
Greater Variance Does Not Necessarily Imply Greater

Average Delay

Mor Harchol-Balter and David Wolfe

Report No. UCB/CSD-94-821

July 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Greater Variance Does Not Necessarily Imply

Greater Average Delay

Mor Harchol-Balter� David Wolfe y

July 1994

Abstract

Real-world packet routing networks di�er in many ways from the

networks which are analyzable by current-day queueing theory meth-

ods. For example the service distributions in real-world networks are

constant, whereas the vast majority of queueing theory applies most

powerfully to exponential service distributions.

Consequently, it is desirable to at least be able to approximate

the behavior of real-world networks by networks which we know how

to analyze. Towards this end, much previous research has been done

showing that for many networks greater variance (in service-time dis-
tributions and other things) leads to greater congestion, and therefore

we can obtain upper bounds on delays in real-world networks by com-

puting the delay in a related network, having more variance, which we

know how to analyze.

The class of networks for which greater variance leads to greater

congestion is not known. This paper contributes to determining this

classi�cation by demonstrating a network for which increasing the vari-

ance in either of two very di�erent ways leads to smaller delays.
The arguments we make in this paper are not traditional to the

�eld of queueing theory and are much more in the spirit of discrete

mathematics.
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1 Introduction

Networks of queues for which the service times have a general distribution
and/or the arrival process is general are typically very di�cult to analyze,
with the exception of the case where both the service times and the interar-
rival times are distributed exponentially. For many well studied networks,
previous work shows that the greater the variance in the distributions, the
greater is the average time a packet spends in the system (from now on we
will denote this by average packet system time). In this paper, we show two
examples where increasing the variance leads to a smaller average packet
system time.1 In this introduction we motivate why we came to consider
these two particular examples, and discuss what makes these examples im-
portant.

Average packet system time has been shown to be an increasing function
of the variance in the service time distribution for the following networks:
the M/G/1 queue, the M/G/1 queue with batch arrivals, the M/G/1 queue
with priorities, and the M/G/k queue [Whi83] [Whi80] [Ros89, pp. 374{376].
Average packet system time is also an increasing function of the variance
in the interarrival times in the G/G/1 queue [Wal89, pp. 353-357]. Even
for large classes of complex networks, increased service-time variance leads
to higher packet system time. For example, Stamoulis and Tsitsiklis [ST91]
[HBW94] show that exponential service times are worse than constant ser-
vice times for Markovian queuing networks with Poisson arrivals.

In this paper we consider four types of networks of queues. We'll refer
to them as Constant Declassed, Constant Classed, Exponential Declassed,
and Exponential Classed. (The reason we de�ne these types will become
apparent soon). Each of these types is an open network of queues [Ros83,
pp. 164{168], where packets arrive according to a Poisson Process. The
words Constant/Exponential refer to the distribution of the service time
at each server of the network. The words Classed/Declassed refer to the
routing policy for the packets in the network. In a Declassed (or Markovian)
network, when a packet �nishes serving at server i, the probability that
it next moves to some server j (or leaves the network) is independent of
anything except the fact that the packet just served at i. In particular, all
past history is irrelevant. (Thus a Declassed network can simply be described
by a directed graph with probabilities on its edges). This is in contrast to

1In the case where arrivals are non-Poisson, there are already known counterexam-
ples where increased service-time variance leads to smaller average packet system time.
However the case of Poisson arrivals remains open [Wol77] [Ros78] [Whi84].
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Figure 1: The four types of networks (a), and the known relationships be-
tween them (b). The network type which corresponds to typical real-world
packet-routing networks is type Constant Classed.

a Classed (or Non-Markovian) type network, where the probability that a
packet next moves to server j after �nishing serving at server i is a function
of the history of the packet. The name \Classed" comes from the fact that
one can imagine a packet being assigned a class at birth, where the class
determines the route the packet will follow within the network.

Corresponding to every Classed network, NClassed, there is a related De-
classed network, NDeclassed, de�ned as follows: Suppose in NClassed, p pro-
portion of all the packets leaving server i next move to server j. Then in
NDeclassed, we will de�ne the probability of moving from server i to server
j to be p. Thus the Declassed network is a version of the Classed network
which no longer depends on history or classes (hence the name). Likewise,
corresponding to every Constant type network there is a related Exponen-
tial type network, which is identical except that all the servers now have
exponentially distributed service times.

Figure 1(a) shows the four types of networks we have de�ned. The upper
left-hand box, type Constant Classed, represents real-world packet-routing
networks. This is the type we care most about, but know almost nothing
about. Since we know nothing about the upper left-hand box, we'd like to
relate it to the other boxes which we know more about.

Figure 1(b) shows what we do know. De�ne TN to be the average packet
system time for network N . Firstly, we know for any exponential service
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network N ,

TNExponential-Classed
= TNExponential-Declassed

This follows because the total arrival rate into a server of NExponential-Classed

is the same as the total arrival rate into the same server inNExponential-Declassed.
When service times are all exponential, we know that average packet sys-
tem time is completely determined by the total arrival rate into each server
[HBB94], [Ros83, pp. 164{168]. Since these are the same for both networks,
we're done. We also know

TNConstant-Declassed
� TNExponential-Declassed

This is due to the result of [ST91], as generalized in [HBW94]. To the best
of our knowledge, the other relations indicated in Figure 1(b) are completely
open.

What might one hypothesize? Because the Constant distribution has less
variance than the Exponential Distribution, it has been conjectured that

TNConstant-Classed
= TNExponential-Classed

One might also conjecture that because the packet routing is \less random"
in a Classed Network than in its related Declassed network, that

TNConstant-Classed
= TNConstant-Declassed

We will show that both these statements are false, for the general case.
(Note, these statements may still be true for special classes of networks.)

The particular network we chose to study was the single-server ring. The
ring di�ers from a single-server feedback network in that in the case of a ring
network, packets returning for service rejoin the end of the queue, whereas
feedback networks are typically de�ned to return packets to the front of the
queue. The single-server feedback network has been well studied by dozens of
authors ranging from [Tak63] to [vB91]. Its susceptibility to analysis stems
from the fact that it can be modeled as an M=G=1 queue. The single-server
ring network is, however, more practical because it models real world round-
robin applications such as multi-level feedback queue scheduling [CMDD62].
However, the single-server ring network appears far more di�cult to analyze,
and few formal results are known [Rei88].

Figure 2 shows a Classed Ring and the related Declassed Ring network.
In both networks, packets arrive from outside according to a Poisson Process
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Figure 2: The related network pair (Classed Ring Network, Declassed Ring
Network)

with rate �. In the Classed Ring, each packet waits in the queue (if there
is one), serves once, then returns to the end of the queue to wait again,
then serves one more time and leaves the network. This network is Classed,
because a packet must carry state with it, namely whether it has served once
already or not. Observe that in the Classed Ring, half of all packets which
have just served leave the network, and half go back to the end of the queue
to serve again. Therefore, in the Declassed Ring a packet has probability 1

2

of leaving the network after serving once, and probability 1
2
of returning to

serve again. Observe that in both networks the expected number of times a
packet serves is 2, however there is no variance in the Classed Ring, and a
variance of 2 in the Declassed Ring.

Our aim in this paper is to show that the Constant Classed Ring has
greater average packet system time than the Constant Declassed Ring, and
also to show that the Constant Classed Ring has greater average system
time than the Exponential Classed Ring. Speci�cally we prove:

� (Section 2) TConstant-Classed-Ring � TConstant-Declassed-Ring for the case
where all packets arrive in a batch at time zero (� =1).

The case of � = 1 is unrealistic, since steady state only occurs for
� < 1

2
. However, in Section 3 we will see that � = 1 is indeed an

important case, because we'll see that as � increases, the di�erence

5



between the Classed Ring and the Declassed Ring becomes more and
more pronounced. Therefore studying what happens as �!1 is like
comparing the two networks under a magnifying glass.

� (Section 3) TConstant-Classed-Ring � TConstant-Declassed-Ring for the case of
2 packets.

� (Section 4) TConstant-Classed-Ring � TExponential-Classed-Ring for the case of
2 packets.

2 TConstant�Classed�Ring � TConstant�Declassed�Ring for

� =1

In this section we consider the case where all packets arrive at time 0 at
the Constant Classed Ring and the Constant Declassed Ring. We will prove
that the Constant Classed Ring has greater average packet system time than
the Constant Declassed Ring, when � =1, i.e.,

Theorem 1 TConstant-Classed-Ring � TConstant-Declassed-Ring for � =1

The only di�erence between the Classed Ring and the Declassed Ring
is that in the Classed Ring the service time of each packet is 2 seconds,
whereas in the Declassed Ring, the service times of the packets vary (but
have mean 2). We describe a step-by-step mapping from the case of varying
service times with mean 2 to the case of all service times being exactly 2.
We show that each step of this mapping either causes the average packet
system time to increase or leaves it unchanged. We therefore conclude that
the Classed Ring has greater average packet system time than the Declassed
Ring.

We describe the transformation from the Declassed Ring to the Classed
Ring via an example. Figure 3 shows service times of packets in the Classed
Ring and the Declassed Ring. Each step of the transform consists of:

1. Finding a number in the the Declassed Ring column which is bigger
than 2 and decreasing it by one,

2. Finding a `1' in the the Declassed Ring column and increasing it to a
`2'.
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Figure 3: One step of the transformation from the Declassed Ring to the
Classed Ring. The columns show service time of packets.

Since the numbers in the the Declassed Ring column average to 2, after doing
enough such transform steps, eventually the the Declassed Ring column will
be transformed into the Classed Ring column.2

Claim 1 Each step of the transformation from the Declassed Ring to the
Classed Ring causes the average packet system time to either increase or
stay the same.

Proof: Consider the e�ect on packet system times of the transform step
which decreases the service time of packet A from i to i � 1 (i > 2) and
increases the service time of packet B from 1 to 2. This transformation
step has no e�ect on the system time of packets whose service times are
� i + 1, since the e�ects of the change in packets A and B are cancelled.
The transformation increases the system time of packets whose service times
are < i� 1, since these packets are a�ected by the change in packet B, but
not by the change in packet A. The system time of packets whose service
times are i or i � 1 may increase or may stay the same, depending on the
order of the packets.

2Note that the numbers in the Declassed Ring column may not always average to 2, but
their expected average is 2. This is su�cient to prove the Theorem 1, but the averaging
argument is omitted.
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3 TConstant�Classed�Ring � TConstant�Declassed�Ring for

the case of 2 packets.

In this section we analyze the Constant Classed Ring and the Constant
Declassed Ring, where only two packets arrive at each network (according
to a Poisson Process with rate �). Even in the case of just two packets, the
calculations are already messy.

3.1 Analysis of TConstant�Classed�Ring for 2 packets

To determine the average packet system time for the Constant Classed Ring
with two packets, we compute the average total (combined) time for the
two packets and divide by two. To compute the average total time for two
packets, we condition on the arrival time of the second packet, t.

E fTotal Time for 2 Packetsg

=
Z 1

t=0
E fTotal Time for 2 Packets j interarrival time = tg

�Pr
n
2nd packet arrives t seconds after 1st

o

Observe that the expected total time for the two packets depends on
whether the second packet arrives after the �rst packet has completed both
its services, one of its services, or neither of its services.

E fTotal Time for 2 Packets j interarrival time = tg

=

8><
>:

4 if t > 2
6� t if 1 < t < 2
7� t if 0 < t < 1

So,

E fTotal Time for 2 Packetsg

=

Z 1

t=0
(7� t)�e��t +

Z 2

t=1
(6� t)�e��t +

Z 1

t=2
4�e��t

=
1

�
e�2� � e�� �

1

�
+ 7

Observe that this answer makes sense, since for large � it evaluates to 7,
and for small � it evaluates to 4.
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3.2 Analysis of TConstant�Declassed�Ring for 2 packets

The average packet system time for the Constant Declassed Ring is easier
to compute because the two packets are essentially indistinguishable. In
particular, the same total expected delay is incurred if packets are assumed
to feedback to the head of the queue rather than the tail for their next
service. With this in mind, we'll let m denote the number of times the �rst
packet serves (so, E fmg = 2). Let t denote the time between arrivals of the
�rst and second packets. By conditioning on m and t, we obtain,

E fTotal time for 2 packetsg

= 4+ E fOverlap time during which both packets are in networkg

= 4+

Z
t

X
m

E fOverlap time j m; tg � 2�m�e��t

= 4+
1X
m=1

2�m
Z
m

t=0
�e��t(m� t)

= 6�
1

�
+

1

�(2e� � 1)

Figure 4 and Figure 5 are plots of the average packet system times for
the Classed Ring and the Declassed Ring as a function of �, in the case of
2 packets, as derived in Section 3.1 and Section 3.2. The average packet
system time in both networks is 4 for small �, and increases to 6 for the
Declassed Ring and to 7 for the Classed Ring as � ! 1. For all values of
�, the average packet system time for the Classed Ring is greater than that
for the Declassed Ring, and the di�erence is accentuated as � is increased.

4 TConstant�Classed�Ring � TExponential�Classed�Ring for

the case of 2 Packets

In this section we compare the Constant Classed Ring with the Exponential
Classed Ring where only two packets arrive at each network, according to
a Poisson Process with rate �. We already computed the average packet
system time for the Constant Classed Ring with two packets in Section 3.1.
We now look at the Exponential Classed Ring.

We will use t to denote the interarrival time between the two packets.
We will use m1 to denote the time spent by packet 1 on its �rst service. We
will use m2 to denote the time spent by packet 1 on its second service.
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Figure 4: Expected packet system time for the Constant Classed Ring and
the Constant Declassed Ring as a function of �, in the case of 2 packets,
shown for 0 � � � 1.
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Figure 5: Expected packet system time for the Constant Classed Ring and
the Constant Declassed Ring as a function of �, in the case of 2 packets,
shown for 0 � � � 40.
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Conditioning on t we have,

E fTotal time for 2 packetsg

=
Z 1

t=0
E fTotal time for 2 packets j interarrival = tg

�Pr finterarrival time = tg

To determine E fTotal time for 2 packets j interarrival time = tg, we con-
dition on m1 and m2.

E fTotal time for 2 packets j tg

=
Z 1

m1=0

Z 1

m2=0
E fTotal time for 2 packets j t;m1; m2g

�Pr
n
packet 1 takes m1 for 1

st service, m2 for 2
nd
o

To compute the above expression, we consider 3 cases: the second packet
may arrive after the �rst packet is �nished with both its services, with one
of its services, or with none of its services.

1. m1 +m2 < t =) E fTotal j t;m1; m2g = m1 +m2 + 2

2. m1 < t < m1 +m2 =) E fTotal j t;m1; m2g = 2m1 + 2m2 + 2� t

3. t < m1 =) E fTotal j t;m1; m2g = 2m1 + 2m2 + 3� t

We can now rewrite E fTotal time for 2 packets j tg as:

E fTotal time j tg

=
Z
t

m1=0

Z
t�m1

m2=0
(m1 +m2 + 2)e�m1e�m2

+
Z
t

m1=0

Z 1

m2=t�m1

(2m1 + 2m2 + 2� t)e�m1e�m2

+

Z 1

m1=t

Z 1

m2=0
(2m1 + 2m2 + 3� t)e�m1e�m2

=
�4 + 4 et � 4 t� t2

et

+
t (4 + t)

et
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+
7 + t

et

= 4 + te�t + 3e�t

Now,

E fTotal time for 2 packetsg

=
Z 1

t=0
(4 + te�t + 3e�t) � �e��tdt

= 7�
2

�+ 1
�

1

(�+ 1)2

Figure 6 is a plot of the expected packet system time for the Constant
Classed Ring versus the Exponential Classed Ring, as a function of �, in the
case of 2 packets. Observe that for small �, the Constant Classed Ring has
smaller average packet system time, however for large �, the Exponential
Classed Ring has smaller average packet system time.
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