
Interactive Multiple Representation Editing of

Physically-based 3D Animation

Wayne A. Christopher

Computer Science Division (EECS)
University of California at Berkeley

Report No. UCB/CSD 94-813

May 29, 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Interactive Multiple-Representation Editing

of Physically-based 3D Animation

by

Wayne Alfred Christopher

Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate Division of the

University of California at Berkeley

Copyright c 1994 by Wayne Alfred Christopher

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA),
monitored by Space and Naval Warfare Systems Command under Contracts N00039-88-C-
0292 and MDA972-92-J-1028, and in part by the National Science Foundation Infrastructure
Grant number CDA-8722788.

Interactive Multiple-Representation Editing
of Physically-based 3D Animation

Wayne Alfred Christopher

Abstract

In recent years, much work has been done on realistic animation. It is now possible to
simulate and animate a variety of di�erent types of objects and physical e�ects. However,
little attention has been paid to the problem of interactively creating and editing realistic
animated scenes. Developing and modifying such scenes is still a batch-oriented process that
depends on trial and error.

Animation editing for non-realistic scenes has also undergone rapid development. Presen-
tation graphics systems, keyframe-based editors, and virtual reality-based interactive tools
for a variety of purposes have been designed. However, physical realism is missing from these
systems.

The principal result of this dissertation is the design and implementation of the Asgard
animation system, an editor for creating physically-based 3D animation. Asgard provides
the user with a exible multiple-representation editing interface, which allows both direct-
manipulation graphical de�nition and modi�cation of the scene, and textual editing of a
formal description of the objects, forces, and other parameters of the animation. Multiple
instances of each type of view can be created, all of which are synchronized. Such an interface
allows the user to utilize the most convenient and e�ective tools for each task in the de�nition
of the scene.

Asgard also includes a di�erential equation solution technique that is adapted to the
problem of physically-based animation, which uses an event-driven scheduling algorithm to
take maximum advantage of the di�ering time-varying properties of di�erent components in
the scene while at the same time minimizing the penalties involved with collision detection
and response. This algorithm partitions the state equation graph of the scene into strongly-
connected components, which also allows Asgard to preserve as much previously-computed
data as possible when editing changes are made by the user.

Asgard is part of the multi-media document processing system Ensemble. Animated
scenes can be integrated with multi-media documents, as well as developed on their own.

Acknowledgements

I would like to thank my committee members: my advisor, Michael Harrison, for his
support, guidance, and patience during my long and somewhat chaotic quest for a PhD,
Susan Graham, for her advice and encouragement, and Mary Kay Duggan, for some very
stimulating discussions on the history of printing and the Reformation.

My research would not have been possible without the help of the rest of the Ensemble
group, including Steve Procter, Vance Maverick, Tom Phelps, Ethan Munson, Roy Goldman,
Brian Dennis, Kannan Muthukkaruppan, Robert Wahbe, Tim Wagner, and Bill Maddox.
Ming Lin, Ioannis Emiris, and John Canny signi�cantly contributed to the Asgard project,
in the areas of collision detection and convex hull calculation. I also owe thanks to Armin
Wulf, Mike Hohmeyer, and the rest of the ICEM CFD team for providing a great place to
work and some very good ideas while �nishing this dissertation.

I would like to thank my aunts Alice, Elene, Mary, and Dorothy, my uncle Fred, and my
cousins Bill, Ron, and Fred, for all they have done for me, and also Tom, Matt, Pat, and
especially Ginger.

Finally, I would like to acknowledge all the people who have been important to me in
numerous ways over the last few years, without whose inuence I would have �nished a bit
sooner but had a lot less fun. Including but not limited to, and in no particular order:
Pete French, Tom and Linda O'Toole, Sonny and Stan Friedman, Maureen Master, Carla
Markwart, Birgitta Sylvan, Rosemary Busher, Leah Slyder, Amy Lee, Chris Loverro, and
Ylva Lindholm.

iii

Contents

1 Introduction 1

1.1 Applications of physically-based animation : : : : : : : : : : : : : : : : : : : 1
1.2 Problems with existing editing techniques : : : : : : : : : : : : : : : : : : : 2
1.3 Asgard's solution : 3
1.4 Overview of the Asgard system : 4

1.4.1 Types of animated scenes supported : : : : : : : : : : : : : : : : : : 4
1.4.2 Editing functionality : 5

1.5 The organization of this dissertation : 5

2 Background 7

2.1 Types of animation systems : 7
2.2 Animation editors : 9

2.2.1 ThingLab : 9
2.2.2 Twixt : 10
2.2.3 Alias Animator : 10
2.2.4 Interactive Physics and Working Model : : : : : : : : : : : : : : : : : 10
2.2.5 IGRIP : 10

2.3 Languages : 11
2.3.1 Script : 11
2.3.2 ASAS : 12
2.3.3 Gramps : 12

2.4 Frameworks : 13
2.4.1 The Brown animation framework : 13
2.4.2 Menv : 14
2.4.3 TBAG : 14
2.4.4 Bolio : 14

2.5 Physics simulators : 15
2.5.1 ThingWorld : 15
2.5.2 Space-time constraints : 15
2.5.3 Virya : 16
2.5.4 VES : 16
2.5.5 Jack : 16
2.5.6 Dynamo : 17
2.5.7 Other research : 17

iv

2.6 Summary : 17

3 Overview of the Asgard System 20

3.1 Design goals : 20
3.2 Sample problem { a two-part pendulum with a collision : : : : : : : : : : : : 21
3.3 Problem domain : 26

3.3.1 Objects : 27
3.3.2 Principles of motion : 28
3.3.3 Control mechanisms : 28
3.3.4 Appearance : 29

3.4 Architecture : 29

4 Animation Editing Techniques 32

4.1 Graphical display and editing : 34
4.1.1 Object de�nition : 36
4.1.2 Instance creation and modi�cation : : : : : : : : : : : : : : : : : : : 39
4.1.3 Handles : 39
4.1.4 Trajectories : 40
4.1.5 Forces and torques : 42
4.1.6 Links : 42
4.1.7 Viewing state : 44
4.1.8 Lighting : 44
4.1.9 Motion interpolation : 45
4.1.10 Image export and o�-line playback : : : : : : : : : : : : : : : : : : : 45

4.2 Language-based editing : 45
4.2.1 The Asgard animation language : 47
4.2.2 Parsing and semantic analysis : 48
4.2.3 Errors : 49

4.3 Performance : 50
4.4 Previous multiple representation work : 51

4.4.1 Vortex : 51
4.4.2 Lilac : 51
4.4.3 Pan : 52
4.4.4 User interface construction tools : 52
4.4.5 Graphics : 52
4.4.6 Music editing : 53

5 Motion simulation 54

5.1 Problem formulation and primitives : 54
5.1.1 Objects and forces : 54
5.1.2 Links : 57
5.1.3 State variables and trajectories : 59

5.2 Di�erential equation solution : 60
5.2.1 Partitioning : 64
5.2.2 Collision detection and response : 65

v

5.2.3 Event-driven solution : 66
5.2.4 Performance : 69
5.2.5 Interactive editing : 70

5.3 Collision detection and response : 70
5.3.1 The Lin-Canny algorithm : 71
5.3.2 Collision response : 72

6 Integration with Ensemble 75

6.1 The Ensemble System : 75
6.2 The Asgard Medium : 76

6.2.1 Storage representation management : : : : : : : : : : : : : : : : : : : 77
6.2.2 Subdocument representation : 77
6.2.3 Presentations and renditions : 78
6.2.4 User interface functionality : 78

6.3 Extensions to this interface : 79

7 Conclusions and future work 80

7.0.1 Evaluation of the Asgard project : 80
7.0.2 Future work : 81
7.0.3 Simulated environments : 83

vi

List of Figures

2.1 A sample of the Script language : 12
2.2 A sample of the ASAS language : 13

3.1 The Types of Elements Handled by Asgard : : : : : : : : : : : : : : : : : : : 27
3.2 Block Diagram of the Asgard System : 30

4.1 A Typical Asgard Editing Session : 33
4.2 The Graphical Viewer : 35
4.3 Shape Editor : 37
4.4 Trajectory Editor : 41
4.5 Object intersection constraints : 43
4.6 Language Viewer : 46

5.1 Degrees of Freedom of a Rigid Body : 55
5.2 Con�guration of Objects and Forces : 56
5.3 O�-center Forces and Torques : 56
5.4 Joints Between Components : 58
5.5 Dealing with Trajectories during motion simulation : : : : : : : : : : : : : : 60
5.6 Trapezoidal Integration : 62
5.7 Performance decrease for di�erent time constants : : : : : : : : : : : : : : : 63
5.8 Example of a State Variable Reference Graph : : : : : : : : : : : : : : : : : 64
5.9 Integration Strategy : 65
5.10 Progression of Partitioned Calculation with a Collision : : : : : : : : : : : : 67
5.11 Graph of runtime for simulation algorithms : : : : : : : : : : : : : : : : : : : 70
5.12 Closest feature conditions : 71
5.13 Determining the direction of the reaction force : : : : : : : : : : : : : : : : : 73

6.1 Document structure in Ensemble : 76
6.2 A sample of an embedded Asgard scene in an Ensemble document : : : : : : 77

vii

Chapter 1

Introduction

Physically-based animation is the simulation and rendering of the motion of objects according
to the laws of physics. Such animation is useful for a wide variety of applications, such as
engineering, robotics, and education, as well as movies and games. The goal of the research
described here is to develop algorithms and user interface techniques that make it easier
for animators to rapidly create and modify animated sequences. As part of this research, I
have written a prototype animation editor, called Asgard, which uses these algorithms and
techniques.

There are two main issues that must be addressed in any animation system. These
are the design of the user interface and the algorithms used for calculating the motion of
the objects being animated. The organization of this dissertation reects this fact: after
the introductory, background, and architectural chapters, the user interface and the motion
simulation algorithms of Asgard will be discussed separately.

This introduction will �rst describe some application areas for physically-based anima-
tion, and then discuss the problems with existing systems. Next, a brief overview of how
Asgard deals with these problems will be given, together with an outline of the major compo-
nents and capabilities of the system. Finally, the organization of the rest of the dissertation
will be described.

1.1 Applications of physically-based animation

There are many engineering and scienti�c applications for physically-based animation. Most
of these applications rely heavily on the accurate simulation of motion, which is the core of
any animation system. Researchers in aeronautics and space sciences use motion simulation

to determine how planes and satellites will move in ight. Mechanical engineers also use
motion simulation to determine whether a machine operates as required, and to correct any
problems, such as inadequate clearance for a moving part, before any physical models are
constructed. Fields such as computational uid dynamics use somewhat di�erent algorithms
than those used for discrete body simulation, for somewhat di�erent purposes, but they still
fall into the category of motion simulation.

Robotics uses motion simulation for the purpose of motion planning. One must be able
to calculate how a robot will move, given particular control forces and object con�gurations,

1

in order to determine whether the desired objectives are reached without collisions. An
important part of these calculations is reverse dynamics, which calculates the joint torques
given the desired ending positions. Motion simulation, in the form of forward dynamics, is
required for verifying the results of a planned movement and for calculating the motion of
objects in the robot's environment.

Physically-based animation is also used extensively in science education, often at the
level of elementary physics classes. Systems are available which allow a teacher to set up a
con�guration of objects and forces, and then demonstrate how the motion takes place in this
simulated world. More importantly, the students can modify the scene and experiment for
themselves, often with situations that would be di�cult or impossible to create in the real
world. They can also view graphs of the motions of the objects, and qualitatively compare
the simulated behavior with what the equations of motion predict.

In the entertainment industry, physically-based animation is becoming central to creating
a convincing illusion of reality. Recent movies such as Jurassic Park use motion simulation
extensively, and video games such as Hard Driving perform real-time calculations to create
an accurate simulation of some aspects of reality. Until a few years ago, most available
techniques were too slow to perform interactively in real-time, but modern hardware and
new algorithms have made it possible to add physical realism to many types of games.

Finally, a very interesting area where physically-based animation is just beginning to
appear is in simulated environments, also known as \virtual reality". The computational
requirements for such applications are especially challenging: the motion must appear realis-
tic, and must be calculated in real time with a short latency between the user input and the
computed motion. Furthermore, it is especially di�cult to predict the computational and
communication requirements of virtual reality applications in advance, and the algorithms
must be able to handle the availability of less bandwidth or CPU power than they actually
want.

The research described here is not targeted to any of these speci�c application domains.
Asgard is a prototype system for creating physically-based animation sequences, and the
techniques employed by its user interface and motion simulation subsystem can be applied
to any of these types of problems.

1.2 Problems with existing editing techniques

Currently, there are two basic ways to create animation that appears to obey physical laws.
The �rst way is to use a system that allows the animator to specify motion in terms of
explicit paths and pre-determined velocities, called a kinematics-based animation system,
and to use one's own intuition or perhaps external simulation mechanisms to determine
the motion. This sounds straightforward, and a great deal of physically realistic animation
is currently produced this way, but there is no guarantee that the motion will be correct.
In addition, most people's judgements about how objects actually move are faulty for all
but the simplest cases: viewers can usually tell the di�erence between correct and incorrect
motion, even if they can't create correct motion themselves. Finally, doing animation this
way takes a long time and a great deal of e�ort, and if changes are made to initial conditions

2

or object parameters, the animator must redo the motion from scratch, since the system
cannot determine automatically what changes are necessary.

The second way to create physically-based animation is to describe the system at the level
of dynamics, which means that in addition to a speci�cation of the shape and appearance of
objects, the input to the animation program also includes the mass, moment of inertia, and
other properties of each object that would a�ect its movement, as well as a speci�cation of
the forces, torques, and initial conditions and other constraints that apply to it. Depending
on the capabilities of the motion simulation system, other types of information might be
required, such as deformability or elasticity.

This information is usually provided to the animation system in the form of a textual

description. An animator typically must create an input �le using a text editor that contains
a complete description of the scene to be animated. He then must run it through the
animation system to determine the result, mentally correlate the motion on the screen with
the textual description, and then modify the input and rerun the motion simulation until
it is satisfactory. This results in a tedious and ine�cient development process for animated
scenes of even moderate complexity. The conceptual distance between the static, textual
input and the dynamic graphical output is too large for convenient editing. In addition,
when an animator wants to introduce some kinematic elements, where the desired motion
of the objects is known in advance and must be explicitly speci�ed to the system, a textual
interface is generally inappropriate and di�cult to use.

There are many advantages to using a textual scene speci�cation, however. Some ele-
ments of a physical con�guration are di�cult to specify any other way but symbolically, such
as arbitrary force laws between objects and parameterized or procedural descriptions. Also,
many users want to see the various inputs to the simulation process described explicitly, and
many of these inputs cannot be speci�ed using only graphical means in a reasonable way.

The reason that animation editing is such a problem is that the set of capabilities that a
user requires is not easily provided by a single editing interface. The animator wants physical
realism, but he also wants some amount of detailed control over the �nal results, and must
be able to determine the balance between these two himself. A graphical, kinematic interface
is best for control, since the animator is working very close to the �nal product and has the
ability to create precise motion de�nitions. However, a textual interface is best for creating
physically correct motion, since force laws and constraints are usually best manipulated
textually.

1.3 Asgard's solution

The goal of the research described here is to develop a system that reconciles the sometimes
incompatible requirements for precise control and for realistic motion. This system must
allow interactive editing of animated scenes, which means that e�cient motion simulation
mechanisms and incrementality must be exploited whenever possible.

The basic approach that Asgard takes is to provide both graphical and textual editing

tools simultaneously. That way, the types of interaction that are best done graphically, such
as approximate spatial positioning, shape editing, and trajectory speci�cation, can be done
using a graphical editor, and those tasks that one wishes to perform using a language-based

3

interface, such as de�nition of general forces and parameterized objects, can be done using
a formal speci�cation language.

The keys to making such a system usable are synchronization and incrementality. When
a change is made in the graphical viewer, it should be immediately reected in all other
viewers, and the same is true, to a certain extent, for changes made in a textual viewer. A
user must be able to move an object in a graphical viewer and watch the numeric value of
the position change in all the textual viewers that are present, and likewise should be able
to add new objects in a textual viewer and, after indicating that he has �nished editing,
see them appear in the graphical windows. As with many other editing and user interface
applications [105], rapid and intuitive feedback is very important.

Because motion simulation requires a signi�cant amount of computation, one would like
to preserve as many results as possible when changes are made to the scene, either graphically
or textually. Then, when the user wishes to update the motion of the objects, only data
that is actually unavailable, or has been invalidated by changes the user has made, should
be calculated. The motion simulation algorithms used in Asgard make this possible, while
at the same time allowing for e�cient simulation of large and complex scenes, with collision
detection and response.

1.4 Overview of the Asgard system

The goal of the Asgard project is to develop user interface paradigms and low-level motion
calculation algorithms that are appropriate for a wide variety of animation application do-
mains. Each of these domains has a di�erent set of requirements for a fully-featured editing
system: to make movies, one needs a great deal of support for physically realistic rendering,
and for robotics, appearance is less critical, but particular object modeling formulations for
articulated bodies are required. Since Asgard is not intended to be a production system for
any particular area, the types of objects, forces, and rendering facilities provided were chosen
to be complex enough to expose the research issues, but simple enough to be tractable in
the context of this project. For example, articulated bodies are provided, but using a simple
spring-based model rather than the more complex analytical formulations used in robotics.

1.4.1 Types of animated scenes supported

The kinds of objects that can be created, simulated, and displayed in Asgard are rigid
polyhedral and spherical bodies. They can be connected by sti� springs, which are a form of
soft or inexact constraints, to form articulated bodies. The user can de�ne arbitrary forces
and torques, which can be time-dependent or can depend on any of the state variables, such
as position, rotation, and velocity, of any of the objects in the scene. The system simulates
Newtonian dynamics, with collisions but without static contact forces. Extending the system
to handle phenomena such as contact forces and deformable bodies would not be hard in
theory, since such problems have been the subject of much recent research [115, 14], but
would be a great deal of work that is only tangential to the research described here.

Kinematic constraints can also be speci�ed, using time-dependent trajectories. These
trajectories can constrain either the position and rotation of an object, or their derivatives.

4

They can be active for any interval of time. More complex constraints, such as inequality
conditions and constraints that involve functions of more than one state variable, can usually
be de�ned using forces, and although they will not be exact, they can be made as accurate
as necessary by adjusting the magnitude of the forces.

1.4.2 Editing functionality

The basic user-interface principle in Asgard is that of multiple-representation editing. Sys-
tems that use this model of interaction present the user with more than one way to look at the
document or presentation being created, and allow editing in any of these views, maintaining
synchronization between them as closely as possible. In most such systems, two major types
of views are supported: a language-based view, which presents a formal description of the
structure and underlying semantics of the objects, and a graphical view, which presents the
document in a fashion that is close to its �nal form. An early multiple-representation editing
system was Vortex [30], a predecessor to the Ensemble project described in section 4.4.1.
Other multiple-representation systems include Pan [9], Lilac [22], and Juno [82].

Asgard follows this model, and presents two types of views. In the language-based view,
one can edit a scene description written in a language that makes explicit all the elements
of the animation: shapes, objects, forces, trajectories, and so forth. In the graphical view,
one is presented with a view of the animation, which has viewing transformation and time
controls to allow exible playback and previewing. He can edit the scene in either type of
view, and all the other views will update themselves as soon as possible so that all remain
in synchronization.

Most existing animation systems provide only one view, which is either direct-manipulation
and graphical or language-based. A number of these systems are discussed in Chapter 2.

Since motion calculation is a potentially time-consuming process, an animation system
must be careful about when it recomputes the motion of the objects. Asgard allows the
user to indicate when he has �nished editing and wants to calculate the updated motion.
In addition, it is careful to preserve as much data as possible from the previous run, and
incrementally calculate only the data that has changed.

1.5 The organization of this dissertation

This dissertation has four major parts. The �rst is a discussion of previous work in animation
editing and an architectural overview of the Asgard system. Then the two main aspects of
this research are described in detail: the user interface and the motion simulation algorithm.
Next is a description of the integration of Asgard with the Ensemble multi-media system.
Finally, an evaluation of the Asgard project is presented and future work is discussed.

Chapter 2 describes some previous animation systems, and also related work that has
been important in the development of Asgard. The systems discussed in this chapter include
editing frameworks, graphical animation editors, and batch-oriented systems. A tabular
summary of the systems is provided that compares them in terms of their interfaces and ca-
pabilities. In addition to the discussion in this chapter, more speci�c background information
is provided in other chapters where appropriate.

5

Chapter 3 contains a high-level description of the types of problems that Asgard is de-
signed to handle and of the process that an animator would use to de�ne a simple scene.
An architectural overview is also provided, which describes the various parts of the system
and how they interact. The interesting details of these subsystems are left for the next two
chapters.

Chapter 4 discusses the principles of multiple-representation editing and how it is used
in Asgard. The two main user interfaces, the graphical editor and the textual editor, are
described in detail, and the algorithms used to synchronize them and interface with the low-
level motion simulation modules are given. A discussion of some other systems that have
used similar editing techniques for other types of media is also provided.

Chapter 5 contains a discussion of the motion simulation algorithms used by Asgard.
First, an overview of the physical principles involved is presented, with a description of how
they are transformed into low-level systems of equations. Then di�erential equation solution
algorithms are discussed, and the approach used by Asgard to achieve incrementality and
handle collision response is described in detail. Finally, the collision detection and response
algorithms of Asgard are discussed.

Chapter 6 provides a brief overview of the Ensemble multi-media document editor, and
the issues involved in the integration of the Asgard system with Ensemble.

The concluding section of this dissertation, Chapter 7, contains a discussion of future
research problems suggested by the Asgard project, and evaluates and summarizes the con-
tributions of this project.

6

Chapter 2

Background

Computer animation systems can be characterized in a number of ways: they can be in-
teractive and provide graphical editing capabilities, or batch-oriented and utilize a textual
description of the scene to be animated; they can compute object motion in real time, near-
real time, or much slower than real time; they can allow the speci�cation of motion using
kinematics, dynamics, or behavioral descriptions. This chapter will �rst explain these terms
in more detail than in Chapter 1. A number of animation systems will then be described,
characterized according to the properties listed above, and compared with Asgard, with
regard to capabilities and overall approach to the animation editing problem.

2.1 Types of animation systems

Interactive animation systems are most useful for rapidly creating animations that are ap-
proximate and not necessarily physically realistic. Since the animator works with an image
that is close to the �nished product, he can create an animation in a relatively short time,
without a time-consuming trial-and-error iterative process. On the other hand, in order to
achieve precise results or model complex phenomena, he must either work with a prede�ned
and limited set of facilities provided by the program, such as discrete grids and buttons that
turn gravitational forces on and o�, or modify parameters that are attached to all objects of
interest one by one, perhaps using property sheets, which can be tedious and error-prone.

Language-based animation systems use textual or program-like descriptions to charac-
terize the system being animated. One might create a �le with a list of all the objects
of interest, the forces that act on them, the initial conditions, and additional information
needed to perform the animation, and then run a program that reads the �le and produces a
sequence of frames as output. Until a few years ago, such systems were more common than
graphical ones, because processing and graphics speeds were not high enough to support the
kind of interaction required for graphical editing of complete scenes. This is no longer a
problem, but there are still some advantages that language-based systems have over graphi-
cal systems. The principal one, from the point of view of this dissertation, is that they allow
more complex types of animated phenomena to be speci�ed precisely and e�ciently.

The speed of an animation system is largely a function of the types of phenomena that are
being modeled, and the size of a particular problem. When only kinematic motion simulation

7

is being performed, and very little real computation is being performed per frame, real time
performance is usually easy to achieve for all but the largest models. On the other hand,
performance for dynamic or behavioral systems can range from real time to thousands of
times slower than real time. For example, some problems involving contact forces are NP-
complete [14], and many types of behavioral descriptions require techniques such as optimal
control [122], which can be very slow. However, it is often possible to calculate simple
dynamics-based motion of relatively small models in real time on a fast workstation.

The di�erent ways of specifying an animation range from low-level detailed motion spec-
i�cation to high-level rules or constraints that implicitly, and in most cases only partially,
de�ne the motion. The categories of kinematic, dynamic, and behavioral animation are in
common usage in the literature. They focus on the type of information that is provided to
the system from which to compute the motion, as opposed to how it is presented to the
system by the user.

Kinematic animation requires the animator to explicitly specify the motion of the objects
in the scene. This can be done using keyframes, which are snapshots of the scene at particular
times between which the program must interpolate, or motion paths, which are curves in 3-
space parameterized by time that describe how each object should move.

In dynamic animation, the animator provides a description of the forces that act on the
objects, the constraints that must be satis�ed, and the other laws of physics that apply, and
the system calculates the motion from this information. This calculation is usually done by
means of numerical integration of the �nal force expressions.

Behavioral animation essentially includes everything that is higher-level than dynamics.
Behavioral systems may accept input in the form of rules, constraints, or goals. Mechanisms
for creating motion that satis�es these conditions include optimization, neural networks,
genetic algorithms, and a variety of other techniques.

Zeltzer [125] has de�ned three levels of animation description which focus more on the way
this information is supplied: guiding level, where the motion is described explicitly, program
level, where it is described algorithmically, and task level, where implicit and declarative
descriptions in the form of goals and constraints are given. These levels are, to some extent,
independent of the classi�cations of kinematics, dynamics, and behavior. For example, a
kinematic description might be at the guiding level, in the case of a motion path, the program
level, in the case of a symbolic expression that gives the position as a function of time, or
the task level, in the case of morphing, where the animator speci�es two �gures and the goal
that one should change into the other, and the actual process is done by interpolating the
key features.

The axes used here for characterizing animation systems are (1) user interface, (2) speed,
(3) input type, and (4) interaction level. These are conceptually orthogonal { there exist
both graphical and language-based systems that fall into each of the kinematic, dynamic,
and behavioral categories. Furthermore, most systems are hybrids at the input speci�cation
level: dynamics systems usually allow some elements to be speci�ed kinematically, and many
behavioral systems are built on top of a dynamics substrate.

The rest of this chapter will describe a number of animation systems, and characterize
them according to the criteria outlined above. The types of objects and physical phenomena
they support will also be indicated, since this is a major factor that inuences the speed

8

and complexity of the system, and whether they support incremental motion update. This
information will be summarized in a table at the end of the chapter.

In terms of these categories, Asgard is both a graphical and language-based editing
system, it is near real-time for many types of scenes, it provides both kinematic and dynamic
control, and can be viewed both as a guiding-level and as a program-level system.

2.2 Animation editors

Animation editors allow an animator to interactively de�ne how objects should move, to
request that the motion be calculated, and to view the resulting scene. He can then modify
initial conditions, constraints, or other parameters of the scene, and recalculate the motion.
The editor may support o�-line high-quality rendering, incremental update of motion, or
simultaneous viewing of the scene from multiple positions in time and space.

One aspect of animation editing is the problem of 3D object design. This is a large area
that is mostly independent of animation editing, so nothing more will be said about it, other
than that animation editors provide solutions that range from the minimal facilities provided
by Asgard, which are described in Section 4.1.1, to very sophisticated CAD functionality such
as that found in commercial systems such as Alias Animator.

2.2.1 ThingLab

ThingLab [20] is a constraint-based simulation system. It is embedded in SmallTalk, and
takes advantage of the graphics and interpretive language capabilities provided by the lan-
guage. The user can de�ne objects and constraints in the language and view them on the
screen, and can also manipulate them graphically. It is thus an example of a multiple-
representation editor.

It solves systems of constraints using local propagation, which means that it starts with
the variables that have been modi�ed and successively solves the constraints that are con-
nected to them and modi�es other variables, stopping when no more constraints are un-
satis�ed. This type of algorithm is by nature incremental. Many animation problems can
be formulated in terms of such constraints, but general motion simulation requires itera-
tive solution mechanisms such as relaxation, which are somewhat harder to provide in a
constraint-based framework.

Further work on ThingLab [21, 47] has extended the constraint solution mechanism and
made it more e�cient. Many other constraint-based systems have been developed, for exam-
ple Sketchpad [112], Ideal [118], Bertrand [73], TBAG [41], and the constraint based version
of Ensemble [31]. Work on constraints has also been done by Steele [109] and Gosling [54].

The constraints used for these systems are solved in di�erent ways than constraints used
in 3D dynamics systems, some of which are described below. The former are essentially
symbolic, whereas the latter are numerical and must be solved using numerical methods.

9

2.2.2 Twixt

A simple system for animation editing was Twixt [53]. It used a combination of keyframes
and motion paths to give the animator very exible control over the motion of the objects
in question. Any parameter of any object, including control points of deformable objects,
could be attached to a linear or higher-order path. The initial speci�cation of the scene was
done using a simple language, but additional editing could be performed graphically, or a
parameter could be attached to an input device. Twixt is a fairly light-weight system, both
by design and because of the limits of the available hardware when it was written.

2.2.3 Alias Animator

Alias Animator [1] is a widely used system for creating highly realistic graphics for movies
and other types of �lms, and is also used for industrial design. It provides an interface
for the animator to de�ne parametric motion paths in 3D, and also allows the camera to be
treated as an animatable object. The control points of an object can be attached to a motion
path, which allows some types of time-dependent deformations. No facilities are provided for
physically-based animation, although it is possible to interface Alias with external motion
calculation programs, which could provide motion paths for objects to follow.

Alias is a powerful system with a rather arcane interface, and it is designed for large
projects where a great deal of animator time and computation can be applied to a project.
It is not especially good for the casual user, who wishes to do rapid prototyping of animated
scenes with realistic motion.

Similar animation systems are Wavefront [64] and Macromind 3D [76]. What these
programs have in common is that they are basically 3D object and scene editors that make
it possible for the user to attach motion paths to objects, and to interface to external motion
calculation routines, with varying degrees of convenience.

2.2.4 Interactive Physics and Working Model

A recent product available for the MacIntosh is Interactive Physics II [104]. It is designed
for classroom settings, and allows the user to set up complex physical con�gurations and
simulate their motion. A teacher can create a model and let the students experiment with
what happens under varying conditions, and construct machines quickly. Unlike Asgard, it
is limited to two dimensions, but it does simulate a wider variety of phenomena, including
contact forces. A similar program is Working Model [77], which can import shape descrip-
tions from, and export motion descriptions to, a number of popular graphics systems. These
systems are graphical and interactive, but it is unclear to what extent they can take ad-
vantage of possibilities for incremental recomputation, such as when a user modi�es some
parameters of objects which do not a�ect other parts of the system.

2.2.5 IGRIP

IGRIP [63] is a robotics simulation and programming system that is widely used for industrial
applications. It can perform both kinematic and dynamic simulation, and detects collisions

10

and near misses. The goals of motion simulation are somewhat di�erent for robotics than
for animation, since the results are used to determine how the robots will move, under the
control of programs that can be generated from the simulation package.

IGRIP performs a number of functions that are often included in animation systems, such
as inverse kinematics, where the user speci�es a desired position and the system calculates
how to move the various joints and other degrees of freedom in the robot to achieve this
position, and inverse dynamics, where the user speci�es either a position or a velocity and
the system calculates what torques are required. Inverse dynamics is probably more useful
for animation, since robots generally have closed-loop kinematics control which generates
the required forces and torques automatically, while an animator may wish to model such
e�ects as bulging muscles that depend on the force values.

2.3 Languages

In this section, a number of languages are described that have been used for describing
animated scenes. The systems that use these languages are all batch-oriented. The systems
included are those where the entire description can reasonably be written in the language
by the user, as opposed to graphical systems that have textual components, such as blocks
of code in a scripting language that can be attached to existing objects on the screen.

Most of the existing animation languages, including those described in this section, are
fairly old, and some were grafted onto existing 3D picture description languages, such as
Rayshade [69], Unigra�x[83, 103], and Mira [78, 79]. Little work has been done on animation
languages in recent years, with the exception of constraint systems such as TBAG [41]. The
reason for this seems to be that most graphical editing systems do not integrate well with
language-based editing, and given a choice between one or the other, graphical systems are
simpler and easier to use.

The prevalence of animation languages is actually much greater than the literature would
indicate, however, because in research on animation where the focus is on the motion simu-
lation algorithm, in most cases an ad-hoc language is constructed to describe the system and
the animation is performed in a batch fashion [15]. The reasons for this are easy to see { it is
a lot easier to create a language-based front end for an animation system than an interactive
graphical one, and there are currently no widely available and generally-accepted graphical
editing frameworks for physically-based animation. Also, the algorithms being developed are
generally so slow that scene description is not a bottleneck in the edit-simulate-view cycle,
and incremental update may be hard to implement for a given algorithm.

2.3.1 Script

The SCRIPT language [40] is an early language-based system for creating animations.
No physical realism is provided, and the language itself is fairly low-level and depends on
absolute frame numbers. However, it is possible to animate, or make time-dependent, any
quantity used by the system, including both state variables such as position and appearance
attributes such as color. The language is partly procedural and partly declarative, and
although it is not a full programming language, it has proved very useful for commercial

11

de�ne start 1.0 : De�ne variables to denote the
de�ne end 300.0 : beginning and ending frames.
begin : Marks the start of the frame-drawing code.

newframe : Initialize a new frame.
push : Push and pop are transformation matrix ops.

move z = 10.0 : Translate the camera position.
view � start end : De�ne the range of keyframes.

pop
push

rot y : Rotate about the Y axes, with the limits
i start 0.0 : de�ned by the start and end keywords.
i end 360.0
drawbox : Draw a box subject to the current transformation.

pop
render : Output the frame.

end : Marks the start of the frame-drawing code.

Figure 2.1: A sample of the Script language

applications such as creating \ying logos". Script also provides a message-passing facility
so that the user can include external functions (in FORTRAN) that compute variable values.
An example of the Script language is shown in Figure 2.1. This code draws a rotating cube.

2.3.2 ASAS

Reynolds [98] developed a system called ASAS, which is based on Lisp. One writes
programs in this language to construct pictures, and can create animations using animated

variables, similar to the articulated variables of MENV, which is described below. Objects
can be de�ned procedurally, which makes it easy to create fractal structures and deal with
things that break apart or exist for short periods of time. The system also includes the
notion of actors, as de�ned by Hewitt [59, 60], which makes it possible to de�ne very high-
level behaviors for objects. On the other hand, there is no support for dynamics built into
the system, and no graphical editing capabilities.

A sample of an ASAS description is shown in Figure 2.2. Like the Script example, this
also creates a picture of a spinning cube.

The ASAS system is a good example of what Zeltzer calls \program level". Reynolds has
also done work on behavioral modeling [99] at the task level.

2.3.3 Gramps

Gramps [84] is an early kinematic system that uses a simple hierarchical picture descrip-
tion language with transformations that can be either time dependent, using keyframes
and interpolation, or linked to input devices such as dials. For example, the command

12

(script spinning-cubes
(local: (runtime 96)

(midpoint (half runtime)))
(animate (cue (at 0)

(start (spin-cube-actor green)))
(cue (at midpoint)

(start (spin-cube-actor blue)))
(cue (at runtime)

(cut))))

(defop spin-cube-actor
(param: color)
(actor (local: (angle 0)

(d-angle (quo 3 runtime))
(my-cube (recolor color cube)))

(see (rotate angle y-axis my-cube))
(de�ne angle (plus angle d-angle))))

Figure 2.2: A sample of the ASAS language

TRANSLATE SPHERE X [-100<D4<100] causes the X coordinate of an object called SPHERE

to be linked to dial number 4, with upper and lower limits of 100 and -100.
Gramps was used for visualizing data such as molecular models and human �gures. Its

most interesting feature was that the user not only described how to draw an object and how
it changed as a function of time using the language, but also speci�ed how the user could
interact with the system, using a simple and and elegant mechanism. This was a precursor
to constraint-based interactive systems such as TBAG, described below, and to the Twixt
system, described above, which also provided facilities for connecting object parameters to
input devices.

2.4 Frameworks

A number of systems have been developed that are primarily frameworks for integrating
independent animation components and supporting distributed interaction. These systems
de�ne common interfaces for modules which can simulate di�erent object types, physical
phenomena, and viewing and editing interfaces. Many of the issues involved in these systems
are similar to those for other types of integration frameworks, such as software and document
development environments [114, 33, 50].

2.4.1 The Brown animation framework

Zeleznik et al. [124] describe a framework for integrating di�erent types of simulation and
physical models in an object-oriented way. Each element of the scene is represented by an

13

object, which communicates with other objects using messages. Caching is used extensively
to maintain reasonable performance by avoiding the recomputation of expensive data. This
system allows many di�erent types of animation algorithms to be integrated in a convenient
and exible way, although it is not clear what types of interactions are hindered by the rela-
tively loosely-coupled architecture. The same group has done related work on 3D interactive
toolkits [35].

2.4.2 Menv

The Menv system [96], which has been used internally at Pixar for the production of a
number of high-quality �lms, is a based on a modeling language called ML. This language
allows objects to be speci�ed hierarchically and procedurally, and relies on a mechanism
called articulated variables to achieve animation. These variables have time-varying values,
which can be controlled by external modules, which are linked to the main database us-
ing UNIX IPC mechanisms. Graphical editing of the animated scene is done primarily by
altering the waveforms that control the articulated variables, which can be speci�ed in a
variety of ways, including splines and symbolic expressions. Menv does not directly deal
with dynamics, although external modules that handle forces and constraints can be added
to the system. One of its more interesting aspects is the way di�erent program components
are connected { the core of the system is a database framework that coordinates the actions
of the di�erent modules, which makes the system extensible and exible, at the expense of
certain functionality that requires tighter integration.

2.4.3 TBAG

Another constraint-based animation system is TBAG [41]. This is a toolkit that uses con-
straints, similar to those in ThingLab, to implement 3D objects that can be composed and
manipulated much like widgets in existing 2D toolkits. It can perform dynamical motion
calculation and numerical integration, like Asgard, but it is somewhat lower-level and does
not provide collision detection or automatic generation of motion equations from object de-
scriptions. It also provides both language-based and graphical editing, as does Asgard, but
there are no facilities for updating the textual representation as the graphical representation
is changed.

2.4.4 Bolio

Zeltzer et al. [126] describe an \integrated graphical simulation platform" called Bolio. This
system allows the animator to mix the three levels of speci�cation, guiding, program, and
task. It also includes a constraint system, similar to those of ThingLab [20] and Sketch-
Pad [112]. Facilities are provided for the integration of external tools into the system, such
as an interface to the DataGlove input device, and this interface can be used to support
various interactive editors.

14

2.5 Physics simulators

There has been a great deal of work in the past decade on physically-realistic animation.
Many researchers have developed computational techniques to simulate the motion of a wide
variety of types of objects, such as articulated and deformable bodies, and physical e�ects,
such as collisions and friction. Although Asgard supports only a minimal set of object types
and e�ects, the editing interface it incorporates could be used for many other physically-
based editing systems. This section will describe some of the more important recent works on
physically-based animation, with an emphasis on research that has inuenced or is relevant
to Asgard.

2.5.1 ThingWorld

Pentland [90, 89] describes a number of techniques for achieving rapid dynamics calculations,
which are part of a system called ThingWorld. The major contribution of this work is the
representation of deformable objects by means of vibration modes { by using a small number
of extra variables one can simulate deformations and oscillations of reasonably rigid objects
with good accuracy. Also, collision detection is done using implicit surfaces, which are
functions that are positive inside the object and negative outside. This makes it easy to
perform collision detection when deformations have been applied to the objects. Two types
of constraints are provided: soft constraints, implemented with sti� springs similar to those
used by Asgard, and hard constraints, which must be holonomic { that is, expressible the
form f(u) = 0 where u is the state vector for the system and f is a scalar function.

2.5.2 Space-time constraints

Witkin and Kass [122] have built an animation system that uses a technique called space-
time constraints to control dynamics-based animation. The problem they were trying to
solve is how to mix dynamics with kinematic constraints, which may be more complicated
than simple motion paths. The system may contain a number of free or partially constrained
forces, which should be adjusted so that the motion satis�es the kinematic constraints while
minimizing the work performed. This is a common problem in optimal control theory [32].
An earlier version of Asgard included code for solving this sort of problem using gradient
descent methods, but this approach proved to be too slow and unstable for use with ani-
mation, mainly because of the large number of variables involved. The time complexity is
generally at least O(n3), where n is the number of variables, but if a poor initial guess is
speci�ed the computation may not converge at all.

The approach used by Witkin and Kass was somewhat di�erent: they discretized the time
over which the motion was to happen and used quadratic programming, a discrete method,
to perform the optimization. The results were striking { it seems that this sort of goal-based
optimization is very useful for producing \character animation", with exaggerated gestures
and the appearance of intelligence. This technique seemed rather robust, but was very slow,
and it was unclear whether it would generalize to other types of problems.

15

Cohen [34] extended the idea of space-time constraints to include the concept of \win-
dows", which allow the system to perform the optimization step in stages. This reduces the
time complexity of the problem, while giving up the ability to perform true global optimiza-
tion.

2.5.3 Virya

Viryas [121, 120, 119] is a system for animating human �gures and other articulated bodies.
In order to animate such �gures, one must implement joint constraints that ensure that the
body components remain connected, and reduce the number of degrees of freedom of the
system. For example, two hinged segments have 7 degrees of freedom, rather than the 12
that a pair of unconnected segments would have.

Virya uses a technique called the Gibbs-Appel formulation that reduces the number of
degrees of freedom in the system by rewriting the equations of motion. Once this is done,
there is a smaller number of unconstrained equations to solve, which makes the solution
process easier, but since these equations are more complex, the speed of the simulation is
less.

Other researchers, such as Armstrong [4, 2, 3] and Badler [7, 6] have also addressed this
problem. Armstrong uses low-level \motion processes" to model per-joint torques, and in-
corporates higher-level guiding primitives to perform more complex motion planning. Badler
has focussed on the problem of human motion, and includes a signi�cant amount of anthro-
pometric data and functionality.

2.5.4 VES

The Virtual Erector Set [101] is a system for simulating systems of articulated bodies. Many
other systems have modeled articulated bodies with soft constraints, such as Asgard does,
or by means of exact analytic methods, such as the Virya [119]. The VES system uses
a recursive technique that has aspects of both methods. It treats the object as a tree,
with cyclic links represented as soft constraints. This leads to a very e�cient simulation
mechanism, that can handle small articulated models in close to real time.

2.5.5 Jack

The Jack system [92, 91] is an example of goal-directed interactive animation. It tries to
minimize the value of a penalty function in an iterative way, and updates the current state
of the simulated system as new values become available. The constraints on the objects
generally lead to an underdetermined system, where there is generally more than one way
to satisfy all the constraints and minimize the penalty function, but since Jack is used for
interactive positioning, the use can be relied upon to continue modifying the con�guration
until it is satisfactory. Projects with similar approaches are Scuplt[111] which is used for
interactively modeling and large molecules, and Lee's work in strength-guided motion [71].

16

2.5.6 Dynamo

Isaacs and Cohen [66, 65] describe a system for creating mixed kinematic and dynamic sim-
ulations. Their system, called Dynamo, can also handle behavioral motion speci�cations.
The problem speci�cation is similar to that of Space-time constraints, as described above,
but the solution mechanism is quite di�erent. Dynamo allows the user to impose complex

kinematic constraints on a problem, which are general functions of all the generalized coor-
dinates, including joint angles, and of time. These constraints may be conditional, which
allows them to be active only when a collision or contact takes place. The system is then
solved using Lagrange multipliers at each time step, with behavioral control applied before
each iteration.

The algorithms used in Dynamo are very general and powerful, and a similar approach
was tried in a previous version of Asgard. However, the solution process can be rather
time-consuming: an example involving a marionette requires one hour for each second of
simulated time.

2.5.7 Other research

Many other researchers have done important work in physically-based animation, much of
which has been more oriented towards solving particular problems than building integrated
general-purpose systems. Bara� [11, 13, 12, 16] has done a great deal of work on simulating
friction and contact forces between di�erent types of objects, including rigid and deformable
bodies. Terzopoulos [116, 115] has described techniques for handling deformable objects
of various types, including elastic, viscous, or plastic objects. Badler [7, 6] has developed
a system called Tempus for creating and simulating human motion. Calvert [25, 26] has
also done work in simulating human motion, with a focus on computer-aided choreography
tools. Mirage [113] and NPSNET [128] are animation frameworks that address problems of
distributed simulation and real-time interaction between agents.

2.6 Summary

This chapter has described some of the basic criteria that one might use to classify animation
systems, and has listed some signi�cant animation editing systems that have appeared in the
past decade. Table 2.6 summarizes this data, comparing the various systems with regard to
the types of animation they can perform and what sort of user interface they provide.

The \Interface" column indicates whether graphical or language-based editing is pro-
vided. A few systems provide both, but with the exception of Asgard, none allow graphical
and language-based editing to be done simultaneously { most allow the initial speci�cation
to be performed textually and then allow graphical modi�cation of the scene.

The \Speed" column indicates whether the system performs motion simulation, as op-
posed to playback, in real time, batch mode, or near real time, which means \good enough
for interactive editing". Of course, this usually depends on the complexity of the scene being
edited and the types of physical phenomena being simulated, but what is most important

17

System name Interface Speed Simulation type Level Increm

Twixt both real kinematic guiding no

Alias1 graphical real kinematic guiding {

ThingLab both real kinematic / constr program yes

Interactive Physics graphical near-real dynamic task yes

IGRIP both varies dynamic / kin. task no

Script language real kinematic program no

ASAS language real kinematic task no

Gramps language real kinematic program no

Zeleznik et al. both real mixed2 task varies3

MENV both batch kinematic3 program no

TBAG both real kinematic / constr task yes

Bolio both varies4 mixed5 mixed no

ThingWorld language near-real dynamic task no

Spacetime constr. language batch dynamic / kin. task no

Virya language batch dynamic task no

VES graphical real dynamic task no

Jack graphical real dynamic task yes

Dynamo unknown batch mixed5 task no

Asgard both near-real dynamic / kin. task yes

1. This also applies to Wavefront and other similar programs.

2. Since the system is a framework for integration animation applications, many types of motion
simulation algorithms can be applied to a problem.

3. External or user-supplied modules can be interfaced to the system, which provide additional
functionality.

4. Some types of interaction are real-time, using the DataGlove for input.

5. Handles kinematic, dynamic, and behavioral speci�cations.

Table 2.1: Summary of animation systems

18

from our perspective is the design goals of the author, since they strongly inuence the user
interface.

The \Simulation type" category describes what kind of input the system receives from
the user; in a kinematic system, explicit motion paths or keyframes are given, for dynamics
a description of forces and other constraints is required, and for a behavioral system, one
provides some type of higher-level task speci�cation.

The \Level" column indicates which of \guiding", \program", or \task" the system would
be considered using Zeltzer's taxonomy. Some of the assignments are a bit arbitrary, since
most of these systems could be described at multiple levels. All dynamics systems are consid-
ered task-level, since force descriptions seem best described as implicit motion speci�cations.

Finally, the last column indicates whether the system is designed to handle incremental
re-simulation of motion. For many systems, this is not a relevant question, since motion
simulation and playback are identical operations.

These systems seem to fall into a few major categories. First, there are primarily
kinematics-based graphical editors that are built on top of a general-purpose CAD system,
such as Alias. These generally have facilities for interfacing with external motion calculation
routines, but the primary focus is not dynamics. Second, there are scripting languages such
as ASAS that are also primarily kinematic, and that feature some interactive control, but
not full-featured graphical editing. Third, there research systems such as Virya that focus
more on the algorithms and simulation techniques than the editing interface. Finally, there
are heavy-weight frameworks, such as MENV, that coordinate the actions of a number of
tools, but do not directly implement physically-based motion simulation.

Asgard embodies aspects of all of these categories. It is possible to design shapes and
attach motion trajectories to them, to edit a textual representation of the animated scene,
to simulate physically-realistic motion, and to provide di�erent views on a scene simultane-
ously. It takes a somewhat di�erent approach from much of the previous research, however,
in considering editing to be the primary activity of the animator, and organizing the other
functionality of the system in such a way as to enhance the editing capabilities of the ani-
mator.

19

Chapter 3

Overview of the Asgard System

This chapter provides an overview of the goals and architecture of the Asgard system. First,
a description of the goals of this research will be given, in greater detail than in Chapter 1.
Then, in order to provide a concrete example of an animated scene that can be created in
Asgard, a very simple model will be presented, along with the steps that one would use to
create it. Next, an overview will be given of the kinds of physical phenomena that can be
simulated by the system, and �nally a brief outline of the architecture of Asgard will be
provided.

3.1 Design goals

The purpose of Asgard is to enable an animator to create realistic animations rapidly and
easily. To create a system that ful�lls this purpose, one must �rst identify the tasks that
are involved in creating and editing such animations; second, determine what tools are best
suited for those tasks; and third, design an overall system that incorporates these tools in a
systematic and natural way. This system must not only present a good user interface, but
it must also be fast enough to be usable for interactive editing.

The tasks involved in creating realistic animations include the following:

� De�ning and editing shapes, which are used in later object creation operations. This
task could also be considered a part of object creation, but Asgard treats it as a
separate step.

� Creating instances of objects and determining their initial conditions. These conditions
include values for position, orientation, velocity, and angular velocity at the starting
time (t = 0).

� Specifying forces and torques that act on bodies. These might be described in a variety
of ways. The forces comprise the dynamics of the simulated system.

� Specifying path constraints, both exact or inexact. These constraints may be links
between objects, or paths that objects must follow over an interval of time. Other
types of constraints have been implemented by some systems, such as expressions that

20

involve state variables of several objects which describe conditions that must be met
at each point in time, but Asgard requires that such constraints be described as forces,
if possible.

� Viewing the resulting animation from various points of view, and saving it for later
playback or exporting it to o�-line higher quality renderers.

Two major considerations when providing facilities for accomplishing these goals are �rst,
the suitability of the interface for the task at hand, and second, the support for interactive
editing. Interface components must be handled on a case-by-case basis, but one can try
to provide some generalized facilities, such as the multiple-representation paradigm that
Asgard uses, that are appropriate for a broad range of applications. Support for interactive
editing requires attention to the algorithms used for motion simulation, or more generally,
presentation maintenance, at all levels, from the high-level language analysis stage to the
lower-level di�erential equation solution techniques used. These algorithms should be both
as fast as possible and incremental enough to respond quickly to editing changes in near-real
time.

3.2 Sample problem { a two-part pendulum with a

collision

Asgard is quite exible and can be used to create a variety of animated scenes. Let us
consider an example that is simple, but illustrates most of the interesting features of the
system. A full diagram of this example is shown in Figure 2 in Chapter 5. It consists of a
pendulum that has two parts, which are connected by a link or hinge. It is also connected to
a �xed point in space at the top. It swings down, under the inuence of gravity, and collides
with a sphere that is moving across the bottom of the scene, una�ected by any forces. This
sphere then ies o� to the right.

This simple example will be used in a number of places throughout this chapter and
the next ones. It illustrates most of the physical simulation capabilities of Asgard, including
forces, links, and collision detection and response. A later discussion will modify this example
to show the use of trajectories.

A user would typically construct a scene such as this using the following steps, which are
illustrated in the accompanying �gures. The description of what each �gure shows appears
below the �gure.

21

1. Create the basic shapes that are to be used in the scene using a shape editor, which
allows the user to create shapes as unions of convex polyhedra and spheres. Alternately,
the user could import shapes from a library. In the �gure, the user is creating a rod
from scratch.

22

2. De�ne the objects in the scene. To create an object, one must specify at least two
things: the shape and the initial position. The shape is chosen from a menu of the
shapes that are currently de�ned, and the position is speci�ed by clicking on a location
on the screen. Other initial conditions and physical properties such as mass can also
be given at this time. In this example, two rods and one cube are created.

23

3. Add additional object information using the language viewer. An example of this is
the -artbody option, which stipulates that the objects should be considered as com-
ponents of the named articulated body. This information allows the collision detection
routine to ignore interpenetration between the components in the area of the joint, as
illustrated in Figure 5.4. Other information that can be added in the language viewer
includes the masses and moments of inertia of the objects.

24

4. De�ne the forces that act on the objects, such as gravity. This can be done in a
variety of ways, but in the example we select the Gravitational option from the
Force submenu. This type of force has a magnitude that is proportional to the mass
of the object, which is speci�ed directly by the user. We then click on the center of
mass of each object, and on a point approximately 10 units in the negative Y direction
from the center. All editing done in the graphical window is approximate { if the user
wants the magnitude to be the precise value of the Earth's gravity, he can use the
language viewer to modify it textually.

25

5. De�ne the links between objects, which are sti� springs connecting speci�c points on
the shapes. There are two links in this scene { one between the two rods and one
between the top rod and the origin. This is done in a similar manner to the de�nition
of forces.

6. Specify the time range, by adding a simulator command using the language viewer,
and ask for the motion to be calculated by clicking on Simulate in the control panel.

7. The user can now view the animation, using the viewpoint and time controls in the
graphical viewer. The input can also be modi�ed and the motion simulation redone.

The details of how these operations are performed and the reasoning behind their designs
are given in Chapter 4.

3.3 Problem domain

A wide variety of systems have been developed which can simulate many di�erent sorts of
physical phenomena. A number of these are described in Chapter 2. In designing Asgard,
I have tried to select a set of editing tools and user interface features that can be usefully
applied to a variety of simulation frameworks and problem domains. The types of objects

26

Linear force

Linear force

Torque about
principle axis

Link, or
soft constraint

Objects, both part of the same
articulated body

Time−dependent
trajectory Object constrained

to follow trajectory

Objects in
elastic collision

Figure 3.1: The Types of Elements Handled by Asgard

available and the set of physical phenomena that can be simulated have been limited some-
what, in order to make the implementation of Asgard tractable while still providing enough
capabilities to justify the utility of these features and interfaces.

The types of elements that can be handled by Asgard are described below, and are
represented in Figure 3.1. These include objects, forces, links, and trajectories.

3.3.1 Objects

In the following discussion, objects are assumed to be limited to rigid polyhedral and spherical
bodies. Non-rigid and breakable objects can have an arbitrary number of degrees of freedom,
or parameters that are required to describe their state, which can result in much higher
complexity than that of rigid bodies. Pentland [89] has used modes of vibration to represent
deformations very economically, in the same way that Fourier transforms can be used to
represent mathematical functions, but in the general case, deformable objects require a great
deal of state information. The same is true for simulation techniques such as �nite-element
methods [127] that represent objects as systems of springs and masses. Rigid bodies require
only one set of positional and rotational state variables, which yields twelve scalar parameters
when derivatives are included. This simpli�cation was made to make the implementation of
Asgard tractable, but the most of the algorithms discussed in this thesis apply to the more
complex object representations mentioned above.

Spheres and polyhedrons are also simple to represent and to use in geometrical cal-
culations. There are a wide variety of alternatives available for modeling solids, such as
spline-based surfaces and volumes [45, 67] and implicit functions [90]. Editing techniques

27

for polyhedra are more easily implemented, however, and most existing collision detection
algorithms work only for convex polyhedra. Collision detection is discussed further in Sec-
tion 5.3.

In Asgard, articulated bodies are considered to be collection of rigid bodies with hinges or
links between them. A number of techniques have been developed by researchers in anima-
tion and robotics for enforcing exact constraints between the articulation points of di�erent
components of an object [119, 2]. Most of these approaches require the connection graph of
the object components to have a tree structure, and they can have the e�ect of increasing
runtime substantially. The advantages include exact solutions and the correspondence of the
number of variables in the system with the number of degrees of freedom of the object.

A simpler way to implement articulated bodies is by using \soft" constraints, which
can be represented using springs. This is the technique used by Asgard. Such constraints
translate directly into forces and torques, and thus require less support from the lower-level
motion simulation code. Since they are inexact, they may be noticeably violated at certain
points in the animation, but this can be ameliorated by adjusting the spring constants
appropriately. It is not clear whether they lead to a more or less e�cient solution process
than the exact constraint methods mentioned above { the system of equations is larger with
soft constraints, but the individual equations are simpler. Also, sti� springs can limit the
size of time steps that can be taken in numerical integration, but this has not proven to
be a problem in practice. Asgard uses soft constraints because of their simplicity and their
suitability for integration with Asgard's overall model of physics.

3.3.2 Principles of motion

Even with the restriction to rigid polyhedral and spherical bodies, there is a wide variety of
physical e�ects that we might want to simulate. These include such phenomena as friction
and static contact forces [14]. All of these e�ects can be represented as forces, but the
calculation of the values of these forces can be quite di�cult, and in some cases is an NP-
complete problem [16]. Asgard limits the types of forces that can be handled to those whose
values can be expressed as algebraic functions of time and the state variables of the objects
in the scene, and their derivatives. Such forces include gravitational, spring, and sliding
friction forces, but not contact forces or other inequality constraints. The advantage of this
limitation is a relatively simple simulation framework, since the problem reduces to a system
of simultaneous ordinary di�erential equations. The one exception to this rule is the handling
of collision detection and response, which requires transient forces to be applied at a point
in time that must be determined independently of the di�erential equation formulation. An
exception is made here because collisions are quite important for realistic animation, and
can be handled in a simpler way than the other cases. The disadvantage is that the types of
motion that can be simulated is somewhat limited.

3.3.3 Control mechanisms

In addition to simulating physical systems, an animator wants to be able to control certain
objects in ways that are independent of the laws of physics. For example, one might want

28

a human or robot to move in a particular way, or a rocket to follow a certain trajectory,
determined by its thrust. This sort of control is referred to as kinematic, as opposed to
dynamic, which deals with the forces that act on the system. Asgard makes it possible for
the animator to specify simple trajectories for objects to follow for particular time intervals.
These trajectories are given as unions of B�ezier curves de�ned over disjoint intervals of time,
which can be used for any of the state variables of one or more objects. Other researchers
have developed more complex types of constraints, such as space-time constraints [122] or
optimization-based methods [92], but these require a great deal more mechanism. Using
kinematic constraints combined with fast motion simulation algorithms, the animator can
develop scenes by an interative trial-and-error procedure. This type of approach is likely
to be more e�cient than a more analytical top-down method, where the animator speci�es
detailed constraints and other declarative information, and then must wait a long time for
the results. Also, many objects in the real world tend to be either mostly dynamic, where
they have no control over their own motion and merely respond to external forces, or mostly
kinematic, where they have detailed control and can specify their motion precisely, guided
by goals and plans. Algorithms such as optimal control do not really model how most things
work in reality.

3.3.4 Appearance

The creation of realistic 3D images using computers is a well-developed science, and issues
of rendering are essentially orthogonal to the concerns of Asgard. Both immediate and o�-
line graphical output is provided by Asgard. Immediate output is what is displayed in the
graphical viewer, which can currently utilize both the X11 or the IRIS GL [106] graphics
systems. With X11, only wireframe graphics are supported, but GL provides shading, texture
mapping, exible lighting speci�cation, and visible surface calculation. The output may be
viewed using the stand-alone Asgard viewer, which is discussed in Chapter 4, or from within
the Ensemble multi-media editing system, as described in Chapter 6.

O�-line graphical output can be produced as PostScript line drawings, PPM [94] or input
for Rayshade [69], a public-domain raytracing program. PostScript output is fairly minimal,
but Rayshade can accept a wide variety of parameters, including various surface properties
and lighting arrangements.

Asgard allows the user to specify colors for particular objects, but does not include
facilities for texture mapping and per-face rendering speci�cation. One reason for this is that
the faces are generated as a side e�ect of the vertex positions, as described in Section 4.1.1.
There are no conceptual di�culties with adding texture mapping facilities, however. It is
also possible to de�ne directional and point light sources, which are used if possible and
ignored otherwise. Their speci�cations are simply passed to the underlying graphics system.

3.4 Architecture

The major components of Asgard can be roughly divided into editing interfaces and mo-
tion simulation code. The user interacts with the editing interfaces, which include both the
major graphical and textual viewers and also the minor editors such as those for shapes

29

Tcl/Tk IrisGL

User

Graphical
 Viewer

Textual
Viewer

Scene Representation

Simulator

Collision
Detection &
Response

Expression
Evaluation X11

Geometry
 Module

Physics
Module

Differential
 Equation
 Solver

Figure 3.2: Block Diagram of the Asgard System

and trajectories. These editors make changes to the shared state using the scene repre-
sentation module. The scene representation module has responsibility for tracking changes
and determining what data is invalidated by these changes. Then, when the user indicates
that he would like to recompute the updated motion, the simulation module performs this
computation. The overall block diagram of Asgard is shown in Figure 3.2.

The task of motion simulation is fairly complex, and the substructure of the simulation
module is shown to the left. The physics module is responsible for translating from the
force, link, trajectory, and body speci�cations provided by the user into a set of �rst-order
di�erential equations. These equations are solved by the solution module, which performs the
partitioning and event-driven scheduling described in Chapter 5 and numerically integrates
the equations, currently using the trapezoidal method. As the values for the variables are
being computed, the collision detection module is periodically called to determine if any
collisions have taken place. This module, also described in Chapter 5, uses the geometry

module to determine the closest points between pairs of objects over time. If a collision takes
place, the physics module must be invoked to determine the resulting reaction forces, which
are then applied to the objects at a single point in time. Finally, the expression evaluation

module performs symbolic di�erentiation and simpli�cation of the equations being evaluated,
and for large equations, translates them into C code, compiles them, and dynamically loads
them for speed. All of the code in the simulation subsystem was written speci�cally for
Asgard, except for the sparse matrix library, which was obtained fromKen Kundert [70]. The
collision detection algorithm was developed by Ming Lin [74], although it was reimplemented
in C++ for Asgard.

Asgard is implementedusing C++ and Tcl/Tk [86]. C++ is used for the more computation-
intensive tasks, such as motion simulation and low-level rendering, and Tcl is used for the
higher-level user-interface sections of the system. This division of tasks gains the bene�ts
of e�ciency where it is needed and exibility where e�ciency is not a concern. Also, the

30

use of Tcl/Tk greatly reduces development time and code size, compared to compiled user
interface systems such as Motif[123].

31

Chapter 4

Animation Editing Techniques

Asgard is a multiple-view editing system. Such systems are designed to present more than
one representation of the document, which is in this case an animated scene. In this chapter,
the term document refers to a compound multimedia document, which may contain a variety
of media, both static and dynamic. Each representation of a document has a speci�c visual
or audio presentation style and a speci�c set of operations that are available for modifying
the basic document. In Asgard, the two major types of views are a graphical view, which
shows a picture of the scene at a particular point in time and from a particular viewpoint,
and a language view, which shows the formal description of the input to the animation
system. Multiple-representation systems that have been developed for other media include
Vortex [29, 30] for text, and ThingLab [20] and Juno [82] for graphics. These systems are
described at the end of this chapter.

The key to making such a system usable is synchronization between the viewers. When
a change is made in the graphical viewer, it should be immediately reected in all other
viewers, and the same is true, to a certain extent, for changes made in a textual viewer. A
user must be able to move an object in a graphical viewer and watch the numeric value of
the position change in all the textual viewers that are present, and likewise should be able
to add new objects in a textual viewer and, after indicating that he has �nished editing, see
them appear in the graphical windows.

While there is no a priori reason that the editing interfaces should be limited to a
graphical and a textual viewer, these two do embody a basic distinction between two ways of
looking at the editing process, for any medium. A graphical or direct-manipulation interface
presents the document that is being edited, which in the case of Asgard is an animated scene,
in a way that is close to how the intended audience will view it. This allows the author to
accurately judge the e�ect it will have on the viewer and modify its appearance accordingly.

A formal language-based view of a document, on the other hand, may or may not be
intended to be seen by the �nal audience. It exists to make explicit the underlying structure
or phenomena that determine the content of the document, which is important if one of the
functions of the document is to help the viewer visualize these structures or phenomena. On
the other hand, in the case of a textual document or in many applications of physically-based
graphics, the \�nal output" is adequate for the audience and the formal language view is
useful mostly for the author.

32

Figure 4.1: A Typical Asgard Editing Session

In the case of physically-based animation editing, the graphical view allows the animator
to de�ne certain parameters of the scene, such as shapes, initial conditions, colors, and
viewing state, whose e�ects are related to their values in a very immediate way. The language
view, on the other hand, allows the animator to de�ne other scene parameters, such as
forces and constraints, whose e�ects are less directly related to their speci�cations, which
themselves can be fairly complex. One can also use the language view to create procedurally-
de�ned and parametric models. In one case, a direct interface is appropriate because the
values being manipulated are concrete and the feedback is immediate and intuitive; in the
other, a formal language editing mechanism is appropriate because the qualities being de�ned
are more abstract and the feedback is more indirect.

Figure 4.1 shows a typical Asgard editing session. This picture contains all of the major
interface components of Asgard. These are as follows:

� In the upper left-hand corner, the control panel. This contains menus and dialog boxes
that are used for managing the overall state of Asgard.

� In the upper right-hand corner, a graphical viewer, with a typical scene displayed.
There may be any number of graphical viewers open at any time, with di�erent spatial
and temporal viewpoints.

� Below the graphical viewer, a trajectory editor, used for de�ning paths in space for
objects to follow. One of these may be active at any given time.

33

� Below the control panel, a language viewer, which displays the formal description of
the current scene. Any number of language viewers may be present, and although they
are not synchronized on a keystroke basis, they can all be brought up to date using an
\Update" button on any one of them.

� Beneath the language viewer, a shape editor, which allows the user to create and
modify shape de�nitions. One shape editor may be active at any time.

The rest of this chapter describes these various tools in detail. It also discusses some previous
work in multiple-representation editing for other media.

4.1 Graphical display and editing

The graphical editor in Asgard allows the user to directly create, delete, and manipulate the
objects being animated, view their motion, and de�ne initial conditions and other parame-
ters interactively. An important consideration is to provide as much editing functionality as
possible without trying to cover areas that are better handled by the language viewer. For
example, the graphical editor provides shape creation facilities and interactive 3-D position-
ing, but not text-based interfaces for precise numerical values, since the latter can be done
using the language viewer. The user can de�ne rough positions graphically, and then adjust
them precisely textually if necessary.

Many of the editing functions described here utilize the mouse. There are two sets of
operations, which can be classi�ed as positioning commands, which allow the user to modify
the overall scene transformation or camera position, and selection operations, which are
used for selecting bodies and other objects on the screen and for indicating positions. The
positioning commands use the unshifted mouse buttons, and the selection commands require
the user to hold the shift key down while the operation is performed. There are a number
of possible ways to organize di�erent sets of operations in an editing system such as Asgard,
and there has been a lot of human-factors work on determining what style is easiest to
use [105]. The style described above was chosen because having separate positioning and
selection modes that the user would be forced to explicitly toggle between turned out to be
rather awkward and di�cult to use.

A picture of the graphical viewer is shown in Figure 4.2. A menu bar is at the top of
the window, and directly below it is the display area. To the right of the display window is
a status area that contains status information and visibility controls, and at the bottom of
the screen is a set of time control buttons and a time scrollbar. The slider inside of the time
scrollbar is designed so that the left edge is at the current time, and the length corresponds
to one second. Directly above the time scroll bar is an area used for editing trajectories,
which is described below.

The operations that the user can perform using the graphical viewer include the following.

� Create and edit de�nitions of shapes. When the Shapes/New menu option is selected,
a shape editor, described below, is invoked. When the user is �nished editing the
shape, he can de�ne bodies that are instances of this shape, and attach non-geometric

34

Figure 4.2: The Graphical Viewer

35

properties to them using the language viewer. Existing shapes can also be modi�ed
using the Shapes menu.

� Create scene elements such as bodies, forces, and links. This is done using commands
in the Create menu. In general, when an element is created, the user will be prompted
to indicate spatial and object parameters by clicking on locations on the screen. Non-
spatial parameters can then be entered textually.

� Edit scene elements. Using the element type check buttons on the right of the viewer,
the user can enable or disable the handles that are used to control each element type.
If the handles for a particular element are visible, they can be moved on the screen to
edit various parameters such as initial conditions and link and force o�sets.

� Create and edit trajectories using a trajectory editor. These trajectories can then be
attached to objects and used in other contexts where vector values as functions of time
are required.

4.1.1 Object de�nition

To create an object, the user must specify two types of information: a shape description
and additional properties such as appearance and physical attributes. In Asgard, the shape
description is created using a graphical interface, and the additional properties are given
textually using the language editor. In many systems such as Alias [1], the user can select
shapes from a pre-de�ned list of geometric primitives, which include spheres, cylinders,
parallelepipeds. Since the basic primitives that Asgard uses are union of convex polyhedra
and spheres, rather than presenting the user with a list of convex polyhedra to choose from,
the system includes a general shape editor for these types of objects. This editor, however,
does contain shortcuts for creating spheres of a particular radius and boxes whose sides are
aligned with the coordinate axes, since creating such objects is a frequent task.

Many techniques have been developed for de�ning and editing shapes graphically. These
generally fall into two categories: surface-based editing and volume editing.

In surface-based editing, the user de�nes 2-dimensional surfaces, which may be polygons
or spline patches. He can then select sets of surfaces and create volume objects from them
by grouping them together and, if necessary, indicating which should be opposite faces and
which surfaces should be joined together as sub-faces to make a single face. Examples of this
style of object construction are the ICEM Mulcad system [36] and Swivel 3D [88]. Many
other CAD programs o�er similar functionality.

In volume editing, the user typically starts with volume primitives and modi�es them to
form the shape he desires. Some examples of this are hierarchical B-spline re�nement [45],
where the user de�nes an initial shape and then interactively drags control points, allowing
the system to determine where subdivision is required, and hyperpatches [67], which is an
extension of 2D spline surface calculation techniques. Constructive solid geometry [44] is
another technique for incrementally de�ning shapes.

Asgard provides a third model of shape creation that is tuned to the object model used
by the simulation subsystem. The primitive objects that it uses are spheres and convex

36

Figure 4.3: Shape Editor

37

polyhedra, and the values that de�ne these objects are, in the case of spheres, a center point
and a point on the surface of the sphere, and in the case of polyhedra, a set of vertices,
which de�ne the shape by their convex hull. These shapes are grouped together to form
\shape sets", which are then bound to objects. The shape set is de�ned as the union of its
component shapes { if necessary this scheme could be extended to a general constructive
solid geometry model, where intersection and subtraction operations are also provided.

Shape sets are de�ned using a special shape editor. A picture of this editor is shown in
Figure 4.3. This editor displays a set of spheres and polyhedra. Each object is represented
by its vertices, which are drawn using small balls that can be moved by the user. A vertex
is moved by clicking on it with the left button while the shift key is held down and dragging
it with the mouse. Once a vertex is clicked on, it and all the other vertices that belong to
the same object, along with the lines that connect them, are drawn in color, and the object
is considered selected. Other objects are drawn in gray. When a polygon is selected, new
vertices can be added to it by clicking the middle mouse button at the desired position, and
a vertex can be deleted by clicking the right button on it, both with the shift key held down.
Spheres have two control points, the center and a point on the surface, and these can also be
moved using the shift-left button operation. New spheres and polyhedrons can be created
using buttons at the bottom of the editor window. The unshifted keys control the scene
transformation in the shape editing window, just as in the graphical viewer.

A polyhedron can have any number of vertices, and is de�ned by their convex hull. The
convex hull is computed automatically, when the user switches from one selected component
to another and when he clicks on the \Convex Hull" button in the shape editor. An external
program, written by Ioannis Emiris [43, 42], is used to perform this computation. Whenever
a vertex moves inside its component, and thus does not lie on its convex hull, it is colored
white. When the shape editor is exited, all vertices not on the boundary will be deleted from
the shape description.

There are a number of reasons why Asgard provides a special viewer for shape editing,
as opposed to integrating this functionality into the graphical viewer. First, the operations
that are performed on bodies, or instances of shapes, which include positioning and rotating
in world space and de�ning initial conditions, are di�erent from the operations that one
performs on shape de�nitions, and it would be awkward to overload the semantics of mouse
operations to accommodate both in the graphical viewer or to de�ne a separate editing mode
for shape editing. Second, there may not be an instance of a shape that the user wishes to
edit currently visible in the graphical viewer { a user will generally want to create a new
shape �rst and then to create instances of it. Third, it turned out to be cleaner from a
software engineering point of view to separate the implementations of these two types of
editors, although signi�cant modules are shared between them.

There are a few tradeo�s involved in providing automatic convex hull calculation as a
basic shape editing mechanism. On the positive side, the amount of information that the
user must provide is rather minimal and direct, and it is possible to create various types of
polyhedra rapidly with little e�ort. On the negative side, sometimes the user would rather
work with faces than vertices, and impose constraints on these faces, such as requiring the
edges of a face to remain parallel or keeping two faces a constant distant from each other.
Asgard attempts to mitigate some of these problems by allowing the user to de�ne a spatial

38

grid for vertex positions, which makes it a bit easier to line up vertices in a plane parallel to
the coordinate axes. Some CAD systems such as P-cube [37] have very powerful constraint
systems, which are very useful but also are quite a lot of work to implement.

Per-shape parameters, such as color and other optical properties, can be created and
modi�ed using the language view. In previous versions of Asgard, colors could be assigned
to speci�c faces, but since faces are now only an artifact of the convex hull operation,
colors are de�ned on a per-object basis. Asgard could allow the user to attach colors to
vertices, since high-end graphics systems can accept a color for each vertex and use these
colors to perform Goraud shading [19], but this does not seem very useful. If one wants to
assign separate colors to di�erent faces of an object, this can be done by de�ning one shape
component for each face and positioning the shapes accordingly. Since these polyhedra are
all part of the same object, from the point of the simulation system, this formulation does
not a�ect the mass or other physical properties of the object. Texture maps [44] could also
be used for this purpose, although Asgard does not support them.

Other properties that can be attributed to objects are mass and moment of inertia. These
are attached to bodies rather than shapes, and can be explicitly speci�ed via the language
viewer. If they are not given by the user they are automatically calculated assuming a
constant unit density. This is very easy for convex polyhedra, since they can be decomposed
into tetrahedra, the volumes and centroids of which can then be combined to yield the total
for the shape.

4.1.2 Instance creation and modi�cation

Instances can be created using the Create/Body menu item. The user is asked to select an
existing shape de�nition, and the body is created with its initial position at the origin. It
can then be moved and rotated, either by modifying the -init pos and -init rot values
using the language viewer, or by clicking on the appropriate handles and dragging them in
the graphical viewer, as described below.

Initial values for velocities and angular velocities can also be modi�ed using handles.
Angular velocity is represented as a vector through the center of mass, where the direction
de�nes the line about which the object is rotated, and the magnitude de�nes the speed of
rotation, using the right-hand rule (that is, counterclockwise about the vector when it is
pointing at the viewer). Since it is not possible to correlate rotational values with vector
magnitudes as easily as in the translational case, textual labels are attached to the ends of
these handles which show the values.

4.1.3 Handles

There are two mechanisms in the graphical viewer for modifying positions and other spatial
parameters such as velocities. Objects can be transformed using the shifted mouse buttons
while in positioning mode, as described below. For other types of editing, which include
the modi�cation of vector values such as velocities, trajectory points, force vectors, link
o�sets, and lighting controls, objects called handles are used. A handle is represented as a
small sphere on the screen, using a color that indicates what kind of quantity it is tied to.

39

Additionally, while a handle is being manipulated, pertinent information is displayed in a
label in the upper right hand corner of the viewer.

While the viewer is in selection mode, the left button can be used to move handles. When
it is depressed, the nearest handle within a certain distance is selected, and when the mouse
is moved, the handle tracks its position in the plane of the screen. The `z' and `x' keys can
be used to push the handle into the plane of the screen or move it towards the viewer while
the mouse button is depressed, and the current position of the handle is shown in the upper
right hand part of the screen. In some cases, such as handles that control the o�set of a
link, the default is to constrain the handle position in some way, such as to be within the
shape of the object. If the shift key is held down, this constraint is not enforced, and if the
next time the handle is moved the constraint is not satis�ed, no attempt is made to enforce
it until it becomes satis�ed as a result of the user's modi�cations.

4.1.4 Trajectories

A trajectory is a path in space which is parameterized by time. Trajectories can be used
wherever variable references are called for, and can also be used to de�ne the paths of
instances over speci�c intervals. Trajectories can be used for position, rotation, and their
derivatives, and can be de�ned for all of time or for a particular interval. In the latter case,
all forces that a�ect the constrained state values are ignored, and the object is treated as
having in�nite mass for the purposes of collision response. If two such bodies collide, it is
not possible to determine correct behavior, since both constraints are considered to be strict
by the system. Discontinuities may result in the state of an object when a trajectory is
imposed, if the position or rotation of the object at that point is di�erent from the required
one. The motion simulation code takes this fact into account when timesteps are chosen,
and the playback routine treats this discontinuity as a very short duration displacement.

Trajectories can be edited in the graphical view by interactively adding, deleting, and
moving control points. By default, trajectories are not shown, but they can be displayed
using a checkbutton in the right panel.

Each point along a trajectory is represented by a handle. A point can be moved using the
shifted left button. The right and middle buttons can be used to create and delete control
points. To create a new control point, the user must click on an existing one with the middle
button and then move the mouse in either direction along the trajectory. This will create a
new point either before or after the existing point, depending on the direction taken. If there
is only one existing control point, then the new one will come after it. When the button
is released, the trajectory will remain where it was placed. To delete an existing control
point, one can click on it with the right button. If all points on a trajectory are deleted, the
trajectory will be deleted.

When a trajectory is being modi�ed, a scale appears above the time scrollbar at the
bottom of the screen that contains a mark for each control point, which shows the time that
control point corresponds to. The user can click on one of these marks with the left button
and then drag it to alter the time value of the corresponding control point. The time value
for each trajectory point is displayed textually next to the point on the screen.

By default, the trajectory time scale is the same size and corresponds to the time scroll

40

Figure 4.4: Trajectory Editor

41

bar. Using the zoom controls at the left of this scale, however, one can edit the time at a
�ner scale than is possible otherwise.

In addition to directly editing a trajectory in the graphical view, one can also edit a
trajectory in a component-wise fashion using a special trajectory editor, which is shown in
Figure 4.4. This is especially useful for rotation trajectories, which may not be easy to edit in
3-space. The trajectory editor presents an interface simular to that described above, except
that it is 2-dimensional and there are three trajectory components shown instead of one.
The Y axis in each sub-window represents the component value and the X axis represents
time.

4.1.5 Forces and torques

A wide variety of forces and torques can be speci�ed textually, and the more complex ones
can only be described using that interface. However, simple forces, like gravity or constant
forces, or forces that are de�ned by a trajectory, can be de�ned graphically.

The Create/Forces menu item contains a submenu of force types, such as \Constant",
\Gravitational", and \Trajectory". In the �rst two cases, the force is created with unity
magnitude, in the negative Y direction. The user can then edit the value in the language
viewer, or modify the vector using handles, similar to those available for setting the initial
value of the velocity. In the third case, the user will be prompted to select a trajectory on
the screen, or request a new one with one point which can then be edited as described above.

A force vector is graphically represented using two handles { one at the base, which
determines the point at which it is applied, and one at the head, which determines the
direction. If the force is not constant or mass-dependent, a vector will be drawn that gives
the value of the force at the current time point, but no handle will be provided since the
vector cannot be modi�ed graphically. If a force is not applied to the center of mass, the
system transforms it into a linear force and a torque, using simple mechanics identities [52].

Either constant or trajectory-de�ned torques can be created using the Create/Torque
menu item. The graphical representation of a torque is a vector about which the torque
acts, where the magnitude of the vector is proportional to the magnitude of the torque,
using the right-hand rule. This is the same representation as the one used for the initial
value for the angular velocity. Torques can be de�ned about the center of mass, or any other
point on the body and axis through that point. In the latter case, the system internally
decomposes the torque into a pure torque component and a linear component, similarly to
the non-central force case.

4.1.6 Links

A link is a critically-damped spring that is used to connect body components to one another
and to points in space. The Create/Link menu item contains a list of possible variations
on these link types: object-to-object, object-to-point, or object-to-trajectory. Other types
of object-to-point links, where a general expression rather than a trajectory is used, can be
created using the language viewer, or an object-to-point link can be created and then edited
to replace the constant point value with a set of expressions.

42

Towards screen

Line into screen (initial mouse click)

Cross−section of
object being selected

First intersection point

Line into screen (after mouse is moved)

Second intersection point

Intersection point tracks
 object as mouse is moved

Figure 4.5: Object intersection constraints

An object-to-object link has two object parameters and one handle for each object, whose
position is de�ned with respect to the coordinate system of the object. When such a link
is created, the user is prompted to select one object and a location on that object, and
then another object and location. Object selection is done by clicking the left mouse button
anywhere on the shape, and the location is determined by �nding the nearest point on
the surface of the shape that is covered by the mouse position. The user can move the
handles corresponding to the endpoints of the link, and they will track the surface of the
shape. This is the most common case, but the user can move them o� of the surface of the
shape depressing the \a" key while performing this operation. In this case, the movement is
constrained to be in the plane that passes through the initial point position and is parallel
to the screen. This is the default behavior for other types of handle-based editing that are
not subject to constraints, such as modifying the magnitude of a constant force vector.

Constraining the movement of a point to follow the surface of an object has been used
in other systems [18, 17]. In the case of Asgard, the operation is fairly simple. Whenever
the user moves the mouse while he is dragging a handle, the system must determine a new
position for the handle. One constraint that must be met if possible is that the point be on
the line that passes through the mouse position and is normal to the plane of the screen. The
remaining degree of freedom for the position is along this line. This operation is illustrated
in Figure 4.5, which shows a 2-dimensional cross section of an object, perpendicular to the
screen.

In the unconstrained case, the depth of the point is taken to be the previous depth. One
could also constrain the movement to be in one of the coordinate planes, but this tends to
be hard for the user to visualize and control, and can be easily done by using one of the
orientation commands to make the plane of the screen be a coordinate plane. In the case
where the movement is constrained to a surface, one must simply �nd the point on the surface
that intersects the cursor line, and is closest to the screen. This is an easy operation for simple
polyhedra { one need merely intersect the line with each face. In complex cases one could

43

use a nearest-feature collision detection technique such as the Lin-Canny algorithm [74, 75],
which is used in the motion simulation subsystem of Asgard.

The process for creating a link between an object and a path or point in space is similar.
One selects an object and a point on the object with one mouse click, and selects a trajectory
or a point with the second. The point can then be moved graphically, or the link can be
modi�ed in arbitrary ways using the language viewer.

4.1.7 Viewing state

There are four basic vector values that determine the how the scene is viewed. These
are position, rotation, scale, and the center of rotation and scaling. The �rst three can
be manipulated using the mouse: the left button rotates the scene using a virtual sphere
model[28], the middle button translates the scene in the plane of the screen, and the right
button scales the scene either up or down, if the mouse is moved vertically, or rotates it
about the Z axis, which points out of the screen, if the mouse is moved horizontally. This is
the model used by the DDN CAD system [61].

The center of rotation and scaling is by default the centroid of the scene. It can be moved
by typing \c" with the mouse positioned above the desired point. If the mouse is within
a few pixels of any shape vertex or handle, the center point then becomes the location of
that entity. It does not track the position of this entity if it is later moved, however. If the
mouse is not near any vertex or handle, the center becomes the point under the mouse that
is midway in depth between the near and far bounding planes for the currently displayed
objects.

Rotations are represented internally by the viewer using quaternions [58, 93]. These are
4-dimensional vector quantities that can be thought of as a vector/scalar pair. Rotations
in 3-space about a particular vector can be represented by the quaternion < cos(�=2); ~v �
sin(�=2) >, where ~v is the vector and � is the angle of rotation about it, using the right-hand
rule. Quaternions are useful for representing rotations because one can compose rotations by
multiplying the quaternions, whereas there is no easy way to compose rotations represented
by Eulerian angles. Also, interpolating between two quaternions corresponds to interpolating
the rotations in a correct way, which is otherwise very di�cult. Rotations are composed when
the overall scene transformation is modi�ed, and interpolation is performed during playback
when the time points are further apart than the frame rate.

In addition to using mouse controls to modify the viewing parameters of a scene interac-
tively, these parameters may be tied to trajectories or arbitrary expressions. This allows for
fairly sophisticated camera motion e�ects. An \eye point / look direction" model would be
useful also, but would be harder to provide using the available Asgard primitives for rotation.

4.1.8 Lighting

By default, a directional light source is de�ned which points into the plane of the screen.
This may be replaced with point and directional light sources de�ned by the user using the
\lightsource" command. They can also be created using the Create/Light source menu item.
These may or may not have an e�ect on the image, depending on the graphics system or

44

output format being used { if Rayshade [69] output is being written, or if the graphics system
is GL [19], then lighting will be enabled, and otherwise it will have no e�ect. In the case of
Rayshade output, shadows will be generated, and in the case of GL the lighting will only
contribute to the shading of the objects in the scene.

Light sources can be moved using handles. Point sources have one handle, and directional
sources have two. Actually, a directional source only needs one, but it is more convenient
to be able to put the representation somewhere on the screen and then move the direction
vector.

4.1.9 Motion interpolation

When motion is played back after being computed, one must somehow match the frame rate
of the display with the time scale of the data available. The two major problems with this
task in Asgard are the unpredictability of the graphics speed and the di�ering time scales
for state variables. One can never be sure that a given frame rate is achievable, especially on
a multi-tasking system using X11 and a software implementation of 3D graphics operations.
Also, each variable may have a di�erent set of time points, which is a consequence of the
di�erential equation solution technique used.

Asgard solves these problems in two ways. First, it plays the motion as fast as possible,
checking the real-time clock before each frame and determining at what point in the simulated
time ow the scene should be drawn. This allows it to adapt to di�erent hardware and
software capabilities. Second, it interpolates the values of all state variables, using linear
interpolation. This is appropriate since the integration method used, trapezoidal integration,
uses a linear approximation to the function value. For a higher-order integration method a
di�erent interpolation scheme would be necessary.

4.1.10 Image export and o�-line playback

Images can be exported in a variety of formats, using the \Export" button on the control
panel. Postscript [62] and PPM [94] formats are available for individual frames. For saving
a sequence of frames that can be played as a movie, a �le that contains sequences of graphics
commands can be created and played back, using a special playback program written for
Asgard. Images and movies can also be written in JPEG and MPEG formats, using publicly
available conversion tools that accept PPM format.

In addition, input �les for the Rayshade [69] renderer can be created for o�-line ray-
traced pictures. This program produces pixmap images in the Utah Raster Toolkit RLE
format [117], which can then be manipulated with a variety of tools and played back in
movie mode.

4.2 Language-based editing

The Asgard language viewer allows the formal description of the animated scene to be edited.
The viewer operates as a simple text editor, with the usual command bindings { it uses the
Tk text widget [85] { and can be used to edit animation descriptions without syntactic or

45

Figure 4.6: Language Viewer

46

semantic guidance or restrictions from the system. When the user has made changes to the
text and wants to update the internal representation and the other viewers, he can click on
an \Update" button, which causes the scene description to be parsed and evaluated. This
brings the internal database up to date with the description, which also causes the graphical
views and the other language views to be similarly updated. If there is some error in the
description, the o�ending textual element is agged in the text, and for each statement that
is successfully parsed, certain arguments, which are the ones that are tied to parameters
that can be modi�ed graphically, are highlighted in distinctive colors. The language viewer
is shown in Figure 4.6.

The motivation for providing a general-purpose text editor as the mechanism for creating
and modifying animation descriptions comes from the Ensemble system [55]. Ensemble is
a successor project to both the Pan language-based editor [10] and the Vortex document
processing system [29], which treated documents as both formal language descriptions and
visual representations. The design of the language editing components of these systems
was guided by the observation that users do not want to be limited to using only a strict
syntax-directed editor, such as the Synthesizer Generator [97] { rather than being limited
to transformations that operate on well-formed descriptions, users prefer to edit programs
and document descriptions as regular text, and then indicate when the editor should analyze
the text as a formal description. Pan, Vortex, and Ensemble are all designed to provide
the best of both worlds { syntax directed editing and free-form textual editing can both
be used as needed. Although the structure of the Asgard language is simpler than that
of a general purpose programming language, the language viewer uses the same approach.
Perhaps more than most other types of media, animation bene�ts from the close coupling of
formal language and direct representations.

There were two approaches that were used for implementing language-based editing in
Asgard: �rst, integration with the Ensemble system, which contains the language-based
editing components of Pan, and second, via a separate editor that is independent of Ensemble
but is closely integrated with Asgard. The second option is described in this chapter, and
the integration with Ensemble is discussed in Chapter 6.

4.2.1 The Asgard animation language

The animation language is based on Tcl [86]. An animation description is read as a Tcl
command �le, and as such can contain variable de�nitions, control constructs, procedures,
and any other elements of the Tcl language. This capability is important for de�ning large
and complex scenes, or for de�ning objects procedurally. An example of the animation
language is visible in the language viewer shown in Figure 4.6.

It is important to note that all aspects of the scene that cannot be recreated are repre-
sented in the language, since this is both the formal description that the user sees and the �le
storage format. For example, since state variables as functions of time can be recomputed,
they are not visible in the language view. Trajectory values, on the other hand, are input
to the animation process and thus they must be explicitly represented. In many cases these
representations are not especially enlighting or easily editable. For this reason, certain parts
of the language can be elided, or replaced in the language viewer with an icon. If the user

47

clicks on this icon with the right button, the full text is shown, and if he again clicks on the
text, which is drawn with a distinctive background, it reverts to the icon. The parts of the
language that are currently candidates for this sort of elision are the points in a trajectory
and in a complex shape: if the text is larger than a certain threshhold value, currently about
half a line, it will be elided by default.

In the following discussion, the term element refers to any component of the animation
description that is meaningful to the simulator or viewer. Elements include shapes, bodies,
forces, links, and trajectories. Things that appear in the description that are not element def-
initions are generally parts of the Tcl language: control constructs, comments, and variable
de�nitions.

4.2.2 Parsing and semantic analysis

The major function of the language editor is to translate the textual representation into the
internal format of the scene, in such a way as to allow a change in this internal format to be
mapped back into a textual change. This type of problem arises in other types of multiple-
representation editing systems, some of which are described at the end of this chapter.

The Ensemble system contains fairly sophisticated facilities for handling general program
editing, including incremental lexical analysis, parsing, and semantic analysis. This is es-
pecially useful for languages that have a complex structure, like C++ or Ada. The Asgard
animation language, however, is relatively simple, and easy to parse and format. It is more
important for a system like Asgard to give the user feedback on particular parameters and
tokens that are directly tied to the graphical state than to provide assistance for ensuring
syntactic and semantic correctness.

There are two main types of functionality that we wish to provide. First, we must
perform incremental change analysis { when a new version of an animation description
has been completed, either from scratch or by modifying an existing one, we must �nd
out what elements have been added, deleted, and modi�ed, and use this information to
update the internal scene representation. Second, we must be able to identify and modify
language elements when the underlying database objects have been changed by the user,
either graphically or textually.

The key to performing these two functions is being able to perform reverse mapping from
internal objects to their textual representations. For some types of objects, this is relatively
straightforward, because they are identi�ed by a unique name, and this makes it easy to �nd
them in the text stream. For others, such as forces and links, this is not the case, and we
must resort to more complex and less elegant strategies to locate the textual descriptions.
Asgard relies on certain features of the Tk text widget for this: it attaches tags to places in
the text where the non-named elements are de�ned, and then keeps track of the lines that it
is currently executing while it evaluates the text, so that it can go back and �gure out which
tag is attached to the line being evaluated, and thus which element de�nition is being read.

Another possibility, which was used in an earlier version of Asgard, is to require every
command that corresponds to an element of the database to be of the form

element type name options : : :

Even elements that are never referenced elsewhere in the language by their names, such

48

as forces, would have to be given names. This had some advantages, such as more robust
identi�cation of places where elements are unchanged, but the requirement that everything
have a unique name given by the user was judged to be too onerous.

Once the reverse mapping analysis is done, Asgard can then make the appropriate changes
to the internal state of the graphical viewers and the simulation modules. In the case of the
motion simulation subsystem, an additional level of incremental analysis must be performed
to determine what motion needs to be recalculated { this is described in Chapter 5.

While the process of parsing is taking place, the system also remembers the textual posi-
tions of certain language elements such as the values for the initial positions and orientations
of objects. These values are tagged in the textual stream using Tk text widget tags, and
are highlighted to aid in the clarity of presentation. The tags are saved with the internal
representation of the scene, and can be used to modify the textual values when they are
changed graphically. This is done using an event-based model that relies on the Tcl variable
trace facility.

Another problem is one that arises in manymultiple-representation editing systems { that
of one-to-many mappings between formal language elements and graphical objects. Part of
the power of a formal language is that one can create objects procedurally, for example inside
of a loop. For example, one might create four boxes using a command like:

foreach i {10 20 30 40} {

instance obj_$i box -init_pos "$i 0 0"

}

In general, there is no reasonable way for the system to identify a parameter that corresponds
to the initial position of object obj 10, which could be modi�ed when that object is moved.

We handle cases like this by keeping track of the number of elements created by any one
command in the text stream. If this number is more than one, it is not safe to modify the
parameters of the elements graphically, since this would interfere with the other elements
that came from the same command. In the above example, if the user tries to graphically
modify obj 10, it is ambiguous what should happen to the text, and it is a di�cult problem
even to identify the reasonable choices and ask the user which is desired. For this reason,
graphical editing is not possible for such objects.

Additionally, when an object is de�ned with a string literal, but the position and orien-
tation parameters are not coordinate values but rather are more complex descriptions such
as expressions, the parser will refuse to tag them and they will be marked as read-only for
the graphical viewer. The alternative, which is to replace the expressions with the literal
values, is probably not what the user wants.

Although this parsing scheme has only been described for instances and simple coordinate
parameters, it applies to all objects which can be edited graphically. The basic rule of thumb
is that something is safe to modify graphically if and only if it's easy to parse.

4.2.3 Errors

Tcl has a general mechanism for dealing with errors: any procedure can signal an error,
either by calling the error built-in function, if it is a Tcl procedure, or by returning an error

49

status, if it is implemented in C. When errors occur as the result of executing an Asgard
animation description, they may come from either source. Since the only indication of where
an error has occurred is a human-readable string, it is hard for a system such as the Asgard
language viewer to always show the user exactly where the error has occurred.

However, one can identify two types of errors that might take place during the evaluation
of an animation description. The �rst is a regular Tcl error that occurs outside of the
evaluation of an element de�nition, such as instance or force. An example of an error like
this would be a random line in the �le that causes an \unknown command" error. Not much
can be done about this besides presenting the user with a message window that contains the
error message.

The second type of error is one that occurs within the evaluation of an element de�nition.
A simple example is the line body b1 box -init pos, where there is no argument for the
-init pos option. The routine that implements the body procedure does a certain amount
of bookkeeping to determine whether this is a new or changed object, and at the point when
it actually creates or modi�es the body, it uses the catch function to trap any errors that
occur. In certain cases, as described above, it can �nd the text of the o�ending command in
the viewer and highlight it, so that the user can see where the error took place. If it cannot
�nd it, it uses the fallback method of just presenting the error message without a location
marker.

4.3 Performance

Another issue that arises when maintaining multiple representations is performance. When
the granularity of the editing changes recognized by the system is small, such as one keystroke,
or when the amount of update required to maintain the representation is large, such as simu-
lating the motion of a set of objects or parsing and evaluating an entire animation description,
it may not be possible to keep the representation up to date all the time.

In the case of Asgard, there are several places where e�ciency is important. One is in
the basic text editing functionality of the language viewer. If any signi�cant work were to
be done between each keystroke, such as analyzing the changes made, performance would
be an issue, but since the text is treated as simple text from an editing standpoint, and
only analyzed when the \Update" button is pressed, there is no problem. This is not just a
compromise to achieve acceptable e�ciency: while editing a description, the text may pass
through many stages that are not well-formed or not what the user wants, and any feedback
based on these invalid states would be a hindrance rather than a bene�t.

Another area where performance is a concern is during the parsing, semantic analysis, and
modi�cation of the internal database that takes place when the update function is invoked.
One would expect this to take at most a few seconds for a reasonable-sized scene description,
which turns out to be the case for the examples that Asgard has been used for until now.

Updating the graphical state when the database has changed is also fairly fast, at least for
the initial conditions, as is updating the language representation when the database changes
as a result of editing actions in other views. Updating the full motion of objects over all time
is the one type of activity that is potentially very time-consuming, and for this reason it is

50

only performed when the \Simulate" button on the control panel is pressed. This aspect of
the system is described further in Chapter 5.

4.4 Previous multiple representation work

To better understand the philosophy of the Asgard editing system, one should consider
similar editors for other types of documents. The multiple-representation paradigm was �rst
described by Chen and Harrison [30]. Since then, a number of systems have been designed
that allow textual documents to be created using both direct manipulation of a facsimile
of the �nal typeset output and language-based editing of a formal input language, some of
which are described below. Work has also been done in multiple-representation of graphics,
user interfaces, and musical notation. To my knowledge there has been no work before
Asgard in multiple representation animation editing.

4.4.1 Vortex

The Vortex system [29] provides two types of views onto documents written using the TEX
language [68] { a formatted view, which is the output of an incremental formatting program
based on TEX [87], and a language view that can be edited using a traditional text editor.
Whenever the user wants to update the formatted view after editing the language view, he
can give a command that causes the formatter to compare the di�erences between the old
version of the input �le and the new one. It then regenerates pages that have changed,
detecting when no further changes in the output are possible as a result of changes in the
input.

A number of lessons were learned from the design and implementation of Vortex. The
major problem encountered was the di�culty of analyzing descriptions written in TEX. Since
TEX is a macro-based language, it is very hard to determine what changes in the output a
given input change will induce. A functional document description language with no side-
e�ects or global variables would be ideal for such analysis, these are hard to design and
few exist [57]. Also, for interactive usage, a tightly coupled system is preferable to a looser
collection of cooperating programs, since there is a great deal of shared state that must be
maintained between the pieces of the system.

4.4.2 Lilac

The Lilac editor [22] is another multiple-view document editor, which is based on the ideas
used in Vortex. It provides two windows { a direct manipulation view similar to that of
FrameMaker [46], but with a stronger model of structured editing, and a language window,
which displays a formal description of the document structure and content. The language
view may be edited in a very constrained way, using the same sorts of commands that are
used for structured editing in the direct manipulation view.

Brooks notes that after using Lilac for some time, one �nds that the language view is
seldom if ever used. This is partly a result of the power of a good direct manipulation editor
{ most users of good editors like FrameMaker don't seem to miss having a language view.

51

Another factor may be the quality of the language description { Lilac's language seems to
be a literal representation of the internal data structures, and certainly not as editable as
LaTEX, for instance. Also, the usefulness of a language view is strongly dependent on the
nature of the medium { the structure of text is a lot easier to infer from its appearance than
the structure of an animated scene, input of textual information in a direct manner is much
more straightforward than most of the elements of an animation description (or perhaps we
have just been thinking about the problem longer).

4.4.3 Pan

The Pan system [8, 9] is a language editor that recognizes syntax and semantics, and performs
incremental parsing and consistency maintenance. Pan makes it possible to edit programs
and formal descriptions in a variety of languages at the same time. The syntax of a formal
language is described using Ladle [24], and the semantics is provided using a description
written in a logic programming language called Colander [8]. Internally, Pan maintains a
number of representations of the document, which include an abstract syntax tree repre-
sentation and a textual stream with references back to the syntax tree. The user is able to
edit the text stream using familiar text-editing commands, but can also use structure-editing
commands that refer to statements, expressions, and so forth.

4.4.4 User interface construction tools

Many direct-manipulation user interface mechanisms have been developed in the last few
years, for example XF [39] and NextStep [49]. Avrahami et al. [5] describe a system that
allows this kind of editing, along with language-based manipulation of the user interface
description. The direct manipulation view is not precisely the �nal form, since hints are
given to the designer about the nature of the widgets and the layout, so a third view is
provided that is not editable and shows the �nal interface exactly as it will appear to the
user.

Multiple-representation editing is especially useful for user interfaces, because most of the
work in designing an interface consists of formally specifying the behavior of the interface
objects, but one wants to use a direct-manipulation editor to describe the appearance of the
interface. It is equally inappropriate �rst to design an interface graphically and then edit
the generated code to put behavior in, and to program every aspect of the appearance of an
interface in a non-graphical programming language with a long compile-debug cycle, such as
Motif.

4.4.5 Graphics

A good example of multiple-representation graphics editing is ThingLab [20], a system that
uses constraints for enforcing relations between elements in pictures. For example, one
might de�ne a square using a constraint that the sides of a �gure must have the same
length, and the angles between them must be 90�. Then whenever one side of the square
is moved, the other sides move appropriately to maintain the constraints. This example

52

is underconstrained, since many changes could satisfy it, but the system only guarantees a
correct solution, rather than the \best" one.

ThingLab is written in SmallTalk, and constraints are described textually in a SmallTalk-
like format. Objects are de�ned in this language, and they are also displayed graphically.
The user has the option of editing the language description or the graphical view, but some
operations, such as constraint de�nition, can only be performed textually. For example,
constraints cannot be de�ned graphically but must be described textually. This is similar to
the restriction in Asgard that force expressions can only be edited in a language viewer.

Another system that combined direct-manipulation graphical editing with language-
based editing is Juno [82]. This system, like ThingLab and Sketchpad [112] before it, uses
algebraic constraints to express geometric relationships. As the graphical representation is
edited, the language description is also updated, but unlike Asgard, the language used is
declarative rather than procedural, using guarded commands to express relationships.

4.4.6 Music editing

Multiple representation editing has also been used for the creation of musical scores. One
such system is Arugula [80]. It provides specialized editors for di�erent parts of the musical
editing process, such as the design of tuning systems. Among the mechanisms it uses is a
constraint solution system that was part of an earlier version of Ensemble [31]. Rhythm is
also speci�able using an editor which allows adaptive subdivision of time intervals.

Music is also a good candidate for multiple-representation editing, since the usual rep-
resentations used while a piece is being created are graphical and very formal, although
the �nal output is a di�erent medium altogether: sound. Because any visual or textual
representation of music must be a signi�cant abstraction, one might conclude that di�erent
abstractions probably work better for di�erent tasks, which can be seen from the wide variety
of musical notations that have been used in the past. Allowing a composer to use multiple
di�erent representations simultaneously is a major advantage.

The principle that the further the representations of a piece are from the �nal form, the
more useful multiple-representation editing becomes, is applicable to other non-graphical
media such as dance [25], which has a great deal in common with both music and animation.

53

Chapter 5

Motion simulation

The core of any animation system is the motion simulation algorithm that it uses to transform
the user's speci�cations into detailed motion paths for the objects in a scene. For keyframe
animation systems, where the position and other state variables are given for particular
points in time, this algorithm must interpolate between these points to determine the full
paths. For physically-based animation systems, however, motion simulation is much more
involved, since the movement of the objects is a result of the physical laws that apply to the
scene.

The physical model that Asgard presents to the user is described in Chapter 3. This
chapter will �rst describe the primitives that are used by the motion simulation code and how
the user-level elements are mapped onto it. Then the manner in which the resulting system
of di�erential equations is handled will be discussed, with special attention to the problems
speci�c to interactive animation and how Asgard addresses them. Finally, a description will
be given of other alternatives for motion simulation, and they will be compared to Asgard's
approach.

5.1 Problem formulation and primitives

The model of the animated scene that Asgard presents to the user is in terms of high level
concepts: rigid bodies with user-speci�ed shapes, forces, links, and constraints. At the lowest
level, however, the primitives are di�erential equations and piecewise-linear functions of time,
and the high-level concepts must be mapped into these primitives. This section describes
how this mapping is performed.

5.1.1 Objects and forces

Articulated bodies are composed of components, which are rigid bodies, connected by links.
A link can be thought of as a connection between a point on one component and a point
on another. For the rest of this chapter, the term \object" will be used to refer to these
components, since internally all the components of a body are treated as separate entities,
except for the purpose of collision detection.

54

X

Z

Y

Y rot

X rot
Z rot

Figure 5.1: Degrees of Freedom of a Rigid Body

Each object has six degrees of freedom { three of position and three of rotation, about
each coordinate axis, as shown in Figure 5.1. These degrees of freedom are determined by
second order ordinary di�erential equations, according to Newton's Second Law of Motion:
~F = m~a. For the positional components, one simply adds up the forces, in each of the X-,
Y-, and Z-directions, and divides by the mass to get the acceleration in that direction. For
the rotational components, one must add up the torques about each axis and divide by the
appropriate component of the moment of inertia to get the rotational acceleration.

In the case of linear forces that are applied to points in the object that are not the center
of mass, a torque is induced. This torque is given by the expression ~F �

~d, where ~F is the
force vector and ~d is the vector from the center of mass to the point of application. The
direction of this vector is the axis about which the torque is applied and the magnitude
is the magnitude of the torque. It is straightforward to extract the components about the
coordinate axes from this formulation. A con�guration with a number of forces, including
links that induce forces away from the center of mass, is shown in Figure 5.2. In this diagram,
there are two links and gravitational forces on both objects. The forces and torques that act
on the objects are illustrated.

Also, torques that are applied to axes that do not pass through the center of mass of
the object give rise to linear forces. If a torque ~T is applied about an axis ~A, which has
displacement ~d from the center of mass (that is, if the center of mass is ~M and the point

on ~A that is nearest to ~M is ~P , then ~d = ~P �
~M), then the linear force induced by this

torque is ~F = ~d� ~T . Figure 5.3 illustrates both this case and the o�-center linear force case.
Asgard automatically computes the correct forces and torques for these situations, although
the o�-center torque case is rare.

Instead of trying to solve a system of second order equations directly, we turn each

55

Upper spring

Gravity

Lower spring

Gravity

Lower spring

(No forces)

Figure 5.2: Con�guration of Objects and Forces

F
d

T = F x d

Linear force inducing
 a torque

Center of mass

d

T

F = d x T

Torque inducing
 a linear force

Point of
application

Figure 5.3: O�-center Forces and Torques

56

equation into a pair of �rst order equations. For every equation of the form

d2xi

dt2
= F (t; x0; x1; : : : ; xn;

dx0

dt
;
dx1

dt
; : : : ;

dxn

dt
)

where the xi are all the state variables in the system of equations, we can write

dx0i
dt

= F (t; x0; x1; : : : ; xn; x
0

0
; x0

1
; : : : ; x0n)

dxi

dt
= x0i

with the variables x0i representing the linear and angular velocities of the objects. There are
two reasons for doing this. First, algorithms for numerically integrating �rst order systems
of equations are better known and simpler that those for higher-order equations. Second, the
initial conditions and trajectories that the user can specify for objects are position, orienta-
tion, linear velocity, and rotational velocity, which correspond to the �rst order equations.
The transformation from second to �rst order equations is performed symbolically by Asgard
during the preprocessing phase of motion simulation.

5.1.2 Links

Links can be de�ned either between points on two objects or between a point on an object
and a point in space. The link constrains the points to be coincident, or more accurately,
exerts a force that pulls the points together when they get too far apart. There are many
ways to implement such constraints. One class of of constraints is \hard", in the sense of
not allowing any violation whatsoever. Some of these techniques are described in Chapter 2.
Asgard uses \soft" constraints, which are fairly simple and exible, and serve most animation
applications well enough.

Links are implemented by springs that are critically damped: that is, there is a friction
term calculated to maximize the speed that the spring returns to its rest position without
oscillating. This term is computed using the mass of the object being attached. It turns out
that in many cases the e�ective mass will be di�erent because other objects or forces may
act on the object, and this will cause the spring to be underdamped, but as long as there
is some damping term, numerical instability will not result. Other types of soft constraints
could easily have been implemented, but there did not seem to be a need for them, and in
any case the animator could easily de�ne explicit forces to obtain them if necessary.

Each link is implemented by either one or two forces, depending on whether it is object-
to-point or object-to-object. They are given by ~F = �k~x + 2

p
k �md~x

dt
, where ~F is the

restoring force, k is the \tightness" value, which can be given by the user as a parameter to
the link statement, ~x is the di�erence between the two points, and 2

p
k �m is the damping

term. The sign of ~x is de�ned so that the force on each object will pull it towards the point
on the other object, or towards the point in space. This ~x term can be very complicated {
the coordinates of a point on an object as a function of time depend on the position and
rotation in a non-linear way, since there are transformation matrices involved that contain

57

a) At rest b) Subject to strong force

force

Interpenetration
ignored at joint

c) Segments rotated

Small
separation,
dependent
on spring
constant

Figure 5.4: Joints Between Components

sine and cosine terms. Also, in the case of object-to-point constraints, the point can be an
arbitrary expression or a trajectory.

Given a link de�nition, Asgard computes the forces that implement the link symbolically,
and then adds them to the force lists of the appropriate objects. These forces are generally
not applied to the centers of mass of the objects, so torques are also created. For a moder-
ately complex object that has �ve or six links attached to it, the force expressions can be
several pages long, and compiling several such expressions takes a few minutes on a Sparc2
workstation. However, once they are compiled and loaded, the evaluation overhead becomes
very reasonable. This compilation is only necessary when the forces themselves change, so
when other objects are edited in the scene, or modi�cations are made to the relevant objects
that do not invalidate the force expressions, no preprocessing overhead is required when the
scene is incrementally resimulated.

Figure 5.4 shows two components of a single articulated body, under three conditions.
At rest, the ends of the joints are coincident, since the rest length of the link spring is
zero. If a strong force is applied to one or both components, they separate a small but
sometimes noticeable amount, which depends on the tightness of the spring. If the joint
bends, interpenetration of the components around the point of the link connection is allowed,
since the collision detection algorithm treats these components as one object.

58

5.1.3 State variables and trajectories

There are two places where Asgard needs to represent spatial values, either positions or
velocities, as functions of time. These are the representation of the state variables of objects,
and the representation of trajectories.

For state variables, Asgard uses a piecewise-linear representation { points that are com-
puted by the solution mechanism are stored for each time, and values are linearly interpolated
in between. The reason that linear interpolation is used, as opposed to splines or other poly-
nomials, is that the integration method uses linear extrapolation to compute the values of
variables at each time step, using their values at the previous step. This method is currently
trapezoidal integration, but many other methods also treat the functions as piecewise-linear,
and calculate error tolerances based on this approximation. If we used a di�erent scheme
for playing back the motion, we would have no guarantee that the visible error would be
within the tolerance used by the solution algorithm { for example, if spline curves were used
for playback while piecewise linear functions were assumed by the integration module when
computing the numerical error, the displayed motion would not be the same as the computed
motion.

State variables are represented as lists of oating-point values. A time scale is attached
to each variable, which makes it possible to look up values by time and to interpolate values
that are between time points. This is important because in order to calculate the value of
one variable at time t, we may need to get the value at t of a di�erent variable that doesn't
share the same time scale.

For trajectories, we use B�ezier curves. The important consideration here is that the
curves be easy for users to edit. B�ezier curves are exible and familiar to most users, and
are in common use in many graphics utilities. The implementation of trajectories is hidden
from the rest of the system, as is that of state variables { the primary interface in both cases
takes a time value and returns the function value at that point.

Attaching trajectories to objects is a bit tricky, since a number of trajectories may control
the same state value over di�erent intervals of time, and there may be intervals where
no trajectory is active. The motion simulation algorithm does two things to deal with
trajectories. First, it ignores the computed values for the constrained state variables and
instead uses the values determined by the trajectories whenever they are required. Second,
it avoids taking steps past points in time where new trajectories come into e�ect. When
such a point is encountered, the system must reset the simulated time to that point and then
continue, using the trajectory value rather than the computed value.

Figure 5.5 shows an example of this process in one dimension: the X axis is time and the Y
axis is the spatial coordinate. The solid curve is the trajectory, which is de�ned for a limited
interval, and the dotted curve is the path of the object as seen by the di�erential equation
solver. The line at the bottom shows the timesteps that the solver would like to take. Since
the trajectory ends at t0

2
, it takes a step from t1 to t02 instead of to t2, and continues from there.

After t0
2
, the value is determined by the physical laws, and the velocity is set to the derivative

of the trajectory at t0
2
, so the coordinate continues to increase linearly { in this example there

are no forces acting on the object. When the time reaches t0
4
, another trajectory comes into

e�ect, and the timestep is reset, similarly to before. There is a discontinuity at this point,

59

Time

P
os

iti
on

t t t2 3 4 4 t 5t 0 1 2tt’ t’

First trajectory
Second trajectory

Path of object

steps not takensteps taken

Figure 5.5: Dealing with Trajectories during motion simulation

but this is unavoidable unless we somehow look ahead and perform a smooth transition.
This type of trajectory blending is done in some of the more powerful kinematics-based
systems [96], but was not implemented in Asgard { since dynamics is available, a more
complex trajectory that required such blending could be de�ned by attaching the trajectory
to the endpoint of a link rather than to the position directly.

Trajectories can also be used as values in expressions. When an expression containing a
trajectory is evaluated at a time outside of the interval over which the trajectory is de�ned,
its value is linearly extrapolated from the closest endpoint and the derivative of the curve
at that point. Other types of extrapolation are possible but linear seems to be the most
straightforward.

5.2 Di�erential equation solution

The basic operation of the motion simulation process consists of numerically integrating
the state equations, which determine the values of the state variables, over the time period
of interest. These equations may contain references to any state variables of objects in
the scene, and also to the independent time variable t. They may also contain trajectory
references, which are treated as \black box" functions of time.

The techniques available for solving systems of ordinary di�erential equations, or ODE's,
can be classi�ed as either explicit or implicit [95]. An explicit method uses only the values
at the current time point to extrapolate the values at the next time point. Examples of
explicit methods are Forward Euler or Runge-Kutta. Implicit methods, on the other hand,
solve expressions that contain the values at both the current and the next time points; they
are implicit in that one cannot solve for one unknown at a time in terms of known values.
One must perform a matrix inversion to solve for all the new values at once. Examples of
implicit methods are Backward Euler and Trapezoidal.

In physics applications and motion simulation, explicit methods such as Runge-Kutta
are common, whereas in circuit simulation, implicit ones such as the trapezoidal method
predominate. Asgard uses the latter, because of its better stability and because it requires

60

fewer evaluations of the functions per timestep { an Nth-order Runge-Kutta method requires
N times as many evaluations as does the trapezoidal method, with the most common and
best value of N being four [95]. This is important when the equations are fairly complex and
di�cult to evaluate. Runge-Kutta has the advantage of not requiring a matrix inversion, but
as we shall see, the decomposition algorithm used by Asgard makes this less of a concern.
To a �rst approximation, however, the choice of integration method does not a�ect the
algorithms described below.

Another distinction that can be made between ODE techniques is that between direct
methods and relaxation-based methods. To understand this di�erence, one must consider
the basic structure of an ODE solution algorithm.

A direct method can be written as a set of three nested loops:

integrate time from start to finish

linearize system at the current time

solve the matrix obtained by the linearization

The integration is performed using an implicit or explicit method, as described above. The
linearization is done by an approximation method such as Newton-Raphson iteration { this is
what gives rise to the piecewise-linear nature of the computed trajectory. Methods also exist
that make polynomial approximations to the curve, using mechanisms similar to Newton-
Raphson. The matrix solution is required because the linearization produces a system of
simultaneous linear equations: the variables are the values of the functions at the next time
point. If the integration method is explicit, then every variable is a function of known values,
at the previous time point, so no matrix inversion is necessary. In this case only two loops
are required.

A relaxation-based method, on the other hand, performs the operations of integration, lin-
earization, and matrix inversion somewhat di�erently. For example, waveform relaxation [72]
can be written as:

repeat until all functions of time converge

integrate each function from start to finish

The e�ect of this algorithm is to bring the iterative approximation outside of the integra-
tion and integrate each function independently, using a separate time scale. This improves
performance for the same reason that the partitioning scheme described below does: each
function is integrated independently and not constrained by the time steps required by the
others.

Asgard uses the direct method approach, and does integration using the trapezoidal
method. The value of the state vector ~S at time step n is related to its value at step n� 1
by the equation

~Sn � ~Sn�1

h
=

~F (Sn) + ~F (Sn�1)

2
;

where ~F is the state equation and h is the timestep, i.e., tn � tn�1. This is illustrated in
Figure 5.6: the shaded area represents the contribution to the integral of the region of the
function between times t1 and t2.

61

Time

F
un

ct
io

n
va

lu
e Actual function

 value

Approximated
 value

Integration timesteps

t t t0 1 2

1 2

Area under curve
between t and t

Figure 5.6: Trapezoidal Integration

In order to determine the state values at time tn, we must solve the equation given above.
It is generally non-linear, so Newton-Raphson iteration is used to �nd the solution, at each
step approximating the equations by a line and calculating the X-intercept point. If the
starting point is too far from the �nal solution, this process may not converge. The value
from the previous timestep provides an initial guess, so if the timestep is not too big and
the function is well-behaved (the derivative is continuous and bounded), we will obtain an
accurate result. A more detailed discussion of this issue is given in Press et al. [95].

In order to obtain good performance, we use adaptive timestep control [95, 56]. If the
iteration at a particular timestep fails to converge, we decrease the value of h, which means
that we take a shorter step, and try again. This is done because in a shorter time period
it is likely that the shape of the function over that interval will probably be more nearly
linear, and will thus be more likely to converge. Also, if the system takes a large number
of iterations, we decrease h for the next step, making the assumption that the variables are
changing rapidly and thus require shorter steps to track them accurately. On the other hand,
if it converges in a small number of iterations, we can increase h, so that we will �nish the
integration with fewer steps. This technique is essential for applications where the simulation
routine does not know a priori what the numerical characteristics of the system will be, and
does not want to assume the worst case. There is no good rule for calculating how much
to increase of decrease h by, at least for trapezoidal integration, so we use a factor of 2 for
simplicity.

Since ~F is a vector function, solving the linearized version involves inverting a matrix,
or the equivalent, LU-decomposition[70]. This matrix has one row and one column for each
equation in the system, and there are twelve equations per object component. This is an
O(n3) operation, although with the use of sparse matrices its complexity can be reduced to
approximately O(n1:6) [70].

This solution process is reasonably robust and e�cient for many applications. However,
there are two sources of ine�ciency when there are many bodies to simulate. The �rst is
that di�erent parts of the system may require di�erent timesteps at di�erent points in the

62

10 100 1000 10000

Time constant ratio

100

1000

10000

100000

R
un

ti
m

e
(s

ec
on

ds
)

Combined runtime
Separate runtime

Problem Combined Separate

Size Runtime Runtime

1 9.8 28.1

2 15.4 31.3

4 27.13 45.69

8 63.98 191.33

16 111.35 318.1

32 254.8 438.58

64 561.45 619.4

128 1135.23 717.97

256 2413.65 1008.09

512 4012.84 1188.08

1024 7973 1377.82

2048 16533.41 1569

4096 31442.86 1724.75

8192 51723.62 1630.72

16384 141446.5 2285.36

32768 210514.11 2594.32

Figure 5.7: Performance decrease for di�erent time constants

integration, but since all the state variables are being calculated at once, we must take the
smallest timestep required by any variable and use it for the entire system.

Figure 5.7 shows what happens when several bodies are simulated together, and one
requires a much smaller timestep than the others. In each trial, several pendulums were
simulated for 10 seconds, but one was given a much larger \gravity" value to make it swing
faster and thus require a smaller timestep. The time it takes to make one oscillation is called
the time constant, and is proportional to the required value of the timestep h. The runtime
is plotted against the ratio of this small timestep to the one required by the rest. The upper
graph shows performance when the objects are simulated together, and the lower one shows
the sum of their runtimes when they are simulated separately. As one would expect, the
runtime of the �rst case is proportional to the product of the size of the system and the
fastest time constant of any equation, but in the second case it is proportional to the sum
of these values.

For small time constant ratios, it is a bit faster to simulate all the objects together
because of the lower overhead. However, as the ratio between the desired timesteps increases,
one would like to be able to simulate them separately. In the current implementation the
crossover point is about a factor of 100, but this could probably be lowered by careful
optimization of the code.

The second problem with using implicit methods is that putting all the equations together
in one system, building an n � n matrix, where n is proportional to the number of objects
in the scene, and then inverting this matrix does not scale well. In general, the matrix could
be re-ordered so as to be block-diagonal, and each block could be solved separately, but the
technique described below obtains this e�ect more conveniently.

63

X

DX

DY

Y

DX

X

Y

DY

Strongly
connected
components

Inter−component dependencies

Intra−component dependencies

c) The partitioned state graph.

Object 1 Object 2

X

DX

DY

Y

DX

X

Y

DY

b) The state graph.

Object 1 Object 2

Force that acts only
in the X direction

a) The objects.

Y

X

Figure 5.8: Example of a State Variable Reference Graph

5.2.1 Partitioning

The most obvious way to deal with the two problems stated above, the inexibility of
timesteps and the more than linear growth in matrix inversion complexity, is to somehow
partition the system of equations into components that can be solved independently, in a par-
ticular partial order. A number of circuit simulation systems, such as Splice [100], perform
this kind of partitioning.

When separating the system into components, there are two conditions we must satisfy.
First, equations that depend on one another should be in the same component. Second,
equations that do not participate in a circular dependency should be in separate components.

If we consider the system to be a directed graph, with the nodes being equations and the
arcs being state variable references, what we want to do is identify the strongly connected
components { that is, the segments of the graph with circular dependencies. Asgard uses
Tarjan's algorithm [102] to do this. We can then identify the dependencies remaining between
the components, which will form a directed acyclic graph. An example of such a graph is
shown in Figure 5.8. Part (a) shows a very simple model: two objects with a mutually
attractive force that acts only in the X direction, depends on distance, and is applied to
the centers of mass. Part (b) shows a section of the state graph. The arrows point in the
direction of data ow: since the value of the dx variable is used in computing the value of
x, the arrow points from dx to x. Since the forces in the X direction depend on the position
of the other object, there is a cycle in that part of the state graph. The Y components
do not depend on each other. The rest of the graph, which includes the Z components
and the rotational components, is similar to the Y section. Part (c) of the �gure shows
the partitioned state graph. Intra-component dependencies do not concern us at this point,
but the inter-component dependencies induce a partial ordering on the components, which
constrains the order in which we can solve them.

Relative to the other phases of motion simulation, building the state graph is very e�-
cient, and is of complexity linear in the number of terms in the equations.

A body segment that is not connected to any other by forces or links will yield twelve

64

Time
Time

a) Adaptive timesteps without partitioning b) Adaptive timesteps with partitioning

State
Variable
Value

State
Variable
Value

Figure 5.9: Integration Strategy

components, one for each state equation. However, a body with more than one connected
segment will in general produce one large component, because the forces and torques induced
by the o�-center link forces generally involve all the state variables. If the link points coincide
with any of the principle axes of inertia, there will be a few extra components, because of
the simpler structure of the rotational state equations for those coordinates.

The solution process must be done in an order that is an extension of the partial ordering
induced by the inter-component dependencies. If this were not the case, data would not be
available for some components when they require it. Other than this requirement, the precise
total order does not matter.

Each component has its own timestep, which can adapt to the particular characteristics
of the equations therein. If there are k bodies, the runtime complexity decreases from
O(k3) to O(k), since the size of the components, and thus the matrices to be inverted, is
constant. Clearly, such decomposition is essential if the solution process is to scale well. The
\Separate" data in Figure 5.7 was actually obtained by partitioning the system of equations
for the pendulums.

Figure 5.9 illustrates the advantage of this technique. In case (a), both functions are in
one component and must take the same timesteps. In case (b), they are separate and can
take the timesteps that are best for each one. The total runtime depends more than linearly
on the number of times each function takes a step, so case (b) is clearly better.

5.2.2 Collision detection and response

In order to perform the partitioning process described above, one must know the structure of
the equations of motion in advance. However, when collisions are possible, some interactions
between bodies cannot be predicted until the actual motion is calculated. As soon as the
motions of two objects become known over a particular time interval, Asgard checks to see
if they have collided. If they have, transient reaction forces are introduced that push the
bodies apart in the correct manner.

The problem here is that if we have partitioned the system and solved it in what was
the correct dependency order with no collisions, a collision may invalidate earlier results.
In general, there is no way to predict a priori which objects will collide before doing the
simulation, so we cannot take this into account in the partitioning phase of the solution.

One possibility is to do the simulation as described above, and whenever a collision

65

invalidates previously computed data, simply recompute it. This will yield correct results,
but if the simulation interval is long and there are many collisions, this will result in a great
deal of wasted computation.

5.2.3 Event-driven solution

Asgard handles the problem of collisions interfering with the partitioned solution process by
changing the order in which the di�erent components perform simulation timesteps. Instead
of picking a total ordering and then solving the components entirely one after the other,
it solves them in an interleaved fashion, with the goal of keeping the upper limit of the
calculated time as synchronized as possible between the components.

Conceptually, we are allowed to solve the components in any order, subject to the follow-
ing constraint: to solve component Ci over the time interval [tis; tif], for every component
Cj which Ci depends upon, Cj must have been solved at least to time tif . That is, if one
component depends on another one, the latter must have values de�ned for the entire inter-
val we are going to calculate. Otherwise we would have to extrapolate from the data that is
available, which will generally not be accurate.

Asgard is currently a sequential program, and the way it solves multiple systems of
equations concurrently is by using a priority queue: it takes a component o� the queue,
performs one integration step, and then puts it back on the queue if it is not �nished and
if the components it depends on have been solved far enough to permit it to take another
step.

The queue is ordered according to the last calculated time point of each component. At
any given stage, it is possible that many components are in the queue, which means they can
take a step. The maximum size of this next step is calculated at the end of the previous one,
so it is a simple matter to decide which ones can proceed. We always pick the one that is
furthest behind, in order to keep the entire system as well synchronized as possible without
sacri�cing performance.

Components are only added to the queue when they are eligible to take their next step.
Whenever a component C has been simulated for one step, we check all the components Ci

that depend on C and are not yet in the queue. Let tf be the sum of the current ending
time of Ci and its next timestep, which will be the ending time of Ci after it takes its next
step. If all the components Cj that Ci depends on now have a current ending time that is
at least tn, then Ci is put onto the queue, since the data it requires is now available. We
only check the Ci that directly depend on C, since these are the only ones which might be
a�ected by a change in the state of C.

It would be fairly easy to parallelize this algorithm, since the partial ordering that pro-
vides the constraints on concurrent solution is usually far from being a total ordering. The
degree of parallelism is quite dependent on the precise problem de�nition, but for typical
scenes, hundreds of components could proceed in parallel, and the major bottleneck would
probably be contention for the priority queue.

If a collision occurs at time t, we have to invalidate all results that were calculated based
on the assumption that such a collision did not occur. This is done by looking at each
component that contains state variables of either of the bodies that have collided, and if

66

Object 1

Object 2

Time

Object 3

{

{

a)
Object 1

Object 2

Time

Object 3

{

{

Collision between
 objects 1 and 2b)

Object 1

Object 2

Time

Object 3

{

{

Resume simulation
from new times

d)

Object 1

Object 2

Time

Object 3

{

{

c)
Reset affected
partitions to
collision time

Figure 5.10: Progression of Partitioned Calculation with a Collision

that component has been simulated to a point beyond time t, backing up the ending time
so that only the results up to t are retained. In certain cases we reset only some of the
components, if the collision force is perpendicular to one or more of the coordinate axes.

Furthermore, for every component C that we back up, we must also back up all compo-
nents that depend on C, and all components that contain state equations for objects that
have collided with objects that have state equations in C after time t. It is only necessary
to back up these components to the point of the �rst collision after t, however.

The basis task can therefore be described as follows: whenever data becomes invalid,
track down all other data that were computed using it and invalidate that data also.

After a component has been backed up, we must also check to see if it is still eligible
to remain in the queue. If it was backed up because of a collision that a�ected another
component that it depended on, which was also backed up, then it will have to be removed
from the queue, since data from the other component will no longer be valid for the interval
it requires. On the other hand, if it was backed up because it participated in a collision, and
it does not depend on another component that was also backed up, then it might remain in
the queue.

An example of this process is shown in Figure 5.10. Three objects are simulated, and for
the purposes of illustration we assume that objects 1 and 2 have two components, and object
3 has one. This could happen if the objects had more than one component, or were subject to
certain kinds of frictional force. In addition, the �rst component of object 1 has much smaller
timesteps than the other components. The tick marks on the bars represent timesteps, and
the length of the bar represents the amount of time simulated for that component.

Part (a) shows the state of the simulation before a collision takes place. In part (b), the
collision occurs. Note that we can only know about a collision when all components of the
participating objects are calculated up to that point. Part (c) shows the components being
reset to the collision time. In part (d), the simulation has begun again from the collision
point.

67

A few points should be noted here: �rst, after the collision, the current time is reset to
the collision time, and the timestep is reset to its initial, conservative value. This is because
a discontinuity has been introduced in the function values, and we do not know whether we
can continue taking a long time step. In either case, the system will automatically adapt to
the new conditions as the simulation progresses. Second, the last object does not participate
in the collision at all, so none of its data is lost.

The event-driven simulation algorithm can be more formally stated as follows:

Form equations from object descriptions and laws of physics

Partition system into connected components using Tarjan's algorithm

For each component C that does not depend on another

Insert C into priority queue

While priority queue is not empty

Remove component C from the front of the queue

Simulate C for one timestep

For each body segment B1 that has a state variable in C

Let t1 be the minimum ending time for state variables of B1

For each body segment B2 that might collide with B1 (see below)

Let t2 be the minimum ending time for state variables of B2

Let tf be the last time collision detection was done between B1 and B2

If tf < min(t1; t2), then

Check for collisions in the interval [tf ;min(t1; t2)]
If a collision has occurred at time tc, then

For each state variable v of B1 or B2

Let C be the component that contains v

Reset the ending time of C to be tc
Modify the velocities of B1 and B2 appropriately

For each component Ci that depends on C, and also for Ci = C

Let ti be the end of the next step Ci will take

If all components Cj that Ci depends on have an ending time >= ti,

and Ci is not in the queue,

and Ci has not reached the end of the simulation, then

Add Ci to the queue

When forming the set of body segments that might collide with a given segment, one
excludes segments that are part of the same articulated body. Also, one might use spatial
subdivision techniques such as quad-trees to further limit the search for collisions, although
this has not been implemented in Asgard.

The operation \reset the ending time of C to be tc" can be more formally described as
follows:

Truncate the state variables in C so that their last time value is at tc,

interpolating their values if necessary

For each component Ci that depends on C

Recursively reset the ending time of Ci to be tc
If C is in the queue, and for some Ci that C depends on, the ending time of Ci is now

68

less than the next ending time of C, then

Remove C from the queue

Of course, when we recursively reset ending times of components, we are careful to reset
each component only once for a given collision.

Remember that in the above discussion, a partition can depend on another in two ways:
via a state equation dependency, or via a collision involving objects in the components that
has taken place during the interval of interest. In both cases, dependence is transitive, which
is why the backing-up operation is recursive.

5.2.4 Performance

To test the performance of these three simulation techniques, we created a simple test scene
that consists of two pendulums and a ball that collides with one pendulum twice and the
other once. We ran this example in several ways.

1. Collisions are ignored, and a single component is used.

2. Collisions are ignored, and multiple components are used.

3. Collisions take place, and a single component is used.

4. Collisions take place, multiple components are used, and event-driven scheduling is
done.

5. Collisions take place, multiple components are used, but no event-driven scheduling is
done. That is, after a collision, each component is run to completion before the others
are dealt with.

In addition, we created a varying number of additional objects elsewhere in the scene which
serve to increase the size of the problem, but which happen not to participate in any collisions.
In a realistic scene there might be a large number of such objects. Figure 5.11 shows the
runtime for the �ve algorithms, plotted on a logarithmic scale as a function of the total
number of objects in the scene.

The adaptive case clearly outperforms the single-system case, especially when collisions
are taken into consideration. In the �rst two cases, the values are fairly similar, because
the time constants are not signi�cantly di�erent for the di�erent objects, as was the case in
Figure 5.7. The rest of the cases take more time, partly because of the overhead of checking
for collisions and partly because of the wasted computation that results from collisions
invalidating previously computed data.

One would expect the last case to be signi�cantly worse than the others, but how bad
it is really depends on how the components a�ect one another as a result of collisions. In
this example, since the majority of the objects aren't a�ected by the collisions, the wasted
computation becomes less signi�cant as the problem size increases.

69

1 10 100 1000 10000

Problem size

10

100

1000

10000

100000
R

un
ti

m
e

(s
ec

on
ds

)

1. Single, no collisions
2. Multiple, no collisions
3. Single, collisions
4. Multiple, collisions
5. Non-event, collisions

Figure 5.11: Graph of runtime for simulation algorithms

5.2.5 Interactive editing

In addition to correctly and e�ciently handling collision response, the event-driven algorithm
is ideal for interactive applications, where small changes are made to the scene description
and fast update of the results is necessary. A typical change might be to alter one or more
of the initial values for the state variables. Rather than invalidating the entire result set and
resimulating, we can simply reset those partitions that contain the altered state variables,
transitively reset the partitions that depend on them, via either the state equations or
collisions that have taken place, and rerun the simulation algorithm, retaining the rest of
the state variable trajectories. This has the e�ect of recomputing all data that is a�ected by
the change in initial conditions, but no more. This is the same as introducing a previously
unexpected collision at the start time.

5.3 Collision detection and response

Collision detection is the process of determining if and when a pair of objects collide, and
the location of the �rst point of penetration. Collision response is the modi�cation of the
motion of these objects in a physically correct manner.

There has been much work on collision detection in recent years. Canny [27] and
Moore [81] have both developed techniques for handling collisions between moving poly-
hedra. Bara� [16] and Pentland [90] have addressed this problem for curved surfaces, which
are signi�cantly harder to deal with than polyhedra, especially if they are concave and de-
formable. Typically, collision detection has taken up a large fraction of the time used for

70

Feature 1:
face

Feature 2:
vertex

Rectangular prism defined by face

Closest
point of
face to
vertex

(a) Condition for a face to be closest to a vertex:
 the vertex must lie within the rectangular prism
 defined by and perpendicular to the face.

Edges of
shape 2

Feature 1:
edge

Closest point
on edge to
vertex

Feature 2:
vertex

Triangular prism
defined by faces
adjacent to edge

(b) Condition for an edge to be closest to a vertex:
 the vertex must lie within the triangular prism
 whose sides are perpendicular to all four faces
 adjacent to the edge.

Figure 5.12: Closest feature conditions

motion simulation in animation systems.

5.3.1 The Lin-Canny algorithm

The basic collision detection algorithm that is used in Asgard was developed by Lin and
Canny [75, 74], and was reimplemented as part of the Asgard geometry subsystem, since
the original implementation was in Lisp. It is limited to convex polyhedra, which are one
of the two basic shape types used in Asgard. A simple extension is used for dealing with
the other shape type, which is spheres. One of the reasons for the limitation of the types of
shapes allowed for objects in Asgard was that collision detection for non-convex polyhedra
and curved objects is a very di�cult problem [81, 12].

This algorithm is fairly simple, yet e�cient { because of the aggressive use of prior
results, the runtime is only proportional to the speed of rotation of the objects relative to
one another. As a pre-processing step, Asgard �rst calculates the intervals of time during
which the bounding spheres for the objects are intersecting, and only runs the full algorithm
for these intervals. Spatial subdivision techniques such as oct-trees could also be used to
�lter out more collision checks, but this was not done in Asgard.

The Lin-Canny algorithm works by maintaining a record of the closest features between
every pair of objects. Features can be vertices, edges, or faces. For each pair of feature types,
there is a geometrical condition for a feature of this type on the �rst shape to be the nearest
one of that shape to the other feature. Figure 5.12 gives a few examples of these conditions.
There are a total of nine possibilities, but they are all similar to the ones pictured: each
feature type de�nes an open-ended region of space, any point in which is closest to that
feature.

The algorithm works by starting with a pair of initial features, one on each shape. It
then performs the appropriate geometrical test to see if they are the nearest pair. If they
are not, the test returns a pair of features that are closer. The pair is simple to determine

71

as part of the test. The process now iterates, using the new pair. Since the distance always
decreases, the iteration is bound to converge in time proportional to the sum of features on
the two objects.

At each time point the collision detection is performed, the initial feature pair is taken
to be the previous closest pair. If the objects are not rotating rapidly relatively to each
other, the closest features will tend to remain the same, and thus only one test will need to
be performed to compute them. The points at which we perform the test need not be the
same as the numerical integration time points, and in fact, Asgard uses information about
the speeds of the objects and their relative separation to determine lower bounds on the �rst
intersection time { this can help to avoid a lot of unnecessary tests.

Spheres are handled by treating them as points for the purposes of spatial region testing,
using the radius to determine the actual nearest point only after the other closest feature
is established. This works because the other objects are guaranteed to be convex, and if a
given point on such an object is the closest one to a point on the surface of a sphere, it will
also be the closest one to the center.

It is straightforward to determine if the shapes are intersecting while the closest pair
is being determined. If they are, then a collision has taken place somewhere between the
last intersection check and the current one. Given the previous and current distances and
times, we use a binary search to �nd the time at which the distance is zero, and the point
of collision. This information is then given to the collision response routine.

Since a given shape may be a union of polyhedra and spheres, to determine if two shapes
have intersected, we must test all pieces of the shape pairwise. In addition, since adjacent
components of a single articulated body should not be considered to have collided if they
interpenetrate, we do not perform these tests. The reason for this exception that in some
cases we are modeling a complex joint such as an elbow with a simple point-to-point con-
straint between the ends of two rods. On the other hand, in some cases we may want objects
to collide with themselves, as in the case of a chain that has many links. This is why the
collision check is only skipped if the objects are directly linked.

5.3.2 Collision response

Once the point and time of collision has been determined, it is relatively straightforward to
compute the correct reaction forces that push the objects apart in the correct way. Rather
than determining the actual force values, Asgard takes the shortcut of directly computing
the new velocities, and then substituting them for the old ones. This has a few advantages.
First, if the forces were computed and applied over a �nite duration, as actually happens
with physical objects that are not perfectly non-deformable, we would have to consider what
should be done when another collision happens during this interval. If the force is applied
instantaneously, we can just handle all collisions that take place at once one after another,
and the result comes out correctly even if one object collides with several others at the same
time. Second, a very short and strong force would cause the timestep of the simulation to
be reset to a very small value, which greatly decreases the simulation speed. Finally, the
equations for reaction forces are actually in terms of momentum rather than acceleration,
and it is simpler to avoid translating them into forces.

72

Object 2

Normal at point
of contact

Components of reaction force
perpendicular to normal: must
equal 0 for no work to be done

Point of
contact

(b) Collision between two vertices(a) Collision between a vertex and a face

Normal taken to be
the vector from one
vertex to the other

Object 2

Object 1

Object 1

Figure 5.13: Determining the direction of the reaction force

Computing the correct velocities after a collision is an exercise in �nding N equations
that completely determine N unknowns. The unknowns in this case are the velocities after
the collision, and there are 3 scalars for each object, which yield 6 total unknowns. The
known quantities are the values of the momentum for the two objects before the collision,
and the point of the collision. We also must know something about the geometry of the
objects at that point, as we will see below.

There are two physical laws that must be satis�ed by the calculation: the conservation of
momentum and the conservation of energy. If the collision is fully elastic, then this energy
is entirely kinetic energy. If it is not, then some proportion of the energy is dissipated as
heat, and the conservation equation is written with a scaling factor to take this into account.
Asgard treats all collisions as elastic, but this is not a signi�cant issue. A full discussion of
the physics involved can be found in any mechanics textbook, such as Goldstein [52]; what
follows is an outline of the principles used in Asgard.

The three components of the conservation equation are as follows:

v1im1 + v2im2 = v0
1im1 + v0

2im2

where the v values are the velocities before the collision, the v0 values are the velocities after,
the mj are the masses of the objects, and i = x; y; z. The equation for the conservation of
kinetic energy is:

m1

2
jv1j2 + m2

2
jv2j2 = m1

2
jv0

1
j2 + m2

2
jv0

2
j2

Together these equations provide 4 out of the 6 necessary to determine the resultant motion.
The other two equations must come from the geometry of the surfaces at the point of collision.

Because a reaction force must do no work, it follows that the direction of the force must be
perpendicular to the normal of the surface at the collision point. Figure 5.13 illustrates this

73

point. In case (a), the normal is de�ned by the normal of the face at the point of collision. If
the collision were an edge-face or a face-face collision, the normal can be similarly de�ned with
no ambiguity. In case (b), however, there is no surface normal, so we must pick something
plausible, such as the vector from one vertex to the other immediately before the collision.
This is not a physically possible case, since there is no such thing as an absolutely sharp
point in nature, but it does come up sometimes in simulations. The third case is that of
edge-edge collisions: in such a collision we use the plane de�ned by the two edges to obtain
the normal, unless the edges are parallel, in which case we must use a mechanism similar to
the vertex-vertex case to �nd one of the perpendicular directions.

Once we have a normal vector, we can write down two more equations. The dot product
of the reaction force with each of the perpendicular vectors, as shown in Figure 5.13(a), must
be zero. Given six equations in six unknowns, it is straightforward to �nd the new velocity
values. Except for the vertex-vertex and parallel edges cases, which are not physically
realistic, the resulting motion will be correct.

74

Chapter 6

Integration with Ensemble

Asgard was developed as part of the Ensemble project. One of the goals of Ensemble is
the seamless integration of di�erent media, including dynamic media such as animation, for
both viewing and editing purposes. Most of this dissertation has described Asgard as a
stand-alone system, which is appropriate since its user interface is specialized for the editing
of animation, rather than of general documents. This chapter briey describes the Ensemble
system, and then discusses in detail the interface between Asgard and Ensemble, both in
terms of what was implemented and what could be built on top of the basic framework
described here.

6.1 The Ensemble System

The Ensemble system is designed to allow the creation and editing of compound documents,
including structured media such as programs and reports. It has a powerful presentation
engine that can control the formatting and display of the document components in a variety of
styles, and can support multiple views of a single document, with di�erent sets of presentation
attributes. The presentation system is used by the Asgard medium in a rather minimal way.
From the point of view of the enclosing document, an Asgard subdocument is simply a
rectangular region, with opaque contents and internal structure { everything other than
placement and overall window size is managed by Asgard's presentation mechanisms.

Figure 6.1 shows the structure of an Ensemble document, including multiple presentations
and views. A document is composed of a tree of subdocuments, each of a particular medium,
such as \Text", \Graphics", or \Animation". These subdocuments may themselves be tree-
structured, but this is not required | Asgard subdocuments are treated by Ensemble as
single nodes. Each subdocument may have one or more presentations, which associate the
structural representation in the document with a visual or otherwise concrete representation.
This association may be mediated by a presentation schema, which is analogous to the \style
sheets" used by other document systems.

Views correspond on a one-to-one basis to top-level windows on the screen. A view
contains a representation of an entire document tree, with sections potentially elided. The
hierarchical structure of the overall document is mirrored in the view, with subdocuments
in the document corresponding to renditions in the view.

75

Document View

Renditions

X11

PostScript

 Sub−
documents

text

graphics

animation

Presentations

File representation

Output devices
Hello world...

Figure 6.1: Document structure in Ensemble

Finally, documents can be represented in a persistent storage format, such as a UNIX
�le. Ensemble currently uses a �le format similar to the Structured Graphical Markup Lan-
guage (SGML) [51] to encode structured multimedia documents for storage and interchange.
An alternative would be to use an object-oriented database such as Postgres [110] for this
purpose.

The minimal set of facilities that a mediummust provide in Ensemble is thus the follow-
ing:

1. Routines to read and write the storage representation.

2. An implementation of subdocument nodes of the medium.

3. One or more presentations, which may employ presentation schemas to determine
appearance.

4. An implementation of a rendition for each presentation type and for each output device.

Additionally, a mediummay also provide user-interface functions that can be used in the
editing or display of document components of that medium.

In the following section, the facilities that are provided for the integration of Asgard with
Ensemble are described in more detail.

6.2 The Asgard Medium

When Asgard animations are embedded in Ensemble documents, the Asgard process is run as
a slave to the Ensemble process, and handles all of the rendering and presentation, with the
exception of the sizing and location of the animation window, and much of the user-interface
functionality. The framework provided on the Ensemble side is thus fairly simple, and is also
generic enough to be applicable to other loosely-coupled media that may be incorporated
into Ensemble in the future. The components of this framework are as follows.

76

DOCUMENT CMEMO

<CMEMO>

<TO>{Whom it may concern}</TO>

<FROM>{Wayne}</FROM>

<SUBJECT>{Asgard within Ensemble}</SUBJECT>

<BODY>

<PARAGRAPH><DOCUMENT>

DOCUMENT ANIMATION

<ANIMATION>

<ASGARD>{

shape_set ss1 -desc \{-sub \{-pos \{0 0 0\} -sphere 0.5\}\}

body b2 -artbody 1 -shape ss1 -init_pos \{-1 0 0\} -init_dpos \{1 0 0\}

body b3 -artbody 1 -shape ss1 -init_pos \{1 0 0\} -init_dpos \{0 1 0\}

simulator -finish 3

}</ASGARD>

</ANIMATION>

</DOCUMENT></PARAGRAPH>

<PARAGRAPH><TEXT>{Thanks to Vance for putting this example together}</TEXT></PARAGRAPH>

</BODY>

</CMEMO>

Figure 6.2: A sample of an embedded Asgard scene in an Ensemble document

6.2.1 Storage representation management

Asgard subdocuments are represented in Ensemble document �les by simply embedding
the animation language description of the scene inside of special delimiters. Braces, which
are used for grouping by the Asgard language, are escaped since they have special meaning
to Ensemble. Figure 6.2 contains an example of a simple embedded Asgard scene within an
Ensemble document. The tokens <ASGARD> and </ASGARD> delimit the Asgard input.

6.2.2 Subdocument representation

The Asgard interface is structured so that for every animation component inside of an En-
semble document, there is one Asgard process that handles the scene. Multiple renditions
of this animation are managed by this process, rather than starting a separate process for
each one, since Asgard has facilities for managing multiple views of a single scene. For this
reason, the subdocument node is the locus of communication between Asgard and Ensemble.

When a new subdocument of the Asgard medium is created, a process is started and fed
the animation description that was obtained from the Ensemble �le. A UNIX pipe is set up to
provide a bidirectional control channel between the processes. Currently, the only data that
are sent from Asgard to Ensemble are window ID's for newly created animation renditions,
as described below, but other data and commands could easily be sent if necessary.

77

6.2.3 Presentations and renditions

The only work that the Asgard presentation must perform is to inform the containing doc-
ument node what size is desired for the animation window. Since Asgard has no built-in
notion of what kind of viewport should be used to display scenes,the presentation arbitrarily
selects a size for the window. A sophisticated layout presentation that manages the parent
document of the Asgard window could then modify this size as necessary to accommodate
the surrounding text and other media.

When an Asgard rendition is created for a new view of a document, it must send a
request to the Asgard process to create a new graphical viewer, using the communication
channel that is managed by the document object, and then embed this window inside of the
Ensemble window that is used for drawing the document.

Although Asgard's viewing window is a child of a window owned by Ensemble, it still
receives all the X events that it gets in stand-alone mode, which allows it to handle its own
redisplay and mouse interaction, including both viewing transformation control and some
editing operations.

6.2.4 User interface functionality

The user interface facilities presented by Asgard running under Ensemble can be grouped
into two categories. The �rst is the direct-manipulation viewing transformation control
described above, which is performed directly on the display window. Its implementation is
straightforward because it does not require any additional widgets or controls outside of the
viewing window. The second includes commands that are provided using such additional
widgets in the stand-alone mode of Asgard, and it is somewhat more problematic to make
them available within Ensemble, for a number of reasons.

First, it is not really permissible to embed the editing controls along with the viewing
window in an Ensemble document, since a reader would not need or want them to be visible,
and the basic principle of direct-manipulation editing is to minimize the gap between the
document as seen by the author and by the reader. Otherwise, it would be hard to judge
how the animation window appears in the context of surrounding material, for example.

Second, Asgard must share any available user-interface tool area, such as menu bars,
with the other media that are also present in the document. This limits the amount of
space that it can occupy much more than the looser constraints of stand-alone operation.
One possibility under consideration for Ensemble is to multiplex a medium-speci�c tool area
among all the subdocuments that are present in a document, and allow the one that currently
has the view's cursor to occupy this area.

Third, if there is more than one animated scene within a document, the system may have
to determine which one should receive user commands for that medium. For some types of
operations, one might determine this based on the location of the cursor, but for others that
are likely to be used in viewing, such as \Begin playback" and \Stop playback", it may not
be reasonable to expect the reader to place the cursor on the subdocument before invoking
the command, even if there is any sort of cursor present during viewing. One might restrict
the commands to act upon the scenes that are currently visible in the window, which is
certainly reasonable, but there may be more than one animation subdocument visible at

78

one time. Another possibility is to attach oating controls to each Asgard subdocument,
perhaps restricting them to locations away from the main viewing region.

The current solution used by the Asgard interface is rather minimal and does not address
any of these concerns. A special \Asgard" menu is provided along with the other view menus,
which applies to the �rst Asgard subdocument within the Ensemble document. This menu
contains three types of commands: playback time controls, commands to bring up full-edged
Asgard graphical and language viewers, and a small subset of the editing commands available
in the graphical editor. When additional viewers are created, they are naturally linked to
the view in the Ensemble document, so that modi�cations can be made and immediately
viewed in the context of the document.

The editing commands available from the Ensemble menu are currently limited to turning
on the position and velocity handles, which can then be used to modify initial conditions,
and a \Recompute motion" command, which has the same e�ect as the \Simulate" command
on the main Asgard control panel. They are provided mainly to illustrate the feasibility of
moving editing functionality from Asgard into Ensemble { this is very simple, partly because
Asgard is built on top of the Tcl language, and all of the high-level control is done using
textual strings.

These concerns apply generally to all dynamicmedia that can be embedded in multimedia
documents, such as sound and video. Currently, work is under way to integrate these media
with Ensemble, so these issues will be explored in more detail in the future.

6.3 Extensions to this interface

Most of the currently foreseeable extensions to the interface between Asgard and Ensemble
are in the area of enhancing Ensemble's handling of editing functionality for di�erent media,
as described above. Because the communication channel between the two systems is a text
stream, Tcl commands can be passed back and forth quite easily. In fact, it would be
very simple to use the Tk send primitive to communicate directly between the Ensemble
user interface code and Asgard, but that would be somewhat contrary to the spirit of the
architecture of Ensemble.

Another possibility would be to allow the user to embed Ensemble documents within
Asgard animated scenes. This would make animation a full-edged hierarchical medium
within the Ensemble multi-media system, since animation nodes would be able to contain
sub-document trees rather than just being leaf nodes as they are now. A number of in-
teresting questions would have to be answered: Would Asgard be responsible for applying
3-D transforms to the renditions of other media? How would time be synchronized between
di�erent levels of dynamic media, including animation, movies, and music? The architecture
required to support a system like this would be an interesting design problem.

79

Chapter 7

Conclusions and future work

This chapter will briey summarize the research described in this dissertation, and then
discuss some future directions for work in this and related areas.

7.0.1 Evaluation of the Asgard project

The major research contribution of the Asgard project is the application of the multiple-
representation editing paradigm to physically-based animation. Additional contributions
include some of the speci�c mechanisms used for graphical editing of particular entities,
such as objects and trajectories, the integration with the Ensemble multi-media system, and
the motion simulation algorithm described in Chapter 5.

The Asgard program itself was intended to be a prototype animation system that il-
lustrates these principles and algorithms. It has been used to make some simple animated
sequences, but was not intended to be a production-quality piece of software, with all the op-
tions and capabilities found in commercial products. In a more advanced system, kinematic
motion control would probably be emphasized to a greater extent than in Asgard, and the
dynamics functionality, which forms a large part of the complexity, would be less central.

However, a few lessons learned from the Asgard project should be kept in mind when
considering the design of any animation editor. First, the multiple-representation editing
paradigm is a powerful one, and for a variety of reasons is even more useful for media like
animation than the more traditional textual and graphical documents. This applies both
to physically-based animation, such as that produced by Asgard, and to constraint-based
and algorithm animation, which is provided by systems such as Macromind 3D [76] and
Balsa [23]. These systems all handle complex objects with complex external structure that
may be quite remote from the �nal appearance on the screen { this is a prime characteristic
of problems that can bene�t from multiple-representation facilities.

The second lesson that one can learn from the Asgard project is that for a dynamics-
based system, one of the major issues that should be considered early in the design is the
interaction between kinematics, dynamics, and possibly other forms of control and events
that take place in di�erent media. One of the issues that could be addressed in a follow-on
project to Asgard is the potential for handling interactions between objects in the animated
world and objects in the real world, and objects in other parts of the same compound

80

document that a given animated sequence is part of. The �rst type of interaction has been
explored by quite a few researchers, but mostly in the context of kinematic control rather
than dynamics. The second type of interaction has not been considered in the past, partly
because of a lack of a convincingly motivating example, but it seems likely that during the
course of the development of a multimedia system such as Ensemble, such examples would
naturally arise.

The third lesson is that for good performance of an editing system, incrementality must
be exploited whenever possible. In many cases it is easier to discard all previous results and
start from scratch than to determine what data can be kept and what is no longer valid,
but that kind of approach is more appropriate for a batch system than an interactive editor.
In the case of Asgard, the system bene�ted greatly from the fact that the same mechanism
that handled invalidation of data after a collision could be used for dealing with the e�ects
of editing changes performed by the user. This is not a result of any of the simpli�cations
that were made in the implementation of the system { it follows from the nature of collisions
in a physically-based system.

7.0.2 Future work

Physically-based animation is still a developing �eld, especially in the areas of user interfaces
and editing technology. The ideas used in Asgard suggest a number of directions for future
research, both in terms of editing and interface technology and in the underlying motion
simulation algorithms. A promising area for future development that has not been exten-
sively explored until now is the use of physically-based motion in simulated environments,
or \virtual reality".

Editing

Currently, Asgard interfaces with the Ensemble system in a somewhat ad-hoc manner, as
described in Chapter 6. A very useful project would be to provide a more general framework
for the integration of external media with the Ensemble system, which includes both editing
and viewing functionality. One could de�ne a set of mechanisms and an interface which
would be provided by Ensemble, that could be used by any medium. Ensemble would thus
act as a high-level manager, dealing with integration issues and allowing the individual
medium-speci�c editors to concentrate on issues speci�c to them.

The multiple-representation editing facilities provided by Asgard could be extended to
include additional functionality, such as �ner graphical control over positioning, lighting, and
forces. Since the power of language-based editing is only limited by what can be expressed in
the language, there will always be a way to create a given object, and as long as the language
is well-designed it should not be prohibitively inconvenient. However, as it becomes clear
that facilities are used frequently enough, graphical mechanisms should be implemented for
editing them whenever possible. The multiple-representation framework already in place,
which is discussed in Chapter 4, need not be extended, since it is general and can handle
any object types that can be described in the language.

81

Motion simulation

The collision detection algorithm described in Chapter 5 works very well for convex poly-
hedra, but it has a few problems, such as the di�culty of dynamically determining the
maximum allowable stepsize for collision tests, and is not easily generalizable to other types
of shapes, including concave and curved objects. Some researchers [81, 12] have developed
algorithms for curved surfaces, but these tend to be quite time-consuming and also di�cult
to generalize. Although the Lin-Canny algorithm is adequate for the objects that Asgard
currently supports, if the system were extended to handle more general object types, another
algorithm would be required. An algorithm that is currently under development that uses
recursive bounding spheres is intended to address these concerns.

The model of physics used by Asgard and most other motion simulation systems is known
as Newtonian dynamics { it uses a straightforward application of Newton's Second Law of
Motion: ~F = m~a. Constraints and conservation equations are all transformed into forces on
particular objects, which are then added up and solved. An alternative formulation, which
is known as Hamiltonian dynamics, uses constraints and conservation equations in a much
more direct way to reduce a system of equations to a subset that has no constraints, and
can be solved in a more straightforward way. Some dynamics systems use this or related
formulations [119, 2], and it would probably be worthwhile to investigate the use of such
formulations for the Asgard system.

Some researchers have investigated the use of optimization techniques, such as optimal
control [32] or quadratic programming [122] for controlling animation. These techniques are
useful because they take some of the burden of specifying detailed motion away from the
animator, but it can be di�cult to reconcile this with the degree of control that the animator
desires, and to provide adequate performance { optimization techniques can be very slow.
Providing incrementality in the context of optimization is another interesting problem {
because most techniques use an iterative approach, previous solutions can generally be used
as starting points for the new solution. Some projects such as the Virtual Erector Set [101]
have addressed this problem, but further work needs to be done.

Currently, Asgard is oriented towards the production of visually realistic motion, involv-
ing a relatively small number of potentially complex objects. A di�erent class of problems
involves large numbers of simple objects { particle systems [99] are an extreme example of
this. These problems occur both in engineering and scienti�c simulations and in animation
for visual purposes.

In a more production-oriented version of Asgard, more sophisticated graphical output
would be very useful. Currently, Asgard manages its own graphical database and handles
rendering in a device-transparent way, but more functionality and better rendering perfor-
mance could be obtained through the use of an object-oriented graphical database system,
such as IRIS inventor [107]. Such systems provide a high-level model of object appear-
ance which is much closer to that used by the Asgard language than the low-level graphical
primitives available in X11 or IRIS GL.

82

7.0.3 Simulated environments

Providing physical realism in simulated environments, or \virtual reality", poses a number
of very interesting problems. The major issue is real-time motion simulation { if objects do
not respond to forces immediately and move fairly smoothly, the illusion of reality will not
be maintained. Since this is a hard constraint, the only remaining parameter that can be
decreased if needed is the accuracy of the motion, and the problem that must be solved is
how to distribute this inaccuracy.

There are two e�ects of inaccuracy in motion simulation. The �rst is the immediate
appearance { if the user is looking at an object that is not moving correctly, it may be
obvious that this is the case. The second is the future motion path of the object. Unless
corrected, any deviations from the correct motion will have an e�ect on the future of the
system.

To take a somewhat contrived example, consider a user in a virtual basketball game. He
might shoot the ball at the basket, and watch it only long enough to decide that it will go in.
He might then turn to look at the other players, to see who is going for the rebound. If there
is too little computational power, the system must decide whether to allow inaccuracies in
the area that the player is viewing, or in the trajectory of the ball, where he is not viewing.
If it chooses the former, the scene will appear wrong to him, but if it chooses the latter, the
ball might not go into the basket, as it should.

Many other examples such as this can be constructed. In some ways, this problem resem-
bles the visibility and detail computations done by the Soda Hall architectural visualization
project at Berkeley [48] where great e�orts were made to avoid wasting resources rendering
objects that were not visible, or rendering objects at higher levels of detail than were nec-
essary, given their apparent size. Resource allocation in simulated environments is the same
problem in the temporal rather than the spatial domain.

Another set of issues arises when multiple users are interacting in a simulated environ-
ment. If all the computation is done by a single \motion simulation server", with per-user
clients handling only the rendering, then the case is fairly similar to the single-user case.
However, experience with text-based \virtual environment" systems such as IRC [38] and
MUD [108] suggests that distributed processing at all levels is necessary if the system is to
scale well. In a case like this, the questions that must be answered include:

� What is the best communication architecture for the kinds of interactions typically
found in distributed simulated environment applications?

� If interaction occurs between users or objects that are being handled by di�erent
servers, when is it better to allow one server to do all the computation, as opposed to
performing it in a distributed way?

� Should objects be allowed to \migrate" from one simulation engine to another? For
example, one body may come into close proximity with several others in succession,
and it may be worthwhile to do all the computation for that body's motion on the
same servers as each of the others, for a particular interval of time.

This list can only suggest some of the problems that would arise in a distributed simulated

83

environment system that handles physically-based motion. This seems to be a very promising
area for future research.

84

Bibliography

[1] Alias, Inc. Alias Animator. Product Information Sheet, March 1990.

[2] W. W. Armstrong. The dynamics of articulated rigid bodies for purposes of animation.
The Visual Computer Journal, 1:231{240, 1985.

[3] W. W. Armstrong, M. Green, and R. Lake. Near-real-time control of human �gure
models. In Proceedings, Graphics Interface Conference, pages 147{151, 1986.

[4] W. W. Armstrong and M. W. Green. Dynamics for animation of characters with
deformable surfaces. In Nadia Magnenat-Thalmann and Daniel Thalmann, editors,
Computer Generated Images: The State of the Art, pages 203{208. Springer-Verlag,
1985.

[5] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A two-view approach to
constructing user interfaces. In SIGGRAPH, pages 137{146, August 1989.

[6] N. I. Badler, J. D. Korein, J. U. Korein G. M. Radack, and L. S. Brotman. Positioning
and animating human �gures in a task-oriented environment. The Visual Computer
Journal, 1:212{220, 1985.

[7] Norman Badler. Animating human �gures: Perspectives and directions. In Proceedings,
Graphics Interface Conference, pages 115{120, 1986.

[8] Robert A. Ballance. Syntactic and Semantic Checking in Language-Based Editing
Systems. PhD thesis, University of California, Berkeley, CA 94720, December 1989.
Technical Report UCB/CSD 89/548.

[9] Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter. The Pan
language-based editing system for integrated development environments. In ACM
SIGSOFT Symposium on Software Development Environments, 1990.

[10] Robert A. Ballance and Michael L. Van De Vanter. Pan I: An introduction for users.
Technical Report UCB/CSD 88/410, University of California, Berkeley, CA 94720,
September 1987. PIPER Working Paper 87-5.

[11] David Bara�. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. In SIGGRAPH, pages 223{232, July 1989.

85

[12] David Bara�. Curved surfaces and coherence for non-penetrating rigid body simulation.
In SIGGRAPH, pages 19{28, August 1990.

[13] David Bara�. Coping with friction for non-penetrating rigid body simulation. In
SIGGRAPH, pages 31{40, July 1991.

[14] David Bara�. Dynamic Simulation of Non-penetrating Rigid Bodies. PhD thesis,
Computer Science Department, Cornell University, Ithaca, NY, March 1992. Technical
Report 92-1275.

[15] David Bara�. Personal correspondence, June 1993.

[16] David Bara� and Andrew Witkin. Dynamic simulation of non-penetrating exible
bodies. In SIGGRAPH, pages 303{308, July 1992.

[17] Eric A. Bier. Snap-Dragging: Interactive Geometric Design in Two and Three Dimen-
sions. PhD thesis, University of California, Berkeley, CA 94720, April 1988. Technical
Report UCB/CSD 88/416, also Xerox EDL 89-2.

[18] Eric Allen Bier. Skitters and jacks: Interactive 3d positioning tools. In Workshop in
Interactive 3D Graphics, Chapel Hill, NC, October 1986.

[19] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley,
Reading, MA, 1993.

[20] Alan Borning. Thinglab | A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, July 1979. Technical Report STAN-CS-79-746, also Xerox SSL-
79-3.

[21] Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel Kramer, and Michael
Woolf. Constraint hierarchies. In Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA), pages 48{60, October 1987.

[22] Kenneth P. Brooks. A Two-view Document Editor with User-de�nable Document
Structure. PhD thesis, Stanford University, May 1988. Also Digital SRC Research
Report 33, November 1, 1988.

[23] Marc H. Brown and Robert Sedgewick. A system for algorithm animation. In SIG-
GRAPH, pages 177{186, July 1984.

[24] Jacob Butcher. Ladle. Technical Report UCB/CSD 89/519, University of California,
Berkeley, CA 94720, November 1989. PIPER Working Paper 89-4.

[25] T. W. Calvert, C. Welman, S. Gaudet, and C. Lee. Composition of multiple �gure
sequences for dance and animation. In R. A. Earnshaw and B. Wyvill, editors, New
Advances in Computer Graphics, pages 245{255. Springer-Verlag, 1989.

86

[26] Tom Calvert. Composition of realistic animation sequences for multiple human �gures.
In Workshop on Mechanics, Control, and Animation of Articulated Figures. MIT Me-
dia Laboratory, April 1989.

[27] John Canny. Collision detection for moving polyhedra. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(2):200{209, March 1986.

[28] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in interactive 3d rotation
using 2d control devices. In SIGGRAPH, pages 121{129, 1988.

[29] Pehong Chen. A Multiple-Representation Paradigm for Document Development. PhD
thesis, University of California, Berkeley, CA 94720, July 1988. Technical Report
UCB/CSD 88/436.

[30] Pehong Chen and Michael A. Harrison. Multiple representation document develop-
ment. Computer, 21(1):15{31, January 1988.

[31] Wayne A. Christopher. Constraint-based document presentation. Technical Report
UCB/CSD 90/601, University of California, Berkeley, CA 94720, October 1990.

[32] Stephen J. Citron. Elements of Optimal Control. Holt, Rinehart and Winston, 1969.

[33] Geo�rey Clemm and Leon Osterweil. A mechanism for environment integration. ACM
Transactions on Programming Languages and Systems, 12(1):1{25, January 1990.

[34] Michael F. Cohen. Interactive spacetime control for animation. In SIGGRAPH, pages
293{302, July 1992.

[35] D. Brookshire Connor, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins,
Robert C. Zeleznik, and Andries van Dam. Three-dimensional widgets. In Symposium
on Interactive 3D Graphics, pages 183{188, June 1992.

[36] Control Data Corporation. ICEM MULCAD User Reference Manual, version 3.0.3.
Publication Number 60000649.

[37] Control Data Corporation. ICEM PCUBE User Reference Manual, version 3.1.1.
Publication Number 60000853.

[38] Helen T. Rose Davis. IRC Frequently Asked Questions (FAQ) list. Periodic posting
to Usenet newsgroup alt.irc, November 1993.

[39] Sven Delmas. XF: Design and Implementation of a Programming Environment for
Interactive Construction of Graphical User Interfaces. Techniche Universit�at Berlin,
Institute f�ur Angewandte Informatik, 1993.

[40] G. J. Edwards. Script: an interactive animation environment. In Computer Animation,
pages 173{192, London, October 1987. Online Publications.

87

[41] Conal Elliot, Greg Schecter, RickyYeung, and SalimAbi-Ezzi. A system for interactive,
animated 3d graphics based on continuous, high level constraints. Technical report,
SunSoft, 1993.

[42] Ioannis Emiris and John Canny. A general approach to removing degeneracies. In 32nd
IEEE Symposium on Foundations of Computer Science, pages 405{413, 1991. Also to
appear in the SIAM Journal of Computing.

[43] Ioannis Emiris and John Canny. An e�cient approach to removing geometric degen-
eracies. In 8th ACM Symposium on Computational Geometry, pages 74{82, 1992.

[44] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. The Systems Programming Series. Addison-Wesley,
Reading, MA, second edition, 1990.

[45] David R. Forsey and Richard H. Bartels. Hierarchical b-spline re�nement. In SIG-
GRAPH, pages 205{212, August 1988.

[46] Frame Technology Inc. Using FrameMaker, 1990.

[47] Bjorn N. Freeman-Benson and John Maloney. The deltablue algorithm: An incremental
constraint hierarchy solver. Technical Report 88-11-09, University of Washington,
Seattle, WA 98195, November 1988.

[48] Thomas A. Funkhouser, Carlo H. S�equin, and Seth J. Teller. Management of large
amounts of data in interactive building walkthroughs. In Workshop on Interactive 3D
Graphics, pages 11{20, 1992.

[49] Simson L. Gar�nkel and Michael K. Mahoney. NeXTStep Programming. The Electronic
Library of Science. Springer Verlag, 1993.

[50] David Garlan and Ehsan Ilias. Low-cost, adaptable tool integration policies for inte-
grated environments. In SIGSOFT, pages 1{10, December 1990.

[51] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[52] Herbert Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, second edi-
tion, 1980.

[53] Julian E. G�omez. Twixt: A 3D animation system. In EUROGRAPHICS, pages 121{
133, 1984.

[54] James Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, Pitts-
burgh PA 15213, May 1983. TR CS-83-132.

[55] Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus presen-
tation system. In ACM SIGSOFT Fifth Symposium on Software Development Envi-
ronments, December 1992.

88

[56] Gary D. Hachtel and Alberto L. Sangiovanni-Vincentelli. A survey of third-generation
simulation techniques. Proceedings of the IEEE, 69(10):1264{1280, October 1981.

[57] Bo Stig Hansen. On the design of a functional formatting language: FFL. unpublished
manuscript, December 1988.

[58] R. Heise and B. A. MacDonald. Quaternions and motion interpolation: A tutorial. In
R. A. Earnshaw and B. Wyvill, editors, New Advances in Computer Graphics, pages
229{243. Springer-Verlag, 1989.

[59] Carl Hewitt. Procedural embedding of knowledge in Planner. In International Joint
Conference on Arti�cial Intelligence, pages 167{182, September 1971.

[60] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for arti�cial intelligence. In International Joint Conference on Arti�cial Intelligence,
pages 235{245, August 1973.

[61] ICEM Systems. ICEM DDN User's Manual, 1992.

[62] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley, Reading,
MA, second edition, 1990.

[63] Deneb Robotics Inc. IGRIP product literature. Auburn Hills, MI, 1993.

[64] Wavefront Inc. Wavefront user's manual.

[65] P. M. Isaacs and M. F. Cohen. Mixed methods for complex kinematic constraints in
dynamic �gure animation. The Visual Computer Journal, 4:296{305, 1988.

[66] Paul M. Isaacs and Michael F. Cohen. Controlling dynamic simulation with kinematic
constraints, behavior functions, and inverse dynamics. In SIGGRAPH, pages 215{224,
July 1987.

[67] Kenneth I. Joy. Utilizing parametric hyperpatch methods for modeling and display
of free-form solids. In Symposium on Solid Modeling Foundations and CAD/CAM
Application, pages 245{254, June 1991. Also in International Journal of Computational
Geometry and Applications, Vol. 1, No. 4, December 1991, 455-472.

[68] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[69] Craig E. Kolb. Rayshade User's Guide and Reference Manual, 0.2 draft edition, July
1991.

[70] Kenneth S. Kundert. Sparse matrix techniques and their application to circuit simu-
lation. In Albert E. Ruehli, editor, Circuit Analysis, Simulation, and Design. Elsevier
Science Publishing Company, 1986.

[71] Philip Lee, Susanna Wei, Jianmin Zhao, and Norman I. Badler. Strength guided
motion. In SIGGRAPH, pages 253{262, August 1990.

89

[72] Ekachai Lelarasmee, Albert E. Ruehli, and Alberto L. Sangiovanni-Vincentelli. The
waveform relaxation method for time-domain analysis of large scale integrated circuits.
IEEE Transactions on CAD of Integrated Circuits and Systems, CAD-1(3):131{145,
July 1982.

[73] Wm Leler. Constraint Progamming Languages. Addison-Wesley, Reading, MA, 1988.

[74] Ming C. Lin and John F. Canny. E�cient collision detection for animation. In Euro-
graphics Workshop on Simulation and Animation, September 1992.

[75] Ming C. Lin and John F. Canny. A fast algorithm for incremental distance calcula-
tion. In International IEEE Conference on Robotics and Automation, pages 1008{1014,
1992.

[76] MacroMind, Inc. MacroMind Three-D, developer version. Product Information Sheet,
June 1990.

[77] Macworld. Putting the moves on 2-D models. Macworld, page 83, July 1993. (Discus-
sion of the Working Model animation program from Knowledge Revolution.).

[78] Nadia Magnenat-Thalmann and Daniel Thalmann. The use of 3-d abstract graphical
types in computer graphics and animation. In T. L. Kunii, editor, Computer Graphics:
Theory and Applications, pages 360{373. Springer-Verlag, 1983.

[79] Nadia Magnenat-Thalmann and Daniel Thalmann. Controlling evolution and motion
using the cinemira-2 animation sublanguage. In Nadia Magnenat-Thalmann and Daniel
Thalmann, editors, Computer Generated Images: The State of the Art, pages 249{259.
Springer-Verlag, 1985.

[80] Vance Maverick. The Arugula computer-music score editor. In Proceedings of the
International Computer Music Conference, pages 419{422, 1991.

[81] M. Moore and Jane Wilhelms. Collision detection and response for computer anima-
tion. In SIGGRAPH, pages 289{298, 1988.

[82] Greg Nelson. Juno, a constraint-based graphics system. In SIGGRAPH, pages 235{243,
July 1985.

[83] Steven A. Oakland. Bump, a motion description and animation package. Techni-
cal Report UCB/CSD 87/370, University of California, Computer Science Division,
University of California, Berkeley CA 94720, September 1987.

[84] T. J. O'Donnell and A. J. Olson. Gramps: A graphics language interpreter for real-
time, interactive, three-dimensional picture editing and animation. In SIGGRAPH,
pages 133{142, 1981.

[85] John Ousterhout. Tk 3.3 manual pages, 1993. Available for anonymous ftp from
ftp.cs.berkeley.edu.

90

[86] John Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

[87] Derluen Pan and Michael A. Harrison. IncTeX: An incremental document processing
system. Technical Report UCB/CSD 91/614, University of California, Berkeley, CA
94720, April 1991.

[88] Paracomp Inc. Swivel 3D. Product Information Sheet, 1990.

[89] Alex Pentland and John Williams. Good vibrations: Modal dynamics for graphics and
animation. In SIGGRAPH, pages 215{222, July 1989.

[90] Alex P. Pentland. Computational complexity versus simulated environments. In Sym-
posium on Interactive 3D Graphics, pages 185{192, March 1990.

[91] Cary B. Phillips and Norman I. Badler. Interactive behaviors for bipedal articulated
�gures. In SIGGRAPH, pages 359{362, July 1991.

[92] Cary B. Phillips, Jianmin Zhao, and Norman I. Badler. Interactive real-time articulated
�gure manipulation using multiple kinematic constraints. In Symposium on Interactive
3D Graphics, pages 245{250, March 1990.

[93] D. Pletincks. The use of quaternions for animation, modelling and rendering. In
Nadia Magnenat-Thalmann and Daniel Thalmann, editors, New Trends in Computer
Graphics, pages 44{53. Springer-Verlag, 1988.

[94] Jef Poskanzer. PPM - portable pixmap �le format. UNIX manual
pages, 1989. Available by anonymous ftp from export.lcs.mit.edu, in
/pub/R5untarred/contrib/clients/pbmplus.

[95] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge University Press,
1988.

[96] William T. Reeves, Eben F. Ostby, and Samuel J. Le�er. The Menv modelling and
animation environment. Pixar, San Rafael, CA, January 1989.

[97] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-based Editors. Springer-Verlag, 1989.

[98] Craig W. Reynolds. Computer animation with scripts and actors. Computer Graphics,
16(3):289{296, July 1982.

[99] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In
SIGGRAPH, pages 25{34, July 1987.

[100] Resve A. Saleh, James E. Kleckner, and A. Richard Newton. Iterated timing analysis
in SPLICE1. In ICCAD, pages 139{140, 1983.

91

[101] Peter Schr�oder and David Zeltzer. The virtual erector set: Dynamic simulation with
linear recursive constraint propagation. In Symposium on Interactive 3D Graphics,
pages 23{31, March 1990.

[102] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, second edition, 1988.

[103] Carlo H. S�equin. The Berkeley UNIGRAFIX tools, version 2.5. Technical Report
UCB/CSD 86/281, University of California, Berkeley, CA 94720, Spring 1986.

[104] Steve Shepard. Interactive physics II. MacUser, page 70, December 1992.

[105] Ben Shneiderman. Designing the User Interface: Strategies for E�ective Human-
Computer Interaction. Addison-Wesley, Reading, MA, second edition, 1993.

[106] Silicon Graphics, Inc, Mountain View, CA. Iris Graphics Library Programmer's Man-
ual, 1992.

[107] Silicon Graphics, Inc. Iris inventor technical report. Technical report, Silicon Graphics,
Inc, Mountain View, CA, 1993.

[108] Jennifer Smith. Frequently asked questions. Periodic posting to Usenet newsgroup
rec.games.mud.misc, December 1993.

[109] Guy Lewis Steele, Jr. The De�nition and Implementation of a Computer Programming
Language. PhD thesis, Massachusetts Institute of Technology, Cambridge MA 02139,
August 1980. Also MIT AI Lab TR 595.

[110] Michael Stonebraker and Lawrence A. Rowe. The postgres papers. Technical Report
UCB/ERL M86/85, University of California, Berkeley, CA 94720, June 1987.

[111] Mark C. Surles. Interactive modeling enhanced with constraints and physics { with
applications in molecular modeling. In Symposium on Interactive 3D Graphics, pages
175{182, June 1992.

[112] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication system. In
Design Automation Conference, 1964. Also in 25 Years of Electronic Design Automa-
tion, 1988, ACM Order Number 477881.

[113] Mark A. Tarlton and P. Nong Tarlton. A framework for dynamic visual applications.
In Symposium on Interactive 3D Graphics, pages 161{164, June 1992.

[114] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby,
Jack C. Wileden, Alexander L. Wolf, and Michal Young. Foundations for the arcadia
environment architecture, 1988.

[115] Demetri Terzopoulos and Kurt Fleicher. Modeling inelastic deformation: Viscoelastic-
ity, plasticity, fracture. In SIGGRAPH, pages 269{278, August 1988.

[116] Demetri Terzopoulos and Kurt Fleischer. Deformable models. The Visual Computer
Journal, 4:306{331, 1988.

92

[117] Spencer W. Thomas. Utah Raster Toolkit Manual Pages. University of Michigan, 1990.
Contact toolkit-request@cs.utah.edu for availability information.

[118] Christopher J. Van Wyk. A high-level language for specifying pictures. ACM Trans-
actions on Graphics, 1(2):163{182, April 1982.

[119] Jane Wilhelms. Virya { a motion control editor for kinematic and dynamic animation.
In Proceedings, Graphics Interface Conference, pages 141{146, 1986.

[120] Jane Wilhelms, M. Moore, and R. Skinner. Dynamic animation: Interaction and
control. The Visual Computer Journal, 4:283{295, 1988.

[121] Jane P. Wilhelms and Brian A. Barsky. Using dynamic analysis to animate articu-
lated bodies such as humans and robots. In Nadia Magnenat-Thalmann and Daniel
Thalmann, editors, Computer Generated Images: The State of the Art, pages 209{229.
Springer-Verlag, 1985.

[122] Andrew Witkin and Michael Kass. Spacetime constraints. In SIGGRAPH, pages
159{168, August 1988.

[123] Douglas A. Young. OSF/Motif reference guide. Prentice Hall, 1990.

[124] Robert C. Zeleznik, D. Brookshire Connor, Matthias M. Wloka, Daniel G. Aliaga,
Nathan T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes,
and Andries van Dam. An object-oriented framework for the integration of interactive
animation techniques. In SIGGRAPH, pages 105{111, July 1991.

[125] David Zeltzer. Direct manipulation of virtual worlds. In Workshop on Mechanics,
Control, and Animation of Articulated Figures. MIT Media Laboratory, April 1989.

[126] David Zeltzer, Steve Pieper, and David J. Sturman. An integrated graphical simulation
platform. In Proceedings, Graphics Interface Conference, pages 266{274, 1989.

[127] O. C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, NY, 1977.

[128] Michael J. Zyda, David R. Pratt, James G. Monahan, and Kalin P. Wilson. NPSNET:
Constructing a 3d virtual world. In Symposium on Interactive 3D Graphics, pages
147{156, June 1992.

93

