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Abstract

Concurrency control is essential to the correct functioning of a database due to the need for

correct, reproducible results. For this reason, and because concurrency control is a well formu-

lated problem, there has developed an enormous body of literature studying the performance

of concurrency control algorithms. Most of this literature uses either analytic modeling or ran-

dom number driven simulation, and explicitly or implicitly makes certain assumptions about the

behavior of transactions and the patterns by which they set and unset locks. Because of the

di�culty of collecting suitable measurements, there have been only a few studies which use trace

driven simulation, and still less study directed toward the characterizion of concurrency control

behavior of real workloads.

In this report, we present a study of three database workloads, all taken from IBM DB2

relational database systems running commercial applications in a production environment. This

study considers topics such as frequency of locking and unlocking, deadlock and blocking, duration

of locks, types of locks, correlations between applications of lock types, two-phase vs. non-two-

phase locking, when locks are held and released, etc. In each case, we evaluate the behavior of

the workload relative to the assumptions commonly made in the research literature, and discuss

the extent to which those assumptions may or may not lead to erroneous conclusions. We also

present a simple mathematical model which predicts the frequency of blocking to be expected in

these workloads, and compare those predictions to the observed frequency.

�This document is available as Technical Report No. UCB/CSD 94/801 from Computer Science Division (EECS), 571 Evans
Hall, University of California, Berkeley, CA 94720.

yThe authors' research is supported or has been supported in part by the National Science Foundation under grants MIP-
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1 Introduction

Concurrency control is essential to the correct functioning of a database due to the need

for correct, reproducible results. For this reason, and because concurrency control is a

well formulated problem, there has developed an enormous body of literature studying the

performance of concurrency control algorithms. Most of this literature uses either analytic

modeling or random number driven simulation, and explicitly or implicitly makes certain

assumptions about the behavior of transactions and the pattern by which they set and unset

locks. Because of the di�culty of collecting suitable measurements, there have been only a

few studies which use trace driven simulation, and we are aware of no studies which have been

principally directed at characterizing the concurrency control behavior of real workloads.

There have been a few studies of database systems using traces. Some have addressed the

issue of database bu�er management e.g. [30, 27, 20] studied IMS, [34] studied a CODASYL

system, and [17] has analyzed reference behavior in INGRES, a relational database system.

These studies, however, have not looked at the issue of concurrency control. Studying

concurrency control requires locking activity characteristics (both lock and unlock events),

and information about transaction boundaries.

There has also been one group of researchers [38, 39, 37, 40] who have used locking

traces from database systems for concurrency control studies. However, the thrust of their

research has not been to do an extensive data characterization, and they have provided

limited characterization of the transaction workloads they have used. Our main objective in

this report is to provide such a characterization.

A large number of researchers have studied concurrency control algorithms from a perfor-

mance point of view. The usual approach is to de�ne a transaction model consisting of four

sub-models: database model, transaction model, user model and system model. Given the

model description, there are two popular methods of analysis| through analytical means or

by stochastic simulations based on arti�cially constructed workload parameters (as opposed

to trace-driven simulations). It is well known that analytic modeling is limited in the range

of behavior assumptions that can employed if solutions are to be expected. Because of the

absence of an agreed-upon model of transaction locking behavior, or even the availability of

a variety of data and measurements, the simulation studies also make many assumptions.

We hope to rectify this problem through this report.

Section 2 will briey discuss some of the concepts and terminology we will need in this re-

port. In Section 3, we discuss our traces, and how they were collected and analyzed. Section

4 describes the generic concurrency control model and describes the various assumptions

which are present in most studies. A detailed look at the database related assumptions is

provided in section 5, where we also consider their validity and the sensitivity of system

performance to these assumptions. Section 6 does the same for transaction behavior as-
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sumptions. In Section 7, we present a model for estimating the inherent contention in the

workloads. In Section 8, we will use the model that we develop in Section 7 to estimate the

e�ect of correlation between the various lock types on the contention in the database system.

2 Terminology and Background

In this section, and in Appendix A, we provide an overview of the terminology and method-

ology used in concurrency control research, and introduce a few de�nitions which will be

useful in our out analyses.

We discuss the concept of transactions (as de�ned by [16]) in Appendix A. In there,

we also describe the various alternatives one has in implementing concurrency control in

databases| locking (with blocking, and with restarts), optimistic concurrency control (OCC)

and timestamping. In this report we will use the terms Lock and Unlock because the traced

systems use locking to provide concurrency control. Our workloads, however, are equally

applicable to the other approaches| OCC and timestamping. For these options the �rst

access to a data item can be interpreted as a Lock request and the last access can be

interpreted as an Unlock request.

2.1 Two phase locking vs non-two phase locking

If we choose locking to implement concurrency control, an important issue is two-phase

locking (2PL). 2PL means that transactions do not acquire new locks after they have released

one or more locks. Typically, only before a transaction is about to end does it know that it

does not need any more locks. 2PL is typically ensured by releasing all locks only at the end

of transactions.

None of the studies we are aware of have considered workloads where transactions release

locks before the the end of each transaction. In real database systems, however, locks actually

are released before end of transaction to provide better performance. In our traces, some of

the transactions (especially the long ones) release Read locks soon after they are acquired and

long before the transaction ends. Other transactions exhibit two-phase behavior| no locks

are released before the transaction commits. In all cases, however, Write locks are never

released before the end of transaction. This may be for two reasons| greater semantic

consistency (otherwise transactions may see changes in data if they read the same data after

they have written it) and also to avoid cascading aborts [15]. The locking behavior we have

just described corresponds to isolation level 31 as described in [10]. The disadvantage of this

1Isolation levels have been de�ned in [10] as the degrees of interference transactions can tolerate; higher levels provide
higher isolation but lower concurrency. Level 1 means that transactions cannot update any uncommitted changes by other
transactions. Level 2 prevents transactions from reading any uncommitted changes. Level 3 does not allow a transaction to
change a record on which another transaction holds a Read lock. Level 4 does not allow a transaction to change a record which
another transaction has seen.
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level is that it allows non-serializable behavior of transactions. As [13] has shown, two-phase

locking (which corresponds to isolation level 4 of [10])) is a necessary and su�cient condition

for serializability if transactions are allowed to access data in any arbitrary order. However,

in most applications, the access order to the data has some restrictions and releasing some

locks before end of transaction may also be su�cient for serializability. An example of this

is access to B-tree locks where locks can be released and serializability can be maintained at

the same time [2].

2.2 Cursor locks

We use the term Cursor locks to denote the Read locks which are unlocked before the end

of transactions. We call them Cursor locks because usually the purpose of these locks is

to guarantee the stability of the cursor pointer on the relation while data is being accessed

from the relation [24]. These locks are held only while the object is being accessed. The

non-Cursor locks are simply referred to as Read or Write locks. Although Cursor locks are

typically held for a much shorter time than Read locks, they can still have a signi�cant e�ect

on performance, since the transaction acquiring the Cursor lock may have to wait a long

time for that lock, even though it then holds it for only a short period.

2.3 Index locks

Index locks (used to provide fast access to data) also have to be locked to maintain trans-

action isolation; relational database systems often use B-trees to implement indexes. Most

concurrency control performance studies have ignored the contention for index locks, al-

though some recent studies have considered this issue speci�cally [19, 31]. We do not know

of any study which has considered the performance of both index and data locking simulta-

neously. Because of the high use of index locks, they have the potential to cause signi�cant

performance problems. The fact that the systems we measured use subpages as the granu-

larity of index locks (as opposed to pages for data) suggests that index contention may have

been a problem in the past with some systems, although this has not been documented. In

this report, locks on index subpages and data pages are simply referred to as index locks

and data locks, respectively.

2.4 Locktimes and lockfractions

We de�ne the term locktime of a lock as the length of time that the lock is held. All measured

times in this report are real (not virtual) times on the traced database systems. The locktime

of a transaction is de�ned as the sum of the locktimes for all the locks it acquires. Locktime

is an important quantity| it indicates how long a transaction may have to wait to acquire

a lock which conicts with a lock already held by another transaction. Note that the ratio
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of the locktime of a transaction and the length of the transaction gives the average number

of locks held by the transaction during its lifetime.

Unlike Cursor locks, all Read and Write locks are released only at the the end of the

transaction. Locktimes for Read and Write locks should therefore be closely related to

transaction length, unless most locks are acquired at the end of transactions. We de�ne

lockfraction, as the ratio of locktime to transaction length. For Read and Write locks,the

lockfraction also indicates the fraction of the remaining lifetime when the lock is acquired.

3 Description of Traces

In this section, we describe our traces and the systems from which they were collected.

The data analyzed in this report has been collected from three di�erent commercial in-

stallations: Security Paci�c Bank (referred to as bank), Crowley Maritime Corp. (transport)

and an anonymous telecommunications company (phone). The description of the relevant

hardware and software con�gurations of the three sites appears in Table 1.

Two of the traces, bank and transport have been traced using the IBM DB2 GTF tracing

facility [18]. The process of gathering these traces and a detailed description of the traced

events appears in [35]. The phone trace has been gathered using a new and much more

e�cient tracing package [24], discussed further below. The DB2 tracing facility is able to

activate tracing for any subset of fourteen di�erent event-classes, for example SQL events,

I/O events, and Lock events. Each event class causes trace records to be logged for a number

of di�erent system events.

The traces studied are trace segments containing contiguous trace information, without

any breaks in the tracing period, collected from multiprocessor shared-memory (centralized)

systems. The database management system at all three sites was DB2, IBM's relational

database management system for IBM 3090 mainframes [12]. While these three traces may

not completely represent the entire spectrum of transaction processing applications, our

report still provides a good characterization of locking behavior in three very di�erent trans-

action processing environments. To our knowledge, no other work in the published literature

covers such a varied workload.

Locking entries

For our analysis, we used the Lock and Unlock entries from the traces. Data pages are locked

in one page (4K Bytes) units. Indexes may be locked on a subpage partition; each index

page is a B-tree node. The number of partitions is user-de�ned and variable per trace. We

observed up to 16 partitions per page for some indexes in our traces.

The DB2 traces contain 3 kinds of locks| Read, Write and Update. Write locks conict

with each other and with Read locks. Update locks guarantee the same semantic consistency
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Site Phone Bank Transport

Company (anonymous) Security Crowley
Paci�c Maritime

Trace Date 10/15/90 3/16/88 7/25/88

Hardware
CPU IBM 3090-600J IBM 3090-200 Hitachi/NAS XL80

(12) (2)
Disks IBM 3380/90 IBM 3380 IBM 3380

(35) (15) (20)

Software
OS MVS-XA 3.1 MVS-XA 2.1.7 MVS-XA 2.1
DB2 Release Release 1 Release 3 Release 3

Version 2.1 Version 1.3 Version 1.3

Trace
Size 216.91MB 307.69MB 567.58MB
Time 30min 1h 15min 3hr
Entries 8112768 830478 1834422
TPS 4.955 0.341 0.544

Table 1: Description of the trace sites and the traces. Entries refers to the total number of trace entries per
traces (bu�er manager and locking entries). TPS refers to transactions/second.

as Read locks; however, only Update locks are allowed to be upgraded to Write locks. Update

locks do not conict with Read locks, but conict with each other and with Write locks. The

reason for having Update locks, instead of directly upgrading Read locks, is to avoid possible

future deadlocks at the cost of higher contention [10]. The performance tradeo�s of Read

locks vs Upgrade locks are not obvious and, to our knowledge, such tradeo�s have never

been studied in the literature. Since the functionality provided by Update locks is identical

to Read locks, for this report we have mapped all Update locks to Read locks.

Transactions

Individual transactions in the trace are identi�ed with a �eld called the ACE address, which

identi�es the address space of the process. There are no Begin Transaction or End Trans-

action entries in the traces. We have, therefore, chosen the time the �rst lock request is

issued by a transaction as the beginning of the transaction lifetime. There is, however, a

special unlock entry which says Unlock all locks owned by this ACE address. We use this

to decide when a transaction ends. Our de�nition of transaction boundaries is smaller than

the actual boundaries| we neglect the work done before the �rst lock request and after the

last unlock request. However, we include all the work done while any locks were held. Since

we are interested in concurrency control contention, this should be su�cient. Note that the

actual system load and the transaction lengths will be greater than what is reported here.

We refer to the number of active transactions at any moment as the multiprogramming level

(MPL) of the system.
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In this report, we measure various characteristics of the transactions. Using the method

described above we have associated a transaction identi�er with each trace entry. Then we

unraveled the trace to separate the entries belonging to one transaction from the entries

belonging to other interleaved transactions. Most measurements in this report have been

done from this pool of transactions. This pool is what would be required, along with the

ordering of transactions, if we were to use our traces for a trace-driven concurrency control

model simulation.

Note that a transaction sometimes represents a smaller unit of work than a job, since a

user job may spawn a number of transactions. A transaction is a complete unit of work,

however, in that it releases all locks it owns when it �nishes.

Timestamps

In two of the traces, bank and transport , all trace entries are tagged with a timestamp. In

the phone trace, the timestamps have been synthesized by linearly interpolating time epochs

from some entries which record timestamps. There is a special trace entry periodically

records the time (every 32KB, or 1142 trace entries), and some of the trace entries (like

Commit and a few others which we do not use in our analyses) do have timestamps.

Since our objective is to characterize the transaction workloads in real databases, we

have removed lock-wait intervals from the traces for most of our analyses. This is done for

a particular transaction by advancing the timestamps of the transaction entries that follow

the lock-wait by the duration of the lock-wait interval. Only in Section 7, where we compare

projected contention in the workload to the real measured contention, do we use the lock-

wait intervals. The motivation to exclude existing lock-wait intervals is clear| we want to

characterize the transaction workload that is loaded on the system, and not how the traced

DB2 system processed that workload. Lock-waits represent one instantiation (one particular

interleaving of transactions) of the workload; they are not part of the inherent workload. In

fact, lock-waits represent a performance index, an output, for concurrency control studies.

We obtained bank and transport traces using the GTF tracing package, which imposes a

substantial system overhead (of the order of 100%{200% is reported in [35]). GTF logs an

enormous amount of information per trace entry, much of which (about 88% by volume) is

not used for our analysis. This overhead may a�ect us in two ways. It may a�ect the validity

of the durations of the transactions. However, in this report we are not interested in the

absolute time values. All time values must be considered relative to each other. We make the

reasonable assumption that all transactions are a�ected by the overhead equally. Another

side-e�ect of the overhead is that the users' behavior may change due to this overhead.

Although this may reect on the system MPL, we have no reason to believe that it a�ects

the mix of the transactions in the workload substantially. The phone trace has been logged

using a very e�cient new tracing package which incurs an overhead of about 2%{5% [24].
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In fact we have been told that the users of the database system did not perceive any change

in the system performance. Clearly this eliminates the possibility of the second side-e�ect

we just discussed. Note that we also assume that all transactions are stretched equally due

to multiprogramming e�ects.

System activity in the traced systems

In this subsection, we present the level of system activity in the database systems we traced.

Figure 1 shows the transaction multiprogramming level and the average number of trans-

actions waiting on lock requests. The �gure represents a average number of transactions

calculated using a continuous window of time (2min, 1min and 30sec for transport, bank and

phone, respectively). The window size has been chosen for each trace to provide reasonable

smoothing.

Because of the way we have de�ned transaction lifetimes earlier in this section, the �gure

represents a lower level of activity than the actual system| processes which do not lock any

items are not counted; also portions of transaction lifetimes before the acquisition of �rst

lock and after the release of all locks, are not counted.

The �gure shows a relatively low multiprogramming level for the transport and bank

traces. One of the reasons for this might be that the heavy overload of GTF tracing caused

the transaction load to be less than the usual load, due both to the scheduler decreasing the

MPL, and to users withdrawing from the system due to unresponsiveness. These two traces

also show a near-zero level of lock contention. On the other hand, the phone plot shows a

signi�cant degree of contention. One interesting observation from the phone plot is the fact

that the contention level mimics the MPL level so closely. This suggests that the system

is trying to maintain the number of active transactions (those not blocked for locks) at a

constant. This would suggest a load control policy which is based solely on the number of

active transactions, and ignores the number of transactions blocked for locks. Such a policy

increases the MPL under high contention levels and is likely to make things worse. See [26, 7]

for a discussion of load control policies.

4 Concurrency control modeling

In this section we describe the generic concurrency control model used in most concur-

rency control analyses, and note also the various assumptions made in such modeling. Most

assumptions have two avors| behavioral assumptions (e.g. selection of exponential dis-

tributions) and assumptions about parameter settings (e.g. the value of the mean for that

exponential distribution).

There are four main components of a concurrency control model: the database model,

the user model, the transaction model and the system model.
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Figure 1: Transaction load for the traces. The number of transactions denotes an average over a time-period.
The time-period is 120 sec, 15 sec and 30 sec, respectively, for the three traces. Lock-wait denotes the average
number of transactions waiting because of lock conicts.
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Database model

The database model captures the characteristics of the database, like the database size,

data distribution on multiple nodes, data replication, and the access pattern. A relational

database, for example, is composed of several relations or tables. Each of the relations might

be stored in one or more �les. A relation is comprised of a set of tuples, such that each of

these tuples is de�ned over the same attributes.

In concurrency control modeling studies, typically, a database is modeled as a collection

of �xed size data items. Data items are grouped into granules to form units of access

and concurrency control. With the exception of studies analyzing e�ects of granularity on

concurrency control performance [9, 28], one granule usually comprises one data item, and

is the unit of I/O access or concurrency control. In most commercial systems, granules are

de�ned on a physical scale and not on a logical scale; locks are usually per page and are not

related to the record sizes or the table sizes. In the context of this report, one lockable item

or object can be interpreted to be one granule.

Clearly the number of the data items is an important parameter because it directly a�ects

the amount of contention. The higher the number of granules, other parameters remaining

identical, the lower is the contention. However, as we will see later, the number of lockable

items in the database has been frequently underestimated in order to obtain non-negligible

(and \interesting") levels of contention in the system.

The access pattern of the data items has often been modeled as being uniform over the

entire database. To model non-uniform access some models have used a 80{20 or a 50{5 [11]

access behavior. Note that a b{c access behavior means that b% of the accesses go to c% of

the data items.

Although concurrency control performance for indexes has been studied in isolation [31],

we don't know of a study that has analyzed the e�ects of index and data locking in the same

framework. Since index pages have a B-tree structure, as opposed to the at structure of

the data items, it is reasonable to expect di�erent conict patterns for data and index locks.

Many, particularly early, studies, have assumed that all locks were Write locks to simplify

the analyses. However, modeling both Read and Write locks requires only the Write locks to

conict with other Write locks and Read locks. Also, Read locks requests may have to wait

while another Read lock request is active if a Write lock request lies in the queue. In real

systems, most locks are Read locks. For realistic modeling, we need to �nd out the fraction

of Write locks. Also, it has to be determined if the Read/Write ratio is dependent on how

frequently an item is locked. Clearly if a more frequently accessed object is Write-locked less

frequently than another object, this page would be less of a factor in the overall contention.

This sort of behavior may certainly be expected in the index root pages which are accessed

much more often than the leaf pages.

Another aspect of modeling Read and Write locks is Write-lock acquisition. The issue
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here is whether Write locks are set on items to be updated when they are �rst read, or

whether such items are Read-locked and later the Read locks are upgraded to Write. [1] has

studied this assumption and concluded that there is a signi�cant di�erence in performance

between the two cases. Also, di�erent locking algorithms are a�ected to di�erent degrees by

this assumption.

User model

The user model describes the arrival process of the user transactions at the system. The

arrival process is generally modeled either as an open system [9] (invariably as an exponential

inter-arrival distribution) or as a closed system [33] where the users circulate through the

system and resubmit transactions after the previous ones are executed. The users' transac-

tions may be batch-type (non-interactive) or interactive. For a closed system, an external

think time (deterministic or variable) may be modeled as the mean time between a transac-

tion completion and the next submission from the same terminal. Open system models are

invariably modeled using a Poisson arrival process. The transactions in our workloads come

from both batch-mode submissions and interactive transactions. We do not have enough

information in our traces to distinguish between the two.

Transaction Model

For our purposes, a transaction can be characterized by a string of concurrency control re-

quests, CPU and I/O processing requests and intra-transaction think times. The transaction

model de�nes how these various components combine to form a transaction. The various pa-

rameters are the total length of the transactions, order of the CPU, I/O, concurrency control

and think time requests, total number of these requests per transaction, duration between

requests, portion of database accessed by these requests, etc. A simple model would be to

have one class of transactions, each transaction comprised of same number of concurrency

control requests, identical duration between the requests without explicitly modeling CPU

and I/O computation, and all data items being equally likely to be accessed on any access.

The modeling of transaction lengths is very important. While the mean of transaction

lengths is an important parameter, the variation of the transaction lengths is also important,

since it is well known in queueing systems that ow times increase with service time variance

as well as mean [21].

System model

The system model captures the relevant characteristics of the system design (both hardware

and software), including the physical resources (CPUs and disks), their performance param-

eters, and their associated schedules. The schedule refers to the both sequencing of CPU and
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I/O requests and the amounts of service needed. The CPU and I/O time per logical service

are speci�ed as model parameters. The models also include the CPU service discipline, the

number of CPUs for multiprocessors and the CPU con�guration for distributed systems.

With the growing interest in distributed database systems, varying the system model con�g-

uration and studying its e�ects on concurrency control performance has become a popular

area of research [36, 8].

A few studies have not modeled the system resources at all. They assume that the rate of

processing for an individual transaction remains constant independent of the multiprogram-

ming level. This is equivalent to assuming in�nite system resources. Although this approach

might appear to limit the applicability of such studies to real systems, they do isolate the

e�ects of data contention from resource contention on the system performance.

To the extent that the physical system con�guration is su�cient for the o�ered workload,

the issue of the system model is largely separable from modeling the transaction workload.

This report addresses the latter issue, and we do not consider the system model further here.

Models in the Literature

We describe many concurrency models from the literature in Appendix B. There we discuss

how each of these models address the various issues discussed above.

5 Modeling the database

In this section we will present the database-related characteristics of our workloads, and how

the trace characteristics correlate with the assumptions in the literature. Speci�cally, we will

look at the access distribution of locks over the database, the extent of index locking, the

distribution of and correlation between Read, Write and Cursor locks, Write-locks, and the

importance of Cursor locks.

5.1 Access distribution

The access distribution of locks has a signi�cant impact on the contention. A uniform

distribution would equally distribute the contention equally over all items and would be

the best for system performance. With an increase in skew of the distribution, the items

locked more often tend to become bottlenecks (similar to the convoy phenomenon in [5]).

The knowledge of the skew in real database systems should be useful for future modeling

studies; here we present the actual pattern of distribution of all locks over the data and index

items in the database. In Figure 2, we show the skew in the distribution separately over the

index and data items (the data for this �gure is provided in Appendix C). Table 2 gives the

complete statistics about number of locks, type of locks and locktimes.
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Figure 2: Distribution of locks over the index and database items. The three sets of plots are for transport,
phone and bank respectively. Root refers to the root of B-tree indexes. Read and Write (and Cursor for
phone) lock distributions for non-Root index items are almost identical to the ones in the �gure because
Root pages acquire these kinds of locks very rarely, as seen in Table 2.

The three traces show di�ering amounts of skew. Transport appears to have the highest

skew and bank appears to have the lowest. These plots indicate that the common 80{20 and

50{5 estimates both appear to be reasonable. The Root pages of the B-tree indexes form a

signi�cant portion of the total Cursor locks for transport and bank (even though the number

of Root items is insigni�cant compared to the non-Root ones, as seen in Table 2); so in

Figure 2 we have also shown the skew for Cursor non-Root items. The �gure shows that if

we disregard the Root locks, the skew is much lower.

Table 2 provides data about the number of lockable items in the database, and the

distribution of the three lock types over these items. It also shows the extent of index locking.

Judging from the number and locktimes of index locks in this table, it would appear that

index locking should indeed be a part of concurrency control analyses. In section 7, when

we present a model of contention measurement, we will get more insight into the importance
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Total Cursor Locks Read Locks Write Locks
items Items Locks L-time Items Locks L-time Items Locks L-time

Transport:
Data 37956 37291 541262 17235.5 780 29189 75522.1 416 1476 2511.1

73.9% 75.8% 80.1% 62.8% 53.0% 58.0% 64.3% 17.8% 27.8% 41.8%
100.0% 98.2% 94.6% 18.1% 2.1% 5.1% 79.3% 1.1% 0.3% 2.6%

Index 255 233 74772 990.1 12 126 147.8 21 59 22.4
Root 0.5% 0.5% 11.1% 3.6% 0.8% 0.3% 0.1% 0.9% 1.1% 0.4%

100.0% 91.4% 99.8% 85.3% 4.7% 0.2% 12.8% 9.2% 0.1% 1.9%
Index 13157 11644 59821 9211.0 680 21036 41783.0 1899 3783 3469.9
Non-Root 25.6% 23.7% 8.9% 33.6% 46.2% 41.8% 35.6% 81.3% 71.1% 57.8%

100.0% 88.5% 70.7% 16.9% 5.2% 24.9% 76.7% 14.4% 4.5% 6.4%

Phone:
Data 82859 82260 873599 16049.6 1367 4609 446.7 1413 9787 2266.2

20.2% 20.4% 38.6% 50.6% 30.6% 37.1% 34.0% 13.6% 31.1% 22.1%
100.0% 99.3% 98.4% 85.5% 1.7% 0.5% 2.4% 1.7% 1.1% 12.1%

Index 76 73 10493 7.9 2 4 0.9 7 16 2.9
Root 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0%

100.0% 96.1% 99.8% 67.5% 2.6% 0.0% 7.7% 9.2% 0.2% 24.8%
Index 327872 320966 1379964 15678.5 3093 7820 865.8 8956 21599 7968.5
Non-Root 79.8% 79.6% 60.9% 49.4% 69.4% 62.9% 65.9% 86.3% 68.8% 77.9%

100.0% 97.9% 97.9% 64.0 0.9% 0.6% 3.5% 2.7% 1.5% 32.5%

Bank:
Data 96009 95974 134052 10038.4 35 82 16362.1 32 63 139.3

60.9% 61.0% 42.0% 47.7% 26.9% 14.6% 66.2% 36.8% 34.1% 34.3%
100.0% 100.0% 99.9% 37.8% 0.0% 0.1% 61.7% 0.0% 0.0% 0.5%

Index 59 57 93088 1287.9 3 4 0.0 0 0 0.0
Root 0.0% 0.0% 29.2% 6.1% 2.3% 0.7% 0.0% 0.0% 0.0% 0.0%

100.0% 96.6% 93.4% 100.0% 5.1% 6.6% 0.0% 0.0% 0.0% 0.0%
Index 61500 61399 91858 9730.8 92 474 8365.2 55 122 266.4
Non-Root 39.1% 39.0% 28.8% 46.2% 70.8% 84.6% 33.8% 63.2% 65.9% 65.7%

100.0% 99.8% 99.4% 53.1% 0.1% 0.5% 45.7% 0.1% 0.1% 1.2%

Table 2: Distribution of Locks among various types of lockable items. Total items denotes the total number
of distinct items in the trace; since some items are locked as more than one lock type, this total is less than
the sum of item total for the three lock types. The upper percentages in each box represent the ratio of
the statistic to the sum of statistics in that column. The lower percentages are the horizontal percentages
reecting the contribution of one lock type among the three lock types. L-time refers to locktime in seconds.
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of index locking.

5.2 Cursor locks

Cursor locks have not generally been modeled because use of these locks can lead to semantic

inconsistency, since they allow non two-phase locking and permit non-serializable behavior.

In commercial systems, however, Cursor locks are indeed used, as is evident from Table

2. That table shows that Cursor locks dominate the total number of locks, and account for

greater than 96% of all locks in all cases, except for Index Non-Root locks in transport, where

they account for more than 70% of the total. One may argue that Cursor locks are locked

for relative insigni�cant amounts of times compared to other locks, and hence they can cause

little contention. Looking at the table, this is clearly not the case because the total locktimes

of Cursor locks is not insigni�cant when compared to Read and Write locktimes, even though

the individual locktimes for Cursor locks might be more than an order of magnitude lower

than that of Read and Write locks. It is important to note that while a Cursor lock may be

only held for a short period of time, there may be a signi�cant delay in obtaining a Cursor

lock, during which time the transaction waits.

5.3 Correlation between lock types

In this subsection we will study if for a certain lock item, the number of locks of one lock

type is correlated with the number of lock types of another type. For example, a positive

correlation between Cursor or Read locks and Write locks would indicate that we can expect

more contention from Cursor-Write or Read-Write conicts. The system performance is

sensitive to the correlation between pairs of lock types; negative correlation is desirable for

lower contention.

In the studies that have assumed a uniform access distribution of locks over all items, the

item identi�er for each lock request is chosen randomly and independently of anything else

from the set of all items. Likewise, independently of the item, with a certain probability, the

lock request is a Write request. Thus there is no correlation between Read and Write locks.

Studies which have modeled a non-uniform b{c distribution have also chosen Write requests

with a probability independent of anything else. Thus pages more likely to be Read locked

are assumed to be more likely Write locked.

In real systems, for an arbitrary item, the number of locks belonging to the three types

are not independent of one another. There will be objects which will almost always be read

and rarely updated. On the other hand, for another set of objects, Write locks for that

object may far outnumber the two other types.

To check if there is any correlation between the lock types we look at correlation between

ranks of the lock types; rank correlation is measured using the standard Spearman rank
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Lock Type Pair # of objects Test statistic �̂ .95 test quantile Reject H0 ?

Transport:
Cursor-Read 37956 0.1884 0.0101 Yes

Data Cursor-Write 37956 0.2587 0.0101 Yes
Read-Write 37956 0.1662 0.0101 Yes
Cursor-Read 13412 {0.2094 0.0169 Yes

Index Cursor-Write 13412 -0.3192 0.0169 Yes
Read-Write 13412 0.2757 0.0169 Yes

Non-Root Cursor-Read 13157 {0.2078 0.0170 Yes
Index Cursor-Write 13157 {0.3185 0.0170 Yes

Read-Write 13157 0.2778 0.0170 Yes

Phone:
Cursor-Read 82859 0.0053 0.0068 No

Data Cursor-Write 82859 {0.0033 0.0068 No
Read-Write 82859 0.3591 0.0068 Yes
Cursor-Read 327948 {0.0458 0.0034 Yes

Index Cursor-Write 327948 {0.1828 0.0034 Yes
Read-Write 327948 0.3291 0.0034 Yes

Bank:
Cursor-Read 96009 {0.0110 0.0063 Yes

Data Cursor-Write 96009 {0.0201 0.0063 Yes
Read-Write 96009 {0.0003 0.0063 No
Cursor-Read 61559 {0.0502 0.0079 Yes

Index Cursor-Write 61559 {0.0269 0.0079 Yes
Read-Write 61559 0.1789 0.0079 Yes

Non-Root Cursor-Read 61500 {0.0501 0.0079 Yes
Index Cursor-Write 61500 {0.0269 0.0079 Yes

Read-Write 61500 0.1818 0.0079 Yes

Table 3: Spearman test for checking independence between two di�erent lock types.

correlation test [6]. For each page we have measured three quantities| number of times it is

Cursor locked, Read locked and Write locked. In Table 3 we show the measured correlation

between all three pairs of these quantities.

The null hypothesis we want to test is that each pair of quantities is mutually independent

versus the alternate hypothesis that the two variables are either positively or negatively cor-

related. We reject the null hypothesis at .05 level of signi�cance. Since a signi�cant fraction

of Cursor index locks belong to Root pages for transport and bank, we have also included

the test for non-Root pages for these traces. Note that even though the absolute correlation

statistics are low, they are very signi�cant statistically because of the very large number

of objects. Statistical signi�cance, however, does not imply that these low correlations sig-

ni�cantly a�ect simulation results from experiments which do not take this correlation into

account; in Section 8, we will study how the correlation between lock types directly a�ects

the contention, using a contention model we will develop in Section 7.

The statistic for Cursor-Read correlation is not important for contention as these two

types of locks do not conict. The statistics for all index objects and non-root index objects
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Data locks Index locks
Trace Upgrade Write Direct Write Upgrade Write Direct Write

Locks L-time Locks L-time Locks L-time Locks L-time

Transport 48 178.67 1428 2332.45 377 1537.19 3465 1955.16
Phone 1921 375.75 7866 1890.47 4023 1175.62 17592 6795.73
Bank 0 0.00 63 139.28 14 1.36 108 265.03

Table 4: Comparing Write locks acquired by upgrading Read locks to Write locks acquired directly. The
latter is referred to as the no lock upgrades assumption. L-time refers to locktime in seconds.

are virtually the same, indicating that the large number of Cursor locks for root pages do not

a�ect the overall correlation. The table shows very signi�cant positive correlations between

Read-Write locks for all sets of objects except data objects for bank. This would indicate

that Read-Write contention would higher than if we assumed independence. However, since

the correlation is much lower than 1, there will be less contention than the studies which

use a b{c distribution of data and choose Write locks using independent probability values

(implying a high positive rank correlation between Read and Write locks). In the table,

most Cursor-Write pairs have a signi�cant negative correlation, which makes Cursor-Write

contention less probable than for the independence assumption.

5.4 Write-lock assumption

This \write lock" assumption addresses the issue of whether Write locks are acquired directly

or are upgraded from Read locks. Some studies (for example, [29]) have assumed that Write

locks are acquired directly. On the other hand, [1] has argued that assuming that Write

locks are acquired directly (which they call no lock upgrades assumption) is incorrect, and

that performance results are sensitive to this assumption. The no lock upgrades assumption

leads to lower contention in both the blocking version and the restart version of locking

algorithms. In the former, the assumptions prevents some deadlocks from happening; in the

restart version, the transaction restarts which are inevitable restart sooner if the no lock

upgrades assumption is made. However, the performance of the restart version improves

more than the performance of the blocking version.

We compare the Write locks acquired directly with the Write locks upgraded from Read

locks in Table 4. The table shows that most of the Write locks (approximately every 9

out of 10 Write locks) are acquired directly and the number of Write locks upgraded from

Read locks is an order of magnitude lower. This is contrary to the assumption in many

recent papers that Write locks are always upgraded from Read locks. As discussed in the

previous paragraph, our statistics would imply that studies which model Write locks through

upgrades not only underestimate the system performance but also relatively underestimate

the performance of locking with restarts more than that of locking with blocking.
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6 Transaction behavior modeling

In this section, we study the modeling of transaction behavior. The issues involved are

modeling of transaction lengths, locktimes and the distribution of the three kinds of locks

and transaction classes.

An issue that we will not address in this section is modeling of resource processing. This

refers to the breakdown of resource requirements (e.g., CPU and I/O requests) during a

transaction lifetime, the sequence of these request and the distribution of processing require-

ments. As noted earlier, this is outside the scope of this study, and cannot be done properly

with the data we have available.

6.1 Transaction length

The length of transactions is a very important factor in the analysis of database contention,

since long transactions usually imply long lock-waits because Read and Write locks are

released only when transactions end. Further, even the distribution of transaction lengths

is important, since the system performance is sensitive to the second and third moments of

transaction lengths [32]. This is because short transactions can be blocked for long periods

by long transactions holding necessary locks.

The transaction length distribution a�ects the relative performance of the various con-

currency control schemes as well as their absolute performance. In locking with restarts,

since transactions restart on all lock conicts, the fact that locktimes may be large for long

transactions will have a less negative e�ect on performance than locking with blocking.

Most concurrency control studies have used �xed length transactions. In Figure 3, we

characterize transaction lengths for our traces (the data for the plot is provided in Appendix

D). Since a few researchers have used exponential and gamma distributions to model trans-

action lengths, we have also plotted both the exponential �ts and the gamma distribution

function2 �ts. Both these �ts3 have been generated using the method ofMaximum Likelihood

[23], using the equations derived in Appendix H. Our analysis of the statistical goodness

of �t (in Appendix D) shows that both �ts are poor. In particular, both exponential and

gamma distribution �ts yield much lower �gures for variance for all three traces than is

measured.

2Gamma probability functions are a more general form of exponential probability functions. The density function of a

gamma random variable X is de�ned as fX(x) = �nxn�1e��x

�(n) ; x > 0.
3The �ts in Figure 3 are not as poor as they appear to be| this is because the plots use a log scale and the �ts have been

obtained before taking the logarithms. It is possible to get exponential �ts (by just horizontally shifting the current �ts) which
will look much closer on this logscale, but are actually much poorer �ts, as it becomes evident if we look at those �ts on a
normal plot.
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Trace Min. Max. Median Mean Std. dev. E(T 2) E(T 3) E(T 4)

Transport 0.000504 1525.37 0.110703 2.50572 32.19 1042.5 1:062� 106 1:341� 109

Phone 0.000214 1778.91 0.149048 1.04052 23.33 545.4 7:530� 105 1:218� 109

Bank 0.002182 2226.72 0.194977 4.47598 82.60 6842.8 1:364� 107 2:843� 1010

Figure 3: Transaction length distribution. The dotted lines show the �tted exponential and gamma distri-
bution to the actual distribution. The last three columns in the table respectively provide the 2nd, 3rd and
the 4th moments of transaction lengths.
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6.2 Locktimes

As we have de�ned in Section 2.4, locktimes denote the length of time locks are held on the

database items. For Cursor locks, both start and end points need to be known; for Read

and Write locks, only start times are necessary, since both are released only at the end of

the transaction.

In the literature, locktimes have not been explicitly modeled. In the static locking stud-

ies [25] all locks were acquired the beginning of transactions and thus the locktimes are

identical to transaction lengths. However, many researchers have argued that static locking

models are unrealistic because at the start of a transaction one may not know which pages

are going to be locked. In most later studies, dynamic locking has been assumed, and in

almost all those studies, Read/Write locks have been uniformly distributed over the entire

transaction lengths. Static locking analyses underestimate performance in light workloads

because of overestimating lock conicts. In high-load workloads, dynamic locking may be

at a disadvantage because of wasted work due to deadlocks; static locking can never have

deadlocks.

There is no reason to believe that in real systems the locking epochs are uniformly dis-

tributed. We examine this distribution below.

Cursor locks

As we discussed in Section 2.2, Cursor locks are very common, especially in very long trans-

actions where serializability is traded o� for higher performance. Even if Cursor locktimes

are short, however, they can't be ignored because of the possible waits to set cursor locks.

It may, however, be reasonable to model Cursor lock times as zero; i.e. they are immedi-

ately unlocked after locking. We present the necessary measurements of Cursor locks in this

subsection.

In Figure 4, we report the distribution of a statistically representative sample of locktimes

of Cursor locks (the data for the plot is provided in Appendix E). The plot shows that the

locktimes for Cursor locks are more than an order of magnitude lower than the transaction

lengths. This can also be observed from Table 2, where we see that the ratio of Read and

Write locktimes to the total locktimes is at least an order of magnitude more than the ratio

of number of Read and Write locks to the number of all locks. It should also be noted that for

Cursor locks, a very small fraction of the locktimes are abnormally high and these locktimes

distort the mean and variance of Cursor locktime distributions.

We also tested for independence between transaction length and Cursor locktimes using

Spearman's rank correlation test. Since Cursor locks are acquired only to keep the Cursor

pointer on the data stable while data is being accessed, we did not expect to see any depen-

dence between transaction length and Cursor locktimes. However, as shown by the results
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Figure 4: Distribution of locktimes for Cursor locks. The dotted lines are the gamma distribution �ts to the
actual distribution.

in Appendix F, we found signi�cant positive correlation between the transaction length and

locktimes for Cursor locks. This surprising observation could be due to the possibility that

longer transactions are executed at lower priority.

If the long transactions do not lock a di�erent set of Cursor objects than the short trans-

actions, the e�ect of these signi�cant correlations can be simulated in a model by parame-

terizing the distribution for Cursor locktime as a function of the length of the transaction

that required it. However, if long transactions do lock a di�erent set of Cursor objects, the

lockable items have to be divided among the long and short transactions and the parameter-

ization of Cursor locktimes has to be based on whether the object is more frequently locked

by long transactions or short ones. This clearly requires more detailed database modeling|

requiring us to model individual objects and associating them with long and short transac-

tions. In real systems it is very reasonable to expect that long transactions lock a di�erent

set of Cursor objects than short transactions. Long transactions generally have a very dif-
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ferent nature than short transactions| they access data in a sequential fashion, usually run

at a low priority, and are usually batch submissions [24]. All this shows that it may be

very di�cult to accurately model Cursor locktimes, without resorting to using trace-driven

simulations.

Since the locktimes for Cursor locks are much smaller than the transaction lengths and

the locktimes for Read/Write locks, small errors in locktimes for Cursor locks should not

a�ect the concurrency control performance analyses to a signi�cant degree. In fact, as we

discussed at the beginning of this section, a reasonable approximation would be to model

Cursor locks with a locktime of 0| only the acquisition of Cursor locks is important. It would

be interesting to investigate this further by experimentally determining the importance of

accurate modeling of Cursor locktimes for the �nal performance results, but we do not do

so in this report.

Read/Write locks

For reasons discussed above, we want to know the distribution of locktimes for Read and

Write locks. Since Read and Write locks are held until the end of the transaction, we want to

test the assumption that these locks are uniformly distributed over the transaction length.

For reasons discussed in Section 2.4, we will characterize lockfractions instead of locktimes

for Read and Write locks. By de�nition, the values of lockfraction lie between 0 and 1. Static

locking is equivalent to assuming a lockfraction of 1 for all locks. On the other hand, assuming

that locks are acquired uniformly over the transaction length means that the lockfraction is

uniformly distributed over the interval [0; 1].

In Figure 5 we plot the distribution of lockfraction for Read and Write locks (the data

for the plot appears in Appendix E). We also distinguish between index and data locks.

Both the read and write lock acquisitions exhibit considerable skew relative to the uniform

distribution assumption. This large variation in locktimes will cause more contention than

would be the case for a uniform distribution of locktime, so we can expect that a naive model

which assumes a uniform distribution to underestimate contention due to Read-Write lock

conicts. In Section 7, we will investigate if this is true by using a static model for measuring

contention.

It is useful to check if the lockfractions are related to transaction lengths. Positive cor-

relation between lockfractions and transaction lengths would indicate a high variance for

locktimes. The results are reported in Appendix F; we observe a signi�cant positive cor-

relation in almost all cases for Cursor lockfractions; for Read and Write lockfractions, the

results vary widely from positive to negative. In the literature, static locking models have

assumed that all locks are acquired at the start of the transactions, implying a lockfraction

of exactly 1. More realistic dynamic locking models have assumed that locks are acquired

uniformly over the transaction duration. This would again mean that they have implicitly
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assumed that lockfractions are independent of transaction lengths. Given the wide swings

between positive and negative correlations, assuming no correlation is probably a reasonable

assumption for most studies.

6.3 Transaction classes

Transaction classes refer to the di�erent kinds of transaction applications running on the

system. Most studies have used only one transaction class. [9] is one of the few studies that

uses multiple transaction classes| a mix of short transactions with random access and higher

probability of write with long transactions doing sequential access with a smaller probability

of write. If real transaction behavior varies widely, it is important for many studies for the

models to realistically represent this variation, since most performance measures decrease

with increased variance in the workload. This can be done by incorporating multiple classes

of transactions, each class with signi�cantly di�erent behavior. Using a low variance workload
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also gives an unfair advantage to the blocking version of locking because there is a shorter

bound on the amount of lock-waits, due to low variance in transaction lengths. Another

reason for modeling multiple transaction classes is that in the presence of multiple transaction

classes, only a subset of them may become the contention bottleneck; modeling a single

transaction class means that when contention becomes the bottleneck, no transactions can

progress.

We have characterized each transaction present in our workload in tables in Appendix G.

There are two classi�cations: the �rst is based on the application plan names as given by the

system; the second classi�cation is based on three factors: transaction length, Read/Write

nature of transactions and two-phase vs non-two-phase transactions. This classi�cation can

be used to guide a realistic selection of parameters for concurrency control analysis.

Each transaction in our traces has a plan name attached to it. This plan name refers to the

application type of the transaction. We �rst classi�ed the various transactions based on their

plan names, and is shown in Tables 13, 14 and 15 in Appendix G. The quantities measured

for the transactions include transaction length, Write-locktimes and Read-locktimes. For

each plan type, and for both index and data items, we tabulate the number of Read locks

acquired, number of Write locks acquired, number of Read locks upgraded to Write, number

of locks unlocked and the number of distinct items locked. It is important to distinguish the

Write locks directly acquired from the Write locks upgraded through Read locks because, as

discussed in Section 5.4, this distinction can signi�cantly impact simulation results.

Not surprisingly, we �nd a very high variation between the characteristics of the di�erent

applications. Average transaction lengths vary a lot over di�erent plans. Some transactions

(e.g. plan names ADCBPL and PDCBPL for transport) exhibit two-phase locking behavior

(no data locks are Cursor locks). Some plans (e.g. PPYBXDBL in transport) perform more

index locking (both in number of locks and locktime) while others (e.g. IQ303D in transport)

lock data more often.

An interesting observation is the fact that, for most plans, the number of locks acquired

by transactions outnumbers the number of distinct items locked. Since Read and Write locks

cannot be released before Commit, this fact can be attributed to Cursor locks being acquired

on the same items repeatedly.

Another transaction grouping

The plan-based characterization described above exhibits high variability within many plans

(i.e. groups). To get a better characterization for modeling, we can group the transactions

on three mutually orthogonal axes:

1. Two-phaseness: Since two-phaseness of transactions is an important property, we use

that as one of attributes for our grouping. If a transaction releases data locks before
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Commit, locking is not two-phase and we group the transaction under nPL. If we do

not see any data Read locks being unlocked, we assume it has two-phase locking and

we label it 2PL. Note that two-phase transactions may still unlock index pages.

2. Read-Write behavior: A large fraction of the transactions do not acquire Write locks.

These transactions may have behavior dissimilar from the transactions that acquire

Write locks. Therefore, we distinguish between these two classes of transactions.

3. Length of transactions: We have divided the transactions into 5 classes based on their

length. To obtain a uniform logarithmic division over the range of transaction lengths,

class i is de�ned to contain transactions with length l such that

i = b5 �
ln l � ln lmin

ln lmax � ln lmin

c

where lmin and lmax are, respectively, the lengths of the shortest and the longest trans-

actions.

Tables 16, 17 and 18 in Appendix G show the characterization of transactions after

grouping them by the three parameters discussed above. In these tables, we have also

grouped together transactions to compare Read transactions vs Write transactions, and

two-phase transactions with non-two-phase.

On the average, over all traces, Read transactions greatly outnumber the Write trans-

actions. Read transactions have a greater variance of transaction lengths, number of locks

and locktimes. Two-phase transactions outnumber the non-two-phase transactions. The

non-two-phase transactions are much longer and acquire many more locks (mostly Cursor)

than two-phase transactions.

Tables 16, 17 and 18 provide detailed statistics for a few workload classes for three di�erent

kinds of application areas. The statistics from these tables provide the parameters which

one could use to realistically model a database model.

7 Model for Estimating Contention

In the previous sections we characterized the lock distributions over the lockable items (pages

for data and subpages for index) for all the three lock types| Cursor, Read and Write.

Coupled with our data about the correlation between the three lock types, it roughly indicates

the amount of contention in the system and also whether the contention is going to be skewed

over a few pages or more uniformly spread over a large number of pages. In this section,

we present a simple model that we use to estimate the expected level of contention as a

function of the locktime distribution. We also analyze how the contention is distributed over

all lockable objects and di�erentiate between three sources for conicts| Cursor-Write,
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ljT � x3ljx1 + li

0
x1

lj
x2

T � li � lj
x3

ljlj + li

li

T � li T

li

li

Figure 6: Conicts between lock requests li and lj . The �gure shows the three cases where li can start in the
intervals [0; lj], [lj; T � li � lj ] and [T � li � lj ; T � li]. The solid arrow indicates the interval where lj must
start in order for it to conict with li. The dotted arrow along with the solid arrow indicates the interval in
which lj must lie for a conict.

Read-Write and Write-Write. Our analysis indicates which items are likely to become a

contention bottleneck as the MPL of the database system is increased.

For our contention model, we will assume that any particular lock request is equally

likely to be present at any point of time during the trace period. (Note that our analysis

does not use the various correlations that we have computed.) We will then compute the

expected number of conicts for any object by summing the probabilities of all possible pairs

of conicting lock requests for that object. Thus, for any pair of lock requests li and lj for

the same object, we are interested in �nding the probability p(i; j) that the pair conicts

during the trace execution. Now, obviously p(i; j) is non-zero if and only if the two requests

form one of the three conicting lock type pairs described above. We solve for such a case.

Let li and lj also denote the locktimes for the locks, computed from our traces.

Let the trace period be T . We can calculate p(i; j) as follows:

p(i; j) =
Z T

0
Prob(li begins in [x; x+ dx])Prob(lj conicts with li)

We can calculate the probability p(i; j) as a sum of three cases: depending on whether li

begins in the interval [0; lj],[lj; T � li � lj] or [T � li � lj; T � li]. Note that li cannot start

after T � li. As Figure 6 illustrates, we have the following expression for p(i; j):

p(i; j) =
Z lj

0

dx

T � li

x+ li
T � lj

+
Z T�li�lj

lj

dx

T � li

lj + li
T � lj

+
Z T�li

T�li�lj

dx

T � li

T � x

T � lj

=
(T � li � lj)(li + lj) + lilj

(T � li)(T � lj)

If T � li and T � lj, we have,

p(i; j) =
li + lj
T

(1)

Now, for any lockable item X, let pX denote the expected number of lock conicts for X
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if the trace workload is executed in time T . Hereafter we refer to pX as the contention index

for X.

pX �
X

i;j;i 6=j

p(i; j)

where the summation is over all conictable locks for X. If we decompose pX into the three

di�erent kinds of lock conicts, namely Cursor-Write, Read-Write and Write-Write, we have

pX = pX;cw + pX;rw + pX;ww

where the three terms on the right side denote the contributions of the three pairs of lock

types.

We now derive the expressions for the above three contention indices. Let nX;c, nX;r and

nX;w represent the total number of Cursor, Read and Write locks for X. Let cX;1; : : : ; cX;nX;c

denote the locktimes for the Cursor locks. Similarly, let rX;1; : : : ; rX;nX;r
and wX;1; : : : ; wX;nX;w

be de�ned for Read and Write locks. Using (1), the values of these three terms are:

pX;cw =

PnX;c

j=1

PnX;w

i=1 (wX;i + cX;j)

T
=

nX;ctX;w + nX;wtX;c

T
(2)

pX;rw =

PnX;r

j=1

PnX;w

i=1 (wX;i + rX;j)

T
=

nX;rtX;w + nX;wtX;r

T
(3)

pX;ww =

PnX;w

j=1

PnX;w

i=j+1(wX;i + wX;j)

T
=

(nX;w � 1)tX;w

T
(4)

where tX;c =
PnX;c

i=1 cX;i; tX;r =
PnX;r

i=1 rX;i; tX;w =
PnX;w

i=1 wX;i (summations over the individual

locktimes for the item X).

Table 5 presents the amount of predicted contention in each of the workloads. The

three data columns represent the expected number of lock conicts due to Cursor-Write

(Ecw), Read-Write (Erw) and Write-Write (Eww) conicts, respectively. These quantities are

calculated by adding up the respective quantities per page:

Ecw =
X
X

pXi;cw;Erw =
X
X

pXi;rw;Eww =
X
X

pXi;ww (5)

As noted earlier in this report, the actual, measured, number of lock conicts for the transport

and bank workloads was quite low. This is con�rmed by our analysis, which in Table 5 shows

that the expected number of conicts is also very low. This very low level of conict makes

conclusions from our measurements and estimates for those workloads highly speculative,

and that observation should be kept in mind in the remainder of this discussion.

We observe from the table that in transport and phone traces, data contention is about

75{80% of the total contention. The fact that index locks are locked on a �ner granularity

than data locks de�nitely contributes to the low contribution of index contention. In bank,
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No. of items Ecw Erw Eww

Transport:
Data 350 9.321047 0.897341 0.741479

(67.07%) ( 6.46%) ( 5.34%)
Index 1096 1.391543 0.578239 0.967619

(10.01%) ( 4.16%) ( 6.96%)

Phone:
Data 1279 103.86584 73.11964 171.23769

(22.77%) (16.03%) (37.54%)
Index 4783 47.9453 16.62089 43.33041

(10.51%) ( 3.64%) ( 9.50%)

Bank:
Data 24 0.012057 0.000000 0.074058

( 1.67%) ( 0.00%) (10.25%)
Index 4783 0.360850 0.053500 0.221764

(49.96%) ( 7.41%) (30.71%)

Table 5: Distribution of expected number of lock conicts over the three conict type pairs. Percentages
are over all conict types for both index and data items. The number of items is the number of items which
are locked more than once and Write-locked at least once, i.e. all items which can cause a conict in a
trace-driven simulation.

index contention dominates the total contention; however, the amount of contention in bank

is orders of magnitude lower than other traces. In the transport and bank traces, most of the

contention is due to Cursor-Write conicts. In Section 2 we had suggested that, probably

to gain a performance bene�t, Cursor locks are used in place of Read locks, which provide

greater semantic consistency. The fact that most of the contention in two of the traces is

due to Cursor-Write conicts emphasizes the importance of modeling Cursor locks instead of

Read locks. Had Cursor locks been replaced by Read locks the performance would most likely

have degraded considerably because Read locks cannot be unlocked before the transaction

commits. In the phone trace, contention is more evenly split among the various kinds of

conicts.

For the data contention in transport, the contention is dominated by Cursor-Write con-

tention. This is not surprising considering our analysis in Section 3.5 where we showed that

for transport, the Write locks have a low skew over the database but they have a high positive

correlation with Cursor locks. There is a negative correlation for Cursor-Write in case of

phone and this partially explains the more even split among the various conict types.

In Figure 7 we show the contention factor of the individual items with the highest pre-

dicted contention. Index contention seems to be much more uniformly spread over all items

as compared to the data items. In fact, for the phone trace, two pages are responsible for

64.7% of the data contention and 49.4% of the total contention. These two pages are very

likely to form a bottleneck (if there isn't one already) when the system load is increased.

The analysis in this section may be misleading in a few cases. First, if there is moderate

to high contention for some items, the value of pX for those items as calculated in this section
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Figure 7: Contention index for individual lock items with maximum contention factor. The y-axis denotes
the contention index for an object as a percentage of E = Ecw +Erw + Eww

may be an underestimate. This is because once we have frequent lock-waits on a particular

item, the e�ective values of locktimes for the waiting lock request increases by the amount of

time it has to wait. Thus some or all of tX;w; tX;r; tX;c may rise, causing our calculated values

of the expected number of conicts to be underestimates. A side-e�ect of higher contention

also trickles down to the the items which are themselves not under high contention. This

happens because of queueing e�ects| when lock-waits occur, not only does the locktime of a

requesting lock request rise but also the locktimes for the locks being held by the requesting

transaction rises.

Another source of inaccuracy would be if the jobs that submit the transactions inherently

order the transactions such that there are fewer (or more!) chances of conict than predicted

by our model. In here we have assumed that at any moment, regardless of the state of the

system, all of the remaining transactions have equal likelihood of being scheduled. This

may not be the case in reality. Further, we have not incorporated the various positive and
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negative correlations that we observed between the occurrence of various lock types. The

e�ect of positive and negative correlations was discussed earlier in this report.

Validation of contention model

In this section, we compare our predicted levels of lock contention with those measured in

the real systems. Two of the three systems were running light workloads and exhibited little

contention| bank had 0 lock-waits in the entire trace and transport had 6 lock-waits. In

table 5, we predicted about 14 lock waits for transport and about 1 for bank, so the observed

and predicted �gures are reasonably close - certainly within the bounds of statistical error

of the model.

As we can see from Figure 1, phone was a heavily loaded system| the reason the orga-

nization wanted their system to be traced was they were having performance problems due

to high contention. This trace showed 271 lock-waits in the 30-minute trace. Since only this

trace had a substantial number of lock-waits, we discuss only this system in detail.

If we look at our contention model in the previous subsection, we would expect the two

data objects with the highest expected number of lock-waits to be the bottleneck in the

worst case, or to at least dominate the total number of lock-waits in the best case. Most

surprisingly, none of the 271 lock-waits is due to data objects; all of them have been caused

by index objects. Presumably the ordering of transactions in the trace, and/or the various

correlations discussed earlier are the cause of the discrepancy with our predictions from our

simple model.

Using our contention model, we ordered the index objects based on the expected number

of lock waits for each object. There were 4783 objects with a non-zero value. The 271

lock-waits in the trace were caused by 46 di�erent objects. We ordered these 46 pages

based on the number of traced lock-waits. Then, to validate our model we performed a

rank correlation test to check the correlation between the measured ranks and the ranks

predicted by our model in the previous section. The correlation statistic yielded a value

of 0:3188 which is higher than the .95 test quantile of 0:2922. Thus we do have a weak

correlation of the measured waits with our model. On the other hand, the correlation is not

very strong, suggesting that one or more of the inaccuracies we mentioned above might be

the cause. It must be noted that there were frequent deadlocks in the system during the

trace. Since deadlock detection occurs only at (large) intervals of 30 seconds in this DB2

installation, when deadlocks occur the locktimes of objects would appear to be much larger

than their values in the input workload. This would de�nitely cause many more spurious

lock waits than in the case where deadlock detection occurred at smaller intervals.
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8 E�ect of correlation between lock types on contention

In Section 5.3, we measured the correlation between the three lock types and mentioned that

this correlation is an important factor in causing contention. High values for correlation

between Write locks and Cursor/Read locks can lead to high contention. In this section

we will use the contention model we developed in the last section to analyze the e�ect of

correlation between lock types.

Read and Cursor locks do not conict with each other, so we will study only correlations

among Read-Write and Cursor-Write lock types. We will determine the predicted contention

in the workload assuming correlation values of {1, 0 and 1. We will then compare this with

the actual contention values which we measured in the last section.

A (rank) correlation of 1 between two lock types (for example, Cursor and Write) means

that if we order the items by the frequency of one lock type, and we obtain another order by

using the frequency of the other lock type, the two orders are the same. We use the following

procedure to determine the amount of contention that would be caused if the correlation

between the Cursor and Write lock types were 1. We sort the N lockable items into two

sorted lists| one sorted by the frequency of Cursor locks and the other by the frequency

of Write locks. Then we create N imaginary items, and associate the ith imaginary item

with the ith sorted (Cursor locktime, Cursor lock frequency) pair and the ith sorted (Write

locktime, Write lock frequency) pair. Then we can determine the contention corresponding

to a correlation of 1 by using the formulation we derived in the last section.

For a correlation of {1, we simply associate the ith imaginary item with the ith sorted

(Cursor locktime, Cursor lock frequency) pair and the (N � i+1)th sorted (Write locktime,

Write lock frequency) pair.

To compute the contention for correlation of 0, we use the following formulation. A cor-

relation of 0 corresponds to the fact that any of the N Cursor locktimes could be associated

with any of the N Write locktimes with equal likelihood. Thus the ith sorted Cursor lock-

time and Cursor lock frequency is associated with the jth sorted Write locktime and Write

lock frequency with a probability of 1=N . Using this and equations (2)-(5), the expected

contention for a locktype correlation of 0 corresponds to the following equations:

Ecw =
NX

X=1

NX
Y=1

Prob(item X is associated with item Y ) �
nX;ctY;w + nY;wtX;c

T

=
NX

X=1

NX
Y=1

1

N
�
nX;ctY;w + nY;wtX;c

T

=

PN
X=1 nX;c

PN
X=1 tY;w +

PN
X=1 nY;w

PN
X=1 tX;c

NT
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Lock-type pair Contention with Workload Measured Statistical
Correlation 0 Correlation 1 Contention Correlation Signi�cance

Transport:
Data Cursor-Write 3.30746 137.88495 9.32105 0.2587 +

Read-Write 0.44136 154.97754 0.89734 0.1662 +
Index Cursor-Write 3.44249 85.06456 1.39154 {0.3192 |

Read-Write 1.58865 103.89470 0.57824 0.2757 +

Phone:
Data Cursor-Write 14.45199 785.68190 103.86584 {0.0033 0

Read-Write 0.10021 79.74778 73.11964 0.3591 +
Index Cursor-Write 19.51881 535.81044 47.94530 {0.1828 |

Read-Write 0.13858 26.32107 16.62089 0.3291 +

Bank:
Data Cursor-Write 0.05745 4.92254 0.01206 {0.0201 |

Read-Write 0.00310 9.63043 0.00000 {0.0003 0
Index Cursor-Write 0.23492 1497.18857 0.36085 {0.0269 |

Read-Write 0.00533 4.29717 0.05350 0.1789 +

Table 6: Expected number of lock conicts with correlation of 0 and 1 between the locktypes. The workload
contention in the predicted contention if transactions occurred randomly in time (same as in Table 7). We
have also shown the measured correlation (from Table 3). +, | and 0 indicate signi�cant positive, signi�cant
negative and insigni�cant correlations, respectively.

Similarly,

Erw =

PN
X=1 nX;r

PN
X=1 tY;w +

PN
X=1 nY;w

PN
X=1 tX;r

NT

We report the values of the expected contention for correlations of 0 and 1 for both Cursor-

Write and Read-Write pairs in Table 6. The table does not contain values for correlation

{1, because there will be no contention at correlation {1. This is because the pages which

have a non-zero Write locks with be associated with pages with zero Read and Cursor locks,

leading to zero contention.

Our �rst observation is that a few pages (even a single page) can a�ect the contention

drastically; however, a few pages do not have any signi�cant e�ect on the rank correlation,

which is what was reported in Section 5.3. This e�ect is most clearly seen for Index contention

in bank for a Cursor-Write correlation of 1. More than 99% of the contention is due to a

single page which accounts for 45.2% of the total Cursor locks and 10.1% of the total Cursor

locktime. In the workload this page has no Write locks and hence accounts for no actual

contention.

The above observation is the reason why the statistical signi�cance tests we performed in

Section 5.3 may not be su�ciently indicative of the e�ect of correlation on the contention.

From Table 8, we notice that in some cases even though the correlation is statistically

signi�cant, the actual contention is close to the contention for a 0 correlation. However,

in other cases, the statistically signi�cance test correctly predicts the e�ect of positive (or

negative) signi�cant correlation on contention| for example, contention due to Read-Write
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Data locks in phone and Cursor-Write Index locks in transport. So, the statistical tests are

modestly successful in determining the signi�cance of the correlation for the purposes of

predicting contention.

9 Conclusions

In this report we have looked at the locking behavior of three real relational database sys-

tems running three di�erent kinds of real applications. We have used our traces to obtain

a comprehensive characterization of transaction workloads in real commercial database sys-

tems. We believe that this data will be valuable not only to the researchers who can use it

to create more accurate models, but also to database designers who can use this information

for a deeper understanding of real world transaction workloads. It is important to note,

however, that our characterization does not necessarily have predictive power - i.e. we have

measured various parameters of the workload, but that does not allow us to be con�dent

that we can predict the values of parameters that were not measured.

We have also looked at the various assumptions made in the concurrency control perfor-

mance analysis literature, have measured their validity in the traces, and have analyzed the

sensitivity of predicted system performance to these assumptions. A future direction of re-

search would be to use trace-driven simulation to analyze the sensitivity of the assumptions

more rigorously.

We have also constructed a very simple static model for contention, and have shown

that it provides reasonably accurate estimates of observed contention. We believe that

extending that model to include factors such as observed correlations should provide still

better agreement with the measured data.
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A Terminology and Background

In here, we describe some background required for our paper.

Transaction { a unit of work

In database systems, a transaction represents a unit of work. Typically a transaction represents one meaning-

ful activity in user's environment; for example, in a database for a �nancial institution, transferring money

from one account to other would classify as a single transaction.. A transaction must satisfy the ACID

property [16]: A for atomic, it must appear that either all or none of the operations have been executed;

C for consistency, each transaction, by de�nition, preserves the consistency of the database; I for isolation,

events within a transaction must appear to be isolated from other concurrent transactions; D for durability,

once a transaction has ended (or Commited) the system must guarantee that the results will survive any

malfunctions. Concurrency control is concerned with the problem of maintaining isolation. Logging and

transaction recovery are responsible for maintaining atomicity and durability. Serializability of transactions

has been widely accepted as the criterion for correctness for database systems [10]. An interleaved set of

transactions is said to be serializable if and only if it produces the same results as some serial execution of

the same transactions.

Concurrency control alternatives

There is a variety of ways in which concurrency control can be implemented in a database system. Most

of these techniques fall under one of three broad categories| locking, optimistic concurrency control and

timestamping. The reader is referred to [3] for a detailed survey of various schemes. In the following, we

will give a brief introduction to these schemes.

1. Locking. The idea is very simple| each transaction acquires read locks before reading data and write

locks before writing them. The lock manager guarantees that if an item is write-locked no other locks

are permitted on it. This guarantee can be implemented in a variety of ways which span a spectrum;

the two ends of this spectrum are locking with blocking and locking with restarts.

Almost all the commercial systems that exist today use locking with blocking as the concurrency control

option. This alternative requires that transactions obtain Read or Write locks before accessing and

manipulating data. The transactions block until the lock they request is granted. As opposed to

this, locking with restarts refers to the scheme where the transactions abort and restart if the lock

they request cannot be granted immediately. Most performance studies have argued that, under most

circumstances, locking with blocking performs better than other versions of locking and also optimistic

concurrency control and timestamping [29, 1, 9]. Policies which limit the size of the of the lock-wait

queue [14] lie somewhere in the middle of the spectrum.

2. Optimistic concurrency control. The basic idea is that transactions are allowed to execute unhindered

until they reach their commit point, at which point they are validated [22]. Transactions maintain

a list of records they have read or written in the form of read and write sets. A transaction fails

validation if any granule in its readset has been written by a transaction that committed during its

lifetime. Invalidated transactions are aborted and restarted.

3. Timestamping. Each transaction has a timestamp ts(ti), usually the time the transaction started.

Each data granule x has a read timestamp rts(x) and wts(x) which denote the timestamps of the
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latest reader and the latest writer respectively for x. A read request from ti for x is granted only

if ts(ti) >= wts(x), and a write-request from ti for x is granted only if both ts(ti) >= rts(x) and

ts(ti) >= wts(x). Transactions whose requests are not granted are aborted and restarted. For various

versions of timestamping, the reader is referred to [4].

B Models in the literature

In this section we review a small sample of the most popular studies in concurrency control literature. In

light of the discussion that preceded this subsection, we will focus on the modeling assumptions made in

these studies. In the sections following this, we will examine the validity of these assumption using trace

measurements.

[9] is among the more popular earlier studies. The objective of this paper is to compare various con-

currency control algorithms in a variety of workloads. An open queueing model has been used to model

the transactions. The system resources (CPU and I/O) have been explicitly modeled using CPU or I/O

processing times per transaction step. Any transaction can belong to one of two classes| short (fewer lock

requests) with random data access and long with sequential access. The number of transaction steps4 is a

constant or a uniform (over the interval 1 to 2 �mean) random variable. For each lock request, the page is

selected uniformly from the entire database, independent of anything else. The number of lockable objects

in the database is varied from 1 to 10000. The short transactions lock an average of 2 objects with a write

probability of 0.5 and the long one locks 30 objects with a write probability of 0.1. The resource requirements

between lock request are identical. The main conclusion of this study was that, under most circumstances,

locking with blocking gives the best performance.

A good example of an analytical study for concurrency control performance is the study by [33]. The

objective of this study is to analytically model two kinds of locking strategies: locking with blocking and

locking with restarts. This study uses a closed queueing model. System resources are not modeled and

in�nite resource conditions are assumed. This is to study the e�ects of data contention (in isolation from

resource contention) as we discussed in section 4.1. All transactions request an identical number of locks,

with the inter-request processing time a uniform random variable. Lock requests are chosen from a b{c data

distribution (b% of the accesses go to c% of the data). However, each lock request is chosen independent of

anything else. Under such conditions, they have proved that independently choosing a �xed fraction of lock

requests as write requests is equivalent to a system with fewer lockable objects where all locks are Write.

They have reported results with two sets of parameters| a 40 object database, with transactions consisting

of 2 lock requests each, and a 10000 object database with transactions consisting of 20 lock requests each.

Their results claim that, under in�nite resource assumption, locking with blocking wins in low to moderate

contention environments. Under higher contention environments, locking with restarts wins.

The only group of researchers who have used real database system traces for concurrency control analyses

is [38, 39, 37, 40]. They have used a 15-minute trace from a hierarchical database system (IMS). However the

focus of their study was not a detailed trace characterization. The only characteristics they have reported

are transaction pathlength (in number of machine instructions), average number of locks and unlocks per

transaction, average I/O requests per transaction and average I/O service time. They obtained an average

probability of contention per lock request using one run of trace-driven simulation. For their concurrency

control analysis, they used this value of lock contention probability to model concurrency control requests.

All transactions in their model consist of identical number of locks and unlocks| the values are the average

4Each interval between two adjacent lock requests constitutes a transaction step.
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values measured from the trace (15 locks and 9 unlocks per transaction). The resource requirements are also

identical for each transaction. Lock contention probability is assumed to be proportional to the MPL, and

the measured value from the trace-driven simulation is used as the base value. With this probability, and

independent of any other event, each lock request conicts. In case of a lock conict, the time for the lock

request wait is modeled as a random variable with mean one third of the transaction time.

In response to the results in [33], [1] have performed a study which investigates the implications of the

in�nite resource versus �nite resources assumption for concurrency control performance analysis. Most of

the other assumptions made in this model are similar to those made in [9]. They have shown that the in�nite

resource assumption biases the results in favor of locking with restarts because restarts do not incur any

penalty. [1] began their analysis with a database of 10000 objects, each transaction acquiring an average of 8

objects, with a write-probability of 0.25. They discovered that these parameters cause little contention in the

system and all algorithms performed equally well. So to study interesting performance e�ects, they reduce

the database size to 1000. This is, in our opinion, an arti�cial and unrealistic way of analyzing contention. If

there is little contention in the databases that exist today, we might expect more contention in the systems

of the future not because they will be running smaller databases, but because more users will be running

o� the same database. Thus, [1] could have moved into a region of higher contention by increasing MPL,

instead of reducing the database size.

The common theme that emerges from studying the literature in concurrency control performance is

that all the models assume independence between all kinds of events. For example, write probability is

independent of the object, transaction stepsize is independent of transaction length, etc. They also implicitly

assume that each lock request is independent of all other requests. In real systems, we do not expect this

independence. Also, in these models, each data object is equally likely to read locked as well as write locked.

Clearly, in most transaction processing environments, this would not be the case. As we will elaborate in

Sections 5 and 6, such assumptions will a�ect the system performance. Also, almost always, all transactions

are assumed to be comprised of same number of lock requests. Recently, [32] has showed that database

contention is very sensitive to the second moment of the distribution of transaction lengths. This makes it

very important to realistically model transaction lengths.

Another aspect of concurrency control modeling that is lacking in the literature is modeling of index

locks. Only a few studies have dealt with the issue of index contention [31]. However, we do not know of

any study that has combined both index and data contention in the same framework and and has analyzed

the relative e�ects of both on database system performance.

Also, unlocks have never been part of past models. The main reason for this is that if we allow unlocks,

the database system loses the guarantee of serializability of transaction under some conditions [13]. However,

real systems allow transactions to release locks before Commit time. There may be two reasons for this. The

�rst reason is that there may be certain restrictions on the order of accessing objects which would ensure

serializability even if certain locks are unlocked. This is the case for B-tree locks [2]. However, we suspect

that the real reason is performance. Real systems are not willing to sacri�ce performance to get serializability

by disallowing unlocks. As we will report later, unlocks are quite prevalent in all the database system traces

we have.

C Data for access distribution

In Section 5.1 we had shown plots for the distribution of locks over the database items. Here, in Table 7, we

present the raw data values, which should be useful for a realistic modeling of the database.
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Fraction Fraction of locks
of Data Index

Items Cursor Read Write Cursor Cursor Read Write
(non-Root)

Transport:
0.05 0.539345 0.950804 0.326694 0.373802 0.705997 0.927370 0.288912
0.10 0.684943 0.968345 0.490514 0.512392 0.771654 0.951423 0.413586
0.15 0.768534 0.974135 0.594444 0.604884 0.816688 0.962102 0.495314
0.20 0.806878 0.977492 0.661654 0.667438 0.846452 0.968018 0.548151
0.25 0.841327 0.979959 0.703929 0.725832 0.872925 0.972261 0.598125
0.30 0.872708 0.981295 0.733469 0.767821 0.893126 0.975531 0.648099
0.35 0.895795 0.982631 0.761653 0.806751 0.910775 0.978745 0.675169
0.40 0.913806 0.983967 0.789837 0.836391 0.924784 0.980380 0.700156
0.45 0.927586 0.985303 0.818022 0.861631 0.936805 0.982015 0.725143
0.50 0.938133 0.986639 0.846206 0.881095 0.945629 0.983650 0.750130
0.60 0.955620 0.989311 0.887263 0.920024 0.963278 0.986920 0.800104
0.70 0.969400 0.991983 0.915447 0.941605 0.973527 0.990190 0.850078
0.80 0.983179 0.994656 0.943631 0.961070 0.982351 0.993460 0.900052
0.90 0.993110 0.997328 0.971816 0.980535 0.991176 0.996730 0.950026

Phone:
0.05 0.382851 0.411543 0.515985 0.288761 0.293663 0.347425 0.391575
0.10 0.519776 0.513603 0.639716 0.492132 0.495674 0.456607 0.490641
0.15 0.618753 0.593675 0.711822 0.574232 0.577289 0.539750 0.560599
0.20 0.705797 0.654285 0.761070 0.631939 0.634592 0.604295 0.611899
0.25 0.762856 0.701508 0.799556 0.678457 0.680770 0.655994 0.653366
0.30 0.804876 0.744673 0.829120 0.724974 0.726948 0.695552 0.694832
0.35 0.837691 0.774332 0.853341 0.767416 0.769095 0.735110 0.730467
0.40 0.864025 0.803992 0.874998 0.802305 0.803728 0.762653 0.751201
0.45 0.886794 0.833651 0.891050 0.830043 0.831274 0.782432 0.771934
0.50 0.905626 0.851703 0.905487 0.853302 0.854362 0.802211 0.792667
0.60 0.940777 0.881362 0.934362 0.899820 0.900539 0.841769 0.834134
0.70 0.965047 0.911022 0.956687 0.930223 0.930733 0.881327 0.875600
0.80 0.981168 0.940681 0.971125 0.953482 0.953822 0.920884 0.917067
0.90 0.990584 0.970341 0.985562 0.976741 0.976911 0.960442 0.958533

Bank:
0.05 0.162266 0.234756 0.117460 0.160649 0.582339 0.539226 0.168033
0.10 0.246440 0.359756 0.215873 0.252638 0.628266 0.653766 0.270492
0.15 0.318035 0.466464 0.292063 0.319479 0.661495 0.713912 0.360656
0.20 0.389629 0.573171 0.368254 0.386320 0.694724 0.759415 0.442623
0.25 0.461224 0.652439 0.444444 0.453161 0.727953 0.795502 0.510246
0.30 0.498838 0.695122 0.511111 0.520002 0.761182 0.825314 0.577869
0.35 0.534635 0.722561 0.561904 0.565532 0.784011 0.846234 0.627049
0.40 0.570433 0.743902 0.612698 0.598952 0.800625 0.866109 0.672131
0.45 0.606230 0.765244 0.663492 0.632373 0.817240 0.885983 0.717213
0.50 0.642027 0.786585 0.714286 0.665794 0.833854 0.900627 0.762295
0.60 0.713622 0.829268 0.796826 0.732635 0.867084 0.920502 0.819672
0.70 0.785216 0.871951 0.847619 0.799476 0.900313 0.940376 0.864754
0.80 0.856811 0.914634 0.898413 0.866317 0.933542 0.960251 0.909836
0.90 0.928405 0.957317 0.949206 0.933159 0.966771 0.980125 0.954918

Table 7: Data for the access skew of lock types over all lock items. The total number of items and locks can
be found in Table 2.
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Fraction of Transaction length (in seconds)
Transactions transport phone bank

0.05 0.001266 0.010391 0.002396
0.10 0.001312 0.022659 0.002518
0.15 0.008728 0.032166 0.002945
0.20 0.020355 0.045502 0.018692
0.25 0.026291 0.063004 0.039780
0.30 0.032471 0.078812 0.065460
0.35 0.043716 0.094543 0.087509
0.40 0.059250 0.110687 0.121399
0.45 0.085236 0.129517 0.150024
0.50 0.110703 0.148956 0.194977
0.55 0.131241 0.174789 0.272888
0.60 0.155930 0.200485 0.320816
0.65 0.187622 0.234955 0.363663
0.70 0.228027 0.285706 0.397659
0.75 0.289963 0.354187 0.433975
0.80 0.385300 0.440506 0.485245
0.85 0.551758 0.618256 0.541443
0.90 0.880707 0.939255 0.653809
0.95 1.778198 1.750076 0.869385
1.00 1525.373337 1778.907669 2226.724289

Table 8: Data for the distributions of transaction lengths for the three traces

D Transaction length modeling

In Section 6.1 we had provided the plots for the transaction length distributions for the three traces. Here,

we provide the data for those plots in Table 8. We also �tted exponential and gamma distributions to

the transaction length distributions, as shown in Figure 3. The computations for obtaining these �ts are

described in Appendix H. In table 9, we use the Kolmogorov Goodness of Fit test for continuous data

[6] to check for the validity of �tted gamma distributions and the exponentials distribution to the actual

distributions. The .95 test static rejects all �ts5. Figure 3 (in the main body of the paper) gives the actual

5While the Method of Maximum Likelihood attempts to minimize a measure of the total distance of the the data-curve over
all points (a measure which is imperceivable when viewing the log scale plot), the Kolmogorov Goodness of Fit test only looks
at the one location on the x-axis where the distance between the �t and the data-curve is the maximum.

Fitted distribution Test .95 test Reject H0

Type Parameters Mean Std. dev. statistic quantile

Transport:
gamma r = 0:21;� = 0:0838 2.51 5.47 0.281 0.018 Yes
exp � = 0:399 2.51 2.51 0.657 0.018 Yes

Phone:
gamma r = 0:34;� = 0:3268 1.04 1.78 0.243 0.014 Yes
exp � = 0:961 1.04 1.04 0.465 0.014 Yes

Bank:
gamma r = 0:195;�= 0:0436 4.48 10.12 0.372 0.035 Yes
exp � = 0:223 4.48 4.48 0.843 0.035 Yes

Table 9: Goodness of Fitness tests for distribution of transaction lengths
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Fraction Locktime (in seconds)
of transport phone bank

Locks Data Index Data Index Data Index

0.05 0.000275 0.000397 0.000443 0.000214 0.001083 0.000717
0.10 0.000305 0.000427 0.000565 0.000229 0.001480 0.000763
0.15 0.000351 0.000458 0.000671 0.000259 0.002228 0.000900
0.20 0.000443 0.000488 0.000763 0.000305 0.012909 0.001694
0.25 0.000748 0.000504 0.000854 0.000336 0.024521 0.006790
0.30 0.001328 0.000534 0.000961 0.000381 0.029892 0.010056
0.35 0.001617 0.000549 0.001083 0.000427 0.033752 0.013138
0.40 0.001953 0.000580 0.001205 0.000488 0.037018 0.016266
0.45 0.003387 0.000778 0.001343 0.000565 0.040421 0.019028
0.50 0.005707 0.001038 0.001511 0.000641 0.043915 0.023575
0.55 0.009247 0.001221 0.001678 0.000763 0.047424 0.030411
0.60 0.011993 0.001648 0.001938 0.000946 0.050766 0.036530
0.65 0.017609 0.003296 0.002289 0.001175 0.054718 0.041672
0.70 0.024002 0.008682 0.002930 0.001495 0.060150 0.046478
0.75 0.028702 0.020538 0.004501 0.001984 0.067520 0.051559
0.80 0.033661 0.033096 0.008987 0.003036 0.080139 0.057587
0.85 0.038742 0.048767 0.016022 0.006027 0.102722 0.066422
0.90 0.050430 0.084351 0.027328 0.016632 0.161423 0.080963
0.95 0.077286 0.205750 0.053513 0.045013 0.286728 0.118332
1.00 61.118195 15.796967 6.016190 9.511536 31.514969 76.120483

Table 10: Data for the locktime distributions of Cursor locks for the three traces

values of standard deviation for the three traces; from Table 9, we see that exponential and gamma �ts

provide very inaccurate estimates for the standard deviation.

E Data for locktimes and lockfractions

In Section 6.2, we had plotted the locktime distributions for Cursor locks and the lockfraction distributions

for Read/Write locks. In this section we present the corresponding data. Notice that, as explained in Section

6.2, this data for the Cursor locks in Table 10 has been compiled by randomly selecting a fraction of the

actual data because of the enormously large number of Cursor locks (greater than a million) in the traces.

However, this random selection does not produce any perceptible change in the plots. On the other hand,

the data for the Read/Write locks in Table 11 is not a random sampling, but the entire data.

F Correlation tests between transaction lengths and locktimes

In Section 6.2 we had presented data about the locktimes for the Cursor and Read/Write locks for the three

traces. Here we present the results of the statistical tests to check for correlation between lock durations

and transaction lengths. For Cursor locks, we try to correlate locktimes with transaction lengths; for Read

and Write locks we try to correlate lockfractions with transaction lengths.

Table 12 presents the results of these tests. For Cursor locks, there was signi�cant positive correlation

between locktimes and transaction lengths (we rejected the null hypothesis of independence at signi�cance

level .95 in favor of the alternate hypothesis of positive dependence). Note that even though the correlations

in the table might appear to be really low, they are not insigni�cant because of the large sample size for
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Fraction Ratio of Locktime to Transaction Length
of transport phone bank

Locks Read Write Read Write Read Write

Data:
0.05 0.229133 0.013514 0.000732 0.125210 0.177928 0.036613
0.10 0.312004 0.048491 0.001217 0.186395 0.327585 0.230273
0.15 0.397360 0.075766 0.001774 0.249538 0.422469 0.279593
0.20 0.460607 0.121369 0.002654 0.307629 0.589007 0.337892
0.25 0.509314 0.167804 0.003895 0.362974 0.677694 0.447921
0.30 0.548788 0.208627 0.005980 0.415690 0.884510 0.493636
0.35 0.582777 0.265886 0.009564 0.474370 0.956210 0.548107
0.40 0.612303 0.334236 0.018358 0.525145 0.966523 0.573371
0.45 0.642499 0.390500 0.049231 0.577949 0.978297 0.632197
0.50 0.674292 0.448303 0.091797 0.624497 0.980401 0.687688
0.55 0.705845 0.499737 0.138100 0.667825 0.988938 0.693358
0.60 0.743220 0.555641 0.199926 0.711302 0.993979 0.766137
0.65 0.786680 0.602874 0.279363 0.748555 0.996598 0.801118
0.70 0.834076 0.659224 0.401885 0.786439 0.997823 0.833532
0.75 0.879183 0.702761 0.597291 0.822217 0.999160 0.850766
0.80 0.921288 0.748362 0.839060 0.857460 0.999406 0.963863
0.85 0.965054 0.802546 0.909088 0.890942 0.999596 0.965887
0.90 0.982705 0.857557 0.940286 0.920730 0.999771 0.969319
0.95 0.994278 0.909777 0.963222 0.949530 0.999911 0.977959
1.00 1.000000 0.997842 0.999987 1.000000 0.999998 0.999547

Index:
0.05 0.012110 0.000764 0.000241 0.188515 0.007650 0.243959
0.10 0.098706 0.029075 0.000428 0.270481 0.046970 0.302886
0.15 0.191191 0.066370 0.000634 0.336214 0.077086 0.304804
0.20 0.326043 0.099461 0.001041 0.386620 0.303215 0.320005
0.25 0.433085 0.134071 0.001873 0.433621 0.436807 0.335084
0.30 0.506415 0.163101 0.003362 0.469880 0.637409 0.381501
0.35 0.561826 0.201434 0.005920 0.508426 0.659465 0.381857
0.40 0.610525 0.236224 0.010392 0.542723 0.666402 0.401098
0.45 0.646890 0.271726 0.017017 0.581186 0.671036 0.421895
0.50 0.682090 0.308223 0.029854 0.619764 0.676877 0.504118
0.55 0.707434 0.347662 0.062248 0.655453 0.682735 0.606800
0.60 0.733677 0.386467 0.129003 0.684835 0.692437 0.697100
0.65 0.776386 0.430282 0.225642 0.715827 0.704452 0.723899
0.70 0.836414 0.470639 0.372107 0.741900 0.718067 0.785612
0.75 0.903854 0.517287 0.768990 0.769104 0.730682 0.816505
0.80 0.967739 0.577389 0.933110 0.799586 0.745182 0.838876
0.85 0.984258 0.632381 0.968751 0.837032 0.764819 0.856392
0.90 0.992498 0.711871 1.000000 0.883365 0.820866 0.897385
0.95 0.997554 0.798762 1.000000 0.927732 0.981833 0.997217
1.00 1.000000 0.998785 1.000000 1.000000 0.999998 0.999952

Table 11: Data for the lockfraction distributions of Read and Write locks for the three traces
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Lock Type Sample size Test statistic �̂ .95 test quantile Reject H0 ?

Transport:
Cursor 76208 0.3875 0.0071 Yes

Data Read 29189 0.0124 0.0115 Yes
Write 1476 0.3033 0.0511 Yes
Cursor 19053 0.3218 0.0142 Yes

Index Read 21162 0.2726 0.0136 Yes
Write 3842 0.2011 0.0316 Yes

Phone:
Cursor 76143 0.3875 0.0071 Yes

Data Read 4609 {0.5228 0.0289 Yes
Write 9787 {0.5090 0.0198 Yes
Cursor 19110 0.3218 0.0142 Yes

Index Read 7824 {0.5961 0.0222 Yes
Write 21615 {0.3516 0.0133 Yes

Bank:
Cursor 27157 0.4513 0.0119 Yes

Data Read 82 0.4285 0.2178 Yes
Write 63 {0.0633 0.2489 No
Cursor 37039 0.0245 0.0102 Yes

Index Read 478 {0.2666 0.0897 Yes
Write 122 {0.4264 0.1782 Yes

Table 12: Spearman test for checking independence between transaction lengths and lock durations (lock-
times for Cursor locks and lockfractions for Read/Write locks).

Cursor locks. For Read/Write locks, the table provides the results for the test for the null hypothesis of

independence at signi�cance level .95 in favor of the alternative hypothesis of a positive/negative dependence.

For all cases (expect Write Data locks for bank) we found signi�cant statistical correlation.

G Transaction Mix

Here we present the tables which characterize the transaction mix in our traced database systems. The

discussion for these tables is presented in Section 6.3 in the main body of the paper.

Tables 13, 14 and 15 present the characterization of the the three workloads based on the application plan

names. For each plan type, we tabulate average transaction length, Cursor locktimes, Read locktimes, Write

locktimes, number of Cursor locks, number of Read locks, number of Write locks and number of distinct

items locked.

Tables 16, 17 and 18 show the characterization of transactions after grouping them by the three param-

eters discussed in Section 6.3. In these tables, the group id identi�es the classi�cation of the transactions

along the three axes. The �rst letter is determined by length of transaction, second letter by read-write

behavior and the third letter by two-phaseness. For example, 3w2 comprises of transactions that belong to

length class 3, acquire write locks and the locking is two-phase.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Plan Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IQ303D 3107 1.632 2.344(.0240) 18.18(2.014) .0000(.0000) 97.45 9.027 .0000 .0000 57.97

QMF220 219 18.67 22.05(.1026) 54.54(110.6) .0522(.4766) 214.9 .4931 .0958 .0136 82.19

TDCBPL 2 13.92 .0000(.0000) 3081.(11.43) 289.5(7.934) .0000 269.5 33.50 3.000 303.0

PDCB81 24 92.43 150.9(.0372) .0000(.0000) .0000(.0000) 4051. .0000 .0000 .0000 350.6

PPYBXDBL 47 .6946 .0269(.0362) 1.085(4.639) 6.901(10.13) .7446 .2340 .6595 .0212 1.468

PDC22 294 .7508 .5341(.0245) .5069(4.028) .9584(.6873) 21.76 .1258 1.384 .0102 16.79

PDC12 466 .6366 .3862(.0100) .1935(9.018) .3662(.5785) 38.56 .0214 .6330 .0000 15.39

PPYBXLXT 10 29.41 47.14(.0493) .0000(.0002) .0000(.0000) 955.8 .2000 .0000 .0000 930.6

ADCBPL 74 .1867 .0000(.0000) .9762(1.416) 3.861(3.861) .0000 .6891 .9189 .0810 1.608

TDCB51 1 8.124 .0000(.0000) 70.07(2.695) 270.2(6.284) .0000 26.00 40.00 3.000 66.00

DSNTEP13 13 4.893 5.481(.0043) 10.95(10.95) 1.313(.9489) 1267. 1.000 1.230 .1538 847.3

PDC81 20 3.516 12.55(.0148) .0000(.0000) .0000(.0000) 846.4 .0000 .0000 .0000 263.7

PDC15 19 1.043 .5211(.0049) 2.046(1.296) 4.830(2.353) 105.5 1.578 2.052 .0000 108.7

TDC4A 21 50.43 .0968(.0423) .6110(.9871) 8.962(3.764) 2.285 .6190 2.142 .2380 4.285

103 .1853 .0000(.0000) .9971(1.252) 1.263(2.829) .0000 .7961 .4466 .0000 1.242

PDC31 422 .2647 .1599(.0264) .0918(.2849) .0255(.1146) 6.054 .3222 .2180 .0047 3.924

PDCBSM1 3 33.65 43.77(.0373) .0000(.0000) .0000(.0000) 1172. .0000 .0000 .0000 799.0

ADB0011 14 1.580 .0065(.0459) .8167(.4971) 3.797(1.772) .1428 1.642 1.714 .4285 3.500

PDC25 584 .1135 .0543(.0086) .0223(1.304) .0399(.5697) 6.260 .0171 .0684 .0017 3.104

DSNTIA13 6 3.405 2.866(.0031) 17.96(6.736) .0366(.0733) 915.8 2.666 .5000 .0000 919.0

PTOLINVO 6 4.610 .0068(.0058) .0000(.0000) 4.166(2.777) 1.166 .0000 1.500 .0000 2.666

PTM10 198 .1219 .0062(.0194) .0000(.0000) .1245(.3081) .3232 .0000 .4040 .0000 .6616

TTOLMAIN 38 23.89 .2687(.0391) .0173(.0730) .3703(.5026) 6.868 .2368 .7368 .0000 4.526

ATOST01 55 .1572 .0000(.0000) .0744(.5847) .0548(.1588) .0000 .1272 .2909 .0545 .4181

PDC71 11 1.387 2.188(.0074) .0000(.0000) .0000(.0000) 294.3 .0000 .0000 .0000 294.3

PDC52 2 8.251 10.77(.0058) .0068(.0068) .0501(.0501) 1834. 1.000 1.000 .0000 580.5

PDCB81A 1 9.140 13.15(.0170) .0000(.0000) .0000(.0000) 772.0 .0000 .0000 .0000 646.0

PDC00 59 .1987 .3043(.0229) .0000(.0000) .0000(.0000) 13.28 .0000 .0000 .0000 13.28

ADC12 7 1.139 .4201(.0127) .4155(2.908) .0000(.0000) 32.85 .1428 .0000 .0000 10.28

ADC31 10 .6702 .3330(.0723) .1534(1.534) .0000(.0000) 4.600 .1000 .0000 .0000 3.500

PTOLMAIN 26 4.794 .1592(.0242) .8076(.0002) .0041(.0083) 6.576 .0384 .5000 .0000 5.923

PDC72 6 .3093 .6250(.0914) .0000(.0000) .0000(.0000) 6.833 .0000 .0000 .0000 6.333

TTOLALST 14 .1659 .0117(.0274) .0000(.0000) .1150(.1073) .4285 .0000 1.071 .0000 1.357

TTOLLKPN 14 .7486 .0150(.0123) .1119(.3133) .1274(.1784) 1.214 .3571 .3571 .3571 1.428

ATOTST01 39 .0443 .0000(.0000) .0102(.4005) .0143(.1863) .0000 .0256 .0769 .0000 .1025

TTOLINVO 6 .5680 .0288(.0157) .0000(.0000) .2086(1.252) 1.833 .0000 .1666 .0000 1.833

DSNESPCS 1 .4164 .1610(.1610) .3959(.3959) .0000(.0000) 1.000 1.000 .0000 .0000 2.000

TDC48 6 .2521 .1072(.0536) .0001(.0009) .0666(.0002) 2.000 .1666 .1666 .0000 2.333

TDC56 7 .3967 .0701(.0288) .0000(.0000) .5714(.0003) 2.428 .0000 .1428 .0000 2.000

PTOLALST 18 .0684 .0000(.0000) .0000(.0000) .0214(.0227) .0000 .0000 .9444 .0000 .9444

PDC11 1 1.274 1.014(.0098) .0000(.0000) .0000(.0000) 103.0 .0000 .0000 .0000 53.00

PDC13 3 .4559 .1335(.0500) .0265(.0796) .0000(.0000) 2.666 .3333 .0000 .0000 3.000

TDC84 1 .4117 .6958(.0773) .0000(.0000) .0000(.0000) 9.000 .0000 .0000 .0000 8.000

PDC41 1 .6479 1.172(.0732) .0000(.0000) .0000(.0000) 16.00 .0000 .0000 .0000 16.00

ADC00 1 1.553 .7200(.0800) .0000(.0000) .0000(.0000) 9.000 .0000 .0000 .0000 9.000

PTOLLKPN 6 .3921 .0067(.0067) .0283(.0567) .0494(.0593) 1.000 .5000 .5000 .3333 1.500

TDCB84A 1 .3060 .2973(.0495) .0000(.0000) .0000(.0000) 6.000 .0000 .0000 .0000 6.000

TTOLLDEL 1 .7389 .1305(.0261) .0000(.0000) .0000(.0000) 5.000 .0000 .0000 .0000 4.000

TTOLGREX 1 .6781 .1710(.0342) .0000(.0000) .0000(.0000) 5.000 .0000 .0000 .0000 5.000

TDC00 4 .0514 .0317(.0317) .0000(.0000) .0000(.0000) 1.000 .0000 .0000 .0000 1.000

PDBB0020 2 .0551 .0424(.0424) .0000(.0000) .0000(.0000) 1.000 .0000 .0000 .0000 1.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 13a. Data lock statistics for all plan types in "transport". The plans are sorted by the total locktime
(data+index) for all transactions of the plan.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Plan Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IQ303D 3107 1.632 1.200(.0911) 7.542(1.356) .0000(.0000) 13.17 5.561 .0000 .0000 16.78

QMF220 219 18.67 13.22(.7335) 73.79(36.07) .0098(.4297) 18.03 2.045 .0091 .0136 15.92

TDCBPL 2 13.92 1.613(.0077) 641.8(8.977) 137.1(10.55) 208.5 71.50 5.000 8.000 88.00

PDCB81 24 92.43 100.6(.0612) .0353(.0292) .0000(.0000) 1644. 1.208 .0000 .0000 172.0

PPYBXDBL 47 .6946 .1749(.0019) 1.104(.3223) 24.83(12.41) 88.72 3.425 .4893 1.510 5.425

PDC22 294 .7508 .6426(.0251) .4788(.6672) 2.290(.5365) 25.52 .7176 4.074 .1938 24.96

PDC12 466 .6366 .1557(.0148) .0588(.0556) 1.306(.4384) 10.49 1.057 2.881 .0965 9.778

PPYBXLXT 10 29.41 29.64(2.823) .0556(.0327) .0000(.0000) 10.50 1.700 .0000 .0000 11.30

ADCBPL 74 .1867 .0635(.0084) 1.197(.4843) 1.199(4.439) 7.554 2.472 .1081 .1621 3.851

TDCB51 1 8.124 2.406(.0051) 71.93(2.997) 72.63(6.052) 471.0 24.00 4.000 8.000 39.00

DSNTEP13 13 4.893 .1127(.0325) 16.06(6.962) .0014(.0186) 3.461 2.307 .0000 .0769 4.461

PDC81 20 3.516 7.198(.9170) .0051(.0093) .0000(.0000) 7.850 .5500 .0000 .0000 5.300

PDC15 19 1.043 .4512(.0223) 3.842(.8295) 8.841(3.359) 20.21 4.631 .9473 1.684 17.78

TDC4A 21 50.43 .3327(.0100) 4.147(2.073) 3.346(3.698) 33.14 2.000 .4285 .4761 12.33

103 .1853 .0530(.0135) .5457(.2531) .1431(1.340) 3.922 2.155 .0485 .0582 3.436

PDC31 422 .2647 .3018(.0164) .0076(.0163) .0926(.0946) 18.31 .4644 .9099 .0687 9.755

PDCBSM1 3 33.65 45.22(.0145) .0000(.0000) .0000(.0000) 3099. .0000 .0000 .0000 276.6

ADB0011 14 1.580 .8001(.0476) 8.268(1.134) 4.047(1.231) 16.78 7.285 1.714 1.571 14.21

PDC25 584 .1135 .0867(.0062) .0192(.0124) .1729(.4613) 13.92 1.547 .3390 .0359 8.936

DSNTIA13 6 3.405 .3469(.0800) 12.42(4.658) .0062(.0093) 4.333 2.666 .6666 .0000 6.333

PTOLINVO 6 4.610 .1191(.0029) .2242(.2242) 14.25(2.949) 40.33 1.000 4.000 .8333 9.000

PTM10 198 .1219 .0842(.0210) .0085(.0068) .2546(.2639) 4.010 1.247 .9646 .0000 4.611

TTOLMAIN 38 23.89 .2444(.0171) .2915(.2915) .3548(.4494) 14.26 1.000 .1578 .6315 8.763

ATOST01 55 .1572 .1280(.0426) .3282(.1388) .0214(.1962) 3.000 2.363 .0000 .1090 4.036

PDC71 11 1.387 .6145(.0386) .0000(.0000) .0000(.0000) 15.90 .0000 .0000 .0000 6.454

PDC52 2 8.251 3.261(.0051) .0000(.0000) .0000(.0000) 638.5 .0000 .0000 .0000 24.50

PDCB81A 1 9.140 10.59(.0173) .0000(.0000) .0000(.0000) 612.0 .0000 .0000 .0000 48.00

PDC00 59 .1987 .0101(.0352) .0025(.0087) .0000(.0000) .2881 .2881 .0000 .0000 .4576

ADC12 7 1.139 .7033(.0349) .3543(2.480) .3503(2.452) 20.14 .1428 .1428 .0000 10.85

ADC31 10 .6702 .6179(.0479) .0000(.0000) .0000(.0000) 12.90 .0000 .0000 .0000 5.400

PTOLMAIN 26 4.794 .1115(.0115) .0373(.0485) .0039(.0148) 9.692 .7692 .2692 .0000 5.115

PDC72 6 .3093 .7382(.0726) .0000(.0000) .0000(.0000) 10.16 .0000 .0000 .0000 6.666

TTOLALST 14 .1659 .1910(.0405) .0520(.0607) .0088(.0176) 4.714 .8571 .0000 .5000 4.500

TTOLLKPN 14 .7486 .0725(.0122) .0063(.0126) .0000(.0000) 5.928 .5000 .0000 .0000 3.214

ATOTST01 39 .0443 .0363(.0175) .0382(.0196) .0134(.1306) 2.076 1.948 .0769 .0256 3.128

TTOLINVO 6 .5680 .0878(.0142) .0000(.0000) .2180(1.308) 6.166 .0000 .1666 .0000 4.833

DSNESPCS 1 .4164 .3735(.0287) 1.237(.3094) .0000(.0000) 13.00 4.000 .0000 .0000 16.00

TDC48 6 .2521 .2081(.0192) .0001(.0011) .0097(.0292) 10.83 .1666 .1666 .1666 10.00

TDC56 7 .3967 .1406(.0172) .0000(.0000) .0283(.1981) 8.142 .0000 .1428 .0000 6.571

PTOLALST 18 .0684 .0685(.0352) .0000(.0001) .0000(.0000) 1.944 .0555 .0000 .0000 2.000

PDC11 1 1.274 .5469(.0176) .0000(.0000) .0000(.0000) 31.00 .0000 .0000 .0000 11.00

PDC13 3 .4559 .2707(.0477) .0397(.1191) .0000(.0000) 5.666 .3333 .0000 .0000 5.333

TDC84 1 .4117 .6656(.0443) .0000(.0000) .0000(.0000) 15.00 .0000 .0000 .0000 9.000

PDC41 1 .6479 .0000(.0000) .0000(.0000) .0000(.0000) .0000 .0000 .0000 .0000 .0000

ADC00 1 1.553 .1761(.0293) .0000(.0000) .0000(.0000) 6.000 .0000 .0000 .0000 2.000

PTOLLKPN 6 .3921 .0610(.0087) .0000(.0000) .0000(.0000) 7.000 .0000 .0000 .0000 3.000

TDCB84A 1 .3060 .2960(.0211) .0000(.0000) .0000(.0000) 14.00 .0000 .0000 .0000 7.000

TTOLLDEL 1 .7389 .2517(.0251) .0000(.0000) .0000(.0000) 10.00 .0000 .0000 .0000 4.000

TTOLGREX 1 .6781 .1721(.0172) .0000(.0000) .0000(.0000) 10.00 .0000 .0000 .0000 4.000

TDC00 4 .0514 .0527(.0058) .0000(.0000) .0000(.0000) 9.000 .0000 .0000 .0000 9.000

PDBB0020 2 .0551 .0623(.0207) .0000(.0000) .0000(.0000) 3.000 .0000 .0000 .0000 3.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 13b. Index lock statistics for all plan types in "transport".
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TKCE2305 8 185.6 580.9(.0361) .0368(.0982) .0000(.0000) 16079 .3750 .0000 .0000 9164.

TKCE2815 1 1778. 4099.(.0449) 29.80(9.934) .0000(.0000) 91195 3.000 .0000 .0000 17114

TKAA5 1537 .3331 .0478(.0041) .0307(.0418) .7548(.2609) 11.52 .7345 2.187 .7052 8.886

TKAU5 800 1.251 2.874(.0231) .3449(.2650) .0000(.0000) 124.4 1.301 .0000 .0000 80.99

TKCE3055 4 141.5 428.1(.0330) .1712(.1712) .0000(.0000) 12946 1.000 .0000 .0000 7673.

TKCE0055 3 309.2 437.2(.0233) .0711(.2134) .0000(.0000) 18733 .3333 .0000 .0000 4661.

TKA25 198 .3820 .0268(.0059) .0023(.0064) 1.245(.4542) 4.489 .3636 2.378 .3636 6.439

TKCE1255 1 639.9 692.8(.0030) .0000(.0000) .0000(.0000) 22530 .0000 .0000 .0000 11245

TKA75 106 .5101 .0696(.0049) .8867(.0005) 1.965(.4948) 14.14 .0094 3.962 .0094 13.54

TKCIA745 14 1.518 .5161(.0013) .0000(.0000) 12.57(1.189) 390.1 .0000 10.57 .0000 54.42

TKCE0065 853 .3291 .4295(.0401) .0217(3.716) .0000(.0000) 10.70 .0058 .0000 .0000 9.527

TKAC5 971 .2202 .0287(.0116) .0014(.0028) .2036(.1071) 2.476 .5077 1.421 .4788 4.402

TKBF5 72 1.846 3.086(.0028) .0036(.2636) .0000(.0000) 1097. .0138 .0000 .0000 1069.

TKAY5 2 70.69 83.58(.0022) .0000(.0000) .0000(.0000) 37872 .0000 .0000 .0000 3706.

TKAW5 78 1.465 .9264(.0421) .0599(.0632) .0000(.0000) 21.97 .9487 .0000 .0000 19.10

TKA55 904 .2273 .1853(.0120) .0001(.1338) .0000(.0000) 15.42 .0011 .0000 .0000 11.20

TKAV5 14 9.957 1.822(.0815) .1805(.0902) .0000(.0000) 22.35 2.000 .0000 .0000 22.85

TKCIA755 46 .2083 .0197(.0027) .2543(.0005) 1.269(.2212) 7.130 .0434 5.695 .0434 8.608

TKAR5 981 .1301 .0969(.0213) .0237(.0545) .0000(.0000) 4.539 .4362 .0000 .0000 4.975

TKCIA735 954 .0363 .0000(.0000) .0341(.0341) .0289(.0290) .0000 .9979 .9979 .0000 1.995

TKCR0055 172 .1471 .0000(.0000) .0009(.0009) .4890(.1350) .0000 1.000 2.622 1.000 3.622

TKA35 77 .4096 .0796(.0049) .0244(.0247) .3866(.1837) 16.18 .9870 1.155 .9480 12.81

TKSC5 193 .4546 .0169(.0041) .0048(.2342) .1432(.1946) 4.119 .0207 .7357 .0000 3.202

TKCIA815 2 .9677 .0799(.0228) .0003(.0006) 2.830(.7075) 3.500 .5000 3.500 .5000 7.000

TKAH5 56 .2060 .0278(.0105) .0238(.0371) .2030(.1306) 2.642 .6428 1.071 .4821 4.035

TKAP5 112 .1173 .0880(.0108) .0133(.0383) .0000(.0000) 8.133 .3482 .0000 .0000 8.482

TKG55 33 .5245 .0870(.0159) .0000(.0000) .0000(.0000) 5.454 .0000 .0000 .0000 4.424

TKL25 28 .1855 .0086(.0060) .0000(.0000) .1587(.2778) 1.428 .0000 .5714 .0000 1.428

TKCR2305 7 4.730 .0472(.0026) .0209(.0209) 1.508(.3406) 17.85 1.000 3.428 1.000 13.85

TKLA5 59 .1622 .0202(.0072) .0000(.0000) .0785(.1932) 2.796 .0000 .4067 .0000 2.644

TKAF5 23 .2355 .0324(.0067) .0102(.0157) .1874(.1002) 4.782 .6521 1.391 .4782 6.304

TKN55 4 1.020 .0736(.0184) .0000(.0000) .0000(.0000) 4.000 .0000 .0000 .0000 4.000

TKGA5 4 1.466 2.138(.0036) .0000(.0000) .0000(.0000) 585.0 .0000 .0000 .0000 585.0

TKL55 1 6.310 .2746(.0915) .0000(.0000) .0000(.0000) 3.000 .0000 .0000 .0000 3.000

TK005 97 .1176 .0084(.0083) .0000(.0000) .0000(.0000) 1.010 .0000 .0000 .0000 1.010

TKCR3055 3 .4531 .0000(.0000) .0099(.0099) 1.356(.4069) .0000 1.000 2.333 1.000 3.333

TKA65 3 .5195 .3680(.0139) .5201(.2600) .0000(.0000) 26.33 2.000 .0000 .0000 13.00

TKNU5 1 2.466 4.310(.0615) .0000(.0000) .0000(.0000) 70.00 .0000 .0000 .0000 70.00

TKD55 26 .1450 .0094(.0047) .0000(.0000) .0000(.0000) 2.000 .0000 .0000 .0000 2.000

TKCIA835 1 .7242 .0020(.0010) .0425(.0425) 1.485(.4950) 2.000 1.000 2.000 1.000 5.000

TKL45 4 .2088 .0939(.0129) .0000(.0000) .1366(.2733) 7.250 .0000 .5000 .0000 5.500

TKCBZ055 4 .6271 .4259(.0013) .0000(.0000) .0000(.0000) 316.0 .0000 .0000 .0000 316.0

TKG65 6 .1378 .0707(.0223) .0699(.0699) .0000(.0000) 3.166 1.000 .0000 .0000 4.166

TKR55 202 2.091 .0021(.0010) .0000(.0000) .0000(.0000) 2.044 .0000 .0000 .0000 2.019

TKH25 6 .1439 .0124(.0124) .0000(.0000) .0814(.1629) 1.000 .0000 .5000 .0000 1.500

TKLY5 1 .5571 .4004(.0222) .1342(.1342) .0000(.0000) 18.00 1.000 .0000 .0000 9.000

TKAG5 2 .1891 .0495(.0247) .0004(.0008) .1957(.1304) 2.000 .5000 1.000 .5000 3.500

TKPB5 4 .3534 .0073(.0048) .0000(.0000) .0850(.3403) 1.500 .0000 .2500 .0000 1.750

TKAJ5 3 .1225 .0271(.0203) .0002(.0007) .1262(.0946) 1.333 .3333 1.000 .3333 2.666

TKP25 6 .1127 .0139(.0167) .0000(.0000) .0344(.2067) .8333 .0000 .1666 .0000 1.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Other 21 plans 139 .0813 .0039(.0035) .0015(.1050) .0062(.1729) 1.130 .0144 .0360 .0000 1.158iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 14a. Data lock statistics for all plan types in "phone".
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TKCE2305 8 185.6 529.5(.0187) 15.68(31.36) .0000(.0000) 28175 .5000 .0000 .0000 25682

TKCE2815 1 1778. 4189.(.0320) 29.69(9.899) .0000(.0000) 13057 3.000 .0000 .0000 67366

TKAA5 1537 .3331 .1352(.0079) .0080(.0064) 2.571(.3734) 16.93 1.247 5.681 1.205 18.36

TKAU5 800 1.251 2.544(.0199) .2686(.2016) .0000(.0000) 127.4 1.332 .0000 .0000 113.6

TKCE3055 4 141.5 364.1(.0184) .1452(.1936) .0000(.0000) 19712 .7500 .0000 .0000 17960

TKCE0055 3 309.2 460.5(.0154) 92.49(277.4) .0000(.0000) 29906 .3333 .0000 .0000 19980

TKA25 198 .3820 .0365(.0037) .0219(.0214) 7.682(.5063) 9.747 1.025 14.18 .9898 23.37

TKCE1255 1 639.9 505.3(.0065) .0000(.0000) .0000(.0000) 77217 .0000 .0000 .0000 13316

TKA75 106 .5101 .1513(.0042) .0097(.0034) 8.812(.5129) 35.86 2.849 14.33 2.839 44.57

TKCIA745 14 1.518 .5916(.0009) .4014(.0419) 61.50(1.373) 600.1 9.571 35.42 9.357 93.07

TKCE0065 853 .3291 .6084(.0170) .0215(6.119) .0000(.0000) 35.73 .0035 .0000 .0000 31.59

TKAC5 971 .2202 .0884(.0112) .0024(.0031) .2917(.1254) 7.866 .7929 1.562 .7641 9.605

TKBF5 72 1.846 2.272(.0034) .0000(.0000) .0000(.0000) 650.6 .0000 .0000 .0000 650.6

TKAY5 2 70.69 95.92(.0004) .0000(.0000) .0000(.0000) 21626 .0000 .0000 .0000 21629

TKAW5 78 1.465 2.277(.0025) .8956(.3776) .0000(.0000) 882.6 2.371 .0000 .0000 883.7

TKA55 904 .2273 .1444(.0114) .0000(.0000) .0000(.0000) 12.60 .0000 .0000 .0000 10.94

TKAV5 14 9.957 15.75(.0080) .2098(.1049) .0000(.0000) 1959. 2.000 .0000 .0000 1958.

TKCIA755 46 .2083 .0449(.0039) .0053(.0011) 4.095(.1498) 11.41 4.695 22.65 4.673 35.69

TKAR5 981 .1301 .0729(.0141) .0245(.0563) .0000(.0000) 5.149 .4362 .0000 .0000 5.586

TKCIA735 954 .0363 .0002(.0027) .0707(.0340) .0384(.0325) .0880 2.077 1.099 .0817 3.244

TKCR0055 172 .1471 .0005(.0005) .0060(.0029) .2757(.1343) 1.000 2.052 .0000 2.052 3.052

TKA35 77 .4096 .1905(.0066) .0009(.0015) .3654(.2024) 28.85 .6493 1.155 .6493 20.50

TKSC5 193 .4546 .0196(.0032) .0047(.0455) .1724(.1993) 6.036 .1036 .7823 .0829 4.756

TKCIA815 2 .9677 .0950(.0061) .0001(.0001) 20.93(.8210) 15.50 .5000 25.00 .5000 37.50

TKAH5 56 .2060 .0684(.0080) .0252(.0344) .1387(.1317) 8.553 .7321 .4821 .5714 8.000

TKAP5 112 .1173 .0594(.0122) .0210(.0605) .0000(.0000) 4.848 .3482 .0000 .0000 5.196

TKG55 33 .5245 .4721(.0049) .0000(.0000) .0000(.0000) 94.66 .0000 .0000 .0000 48.69

TKL25 28 .1855 .0114(.0031) .0037(.0117) .4466(.2605) 3.642 .3214 1.428 .2857 4.535

TKCR2305 7 4.730 .0679(.0036) .0399(.0174) .8304(.3633) 18.85 2.285 .0000 2.285 7.285

TKLA5 59 .1622 .0250(.0036) .0000(.0000) .1185(.1943) 6.813 .0000 .6101 .0000 5.593

TKAF5 23 .2355 .1132(.0121) .0149(.0181) .1262(.1001) 9.347 .8260 .6086 .6521 8.869

TKN55 4 1.020 2.124(.0153) .0000(.0000) .0000(.0000) 138.5 .0000 .0000 .0000 118.7

TKGA5 4 1.466 .0017(.0008) .0000(.0000) .0000(.0000) 2.000 .0000 .0000 .0000 2.000

TKL55 1 6.310 7.033(.0036) .0000(.0000) .0000(.0000) 1901. .0000 .0000 .0000 952.0

TK005 97 .1176 .0646(.0022) .0000(.0000) .0000(.0000) 28.85 .0000 .0000 .0000 28.85

TKCR3055 3 .4531 .0004(.0004) .0390(.0195) .8154(.4077) 1.000 2.000 .0000 2.000 3.000

TKA65 3 .5195 .3383(.0116) .5217(.2608) .0000(.0000) 29.00 2.000 .0000 .0000 12.66

TKNU5 1 2.466 .0012(.0006) .0000(.0000) .0000(.0000) 2.000 .0000 .0000 .0000 2.000

TKD55 26 .1450 .1037(.0051) .0000(.0000) .0000(.0000) 20.15 .0000 .0000 .0000 10.57

TKCIA835 1 .7242 .0692(.0062) .0503(.0251) .8431(.4215) 11.00 2.000 .0000 2.000 12.00

TKL45 4 .2088 .0831(.0095) .0410(.0820) .1320(.1320) 8.750 .5000 .5000 .5000 5.250

TKCBZ055 4 .6271 .0002(.0002) .0000(.0000) .0000(.0000) 1.000 .0000 .0000 .0000 1.000

TKG65 6 .1378 .0092(.0036) .1190(.1190) .0000(.0000) 2.500 1.000 .0000 .0000 3.500

TKR55 202 2.091 .0056(.0018) .0000(.0000) .0000(.0000) 3.049 .0000 .0000 .0000 3.024

TKH25 6 .1439 .0138(.0046) .0001(.0003) .1387(.1189) 3.000 .1666 1.000 .1666 3.666

TKLY5 1 .5571 .2168(.0065) .4295(.4295) .0000(.0000) 33.00 1.000 .0000 .0000 20.00

TKAG5 2 .1891 .0671(.0111) .0012(.0025) .1443(.1443) 6.000 .5000 .5000 .5000 6.500

TKPB5 4 .3534 .0095(.0029) .0000(.0000) .1153(.2306) 3.250 .0000 .5000 .0000 3.750

TKAJ5 3 .1225 .0024(.0012) .0006(.0009) .1225(.0919) 2.000 .6666 .6666 .6666 3.333

TKP25 6 .1127 .0157(.0062) .0000(.0000) .0655(.1967) 2.500 .0000 .3333 .0000 2.833iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Other 21 plans 139 .0813 .0091(.0025) .0018(.0620) .0082(.1433) 3.640 .0288 .0432 .0144 3.669iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 14b. Index lock statistics for all plan types in "phone".
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CIFM1001 162 26.55 53.05(.0885) 41.72(307.2) .0000(.0000) 599.2 .1358 .0000 .0000 526.6

QMF220 31 54.13 33.81(.0407) 305.8(206.1) .0815(.1487) 829.7 1.483 .5483 .0000 644.2

FBSPLAN 130 .9426 .0831(.0101) .0000(.0000) 1.270(3.589) 8.161 .0000 .3538 .0000 4.130

CIFOI001 386 .3533 .3429(.1082) .0765(14.77) .0000(.0000) 3.168 .0051 .0000 .0000 2.772

CIFOI003 313 .3882 .4478(.0620) .0000(.0000) .0000(.0000) 7.214 .0000 .0000 .0000 4.498

190 .2633 .0438(.0196) .4719(22.41) .0000(.0000) 2.231 .0210 .0000 .0000 .8421

CIFOI004 127 .2915 .2297(.1076) .0000(.0000) .0000(.0000) 2.133 .0000 .0000 .0000 1.866

CCCPLAN 20 2.746 1.439(.0177) .0000(.0000) .0000(.0000) 81.05 .0000 .0000 .0000 56.75

CIFOI007 73 .3456 .3836(.1081) .0000(.0000) .0000(.0000) 3.547 .0000 .0000 .0000 3.041

CIFOI005 20 .2503 .1944(.0720) .0407(.1018) .0000(.0000) 2.700 .4000 .0000 .0000 2.750

CCASDB24 1 19.43 10.95(.0027) .0000(.0000) .0000(.0000) 4020. .0000 .0000 .0000 1709.

CIFOI006 5 .5720 .2485(.0355) .0000(.0000) .0000(.0000) 7.000 .0000 .0000 .0000 3.400

CIFOI002 7 .2536 .1687(.0562) .0000(.0000) .0000(.0000) 3.000 .0000 .0000 .0000 3.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 15a. Data lock statistics for all plan types in "bank".

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

length cursor read write cursor read write upgrade itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CIFM1001 162 26.55 58.89(.0579) 22.66(18.82) .0000(.0000) 1016. 1.203 .0000 .0000 388.8

QMF220 31 54.13 29.48(.1773) 145.8(90.44) .0645(.1818) 166.2 1.612 .2903 .0645 115.3

FBSPLAN 130 .9426 .1474(.0083) .9737(5.754) 2.682(3.141) 17.63 .1692 .7615 .0923 11.71

CIFOI001 386 .3533 .5268(.0506) .1145(14.73) .0000(.0000) 10.41 .0077 .0000 .0000 6.911

CIFOI003 313 .3882 .5981(.0427) .0000(.0000) .0000(.0000) 13.98 .0000 .0000 .0000 8.469

190 .2633 .0062(.0061) .0025(.0024) .0000(.0000) 1.026 1.052 .0000 .0000 2.052

CIFOI004 127 .2915 .3841(.0437) .0000(.0000) .0000(.0000) 8.787 .0000 .0000 .0000 6.598

CCCPLAN 20 2.746 2.425(.0227) .0000(.0000) .0000(.0000) 106.4 .0000 .0000 .0000 32.15

CIFOI007 73 .3456 .6021(.0586) .0000(.0000) .0000(.0000) 10.27 .0000 .0000 .0000 7.027

CIFOI005 20 .2503 .2912(.0469) .0410(.1025) .0000(.0000) 6.200 .4000 .0000 .0000 5.000

CCASDB24 1 19.43 .0436(.0109) .0000(.0000) .0000(.0000) 4.000 .0000 .0000 .0000 4.000

CIFOI006 5 .5720 .6351(.0387) .0000(.0000) .0000(.0000) 16.40 .0000 .0000 .0000 11.40

CIFOI002 7 .2536 .2797(.0466) .0000(.0000) .0000(.0000) 6.000 .0000 .0000 .0000 6.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 15b. Index lock statistics for all plan types in "bank".
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct
cc
c
c
c

cc
c
c
c

length c
c
c

cursor cc read cc write c
c
c

cursor cc read cc write cc upgrade c
c
c

itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Data lock stats:

0R2 878 .0019 .0000(.0000) .0006(.0082) .0000(.0000) .0000 .0797 .0000 .0000 .0797

1R2 2680 .0782 .0000(.0000) .4414(.0739) .0000(.0000) .0000 5.969 .0000 .0000 5.969

2R2 893 .4951 .0000(.0000) 3.843(.3184) .0000(.0000) .0000 12.06 .0000 .0000 12.06

3R2 10 8.317 .0000(.0000) 48.79(4.280) .0000(.0000) .0000 11.40 .0000 .0000 11.40

4R2 2 219.6 .0000(.0000) 3281.(218.7) .0000(.0000) .0000 15.00 .0000 .0000 15.00

0W2 8 .0020 .0000(.0000) .0000(.0000) .0009(.0009) .0000 .0000 1.000 .0000 1.000

1W2 22 .0884 .0000(.0000) .0219(.0690) .0582(.0533) .0000 .3181 1.000 .0909 1.318

2W2 45 .7714 .0000(.0000) .7602(.6579) 1.703(.5397) .0000 1.155 2.911 .2444 4.066

3W2 11 7.104 .0000(.0000) 582.1(9.254) 132.6(5.229) .0000 62.90 23.36 2.000 86.27

0RN 74 .0053 .0007(.0006) .0000(.0000) .0000(.0000) 1.283 .0000 .0000 .0000 1.148

1RN 285 .1001 .0587(.0096) .0006(.0190) .0000(.0000) 6.105 .0315 .0000 .0000 4.526

2RN 623 .7185 .6626(.0150) .6310(1.917) .0000(.0000) 44.07 .3290 .0000 .0000 27.64

3RN 104 31.45 59.90(.0206) 306.5(34.62) .0000(.0000) 2901. 8.855 .0000 .0000 1405.

4RN 25 338.6 414.2(.0536) 990.2(260.5) .0000(.0000) 7718. 3.800 .0000 .0000 2496.

1WN 40 .1082 .0213(.0055) .0469(.0587) .0622(.0383) 3.875 .8000 1.600 .0250 5.300

2WN 251 1.057 .1814(.0080) .2515(.4073) 1.664(.4779) 22.60 .6175 3.438 .0438 11.55

3WN 40 19.28 4.300(.0151) 7.928(10.93) 13.84(6.672) 284.2 .7250 2.050 .0250 175.3

4WN 4 118.9 .4842(.0365) .0767(.1023) .0116(.0466) 13.25 .7500 .2500 .0000 7.000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 5574 2.402 3.052(.0325) 12.32(2.434) .0000(.0000) 94.00 5.062 .0000 .0000 45.60

?W? 421 3.875 .5233(.0128) 16.20(7.031) 5.963(1.701) 40.97 2.304 3.392 .1140 26.88iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 4549 .2837 .0000(.0000) 3.979(.6526) .3378(3.392) .0000 6.097 .0919 .0077 6.189

??N cc
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.6734(.9513) cc
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1.002 cc
c
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.6984 cc
c
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c
c
c
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c
c
c
c
c
c
c
c

.0090 cc
c
c
c
c
c
c
c
c
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c
c
c
c
c
c
c
c
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164.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Index lock stats:

0R2 878 .0019 .0010(.0005) .0024(.0011) .0000(.0000) 2.108 2.119 .0000 .0000 3.293

1R2 2680 .0782 .0257(.0041) .2659(.0569) .0000(.0000) 6.147 4.671 .0000 .0000 9.223

2R2 893 .4951 .1452(.0093) 1.993(.3488) .0000(.0000) 15.59 5.715 .0000 .0000 19.38

3R2 10 8.317 2.456(.0172) 25.93(5.084) .0000(.0000) 142.1 5.100 .0000 .0000 145.3

4R2 2 219.6 234.2(.1316) 1314.(219.0) .0000(.0000) 1780. 6.000 .0000 .0000 1779.

0W2 8 .0020 .0022(.0011) .0000(.0000) .0000(.0000) 2.000 .0000 .0000 .0000 2.000

1W2 22 .0884 .0762(.0119) .0343(.0419) .0583(.0583) 6.409 .8181 .8636 .1363 4.772

2W2 45 .7714 .3689(.0284) 2.189(.7522) 2.038(.3902) 12.95 2.911 4.577 .6444 13.15

3W2 11 7.104 1.720(.0095) 147.4(5.591) 48.86(5.906) 179.9 26.36 3.454 4.818 39.90

0RN 74 .0053 .0032(.0008) .0000(.0000) .0000(.0000) 3.837 .0000 .0000 .0000 3.486

1RN 285 .1001 .0821(.0070) .0004(.0234) .0000(.0000) 11.62 .0175 .0000 .0000 6.701

2RN 623 .7185 .5052(.0197) .3198(1.633) .0000(.0000) 25.63 .1958 .0000 .0000 13.40

3RN 104 31.45 25.38(.1584) 124.7(34.88) .0000(.0000) 160.2 3.576 .0000 .0000 58.03

4RN 25 338.6 250.1(.1488) 852.6(343.8) .0000(.0000) 1681. 2.480 .0000 .0000 325.6

1WN 40 .1082 .0676(.0045) .0322(.0252) .0481(.0223) 14.77 1.275 1.500 .6500 11.07

2WN 251 1.057 .4976(.0187) .5944(.3375) 5.433(.4242) 26.54 1.760 12.12 .6852 27.40

3WN 40 19.28 2.719(.0120) 4.511(1.555) 37.40(7.874) 225.6 2.900 2.475 2.275 86.40

4WN 4 118.9 .6006(.0224) .0321(.0214) .0010(.0014) 26.75 1.500 .0000 .7500 12.75iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 5574 2.402 1.780(.0859) 7.154(1.983) .0000(.0000) 20.72 3.607 .0000 .0000 13.38

?W? 421 3.875 .6556(.0144) 4.874(1.947) 8.295(.9093) 45.38 2.503 8.227 .8954 28.45iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 4549 .2837 .1604(.0183) 1.561(.3553) .1386(1.812) 8.781 4.393 .0578 .0187 11.22

??N 1446 9.495 6.549(.1001) 24.08(29.62) 1.979(.8195) 65.44 .8131 2.213 .2019 24.56iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 16. Transaction mix for "transport". The first, second and third letters in the class name respectively
define the transaction size, read/write and two-phaseness of the transactions. For instance, 3W2 represents
write two-phase transactions belonging to size class 2. ?R? and ?W? respectively denote Read and Write
transactions. ??2 and ??N respectively denote two-phase and non-two-phase transactions.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

cc
c
c
c

cc
c
c
c

length c
c
c

cursor cc read cc write c
c
c

cursor cc read cc write cc upgrade c
c
c

itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Index lock stats:

0R2 79 .0017 .0005(.0004) .0000(.0000) .0000(.0000) 1.215 .0000 .0000 .0000 1.215

1R2 437 .0377 .0014(.0005) .0000(.0000) .0000(.0000) 2.457 .0000 .0000 .0000 2.457

2R2 26 .2775 .0072(.0006) .0000(.0000) .0000(.0000) 11.57 .0000 .0000 .0000 11.57

3R2 1 18.15 29.19(.0076) 18.15(18.15) .0000(.0000) 3808. 1.000 .0000 .0000 3809.

0W2 4 .0047 .0000(.0000) .0084(.0037) .0028(.0023) .0000 2.250 1.000 .2500 3.250

1W2 1132 .0455 .0005(.0015) .0577(.0298) .0475(.0404) .3436 1.937 .9001 .2765 3.165

2W2 170 .1767 .0049(.0033) .0206(.0129) .2645(.1583) 1.452 1.600 .1647 1.505 3.205

0RN 195 .0026 .0021(.0016) .0000(.0000) .0000(.0000) 1.261 .0000 .0000 .0000 1.261

1RN 1697 .0686 .0314(.0041) .0042(.0363) .0000(.0000) 7.573 .1172 .0000 .0000 7.134

2RN 2459 .6606 .7780(.0114) .1012(.1659) .0000(.0000) 67.66 .6100 .0000 .0000 60.54

3RN 149 7.068 12.23(.0031) .4306(.4550) .0000(.0000) 3928. .9463 .0000 .0000 1268.

4RN 13 405.8 887.0(.0200) 33.31(54.13) .0000(.0000) 44188 .6153 .0000 .0000 30243

1WN 331 .0990 .0080(.0017) .0023(.0017) .2277(.0720) 4.561 1.350 1.815 1.347 7.244

2WN 2125 .3910 .1331(.0066) .0086(.0062) 3.346(.3855) 19.90 1.387 7.312 1.367 22.08

3WN 8 15.61 5.931(.0312) .8963(.0682) 85.76(1.369) 189.8 13.12 50.00 12.62 91.37iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 5056 1.604 3.036(.0114) .1526(.4172) .0000(.0000) 265.9 .3657 .0000 .0000 148.0

?W? 3770 .2839 .0887(.0072) .0252(.0159) 2.114(.3687) 12.19 1.584 4.666 1.067 14.37iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 1849 .0668 .0170(.0053) .0471(.0352) .0534(.0609) 3.199 1.338 .5684 .3082 5.095

??N cc
c
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6977 cc
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c

2.243(.0113) cc
c
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c
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c
c
c
c

.1117(.1457) cc
c
c
c
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c
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c

1.128(.3937) cc
c
c
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c
c
c
c

198.4 cc
c
c
c
c
c
c
c
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c
c
c

.7666 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2.370 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.4949 cc
c
c
c
c
c
c
c
c
c
c
c
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c
c

113.7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Data lock stats:

0R2 79 .0017 .0000(.0000) .0000(.0000) .0000(.0000) .0000 .0000 .0000 .0000 .0000

1R2 437 .0377 .0000(.0000) .0000(.0000) .0000(.0000) .0000 .0000 .0000 .0000 .0000

2R2 26 .2775 .0000(.0000) .0000(.0000) .0000(.0000) .0000 .0000 .0000 .0000 .0000

3R2 1 18.15 .0000(.0000) 18.22(9.112) .0000(.0000) .0000 2.000 .0000 .0000 2.000

0W2 4 .0047 .0000(.0000) .0034(.0034) .0021(.0021) .0000 1.000 1.000 .0000 2.000

1W2 1132 .0455 .0000(.0000) .0278(.0279) .0570(.0467) .0000 .9964 1.054 .1660 2.051

2W2 170 .1767 .0000(.0000) .0104(.0104) .4581(.1632) .0000 1.000 1.852 .9529 2.852

0RN 195 .0026 .0017(.0010) .0000(.0000) .0000(.0000) 1.630 .0000 .0000 .0000 1.630

1RN 1697 .0686 .0314(.0049) .0045(.0388) .0000(.0000) 6.421 .1172 .0000 .0000 5.771

2RN 2459 .6606 .8055(.0120) .1019(.1822) .0000(.0000) 66.73 .5595 .0000 .0000 54.21

3RN 149 7.068 11.01(.0132) .3747(.4166) .0000(.0000) 831.5 .8993 .0000 .0000 288.1

4RN 13 405.8 941.8(.0224) 2.361(3.837) .0000(.0000) 41973 .6153 .0000 .0000 10829

1WN 331 .0990 .0024(.0013) .0006(.0008) .1866(.0712) 1.788 .7613 1.858 .7613 4.145

2WN 2125 .3910 .0585(.0046) .0037(.0059) .9008(.2755) 12.72 .6254 2.651 .6174 9.961

3WN 8 15.61 .5643(.0042) 5.258(6.009) 18.46(1.330) 134.1 .8750 13.00 .8750 37.12iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 5056 1.604 3.148(.0188) .0718(.2112) .0000(.0000) 167.1 .3399 .0000 .0000 64.70

?W? 3770 .2839 .0344(.0045) .0221(.0288) .6011(.2315) 7.616 .7665 2.086 .5095 6.804iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 1849 .0668 .0000(.0000) .0278(.0395) .0770(.0764) .0000 .7052 .8182 .1892 1.523

??N 6977 1.298 2.300(.0183) .0566(.1195) .3043(.2680) 125.2 .4736 .9105 .2251 50.16iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 17. Transaction mix for "phone".
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Per transaction statistics

Xact Number
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class of xacts Xact Locktime (locktime per lock) Number of locks Distinct

c
c
c
c
c

c
c
c
c
c

length c
c
c

cursor cc read cc write c
c
c

cursor cc read cc write cc upgrade c
c
c

itemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Index lock stats:

0R2 332 .0059 .0034(.0031) .0023(.0022) .0000(.0000) 1.075 1.045 .0000 .0000 2.075

1R2 230 .1043 .0560(.0194) .0160(.0636) .0000(.0000) 2.882 .2521 .0000 .0000 2.800

2R2 2 .6589 .1995(.1330) .1680(.3361) .0000(.0000) 1.500 .5000 .0000 .0000 2.000

1W2 3 .3407 .1198(.0102) .0337(.1011) .6050(.2016) 11.66 .3333 3.000 .0000 10.33

2W2 5 1.365 .0150(.0005) .0016(.0042) 5.297(1.203) 28.40 .4000 4.000 .4000 9.600

3W2 1 61.36 .0517(.0010) 122.3(61.19) 244.9(61.23) 49.00 2.000 4.000 .0000 15.00

0RN 7 .0300 .0105(.0046) .0000(.0000) .0000(.0000) 2.285 .0000 .0000 .0000 2.285

1RN 674 .3096 .4403(.0407) .0055(.2881) .0000(.0000) 10.80 .0192 .0000 .0000 7.424

2RN 182 1.098 1.357(.0462) .7873(.0017) .0000(.0000) 29.36 .0274 .0000 .0000 14.11

3RN 8 25.22 3.493(.0925) 8.807(7.046) .0000(.0000) 37.75 1.250 .0000 .0000 15.50

4RN 6 970.2 1737.(.0615) 1359.(429.4) .0000(.0000) 28206 3.166 .0000 .0000 10997

1WN 1 .5024 .2634(.0042) .4243(.2121) 1.084(.3614) 62.00 2.000 2.000 1.000 25.00

2WN 14 2.005 .4756(.0045) .2699(.2099) 5.453(.9088) 104.0 1.285 5.214 .7857 60.42iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 1441 4.482 7.641(.0601) 5.717(18.18) .0000(.0000) 127.1 .3143 .0000 .0000 52.07

?W? 24 4.074 .3087(.0042) 5.278(5.067) 14.61(2.874) 72.70 1.041 4.500 .5833 40.20iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 573 .1684 .0260(.0119) .2221(.3097) .4768(7.806) 2.179 .7172 .0575 .0034 2.497

??N c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

892 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

7.243 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

12.33(.0599) c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

9.235(122.9) c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.0868(.8900) c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

205.9 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.0751 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.0840 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.0134 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

83.59iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Data lock stats:

0R2 332 .0059 .0000(.0000) .6439(.0187) .0000(.0000) .0000 .0030 .0000 .0000 .0030

1R2 230 .1043 .0000(.0000) .0092(.1336) .0000(.0000) .0000 .0695 .0000 .0000 .0695

2R2 2 .6589 .0000(.0000) .1676(.3353) .0000(.0000) .0000 .5000 .0000 .0000 .5000

1W2 3 .3407 .0000(.0000) .0000(.0000) .6355(.1733) .0000 .0000 3.666 .0000 3.666

2W2 5 1.365 .0000(.0000) .0000(.0000) 2.945(1.227) .0000 .0000 2.400 .0000 2.400

3W2 1 61.36 .0000(.0000) .0000(.0000) 122.5(61.25) .0000 .0000 2.000 .0000 2.000

0RN 7 .0300 .0059(.0041) .0000(.0000) .0000(.0000) 1.428 .0000 .0000 .0000 1.428

1RN 674 .3096 .2929(.0564) .0019(.3266) .0000(.0000) 5.192 .0059 .0000 .0000 3.577

2RN 182 1.098 1.023(.0428) .2785(5.068) .0000(.0000) 23.90 .0549 .0000 .0000 14.47

3RN 8 25.22 6.078(.0094) 34.14(15.17) .0000(.0000) 642.1 2.250 .0000 .0000 288.3

4RN 6 970.2 1600.(.0793) 2672.(501.0) .0000(.0000) 20171 5.333 .0000 .0000 17400

1WN 1 .5024 .0023(.0011) .0000(.0000) 1.126(.3754) 2.000 .0000 3.000 .0000 4.000

2WN 14 2.005 .0022(.0015) .0000(.0000) 1.955(.7822) 1.500 .0000 2.500 .0000 3.357iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
?R? 1441 4.482 6.966(.0748) 11.35(199.5) .0000(.0000) 93.01 .0569 .0000 .0000 77.57

?W? 24 4.074 .0014(.0014) .0000(.0000) 6.985(2.661) .9583 .0000 2.625 .0000 3.166iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
??2 573 .1684 .0000(.0000) .0043(.1385) .2428(5.566) .0000 .0314 .0436 .0000 .0750

??N 892 7.243 11.25(.0748) 18.34(255.6) .0319(.7501) 150.2 .0717 .0426 .0000 125.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 18. Transaction mix for "bank".

H Method of Maximum Likelihood

Here, we present some calculations we had to do to apply the method of maximum likelihood in order to

estimate parameters of a �tted distribution. The method is described in detail in [23].

We denote the samples from the data distribution by x1; x2; : : : ; xn. We assume that the data is sampled

from a random variable X whose probability law depends on some unknown parameters. In this paper, we

deal with three probability functions:
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� Exponential distribution (parameter is �):

fX (x) = �e��x; x > 0

� Gamma distribution (parameters are r and �):

fX (x) =
�rxr�1e��x

�(r)
; x > 0

� Beta distribution (parameters are � and �):

fX(x) =
�(�+ �)

�(�)�(�)
x��1(1� x)��1; x > 0

The maximum likelihood method says that the unknown parameters should be chosen such that the

likelihood function is maximized. The likelihood function is de�ned as

LX (�) = fX (x1)fX (x2) � � �fX (xn)

For exponential probability law, the value of the parameter � equals nP
xi
. For gamma probability law,

the following equations determine r and �:

� =
nrP
xi

n ln� +
X

lnxi = n	(r);

where 	(r) � 1
�(r)

d�(x)
dx

jx=r

The parameters r and � can be determined by numerical methods or from mathematical tables.

We now apply the method to determine the parameters � and � for the beta probability law.

Since LX (�) is non-negative, we examine K(�) = lnLX (�), the natural logarithm of the likelihood

function. Because the natural logarithm is a monotonic increasing function, the value of � that maximizes

K(�) is identical with the value that maximizes LX (�).

LX (�; �) =
nY
i=1

�(�+ �)

�(�)�(�)
x��1i (1� xi)

��1

= (
�(�+ �)

�(�)�(�)
)n(
Y

xi)
��1(
Y

(1� xi))
��1

K(�; �) = lnLX (�; �)

= n ln �(�+ �) � n ln�(�)� n ln�(�) + (�� 1)
X

lnxi + (� � 1)
X

ln(1� xi)

Then

@K

@�
= n	(�+ �) � n	(�) +

X
lnxi

@K

@�
= n	(�+ �) � n	(�) +

X
lnxi
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Setting the partial derivatives to zero, we get

	(�+ �) �	(�) = �

P
ln xi
n

	(�+ �) �	(�) = �

P
ln(1�xi)

n

These equations determine the value of � and �.
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