
Process Lifetimes are Not Exponential, more like 1
T
:

Implications on Dynamic Load Balancing

Mor Harchol-Balter

Report No. UCB/CSD-94-826

August 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Process Lifetimes are Not Exponential, more like 1
T
:

Implications on Dynamic Load Balancing

Mor Harchol-Balter�

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720

August 1994

Abstract

The two decisions de�ning any dynamic load balancing strategy are:

1. How do we choose a new host (target host) for the migrated process to run on?

2. How do we select which processes to migrate?

Previous load balancing literature has either assumed the process CPU lifetime distri-
bution function is exponential, or has been vague about its properties, and this has
greatly in
uenced the way in which the above two questions have been answered. In
this paper we �rst determine the lifetime distribution function and then explicitly use

it in our load balancing strategy.
Our measurements of Unix processes show that the lifetime distribution function

varies widely among di�erent workloads, however a rule of thumb (which is far more
accurate than assuming an exponential distribution) is

Pr[lifetime > a j lifetime > b]

�
= b=a if b � 1 second
> b=a if 2�6 < b < 1 second

In particular Pr[lifetime > T seconds j lifetime � 1 second] = 1
T
.

In answering question 1 above, we �nd that measurements of the loads on all po-
tential target hosts become very stale during the time it takes to migrate the process
to its new host. Our solution to this problem is: rather than measure the current load
on all potential target hosts, we use our lifetime distribution function to compute the
expected future load (i.e. the load T seconds from now, where T is the time until the
migrated process arrives at the new host and is ready to run).

In answering question 2 above, we �rst analyze previous approaches, for example
migrating newborn processes (this solution stems from the misconception that process
lifetimes are exponentially distributed). Our lifetime distribution function shows that
newborn processes have less than 20% chance of even living for a period equal to the
time they spent migrating. We show that we can get away with only migrating processes
whose lifetimes exceed four seconds and still have a signi�cant load balancing e�ect.

�Supported by National Physical Science Consortium (NPSC) Fellowship. Also supported by NSF grant
number CCR-9201092

1

Host B

Host C

Host D

Host A

Figure 1: Network of host machines. Each host consists of a time-sharing processor, some
main memory, a few used terminals, and possibly a local disk. At any point in time, several
processes may be running on each host machine.

1 Introduction

1.1 Load balancing

Given a network of time-sharing host machines, as shown in Figure 1, load balancing is
the idea of migrating processes across the network from a host with a very high workload
to a host with a very low workload. The reasons for load balancing include minimizing
the average completion time of processes in the network and maximizing the use of the
processors in the network. There are two important decisions de�ning any load balancing
strategy:

1. How do we choose a new host for the migrated process to run on?

2. How do we select which processes to migrate?

The �rst question above is commonly referred to as the location policy. We'll refer to the
second question as the migration policy.

We claim that knowledge of the process cpu lifetime distribution function (namely the
probability that a process' cpu lifetime exceeds T seconds) is crucial in answering these two
questions.

1.2 Process CPU lifetime distribution

Almost all load balancing literature assumes that process CPU lifetimes have an exponential
distribution. See, for example, [BK 90], [EB 93], [CK 68], [ELZ 86], [LR 93], [LM 82],

2

[WM 85]. This belief may stem from [SPG 91]'s statement, \...The duration of CPU bursts
have been measured. Although they vary greatly from process to process and computer to
computer, they tend to have a frequency curve generally characterized as exponential or
hyperexponential1 .

Many of the location policies and migration policies proposed in the literature are based
on the assumption that process lifetimes are exponential, and consequently these policies
are suboptimal.

We show that the process lifetime distribution function for Unix processes is far from
exponential. In fact, for processes which have already used up one second of CPU time,
the probability that their lifetime exceeds T seconds is much closer to 1

T than e�T . This
and other empirical results we obtain on process lifetimes greatly impacts our location and
migration policies.

1.3 Migration policies: Which processes are worth migrating?

Existing migration policies often migrate newly born processes. For example, the migration
policies of [HJ 90] and [ELZ 86] only migrate a process if, when born, the load of its host
exceeds some threshold. The policy of migrating newborn processes stems from the fallacy
that process lifetimes have an exponential distribution, therefore all processes have equal
expected remaining lifetimes regardless of their age, so why not migrate newborn processes?
Our process lifetime distribution function, however indicates that the longer a process has
lived, the longer its expected remaining lifetime. In particular, we show that newborn
processes are not worth migrating in the sense that the probability that the migrated
process lives for a period equal to its migration time is less than :18.

[BSW 93] and [BF 81] suggest migrating a process only if it has already lived for a period
of time equal to its migration time. Our measured process lifetime distribution indicates
that under this policy a migrated process has about a 1

2 chance of living for a period of time
equal to its migration time. However is this the best we can do? Are we migrating enough
processes to have a signi�cant load balancing e�ect? Can we a�ord to be more selective?
These are questions that can only be answered by having a complete understanding of the
process lifetime distribution. We use this knowledge to develop our own migration policy
and to analyze those suggested by others.

1.4 Location Policies: Selecting a new host given a stale load index

Previously studied location policies typically involve choosing as new host the host with
lowest load index, where the load index is some measure of the load at a host as de�ned by
the location policy. By far the most common de�nition for the load index of a host is the
CPU queue length at the host, or the CPU queue length averaged over one second (see for
example [Z 87], [HJ 90], [ELZ 86], [BSW 93]). The second most common de�nition for the
load index of a host is the sum of the CPU time used so far by the processes at the host
(see for example [HJ 90]).

1The hyperexponential distribution is de�ned as the mixture of two exponentials. The hyperexponential
distribution has more variance than the exponential distribution. [W 89]

3

No previous location policy has addressed the issue of the load index growing stale. We
show that the time between which the source host queries its neighbors for their load index
and the chosen target host actually receives the migrated process (denoted by the stale
time) is large with respect to process lifetimes. Suppose for example the load index being
used is the CPU queue length. Existing location policies don't take into account the fact
that processes die during the stale time, so that by the time the target host actually receives
the migrated process it may no longer have anywhere near the lowest load index. Under
the assumption of exponentially distributed process lifetimes, this is not a problem because
all processes at all hosts are equally likely to die, so the load indices of all the hosts drop
at the same rate, so the host with smallest CPU queue length before the stale time is the
same as the host with smallest CPU queue length after the stale time. In reality, however,
the longer a process has lived so far, the longer it is expected to continue living. Therefore,
the relative ranking of load indices can change signi�cantly during the stale time!

To remedy this problem we propose a location policy whereby rather than transmitting
its load index, a host transmits what it expects its load index to be T seconds from now,
where T is the stale time. We show how our knowledge of the process lifetime distributions
can be used to compute the expected future load index for the case where the load index is
the CPU queue length, and for the case where the load index is the sum of the CPU time
used so far by the processes at the host. We also use the process lifetime distribution to
compute the fraction of outside arrivals to the host during the stale time which outlive the
stale time, and therefore a�ect the load index.

1.5 Previous study ignored

After completing our study and writing this paper, we stumbled upon a paper by Leland
and Ott which reported doing a study on CPU process lifetimes back in 1984, [LO 86].
Their measurements weren't too di�erent from ours. Speci�cally, they found that the prob-
ability a process' CPU time exceeds x equals rx�c; 1:05 < c < 1:25, provided x exceeds 3
seconds. (Our process lifetime measurements are summarized in Section 2.5. They di�er
from [LO 86] in both c and the 3 second criteria. Also, our study included several other
process lifetime measurements which we found relevant to developing load balancing strate-
gies.) Surprisingly, as we've pointed out, this 1984 study seems to have gone unnoticed
by future literature on load balancing. Perhaps this is because the load balancing strategy
[LO 86] suggested was based on trying to create a spiral arrangement of processes on the
hosts, and it therefore did not make use of the exact probability distribution function.

1.6 Organization of this paper

This paper is structured into two halves: The �rst half (Sections 2 and 3) includes all the
facts and formulas we will need for developing our load balancing policy. In the second half
(Sections 4 and 5) we formulate our load balancing policy.

In Section 2, we measure the process lifetime distribution, compute the conditional
lifetime distribution, and make several empirical observations about process lifetimes. Every

4

fact/formula in Section 2 will be used in developing out load balancing policy, so for easy
reference we have summarized Section 2 in Section 2.5 .

In Section 3 we discuss the factors contributing to the cost of migrating a process and
argue that the time for migrating a process is high with respect to process lifetimes.

In Section 4 we describe our location policy. We refer to Section 3 in analyzing how
stale the load index can get, and then we use the formulas of Section 2 to show how to
compute the expected future load index.

In Section 5 we describe our migration policy. We discuss how choosing a process
to migrate is a function of both the process' expected remaining lifetime (as described
in Section 2) and its migration cost (as described in Section 3) as well as a few other
factors. Taking all these factors into consideration, we develop our own migration policy
and compare it analytically with migration policies in the literature.

2 Probability distribution function for Unix process life-

times

In this section we describe how we determined the probability distribution function for
Unix process lifetimes, as well as some other empirical observations about Unix process
lifetimes. In Table 4 of this section we contrast the Unix process lifetime distribution with
the exponential distribution. Because this section contains so many di�erent formulas and
observations, we have summarized the results of this section in Section 2.5, and we'll only
refer to this list of summarized results in future sections.

2.1 Process lifetime distribution when lifetime > 1 second

We began by measuring process lifetimes on just one machine, \po", a heavily used instruc-
tional machine. Measurements were made by turning on Unix accounting on po and using
the \lastcomm" command, which outputs the CPU time used by each completed process.
Tables 1, 2, and 3 show measurements made on po mid-semester, late-semester, and end-
semester, respectively. The �rst two columns of Tables 1, 2, and 3 indicate the number of
processes whose CPU lifetimes exceeded 2i seconds, for i ranging from �6 to 12. The ith

entry in the third column indicates the fraction of processes whose CPU lifetimes exceeded
2i seconds, which lived on to have a CPU lifetime exceeding 2i+1 seconds.

All three tables have one thing in common: The third column is fairly constant

for processes whose CPU lifetimes exceed one second. (We naturally ignore the
last few entries in each table, since they involve too few proceses to hold any statistical
signi�cance.) We call this constant the drop, and denote it by d. That is

d = constant =
no. processes whose lifetime > 2T

no. processes whose lifetime > T
; for ANY T > 1 second

For example, for Table 3, d � 44%.
The fact that d is (fairly) constant immediately implies a probability distribution on

process lifetimes (as a function of d), as shown in the claim below:

5

Seconds (T) No. Processes % Processes Which Constant
Live > T Secs Live Another T Secs Region

0 77440 52%
2�6 40117 57%

2�5 22991 77%
2�4 17808 76%
2�3 13581 73%

2�2 9980 66%
2�1 6632 62%
20 4107 46%

p

21 1890 47%
p

22 894 54%
p

23 483 53%
p

24 255 53%
p

25 134 46%
p

26 62 50%
p

27 31 45%
p

28 14 79%
29 11 91%
210 10 40%

211 4 25%
212 1

Table 1: Process lifetimes measured on machine po, mid-semester.
These measurements correspond to Figure 2.

Seconds (T) No. Processes % Processes Which Constant
Live > T Secs Live Another T Secs Region

0 154368 67%
2�6 102929 60%

2�5 61968 79%
2�4 49568 78%
2�3 38599 73%

2�2 28007 72%
2�1 20222 57%
20 11468 44%

p

21 5024 38%
p

22 1911 39%
p

23 740 42%
p

24 309 36%
p

25 110 37%
p

26 41 32%
p

27 13 54%
28 7 71%
29 5 60%

210 3 33%
211 1

Table 2: Process lifetimes measured on machine po, late-semester.
These measurements correspond to Figure 3.

6

Seconds (T) No. Processes % Processes Which Constant
Live > T Secs Live Another T Secs Region

0 111997 66%
2�6 73721 61%

2�5 44929 79%
2�4 35365 76%
2�3 26949 71%

2�2 19111 71%
2�1 13509 56%
20 7524 49%

p

21 3745 44%
p

22 1640 44%
p

23 715 42%
p

24 297 38%
p

25 114 42%
p

26 48 35%
p

27 17 47%
p

28 8 38%
p

29 3 67%

210 2 100%
211 2 50%
212 1

Table 3: Process lifetimes measured on machine po, end-semester.
These measurements correspond to Figure 4.

Claim 1 On a machine with drop d,

Pr[Process lifetime > T j Process lifetime > 1] = T lgd

Proof:

Pr[Process lifetime > 2T j Process lifetime > T] = d

=) Pr[Process lifetime > 2T] = d � Pr[Process lifetime > T]

Iterating the above recurrence2 , we have

Pr[Process lifetime > T] = dlgT = T lgd

2A more formal proof is : Guess that the form of the probability distribution function is

Pr[Process lifetime > T] = T
k , for some k

Substituting this guess into the above equation, we get:

(2T)k = d � T k

=) 2k = d

=) k = lg d

7

L � Process Lifetime Distribution L � Exponentially
drop d d = :5

Pr[L > 2T jL > T] = d Pr[L > 2T jL > T] = :5 Pr[L > T + 1jL > T] = e�1

Pr[L > T jL > 1] = T lg d Pr[L > T jL > 1] = 1
T

Pr[L > T jL > 1] = e�(T�1)

Pr[L > T] > 1
2d

6T lg d, 8T > 2�6 Pr[L > T] > 2�7 1
T
, 8T > 2�6 Pr[L > T] > e�T

Table 4: Contrasting Process Lifetime Distribution with Exponential Distribution

So, for example, if d = 50%, we know that the probability of a process having a CPU
lifetime of > T seconds, given that it has already used up 1 second of CPU time is = 1

T .
To emphasize why the exponential distribution is such a poor model for process lifetimes,

in Table 4 we contrast the above distribution with the exponential distribution.
Figures 2,3,and 4 are impulse plots of the process lifetime measurements from Tables

1, 2, and 3, respectively. Each plot depicts only processes whose lifetimes exceeded 1
second. The impulse (line) at 2i seconds indicates the fraction of processes we counted
whose lifetimes exceeded 2i seconds. The purpose of these plots is to show how closely
our data is approximated by the probability distribution function, T lgd. Observe that in
all three plots, the data �ts between two curves, both of the form T lg d, having very close
values of d.

We next decided to measure process lifetimes on other machines to see how the dis-
tribution function varied. Figures 5,6,7,8 show our measurements for four more machines.
For these machines too, we found that the drop, d, became fairly constant, but only for
processes whose lifetimes exceeded one second, therefore our plots only include processes
whose lifetimes exceed one second.

2.2 Measuring the drop, d

Observe that the drop, d, di�ers for the di�erent workloads. In our study, d ranged from
:41 to :7, and therefore Pr[Process lifetime > T j lifetime > 1] ranged from T�1:3 to T�:52.
The drop dmay be determined for a particular machine directly from the de�nition, namely,

d = constant =
no. processes whose lifetime > 2T

no. processes whose lifetime > T
; for ANY T > 1

Obviously, the more processes we look at the more accurate our measure of d.
It's important to note that even if we don't bother estimating d at all, a good

rule of thumb is d = :5, so Pr[lifetime > T j lifetime > 1] = 1
T . As we've seen from Table

4, this is substantially more accurate than assuming process lifetimes are exponential.

8

2.3 Measuring process lifetime distribution in general

Now, suppose we want to know the probability distribution on process lifetimes when we're
not restricting ourselves to processes whose lifetimes exceed one second.

Let

r(T) =
no. processes whose lifetime > 2T

no. processes whose lifetime > T

r(T) is only a constant for T � 1 second. However, in all the studies we've done, r(T) > d,
8T > 2�6 seconds. (Note, we could not make measurements under 2�6 seconds using the
lastcomm command.) Using this fact, together with the same reasoning as in the proof of
Claim 1, we have:

Pr[lifetime > aj lifetime > b]

(
= dlg(

a

b
) =

�
a
b

�lg d
if b � 1

> dlg(
a

b
) =

�a
b

�lg d if 2�6 � b < 1

(Observe that if we substitute (b+ k) in for a in the above formula, we see that the longer
a process has already lived, the greater the probability that it will live an additional k
seconds.)

The above formula can be used to obtain a lower bound on the general probability
distribution as follows:

8T > 2�6; Pr[lifetime > T] = Pr[lifetime > T j lifetime > 2�6 seconds]

�Pr[lifetime > 2�6 seconds]

> dlg(T=2�6) � Pr[lifetime > 2�6 seconds]

Now, in all our studies, Pr[Process lifetime > 2�6 seconds] � 2
3 , and, more speci�cally,

50% < Pr[Process lifetime > 2�6 seconds] < 78% So,

8T > 2�6; Pr[Process lifetime > T] > dlg(T=26) � 50%

=
1

2
� d6 � T lgd

Once again, a rule of thumb is d = :5, so

8T > 2�6; Pr[Process lifetime > T seconds] > 2�7 �
1

T

To contrast this with the exponential distribution, see Table 4.

2.4 More empirical observations of process lifetimes

We now make a couple more observations from our measurements which we will need when
discussing load balancing policies. Firstly, for all machines we studied, < 1% of the processes
accounted for over 50% of the CPU usage. These are the processes whose CPU lifetime
exceeds 4 seconds. Secondly, for all machines we studied, :13 < Pr[lifetime > :25 sec] < :18.

9

2.5 Summary

To summarize, we have seen in this section that:

1. For each machine we studied, we found

r(T) =
no. processes whose lifetime > 2T

no. processes whose lifetime > T

is constant for all T � 1. We call this constant the machine's drop and denote it by
d throught this paper. For 2�6 � T < 1, we found r(T) > d.

2. We found that although d varied from machine to machine (ranging from :41 to :7),
the simple rule of thumb, d = :5 was still far more accurate than assuming process
lifetimes are exponentially distributed.

3. From formula 1 above, we derived the following expressions regarding process lifetimes:

(a) Pr[Process lifetime > T j lifetime > 1] = T lg d (= 1
T if d = :5)

(b) Pr[lifetime > aj lifetime > b]

(
=
�
a
b

�lg d if b � 1

>
�
a
b

�lg d
if 2�6 � b < 1

(c) Pr[L > T] > 1
2d

6T lgd, 8T > 2�6 (= 2�7 1
T , if d = :5)

4. By substituting (b+ k) in for a in formula 3b above, we see that the longer a process
has already lived, the greater the probability that it will live an additional k seconds.

5. For all machines we studied, < 1% of the processes accounted for over 50% of the
CPU usage. These are the processes whose CPU lifetime exceeds 4 seconds.

6. For all machines we studied, :13 < Pr[Process lifetime > :25 sec] < :18.

Throught the rest of this paper, whenever we refer to this section, we will only refer to the
above summary list.

3 Cost of migrating a process

In this section we describe the factors contributing to the cost of migrating a process.
The relevance of this section will become apparent during our discussion of e�ective load
balancing policies in Sections 4 and 5.

Assume the scenario shown in Figure 1. We have a network of host machines. Each host
consists of a time-sharing processor, some main memory, a few user terminals, and possibly
a local disk. At any point in time, several processes may be running on each host machine.
In this section we will discuss the costs of process migration, as surveyed in [DO 91].

Migrating a process is only complicated because a process has large amounts of state
associated with it. The trend in operating systems seems to be towards increasing state
size. The largest part of a process' state is usually its virtual memory.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096

"data_po_mid_sem"
f(x,-1)

f(x,-1.1)

Figure 2: Process CPU lifetimes, measured on machine \po", measured mid-semester. Po is
a very heavily used DECserver5000/240 machine, used primarily for undergraduate course-
work. The sample space is the processes whose CPU lifetimes exceeded 1 second. Sample
space size = 4107. The impulses (lines) indicate our data. The x-axis is measured in sec-
onds. The impulse at 2i seconds indicates the fraction of processes whose CPU lifetimes
exceeded 2i seconds. The data is upper-bounded by T lg :5 = T�1 and lower-bounded by
T lg :47 = T�1:1.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096

"data_po_late_sem"
f(x,-1.2)
f(x,-1.3)

Figure 3: Process CPU lifetimes, measured on machine \po", measured late-semester. Po is
a very heavily used DECserver5000/240 machine, used primarily for undergraduate course-
work. The sample space is the processes whose CPU lifetimes exceeded 1 second. Sample
space size = 11468. The impulses (lines) indicate our data. The x-axis is measured in
seconds. The impulse at 2i seconds indicates the fraction of processes whose CPU lifetimes
exceeded 2i seconds. The data is upper-bounded by T lg :44 = T�1:2 and lower-bounded by
T lg :41 = T�1:3.

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096

"data_po_end_sem"
f(x,-1.05)

f(x,-1.1)

Figure 4: Process CPU lifetimes, measured on machine \po", measured end-semester. Po is
a very heavily used DECserver5000/240 machine, used primarily for undergraduate course-
work. The sample space is the processes whose CPU lifetimes exceeded 1 second. Sample
space size = 7524. The impulses (lines) indicate our data. The x-axis is measured in sec-
onds. The impulse at 2i seconds indicates the fraction of processes whose CPU lifetimes
exceeded 2i seconds. The data is upper-bounded by T lg :48 = T�1:05 and lower-bounded by
T lg :47 = T�1:1.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096 16384 65536 262144

"data_cory"
f(x,-.8)
f(x,-.9)

Figure 5: Process CPU lifetimes, measured on machine \cory." Cory is a very heavily used
machine, used primarily for undergraduate coursework. The sample space is the processes
whose CPU lifetimes exceeded 1 second. Sample space size = 14253. The impulses (lines)
indicate our data. The x-axis is measured in seconds. The impulse at 2i seconds indicates the
fraction of processes whose CPU lifetimes exceeded 2i seconds. The data is upper-bounded
by T lg :57 = T�:8 and lower-bounded by T lg :54 = T�:9.

14

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024 4096 16384 65536

"data_porsche"
f(x,-.85)
f(x,-.65)

Figure 6: Process CPU lifetimes, measured on machine \porsche." Porsche is a less-
frequently used machine, used primarily for numerical analysis research. The sample space
is the processes whose CPU lifetimes exceeded 1 second. Sample space size = 10402. The
impulses (lines) indicate our data. The x-axis is measured in seconds. The impulse at 2i

seconds indicates the fraction of processes whose CPU lifetimes exceeded 2i seconds. The
data is upper-bounded by T lg :55 = T�:85 and lower-bounded by T lg :64 = T�:65.

15

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024 4096 16384

"data_bugsbunny"
f(x,-.7)
f(x,-.9)

Figure 7: Process CPU lifetimes, measured on machine \bugsbunny." Bugsbunny is a
heavily used machine, used primarily for multimedia research. The sample space is the
processes whose CPU lifetimes exceeded 1 second. Sample space size = 4940. The impulses
(lines) indicate our data. The x-axis is measured in seconds. The impulse at 2i seconds
indicates the fraction of processes whose CPU lifetimes exceeded 2i seconds. The data is
upper-bounded by T lg :62 = T�:7 and lower-bounded by T lg :54 = T�:9.

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096

"data_faith"
f(x,-.52)
f(x,-.63)

Figure 8: Process CPU lifetimes, measured on machine \faith." Faith is an infrequently
used machine, used for both video applications and system administration. The sample
space is the processes whose CPU lifetimes exceeded 1 second. Sample space size = 3328.
The impulses (lines) indicate our data. The x-axis is measured in seconds. The impulse at
2i seconds indicates the fraction of processes whose CPU lifetimes exceeded 2i seconds. The
data is upper-bounded by T lg :70 = T�:52 and lower-bounded by T lg :65 = T�:63.

17

The cost of migrating a process can be expressed as the sum of a �xed migration cost
for migrating all the state, except for the virtual memory, plus a memory migration cost.
Obviously these costs vary depending on the network. For Sprite, the average �xed cost
has been measured at :330 seconds and the memory migration cost is 2 seconds per MByte
of VM transfered. We will use these numbers as an example throughout the rest of this
paper.

Migration cost = Fixed migration cost + Memory migration cost

= :33 seconds + 2seconds=MByte of VM transfered

The �xed cost is incurred at the time of migration. However, there are some options as
to when the memory transfer cost is incurred, depending on the virtual memory transfer
mechanism. Below we list the four common memory transfer mechanisms: (We will not
discuss them now, but rather they will come up when we discuss load balancing in the next
two sections.)

1. Transfer all the process' memory at migration time. (examples: Charlotte and LO-
CUS)

2. Precopying: Allow the process to continue executing while its address space is being
transfered. (example: V System)

3. Lazy copying: Only copy over the pages as they are referenced. (example: Accent)

4. The �le system is distributed. To migrate a process,
ush the dirty pages back to
the �le system. Then migrate the process without its address space. At the target
machine, page in the pages as the process needs them. (example: Sprite)

4 Our Location Policy

The purpose of a location policy is to determine a target host for the migrated process.
Previously studied location policies typically involve choosing as new host the host with
lowest load index, where the load index is some measure of the load at a host as de�ned by
the location policy. The most common de�nitions for the load index of a host are

1. The number of processes at the host waiting for the CPU.

2. The sum of the CPU time used up so far by the processes at the host.

No previous work has addressed the issue of the load index growing stale. Suppose, for
example, process p resides on host A, and after A has queried all its neighboring hosts for
their load index, A concludes host B has the lowest load index. By the time p is ready to
run at B, B may no longer have anywhere near the lowest load index. We denote the time
between which A's neighbors send o� their load indices and B receives p as the stale time.

In Section 4.1, we show that the stale time can be very large, causing the load index
to become very out of date as processes complete and new processes are born. To remedy

18

this problem, we propose a location policy where rather than transmitting the load index,
a host transmits what it expects its load index to be T seconds from now, where T is the
stale time associated with the migrated process. In Section 4.2, we show how to compute
the expected future load index at a host, where the load index is the CPU queue length. In
Section 4.3, we show how to compute the expected future load index at a host, where the
load index is the sum of the CPU time used up so far by all processes at the host. Note
that our goal is not to decide which load index of all those being used is \best", but rather
we show, for whichever load index one wishes to use, how to compute the expected load
index T seconds from now.

4.1 Stale time can be very large

In Section 3 we discussed the cost associated with migrating a process p from its source host
A to its target host B. The stale time di�ers from the process migration time in two ways:
Firstly, the stale time also includes the time it takes to transfer the load index information
(we call this the load index transfer time). Secondly, the stale time only includes the part
of the migration time required to start process p running on host B (we call this p's startup
time.

stale time = load index transfer time + p's startup time

To di�erentiate between p's startup time and p's migration time, consider the four
possible virtual memory transfer mechanisms suggested in Section 3: If all p's memory is
transfered with p at migration time (option 1), then p's startup time equals p's migration
time, namely,

p's startup time = �xed migration cost + time to migrate p's VM

= :33 sec + 2 sec=MByte of p's VM

If precopying is used (option 2), then p's startup time may be even greater since often parts
of p's VM will end up having to be copied twice. Option 3, lazy copying, we ignore because
it leaves behind too many residual dependencies which will become a huge complexity
problem when a process is migrated repeatedly. Option 4, the Sprite migration mechanism,
minimizes p's startup time, since it is fastest in getting p running on its new host. In this
case,

p's startup time = �xed migration cost + time to
ush p's dirty VM

= :33 sec + 2sec =MByte of p's dirty VM

Thus we've seen that the stale time is at the very least :33 seconds, and might be much
longer. Considering that less than 18% of all processes even live :25 seconds (see formula 6,
section 2.5), it's clear that the stale time can have a large e�ect on the load index. Suppose
for example the load index is the CPU queue length. Imagine two hosts B1 and B2 with
equal CPU queue lengths, except that B1 has all short jobs and B2 has all long jobs. From
what we've seen in Section 2, after stale time T , B2's load index will be much higher than
B1's, since B1's jobs have a much lower probability of living another T seconds than B2's
jobs.

19

4.2 Computing future load index, when load index = cpu queue length

Suppose our load index is the CPU queue length. Then the expected CPU queue length at
a host T seconds from now is:

E[No. processes at host T secs from now] =

E[No. processes alive now which live > T more secs] + (1)

E[No. processes born at host during next T secs & still alive T secs from now] (2)

To compute (1) above, let p1; p2; : : : ; pn, be the process at the host and suppose that
process pi has already used up ti seconds of CPU time.

E[Number of processes alive now which live > T more secs]

=
nX

i=1

Pr[pi has lifetime > ti + T jpi has lifetime > ti]

>
nX

i=1

�
ti + T

ti

�lg d
(by formula 3b, Section 2.5)

Observe that if we take into account only processes for which ti > 1, then the last
inequality is a strict equality. Note that it is not unreasonable to only account for processes

for which ti > 1 for two reasons: Firstly, for large T , the term
�
ti+T
ti

�lg d
is only signi�cant

when ti > 1, anyway. Secondly, it is far less time-consuming computationally to only
account for processes for which ti > 1.

To compute (2) above, we require a measure of � the average rate of arrival of new jobs
to the host from outside the network. Assuming that jobs arrive at the host from outside
according to a Poisson process with rate �, we have

E[Number outside arrivals during [0,T] which are still alive at time T]

=

Z t=T

t=0
E[No. outside arrivals during (t,t+dt) which live at least another T � t]

=
Z t=T

t=0
E[No. outside arrivals during (t,t+dt)] � Pr[newborn lives > T � t]

= (by formula 3c, section 2.5)

Z t=T

t=0
(�dt) � (:5d6(T � t)lg d)

> :5�d6
T lgd+1

lg d+ 1

4.3 Computing future load index, when load index = sum of CPU time

Now suppose our load index is the sum of the CPU time used up by all processes on the
host.

E[Total CPU time at host T secs from now] =

20

E[Total CPU time T secs from now due to processes alive now] + (3)

E[Total CPU time T secs from now due to processes born w/i next T secs] (4)

To compute (3) above, we use the same notation as in Section 4.2.

E[Total CPU time T secs from now due to processes alive now]

=
nX

i=1

Pr[pi has lifetime > ti + T jpi has lifetime > ti] � (ti + T)

>
nX

i=1

�
ti + T

ti

�lg d

� (ti + T)

Again, as in Section 4.2, observe that the last inequality is not far from an equality.
Also, observe that if d = :5, this simpli�es to

Pn
i=1 ti, independent of T . That is , the total

CPU time due to processes alive now stays constant, regardless of the distribution of the
ti's.

To compute (4) above, we require a measure of � the average rate of arrival of new jobs
to the host from outside the network. Assuming that jobs arrive at the host from outside
according to a Poisson process with rate �, we have

E[Total CPU time accumulated by arrivals during [0,T] which live to time T]

=
Z t=T

t=0
E[No. outside arrivals during (t,t+dt) which live another T � t] � (T � t)

=

Z t=T

t=0
E[No. outside arrivals during (t,t+dt)] � Pr[newborn lives > T � t] � (T � t)

= (by formula 3c, section 2.5)
Z t=T

t=0
(�dt) � (:5d6(T � t)lg d) � (T � t)

> :5�d6
T lgd+2

lg d+ 2

5 Our Migration Policy

Our goal in this section is to determine a simple, e�ective migration policy.
What information do we know about a process that might in
uence its suitability for

migration?

1. CPU time used so far by the process.

2. Process' migration time (The time to migrate a process is de�ned in Section 3).

3. How interactive the process has been so far

We will ignore (3) for now, and discuss only (1) and (2). We'll come back to (3) at the
end of this section.

21

Ideally, we would like to migrate processes for which (2) is low, so not much time is
lost on the migration, and (1) is high, because those processes have the highest expected
remaining lifetime (see formula 4, Section 2.5) and therefore stand to obtain the maximum
bene�t by being move to a new host with a very low workload. The problem is that high
(1) usually implies high (2). That is, the longer a process has lived, usually the greater the
memory it has accumulated.

If we migrate only processes with high (1) and low (2), we may not end up doing enough
migration to have any real load-balancing e�ect.

One might consider a migration policy which migrates processes with low (1) and low (2).
This is a very commonly used policy (see the Introduction), in which only newborn processes
are migrated. This policy stems from the belief that process lifetimes are exponentially
distributed, namely that the expected remaining CPU lifetime of a process is independent
of how much cpu time it has used up so far, therefore why not migrate newborn processes?
The
aw is that the process lifetime distribution we saw in Section 2 tells us that these
newborn processes actually have the shortest expected remaining lifetimes. In fact, since
migration �xed cost is so high (330 ms), the probability that a newborn process even ends
up living 330 ms is < :18 (see formula 6, Section 2.5), that is, a newborn process has < :18
chance of even living as long as it spent migrating.

Fortunately, we've found that by choosing (1) just right, we can satisfy our goal of
making the migration time an insigni�cant part of a process' overall lifetime, but still
ensure that we're doing enough migration to have an e�ect on load-balancing.

Recall in formula 5, Section 2.5 we state that 50% of all CPU time is used up by < 1%
of all processes. These are the processes whose CPU lifetimes exceed 4 seconds. Therefore,
by limiting our migration to processes whose CPU lifetimes exceed 4 seconds, we still have
a signi�cant load-balancing e�ect. Furthermore, since the lifetimes of these processes are
so large, they have a much higher probability of living another T seconds, where T is the
migration time. Let's consider a \worst-case" example of the cost of migrating one of these
processes (see Section 3). Suppose the virtual memory of the process is large, say 1 MByte,
and suppose our memory transfer mechanism requires all the process' VM to be migrated
with it. Then, (by Section 3) the cost of migrating this process is 2.33 seconds. Now, let's
compute the probability that the process once migrated continues to live for at least as long
a period as it spent migrating. Using formula 3b from Section 2.5, we have:

Pr[Process lifetime > (4 + 2:33)j lifetime > 4] =

�
6:33

4

�lgd

= d:66

Clearly if the process we're migrating has lived > 4 seconds or has accumulated less virtual
memory or if our memory transfer mechanism only requires migrating dirty pages, then this
probability is higher.3

3It's interesting to contrast our migration policy with that suggested by [BSW 93] (see the Introduction),
which migrates only processes whose current lifetime exceeds their estimated migration time. From what
we've learned about the process lifetime distribution, [BSW 93]'s policy seems pretty good, since it guarantees
probability d that the migrated process continues to live for a period of time equal to its migration time
(see formula 1, Section 2.5). The di�erence between our migration policy and [BSW 93] is that we are being

22

Lastly, let's discuss (3). We'll assume that if a process originated at host A, then if there
is a user interacting with the process, that user is sitting at a terminal at host A (see Figure
1). Under this assumption, we might not want to migrate a process which is expected to
interact soon (especially if the interaction involves a lot of data), because that interaction
must travel through the network, making it slow. We therefore need to know the probability
distribution function on the time until a process' next interaction. We speculate that the
time between successive interactions in a process has the same type of distribution as we
saw for process CPU lifetimes. That is, if the time since a process' last interaction > T

seconds, then with some signi�cantly high constant probability, the time until the process'
next interaction will be > 2T seconds. If our hypothesis turns out to be true, then we will
be able to use the same distribution function for the time until the next interaction as we
used for CPU lifetime (with perhaps a di�erent value for the drop, d). It will then make
sense to migrate the process with has run the longest time since its last interaction. (We
have not yet tested our hypothesis.)

6 Acknowledgements

I would like to thank Tom Anderson, Allen Downey, John Ousterhout, and Keith Vetter
for carefully reading earlier drafts of this paper, and for their useful comments.

References

[BSW 93] Amnon Barak and Guday Shai and Richard G.Wheeler. The MOSIX Distributed
Operating System Load Balancing for UNIX. Springer Verlag, Berlin, 1993. pp. 133-
168.

[BK 90] Flavio Bonomi and Anurag Kumar. Adaptive Optimal Load Balancing in a Non-
homogeneous Multiserver System with a Centra Job Scheduler. IEEE Transactions
on Computers, vol. 39, no.10, Oct. 1990, pp.1232 - 1250.

[BF 81] Raymond M. Bryant and Raphael A. Finkel. A Stable Distributed Scheduling Al-
gorithm. 2nd International Conference on Distributed Computing Systems. 1981. pp.
314 - 323.

[CK 68] Edward G. Co�man and Leonard Kleinrock. Feedback Queueing Models for Time-
Shared Systems. Journal of the ACM. Vol. 15, No. 4, Oct. 1968. pp. 549-576.

[EB 93] D.J. Evans and W.U.N. Butt. Dynamic load balancing using task-transfer proba-
bilities. Parallel Computing, vol. 19, August 1993, pp.897-916.

much more selective by limiting our migration to processes which have live > 4 seconds. This ensures us
a higher probability that the migrated process continues to live for a period of time equal to its migration
time (for example, in our \worst-case" example above d:66 > d.)

23

[DO 91] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Al-
ternatives and the Sprite Implementation. Software - Practice and Experience, Aug.
1991, vol.21, (no.8):757-85.

[ELZ 86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive Load Sharing
in Homogeneous Distributed Systems. IEEE Transactions on Software Engineering.
vol. se-12, no. 5, May 1986. pp. 662-675.

[LR 93] Hwa-Chun Lin and C.S. Raghavendra. A state-aggregation method for analyzing
dynamic load-balancing policies. IEEE 13th International Conference on Distributed
Computing Systems. Pittsburgh, PA, May 1993, pp. 482-489.

[HJ 90] Anna Ha�c and Xiaowei Jin. Dynamic Load Balancing in a Distributed System using
a Sender-Initiated Algorithm. Journal of Systems Software. vol 11, 1990. pp. 79-94.

[LM 82] Miron Livny and Myron Melman. Load balancing in homogeneous broadcast dis-
tributed systems. ACM Computer Network Performance Symposium, College Park,
MD, April 82, pp. 47-55.

[LO 86] W.E. Leland and T.J Ott. Load-balancing heuristics and process behavior. Perfor-
mance Evaluation Review, May 1986, vol.14, no.1. pp.54-69.

[SPG 91] A. Silberschatz, J.L. Peterson, P.B. Galvin. Operating System Concepts, 3rd
edition. Reading, Mass., Addison-Wesley c1991.

[WM 85] Yung-Terng Wang and Robert J.T. Morris. Load Sharing in Distributed Systems.
IEEE Transactions on Computers. Vol. c-94, no. 3, March 1985. pp. 204-217.

[W 89] R.W. Wol�. Stochastic Modeling and the Theory of Queues. Prentice Hall, Engle-
wood Cli�s, NJ, 1989. p. 266.

[Z 87] Songnian Zhou. Performance studies for dynamic load balancing in distributed sys-
tems. (PhD Dissertation. U.C. Berkeley) 1987.

24

