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Abstract

Without power management, disks on portable comput-
ers consume 20-30% of the system's power. Previous pa-
pers showed that spinning down a 1 watt drive after 3-5
minutes of inactivity reduces the average power consump-
tion to 0.5 watts with a slight performance penalty. We
explored the addition of an in�nite non-prefetch cache to
�lter disk tra�c and showed it to be ine�ective at reduc-
ing disk power consumption or improving performance.
Modifying the cache to perform whole-�le prefetching
gave the next step of improvement by reducing the disk
power consumption to 0.1 watts while retaining current
performance levels. The traditional �le system perfor-
mance model focuses on cache hit rate as the perfor-
mance determinant. This paper introduces a new perfor-
mance model for systems that spindown disks and shows
that performance is no longer a function of hit rates, but
rather of read-interrequest times and disk spindown de-
lays. Drive durability is an issue for low power �le systems
because of the friction induced wear during disk spinup.
Periodic writes, which result in periodic disk spinups, will
very likely lead to premature drive failure. We show that
approximately 1 MB of 
ash memory used as a write
bu�er eliminates the need to spinup the disk for writes.

1 Introduction

The power limited environment of portable computers has
fueled much work in the area of constructing low power
components. Low power displays, processors, memories,
and disks have been developed to extend battery life. Of
these components, the disk is the only device whose tran-
sition from low power mode to high power mode occurs at
mechanical speeds. Such large latencies cannot be hidden
at the hardware level and limit the usefulness of low power
drives. To optimally leverage the low power mode of the
disk, operating systems must be designed to balance be-
tween the application's need for low latency �le access
and the system's need to reduce disk power consumption.
Several previous papers have examined various aspects of
disk spindown and the use of 
ash memory as power re-

duction techniques. This paper is another step towards
the design of a reasonable cost, high performance, low
power �le system for portable computers.
Previous work has made some progress in designing low

power �le systems. [Li94] and [Douglis94] examined ways
to reduce disk power consumption by spinning down the
disk at various granularities. Coarse-grained spindown,
spindown after 3-5 minutes of inactivity, saved half of the
potential energy savings in exchange for a small perfor-
mance penalty. Fine-grained spindown, spindown after
10-20 seconds of inactivity, approached the minimum en-
ergy consumption but resulted in large performance sac-
ri�ces. [Marsh94] examined the use of a nonvolatile, low
power memory store as a transparent layer above the
disk which caches recently referenced disk blocks. In that
study, they assume a large warm cache, a stable stochas-
tic working set, and prescient disk spindown and conclude
that a disk can be virtually power free while providing
good �le system performance. This paper combines, re-
�nes, and builds upon the previous work. It reexamines
the assumptions in [Marsh94] and evaluates the power-
performance tradeo� using representative DOS traces. It
shows that the three necessary ingredients for a low power
�le system are:

� Fine-grained disk spindown

� Whole-�le prefetching cache

� 8-16 MB of low power, low read latency memory

For systems that spindown disks, the measure of perfor-
mance is the absolute number of disk spinups per time pe-
riod. This quantity is a function of the read-interrequest
time distribution and the disk spindown delay. Using the
new performance measure, non-prefetching caches, even
of in�nite size, do not signi�cantly improve performance
or reduce disk power consumption. Installing a whole-�le
prefetch cache approximating the trace working set size
gives the next step in improvement beyond coarse-grained
spindown. Preserving current performance levels, disk
drive power consumption can be reduced from 0.5 watts
to 0.1 watts. Drive durability is an issue for low power
systems because of the friction induced wear during disk
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spinup. Periodic writes, which result in periodic spinups,
could easily lead to premature drive failure. Bu�ering
writes in nonvolatile 
ash memory eliminates the need to
spinup the disk for writes.
The rest of this paper is organized as follows: Section

2 describes the hardware changes that enable the con-
struction of low power �le systems. Section 3 describes
the methodology of this paper. Section 4 gives a statisti-
cal characterization of the traces. Section 5 introduces a
new performance model for low power �le systems. Sec-
tion 6 reviews the results of [Li94] and [Douglis94] using
the traces of this study. Section 7 examines the need
for large, whole-�le prefetching caches to eliminate the
power-performance tradeo�. And �nally, Section 8 stud-
ies the feasibility of caching writes in nonvolatile 
ash
memory to reduce the disk durability impact of spinning
up for periodic writes.

2 Hardware

Hardware technologies have evolved and emerged to sat-
isfy the low power market consisting of portable comput-
ers and embedded systems. This section describes two
such evolutions that aid in the construction of a low power
�le system.

2.1 Sleeping Disks

The recent explosion in the portable computer market
has motivated disk drive manufacturers to develop a new
breed of drives especially for the portable environment. In
addition to high shock tolerances, reduced physical vol-
ume, and smaller weights, these drives provide a method
for operating systems to spindown the physical disk plat-
ter. This capability is signi�cant in a power limited envi-
ronment because most of the energy consumed by a disk
is expended in rotating the physical platter.
Figure 1 describes the operational states of a typical low

power drive and its state transitions. \O�" mode is when
the disk consumes no energy and is incapable of perform-
ing any functions except powerup. \Sleep" mode is when
the electrical components are powered but the physical
disk platter is not spinning. \Spin" mode is character-
ized by a spinning disk, but the absence of disk activity.
A disk drive in a desktop computer spends most of its
time in this mode. \Active" mode is when the disk plat-
ter is spinning and the disk head is actively reading or
writing the disk.
Hardware characteristics determine the tradeo� be-

tween sleep mode and spin mode. Table 1 gives the
power consumption and transition times for the Maxtor
MXL-105-III drive, a typical low power drive. The di�er-
ence in power consumption between spin mode and sleep
mode is quite sizable. Spin mode consumes 1 watt while
sleep mode consumes just 25 milliwatts. This di�erence is
strong motivation to spindown the disk. Unfortunately,
the di�erence in latency into active mode between spin

low power high power

high latency low latency

Off Sleep Spin Active

Powerup Spinup Seek

SpindownPowerdown

Figure 1: Disk Drive State Diagram. Low power
drives have four modes of operation. The low power sleep
mode is the recent addition.

Mode Power Transition Latency Power
(watts) (seconds) (watts)

O� 0.0 Powerup 0.5 0.025
Sleep 0.025 Spinup 2.0 3.0
Spin 1.0 Seek 0.009 1.95
Active 1.95 Spindown 1.0 0.025

Powerdown 0.5 N/A

Table 1: Maxtor MXL-105 III. This table gives the
power consumption and average transition times of the
major disk modes and transitions for a typical low power
drive. Noteworthy points are the large power di�erences
between sleep mode and spin mode and also the large
latency di�erences between seek and spinup.

mode and sleep mode is also quite sizable. The seek la-
tency is on the order of 10 milliseconds while the spinup
latency is 2 seconds. The hardware characteristics indi-
cate that the primary tradeo� for spinning down disks
is between lower power and higher latency. The cen-
tral question for operating system designers to examine is
when to take the spindown transition (the spindown pol-
icy) to provide a good balance between power and perfor-
mance. A very conservative policy may undo the work of
the hardware designers by not spinning down the disk. At
the other extreme, a very aggressive spindown policy may
highlight the two orders of magnitude latency di�erence
and result in huge performance sacri�ces.
Drive durability is another area of concern for systems

that spindown disks. The number of spinups a contact
start/stop drive such as the Maxtor MXL-105-III can tol-
erate before head wear becomes a problem is 40,000. Low
power �le systems that produce large numbers of disk
spinups for fetching data or committing writes could eas-
ily result in drive failure. Limiting the total number of
spinups is an important goal.

2.2 Flash Memory

Flash memory, an in-system programmable variant of an
EEPROM, has several characteristics which make it use-
ful for constructing low power �le systems. Among these
are low cost, low power, low read latencies, and non-
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Figure 2: File system cache model. The simulated
cache uses 4 KB block sizes and LRU replacement. Cache
blocks were tagged \read" if they were fetched from disk
and \write" if they were written by applications.

volatility. Although 
ash memory is presently quite ex-
pensive, the predicted growth in demand will promote
larger economies of scale, quicken the pace of technology
maturation, and result in sharp price drops. According to
[Dipert93], 
ash memory is estimated to sell for $7.20 per
megabyte by the mid-1990's. This allows for the possibil-
ity of adding 8-16 MB of 
ash memory to portable com-
puters at a moderate cost. Flash memory is also a low
power memory store. The power consumption while read-
ing 
ash memory is 325 milliwatts. When 
ash memory is
inactive, it can be placed in either standby mode or sleep
mode which consumes 315 microwatts and 15 microwatts
respectively [Intel]. Large amounts of 
ash memory can
be added to a system without increasing power consump-
tion. The read latency of 
ash memory is within a factor
of three of DRAM speeds which makes it fast enough
to be used as an executable read-only store. This study
only requires that 
ash read latencies be comparable or
smaller than read latencies for spinning disks, which it far
exceeds. And lastly, 
ash memory is nonvolatile which
implies it can be used to store writes without sacri�cing
data reliability.
Two limits of 
ash memory should be mentioned as

well. First, 
ash memory is limited in the number of
erasures each cell can tolerate. Current 
ash memory
technologies can tolerate only 100,000 erasures which
makes 
ash durability an issue. Second, the erasure-
program step to write 
ash memory requires 9-300 mi-
croseconds per byte depending on implementation tech-
nology [Dipert93]. The slow write speeds may force
bu�ering data in DRAM for short periods of time.

3 Methodology

To study the feasibility of low power �le systems in the
real world, we instrumented and collected system call
traces on DOS machines. The traces were run through a
discrete event simulator that simulated the Maxtor disk
drive described in Section 2, various disk caches, and also
portions of the DOS state. The cache model used in this
study is shown in Figure 2. The unit of caching is 4 kilo-

byte blocks and LRU replacement occurs on cache over-

ow. Cache blocks were tagged either \read" or \write"
depending on the block's origin. Read blocks refer to
cache blocks whose data was fetched from disk while write
blocks refer to cache blocks whose data was written by
applications. The cache is assumed to be backed by non-
volatile 
ash memorywhich suggests a warm cache model.
However a cold cache model was simulated. The reason-
ing behind this decision was to ensure high performance
across shifts in working set or when large �les 
ush the
cache. During these times, the cache behaves like a cold
cache.
The simulations in this paper assume that no disk spin-

ups occur to satisfy name and attribute requests. We
assumed the presence of a name-attribute cache in the
�le system that stores all recently accessed meta-data for
active directories which are typically few in number and
exhibit tremendous locality. This assumption was made
because the traces do not contain complete information
on meta-data accesses. We speculate that this assump-
tion is not far from the truth as these are small personal
�le systems whose entire meta-data can reasonablely be
stored in a small amount of 
ash memory.

4 Traces

This section describes the traces used in this study. It
presents a description of the trace source, the motivation
for eliminating paging tra�c, and a statistical character-
ization of the traces.

4.1 Trace Source

The traces in this study were collected on two personal
computers with 8 and 16 MB of DRAM while running
Windows 3.1. These machines were traced while be-
ing used as the primary work platform for two Berkeley
computer science graduate students running o�ce appli-
cations. An attempt was made to make this trace set
representative of current portable computer usage. All
traces in this study were collected while running Win-
dows hosted applications. The main applications were
FrameMaker, PowerPoint, Word, Excel, Procomm, Ter-
minal, Notepad, and various Central Point utilities. It
should be noted that the traces of this study are di�er-
ent from the traces used in [Li94] which were collected at
a student computing laboratory primarily running DOS
hosted applications. Although those traces were more
user diverse, we believe that they were not representative
of expert users or current portable computer usage. The
trace set of this study attempts to correct both of these
shortcomings.
Fourteen traces were collected and analyzed for this

study. Due to di�erences in trace lengths and the need
to simulate entire traces to collect accurate statistics, di-
rect comparisons of large numbers of traces was not at-
tempted. Instead, the traces were separated by their char-



acteristics into light and heavy workloads and a represen-
tative was chosen among them for detailed analysis.

4.2 Paging

A potentially controversial decision was made to elimi-
nate all swap �le activity from the trace analysis. The
reasoning behind this decision comes from the observa-
tion that (in the absence of a permanent swap �le) Win-
dows 3.1 blindly constructs a several megabyte swap �le
on startup, irregardless of whether such a swap �le is nec-
essary. Empirical analysis of the traces show that even
under heavy duress with three large applications running
concurrently, not a single byte was ever read out of the
swap �le in any of the traces. However, many megabytes
were written to the swap �les during the startup pro-
cess which were promptly deleted on shutdown. Only one
trace exhibited further swap �le activity beyond the ini-
tial construction salvo. This particular trace wrote many
additional megabytes to the swap �le, but never read a
single byte back into memory. This behavior could be in-
dicative of a large memory leak in one of the applications
or just poor system design.
The controversial part of the decision to eliminate swap

�le activity stems from the large DRAM store present on
the traced machines. Portable computers today typically
come equipped with only 4 megabytes of DRAM which
may be insu�cient memory to run under heavy work-
load. In this case, virtual memory must be enabled and
the swap �le activity taken into consideration. However,
since this paper considers adding 
ash memory as a write
bu�er, this would be tantamount to paging into 
ash.
Only upon exhaustion of both DRAM and 
ash in a low
power system will paging to disk occur and we speculate
that users will more likely reduce resource demands than
su�er the performance and energy cost of paging to disk.

4.3 Read Characteristics

The read characteristics of the traces can be separated
into light and heavy workloads. The light workload is
characterized by short bursts of disk activity, mostly dur-
ing application startup, followed by long periods of in-
activity (see Figure 3. These traces usually correspond
to self-contained applications such as PowerPoint, Word,
or Notepad which only generate read requests when they
need access to large data sets such as the dictionary �le
or running embedded applications such as Equation Edi-
tor. Relating the traces in this study with those of [Li94],
all of the traces used in [Li94] would be classi�ed under
light workload in the present study. The heavy workload
is characterized by uniformly distributed read accesses,
with bursts of activity during application startup. These
traces were mostly collected while running FrameMaker.
The separation between light and heavy read workloads

is primarily a function of application design. The appli-
cation's structural organization determines the character-

Description Light Heavy
Workload Workload

Application PowerPoint FrameMaker
Trace length 1.6 hours 3.5 hours

Bytes read 5.53 MB 10.76 MB
Bytes written 275.87 KB 14.39 MB
Bytes written 0.82 KB 0.23 MB
and overwritten
Bytes written 58.79 KB 13.57 MB
and deleted
Bytes deleted 58.80 KB 13.83 MB

Working set 4.77 MB 9.71 MB
Read working set 4.52 MB 8.87 MB
Write working set 0.25 MB 1.15 MB
Prefetch set 5.86 MB 13.57 MB

Table 2: Trace statistics. This table gives the read,
write, deletion, and working set statistics for the light
and heavy workloads.
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Figure 4: Byte lifetimes. This �gure shows that most
bytes that die within a session die within ten minutes.
Spinning up the disk to commit these condemned bytes
unnecessarily sacri�ces drive durability.

istics of the resulting traces. Design decisions such as us-
ing load-on-demand or discardable segments or extensive
use of dynamic link libraries have a signi�cant impact on
trace contents. Also, applications designed as a collec-
tion of independent executables using temporary �les for
inter-module communication leave distinguishing marks
on the traces.

4.4 Write Characteristics

The write characteristics of the traces were mostly pe-
riodic and uniform. This is the expected behavior as
users go through the edit-save cycle, sometimes enabling
the auto-save feature of applications to perform periodic
writes to nonvolatile storage. The density of write events
again varies with the application and user. The represen-
tative traces were selected to also expose light and heavy
write workloads. The light workload wrote 276 KB of
data and the heavy workload, running FrameMaker with
a 3 minute auto-save, generated 14.4 MB of data.

4.5 Deletion Characteristics

Table 2 shows the deletion characteristics of the two sam-
ple traces. Two conclusions can be drawn from this data.
First, most bytes are killed through the delete system call
with very few bytes getting overwritten. Second, most
bytes that are deleted in a session were written in that
session. The light workload and heavy workload traces
di�ered in the fraction of bytes that were written in the
session and subsequently deleted. A large fraction of the
bytes in the light workload survived past the end of the
session. This is attributable to its large write-delete pe-
riod and the short trace length which combine to over-
represent the last data save. The heavy workload trace
had the opposite behavior with most bytes dying within

the session. This is attributable to its small write-delete
period. Figure 4 shows the byte lifetimes of writes in each
trace. Bytes not deleted within the session are assumed
to live forever. Most bytes that die within a session live
for less than 10 minutes. Byte lifetimes under DOS are
greater than byte lifetimes under the Sprite operating sys-
tem as measured in [Baker91] (corrected in [Hartman93]).

4.6 Working Set

The working set size is the number of unique disk blocks
referenced by the trace. The light workload trace had a
working set size of 4.8 MB and the heavy workload trace
had a working set size of 9.7 MB. The cache model further
decomposed the working set into read and write working
sets according to the block's origin. The statistics show
that most bytes in the working set are fetched fromdisk as
opposed to written by applications. The prefetch set size
is the number of unique disk blocks referenced by a whole-
�le prefetching cache. The 20-40% di�erence in sizes be-
tween the working set and the prefetch set indicates that
20-40% of prefetched bytes are never referenced.

5 Performance Model

This section develops a new performance model for a low
power �le system. The performance in normal �le systems
with a disk cache and a spinning disk is measured by the
average read access time given by the formula:

performance = average read access time

= hit ratio * cache access time

+ (1-hit ratio) * disk access time

This performance model works well when the disk ac-
cess latency is su�ciently small that users do not notice
individual disk accesses. This assumption, however, is not
true in a low power system where the disk is put to sleep
and disk access latency increases to 2 seconds. While
the disk is sleeping, the user will notice every cache miss.
Performance with a sleeping disk is no longer determined
by the fraction of read events �ltered by the cache, but
rather by the absolute number of disk spinups. Assum-
ing only read events cause disk spinups and the system
employs a �xed delay spindown policy, performance in a
low power system should be stated as:

performance = #(disk spinups)

= #(read-interreq > spindown delay)

Using this model, performance in a low power system
is a function of the read-interrequest times and the spin-
down delay, not the cache hit ratio. Performance can be
improved by increasing the spindown delay so that fewer
read-interrequest times exceed it. This is the reasoning
behind choosing a coarse-grained spindown policy. Alter-
natively, performance can be improved by modifying the
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Figure 5: (Light workload) Read interrequest
times. The non-prefetch cache does not signi�cantly re-
duce the number of large read-interrequest times which
explains its ine�ectiveness at improving performance.
The prefetch cache does reduce the number of large read-
interrequest times.

read distribution so that fewer read-interrequest times ex-
ceed the spindown delay. [Li94] attempted to modify the
read distribution by using non-prefetching caches to �lter
read tra�c and found they were ine�ective at improving
performance. Figure 5 explains this result. The non-
prefetch cache does not signi�cantly reduce the number
of large read-interrequest times over no caching. Perfor-
mance improvements can only come from a cache which
reduces the number of large read-interrequest times, such
as a whole-�le prefetching cache.

6 Spindown Policies

[Li94] and [Douglis94] studied the tradeo�s associated
with spinning down a disk. Manufacturer's recommen-
dations varied widely as to when disks should be spun
down even though their drives have similar characteris-
tics. Some recommend �ne-grained spindown of the disk
after 10-20 seconds of inactivity while others recommend
coarse-grained spindown of the disk after 3-5 minutes of
inactivity. These large di�erences are a cause of concern,
possibly re
ecting a lack of quantitative data or methods
to evaluate the tradeo�.

6.1 Power-Performance Tradeo�

This subsection repeats the analysis of [Li94] and
[Douglis94] on the traces of this study, with one excep-
tion. Instead of using a 1 MB non-prefetch cache, this
analysis will present the best case non-prefetch cache by
making it in�nite. Figures 6 and 7 present all of the re-
sults of this study. Focusing on the in�nite non-prefetch
cache curves, we can rederive the conclusions of [Li94].

For the light workload trace, the energy consumption per
hour for no spindown is 3,600 joules, for coarse-grained
spindown is 1,800 joules and for �ne-grained spindown is
400 joules. For the heavy workload trace, the energy con-
sumptions are 3,600 joules, 1,400 joules, and 300 joules
respectively. Half of the potential energy savings comes
from spinning down the disk after 3-5 minutes of inac-
tivity and the other half comes from spinning down after
10 seconds of inactivity. These numbers show slightly
larger energy savings for coarse-grained spindown due to
the presence of an in�nite cache.

The middle graphs consider the other half of the trade-
o� by plotting the number of synchronous spinups of the
disk against the spindown delay. Synchronous spinups
are those spinups of the disk which result in the user hav-
ing to pause for the disk. For the light workload trace,
the number of spinup pauses per hour for coarse-grained
spindown is 2 and for �ne-grained spindown is 15. For the
heavy workload trace, the number of spinup pauses per
hour are 3 and 9. Decreasing the spindown delay results
in a dramatic increase in spinup pauses as the disk is spun
down between many small cracks of inactivity. The per-
formance penalty for coarse-grained spindown is likely to
be acceptable, however the performance impact of going
to a �ne-grained spindown policy may be unacceptable
for many users.
The bottom graphs make the power-performance trade-

o� explicit. Energy consumption and disk spinup pauses
can be freely exchanged.

6.2 Prescient Spindown

[Douglis94] originated the notion of a prescient spindown
policy. The idea is that remaining in spin mode for a short
period of time can actually consume less energy than spin-
ning down, sleeping and spinning up the disk again. This
is true because the energy cost of spinning up a disk is
greater than the energy cost of just spinning the disk.
Thus sleeping for very short periods of time can actually
increase the disk energy consumption. The minimumpe-
riod of time a disk must sleep before sleeping becomes
bene�cial varies with drives, but typically is on the order
of a few seconds. The Maxtor MXL-105 III drive simu-
lated in [Li94] has a minimum period of 6 seconds and
the Hewlett-Packard Kittyhawk C3014A drive simulated
in [Douglis94] has a minimum period of 5 seconds.
The prescient spindown looks into the future to opti-

mally decide when to spindown the disk. If the next disk
event occurs greater than 5 or 6 seconds into the future,
then sleeping minimizes energy consumption. If, on the
other hand, the next disk event is less than 5 or 6 seconds
in the future, then keeping the disk in spin mode in an-
ticipation of that request minimizes energy consumption.
Running the prescient policy against a given trace yields
the theoretical lower bound on the amount of energy re-
quired to satisfy that trace while varying the spindown
policy. This quantity is useful to evaluate the remaining
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Figure 6: (Light workload) Power and performance
characteristics under various disk spindown and cache
policies.
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improvement possible in choosing a di�erent spindown
policy. The results of [Li94] and [Douglis94] were similar
and both indicate that a �ne-grained spindown policy can
get close to the minimum energy consumption. Figures 6
and 7 echo this result. The horizontal lines give the power
consumption and performance for the prescient spindown
policy against the in�nite non-prefetch cache load. As the
spindown delay approaches several seconds, the energy
consumption approaches that of the prescient spindown
policy. However, the performance graphs show that pre-
scient spindown su�ers from the same performance degra-
dation as �ne-grained spindown.

7 Whole-File Prefetch Cache

Previous sections gave hints of the ine�ectiveness of
non-prefetching caches. This section examines whole-�le
prefetch caches as a method of eliminating the power-
performance tradeo�. Two styles of whole-�le prefetch
caches are possible. The �rst style is to prefetch all
blocks of a �le on every open. This policy gives pref-
erence to the most recently opened �les, possibly 
ushing
blocks from older �les. The second style is to prefetch
the �le only if none of the �le's blocks are present in the
cache. This policy in conjunction with LRU replacement
attempts to cache only the working set of each �le. As
was shown in Section 4, 20-40% of prefetched bytes are
never referenced. By prefetching on the �rst open and not
prefetching thereafter, this policy attempts to eliminate
the prefetch overhead. Figures 6 and 7 show the results
of the second style of prefetching.

The goal of this paper is to design a high performance,
low power �le system. This goal can be restated in the
bottom graphs as \the closer we get to the origin, the
better." Under this criterion, the in�nite prefetch cache
is the clear winner. As an example of the improvement of
prefetching caches, we will make the assumption that cur-
rent performance levels with 2 or 3 spinups per hour is
acceptable and examine the resulting energy di�erence.
Filtering the light workload trace with an in�nite non-
prefetch cache, the disk consumes 1900 joules/hour (0.53
watts) and spins down after 4 minutes of inactivity. Fil-
tering with an in�nite prefetch cache, the disk consumes
just 350 joules/hour (0.10 watts) and spins down after
50 seconds of inactivity. The prefetch cache eliminates
the number of large read inter-request times which allows
us to spin down the disk at �ner granuarities to achieve
a �xed performance level. The smaller spindown delays
along with further reductions in the number of disk re-
quests result in a savings of 1550 joules/hour. The same
is true for the heavy workload trace. Filtering the heavy
workload trace with a non-prefetch cache, the disk con-
sumes 1,300 joules/hour (0.36 watts) and spins down after
5 minutes of inactivity. Filtering with a prefetch cache,
the disk consumes just 150 joules/hour (0.04 watts) and
spins down after 10 seconds of inactivity which results in

a di�erence of 1,150 joules/hour.

In�nite caches are impractical, so we must examine �-
nite cache sizes. Prefetch cache sizes are shown at approx-
imately the working set size of the trace and at half of the
working set size. The prefetch cache performs best when
its size approximates the working set size. As the cache
size is reduced below the working set size, the prefetch
cache approaches the power and performance character-
istics of the non-prefetch cache. In order for prefetching
to be useful, the cache size must approximate the working
set size of the trace which is typically on the order of 8-16
MB. This brings up the issue of how to implement such
a large cache. Powering 8 MB of DRAM for a prefetch
cache defeats its purpose as 8 MB of DRAM consumes
as much power as a spinning disk. Prefetching is saved
by low power 
ash memory whose size is only limited by
cost. This establishes both the bene�t and feasibility of
whole-�le prefetch caches.

8 Write Bu�er

The short byte lifetimes shown in Section 4 suggest that
spinning up the disk to commit condemned bytes is a
wasteful activity. The presence of periodic writes such as
the 3 minute auto-save in the heavy workload trace along
with drive wear during disk spinups can easily lead to
premature drive failure if the disk is spun up to commit
every write. [Li94] attempted to exploit the short byte
lifetimes by delaying writes in the cache for 30 seconds.
However, the byte lifetime analysis shows that bytes typ-
ically live longer than 30 seconds so a signi�cant number
of disk spinups still occur to commit writes. Bu�ering
writes in 
ash memory is the obvious solution to elimi-
nating these spinups. Table 2 shows that the entire write
working set of both sample traces can easily be accom-
modated in a small amout of 
ash memory. The write
working set size for the light workload trace was 250 KB
and the heavy workload trace was 1.15 MB. With a little
more than one megabyte of 
ash memory, neither trace
would require any special disk spinups to commit writes
to nonvolatile store.

However, all is not well as current 
ash memories also
have durability limits and the short byte lifetimes may
create durability issues for 
ash. The problem is not
nearly as severe as for the disk, though. Each 
ash cell
can tolerate 100,000 erasures and by using a write pol-
icy which uniformly degrades the cells in the 
ash store,

ash durability is really the product of both the num-
ber of tolerable erasures per cell and the size of the 
ash
memory. Unlike the disk, 
ash durability can be increased
by increasing the amount of 
ash memory. As an exam-
ple, we can compute a very pessimistic approximation of

ash memory life for the heavy workload trace with 8
MB of 
ash memory. The heavy workload trace gener-
ated around 4 MB of write tra�c per hour and assuming
a 2,000 hour work year, this trace would generate 8 GB



DRAM Flash Sleeping Disk
Size Small Small Large
Persistence Volatile Nonvolatile Nonvolatile
Power High Low Low
Read latency Low Low High
Write latency Low High High
Durability None Slight Severe

Table 3: Memory characteristics. Future portable
computers will contain DRAM, 
ash memory and a sleep-
ing disk. The memory characteristics plus the moderate
working set sizes suggest the proper use for each memory
type in a low power �le system.

of write tra�c per work year. 8 MB of 
ash memory
with each cell able to tolerate 100,000 erasures permits
800 GB of writes before 
ash wearout. Dividing 800 GB
by 8 GB/work year approximates the 
ash memory life
at 100 work years. This estimate could be o� by one or-
der of magnitude due to small writes and other factors,
however it does indicate that 
ash durability is unlikely
to become an impediment in using 
ash as a write bu�er.
Flash memory also has the problem of slow write

speeds. As suggested in [Marsh94], this issue can be
solved by doing background erasure to keep a clean block
pool and bu�ering writes in a small DRAM cache. In
the light workload trace, no 10 second region generated
more than 72 KB of write tra�c and in the heavy work-
load trace, no 10 second region generated more than 330
KB of write tra�c. Flash programming rates may not be
able to keep up with the peak write thruput of the heavy
workload trace, but DRAM bu�ering can be used to rate
match the two.

9 Big Picture

The results of this paper can be put into perspective by
examining the characteristics of the three memory types
in future portable computers (see Table 3). All three
memories are necessary to construct a low power �le sys-
tem. A small amount of the high power, low write la-
tency DRAM is required to bu�er writes into 
ash. The
remainder of the low power �le system is composed of

ash memory and a sleeping disk, which di�er in two pri-
mary respects. First, the cost per megabyte of disk is
at least a factor of ten smaller than for 
ash memory.
If 
ash were cost competitive with disk, then we could
easily achieve a zero power, zero spinup �le system by
replacing the disk with 
ash. However, the price di�er-
ence dictates a small 
ash store and a large disk store.
Second, 
ash memory has low read latencies whereas a
sleeping disk has very high read latencies. This suggests
the proper use of 
ash memory is as a �le cache. Trace
analysis shows that typical working set sizes for personal
computers are around 8-16 MB. By installing 8-16 MB of


ash memory and using �le open events as hints of future
read accesses, we can move the active �les into the small,
fast 
ash memory. Under the new performance model,
this technique eliminates many compulsory misses which
would otherwise have caused synchronous disk spinups
and thereby hide the latency of a sleeping disk. Dura-
bility is a third di�erence between 
ash memory and a
sleeping disk. Periodic writes to 
ash memory may cre-
ate a slight durability problem which can be mitigated by
increasing the 
ash store. Periodic writes to a sleeping
disk will de�nitely lead to premature drive failure. This
problem may be eliminated by the development of non-
contact start/stop drives such as dynamic head loading
drives [Parrish92] which can increase drive start/stop rat-
ings to one million. However, the current trend is towards
higher bit densities and not higher start/stop ratings, so
the durability problem is likely to persist. At least for
current contact start/stop drives, 
ash memory can be
used to enhance drive durability by bu�ering writes.

10 Conclusion

The previously published papers, [Li94], [Douglis94] and
[Marsh94], looked into techniques for reducing �le system
power consumption in portable computers. Each paper
develops one aspect of a low power �le system such as
disk spindown or large 
ash caches. However, the sum
of these papers do not add up to a high performance,
low power �le system under realistic conditions. This
paper combines the previous work and adds the missing
ingredient, a whole-�le prefetching cache. The necessary
parts for a low power �le system are:

� Fine-grained disk spindown

� Whole-�le prefetching cache

� 8-16 MB of low power, low read latency memory

Any system missing one of these three will trade-
o� power and performance. Without �ne-grained disk
spindown, �le system power consumption will be high
with good performance. Without a whole-�le prefetch-
ing cache, the choice is between coarse-grained spindown
with high power consumption and good performance or
�ne-grained spindown with low power consumption and
poor performance. Without a memory store approximat-
ing the working set size, the prefetching cache exhibits
characteristics of a non-prefetching cache. Without a low-
power memory, the cache may consume as much power as
a spinning disk. Without a low read latency for the cache,
performance will su�er. The sum of the three form a low
power �le system.

11 Postscript

Upon further re
ection and a gentle nudge from John
Ousterhout, the true bene�t of whole-�le prefetching is



likely to come from undoing Window's demand segmen-
tation model. Because Windows operates under a scarce
memory assumption, Windows hosted applications are
designed to load segments and resources only at the
time of �rst reference. This likely results in temporally
scattered compulsory misses which whole-�le prefetching
eliminates. Prefetching just the segments and resources of
opened executables and dynamic link libraries into 
ash
memory seems a likely re�nement to whole-�le prefetch-
ing that will yield similar bene�ts. This would be a good
starting point for others who wish to continue this inves-
tigation.
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