o� by one paragraph, especially in the
texts that the algorithm performs poorly on. When we allow the block similarity algorithm
to be o� by one paragraph, there is dramatic improvement in the scores for the texts that
lower part of Table 2, yielding an overall precision of 83% and recall of 78%. As in Figure
5, we often see that where the algorithm is incorrect, e.g., paragraph gap 11, the overall
blocking is very close to what the judges intended.

6This might be explained in part by (Stark 1988) who shows that readers disagree measurably about
where to place paragraph boundaries when presented with texts with those boundaries removed.
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Total Baseline 41% (avg) Blocks Chains Judges (avg)
Text Possible Prec Rec C I Prec Rec C I Prec Rec C I Prec Rec C I
1 9 .45 .45 4 5 1.0 .78 7 0 1.0 .78 7 0 .78 .78 7 2
2 9 .50 .45 4 4 .88 .78 7 1 .75 .33 3 1 .88 .78 7 1
3 9 .40 .45 4 6 .78 .78 7 2 .56 .56 5 4 .75 .67 6 2
4 12 .63 .42 5 3 .86 .50 6 1 .56 .33 5 4 .90 .58 10 1
5 8 .43 .38 3 4 .70 .75 6 2 .86 .75 6 1 .86 .75 6 1
6 8 .40 .38 3 9 .60 .75 6 3 .42 .63 5 8 .75 .75 6 2
7 9 .36 .45 4 7 .60 .55 5 3 .40 .44 4 6 .75 .67 6 2
8 8 .43 .38 3 4 .50 .62 5 4 .67 .75 6 3 .86 .75 6 1
9 9 .36 .45 4 7 .50 .44 4 3 .60 .33 3 2 .75 .67 6 2
10 8 .50 .38 3 3 .50 .50 4 3 .63 .63 5 3 .86 .75 6 1
11 9 .36 .45 4 7 .50 .44 4 4 .71 .71 5 2 .75 .67 6 2
12 9 .45 .45 4 5 .50 .55 5 5 .54 .54 7 6 .86 .67 6 1
13 10 .36 .40 4 7 .30 .50 5 9 .60 .60 6 4 .78 .70 7 2

Table 2: Scores by text, showing precision and recall. (C) indicates the number of correctly
placed boundaries, (I) indicates the number of inserted boundaries. The number of deleted
boundaries can be determined by subtracting (C) from Total Possible.

5 Summary and Future Work

This paper has described algorithms for the segmentation of expository texts into discourse
units that re
ect the subtopic structure of expository text. We have introduced the notion of
the recognition of multiple simultaneous themes as an approximation to Chafe's Flow Model
of discourse and Skorodch'ko's text structure types. The algorithms are fully implemented:
term repetition alone, without use of thesaural relations, knowledge bases, or inference
mechanisms, works well for many of the texts we've experimented with. The structure it
obtains is coarse-grained but generally re
ects human judgement data.

We are experimenting with techniques to improve information retrieval from lengthy texts
making use of multi-paragraph segmentation and have some preliminary positive results.
We have implemented a prototype information retrieval interface that classi�es the main
topics of texts and will soon incorporate the subtopic structure information. However, to
be more useful the segments should also be labeled according to what subtopic discussions
they contain.

In earlier work (Hearst 1993) we incorporated thesaural information into our algorithms;
surprisingly we've found in our latest experiments that this information degrades the perfor-
mance. This could very well be due to inferior term categorizaton algorithms or categories
that are too large; therefore we do not feel the issue is closed, and instead consider successful
grouping of related words as future work. (Kozima 1993) has suggested using a (computa-
tionally expensive) semantic similarity metric to �nd similarity among terms within a small
window of text (5 to 7 words). This work does not incorporate the notion of multiple simul-
taneous themes but instead just tries to �nd breaks in semantic similarity among a small
number of terms. A good strategy may be to substitute this kind of similarity information
for term repetition in algorithms like those described here.

The use of discourse cues for detection of segment boundaries and other discourse purposes
has been extensively researched, although predominantly on spoken text (see (Hirschberg
& Litman 1993) for a summary of six research groups' treatments of 64 cue words). It
is possible that incorporation of such information may help improve the cases where the
algorithm is o� by one paragraph, as might reference resolution and an account of tense
and aspect.
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