
SPINE

A Synthesizer for Practical Incremental Evaluators

Kannan Muthukkaruppan

Computer Science Division

University of California,

Berkeley, CA 94720.

May 19, 1994

Abstract

SPINE is a system for e�ciently generating practical incremental evaluators based on recur-
sive procedures for the strongly non-circular class of attribute grammars (AGs). Several interac-
tive language-based software development environments use incremental evaluation of attribute
grammars for context-sensitive static semantic analysis. The key advantages this system o�ers
over other existing incremental AG systems are ease of evaluator construction, e�ective con-
sumption of space, applicability to a large class of AGs, ability to handle multiple site attribute
tree transformations and close to optimal performance. ASPEC is the AG-description language
that has been specially designed for the SPINE system.

SPINE has been used innovatively in the Ensemble software development environment to
provide advanced incremental formatting of documents. ASPEC serves as the format speci�-
cation tool for Ensemble documents. The ASPEC language provides several powerful default
mechanisms which make these speci�cations very concise.

1

1 Introduction

Attribute grammars (AGs) [Knu68] are a formal and practical method for rule-based speci�cations
of computations on tree structures. Attribute evaluation is a process by which the values of attribute
instances on the nodes of the tree are computed (tree decoration). Several applications, like compiler
optimizations and syntax-directed editing, can be described by tree transformation operations.
These operations could, in general, invalidate several attribute instances in the tree. Incremental
attribute evaluators attempt to restrict the amount of recomputation required to achieve a valid
attribution of the tree again.

One of the primary goals in development of language-based programming environments is to
achieve good incremental interactive performance for the variety of services they provide. These
environments are typically used to edit, analyze (both syntax and semantics), execute and debug
programs. Such systems, (like Ensemble [Gra92], [Mun92] and the Cornell Program Synthesizer
[Rep83]), allow creation of language-based environments for di�erent languages from formal speci-
�cations of the syntax, semantics and presentation1.

Attribute grammars, being powerful speci�cation tools for context-free grammars, provide a
good framework for specifying and generating language based editors. The static semantic infor-
mation of programs being edited by these systems is represented as an attribution of the program
syntax tree.

In such language-based environments the semantic information is used for several purposes such
as giving the user feedback on compile-time errors, code generation, debugging support, context-
sensitive editing and browsing. Tree modi�cations, as a result of editing operations, invalidate
attribute instances. Invalidated attribute instances need to be restored to their correct consistent
values. High demands on interactive performance of these systems necessitates the presence of
e�cient incremental attribute evaluation algorithms for attribute grammars.

The goal of this work has been to design and implement a simple yet practical system for gener-
ating e�cient incremental attribute evaluators for the strongly non-circular AGs (SNC) [CF82] class
of attribute grammars. This category of AGs is equivalent to the absolutely non-circular (ANC)
class de�ned in [KW76]. The system is called SPINE, a Synthesizer for Practical Incremental
Evaluators. The construction of the evaluator, given an AG description, is fairly straightforward;
it primarily involves the SNC membership test. SPINE generated evaluators are space e�cient and
o�er close to optimal performance (Section 4.2.6). SPINE also allows editing operations at multiple
subtrees before initiating an incremental reevaluation. ASPEC, is the AG-description language
that has been specially designed for SPINE system (Section 5).

SPINE has been employed in a very innovative and practical application: incremental formatting
of documents in Ensemble [Gra92], an interactive software development environment (Section 6).
The SNC class of attribute grammars seems to be quite su�cient to express a wide variety of
complex presentations for documents.

2 Related Work

Attribute grammars o�er nice language speci�cation features; they are declarative in nature (non-
procedural), exhibit structure and have locality of reference. The key property that makes them

1In this report the word presentation is used in the Ensemble context to refer to formatting information for the

syntactic entities of documents such as layout, font name, font size, indentation, color etc.

2

useful, however, is that they are executable, meaning that it is possible to automatically construct
evaluators for them. For the unrestricted class of AGs the attribute evaluation procedure is in
general non-deterministic. Most evaluator construction algorithms restrict the class of attribute
grammars they accept in order to improve the compute time and memory usage of the generated
attribute evaluator. Restricting the class of attribute grammars also reduces the complexity of the
constructor itself. For a good survey on the basic attribute evaluation techniques refer to [Eng84].

There has been a lot of interest in construction of attribute evaluators that are incremental,
especially in the context of incremental programming systems. An incremental evaluator is one
that does not naively recompute the values of all attribute instances whenever a tree transfor-
mation occurs, but rather, intelligently restricts the amount of recomputation required to make
the attribution of the tree consistent again by using information from the previous computation.
By de�nition, an optimal incremental attribute evaluator runs in O(jAFFECTEDj) time [Rep83],
where AFFECTED is the subset of attribute instances of the tree that require new values as a
result of a modi�cation to the derivation tree. Observe that the AFFECTED set is a function
of the tree transformation itself, and hence the process of restoring tree consistency must include
identi�cation of this set of attributes by the evaluator.

Two naive approaches to incremental attribute evaluators are change propagation and nul-
lify/reevaluate. In the change propagation approach the changes of attribute values are propagated
throughout a fully attributed tree starting at the site of the transformation by following attribute
dependencies. A work list of possibly inconsistent attributes, that must be reevaluated because
one of their arguments changed, is maintained. As is pointed out in [Rep83], this approach can
result in exponential behavior because it is sensitive to the order in which the work list is manip-
ulated. The nullify/reevaluate style of evaluation involves two tree traversal phases: the nullify
phase where a null value is propagated to all attributes that depend on the change site (directly or
by transitivity); and the reevaluate phase which is used to propagate consistent new values to the
nulli�ed attributes. This algorithm is linear in the number of attributes considered. It does not
however fall in the category of optimal evaluators because the set of attributes considered here is
the set of all attributes that depend on the modi�cation site, which is a superset of attributes that
actually require new values (given by the AFFECTED set).

In the Synthesizer Generator System [Rep89], optimal incremental evaluators have been de-
veloped for two classes of AGs, the ordered-AG (OAG) class [Kas80] and arbitrary non-circular
class. The evaluators for the arbitrary non-circular class are scheduled dynamically and are highly
storage intensive because of the amount of evaluator state they are required to keep around at run-
time. The evaluators for the OAG class perform incremental updating by a Visit-Sequence driven
change propagation algorithm (described in [Rep89]). Visit-Sequences are essentially sequences of
tree walk operations and computations that determine the evaluation order for attributes of a tree.
(The idea of Visit-Sequences was introduced in [Kas80].) There are two main problems with this
approach:

� Construction of Visit-Sequence evaluators is inherently non-trivial. A signi�cant and complex
amount of analysis is involved in determining visit-sequences, and then partitioning them to
obtain incremental evaluation plans.

� A more fundamental problem with the change-propagation style of incremental algorithms is
that change-propagation can be initiated only from a single (editing) site in the derivation
tree. In several language-based editing environments (including Ensemble, [Mun92]), editing

3

operations trigger incremental reparse that can result in subtree replacements at multiple
sites. The single-site editing requirement is therefore unnecessarily restrictive.

The FNC-2 system [Jou91] implements incremental attribute evaluators for doubly non-circular
(DNC) class of attribute grammars, which are a strict subset of the SNC class. The advantage of
this evaluator is that reevaluation can begin at any node of the tree because of a certain property
of the DNC class, namely their argument selectors are closed \from below" as well as \from above"
[Fil87]. The approach here is to �rst generate an exhaustive evaluator and later add to them a set
of \semantic control" functions (based on comparisons to old values of attribute instances) that
limit reevaluation process to a�ected instances.

Vogt, et. al. [Vog91] have proposed incremental evaluators based on visit-function caching.
Their scheme allows multiple site tree transformations as well. Provision for multiple site editing
involves a coordination overhead between the subtrees that undergo transformation. This results
in sub-optimal behavior; the overhead usually involves invalidation of all attributes on the paths
to the root from all the editing sites. The time characteristic of this class of algorithms is there-
fore O(jAFFECTEDj+ jattrs on paths to rootj). Their evaluators are, however, restricted to the
ordered-AG (OAG) class of attribute grammars. The SPINE approach is similar in
avor to this
style of evaluator but works for the far richer SNC class of attribute grammars.

Peckham [Pec90] achieved a time bound of O(jAFFECTEDj � logn) for evaluators that handled
multiple subtree replacements, where k is the number of subtree replacements and n is the total size
of the tree. Again, this algorithm works only for a specialized subclass of OAGs and also exhibits
large memory usage characteristics for the data structures required.

3 The SPINE approach

The SPINE system produces incremental evaluators for the Strongly Non-Circular (SNC) class
of attribute grammars. The SNC class is the largest class of attribute grammars for which e�cient
evaluators can be constructed and membership can be determined in polynomial time. In practice
it has been observed that the SNC class is general enough to express almost any useful attribute
grammar. Section 4.2.1 presents an informal characterization of the SNC attribute grammars (also
called the Absolutely Non-Circular class). This view has been described elegantly in [Jou84] and
is based on the theoretical construction by B. Courcelle and P. Franchi-Zannettacci [CF82].

The non-incremental method of attribute evaluation originally proposed by Courcelle and
Franchi-Zannettacci [CF82] and implemented by Jourdan [Jou84] forms the theoretical basis for
the SPINE implementation. This approach, which is often called the \Synth-Function Approach",
corresponds to recursive procedure schemes for attribute evaluation. SPINE uses function caching
to incrementalize the recursive evaluation process. This is similar to the technique used in the
Colander II system ([Mad93]) currently under development at Berkeley.

In the \Synth-Function" approach, each synth-function is a procedure that computes the value
of a synthesized attribute of a certain phylum. The arguments to the function are: a pointer to the
subtree issuing at the node corresponding to the desired attribute instance and the set of inherited
attributes upon which the computation of the synthesized attribute might depend. The basic idea
in synth-function caching is that the previous result of a synth-function call is cached. If the set
of arguments to a synth-function exactly matches its previous invocation, then the old value of the
corresponding synthesized attribute is simply returned without recomputation. This potentially

4

avoids several other attribute computations. Since root nodes do not have any inherited attributes,
reevaluation in such evaluators is done by invoking \synth-functions" of synthesized attributes at the
root node. Naively implemented, this evaluator simply returns the values of synthesized attributes
at the root node of any tree structure. Suitable modi�cations are needed to make sure that all
attribute instances, both inherited and synthesized, get computed and stored at the appropriate
tree nodes. The attribute evaluation technique with all the required modi�cations is discussed in
detail in Section 4.2.

The \synth-function" evaluators overcome the aforementioned two problems about visit-sequence
based evaluators. The following are the merits of using the \synth-function" approach:

� It allows for multiple editing sites, because it is not based on a change-propagation scheme.
Coordination between sites is achieved by simply invalidating all attributes along paths to
the root from the various editing sites and then triggering a reevaluation at the root. The
ability to handle multiple subtree replacements is a useful feature, especially in language
based environments that have support for incremental parsing. Often a single edit operation
can trigger an incremental reparse that modi�es the abstract syntax tree at multiple sites.

� A much less complex analysis is required for evaluator construction. The analysis basically
involves the SNC membership test, which is polynomial time.

� The code generated by these evaluators closely resembles the input AG description, and is
therefore easy to read independent of the input description. This greatly helps debugging of
AG descriptions in case of errors.

� The \synth-function" approach has an inherent advantage in terms of balancing a space
performance tradeo�. The primary performance bene�t in the evaluator comes at the expense
of space, due to the synth-function caching. Observe that caching is not a prerequisite for
correctness of the evaluator, but rather just a performancing enhancing technique. Therefore,
the algorithm provides the
exibility of turning o�/on caching (storage of results of previous
computations) selectively for certain set of attributes, thus allowing a �ner control over trading
time for space or vice-versa.

The primary disadvantages of the \synth-function" style of evaluators are as follows. (Some of
these issues are disussed in greater detail in later sections.)

� They are only close to, but not really optimal.

� Attribute evaluation in this approach involves separate tree traversals for each synthesized
attribute (in some sense more pointer chasing), unlike visit-sequence based approaches, which
attempt to minimize the number of visits to tree nodes.

� It is possible that an inherited attribute is evaluated multiple times during a certain pass of
attribute reevaluation, e.g., when two synthesized attributes depend on an inherited attribute,
then each of their synth-functions needs to be passed the value of the inherited attribute on
which they both depend.

5

4 Implementation of SPINE

First an overview of the SPINE system is presented in Section 4.1. Then the technique used for
incremental attribute evaluation in SPINE is described in Section 4.2. Section 4.3 details the
interface that client programs using the evaluator (PINE) need to implement.

4.1 System Overview

The SPINE system generates incremental attribute evaluators for AG descriptions speci�ed in the
ASPEC attribute de�nition language (Section 5). It compiles an ASPEC input description into a
hard-coded C++ evaluator called PINE (a Practical Incremental Evaluator).

The generation and evaluation time interaction between the various modules of the system is
shown in Figure 1.

The front-end of SPINE is an ASPEC scanner and parser. It does static-semantic analysis of the
input to ensure that the input description conforms to ASPEC requirements. (See ASPEC error
detection in Section 5.10). SPINE then performs automatic generation of missing rules (Section 5.4)
by using the phylum default and production default sections of ASPEC (Section 5.5, 5.6). It
performs analysis to determine the type information of the attributes, parses the right hand side
of semantic rules of the AG into abstract derivation trees, and computes dependency information
between attributes. As a result of all the analysis, an Abstract Attribute Grammar is obtained.

The Abstract Attribute Grammar is then tested for membership in the Strongly Non-Circular
class of AGs. If the test fails, SPINE reports the cause for circularity and aborts. The analysis done
during the SNC membership test along with the Abstract Attribute Grammar is used to produce
PINE code.

A client (tree transforming application) that wishes to use PINE code for incremental attribute
evaluation is required to implement the PINE client interface (Section 4.3).

4.2 Incremental Attribute Evaluation: the technique

Jourdan ([Jou84]) proposed evaluators based on recursive procedures for the SNC class of attribute
grammars. The construction is based on the following very important result proved in [CF82],

For any AG the value of a synthesized attribute at a node of a derivation tree depends only on:
a) the subtree issued from that node.
b) the value of the inherited attributes at that node.

4.2.1 Informal characterization of SNC attribute grammars

For each synthesized attribute occurrence we would like to �nd the set of inherited attributes upon
which it depends. This set however depends not only on the phylum (abstract non-terminals) in
which the attribute occurs but also on the context of that phylum in the derivation tree. The term
argument selector is used to refer to the function that associates with any synthesized attribute
the set of inherited attributes which will be passed as arguments to the function computing that
attribute. The problem is that the determination of the argument selector is dynamic because it
is dependent on the parse tree. We must therefore �nd an approximate solution for the argument
selector that does not speci�cally depend on the parse tree. This requires us to be pessimistic about
the set of dependencies that can exist in any parse tree.

6

SCANNING

PARSING

STATIC-SEMANTIC ANALYSIS

(Syntax Errors, Missing Rules, Default Rules).

ABSTRACT ATTRIBUTE GRAMMAR
(Semantic Rules, Type Information, Dependencies).

 SNC TEST

(for synthesized attrs)

ARGUMENT
SELECTORS

EVALUATOR GENERATOR

A TREE TRANSFORMING APPLICATION

(partially decorated)
tree

decorated tree
EDITING

ASPEC
Attribute Grammar

Definitions

Generation Time

Evaluation Time

INCREMENTAL ATTRIBUTE (RE)EVALUATOR
(C++)

CLIENT INTERFACE

PINE

SPINE

Figure 1: SPINE system architecture

7

For the evaluator construction to be valid the argument selector must satisfy two important
conditions:

� it must be closed: The argument selector of a synthesized attribute must at least contain all
the inherited attributes on which it might depend in any tree.

� it should be non-circular, i.e., an inherited attribute in the argument selector of a synthesized
attribute cannot itself be dependent on the synthesized attribute.

The Strongly Non-Circular attribute grammars are a class of attribute grammars for which it is
possible to statically determine for each synthesized attribute a minimal set of inherited attributes
upon which its computation may depend in any derivation tree. This minimal set of inherited
attributes is referred to as the minimal closed argument selector, often abbreviated as simply the
argument selector of the synthesized attribute. Furthermore, the argument selectors are guaranteed
to be non-circular for SNC AGs. Although SNC class is a proper subset of the class of non-circular
attribute grammars, it covers almost all practical applications.

The algorithm to test membership in the SNC class involves as the �rst step determination
of the minimal closed argument selector function. We then check to see if the minimal closed
argument selector is non-circular, in which case the attribute grammar belongs to the SNC class.
The algorithm is presented in [Jou84]. It is polynomial in time and space.

4.2.2 Ordinary Synth-Functions

For each synthesized attribute we can therefore write a function that takes as arguments some set
of inherited attributes (its argument selector to be precise) and a pointer to a subtree. It returns
the value of the synthesized attribute at the root of the subtree. These are the \Synth-Functions"
used by Jourdan's recursive (non-incremental) evaluators.

Let s be a synthesized attribute of phylum X and the set fa1, : : :,aNg its argument selector.
The ordinary version of the synth-function s X then looks like:

type_s _s_X(node *subtree, type_a1 a1, ..., type_aN aN) {

type_s s;

switch (subtree->prodNum()) {

...

case <p>:

s = <Semantic Rule for 's' in <p> with attribute

occurrences in the rule substituted by their

attribute definitions>;

break;

...

}

return s;

}

8

4.2.3 Memoizing Synth-Functions

The key observation in generating incremental evaluators is that a \Synth-Function" must return
the same value as on the previous invocation if the values of the parameters do not change. When
there is no stored value of the attribute at the root node of the subtree (either because it is being
computed for the �rst time or because it was invalidated due to an editing operation), we need to
recompute the attribute. If a stored value does exist and the input arguments match those of the
previous invocation we can simply return the stored value of the attribute. Otherwise, we need to
recompute the value of the attribute.

Whenever the value of synthesized attribute is recomputed, we memoize the result. This involves
storing the values of both the attribute and its argument selectors in the tree node.

Let s be a synthesized attribute of a phylum X and the set fa1, : : :,aNg its argument selector.
The memoized version of the Synth-Function s X then looks like:

type_s _s_X(node *subtree, type_a1 a1, ..., type_aN aN) {

type_s s;

if ((stored value of 's' at subtree exists) &&

((a1, ..., aN) == (memoized values of previous call))) {

/* no need to recompute 's' */

return stored value of 's';

}

switch (subtree->prodNum()) {

...

case <p>:

s = <Semantic Rule for 's' in <p> with attribute

occurrences in the rule substituted by their

attribute definitions>;

break;

...

}

Memoize; /* Save a1, ..., aN in subtree node */

Store s in subtree node;

return s;

}

4.2.4 The \ update" Attribute

In the memoizing scheme, whenever a synth-function is invoked, the value of the corresponding
synthesized attribute gets stored in the root node of the subtree that is passed to the synth-
function as argument. But how do we ensure that the synth-functions of all attributes get invoked
at every node of the tree? Also, how do all the inherited attributes at the nodes get computed and
stored?

9

One convenient way to ensure that the above two requirements are met is to create a dummy
synthesized attribute, update, for each phylum. This attribute is important because of the side-
e�ects caused by its synth-function. It is forced to depend on all the inherited attributes of the
phylum. Therefore the argument selector of update attribute of a phylum is all the inherited
attributes at the phylum. This ensures that in the body of the synth-function for update all the
inherited attributes of its phylum will be available to be stored. Also the body of this synth-function
invokes synth-functions of all other synthesized attributes at the node, then continues tree traversal
by invoking the synth-functions corresponding to the update attribute of each of its children.

Let X be a phylum, with s1, : : : sK as its synthesized attributes (excluding the update at-
tribute), and let a1, : : : , aN be its inherited attributes. Then the synth-function for this update
attribute has the following form:

void _update_X(node *subtree, type_a1 a1, ..., type_aN aN) {

if (('_update' is defined at root node of subtree) &&

((a1, ..., aN) == (memoized values of previous call))) {

/* No inherited attribute of this subtree changed */

/* Hence no need to traverse this subtree */

return;

}

/* Compute all the synth attrs of X */

Invoke Synth-Functions for s1, ..., sK;

switch (subtree->prodNum()) {

...

case <p>:

Invoke _update synth functions for each child of operator <p>;

...

}

Memoize; /* save all the inherited attributes (a1, ..., aN) at X */

Set defined status of _update attribute to TRUE;

}

The additional dependencies induced as a result of the update attribute cannot convert an
original SNC AG to a non-SNC AG. The SPINE system automatically generates update attributes
for all phyla with the required dependencies.

4.2.5 Initiating a Re-Evaluation

After a sequence of tree editing operations have been performed, in order to initiate an attribute
re-evaluation, all attributes along paths from the editing sites to the root of the tree are invalidated.

Then, we simply invoke the Synth-Function for the update attribute of the rootPhylum, by
passing it a pointer to the root of the tree. No other arguments need to be passed to this function
because the root phylum can have no inherited attributes.

10

4.2.6 Storage Requirements and Time Analysis

The evaluator has a time characteristic of O(jAFFECTEDj+ jattrs on paths to rootj). The term
\attrs on paths to root" appears due to the fact that for each editing site we clear all the attributes
on the path from the editing site to the root. This implies that our algorithm does not fall in the
class of optimal incremental evaluators. In fact, in the worst case, i.e., when the tree is degenerate
(tall and thin) or when the number of editing sites is large, the entire set of attributes over the tree
may have to be recomputed. Such cases arise very rarely and hence are not of serious concern.

Observe that since function caching applies only to the synthesized attributes, the value of an
inherited attribute might be computed multiple times in a single pass of attribute reevaluation.
Inherited attributes in most applications often serve as simple transfer attributes that propagate
values down the tree by copy-rules. Usually no expensive computation is involved in determining
the value of an inherited attribute. Hence, occasionally computing an inherited attribute multiple
times is not costly.

Apart from the storage required to store the values of all attribute occurrences in the nodes
of the derivation tree, for each synthesized attribute of a phylum (node), storage is required to
memoize values of its argument selector. This storage is part of the class de�nition generated by
PINE for this phylum. For each synthesized attribute occurrence a de�ned bit is also maintained
in the corresponding phylum instance. This indicates if there is a stored value for the attribute in
this phylum.

4.3 The PINE-Client Interface

The PINE-Client interface is object-oriented and is implemented in C++. In the PINE world, the
tree nodes correspond to the class AgNode. The class has the following interface. Please note that
this interface has been implemented di�erently (Section 6.5) for Ensemble because of the nature of
the requirements of the Ensemble system.

class AgNode {

public :

AgNode(char *phylum);

_PhylumData *attrData;

//---- These need to be implemented by the client. ----

virtual int prodNum() = 0;

virtual AgNode *parent() = 0;

virtual AgNode *child(int n) = 0;

virtual void setVisited() = 0;

//---- These are implemented by PINE ----

void subtreeChange();

void reEval();

}

11

The tree nodes of the client application inherit from the AgNode class. PINE, during evaluation,
needs to know information such as the operator (production) that applies at a node (prodNum()),
the parent node (parent()) and a speci�c child of a node (child(num)). These are C++ pure
virtual functions in the AgNode class, and are implemented by the client. [The reason for making
these functions virtual is that the AgNode class does not maintain any navigational information
(like pointer to its parent node or children). These are implemented by the client in any manner
it chooses to do so.] The setVisited() function is invoked by PINE whenever a node is visited
by it during incremental attribute re-evaluation. The client can chose to implement setVisited()
however it wants. Typically, this can be used by the client to study the performance gain of using
an incremental algorithm.

The methods subtreeChange() and reEval() in the AgNode class are implemented in PINE.
Whenever a subtree is modi�ed, the client should invoke the subtreeChange()method at the root
of the modi�ed subtree. Subtree changes could be invoked by the client at several editing sites (in
case there are multiple subtree replacements). Then to trigger attribute reevaluation, the client
simply invokes the reEval() function to obtain a fully decorated tree again.

Last but not the least, the client needs to be able to access the values of the attributes computed
at a particular AgNode. PINE code contains class de�nitions for each of the non-terminals (phyla) in
the AG. These are generated automatically by SPINE. The class de�nition for a particular phylum
contains storage for the attributes of that phylum. All phylum class de�nitions inherit from a base
class called PhylumData. PINE provides the implementation for the PhylumData. The member
attrData of any AgNode instance is a pointer to a derived class of PhylumData. The derived class
it points to depends on the phylum that corresponds to this instance of the AgNode.

For example, let P be a phylum with 2 attributes attr1 and attr2 of type int and bool

respectively. Corresponding to this phylum P, as we mentioned before, PINE generates the following
class de�nition.

class P : public _PhylumData {

public:

int attr1;

bool attr2;

... /* other book-keeping stuff */

}

To access, say attribute attr2 of phylum P at AgNode node, simply cast the attrData member
of AgNode into a pointer to class P, and then access the desired �eld from the class.

((P *)(node->attrData))->attr2

5 ASPEC as a AG-description language

ASPEC is a new, specialized language that has been designed for specifying attribute grammar
descriptions for the SPINE system. ASPEC is an applicative programming language (which means
there are no assignable variables or side-e�ects, just pure expressions and functions). This is useful

12

for programming safety and reliability. The language has natural semantics that make it easy to
read, learn and use. ASPEC speci�cations of AGs are completely independent of the evaluator
(e.g. incremental, exhaustive) that one may want to generate for it.

The syntactic base of AGs written in ASPEC is not required to be a concrete grammar. The
AGs in ASPEC are structured by an abstract syntax. This enables us to have a \semantic view"
of the application for which an AG is being written, rather than an enforced syntactic view. The
abstract syntax must be input as a part of the ASPEC description. Using an abstract syntax
relieves the ASPEC programmer from cumbersome syntactic constraints that might arise from a
particular parsing technique and also enables maintenance of smaller sized derivation trees.

ASPEC provides for heterogeneous, �xed arity operators (abstract productions). Each phylum
(abstract non-terminals or node) has set of attribute declarations that corresponds to the set of
attribute instances that will need to be computed to decorate tree nodes of its type.

The inherited attributes of an operator and the synthesized attributes of its children are called
the input attributes of the operator. The synthesized attributes of an operator and the inherited
attributes of its children are called the output attributes of the operator. For each output attribute
of an operator, there must exist a semantic rule (attribute de�nition) in the ASPEC input.

For the complete ASPEC grammar refer to Appendix A. A sample ASPEC input description
is given in Appendix B. Next, several useful and interesting language features provided by ASPEC
are discussed.

5.1 No Normal-Form restriction on Semantic Rules

Several attribute grammar systems require their AG-descriptions to be in normal form. The normal
form restriction implies that the right hand side of a semantic rule for an output attribute of an
operator can have references only to input attributes of the operator. In ASPEC we relax this
constraint by allowing non normal form AGs in which the right hand sides of the semantic rules
can have both input and output attribute occurrences. This relieves the burden of the ASPEC
programmer having to know about the technical details of AGs.

For example, consider the following production and the semantic de�nitions for its attributes.

S --> A B

f

$$.Width = $1.Width+$2.Width;

$1.Left = $$.Left+5;

$2.Left = $1.Left+$1.Width+2;

g

In the above operator, the attribute instances S.Width, A.Left and B.Left are the output
attributes; S.Left, A.Width and B.Width are the input attributes. The semantic rule for $2.Left,
i.e., B.Left has a reference to another output attribute $1.Left i.e. A.Left. Such an attribute
reference is a non formal form attribute reference.

The SPINE system's SNC membership test and evaluator construction work when applied to
non normal form AGs. Non normal forms do not increase the expressive power of the AG, but
simply allow us to write more compact AGs. A non normal form AG can be converted into an
equivalent normal form AG by a simple textual replacement of the attribute occurrences in the
semantic rule that are in non normal form by the right hand side of the semantic rules that de�ne
them.

13

In fact, for non normal form occurrences of synthesized attributes, SPINE simply generates a call
to the corresponding \Synth-Function", rather than expand its de�nition. In the example above,
for the non normal form occurrence of $1.Left in the semantic rule for $2.Left we can generate
a call to the \synth-function" for Left attribute of phylum A rather than textually substituting
the semantic rule for $1.Left which is $$.Left+5. Firstly, this reduces the size of evaluator code.
Secondly, it improves the evaluator's run-time performance due to the possibility of a cache hit in
the memoized synth-function, if that attribute has already been computed.

5.2 Extern Function Calls

The right hand side of the semantic rules can have function call invocations. These functions are
assumed to be de�ned external to the AG description.

For example,

P --> A B C

f
$$.a = foo1($1.a, foo2($3.c)) + 3;

g

In the above example the right hand side of the semantic rule has references to two external
functions foo1 and foo2. These functions are implemented external to PINE. The generated PINE
code contains a reference (#include) to a special header �le. The exact name of this header �le
depends on the name of the ASPEC �le. Say, \hello.aspec" is the name of the ASPEC input �le.
The generated PINE code #includes \hello-helper.h" �le name. This �le can contain the extern
declarations for all the extern function calls in the ASPEC input. Typically, the required functions
are implemented in \hello-helper.cc" �le.

5.3 Aggregate Function Calls

Aggregate function calls can occur in the right hand side of the semantic rules. The syntax for ag-
gregate function calls is '@<funcname>.<attr>'. In the context of an operator with n children, this
aggregate function call is a compact way of writing '<funcname>(n, $1.<attr>, : : : , $n.<attr>)'.

This is best illustrated by an example.

P --> A B C

f

$$.width = @Max.Right - @Min.Left;

g

The right hand side of the above semantic rule is equivalent to the expression:
Max(3, $1.Right, $2.Right, $3.Right) - Min(3, $1.Left, $2.Left, $3.Left)

Here, Max and Min are assumed to be externally de�ned variable argument functions. Hence
the number of children is passed as the �rst argument to each one of them. Again, the extern
declarations of these variable argument functions must also be placed in the special `.h' �le as in
the case for external function calls (Section 5.2). Aggregate function calls are very useful in writing
compact AGs as they lend themselves well to writing default semantic rules that apply to several
di�erent productions. See Section 5.6 for an example.

14

5.4 Automatic Generation of Missing Rules

ASPEC provides a very powerful mechanism for automatically generating missing default rules.
When used wisely, it lends to very compact AG descriptions. It is worth mentioning that the
design of this component was primarily motivated by the desire to keep AG descriptions for layout
attributes of Ensemble documents small and simple to write.

When an explicitly speci�ed semantic rule is missing for an output attribute of an operator we
attempt to use a semantic rule from the phylum defaults section for this attribute. If we are unable
to do so, we consult the production defaults section for an applicable semantic rule. If we �nd
none, we declare an error. Next we discuss ways to use phylum and production default sections for
automatically generating missing rules.

5.5 Phylum Defaults Section

When an output attribute occurrence, say attribute x of phylum P, of an operator does not have a
semantic rule explicitly speci�ed, we check to see if a default semantic rule for this occurrence has
been de�ned in the phylum defaults section. If such a phylum default rule does exist for attribute
x of phylum P, we use it as the de�nition for x provided it is legal in the context of the operator in
which it is being applied.

Furthermore, the right hand side of a semantic rule in this section can contain relative attribute
references ($/n.attr), where n is an integer.

The following example illustrates interesting ways of using phylum default rules and relative
attribute references.

%% Phylum Defaults Section

ID:

f
Bold = true;

Left = $/-1.Left + $/-1.Width;

g
SEMI:

f
Left = $/-1.Left + $/-1.Width;

g
: : :

%% Semantic Rules Section

/* operator 1 */

ASSMT --> ID EQ NUM SEMI

f

: : :

g
/* operator 2 */

DECL --> TYPE ID SEMI

f

: : :

g

15

In the above example assume that in both operator 1 and operator 2 there are no explicit
semantic rules for the Bold attribute of ID and Left attribute of ID and SEMI (semicolon). The
phylum default rule for Bold attribute of ID can be applied in the context of both operators. The
phylum default rule for Left attribute of SEMI can also be used for both operators. In operator

1 this rule translates to SEMI.Left = NUM.Left + NUM.Width. In operator 2 this rule translates
to SEMI.Left = ID.Left + ID.Width. The phylum default rule for Left attribute of ID can be
applied only for operator 2. This is because, $/-1 is not legal with respect to ID in operator 1,
since ID has no left sibling in this context.

The use of $n.attr notation in semantic rules of ASPEC over the traditional phylumName.attr

style for attribute references makes it possible to write useful default rules (as shown in the example
above) that translate into di�erent rules depending on the context. (The $n.attr notation also
usually requires fewer key strokes!)

5.6 Production Defaults Section

When we are unable to �nd a semantic rule for an attribute in the semantic rule section or the
phylum default section, we attempt to �nd one in the production default section.

In this section two symbols i and n have special meaning. Let op be the operator, with a
phylum occurrence P that has an attribute attr for which we are attempting to �nd a semantic
rule. In this context n refers to the number of children of the operator op, and i is the index (child
number) of this occurrence of P in op. i is used only for phylum on the right hand side of the
operator. Hence legal values of i range from 1 to n. If P is in the left hand side of the operator,
only the $$.<attr> rules are relevant.

$i.<attr> rules in this section could optionally be supplied an additional quali�er that restricts
the range of i values for which the rule is applicable. For example, a quali�er range [2, n] implies
that the rule can be applied for all but the �rst child of an operator.

For example,

%% Production Defaults Section

/* n, i are special symbols in this section */

$$.Width = @Max.Right - @Min.Left; /* for LHS phylum */

$i.Bold = false; [1, n] /* for all children */

$1.Top = $$.Top; /* for first child */

$i.Top = $(i-1).Top + $(i-1).Height; [2, n] /* except first child */

: : :

%% Semantic Rules Section

DECL --> TYPE ID SEMI

f g
ST LIST --> ST ST LIST

f g

In the right hand side of $i rules, attribute references can be of the form $<i-expression>.<attr>,
where <i-expression> is an expression involving i as a variable.

Assume that the Semantic Rules Section in the above ASPEC description does not have any
semantic rules for Top, Width and Bold attributes. Then, the following rules are automatically
generated:

16

DECL --> TYPE ID SEMI

f
$$.Width = Max(3, $1.Right, $2.Right, $3.Right)

- Min(3, $1.Left, $2.Left, $3.Left);

$1.Bold = false;

$2.Bold = false;

$3.Bold = false;

$1.Top = $$.Top;

$2.Top = $1.Top + $1.Height;

$3.Top = $2.Top + $2.Height;

g
ST LIST --> ST ST LIST

f
$$.Width = Max(2, $1.Right, $2.Right) - Min(2, $1.Left, $2.Left);

$1.Bold = false;

$2.Bold = false;

$1.Top = $$.Top;

$2.Top = $1.Top + $1.Height;

g

5.7 Type checking

All attribute declarations in ASPEC are typed. However SPINE does not directly provide any
type checking services for ASPEC. This is not a problem because all the type information in an
ASPEC description is re
ected in the C++ evaluator code (PINE) generated by SPINE. Hence,
type-checking is done at the level of PINE code by a C++ compiler.

Currently, ASPEC only supports scalar data types: integer, float, boolean, PooledString2

and C-like enumeration types. If one wants to support arbitrary data types one needs to be care-
ful about two things: Firstly, synth-function memoization should be able to handle comparisons
of arbitrary data types. We can easily achieve this by overloading the equality operator '==' in
C++. Secondly, some form of garbage collection scheme (like reference counting) will have to be
implemented. This is to ensure that memory allocated for a non-scalar attribute is recovered when
the attribute is assigned a new value. For simplicity therefore, in the current implementation,
SPINE does not provide support for complex data types in ASPEC.

5.8 Attribute Declarations

For each attribute of a phylum in the ASPEC the following information must be provided: What is
its data type? Is it an inherited or synthesized attribute? Can its value be over-ridden by external
sources?

SPINE currently does not use attribute over-ride information. But this feature will be eventually
incorporated into SPINE, because there are applications like layout attribute computations where

2A PooledString class object di�ers from a \char*" or \const char*" in that it is guaranteed to be both pooled
and permanent. By \pooled", we mean that if two PooledStrings have string value \foo", then they share storage

for that string. By \permanent", we mean that the const char* returned by PooledString::chars access method will

never change or be freed.

17

one might want to over-ride the value of a layout attribute to take on a forced new value.
Attribute declaration defaults can be speci�ed at the start of the ASPEC description �le.

Whenever an attribute declaration has missing information, the defaults declarations will be used.
For example,

%% Default Attribute Declaration Section

int inherited override

: : :

%% Attribute Declaration Section

phylum P, SL

with

Width, Height: synthesized: nooverride;

Top, Left;

Bold: bool;

end

In the above example, phylum P and SL are declared to have the same set of attributes. Width
and Height are declared to be synthesized, non overridable attributes. All the other attributes are
over-ridable and inherited by default. The Bold attribute is the only one of boolean type; all others
are integer type by default.

Often all phyla in the grammar, with a few exceptions, have the same set of attribute declara-
tions. There is a convenient short hand to capture this common case.

For example,

%% Attribute Declaration Section

phylum START

with

end

phylum STMT, STMT LIST

with

stmt num: int: inherited;

width, height: float: synthesized;

end

phylum * /* matches any other phlya */

with

width, height: float: synthesized;

FontSize: int, inherited;

Bold, Italic: bool: inherited;

end

The * in the third (last) phylum attribute declaration will match with any phylum that does not
already have an attribute declaration. In the above example the phylum START has no attributes,
the phlya STMT and STMT LIST have stmt num, width and height attributes. All other phyla in
the grammar have width, height, FontSize, Bold and Italic attributes.

18

5.9 Sanity Checks

Often users would like to incorporate sanity checks (like assert statements) in the AG speci�cation
on the values of attributes computed at a particular operator instance (node in a derivation tree).
In ASPEC this can be done in the following manner: declare a dummy synthesized attribute,
say sanity, for the left hand side phylum of the operator; now add a semantic rule for this
attribute. The rule simply invokes an externally coded sanity check function and passes it the
relevant parameters. In the current implementation any error reporting or corrective action has to
be handled by the sanity function on its own.

For example, if for an operator say, P --> A B one wants to check if the width attribute of P
is positive and is greater than the width attributes of both A and B:

P --> A B

f

: : :

/* sanity: a dummy synthesized attribute of P */

$$.sanity =

(isPositive($$.width) &&

isGreater($$.width,$1.width) &&

isGreater($$.width,$2.width));

g

5.10 Error Detection

Fairly useful and elaborate messages for errors in the ASPEC input are given by SPINE. The wide
variety of errors detected by the system include: syntax errors, missing semantic rule for an output
attribute of an operator, redeclaration of an attribute, multiple de�nitions for an output attribute
of an operator, unde�ned phylum, illegal attribute reference in the right hand side of a semantic
rule etc. In case the ASPEC input fails the SNC membership test, the operator (production) that
has a circularity in its dependency graph, and a speci�c attribute that is involved in the circularity
(by being transitively dependent on itself in the production's dependency graph) are reported.

6 Ensemble as an application for SPINE

SPINE has been put to practical use in the Ensemble research system being developed at Berkeley.
Though SPINE has been built as a general purpose system for incremental evaluation of attribute
grammars for any application, the motivation for the work actually stemmed from the need to
improve the interactive performance of Ensemble's presentation system. This section details the
various issues relating to the use of SPINE for Ensemble, describes the details of the PINE-Ensemble
interface (see Section 6.5), and discusses the some of the limitations of using SPINE (Section 6.6).
Section 6.7 gives some performance numbers.

6.1 Ensemble Overview

Ensemble is a software development environment that provides uniform language-based services for
creation and manipulation of a wide variety of structured documents; programming language doc-

19

uments, structured natural language documents (e.g.: memos, articles, slides), structured graphics
and structured video.

Ensemble takes the view that the content of a document and its presentation (the manner in
which it is visually rendered to a user) are two clearly di�erent aspects that need not be tightly
coupled. This decoupling enables Ensemble to achieve elegantly its design goal of o�ering users the
ability to manipulate multiple representations of a common underlying document. It is possible
to support editing operations on each of the representations and have editing changes in one be
re
ected consistently in each of the others.

Figure 2: A two presentation example for switch statement

6.2 Presentations in Ensemble

The appearance of an Ensemble document is primarily de�ned by a formal speci�cation called a
presentation schema. Each Ensemble document has a particular structure i.e. it conforms to a
context free grammar like the pascal language grammar or a grammar for articles etc. Users write
one or more presentation schemas for each structured document type. A document corresponding
to a particular structure can be viewed in as many styles as the number of presentation schemas
written for that structure. Figure 2 illustrates this idea with two di�erent presentations for the
same switch statement document.

Each media is characterized by a set of presentation attributes. The process of formatting a
document of a certain media type involves computation of the media speci�c presentation attributes
for all sub-components of the document. For example, for a text media document, like the switch
example, typical presentation attributes would be the font name, font size, position of a piece of text
and so on. On the other hand a graphics media document would probably manipulate attributes
like line width, �ll color and �ll pattern.

The presentation schema consists of a set of formatting rules that specify how the presentation
attributes must be computed. When documents are edited the presentation attribute values at
existing nodes of the document tree may become invalid. The tree itself can undergo changes
during editing. Attribute reevaluation over the entire tree is a very costly operation even for
reasonably small sized programs.

20

6.3 Performance bottlenecks in Proteus

Proteus is the subsystem of Ensemble that is responsible for computing values of presentation
attributes. It adapts to the needs of a variety of di�erent media. The �rst version of the Proteus
exhibited very poor interactive performance. This could be attributed to two fundamental problems
with the implementation:

� Attribute computations were not incremental. Every edit operation resulted in attribute
computation of all attribute instances over the entire tree even though in most cases only a
few attribute instances actually change value.

� The presentation schemas, written in a special language called the presentation language, were
interpreted by Proteus. This involved building several run time data structures in the heap
that represent the presentation rules. These data structures are interpreted by Proteus for
every attribute computation. This is both space and time ine�cient. This problem, though
not as severe as the �rst one, is worth solving.

The goal for the new version of Proteus was clear: to overcome the aforementioned problems.
We take advantage of the fact that all Ensemble documents have a tree representation. This enables
us to write formal speci�cations of Ensemble documents using attribute grammar formalism. An
AG speci�cation in this framework would correspond to presentation attribute computations over
the document tree structure. The advantage of using attribute grammars is that incrementality is
implicit in the formalism.

6.4 The new approach

Under the new scheme, users write formal speci�cations of the presentation in the ASPEC attribute
grammar description language. Each ASPEC input corresponds to a unique structure type, e.g.,
Fortran document type, article type etc. Multiple presentations for a particular structure type
are simply described by means of multiple ASPEC speci�cations, all of which map to the same
structure of documents, but contain di�erent rules for presentation attribute computations.

These ASPEC speci�cations are transformed o�-line by SPINE into PINE. The generated PINE
code has embedded in it all the information needed to incrementally compute presentation attributes
in accordance with the given input ASPEC description. This code is compiled to obtain an PINE
object module that gets dynamically loaded in by the Ensemble system on demand.

The presentation information for Ensemble documents is represented as an attribution of the
presentation syntax tree3. The PINE module is stateless: all the state information like the values of
attribute instances, valid bits and values of old attributes for the purpose of caching resides entirely
on the presentation tree. The PINE code computes values of attributes by accessing values of other
attributes from the tree, stores new values for attributes in the tree, and updates semantic state
information of the tree to obtain incrementality. It will soon be made clear why statelessness of
PINE is a useful and desirable property.

Figure 3 presents a simpli�ed view of the typical run-time interactions between the various
components of Ensemble for the new version of Proteus that uses PINE modules for presentation

3We use the term presentation syntax tree instead of document syntax tree because these can often be di�erent.

For example, the presentation syntax tree could have more nodes corresponding to automatically generated text like

page numbers. This is referred to as tree elaboration in the Ensemble context.

21

attribute computations. In the �gure, doc1.f77 and doc2.f77 are both assumed to be documents
that correspond the same structure, namely the Fortran grammar. We further assume that two AS-
PEC presentations speci�cations, f77-p1.aspec and f77-p2.aspec exist for Fortran, and PINE
`.o' modules have already been generated for them o�-line. If say the user wants to view each
document in each of the given presentations, the PINE module corresponding to each of the pre-
sentation will get dynamically loaded in by Ensemble. The key observation here is that it su�ces
to load exactly one copy of each PINE module (e.g.: f77-p1.o) even if there are multiple number
of documents (like doc1.f77 and doc2.f77) that want to use that common presentation speci�ca-
tion (f77-p1.aspec). This sharing of PINE modules between multiple documents is possible only
because of their statelessness.

Dynamically
Loaded PINE
Modules.

doc1.f 77 doc2.f77

doc1.p1 doc1.p2 doc2.p1 doc2.p2

Presentation Trees

Document Trees

Ensemble

Document Model

Proteus

Formatter

f77-p1.o

f77-p2.o

 Editing Model

Figure 3: Simpli�ed view of run-time interactions for a two document, two presentation example.

6.5 The PINE-Ensemble interface

Ensemble is quite a large software system, nearly 100,000 lines of code! It was decided that it would
be simpler to adapt SPINE to match Ensemble's requirements rather than vice-versa. Hence, a
specialized interface has been implemented for the purposes of using PINE code for Ensemble4.
Changes in the interfaces were inevitable in any case, because of the need to support multiple
presentations. This meant that on the same node di�erent sets of attribute instances corresponding
to di�erent presentations could co-exist.

4The reader who is not interested in Ensemble speci�c implementation details may skip this section.

22

In the Ensemble world, tree nodes correspond to the PNODE class and the presentations to the
AgProteusPres class. The AgProteusPres class, actually its parent class ProteusPres, implements
all the navigation functions that required by the PINE (e.g.: get parent of node or get a child of
a node) instead of these being implemented as virtual functions as in the case of our more general
interface (see Section 4.3).

The \synth functions" now take an additional argument, a pointer to the AgProteusPres class.
This arguments tells PINE what the presentation for which the attribute is being computed is.

When a presentation is initialized it is necessary to dynamically load the appropriate PINE
module if it has not already been loaded. This is done by invoking the loadPine method in the
AgProteusPres class. Proteus needs to be aware of two function entry points in the loaded PINE
module: update RootPhylum and allocAttrData. The �rst function handler corresponds to the
function that triggers an attribute reevaluation in the tree. The arguments to the function are a
pointer to the presentation and to the root node of the tree.

We will now discuss the need for the allocAttrData handler. The set of attribute instances
that reside on a node depends on the type of the node (or phylum). All attribute instances on a
node are collected up in a node speci�c C++ class object. SPINE generates de�nitions for these
node speci�c classes in the PINE code, each of which inherits from a common base class. Objects of
the derived class have storage for the values of attributes and other book keeping state information.
Attribute values can be accessed through the base class by means of virtual functions. For every
node, we need to be able to allocate an object the appropriate derived class. This is done using
the allocAttrData function that is implemented in PINE. The node type must be passed as an
argument. The name of the base class is medium dependent (<media name> PhylumData). The
preamble of the ASPEC �le contains the required MEDIA declaration. The virtual functions in
the class provide access to the medium speci�c presentation attributes.

When a document is edited the subtreeChange method in each of its presentations is invoked.
A pointer to the edited subtree is passed as argument to this function in order to signal PINE of
the change. There can be one or more subtreeChange calls before an attribute recomputation is
initiated using a call to reEval. Both subtreeChange and reEval have been implemented in the
AgProteusPres class.

6.6 Limitations of using AGs in formatting

There are some caveats in using a attribute grammar based presentation system for Ensemble. A
user can overcome some of the limitations of the system by means of suitable tricks. In this way,
the system can be used to the best possible extent.

� An inherent problem with attribute grammars is that all attributes dependencies are local.
It may sometimes be the case that the value of an attribute at a node (say dest) actually
depends on another attribute somewhere far away in the tree on another node (say src). In
such a situation a special transfer attribute will have to be set up that simply propagates
the value of one attribute by means of copy rules through a common ancestor of dest and src
nodes.

� ASPEC speci�cations must conform to SNC class of attribute grammars. This does not
appear to be a real restriction as the SNC class seems to incorporate almost all practical

23

grammars. However an ASPEC input may fail the circularity test because of a certain unin-
tentional typing error. SPINE helps the user rectify the error in such situations by pointing
out the attribute involved in the circularity.

� Section 4.2.6 showed that the PINE based incremental evaluators can exhibit poor perfor-
mance for unbalanced or degenerate trees. It is important to bear this in mind while writing
grammar descriptions. Often structuring the grammar on an compact abstract syntax can
considerably reduce the height of the tree. For example, repetitive constructs like a list of
statements are traditionally represented as linearly recursive lists in order for the grammar to
be non-ambiguous. This results in arbitrarily degenerate trees. A representation of sequence
as a balanced binary tree [Mad93] in the abstract syntax has the e�ect of bounding the depth
of the tree by O(log n). Although this introduces ambiguity in the grammar it provides the
incremental parser more scope for e�ective reuse of tree sections.

� A more serious concern with the AG formalism is that only grammar preserving transforma-
tions of the tree structure are allowed. To be more precise, attribute instances on a tree can be
assigned consistent and meaningful values only if the tree conforms to the grammar. There-
fore, the attribute reevaluation process cannot be invoked after an editing operation that
violates the grammar. Reevaluation can proceed only after a sequence of editing changes
restore the tree to a legal con�guration. This can be quite a problem during, for example,
the document creation phase when for most of the time the document does not conform to its
grammar. It is not clear that there is a simple solution to this problem. A possible method is
to use heuristics to provide some default formatting. This might involve using the old value
of an attribute if one exists, otherwise using some safe default value.

6.7 Performance Measurements

Some simple performance measurements have been done to determine the bene�ts of using the
SPINE system in Ensemble. The results have been found to be extremely satisfactory. The tests
were conducted on a Sparc-10 workstation. The document structure that we tested �rst was a C
switch statement. The grammar corresponding to the switch statement had 23 non-terminal and
terminal symbols and 22 productions.

Two ASPEC presentation descriptions were written for the switch grammar. Each one was
about 150 lines long. Both presentations required about 17 presentation attributes to be computed
at each node of the presentation tree.

We �rst measured the time required for o�-line evaluator generation using SPINE. This includes
time to parse the ASPEC input, do the SNC analysis and generate code. The real time for this
o�-line activity was found to be around 1.1 seconds for both presentations.

The interactive performance is obviously of greater interest. The sample switch statement
document used in the test was about 20 lines of code comprising mainly of three case blocks each
of which had three assignment statements followed by a break statement.

The metric used for evaluating the system is the maximum number of character presses that
can be processed per minute. The disadvantage of this metric is that it is dependent on the
location of the edit operation in the document. In fact, any form of performance measurement of
an incremental attribute evaluator is tied to the speci�c edit changes that are being done since the

24

Table 1: Characters Processed per Minute: Small Document Example

of presentations Old System New System Speedup

1 88 264 3.0
2 66 230 3.5
3 31 146 4.7

Table 2: Characters Processed per Minute: Large Document Example

of presentations Old System New System Speedup

1 42 166 4.0
2 21 94 4.5
3 13 64 4.9

time for attribute reevaluation depends on the edit operation itself. However, the metric does gives
us a feel for the potential speedups possible due to the use of SPINE in Ensemble.

Processing a character involves detection of a key press, an update to the document, com-
putation of new presentation attributes and rerendering of the updated document. Though the
performance enhancements due to use of the SPINE system only applies to the attribute computa-
tion stage, we would like to see its e�ect on the overall interactive system performance of Ensemble.
Hence the motivation for choosing such a metric.

We compared the old system (non-incremental and interpreted) with the new one (incremental
and compiled) for the switch document described before. We also varied the number of active
presentation on the document. Table 1 summarizes the results of the studies. Similar measurements
were also taken for a toy language document of nearly double the size of the switch document.
The results are summarized in Table 2. All numbers are in characters processed per minute.

The old system is far more sensitive to changes in the document size because of its non-
incremental nature. The speedups in the two tables above substantiate this claim. The larger the
size of the document the greater is the speedup of the incremental system over the non-incremental
one. The variation in speedups for a document when the number of presentations is increased also
exhibits similar behavior.

7 Conclusions

SPINE is a system for generating incremental evaluators for attribute grammars. They are ap-
plicable to the broad class of SNC attribute grammars. SPINE system has a simple yet general
interface that greatly simpli�es the task of integrating SPINE into a wide variety of tree modify-
ing client applications for the purpose of incremental attribute computations. Simplicity, close to
optimal performance and ease of system integration make SPINE an ideal tool for incorporating
incremental language-based services in software systems.

A reliable and robust version of the SPINE system exists currently. The system is about 7000

25

lines of C++,
ex and bison code. SPINE has been integrated into Ensemble for incremental
computation of presentation attributes of structured documents. The performance results have
been very encouraging. We obtained speedups of 3 to 4 in overall system performance even on
small documents in comparison to the previous non-incremental version. Work still needs to be
done on providing support for overriding attribute values from outside of the attribute grammar
system. This may involve propagation of new values to other attribute instances inside the attribute
grammar.

Higher-order attribute grammars overcome some of the problems of traditional attribute gram-
mars by allowing remote dependencies. This eliminates the need to have ine�cient copy rules all
over the tree. It would be interesting to see the performance improvements gained from using
incremental attribute evaluation on these attribute grammars.

A limitation of the current implementation is that there is support for only scalar data types.
This is not due to a limitation in the design of the incremental attribute evaluation technique. Once
we incorporate a garbage collection scheme and support for equality comparisons for arbitrary data
types it would be possible to use SPINE for applications like context-sensitive semantic analysis of
languages. Also, there is scope for work on improving the language features of ASPEC; support
for macros, assert statements, greater type safety and modularity.

In the SPINE model of attribute computations, whenever a request for attribute reevaluation
is made, the entire tree is restored to a consistently attributed state. In many applications, at any
given time, only a subset of the attributes are of interest. Evaluators that attempt to reevaluate
only the set of demand attributes are called demand-driven or lazy evaluators. We are currently
exploring ideas for lazy incremental attribute evaluation under SPINE.

8 Acknowledgements

I thank Michael A. Harrison, my research advisor, for his guidance, support and encouragement. I
want to thank Susan Graham for her help, suggestions and support. I also wish to thank Kathy
Yelick for her careful reading of the report. Special thanks to my fellow graduate students Ethan
Munson, William Maddox and others in the Ensemble group for their help and ideas.

References

[CF82] B. Courcelle, and P. Franchi-Zannettacci, \Attribute Grammars and Recursive Program
Schemes", Theoretical Computer Science, Vol. 17, 1982, pp. 163-191, 235-257.

[Eng84] J. Engelfriet, \Attribute Grammars: Attribute Evaluation Methods", Methods and Tools
in Compiler Construction, Cambridge University Press, 1984.

[Fil87] G. File, \Classical and incremental attribute evaluation by means of recursive procedures",
Theoretical Computer Science, Vol. 53, 1987, pp. 25-65.

[Gra92] Susan L. Graham, \Language and document support in software development environ-
ments", Proceedings of the Darpa'92 Software Technology Conference, Los Angeles, April
1992.

26

[Jou84] Martin Jourdan, \Strongly Non-Circular Attribute Grammars", Proceedings of the ACM
SIGPLAN Symposium on Compiler Construction, Vol. 19, No. 6, June 1984, pp. 81-93.

[Jou91] Martin Jourdan and Didier Parigot, \Internals and Externals of the FNC-2 Attribute
Grammar System", Attribute Grammars, Applications and Systems, Lecture Notes in Com-
puter Science 545, Springer-Verlag, June 1991, pp. 485-506.

[Kas80] U. Kastens, \Ordered Attributed Grammars", Acta Informatica, 13, 1980, pp. 229-256.

[Knu68] Donald E. Knuth, \Semantics of Context-free Languages", Mathematics Systems Theory,
Vol. 2, (1968), pp. 127-145.

[KW76] K. Kennedy, and S. K. Warren, \Automatic Generation of E�cient Evaluators for At-
tribute Grammars", 3rd ACM POPL, Atlanta, Georgia, Jan 1976, pp. 32-49.

[Mad93] William Maddox, and Susan L. Graham, \E�cient Incremental Attribute Evaluation",
Submitted to PLDI'94, University of California, Berkeley, Nov 1993,

[Mun92] Susan L. Graham, Michael A. Harrison, and Ethan V. Munson, \The Proteus presentation
system", Proceedings of the Fifth ACM SIGSOFT Symposium on Software Development
Environments, ACM Press, December 1992, pp. 130-138.

[Pec90] Stephen B. Peckham, \Incremental attribute evaluation and multiple subtree replace-
ments", Technical Report TR 82-514, Ph. D. dissertation, Department of Computer Sci-
ence, Cornell University, 1982.

[Rep83] Thomas W. Reps, Tim Teitelbaum, and Alan Demers, \Incremental Context-Dependent
Analysis for Language-Based Editors", ACM Transactions on Programming Languages and
Systems, Vol. 5, No. 3, July 1983, pp. 449-477.

[Rep89] Thomas W. Reps, and Tim Teitelbaum, The Synthesizer Generator: A system for con-
structing language based editors, Springer-Verlag, 1989.

[Vog91] Harald Vogt, Doaitse Swierstra, and Mattijs Kuiper, \E�cient incremental evaluation of
higher-order attribute grammars", Lecture Notes in Computer Science, Vol. 528, Springer-
Verlag, 1991, pp. 231-242.

27

A ASPEC Grammar

aspec_program :

'MEDIA' mediaName

'#include' '"'mediaPresIncludeFile'"'

'%%'

attrDeclDefaultsSection

'%%'

enumTypesSection

'%%'

attrDeclsSection

'%%'

prodnDefaultsSection

'%%'

phylumDefaultsSection

'%%'

startNode

semanticRulesSection

;

mediaName : identifier

;

mediaPresIncludeFile : identifier

;

attrDeclDefaultsSection :

attrDefaultQualifier attrDeclDefaultsSection

| /* empty */

;

attrDefaultQualifier :

'inherited'

| 'synthesized'

| 'override'

| 'nooverride'

| validType

;

enumTypesSection :

enumType enumTypesSection

| /* empty */

;

enumType : 'enum' enumTypeName '{' enumIdList '}' ';'

;

enumIdList :

enumId ',' enumIdList

| enumId

;

enumId : identifier

28

;

enumTypeName : identifier

;

attrDeclsSection :

phylumAttrDecls attrDeclsSection

| lastPhylumAttrDecls

;

phylumAttrDecls :

'phylum' phylumList 'with' attrDeclList 'end'

;

lastPhylumAttrDecls

'phylum' '*' 'with' attrDeclList 'end'

| phylumAttrDecls

;

phylumList :

phylum ',' phylumList

| phylum

;

phylum : identifier

;

attrDeclList :

attrDecl attrDeclList

| /* empty */

;

attrDecl : attrIdList attrQualifierList ';'

;

attrIdList :

attrId ',' attrIdList

| attrId

;

attrId : identifier

;

attrQualifierList :

':' attrQualifier attrQualifierList

| /* empty */

;

attrQualifier :

attrDefaultQualifier

| definedEnumId

;

prodnDefaultsSection :

prodnDefaultRule prodnDefaultsSection

| /* empty */

;

prodnDefaultRule :

29

pDfltLAttrRef '=' cExpr ';'

| iDfltLAttrRef '=' cExpr ';' optional_qualifier

;

pDfltLAttrRef :

'$' '$' '.' attrId

| '$' integer '.' attrId

;

iDfltLAttrRef : '$' 'i' '.' attrId

;

optional_qualifier :

'[' range_index ',' range_index ']'

| /* empty */

;

range_index :

integer

| '_n'

;

phylumDefaultsSection :

phylumDefaults phylumDefaultsSection

| /* empty */

;

phylumDefaults :

phylumList ':' '{' phylumAttrRules '}'

;

phylumAttrRules :

phylumAttrRule phylumAttrRules

| /* empty */

;

phylumAttrRule :

attrId '=' cExpr ';'

;

startNode : '%start' rootPhylum

;

rootPhylum : identifier

;

semanticRulesSection :

production semanticRulesSection

| /* empty */

;

production :

phylumName '-->' phylumNames '{' prodnAttrRules '}'

;

phylumNames :

phylumName phylumNames

| phylumName

30

| /* empty */

;

phylumName : phylum

;

prodnAttrRules :

prodnAttrRule prodnAttrRules

| /* empty */

;

prodnAttrRule : lAttrRef '=' cExpr ';'

;

lAttrRef :

'$' '$' '.' attrId

| '$' integer '.' attrId

;

cExpr : term cExpr1

;

cExpr1 :

'+' term cExpr1

| '-' term cExpr1

| '/' term cExpr1

| '*' term cExpr1

| /* empty */

;

term :

'(' cExpr ')'

| '(' cExpr relop cExpr ')'

| '-' term

| '!' term

| function '(' cExprList ')'

| function '(' ')'

| 'if' cExpr 'then' cExpr 'else' cExpr 'fi'

| integer

| float

| string

| bool

| definedEnumId

| attrRef

;

attrRef :

'$' '$' '.' attrId

| '$' integer '.' attrId

| relAttrRef

| iAttrRef

| '@' function '.' attrId

;

31

relAttrRef :

'$' / integer '.' attrId

| '$' / '+' integer '.' attrId

| '$' / '-' integer '.' attrId

;

iAttrRef :

'$' '(' iExpr ')' '.' attrId

| '$' 'i' '.' attrId

;

iExpr : iTerm iExpr1

;

iExpr1 :

'+' iTerm iExpr1

| '-' iTerm iExpr1

| /* empty */

;

iTerm :

'i'

| integer

| '(' iExpr ')'

| '-' iTerm

;

cExprList :

cExpr ',' cExprList

| cExpr

;

bool :

'true'

| 'false'

;

relop :

'=='

| '>'

| '<'

| '>='

| '<='

| '&&'

| '||'

;

validType : identifier

;

definedEnumId : identifier

;

function : identifier

;

32

B An example ASPEC input

MEDIA Text

#include "TextPresentation.h"

%% /* Attribute Declaration Defaults */

inherited int override

%% /* Enum Types Section */

enum visible_type {YES, NO};

%% /* Attribute Decls Section */

phylum START

with

end

phylum P

with

Left, Top;

StmtNum : synthesized;

Width, Height : synthesized;

end

phylum S, D, A

with

Left, Top;

StmtNum : inherited;

Width, Height : synthesized;

end

phylum * /* for all other phylum use this declaration */

with

Left, Top;

Width, Height: synthesized;

Bold : bool;

Visible : visible_type;

end

%% /* Production Defaults Section */

/* $$ --> $1 $2 ... $_n */

$$.Width = @AllChildren.Width;

$$.Height = @AllChildren.Height;

$i.Visible = NO; [1,_n]

33

$i.Bold = false; [1,_n]

$i.Left = $$.Left; [1,_n]

$1.Top = $$.Top;

$i.Top = $(i-1).Top + $(i-1).Height; [2,_n]

%% /* Phylum Defaults Section */

VAR, SEMI, EQ, EXPR :

{

Left = $/-1.Left + $/-1.Width;

}

A, D :

{

StmtNum = $$.StmtNum;

}

%% /* Semantic Rules Section */

%start START /* name of the root phylum */

START --> P {

$1.Left = 0;

$1.Top = 0;

}

P --> P S {

$$.StmtNum = $1.StmtNum+1;

$2.StmtNum = $1.StmtNum+1;

}

P --> S {

$$.StmtNum = 1;

$1.StmtNum = 1;

}

S --> A { }

S --> D { }

A --> VAR EQ EXPR SEMI {

$1.Bold = if (5+4*3 > 4) then

true

else

false

fi;

}

D --> INT VAR SEMI { }

D --> STR VAR SEMI { }

34

