
Inverse Free Parallel Spectral Divide and Conquer Algorithms

for Nonsymmetric Eigenproblems

Zhaojun Bai � and James Demmel y and Ming Gu z

February 9, 1994

Abstract

We discuss two inverse free, highly parallel, spectral divide and conquer algorithms: one

for computing an invariant subspace of a nonsymmetric matrix and another one for computing

left and right deating subspaces of a regular matrix pencil A � �B. These two closely related

algorithms are based on earlier ones of Bulgakov, Godunov and Malyshev, but improve on

them in several ways. These algorithms only use easily parallelizable linear algebra building

blocks: matrix multiplication and QR decomposition. The existing parallel algorithms for the

nonsymmetric eigenproblem use the matrix sign function, which is faster but can be less stable

than the new algorithm.
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1 Introduction

We are concerned with the following two computational problems.

1. For a given n � n nonsymmetric matrix A, we want to �nd an invariant subspace R (i.e.
AR � R) corresponding to the eigenvalues of A in a speci�ed region D of the complex plane.
In other words, we want to �nd a unitary matrix Q = (Q1; Q2) with R = spanfQ1g such
that

QHAQ =

 
A11 A12

0 A22

!
; (1.1)

where the eigenvalues of A11 are the eigenvalues of A in D. We shall call this problem an
(ordinary) spectral divide and conquer (SDC) problem.

2. A regular matrix pencil A��B is a square pencil such that det(A��B) is not identically zero.
Given such an n by n nonsymmetric pencil, we want to �nd a pair of left and right deating
subspaces L and R (i.e. AR � L and BR � L) corresponding to the eigenvalues of the pair
A� �B in a speci�ed region D on complex plane. In other words, we want to �nd a unitary
matrix QL = (QL1; QL2) with L = spanfQL1g and a unitary matrix QR = (QR1; QR2) with
R = spanfQR1g, such that

QH
LAQR =

 
A11 A12

0 A22

!
and QH

LBQR =

 
B11 B12

0 B22

!
; (1.2)

where the eigenvalues of A11� �B11 are the eigenvalues of A� �B in the region D. We shall
call this problem a generalized spectral divide and conquer (SDC) problem.

The region D in the above problems will initially just be the interior (or exterior) of the unit disk.
By employing M�obius transformations ((�A+�B)(A+ �B)�1) and divide-and-conquer, D can be
the union of intersections of arbitrary half planes and (complemented) disks, and so a rather general
region. We will assume that the given matrix A or matrix pencil A��B has no eigenvalues on the
boundary D (in practice this means we might enlarge or shrink D slightly if we fail to converge).

The nonsymmetric eigenproblem and its generalized counterpart are important problems in
numerical linear algebra, and have until recently resisted attempts at e�ective parallelization. The
standard serial algorithm for the spectral divide and conquer problem is to use the QR algorithm
(or the QZ algorithm in the generalized case) to reduce the matrix (or pencil) to Schur form, and
then to reorder the eigenvalues on the diagonal of the Schur form to put the eigenvalues in D in the
upper left corner, as shown in (1.1) and (1.2) (see [7] and the references therein). The approach
is numerically stable, although in some extremely ill-conditioned cases, the swapping process may
fail1. However the approach seems be too �ne grain to parallelize successfully [21].

There are two highly parallel algorithms for the spectral divide and conquer problem, those
based on the matrix sign function (which we describe in section 3), and inverse free methods based
on original algorithms of Bulgakov, Godunov and Malyshev [30, 14, 41, 42, 43], which are the
main topic of this paper. Both kinds of algorithms are easy to parallelize because they require
only large matrix operations which have been successfully parallelized on most existing machines:

1Recently Bojanczyk and Van Dooren [11] have found a way to eliminate this possibility, although the theoretical
possibility of nonconvergence of the QR algorithm remains [8].
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matrix-matrix multiplication, QR decomposition and (for the sign function) matrix inversion. The
price paid for the easy parallelization of these algorithms is potential loss of stability compared to
the QR or QZ algorithms; they can fail to converge in a number of circumstances in which the QR
and QZ algorithms succeed. Fortunately, it is usually easy to detect and compensate for this loss
of stability, by choosing to divide and conquer the spectrum in a slightly di�erent location.

In brief, the di�erence between the sign-function and inverse-free methods is as follows. The
sign-function method is signi�cantly faster than inverse-free when it converges, but there are some
very di�cult problems where the inverse-free algorithm gives a more accurate answer than the
sign-function. This leads us to propose the following 3-step algorithm [20, 23]:

1. Try to use the matrix sign-function to split the spectrum. If it succeeds, stop.

2. Otherwise, if the sign-function fails, try to split the spectrum using the inverse-free algorithm.
If it succeeds, stop.

3. Otherwise, if the inverse-free methods fails, use the QR (or QZ) algorithm.

This 3-step approach can works by trying the fastest but least stable method �rst, falling back to
slower but more stable methods only if necessary.

This paper is primarily concerned with the algorithms based on the pioneering work of Godunov,
Bulgakov and Malyshev [30, 14, 41], in particular on the work of Malyshev [42, 43]. We have made
the following improvements on their work:

� We have eliminated the need for matrix exponentials, thus making their algorithms truly
practical. By expressing the algorithms for computing the ordinary and generalized spectral
divide and conquer decompositions in a single framework, we in fact show it is equally easy
to divide the complex plane along arbitrary circles and lines with the same amount of work.

� Our error analysis is simpler and tighter. In particular, our condition number can be as small
as the square root of the condition number in [42], and is precisely the square of the reciprocal
of the distance from A � �B to a natural set of ill-posed problems, those pencils which have
an eigenvalue on the unit circle.

� We have simpli�ed their algorithms by eliminating all inversions and related factorizations.

� We propose a realistic and inexpensive stopping criterion for the inner loop iteration.

Many simpli�cations in these algorithms are possible in case the matrix A is symmetric. The
PRISM project, with which this work is associated, is also producing algorithms for the symmetric
case; see [10, 9, 37, 5, 40] for more details.

The rest of this paper is organized as follows. In section 2 we present our two algorithms for the
ordinary and generalized spectral divide and conquer problems, discuss some implementation details
and options, and show how to divide the spectrum along arbitrary circles and lines in the complex
plane. In section 3, we compare the cost of the new algorithms with the matrix sign function based
algorithms. In section 4, we explain why the new algorithms work, using a simpler explanation
than in [42]. Section 5 derives a condition number, and section 6 uses it to analyze convergence
of the new algorithms. Section 7 does error analysis, and section 8 contrasts our bounds to those
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of Malyshev [42]. Section 9 discusses the stopping criterion of the new algorothms. Section 10
presents numerical examples, section 11 lists open problems, and section 12 draws conclusions.

Throughout this paper we shall use the notational conventions in [31]: Matrices are denoted by
upper case italic and Greek letters, vectors by lower-case italic letters, and scalars by lower-case
Greek letters or lower-case italic if there is no confusion. The matrix AT is the transpose of A,
and AH is the complex conjugate transpose of A. k � k, k � kF , and k � k1 are the spectral norm,
Frobenius norm, and 1-norm of a vector or matrix, respectively. The condition number kAk�kA�1k
will be denoted �(A). �(A) and �(A;B) denote the sets of eigenvalues of the matrix A and the
matrix pencil A� �B, respectively. spanfXg is a subspace spanned by the columns of the matrix
X . det(A) is the determinant of matrix A. The lower-case italic letter i equals

p�1 throughout.
Machine precision is denoted by ".

2 Algorithms

Algorithm 1 below computes an invariant subspace of a nonsymmetric matrix A corresponding to
the eigenvalues inside (or outside) the unit disk, and Algorithm 2 computes left and right deating
subspaces of a matrix pencil A � �B corresponding to the eigenvalues in the same region. The
algorithms are similar to the matrix sign function based algorithms in that they begin by computing
orthogonal projectors onto the desired subspaces. Later, we will show how to divide into more
general regions. Even though the algorithms are very similar, we will present them separately for
ease of notation.

The algorithms presented in this section are for complex matrices. But if the given matrices
are real, then the algorithms only require real arithmetic.

2.1 Algorithm for spectral division of A

Algorithm 1. Given an n� n matrix A, compute a unitary matrix Q such that

QHAQ =

 
A11 A12

E21 A22

!
;

and where in exact arithmetic we would have �(A11) � D, �(A22)\D = ;, and E21 = 0.
D can be the interior (or exterior) of the open unit disk. We assume that no eigenvalues
of A are on the unit circle. On return, the generally nonzero quantity kE21k1=kAk1
measures the stability of the computed decomposition.

1) Let A0 = A and B0 = I .

2) For j = 0; 1; 2; : : : : until convergence or j > maxit 
Bj

�Aj

!
=

 
Q11 Q12

Q21 Q22

! 
Rj

0

!
; (QR decomposition)

Aj+1 = QH
12Aj ;

Bj+1 = QH
22Bj ;

if kRj �Rj�1k1 � �kRj�1k1, p = j + 1, exit;

End for
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3) For the exterior of the unit disk, compute

(Ap +Bp)
�1Ap = QR�; (rank revealing QR decomposition)

or for the interior of the unit disk, compute

(Ap +Bp)
�1Bp = QR�; (rank revealing QR decomposition)

4) l = rank(R), (number of eigenvalues in the selected region)

5) Compute

QHAQ =

 l n� l

l A11 A12

n� l E21 A22

!

and kE21k1=kAk1.

Note that in step 2), we assume that the QR decomposition of

 
Bj

�Aj

!
is computed so that the

diagonal elements of Rj are all positive, so the matrix Rj is uniquely de�ned. kE21k1=kAk1 is an
accurate measure of the backward stability of the algorithm, because setting E21 to zero introduces
a backward error of precisely kE21k1=kAk1 (measured relative to A and using the 1-norm).

In Algorithm 1, we need to choose a stopping criterion � in the inner loop of step 2), as well as
a limit maxit on the maximum number of iterations. So far we have used � � n" (where " is the
machine precision) and maxit = 60. In section 10 we shall discuss these issues again.

In the next subsection we will show how to compute Q in the QR� decomposition of (Ap +
Bp)

�1Ap or (Ap + Bp)
�1Bp in step 3) without computing the explicit inverse (Ap + Bp)

�1 and
subsequent products. This will yield the ultimate inverse free algorithm.

2.2 Algorithm for spectral division of (A;B)

Algorithm 2. Given n � n matrices A and B, compute two unitary matrices QL and
QR, such that

QH
LAQR =

 
A11 A12

E21 A22

!
; QH

LBQR =

 
B11 B12

F21 B22

!
;

and where in exact arithmetic we would have �(A11; B11) � D, �(A22; B22) \ D = ;,
and E21 = F21 = 0. D can be the interior (or exterior) of the unit disk. We assume
that no eigenvalues of the pencil (A;B) are on the unit circle. On return, the generally
nonzero quantities kE21k1=kAk1 and kF21k=kBk1 measure the stability of the computed
decomposition.

/* Compute the right deating subspace */

1) Let A0 = A and B0 = B.

2) For j = 0; 1; 2; : : : : until convergence or j > maxit 
Bj

�Aj

!
=

 
Q11 Q12

Q21 Q22

! 
Rj

0

!
, (QR decomposition)

Aj+1 = QH
12Aj ;

Bj+1 = QH
22Bj ;

if kRj �Rj�1k1 � �kRj�1k1, p = j + 1, exit;
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End for

3) For the exterior of the unit disk, compute

(Ap +Bp)
�1Ap = QRRR�R, (rank revealing QR decomposition)

or for the interior of the unit disk, compute

(Ap +Bp)
�1Bp = QRRR�R, (rank revealing QR decomposition)

4) lR = rank(R), (the number of eigenvalues in the selected region.)

/* Compute the left deating subspace */

5) Let A0 = AH and B0 = BH .

6) For A0 and B0 do the loop 2).

7) For the outside of the unit disk, compute

AH
p (Ap +Bp)

�H = QLRL�L, (rank revealing QR decomposition)

or for the inside of the unit disk, compute

BH
p (Ap + Bp)�H = QLRL�L, (rank revealing QR decomposition)

8) lL = rank(RL), (the number of eigenvalues in the selected region.)

9) If lR 6= lL, signal an error and quit, otherwise let l = lR = lL;

10) Compute

QH
LAQR =

 l n� l

l A11 A12

n � l E21 A22

!
; QH

LAQR =

 l n� l

l B11 B12

n� l F21 B22

!
.

and kE21k1=kAk1 and kF21k=kBk1.

As before, the iterations are not uniquely de�ned due to the non-uniqueness of the QR decomposi-
tions in step 2). But the Rj are uniquely determined. kE21k1=kAk1 and kF21k=kBk1 are accurate
measures of the backward stability of the algorithm because one proceeds by setting E21 and F21
to zero and continuing to divide and conquer.

Parameters � and maxit play the same role in Algorithm 2 as Algorithm 1. In �nite precision
arithmetic, it is possible that we might get two di�erent numbers lR and lL of eigenvalues in region
D in steps 4) and 8). Therefore, we need an extra test step 9) in Algorithm 2. In our numerical
experiments, lR and lL have always been equal. If they were not, we would handle it the same way
we handle other convergence failures: the spectral decomposition based on D is rejected, and a new
region D must be selected (see section 2.4).

In the next section we will show how to remove the apparent inverses in steps 3) and 7) in the
same way as for Algorithm 1. This will make the algorithm inverse free. We also show how to
potentially save half the work, at the cost of solving another linear system, which is potentially
ill-conditioned.

2.3 Implementation details and options

We describe in more detail the implementation of Algorithms 1 and 2. The main costs are the
matrix-matrix multiplications and the QR decomposition in the inner loop, and the rank-revealing
QR following the inner loop.
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There is a large literature on matrix-matrix multiplication, and it is usually one of the �rst
algorithms to be implemented quickly on a high performance architecture [24, 2].

Regarding the QR decomposition in the inner loop, there is no need to form the entire 2n� 2n
unitary matrix Q in order to get the submatrices Q12 and Q22. Instead, we can compute the QR
decomposition of the 2n� n matrix (BT

j ;�AT
j )

T (using SGEQRF from LAPACK if the matrices are
real, for example), which leaves Q stored implicitly as Householder vectors in the lower triangular
part of the matrix and another n dimensional array. We can then apply QT | without computing
it | to the 2n � n matrix (0; I)T to obtained the desired matrix QT

12 and QT
22 (using LAPACK

routine SORMQR).
Another way to view the inner loop is as computing an orthonormal basis for the null space

of (BT
j ;�AT

j ). The QR decomposition is the simplest way, but there are other ways also. For
example, we may extend an idea proposed in Kublanovskaya's AB-algorithm [39] for computing
such null spaces, which cuts the arithmetic cost signi�cantly but with the possible loss of block
operations; more study is needed here.

Let us now discuss computing the rank-revealing QR decomposition of C�1D (or DHC�H)
without computing the inverse or product explicitly. This is needed in step 3) of Algorithm 1 and
steps 3) and 7) of Algorithm 2. For simplicity, let us use column pivoting to reveal rank, although
more sophisticated rank-revealing schemes exist [18, 32, 35, 53]. Recall that for our purposes, we
only need the unitary factor Q and the rank of C�1D (or DHC�H). It turns out that by using
the generalized QR (GQR) decomposition technique developed in [46, 3], we can get the desired
information without computing C�1 or C�H . In fact, in order to compute the QR decomposition
with pivoting of C�1D, we �rst compute the QR decomposition with pivoting of the matrix D:

D = Q1R1�; (2.3)

and then we compute the RQ factorization of the matrix QH
1 C:

QH
1 C = R2Q2: (2.4)

From (2.3) and (2.4), we have C�1D = QH
2 (R

�1
2 R1)�. The Q2 is the desired unitary factor. The

rank of R1 is also the rank of the matrix C�1D.
In order to compute the rank revealing QR decomposition of DHC�H , we �rst compute the QL

decomposition of C:
C = Q1L1 (2.5)

and then compute the QR decomposition with pivoting of DHQ1:

DHQ1 = Q2R2�: (2.6)

From (2.5) and (2.6), we have DHC�H = Q2(R2�L
�H
1 �H)�. This is not exactly a QR decompo-

sition, but has the same e�ect, since Q2 is the desired unitary factor, and the rank of R2 is also
the rank of the matrix DHC�H .

Note that the above GQR decomposition will not necessarily always reveal the numerical rank,
even though it works much of the time. In particular, the permutation � should really depend
on both C and D. Another way to compute a rank-revealing GQR decomposition is to explicitly
form C�1D, compute its rank revealing QR, take the resulting permutation �, and use this � in
decomposition (2.3). This costs quite a bit more, and � is still not guaranteed to be correct if
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C�1D is computed su�cient inaccurately. However, a more sophisticated implementation of this
later idea can indeed reveal the numerical rank of C�1D; this work will appear elsewhere.

GQR decomposition is always backward stable in the following sense. The computed Q2 is
nearly the exact orthogonal factor for matrices C + �C and D + �D, where k�Ck = O(")kCk and
k�Dk = O(")kDk.

Here is another implementation option for Algorithm 2, which reintroduces inversion of a par-
ticular matrix, with the payo� of eliminating half the work of the algorithm. It will be justi�ed at
the end of section 4. Let  

AH

BH

!
= Q �

 
R
0

!

be the QR decomposition. Let PR;jzj>1 � (Ap + Bp)
�1Ap be the matrix computed in step 3)

of Algorithm 2 (the notation will be justi�ed in section 4), and PL;jzj>1 � AH
p (Ap + Bp)�H be

the matrix computed in step 7) of Algorithm 2. We may compute PL;jzj>1 directly from PR;jzj>1,
eliminating the work of step 6), by using the formula

PL;jzj>1 = (APR;jzj>1; BPR;jzj>1)Q

 
I

0

!
R�H :

The condition number ofR is the same as the condition number of the n�2n matrix [A;B]. If [A;B]
is nearly singular, this means the pencil A��B is nearly singular, which means its eigenvalues are
all very ill-conditioned, among other things [22]. We discuss this further in section 5.

Finally, we note that in some applications, we may only want the eigenvalues of the reduced
matrix A11 or of the matrix pencil (A11; B11) or their subblocks. In this case, we do not need to
compute the blocks A12, A22, B12 or B22 in step 5) of Algorithm 1 and step 10) of Algorithm 2,
and so we can save some computations.

2.4 Other kinds of regions

Although the algorithms presented in sections 2.1 and 2.2 only divide the spectrum along the unit
circle, we can use M�obius and other simple transformations of the input matrix A or matrix pair
(A;B) to divide along other curves (treat A as the pair (A; I)). By transforming the eigenproblem
Az = �Bz to

(�A+ �B)z =
��+ �

�+ �
(A+ �B)z or A0z = �0B0z

and applying Algorithm 2 to (A0; B0), we see that we can split along the curve where j�0j = j��+��+� j =
1. This is a major attraction of this algorithm: it can handle an arbitrary M�obius transformation
just by setting A0 and B0 to appropriate linear combinations of A and B. In contrast, applying
the matrix sign function to an arbitrary M�obius transformation will generally require a matrix
inversion. Here are some simple examples.

(a) Transform the eigenproblem Az = �Bz to

(A� �B)z =

�
�� �

r

�
(rB)z

where r > 0. Let A0 = A � �B and B0 = rB in Algorithm 2. Then Algorithm 2 will split
the spectrum of A� �B along a circle centered at � with radius r. If A and B are real, and
we choose � to be real, then all arithmetic in the algorithm will be real.



10

(b) Transform the eigenproblem Az = �Bz to

(A� (� + �)B)z =
�� (� + �)

�� (� � �)
(A� (�� �)B)z

and let A0 = A� (� + �)B and B0 = A � (�� �)B in Algorithm 2. Then Algorithm 2 will
split the spectrum of A � �B along the line through � and perpendicular to the segment
from � + � to � � �. If A and B are real, and we choose � and � to be real, then will we
split along the vertical line through �, and all arithmetic in the algorithm will be real. This
is the splitting computed by the matrix sign function. This eliminates the need for matrix
exponentiation in Malyshev's algorithm [43].

Other more general regions can be obtained by taking A0 and B0 as more complicated polyno-
mial functions of A and B.

3 Inverse free iteration vs. the matrix sign function

In this section we compare the cost of a single iteration of the new algorithm with the matrix sign
function based algorithm. Numerical experiments will be presented in section 10.

We begin by reviewing the matrix sign function. The sign function sign(A) of a matrix A with
no eigenvalues on the imaginary axis can be de�ned via the Jordan canonical form of A: Let

A = X

 
J+ 0
0 J�

!
X�1

be the Jordan canonical form of A, where the eigenvalues of J+ are in the open right half plane,
and the eigenvalues of J� are in the open left half plane. Then sign(A), as introduced by Roberts
[48], is

sign(A) � X

 
I 0
0 �I

!
X�1:

It is easy to show that the two matrices

P+ =
1

2
(I + sign(A)) and P� =

1

2
(I � sign(A)) (3.7)

are the spectral projectors onto the invariant subspaces corresponding to the eigenvalues of A in
the open right and open left half planes, respectively. Now let the rank revealing QR decomposition
of the matrix P+ be P+ = QR�, so that R is upper triangular, Q is unitary, and � is a permutation
matrix chosen so that the leading columns of Q span the range space of P+. Then Q yields the
desired spectral decomposition [6]:

QHAQ =

 
A11 A12

0 A22

!

where the eigenvalues of A11 are the eigenvalues of A in open right half plane, and the eigenvalues
of A22 are the eigenvalues of A in the open left half plane. By computing the sign function of
M�obius transformations of A, the spectrum can be divided along arbitrary lines and circles.
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The simplest scheme for computing the matrix sign function is the Newton iteration applied to
(sign(A))2 = I :

Aj+1 =
1

2
(Aj +A�1j ); j = 0; 1; 2; : : : with A0 = A: (3.8)

The iteration is globally and ultimately quadratically convergent with limj!1Aj = sign(A) [48, 36].
The iteration could fail to converge if A has pure imaginary eigenvalues (or, in �nite precision, if
A is \close" to having pure imaginary eigenvalues.) There are many ways to improve the accuracy
and convergence rates of this basic iteration [16, 33, 38].

The matrix sign function may also be used in the generalized eigenproblem A��B by implicitly
applying (3.8) to AB�1 [29]. We do not want to invert B if it is ill-conditioned, which is why we
want to apply the previous algorithm implicitly. This leads to the following iteration:

Aj+1 =
1

2
(Aj + BA�1j B); j = 0; 1; 2; : : : with A0 = A: (3.9)

Aj converges quadratically to a matrix C if B is nonsingular and A � �B has no pure imaginary
eigenvalues. In this case CB�1 is the matrix sign function of AB�1, and so following (3.7) we want
to use the QR decomposition to calculate the range space of P� = 1

2(I�CB�1), which has the same
range space as 2P�B = B�C. Thus we can compute the invariant subspace of AB�1 (left deating
subspace of A � �B) without inverting B, by computing the rank revealing QR decomposition of
B � C. The right deating subspace of A � �B can be obtained by applying this algorithm to
AH � �BH , since transposing swaps right and left spaces.

Now we consider the convergence of (3.9) when B is singular, and A��B has no pure imaginary
eigenvalues. By considering the Weierstrass Canonical Form of A � �B [27], it su�ces to consider
A0 = I and B a nilpotent Jordan block. Then it is easy to show by induction that

Aj = 2�jI +
2j � 2�j

3
B2 + O(B4)

so that Aj diverges to in�nity if B is 3-by-3 or larger, and converges to 0 otherwise. In the latter
case, the range space of B�Aj converges to the space spanned by e1 = [1; 0; :::; 0]T , which is indeed
a left deating subspace. The situation is more complicated in the former case.

By avoiding all explicit matrix inversions, and requiring only QR decomposition and matrix-
matrix multiplication instead, our new algorithms may eliminate the possible instability associated
with inverting ill-conditioned matrices. However, it does not avoid all accuracy or convergence
di�culties associated with eigenvalues very close to the unit circle. In addition, the generalized
eigenproblem has another possible source of di�culty: when A � �B is close to a singular pencil
[27, 22]. We shall discuss this further in sections 5 and 7.

The advantage of the new approach is obtained at the cost of more storage and more arithmetic.
For example, when the matrix A is real, Algorithm 1 needs 4n2 more storage space than standard
Newton iteration (some other iterations for the sign function which converge faster than Newton
require even more storage). This will certainly limit the problem size we will be able to solve.
Table 1 tabulates the arithmetic cost of one loop of the inverse free iteration versus the Newton
iteration (3.8) and (3.9) for the real ordinary and real generalized spectral divide and conquer
problems, respectively. From Table 1, we see that for the standard spectral divide and conquer
problem, the one loop of the inverse free iteration does about 6.7 times more arithmetic than the one
loop of the Newton iteration. For the generalized divide and conquer problem, it is about 2.2 times
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Table 1: The Arithmetic Cost of One Loop Iteration

The Real Ordinary SDC Problem

Inverse free iteration Newton iteration

SGEQRF 10
3 n

3 + O(n2) SGETRF 2
3n

3 + O(n2)
SORMQR 6n3 +O(n2) SGETRI 4

3n
3 + O(n2)

SGEMM(2) 4n3 +O(n2)

Total 13:3n3 + O(n2) Total 2n3 + O(n2)

The Real Generalized SDC Problem

Inverse free iteration Newton iteration

SGEQRF 10
3 n

3 + O(n2) SGETRF 2
3n

3 + O(n2)
SORMQR 6n3 +O(n2) SGETRI 4

3n
3 + O(n2)

SGEMM(2) 4n3 +O(n2). SGEMM(2) 4n3 +O(n2)

Total 13:3n3 +O(n2) Total 6n3 +O(n2)

more arithmetic. We expect that these extra expenses of the new approach will be compensated by
better numerical stability in some cases, especially for the generalized eigenproblem; see section 10.

4 Why the algorithms work

The simplest way we know to see why the algorithms work is as follows. We believe this is much
simpler than the explanation in [42], for example.

For simplicity we will assume that all matrices we want to invert are invertible. Our later error
analysis will not depend on this. It su�ces to consider the �rst half of Algorithm 2. We will exhibit
a basis for the pencil A � �B in which the transformations of the algorithm will be transparent.
From step 2) of Algorithm 2, we see that 

QH
11 QH

21

QH
12 QH

22

!
�
 

Bj

�Aj

!
=

 
QH
11Bj �QH

21Aj

QH
12Bj �QH

22Aj

!
=

 
R

0

!

so QH
12Bj = QH

22Aj or BjA
�1
j = Q�H

12 QH
22. Therefore

A�1j+1Bj+1 = A�1j Q�H
12 QH

22Bj = (A�1j Bj)
2

so the algorithm is simply repeatedly squaring the eigenvalues, driving the ones inside the unit disk
to 0 and those outside to 1. Repeated squaring yields quadratic convergence. This is analogous
to the sign function iteration where computing (A + A�1)=2 is equivalent to taking the Cayley
transform (A� I)(A+ I)�1 of A, squaring, and taking the inverse Cayley transform. Therefore, in
step 3) of Algorithm 2 we have

(Ap + Bp)
�1Ap = (I +A�1p Bp)

�1 = (I + (A�1B)2
p

)�1 : (4.10)

To see that this approaches a projector onto the right deating subspace corresponding to eigenval-
ues outside the unit circle as required by the algorithm, we will use the the Weierstrass Canonical
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Form of the pencil A� �B [27]. Write

A� �B = P 0
L

 
J0 � �I

J1 � �N

!
P�1
R

where P 0
L and PR are nonsingular, J0 contains the Jordan blocks of eigenvalues inside the unit

circle, J1 contains the Jordan blocks of eigenvalues outside the unit circle, and N is block diago-
nal with identity blocks corresponding to blocks of �nite eigenvalues in J1, and nilpotent blocks
corresponding to in�nite eigenvalues (identity blocks in J1) [27]. In this notation, the projector
�rst mentioned in section 2.3 is

PR;jzj>1 = PR

 
0

I

!
P�1
R

and the deating subspace in question is spanned by the trailing columns of PR.
Since J1 is nonsingular, we may write

A� �B = P 0
L

 
I

J1

! 
J0 � �I

I � �J�11 N

!
P�1
R � PL

 
J0 � �I

I � �J 00

!
P�1
R ;

(4.11)
where J 00 = J�11 N has all its eigenvalues either nonzero and inside the unit circle (corresponding
to �nite eigenvalues of J1) or at zero (corresponding to nilpotent blocks of N). Thus

A�1B =

 
PL

 
J0

I

!
P�1
R

!�1
�
 
PL

 
I

J 00

!
P�1
R

!
= PR

 
J�10

J 00

!
P�1
R

and

(Ap + Bp)
�1Ap = (I + (A�1B)2

p

)�1 = PR

 
(I + J�2

p

0 )�1

(I + J 02
p

0 )�1

!
P�1
R : (4.12)

Since J�2
p

0 ! 1 and J 02
p

0 ! 0 as p ! 1, the last displayed expression converges to PR;jzj>1 as
desired. The approximate projector (Ap +Bp)

�1Bp onto the other right deating subspace is just

I�(Ap+Bp)
�1Ap = (I+(A�1B)2

p

)�1(A�1B)2
p

= PR

 
(I + J2

p

0 )�1

(I + J 0�2
p

0 )�1

!
P�1
R (4.13)

which converges to

PR;jzj<1 = I � PR;jzj>1 = PR

 
I

0

!
P�1
R : (4.14)

The projectors

PL;jzj>1 = PL

 
0

I

!
P�1
L and PL;jzj<1 = I � PL;jzj>1 = PL

 
I

0

!
P�1
L

onto left deating subspaces are computed in Algorithm 2 by applying the same procedure to
AH � �BH , since taking the conjugate transpose swaps right and left spaces.
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We discuss the convergence rate of this iteration in the next section, after we have introduced
the condition number.

An alternative approach to computing the left deating spaces, which saves the cost of running
the algorithm again but requires a possibly ill-conditioned linear system to be solved, is as follows.
Note that

PL;jzj>1 � (A;B) = (PL

 
0

I

!
P�1
R ; PL

 
0

J 00

!
P�1
R ) = (A;B)

 
PR;jzj>1

PR;jzj>1

!
:

We can solve this for PL;jzj>1 by using the decomposition

 
AH

BH

!
= Q �

 
R

0

!

so
PL;jzj>1[R

H ; 0] = (APR;jzj>1; BPR;jzj>1)Q

and thus

PL;jzj>1 = (APR;jzj>1; BPR;jzj>1)Q

 
I

0

!
R�H :

The condition number of R is the same as the condition number of the n � 2n matrix (A; B).
If (A; B) is nearly singular, this means the pencil A � �B is nearly singular, which means its
eigenvalues are all very ill-conditioned, among other things [22]. We discuss this further below.

5 Perturbation theory

Algorithms 1 and 2 will work (in exact arithmetic) unless there is an eigenvalue on the unit circle.
This includes the case of singular pencils, in the sense that if A��B is a singular pencil then A�zB
will be singular for any z, including the unit circle. Thus the set of matrices with an eigenvalue on
the unit circle, or pencils such that A� zB is singular for some z on the unit circle, are the sets of
\ill-posed problems" for Algorithms 1 and 2.

Our goal is to show that the reciprocal of the distance to this set of ill-posed problems is a
natural condition number for this problem. This will rely on a clever expression for the orthogonal
projectors by Malyshev [42]. In contrast to Malyshev's work, however, our analysis will be much
simpler and lead to a potentially much smaller condition number.

We begin with a simple formula for the distance to the nearest ill-posed problem. We de�ne
this distance as follows:

d(A;B) � inffkEk+ kFk : (A+E)� z(B + F ) is singular for some z where jzj = 1g : (5.15)

This in�mum is clearly attained for some E and F by compactness. Note also that d(A;B) =
d(B;A) = d(AH ;BH) = d(BH;AH).

Lemma 1 d(A;B) = min� �min(A� ei�B).
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Proof. Let � = min� �min(A � ei�B). Then there is a � and an E such that kEk = � and
A + E � ei�B is singular, implying d(A;B) � kEk = �. To prove the opposite inequality, the
de�nition of d(A;B) implies that there are a � and matrices E and F with kEk+ kFk = d(A;B) such

that A +E � ei�(B + F ) = (A� ei�B) + (E � ei�F ) is singular. Thus

d(A;B) = kEk+ kFk � kE � ei�Fk � �min(A� ei�B) � �

as desired.

As a remark, note that essentially the same proof shows that for any domain D

minfkE; FkF : det((A+E)� z(B + F )) = 0 for some z 2 Dg = min
s;c

z=s=c2D

jsj2+jcj2=1

�min(cA� sB) ;

which is the natural way to extend the notion of pseudospectrum to matrix pencils [55].
Now we turn to the perturbation theory of the approximate projector computed in step 3) of

Algorithm 2, (Ap+Bp)�1Bp, which is also given by the formula in (4.13). Following Malyshev [42],
we will express this approximate projector as one block component of the solution of a particular
linear system (our linear system di�ers slightly from his). Let m = 2p. All the subblocks in the
following mn-by-mn linear system are n-by-n. All subblocks not shown in the coe�cient matrix
are zero.

Mm(A;B) �
0
B@

Zm�1
...
Z0

1
CA �

0
BBBBB@

�A �B
B

. . .

. . .
. . .

B �A

1
CCCCCA �

0
B@

Zm�1
...
Z0

1
CA =

0
BBBB@
�B
0
...
0

1
CCCCA � ~Bm (5.16)

If B or A were nonsingular, we could con�rm that the solution of (5.16) would be

0
BBBB@

Zm�1
Zm�2
...
Z0

1
CCCCA =

0
BBBB@

(B�1A)m�1(I + (B�1A)m)�1

(B�1A)m�2(I + (B�1A)m)�1

...
(I + (B�1A)m)�1

1
CCCCA or

0
BBBB@

(A�1B)(I + (A�1B)m)�1

(A�1B)2(I + (A�1B)m)�1

...
(A�1B)m(I + (A�1B)m)�1

1
CCCCA :

Thus we see that Z0 = (A�1B)m(I+(A�1B)m)�1 as in (4.13). By using the Weierstrass Canonical
Form of A� �B, we can change basis and solve this system explicitly without assuming A or B is
nonsingular. It will still turn out that Z0 = (Ap+Bp)

�1Bp. By using standard perturbation theory
for linear systems, we will get the perturbation theory for (Ap + Bp)�1Bp (or (Ap + Bp)�1Ap =
I � (Ap +Bp)

�1Bp) that we want.
The motivation for (5.16) in [42] is from a recurrence for the coe�cients of the Fourier expansion

of (B � ei�A)�1, but that will not concern us here.
We now change variables from Zi to Z0i = P�1

R ZiPR, which we should expect to block diagonalize
A, B and Zi and so decouple (5.16). Making this substitution, premultiplying the block equations
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in (5.16) by P�1
L , and using (4.11), we get

0
BBBBB@

� �A � �B

�B
. . .
. . .

. . .
�B � �A

1
CCCCCA �

0
BBBB@

Z0m�1
Z0m�2
...
Z00

1
CCCCA =

0
BBBB@
� �B
0
...
0

1
CCCCA (5.17)

where

�B =

 
I

J 00

!
and �A =

 
J0

I

!
:

Now we can write Z0j =

 
Zj;+

Zj;�

!
and decompose (5.17) into two systems,

0
BBBB@
�J0 �I
I �J0

. . .
. . .

I �J0

1
CCCCA �

0
BBBB@

Zm�1;+
Zm�2;+

...
Z0;+

1
CCCCA =

0
BBBB@
�I
0
...
0

1
CCCCA (5.18)

and 0
BBBB@
�I �J 00
J 00 �I

. . .
. . .

J 00 �I

1
CCCCA �

0
BBBB@

Zm�1;�
Zm�2;�

...
Z0;�

1
CCCCA =

0
BBBB@
�J 00
0
...
0

1
CCCCA : (5.19)

These equations are rather simple, and it is easy to verify that the following are the solutions:

0
BBBBBB@

Zm�1;+
Zm�2;+

...
Z1;+

Z0;+

1
CCCCCCA
=

0
BBBBBB@

Jm�10 (I + Jm0 )�1

Jm�20 (I + Jm0 )�1

...
J0(I + Jm0 )�1

(I + Jm0 )�1

1
CCCCCCA

and

0
BBBBBB@

Zm�1;�
Zm�2;�

...
Z1;�

Z0;�

1
CCCCCCA
=

0
BBBBBB@

J 00(I + J 0m0 )
�1

J 020(I + J 0m0 )
�1

...

J 0m�10 (I + J 0m0 )
�1

J 0m0 (I + J 0m0 )
�1

1
CCCCCCA

: (5.20)

Thus, we can reconstruct

Z0 = PRZ
0
0P

�1
R = PR

 
(I + Jm0 )�1

J 0m0 (I + J 0m0 )
�1

!
P�1
R

= PR

 
(I + Jm0 )�1

(I + J 0�m0 )�1

!
P�1
R

= (Ap + Bp)
�1Bp (5.21)

as given in (4.13).
Now we can ask how much Z0 can change when we change A and B in (5.16). We will answer

this question using a slight variation on the usual normwise perturbation theory, and take full
account of the structure of coe�cient matrix. In fact, we will see that we get the same condition
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number whether or not we take the structure into account or not. Let Im be an m-by-m identity
matrix, and Jm be an m-by-m matrix with 1 on the subdiagonal, and �1 in position (1; m). Then
one can easily con�rm that the coe�cient matrix in (5.16) can be written using the Kronecker
product 
 as

Mm(A;B) = �Im 
A+ Jm 
 B :

Since Jm is orthogonal, and hence normal, its eigendecomposition can be written Jm = U�UH ,
where U is a unitary matrix and � = diag(ei�1 ; :::; ei�m) is the diagonal matrix of eigenvalues, all of
which must lie on the unit circle. In fact, one can easily con�rm that the characteristic polynomial
of Jm is det(�I � Jm) = �m + 1, so the eigenvalues are m-th roots of �1. Then transforming
Mm(A;B) using the unitary similarity U 
 In, we get

(U 
 In)
HMm(A;B)(U 
 In) = �UHImU 
 A+ UJmU

H 
B

= �Im 
A+ �
B

= diag(�A + ei�1B; :::;�A+ ei�mB) :

Therefore, the smallest singular value of Mm(A;B) is min1�j�m �min(�A + ei�jB). As m grows,
and the process converges, this smallest singular value decreases to min� �min(�A+ei�B) = d(A;B).

This shows that d�1(A;B) is a condition number for (Ap+Bp)�1Bp, and in fact a lower bound bound
for all �nite m. We may also bound 

0
B@

Zm�1
...
Z0

1
CA

2

� kBk
d(A;B)

: (5.22)

6 Convergence analysis

Using equation (4.12), we will bound the error

k(Ap + Bp)
�1Ap � PR;jzj>1k = k(I + (A�1B)2

p

)�1 � PR;jzj>1k
after p steps of the algorithm. Our bound will be in terms of kPR;jzj>1k and d(A;B). It can be much
tighter than the corresponding bound in Theorem 1.4 of [42], for reasons discussed in section 8.

Theorem 1 Let d(A;B) be de�ned as in (5.15). Then if

p � log2
k(A;B)k � d(A;B)

d(A;B)

we may bound

k(Ap +Bp)�1Ap � PR;jzj>1k
kPR;jzj>1k

�
2p+3(1� d(A;B)

k(A;B)k)
2p

max(0; 1� 2p+2(1� d(A;B)

k(A;B)k)
2p)

: (6.23)

Thus, we see that convergence is quadratic, and depends on the smallest relative perturbation
d(A;B)

k(A;B)k that makes A��B have an eigenvalue on the unit circle; the smaller this perturbation, the
slower the convergence.

We begin the proof with an estimate on the growth of matrix powers. Many related bounds are
in the literature [55, 34]; ours di�ers slightly because it involves powers of the matrix Y �1X .
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Lemma 2 Let X � �Y have all its eigenvalues inside the unit circle. Then

k(Y �1X)mk �
8<
:

em �m �
�
1� d(X;Y )

kY k

�m
if m >

kY k�d(X;Y )

d(X;Y )

kY k
d(X;Y )

if m � kY k�d(X;Y )

d(X;Y )

:

where exp(1) � em � (1 +m�1)m+1 � 4, and limm!1 em = exp(1). We may also bound em �m �
e(m+ 1).

Proof of Lemma 2. Let r satisfy �(Y �1X) < r � 1, where �(Y �1X) is the spectral radius of
Y �1X . Then

k(Y �1X)mk =

 1

2�i

Z 2�

0
(rei�)m(rei�I � Y �1X)�1drei�


=

 1

2�i

Z 2�

0
(rei�)m(rei�Y �X)�1drei�Y


� rm+1kY k

min� �min(rei�Y �X)

=
rm+1kY k

min� �min(ei�Y �X + Y ei�(r� 1))

� rm+1kY k
min� �min(ei�Y �X)� kY k(1� r))

=
rm+1

d(X;Y )=kY k � 1 + r

� f(r)

We may easily show that if m � [kY k � d(X;Y )]=d(X;Y ), then f(r) has a minimum at �(Y �1X) <

r = m+1
m (1� d(X;Y )=kY k) � 1, and the value of this minimum is

m � (1 +m�1)m+1 � (1� d(X;Y )=kY k)m � m � em � (1� d(X;Y )=kY k)m :

If m � [kY k � d(X;Y )]=d(X;Y ), then the upper bound is attained at r = 1.

Completely analogously, one may prove the following lemma, which is a special case of a bound
in [55].

Lemma 3 Let X have all its eigenvalues inside the unit circle. Let dX � min� �min(e
i�I �X); dX

is the smallest perturbation of X that will make it have an eigenvalue on the unit circle. Then

kXmk �
(
em �m � (1� dX)m if m > 1�dX

dX
1
dX

if m � 1�dX
dX

:

where em is as de�ned in Lemma 2.

Proof of Theorem 1. By a unitary change of basis, we may without loss of generality assume
that

A � �B =

 
A11 A12

0 A22

!
� �

 
B11 B12

0 B22

!
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where the eigenvalues of A11 � �B11 are inside the unit circle, and the eigenvalues of A22 � �B22

are outside the unit circle. Let L and R be the unique matrices such that [22, 51] 
A11 A12

0 A22

!
� �

 
B11 B12

0 B22

!
=

 
I L

0 I

!
�
 
A11 � �B11 0

0 A22 � �B22

!
�
 
I R

0 I

!�1
:

Then, assuming for the moment that A is invertible, we get

A�1B =

 
I R
0 I

!
�
 
A�111 B11 0

0 A�122 B22

!
�
 
I R
0 I

!�1

and

PR;jzj>1 =

 
I R
0 I

!
�
 

0 0
0 I

!
�
 
I R
0 I

!�1
=

 
0 R
0 I

!
:

Then we see that Ep � (I + (A�1B)2
p
)�1 � PR;jzj>1 may be written

Ep =

 
I R
0 I

!
�
 

(I + (A�111 B11)
2p)�1 0

0 (I + (A�122 B22)
2p)�1 � I

!
�
 
I R
0 I

!�1

=

 
I R
0 I

!
�
 

(I + (B�1
11 A11)

2p)�1(B�1
11 A11)

2p 0
0 �(I + (A�122 B22)

2p)�1(A�122 B22)
2p

!

�
 
I R

0 I

!�1

=

 
(I + (B�1

11 A11)
2p)�1(B�1

11 A11)
2p 0

0 0

!
�
 
I �R
0 0

!

�
 

0 R

0 I

!
�
 

0 0
0 (I + (A�122 B22)2

p
)�1(A�122 B22)2

p

!
:

The derivation of this formula used the fact that A, and so A11, were nonsingular, but the �nal
formula does not require this. Since the rational function in the formula is correct o� the set
of measure zero where A is singular, and continuous on this set of measure zero, where the true
function is also continuous, it must necessarily be correct everywhere. Thus

kEpk � kPR;jzj>1k � (k(I + (B�1
11 A11)

2p)�1(B�1
11 A11)

2pk+ k(I + (A�122 B22)
2p)�1(A�122B22)

2pk)

� kPR;jzj>1k �
 

k(B�1
11 A11)

2pk
1� k(B�1

11 A11)2
pk +

k(A�122 B22)
2pk

1� k(A�122B22)2
pk

!

provided the denominators are positive. From Lemma 2, we may bound

k(B�1
11 A11)

2pk � 4 � 2p �
�
1� d(A11;B11)

kB11k
�2p

and k(A�122B22)
2pk � 4 � 2p �

�
1� d(A22;B22)

kA22k
�2p

for p su�ciently large. Since

d(A11;B11)

kB11k � d(A;B)

k(A;B)k and
d(A22;B22)

kA22k � d(A;B)

k(A;B)k
this yields the desired bound.
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A weakness in Lemmas 2 and 3 comes from using the single number d(A;B) (or dA) to characterize
a matrix. For example,

A1 =

0
B@ :5 1000 0

0 :5 1000
0 0 :5

1
CA and A2 =

0
B@ � 0 0

0 � 0
0 0 �

1
CA ;

where � � 1� 1:25 � 10�7 have the same value of dA, namely about 1:25 � 10�7. kAn
2k clearly never

increases, let alone to 1=dA � 8 � 106 as predicted by Lemma 3; in contrast kAn
1k gets as large

as 1:5 � 106. For large n, kAn
2k decreases precisely as (1 � dA)

n � :999999875n, as predicted by
Lemma 3; in contrast kAn

1k decreases much faster, as :5n. To see that both parts of the bound
can be attained simultaneously, consider diag(A1; A2). Despite the potential overestimation, we
will use d(A;B) in all our analyses in the paper, both because it gives tighter bounds than those
previously published, and in the inevitable tradeo� between accuracy and simplicity of bounds of
this sort, we have chosen simplicity.

One can use the bound in Lemma 3 to bound the norm of An computed in oating point [34];
this work will appear elsewhere.

7 Error analysis

Following Malyshev [42], the analysis depends on the observation that step 2) of Algorithm 2 is just
computing the QR decomposition of Mm(A;B), in a manner analogous to block cyclic reduction
[15]. Malyshev works hard to derive a rigorous a priori bound on the total roundo� error, yielding
an expression which is complicated and possibly much too large. It can be too large because it
depends on his condition number ! (see section 8) instead of our smaller d�1(A;B), because we use

the GQR decomposition instead of explicitly inverting (Ap + Bp) in step 3), and because worst
case roundo� analysis is often pessimistic. In algorithmic practice, we will use an a posteriori
bound max(kE21k; kF21k), which will be a precise measure of the backward error in one spectral
decomposition, rather than the a priori bounds presented here.

We begin by illustrating why step 2 of Algorithm 2 is equivalent to solving (5.16) using QR
decomposition. We take p = 3, which means m = 23 = 8. Let

 
Q
(j)
11 Q

(j)
12

Q
(j)
21 Q

(j)
22

!

be the orthogonal matrix computed in the jth iteration of step 2), and let

~Q(j) =

 
Q
(j)
21 Q

(j)
22

Q
(j)
11 Q

(j)
12

!
:

Then we see that step 2) of algorithm 2 is equivalent to the identity

~Q(j)H

 
�Aj 0 Bj

Bj Aj 0

!
=

 
Rj ? ?

0 Aj+1 Bj+1

!
(7.24)
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where the ?s are entries which do not interest us. Multiplying block rows 1 and 2, 3 and 4, 5 and
6, and 7 and 8 in (5.16) by ~Q(0)H and using (7.24) yields

0
BBBBBBBBBBBB@

R1 ? ?
0 �A1 �B1

? R1 ?
B1 0 �A1

? R1 ?
B1 0 �A1

? R1 ?
B1 0 �A1

1
CCCCCCCCCCCCA
�

0
BBBBBBBBBBBB@

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

1
CCCCCCCCCCCCA
=

0
BBBBBBBBBBBB@

?
�B1

0
0
0
0
0
0

1
CCCCCCCCCCCCA

:

Reordering the odd-numbered blocks before the even ones results in0
BBBBBBBBBBBB@

R1 ? ?
R1 ? ?

R1 ? ?
R1 ? ?

�A1 �B1

B1 �A1

B1 �A1

B1 �A1

1
CCCCCCCCCCCCA
�

0
BBBBBBBBBBBB@

Z7

Z5

Z3

Z1

Z6

Z4

Z2

Z0

1
CCCCCCCCCCCCA
=

0
BBBBBBBBBBBB@

?
0
0
0

�B1

0
0
0

1
CCCCCCCCCCCCA

: (7.25)

Repeating this with ~Q(1)H on the lower right corner of (7.25), and similarly reordering blocks, we
get 0

BBBBBBBBBBBB@

R1 ? ?
R1 ? ?

R1 ? ?
R1 ? ?

R2 ? ?

R2 ? ?
�A2 �B2

B2 �A2

1
CCCCCCCCCCCCA
�

0
BBBBBBBBBBBB@

Z7

Z5

Z3

Z1

Z6

Z2

Z4

Z0

1
CCCCCCCCCCCCA
=

0
BBBBBBBBBBBB@

?
0
0
0

?

0

�B2

0

1
CCCCCCCCCCCCA

: (7.26)

One more step with ~Q(2)H on the lower right corner of (7.26) yields

0
BBBBBBBBBBBB@

R1 ? ?

R1 ? ?
R1 ? ?

R1 ? ?

R2 ? ?
R2 ? ?

R3 ?
�A3 � B3

1
CCCCCCCCCCCCA
�

0
BBBBBBBBBBBB@

Z7

Z5

Z3

Z1

Z6

Z2

Z4

Z0

1
CCCCCCCCCCCCA
=

0
BBBBBBBBBBBB@

?
0
0
0

?

0

?

�B3

1
CCCCCCCCCCCCA

: (7.27)

Thus, we see again that Z0 = (A3 + B3)�1B3 as desired. It is clear from this development that
the process is backward stable in the following sense: the computed A3 + B3 (or more generally
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Am + Bm) in the transformed coe�cient matrix, and B3 (or Bm) in the transformed right hand
side, are the exact results corresponding to a slightly perturbed M2m(A;B)+�M2m and initial right
hand side ~B2m + � ~B2m , where k�M2mk = O(")k(A;B)k and k� ~B2mk = O(")kBk.

Next we must analyze the computation of QR in step 3) of Algorithm 2. As described in
section 2.3, if we use the GQR decomposition to compute QR without inverses, then QR is nearly the
exact orthogonal factor of (Am+Bm+E)

�1(Bm+F ) where kEk = O(")kAm+Bmk = O(")k(A;B)k,
and kFk = O(")kBmk = O(")kBk. We can take these E and F and \push them back" into �M
and � ~Bm, respectively, since the mapping from M2m(A;B) + �M2m to Am + Bm is an orthogonal
projection, as is the map from ~B2m to Bm. So altogether, combining the analysis of steps 1)
and 2), we can say that QR is nearly the exact answer for M2m(A;B) + �M 0

2m and ~B2m + � ~B0
2m

where k�M 0
2mk = O(")k(A;B)k and k� ~B0

2mk = O(")kBk. Since the condition number of the
linear system (5.16) is (no larger than) d�1(A;B), and the norm of the solution is bounded by (5.22)

the absolute error in the computed Z0 of which QR is nearly the true factor is bounded by2

O(") � kBk � k(A;B)kd�2(A;B) � O(") � k(A;B)k2d�2(A;B).
To bound the error in the space spanned by the leading columns ofQR, which is our approximate

deating subspace, we need to know how much a right singular subspace of a matrix Z0, i.e. the
space spanned by the right singular vectors corresponding to a subset S of the singular values, is
perturbed when Z0 is perturbed by a matrix of norm �. If Z0 were the exact projector in (4.14),
S would consist of all the nonzero singular values. In practice, of course, this is a question of rank
determination. No matter what S is, the space spanned by the corresponding singular vectors is
perturbed by at most O(�)=gapS [47, 54, 51], where gapS is the shortest distance from any singular
value in S to any singular value not in S:

gapS � min
� 2 S
�� 62 S

j� � ��j :

So we need to estimate gapS in order to compute an error bound. We will do this for Z0 equal to
its limit PR;jzj<1 in (4.14). There is always a unitary change of basis in which a projector is of the

form

 
I �
0 0

!
, where � = diag(�1; : : : ; �lR) is diagonal with �1 � � � � � �lR � 0. From this it

is easy to compute the singular values of the projector: f
q
1 + �21 ; : : : ;

q
1 + �2lR; 1; � � � ; 1; 0; : : : ; 0g,

where the number of ones in the set of singular values is equal to max(2lR � n; 0). Since S =

f
q
1 + �21; : : : ;

q
1 + �2lR; 1; � � � ; 1g, we get

gapS =

( q
1 + �2lR if 2lR � n

1 if 2lR > n
:

Thus, we get that in the limit as m!1, the error �QR in QR is bounded by

k�QRk = O(") � k(A;B)k2
d2(A;B) � gapS

: (7.28)

2This bound is true even if we compute the inverse of Am +Bm explicitly.
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A similar bound holds for k�QLk in Algorithm 2. Thus

kE21k � k(QL + �QL)
HA(QR + �QR)�QH

LAQRk = k�QH
LAQR + QH

LA�QRk+O("2)

� (k�QLk+ k�QRk)kAk+ O("2)

with a similar bound for kF21k.
So altogether, in the limit as m!1, we expect the following bound on backward stability3:

max

�kE21k
kAk ;

kF21k
kBk

�
� O(") � k(A;B)k2
d2(A;B) �min(gapSR ; gapSL)

� O(") � k(A;B)k2
d2(A;B)

; (7.29)

where gapSR refers to the gap in the singular values of PR;jzj<1, and gapSL refers to the gap in the
singular values of PL;jzj<1,

For simplicity, consider Algorithm 1, where PR;jzj<1 = PL;jzj<1. An interesting feature of the
error bound is that it may be smaller if 2lR � n than otherwise. This is borne out by numerical
experiments, where it can be more accurate to make the choice in step 3) of Algorithm 1 which
leads to A11 being smaller than A22. Also, when 2lR � n, the error bound is a decreasing function

of �lR. On the other hand, If �lR is large, this means �1 and so kPR;jzj<1k =
q
1 + �21 are large, and

this in turn means the eigenvalues inside the unit circle are ill-conditioned [22]. This should mean
the eigenvalues are harder to divide, not easier. Of course as they become more ill-conditioned,
d(A;B) decreases at the same time, which counterbalances the increase in �lR.

In practice, we will use the a posteriori bounds kE21k and kF21k anyway, since if we block upper-
triangularize QH

L (A � �B)QR by setting the (2; 1) blocks to zero, kE21k and kF21k are precisely
the backward errors we commit. If the next section, we will compare our error bound with those
in [42].

8 Remark on Malyshev's condition number

We have just shown that d�1(A;B) is a natural condition number for this problem. In this subsection,

we will show that Malyshev's condition number can be much larger [42]. Malyshev's condition
number is

! �
 1

2�

Z 2�

0
(B � ei�A)�1(AAH +BBH )(B � ei�A)�Hd�


=

 1

2�

Z 2�

0
(B0 � ei�A0)�1(B0 � ei�A0)�Hd�

 (8.30)

where A0 = (AAH +BBH )�1=2A and B0 = (AAH +BBH )�1=2B; this means A0A0H + B0B0H = I .
Malyshev begins his version of the algorithm by replacing A by A0 and B by B0, which we could
too if we wanted to.

Malyshev's absolute error bound on the computed Z0 is essentially O(")!2, whereas ours is
O(")d�2(A;B), assuming k(A;B)k � 1. We will show that d�1(A;B) can be as small as the square root of
!.

3In fact this bound holds for su�ciently large m as well.
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Since

�min(AA
H +BBH ) � d(A;B)

d(A0;B0)
� �max(AA

H + BBH )

it is su�cient to compare ! and d�1(A;B) when AAH + BBH is well-conditioned. Malyshev shows

that, in our notation, d�1(A0;B0) < 5�!, showing that d�1(A0;B0) is never much larger than !. Malyshev

shows that d�1(A;B) and ! can be close when B = I and A is real symmetric. By taking norms inside

the integral in (8.30), one gets the other bound
p
! � d�1(A;B), showing that d�1(A;B) can be as small

as the square root of !. To see that d�1(A;B) can indeed be this small, consider the following example.
Let A = I and B = D �N , where D is diagonal with entries equally spaced along any arc of the
circle centered at the origin with radius 0 < d < 1 and angular extent �=8, and N has ones on the
superdiagonal and zeros elsewhere. When d is close to 1 and the dimension of A is at least about
20, one can computationally con�rm that d�1(A;B) is close to

p
!. This example works because when

ei� is in the same sector as the eigenvalues of B, (B � ei�A)�1 is as large as it can get, and its
largest entry is in position (1; n):

1Qn
k=1(Bkk � ei�)

Thus the integral for ! is bounded above by a modest multiple of the integral of the square of the
magnitude of the quantity just displayed (times �max(AAH + BBH )), which is near its maximum
value d�2(A;B) for a range of � close to [0; �=8], so the integral is within a constant of d�2(A;B).

9 Stopping criterion

In this section we justify the stopping criterion used in Algorithms 1 and 2 by showing that Rj

converges quadratically.
From step 2) of Algorithm 2, we see that

Bj+1 = QH
22Bj = QH

22Q11Rj and Aj+1 = QH
12Aj = �QH

12Q21Rj :

For two symmetric non-negative de�nite matrices P1 and P2, we use the relation P1 � P2 to
mean that P2 � P1 is non-negative de�nite. The above relations imply

RH
j+1Rj+1 = BH

j+1Bj+1 +AH
j+1Aj+1

= RH
j

�
QH
11Q22Q

H
22Q11 + QH

21Q12Q
H
12Q21

�
Rj

� RH
j

�
QH
11Q11 +QH

21Q21

�
Rj

= RH
j Rj :

Since RH
j Rj � 0 for all j, the above relation implies that the sequence fRH

j Rjg converges. On
the other hand, since Rj can be viewed as a diagonal block in the upper triangular matrix of the
cyclic QR decomposition of the coe�cient matrix in (5.16), we have �min(Rj) � d(A;B). Hence

the sequence fRH
j Rjg converges to a symmetric positive de�nite matrix. Let this limit matrix be

RHR, where R is upper triangular with positive diagonal elements. It follows that the sequence
fRjg converges to R.
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To see the quadratic convergence of fRjg, we note that

RH
j+1Rj+1 = RH

j

�
QH
11Q22Q

H
22Q11 + QH

21Q12Q
H
12Q21

�
Rj

= RH
j Rj � RH

j (SjS
H
j + SHj Sj)Rj

where Sj = QH
11Q21. It then follows that Sj converges to the zero matrix. Furthermore, let

Rj+1 = (I +Ej)Rj , then Ej is upper triangular and the above relation implies that

(I + Ej)
H(I +Ej) = I � (SjS

H
j + SHj Sj) :

In other words, (I + Ej)
H(I + Ej) is the Cholesky factorization of I � (SjS

H
j + SHj Sj). Hence

kEjk = O(kSjk2) and
kRj+1 � Rjk � kEjk kRjk = O(kSjk2kRjk) :

Note that Q11 = BjR
�1
j and Q21 = �AjR

�1
j and so

Sj = �R�H
j BH

j AjR
�1
j :

In the following we establish the quadratic convergence of Sj . To this end we �rst establish a
recursive relation for the sequence fBH

j Ajg. Recall that by step 2) of Algorithm 2,

Bj+1 = QH
22Bj and Aj+1 = QH

12Aj :

Hence
BH
j+1Aj+1 = BH

j Q22Q
H
12Aj : (9.31)

Since
QH
12Bj � QH

22Aj = 0 ;

we have
QH
12 = QH

22AjB
�1
j :

On the other hand we also have
QH
12Q12 +QH

22Q22 = I :

Combining these two relations, we obtain that

Q12 = HH
j

�
I +HjH

H
j

�� 1
2 W

Q22 =
�
I +HjH

H
j

�� 1
2 W ;

where Hj = AjB
�1
j and W is an arbitrary n� n orthogonal matrix. Hence

Q22Q
H
12 =

�
I +HjH

H
j

��1
Hj

= Hj

�
I +HH

j Hj

��1
= AjB

�1
j

�
I +

�
AjB

�1
j

�H
AjB

�1
j

��1

= Aj

�
BH
j Bj + AH

j Aj

��1
BH
j :
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Substituting this relation into (9.31) we obtain

BH
j+1Aj+1 = BH

j Aj

�
BH
j Bj +AH

j Aj

��1
BH
j Aj : (9.32)

Recall that Rj+1 = (I + Ej)Rj and Sj = �R�H
j BH

j AjR
�1
j , equation (9.32) can be rewritten as

Sj+1 = �(I +Ej)
�HS2

j (I + Ej)
�1 ; (9.33)

with Ej = O(kSjk2). This establishes the quadratic convergence of fSjg and hence fRjg. We point
out that this implies that the sequence fBH

j Ajg also quadratically converges to the zero matrix.

10 Numerical experiments

In this section, we present results of our numerical experiments with Algorithms 1 and 2 and
compare them with the matrix sign function based algorithm. In all experiments we split the
spectrum along the imaginary axis. This means we apply Algorithm 1 to A0 = I�A and B0 = I+A
and Algorithm 2 to A0 = B�A and B0 = B+A. We focus primarily on the ordinary SDC problem
(Algorithm 1). All algorithms were implemented in MATLAB version 4.0a on a SUN workstation
1+ using IEEE standard double precision arithmetic with machine precision " � 2:2� 10�16.

The Newton iteration (3.8) for computing the matrix sign function of a matrix A is terminated
if

kAj+1 �Ajk1 � 10n"kAjk1:
The inner loop iteration in Algorithms 1 and 2 for computing the desired projector is terminated if

kRj �Rj�1k1 � 10n"kRj�1k1:
We set the maximal number of iterations maxit=60 for both the Newton iteration and the inverse
free iteration.

Algorithms 1 and 2 and the matrix sign function based algorithm work well for the numerous
random matrices we tested. In a typical example for the standard SDC problem, we let A be a 100
by 100 random matrix with entries independent and normally distributed with mean 0 and variance
1; A has condition number about 104. Algorithm 1 took 13 inverse free iterations to converge and
returned with kE21k1=kA21k1 � 5:44� 10�15. The matrix sign function took 12 Newton iterations
to converge and returned with kE21k1=kA21k1 � 2:12 � 10�14. Both algorithms determined 48
eigenvalues in the open left half plane, all of which agreed with the eigenvalues computed by the
QR algorithm to 12 decimal digits.

In a typical example for the generalized SDC problem, we let A and B be 50 by 50 random
matrices with entries distributed as above. Algorithm 2 took 10 inverse free iterations to compute
the right deating subspace, and 10 inverse free iterations for the left deating subspace, and
returned with kE21k1=kA21k1 � 3:31 � 10�15 and kF21k1=kB21k1 � 2:64 � 10�15. Using the QZ
algorithm, we found that the closest distance of the eigenvalues of the pencil A��B to the imaginary
axis was about 10�3.

We now present three examples, where test matrices are constructed so that they are ill-
conditioned for inversion, have eigenvalues close to the imaginary axis, and/or have large norm
of the spectral projector corresponding to the eigenvalues we want to split. Thus, they should be
di�cult cases for our algorithms.



27

Table 2: Numerical Results for Example 1

Newton iteration Inverse free iteration

�(A) � �2 rcond(A) iter kE21k1
kAk1

iter kE21k1
kAk1

1 6:83e� 2 7 2:19e� 16 7 3:14e� 16
10�2 3:18e� 2 14 1:26e� 15 14 1:75e� 15
10�6 3:12e� 2 27 2:21e� 11 27 1:94e� 11
10�10 4:28e� 2 41 3:65e� 07 40 1:56e� 07

In the following tables, we use rcond(A) to denote the estimate of the reciprocal condition
number of matrix A computed by MATLAB function rcond. �(A) = min�j2�(A) j<�jj is the

distance of the nearest eigenvalue to the imaginary axis. sep = sep(A11; A22) = �min(I
A11�AT
22


I) is the separation of matrices A11 and A22 [51], and kPk =
p
1 + kRk2 is the norm of the spectral

projector P =

 
I R

0 0

!
corresponding the eigenvalues of A11; R satis�es A11R� RA22 = �A12.

A number 10� in parenthesis next to an iteration number iter in the following tables indicates that
the convergence of the Newton iteration or the inverse free iteration was stationary at about 10�

from the iter th iteration forward, and failed to satisfy the stopping criterion even after 60 iterations.
All random matrices used below are with entries independent and normally distributed with

mean 0 and variance 1.

Example 1. This example is taken from [4, 1]. Let

B =

0
BBB@
�� 1 0 0
�1 �� 0 0
0 0 � 1
0 0 �1 �

1
CCCA ; G = R =

0
BBB@

1
1
1
1

1
CCCA
�
1 1 1 1

�
:

and

A = QT

 
B R
G �BT

!
Q:

where Q is an orthogonal matrix generated from the QR decomposition of a random matrix. As
� ! 0, two pairs of complex conjugate eigenvalues of A approach the imaginary axis, one pair at
about ��2 � i and the other pair at about ��2 � i.

Table 2 lists the results computed by Algorithm 1 and the matrix sign function based algorithm.
From Table 2, we see that if a matrix is not ill-conditioned to invert, the Newton iteration performs
as well as the inverse free iteration. When there are eigenvalues close to the boundary of our
selected region (the imaginary axis), the inverse free iteration su�ers the same slow convergence
and the large backward error as the Newton iteration. These eigenvalues are simply too close to
separate. Note that the Newton iteration takes about 6 to 7 times less work than the inverse free
iteration.

For this example, we also compared the observed numerical convergence rate of Algorithm 1 with
the theoretical prediction of the convergence rate given in Theorem 1. To compute the theoretical
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Figure 1: Convergence History of Example 1, � = 0:1

prediction, we need to estimate d(A;B). Algorithms for computing dA and related problems are
given in [44, 13, 12, 17, 28]. Since our examples are quite small, and we needed little accuracy, we
used \intelligent brute force" to estimate d(A;B).

Figure 1 plots the observed convergence rate of Algorithm 1 and the theoretical convergence
rate, which is the upper bound in (6.23), for the matrix A with � = 0:1. We estimated d(A0 ;B0) �
9:72�10�3, and k(A0; B0)k � 6:16. Although the theoretical convergence rate is an overestimate, it
does reproduce the basic convergence behavior of the algorithm, in particular the ultimate quadratic
convergence. Regarding the analysis of the backward accuracy as given in (7.29), for this example,
we have

kE21k
kAk � 7:87� 10�15 <

" k(A0; B0)k2
d2(A0;B0)

� 8:89� 10�11:

As we have observed in many experiments, the bound in (7.29) is often pessimistic, and so the
algorithm works much better than we can prove. We have some ideas on this but it is not complete.
More study is needed.

Example 2: In this example, A is a parameterized matrix of the form

A = QT ~AQ;

where Q is an orthogonal matrix generated from the QR decomposition of a random matrix,

~A =

 k k

k A11 A12

k 0 A22

!
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Figure 2: Eigenvalue distribution of 40 by 40 matrix A with k = 20, � = 0:45

Table 3: Numerical Results for Example 2

Newton iteration Inverse free iteration

�(A) rcond(A) sep kPk iter kE21k1
kAk1

iter kE21k1
kAk1

10�1 8:19e� 04 2:00e� 1 6:42e+ 0 9 8:15e� 16 9 2:49e� 16
10�3 1:61e� 07 2:00e� 3 2:07e+ 2 15(10�13) 4:23e� 12 15 1:19e� 15
10�5 4:12e� 12 2:00e� 5 8:06e+ 4 21(10�09) 3:27e� 07 22 8:46e� 15
10�7 1:38e� 15 2:00e� 7 2:29e+ 6 28(10�05) 2:09e� 04 28(10�13) 2:44e� 13

A11 =

0
BBBB@

1� � �

� 1� �
. . .

. . .

� 1� �

1
CCCCA ; A22 = �AT

11; 0 � � � 0:5;

and A12 is a random matrix. Note that the eigenvalues of A11 lie on a circle with center 1� � and
radius � and those of A22 lie on a circle with center �1 + � and radius �. The closest distance
of the eigenvalues of A to the imaginary axis is �(A) = 1 � 2�. As � ! 0:5, two eigenvalues of
A simultaneously approach the imaginary axis from the right and left. Figure 2 is the eigenvalue
distribution when k = 20 and � = :45.

Table 3 reports the computed results for di�erent values of � with k = 10. From this data, we
see that when the eigenvalues of A are adequately separated from the imaginary axis (�(A) � p

"),
the results computed by the inverse free iteration are superior to the ones from Newton iteration,
especially when the matrix is ill-conditioned with respect to inversion. This is what we expect from
the theoretical analysis of the algorithms. The following example further con�rms this observation.
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Table 4: Numerical results for Example 3

Newton iteration Inverse free iteration

d rcond(A) sep kPk iter kE21k1
kAk1

iter kE21k1
kAk1

1.0 4:09e� 06 1:36e� 03 7:39e+ 1 9(10�13) 4:56e� 14 10 7:08e� 16
0.5 1:29e� 06 2:37e� 04 4:32e+ 2 11(10�12) 1:99e� 12 10 1:66e� 15
0.3 3:43e� 10 4:71e� 06 2:76e+ 5 14(10�07) 4:55e� 09 15 1:64e� 15
0.2 6:82e� 11 3:94e� 07 5:48e+ 4 16(10�07) 2:76e� 08 12 1:43e� 13
0.1 8:12e� 14 1:54e� 10 7:48e+ 8 { (fail) 15(10�13) 3:66e� 11

Example 3. The test matrices in this example are specially constructed random matrices of the
form

A = QT

 
A11 A12

0 A22

!
Q; (10.34)

where Q is an orthogonal matrix generated from the QR decomposition of a random matrix.
Submatrices A11 and A22 are �rst set to be 5 � 5 random upper triangular matrices, and then
their diagonal elements replaced by djaiij and �djaiij, respectively, where aii(1 � i � n) are other
random numbers and d is a positive parameter. A12 is another 5 � 5 random matrix. As d gets
small, all the eigenvalues get close to the origin and become ill-conditioned. This is the hardest
kind of spectrum to divide.

The numerical results are reported in Table 4. All eigenvalues are fairly distant from the
imaginary axis (�(A) � O(10�3)), but the conditioning of the generated matrices with respect
to inversion can be quite large. The separation of A11 and A22 can also become small, and kPk
large, indicating that the eigenvalues are hard to separate. Table 4 gives results for d in the
set f1; 0:5; 0:3; 0:2; 0:1g. Again, Newton iteration is inferior to inverse free iteration for the ill-
conditioned problems. In particular, in the case of d = 0:1, we observed that from the fourth
Newton iteration onward rcond(A4) was about O(10�18), and that Newton failed to converge.
However, the inverse free iteration is still fairly accurate, although the convergence rate and the
backward accuracy do deteriorate.

11 Open problems

Here we propose some open problems about spectral divide and conquer algorithms.

1. In Algorithm 2, we test that whether lL is equal to lR, where lL is the number of eigenvalues
in the speci�ed region determined from computing the left deating space, and lR is the
number of eigenvalues in the speci�ed region determined from computing the right deating
space. Normally, we expect them to be the same, however, what does it mean when lL 6= lR?
Perhaps this is an indicator that the pencil is nearly singular.

2. Iterative re�nement, based either on nonsymmetric Jacobi iteration [21, 25, 26, 52, 45, 50,
49, 56] or re�ning invariant subspace ([19] and the references therein) could be used to make
E21 (and F21) smaller if they are unacceptably large.
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12 Conclusions and future work

In this paper, we have further developed the algorithms proposed by Godunov, Bulgakov and
Malyshev for doing spectral divide and conquer. With reasonable storage and arithmetic cost,
the new algorithms apply equally well to the standard and generalized eigenproblem, and avoid all
matrix inversions in the inner loop, requiring QR decompositions and matrix multiplication instead.
They form an alternative to the matrix sign function for the parallel solution of the nonsymmetric
eigenproblem.

Although the new approach eliminates the possible instability associated with inverting ill-
conditioned matrices, it does not eliminate the problem of slow or misconvergence when eigenvalues
lie too close to the boundary of the selected region. Numerical experiments indicate that the
distance of the eigenvalues to the boundary a�ects the speed of convergence of the new approach
as it does to the matrix sign function based algorithm, but the new approach can yield an accurate
solution even when the sign function fails. The backward error bounds given in section 7 are often
pessimistic. The new algorithms perform much better than our error analysis can justify. We
believe that in dealing with the standard spectral divide and conquer problem, the matrix sign
function based algorithm is still generally superior.

Future work includes building a \rank-revealing" generalized QR decomposition, devising an
inexpensive condition estimator, incorporating iterative re�nement, and understanding how to deal
with (nearly) singular pencils. The applications of the inverse free iteration for solving algebraic
Riccati equations deserves closer study too.

The performance evaluation of the new algorithms on massively parallel machines, such as the
Intel Delta and Thinking Machines CM-5, are underway and will be reported in a subsequent paper.
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