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Abstract

We present compiler optimization techniques for explicitly parallel programs that communicate

through a shared address space. The source programs are written in a single program multiple

data (SPMD) style, and our machine target is a multiprocessor with physically distributed memory

and hardware or software support for a single address space. The source language involves normal

read and write operations on the address space, which correspond either to local memory operations

or to communication over an interconnect network.

The remote operations result in high latencies, but much of the latency can be overlapped with

local computation or initiation of further remote operations. Non-blocking memory operations

allow this overlap to be expressed directly. However, overlap is di�cult for programmers to do by

hand; it can lead to subtle program errors, since the order in which operations complete is no longer

obvious. Programmers writing explicitly parallel code expect reads and writes from a single thread

to take e�ect in program order, a property called sequential consistency. The use of non-blocking

memory operations might yield executions that violate sequential consistency.

We provide a new algorithm for static parallel program analysis to detect memory operations

that can safely be made non-blocking. The analysis requires dependency information across and

within threads, and builds on earlier work by Shasha and Snir. We improve their results by

providing a more e�cient algorithm for SPMD programs, and by improving the accuracy of the

analysis through the use of synchronization information. Using the results of this analysis, we

show how to optimize parallel programs by changing blocking operations into non-blocking ones,

performing code motion to increase the time for communication overlap, and caching remote values

to eliminate some read accesses entirely.

We show the potential payo� from each of our optimizations on real applications, using hand-

transformed programs. The experiments are done on a CM-5 multiprocessor using the Split-C

runtime system, which provides a software implementation of a global address space and both

blocking and non-blocking memory operations.
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1 Introduction

Traditionally, there have been two di�erent approaches towards programming parallel machines:

the parallelizing compiler approach and the explicitly parallel program approach.

In the parallelizing compiler approach, the program is written in a sequential language (or

an implicitly parallel language), and the parallelism in the program is identi�ed by the compiler.

Parallelizing compilers have been built for imperative languages like Fortran [1] and data-
ow

languages like Id [2]. This approach requires little e�ort on behalf of the programmer and allows

reuse of existing code (popularly known as parallelizing dusty-decks). However, the parallelizing

compiler approach rarely discovers coarse grained parallelism, and is also constrained by the need

for good dependence analysis.

The other approach is to write explicitly parallel programs using a language with constructs

for creating and synchronizing parallel threads. The programmer does not rely on the compiler

to detect the parallelism. Instead, the programmer makes all the important decisions regarding

scheduling, data layout, and synchronization, and the compiler deals only with the lower level details

of code generation. In this approach, sequential programs cannot be reused, and there is a startup

cost for the programmer to learn the parallel semantics of the language. However, the programmer

can use algorithms designed speci�cally for parallel systems and can make use of information about

an application that is not available to the compiler. This usually leads to programs that obtain

better performance on parallel machines. Therefore, in spite of the additional programming e�ort,

programmers typically choose explicitly parallel languages for writing parallel applications.

Our research focuses on developing optimizing compilers for explicitly parallel programs. In

particular, we are interested in optimizing parallel programs that have been written in a Single

Program Multiple Data (SPMD) style as opposed to data-parallel programs. In both programming

styles, there are multiple threads running on di�erent processors. However, in an SPMD program,

the threads can execute asynchronously and need not compute in a lock-step fashion as is the case

with data parallel programs. Asynchronous execution enlarges the set of algorithms that can be

executed e�ciently on these parallel machines. An SPMD model provides maximum control to

the programmer in the parallelization e�ort. However, the programming task required for writing

SPMD programs is exacting. We relieve the programmer from having to specify certain low-

level aspects of a program's execution by providing compiler optimizations for scheduling certain

instructions that are speci�c to distributed memory machines.

We address the problem of implementing a global address space abstraction on a distributed

memory machine. Why do we care about global address space abstraction on distributed memory

machines? Parallel computing on distributed memory multiprocessors is popular due to scalability

considerations. Most of the high performance machines that are currently being marketed are

distributed memory machines, the principal argument being that to obtain tera
op performance

we would need a machine that has at least a 1000 processors, and a machine that size is attainable

only if the memory is distributed across the machine. Each node in such a machine typically

consists of a tightly coupled processor-memory pair.

Given that distributed memory machines are necessary to obtain scalable performance, the

question is which programming model allows the user to obtain good performance with a reasonable

amount of programming e�ort. A global address space abstraction allows the programmer to extend

standard uniprocessor data structures into distributed data structures [19] [5] that live on multiple
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processors. The ability to name objects that live on other processors' memory is of signi�cant

utility to the programmer. When an object belonging to the global address space is accessed, it is

either fetched from local memory or is fetched from remote memory in a manner that is transparent

to the programmer. This greatly increases the programming ease.

The principal drawback of using distributed memory machines is the loose coupling of proces-

sors. Only a small portion of the global address space is physically close to any given processor.

Accesses to the other memory modules (which will henceforth be called remote accesses) are im-

plemented using messages through an interconnect network and are thus high latency operations.

The cost of these operations vary from 100 cycles on the T3D[16] to 400 cycles on the CM5[18],

with the requesting processor remaining idle for a signi�cant portion of the time.

The high latencies associated with remote memory operations can be tolerated by using certain

well-known techniques. Message pipelining and prefetching are techniques that can potentially

hide the associated cost. Pipelining allows a given message latency to be masked by other message

latencies. The processor treats the network as a resource that can be pipelined, and allows multiple

outstanding messages. Prefetching increases the number of machine instructions between the point

at which the read is initiated and the point at which the value is actually used. The intervening

instructions could be executed by the processor, and can therefore mask the latency of the global

access. Multithreading could be considered as a variant of prefetching, where the latency of a

thread's remote access is overlapped with the computation of another thread. Another popular

way to handle the cost of remote accesses is to cache values. Caching eliminates multiple accesses

to the same memory location, thus reducing the number of remote accesses and improving the

performance of the application code.

There are no automatic tools for incorporating these optimizations in parallel applications that

are written in a general model, such as the SPMD model. The programmer either has to code

these optimizations explicitly or has to write programs that conform to certain models like proper

labeling for release consistency machines[8]. The �rst alternative requires enormous programming

e�ort. In fact, the designers of the ScaLapack library made a design choice not to pipeline messages

in their highly optimized linear algebra kernels [6] due to the programming e�ort required. The

second approach requires the programmer to stick to certain conventions and to classify the memory

accesses into di�erent categories; this can be equally taxing to the programmer. These di�culties

motivate the need for techniques that can incorporate optimizations that hide remote memory

latencies.

Performance bene�ts in the order of 20-50% can be obtained by introducing the latency masking

optimizations [5]. This usually corresponds to a considerable increase in processor utilization. These

optimizations have signi�cantly higher bene�ts than that can be obtained from standard back-end

optimizations such as register allocation and instruction scheduling.

In this report, we present methods for automating optimizations such as message pipelining

and caching. In section 2, we describe the source language, and in section 3, we describe the target

language. We present some basic terminology in section 4, and in section 5, we present an overview

of the compilation process. In section 6, we describe the theory developed by Sasha and Snir [17]

that helps the compiler in deciding valid usage of these optimizations. We extend their algorithm

to handle SPMD programs in section 7, and show that our algorithm is more e�cient. In section

8, we discuss the issues involved in code generation. In section 9, we discuss new algorithms that
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incorporate synchronization analysis techniques to further enlarge the scope of these techniques.

In section 10, we extend these techniques to allow compiler controlled caching of values. Section

11 quanti�es the potential payo�s by analyzing some application kernels. Related work is surveyed

in section 12, and general conclusions drawn in section 13.

Our primary contributions in this research are:

1. A fast polynomial time algorithm for deciding when accesses can be reordered or pipelined in

an SPMD program.

2. Enlarged applicability of the optimizations using extra program information obtained from

synchronization analysis.

3. Techniques for code generation where the target abstract machine is the Split-C programming

language[5].

4. Extensions of the theory to other transformations such as caching and common subexpression

elimination.

2 Programming Model

We analyze explicitly parallel programs written in an SPMD style. In this style, the same program

executes on every processor, but the execution paths through the code image may vary and pro-

cessors may execute the same statement at di�erent times. The processors access a global address

space, which is either supported in hardware or is provided through software mechanisms.

The programmer can declare globally accessible regions of memory using the keyword shared.

The shared regions could be separate C objects or could be an array of C objects. The di�erent

threads of control can access these regions using normal read and write operations.

The threads can synchronize using three di�erent mechanisms. The barrier provides a global

synchronization for all the threads. The lock and unlock operations allow the threads to execute

mutually exclusive code. The post and wait calls provide event-based synchronization that could

be used for a producer-consumer style of programming.

A sample program is shown in Figure 1. The variables flag and result belong to the global

address space, and hence are accessible to all the processors. The variables i and sum are standard

C local variables that are accessible only to the local processor. The entry point is main, and

the processors start executing code from this common entry point. However, they could execute

di�erent code (as is the case in the example where processor 0 executes code that is never executed

by other processors). In this example, there is an event-based synchronization point using the

variable flag. Upon completion of its task, processor 0 sets the 
ag by doing a post operation.

The other processors wait for the 
ag to be set by executing a wait operation. On completion of

the wait, they use result to compute local values of sum. The barrier synchronization at the end

ensures that all processors have reached the same state in their execution.
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shared int result[10];

main() {
   int sum = 0;
   int i;

   if (MYPROC == 0) {
      for (i=0; i<10; i++)
         result[i] = i;

   }
   else {

      for (i=0; i<10; i++)
         sum += result[i];
   }
   barrier();
}

shared event flag;

      post(flag);

      wait(flag);

Figure 1: Shared Memory SPMD Program

3 Target Language

Our target language is Split-C [5], a language for programming distributed memory machines. Split-

C provides a global address space abstraction by extending C pointers and C arrays. Two kinds

of pointers are provided, re
ecting the cost di�erence between local and global accesses. Global

pointers reference the entire address space, while standard pointers reference only the portion owned

by the accessing processor. Global pointers are declared using a new quali�er global. A global

pointer can be dereferenced in the same manner as a standard C pointer. For a global access, a

local/remote check is involved, and if the object is remote, a dereference incurs the additional cost

of communication.

Split-C also provides a simple extension to the C array declaration to specify spread arrays,

which are spread across the entire machine. The declaration speci�es the layout of the array by

specifying the block size of the array on each processor. The blocks are always cyclically mapped

starting with the block numbered 0 on processor 0.

To compile shared variable declarations of our source language, we arbitrarily choose the proces-

sor that is going to own the object, and handle variable accesses by using global pointer dereferences.

The shared array constructs are directly mapped onto the spread array declarations of Split-C.

The most important feature of the Split-C language is that it allows e�cient access to the

underlying machine by providing split-phase operations on the global address space. This addresses

the concern that the issuing processor is idle during most of the time required to satisfy a remote

request. Instead, the processor is allowed to continue with computation until the completion of

the access is essential. This technique may be used for both read and write operations. For a read

operation, the processor initiates the request, but does not wait for the value's arrival; it may then

execute statements that do not depend on the value. For a write operation, the processor initiates

the operation either by pushing the value to be written into the network or by initiating a DMA

operation and resumes its local computation; it does not wait for the acknowledgement that the

remote memory module has received the value.

The primary idea is that any remote access has two phases. The �rst phase initiates the
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operation. The second phase synchronizes or joins the thread of control with the remote access

by waiting for its completion. These operations are hence called split-phase operations. The

asynchronous read operation is called a get operation, while its write counterpart is called a put

operation.

We now describe the primitive operators of Split-C. A remote access has �ve attributes, the �rst

of which speci�es the type of the operation: get or put. To completely specify a read operation,

the physical address of the remote object, the local address for storing the fetched value, the type

of the object being fetched (which includes the object's size), and the counter (or 
ag) that needs

to be set on completion of the fetch are required. A write operation can be initiated by specifying

the value to be stored, the target remote address, the type of the object, and the local counter that

is to be updated on receipt of the acknowledgement.

Let us look at two examples of these split-phase operations de�ned by the Split-C runtime

system.

void d_get_ctr (double *dest, double *global src, Counter *ctr);

void d_put_ctr (double *global dest, double *src, Counter *ctr);

The type and the nature of the operation (get or put) is explicit in the name of the function.

The arguments to the functions include the address of the globally accessible object (represented

as a global pointer), the local data (represented as a local pointer), and the counter that will be

used for synchronization. The program can wait for all the accesses that have been initiated using

a particular counter by doing a sync ctr operation on the counter. This is convenient when a set

of accesses are related and their completion is required at the same time. The following piece of

code computes the sum of two non-local values e�ciently by overlapping the latencies of the remote

accesses.

d_get_ctr (&dest1, src1, ctr);

d_get_ctr (&dest2, src2, ctr);

/* Unrelated computation */

sync_ctr (ctr);

foo = dest1 + dest2;

The get-put operations are library functions that are provided by the Split-C system. Con-

strained versions of these functions (versions that do not allow the user to specify the synchro-

nization counter) are available through syntactic extensions to the C language in the form of new

assignment operators. Sample use of the new assignment operator is shown below. The assignment

operator := is overloaded for both get and put operations, and sync waits for the completion of

all accesses that have been initiated using the assignment operator. The above program can be

written as:

*dest1 := *src1;

*dest2 := *src2;

/* Unrelated computation */

sync();

foo = *dest1 + *dest2;

7



The 
exibility provided by the library functions provided by Split-C is the ability to wait only

on a select set of outstanding requests. This is achieved by using di�erent counters for di�erent

sets of accesses. This 
exibility is useful when the processor works on two di�erent tasks with the

compute phase of one task overlapping the communication phase of the other.

Split-C also provides a store operation that is a variant of the put operation. A store oper-

ation generates a write to a remote memory location, but does not acknowledge when the write

operation completes. It exposes the e�ciency of one-way communication in those cases where the

communication pattern is well understood. The language provides a new assignment operator : �

for specifying store operations. The synchronization operation for stores is the all store sync

operation that waits for all stores on alll processors to complete. all store sync is therefore a

global synchronization operation. A common optimization for Split-C programs is to transform

a set of put operations followed by a barrier synchronization into store operations followed by a

all store sync operation.

On the CM5, these operations are provided through software emulation of a shared memory

system. On the CRAY T3D, there is greater hardware support for memory-to-memory transfers.

On some Intel machines, the software handles just the initiation protocol with the rest of the work

borne by the DMA controllers. Split-C runs on top of Active Messages on the CM5, and there

are prototype implementations for the Paragon, SP-1, and a workstation network [13]. It de�nes a

portability layer with fast, non-blocking remote accesses that, unlike large message passing systems,

can be implemented without message bu�ering on both ends [18]. It blurs the distinction between

machines with a hardware global address space and those without, making it a good choice for an

abstract machine language.

4 Basic Terminology

The intermediate representation that we use in the compilation process is a modi�ed control 
ow

graph. Our analysis techniques are presented as transformations on graphs. Therefore, our presen-

tation includes a number of graph theoretic concepts. In this section, we introduce these terms and

also describe how explicitly parallel programs are analyzed to obtain the kind of graphs required

by our compiler tools.

Let G be a directed graph on the set of vertices V connected by the set of edges E. We denote

such a graph by the tuple (V;E). We use the notation [u; v] to denote a directed edge from u to v,

and (u; v) to denote an undirected edge. For a graph (V;E), the transitive closure is a new graph

(V;E 0) where [u; v] 2 E0 if there is a simple path from u to v in the original graph. A partial

order is the transitive closure of a directed acyclic graph or DAG.

We analyze explicitly parallel programs speci�ed by a �xed number of program segments, each

of which is executed on a single processor. Each program segment de�nes a total order Pi on the

accesses issued by the ith processor. The union of these Pi's is called the program order, P . P is a

partial order since it is the union of several disjoint total orders. In any execution, there is a total

order Ev on the accesses issued to variable v. The union of these Ev's is the execution order, E,

which is also a partial order. Figure 2 illustrates these concepts., with solid arrows for P edges and

dashed arrows for E edges.

We have de�ned P and E for a particular execution of the program. However, we would like
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Write C

Read A

Read C

Write B

Write C

Write A

Segment 1 Segment 2 Segment 3

Write B

Figure 2: P and E for a particular execution

for (i=0; i<10; i++)
    local += local/10;
data = local;
flag = 1;

while (1)
    if (flag == 1)
        break;
for (i=0; i<10; i++)
    local = (local + data)/10;

shared int flag;
shared int data;

Processor A                       Processor B

Figure 3: Sample program

our analysis to work with the compile-time representation of programs. This means that we need

to approximate the P and E orders, and use these approximations for generating optimized code.

We can approximate P by the control 
ow graph (CFG) of the program segment. Since there

are multiple execution paths in the control 
ow graph, P is no longer a total order on accesses.

Also, the notion of an access is replaced by that of an access instruction that could initiate multiple

accesses to a particular memory location during the execution of the program. At compile time,

the runtime ordering of accesses to a variable also is not known. Hence, we approximate E by the

undirected version of the E edges, which are called the con
ict edges, C. To ensure correctness of

our program analyses, we require E to be contained in C. This condition is trivially satis�ed by

making C contain bidirectional versions of the E edges. In section 9, we discuss improvements to

our analysis that make a better approximation of E by studying the synchronization constructs in

the program.

To illustrate these terms, Figure 3 shows a sample parallel program made up of two processes

accessing a common set of variables. The corresponding program graph is given in Figure 4. The

con
ict edges are represented using dashed lines and are bidirectional. The other edges specify the

processor dependencies. Note that we ignore all the accesses to local data in the graph, and if an

expression or statement involves multiple global accesses, the evaluation rules of the language (left

to right) speci�es the ordering of the accesses in the graph.
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Write data

Write flag

Read flag

Read data

Figure 4: Con
ict edges and control 
ow graph for sample program

X := 1
Y := 1
Z := 1
sync()
A := 1

Split-C Program

X = 1 Y = 1 Z = 1

A = 1  

Corresponding Delay Constraints

Figure 5: Delays imposed by Split-C code

5 Overview of the Compilation Process

The compiler is a source level transformer. The input to the compiler is a shared memory C

program. The compiler generates Split-C code as output. The compile-time analysis is to �gure

out the schedule for completion of remote accesses. The intermediate representation built by the

compiler is the delay set, D. This set speci�es the restrictions on the completion of remote accesses.

The compiler has to ensure that the delay set imposes su�cient restrictions for correct execution1

of the program. The compiler generates Split-C code based on the computed delay set. The remote

accesses are transformed into split-phase operations, and the sync ctr operations are placed at

appropriate program points to enforce the delay constraints. Some sample delay constraints and

the corresponding Split-C code is shown in Figure 5.

The compiler expects the Split-C system to stick to the delay restrictions imposed by the

sync ctr operations. The put ctr, get ctr, and sync ctr operations are provided by the Split-C

environment. Other machines or software systems may provide di�erent mechanisms. For example,

the DASH multiprocessor[12] provides a fence instruction that is similar to Split-C's sync operation,

but does not allow the 
exibility of separate counters. More generally, the system is provided with

a set of delays, and the program's execution should be consistent with the delay constraints. In

1We will describe our notion of correctness in the next section
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other words, the system provides the following contract:

System Contract: D [E is acyclic.

A cycle in D [E would imply that the system did not adhere to some delay constraint. In the

Split-C system, it would imply that some sync ctr operation in the program was faulty and did

not wait for the corresponding access to complete.

In summary, the compiler's task is to compute a delay set that would ensure correct execution

of the program. The Split-C system's task is to enforce the delay restrictions speci�ed by the

compiler using sync ctr operations.

6 Shasha and Snir's Algorithm

In this section, we analyze a correctness criteria for execution of parallel programs called sequential

consistency. We will also study how this criteria could be violated by indiscriminate use of pipelining

optimizations and how the program order on accesses can expose inconsistencies in the execution

of the program. Equipped with a clear understanding of how the correctness criteria might be

violated, we can decide the extent to which the constraints on the completion of remote accesses

can be relaxed.

6.1 Sequential Consistency

Lamport de�nes sequential consistency as follows[11]:

A system is sequentially consistent if the result of any execution is the same as if

the operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order speci�ed

by its program.

A trivial way to satisfy sequential consistency would be for each processor to initiate an in-

struction only after the preceding operation has taken e�ect. In the case of remote accesses, this

means waiting for a round trip for both read and write operations. Less strict restrictions on the

completion of memory operations would lead to greater processor utilization.

To reiterate, sequential consistency is violated if the observed behavior of the program implies

that certain accesses were completed in an order that is inconsistent with the program order: an

access issued by a processor takes e�ect before an access issued earlier by the same processor. For

the observer, sequential consistency is violated if the observed behavior cannot be reconciled with

the program order.

In the program shown in Figure 3, sequential consistency could be violated if the write to

flag happened before the write to data. The other processor might obtain the old value of data

if the read accesses to flag and data take place before data is updated. This would result in

incorrect program executions. Sequential consistency is the correctness criterion implicitly assumed

when writing parallel programs, and it must be respected when introducing code motion, common

subexpression elimination, or pipelining optimizations.

We now elaborate on the relationship between program structure and validity of certain program

transformations. The key idea is that accesses which do not take e�ect in program order do not
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necessarily lead to observable violation of program order; such a violation can be detected only for

certain access sequences of the program segments. In this section, we develop a characterization

for the structure of program segments that exposes program order violations.

In this section, we will study what makes a particular execution of a parallel program violate

sequentially consistency. We will characterize the program structure that leads to sequentially

inconsistent behavior at runtime, and develop an algorithm based on this characterization.

6.2 Violations of Sequential Consistency

We now discuss ways of detecting violations of the sequential consistency model for a particular

execution of the parallel program. This will motivate the compiler analysis, which will allow any

program transformation that does not permit such executions.

The observer can detect violations of sequential consistency either through local behavior of a

program segment or by not being able to reconcile observed behavior of di�erent program segments

with the expected program order. Let us �rst examine how the local behavior could be used to

infer such violations.

The simplest violation occurs when accesses to the same variable by a single program segment

get reordered. If a later write operation overtakes an earlier read or write operation or if a later

read operation overtakes an earlier write operation, the program might enter an inconsistent state.

Designers of superscalar pipelined processors have to handle this problem of out-of-order execution

of memory operations to the same memory location. In these processors, the hardware detects

of these race conditions and delays certain operations to ensure proper execution. However, if

the global address space is provided by a software layer, the onus is on the compiler to detect

these instances (or make conservative estimates in the presence of aliasing or array references) and

introduce the necessary delays. This is a task that is required for doing code motion for sequential

languages, and reasonable solutions exist.

Inferring violations of sequential consistency from the behavior of multiple program segments

requires constructing a sequence of accesses that exposes a violation of program order. An access

sequence is an ordering of accesses executed by two or more processors, where the given ordering is

necessary to explain the program's behavior. In Figure 3, if the read operation on data provides the

old value of data, this would indicate the presence of the access sequence: write flag, read flag,

read data, write data. This access sequence would indicate that the program order was violated in

the ordering of writes to data and flag.

To construct an access sequence involving two accesses, the observer can employ two kinds of

basic information. The �rst type is the ordering of instructions executed by a given processor.

The second type of information is the ordering of operations of di�erent program segments that

take place on a particular variable. While it is unclear how the observer can obtain an ordering of

accesses to a particular variable, we note that the program order P introduced in an earlier section

can be used to order accesses from a given processor.

Let us now study how accesses to the same variable might be ordered. The observed behavior

of accesses implicitly speci�es an ordering on global accesses on a given variable. Let a1 and a2 be

accesses to the same shared variable, and let one of the operations, say a1, be a write operation.

If a2 is a read operation, the value read might indicate whether the write has taken place earlier

if the read operation sees the new value. If a2 is a write operation, a subsequent read operation
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a1 x = X;

X = 1;Y = 1;

y = Y;

a

1

2

b

b2

X  =  Y  = 0

Figure 6: Cycle in P [E

would indicate which one of the writes was performed earlier. However, if both a1 and a2 are read

operations, we cannot order the accesses in the absence of competing write accesses to the same

location. If there is such a write operation a3 that takes e�ect in the time interval between the two

read accesses, we can determine the relative order of the read accesses.

To formally state the properties of these access sequences, we will employ the function time.

time(a) is the time at which the memory access a was handled by the memory module that con-

tains the memory location being accessed. An access sequence is therefore a sequence of events

a1; b1; b2; :::; bk; a2 such that time(a1) < time(b1) < time(b2) < ::: < time(bk) < time(a2), where

each one of the inequalities are implied either by the program order or by the execution order of

accesses.

A speci�c case is shown in Figure 6. The accesses a1 and b1 are reads to two variables X and

Y . a2 and b2 are writes to the same variables. If a1 is made non-blocking, the operation a2 can

complete before a1. It is thus possible that time(a2) < time(b1) and time(b2) < time(a1).

The observer would reason about such a behavior in the following manner. X and Y are

initially set to 0. If the reads on X and Y return the value 1, it implies that the access b2 preceded

the access a1 and the access a2 was satis�ed before the access b1. This implies that time(a2) <

time(b1) and time(b2) < time(a1). This together with the implied program order of b1 and b2,

which is time(b1) < time(b2), implies that the program order was violated for the accesses a1 and

a2. This discussion is summarized by the following observation by Shasha and Snir[17].

Observation: Sequential consistency is violated if and only if P [ E contains a cycle.

In the example we considered, if both a1 and b1 were made blocking accesses, sequential con-

sistency would not be violated. This, however, raises the question as to whether accesses could be

non-blocking in the presence of con
icting accesses and still ensure the conformance to sequential

consistency.

If the accesses to the variables X and Y take place in the same order in both program segments

(as in Figure 7), we cannot observe any violation of sequential consistency even if all the operations

are made non-blocking. In general, violation of the program order is observed only when there

exist enough observations on the execution order of con
icting accesses which when combined with

expected behavior (conformance to the program order) of the other program segments implies

that accesses are completed out of order. The observations on the orderings of accesses on the

same variable are simply the E edges (execution order edges) as de�ned in the previous section.
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a2 b2

1ba1

X = 1;

y = Y;

x = X;

y = 1;

X  =  Y  = 0

Figure 7: Graph without cycles

Therefore, the access sequence that the programmer uses in proving the violation of sequential

consistency corresponds to a path comprising of E and P edges (of other program segments) that

links the two distinguished accesses a1 and a2. We call these access sequences back-paths since they

go back up the program order. The back-path when combined with the program order edge [a1; a2]

corresponds to a cycle in P [E.

6.3 Compiler Approach

One of our objectives is to develop compile-time techniques for relaxing blocking read-write opera-

tions into weaker non-blocking operations without violating sequential consistency. If an access is

made non-blocking, the compiler has to decide when the issuing program segment is going to wait

for the access to complete.

The compiler should detect at compile-time whether cycles can develop in P [ E if an access

is made non-blocking. The compiler, however, does not have access to the directionality of the

E edges (which is known only at runtime). In other words, the compiler can detect the C edges,

but cannot determine their orientation. Also, at compile-time, we do not know the exact sequence

of accesses the program would initiate. Instead, we have the Control Flow Graph that represents

all possible execution paths. Also, we have to replace the notion of an access by the notion of an

access statement. The back-paths that we are going to compute will be a string of access statements

that does not make any assumptions regarding the ordering of con
icting accesses from di�erent

processors.

Therefore, for compile-time analysis, we make the following conservative approximations:

1. We are going to approximate E by C, which is just the undirected version of E.

2. At compile-time, it might not be possible to detect whether two access statements would

access the same variable especially if the language allows the use of pointers. The conservative

nature of dependency analysis might result in additional C edges, which is still correct since

E would be a subset of C.

3. P is approximated by the control 
ow graph.
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So, a back-path corresponds to a path of directed P edges and undirected C edges. Observe

that such a path (of P and C edges) indicates only a potential ability to observe a runtime violation

of sequential consistency. To illustrate this point, observe that if the access b1 took place before

the access a2 in the program shown in Figure 6, the observer cannot prove a violation of program

order even if a2 is executed ahead of a1. Only for a particular orientation of C edges is sequential

consistency violated. But the compiler has to be conservative and ensure that a2 does not complete

before a1 since there is a possibility that if the accesses get reordered, the program order violation

might be observed. This does not mean that the earlier access has to be blocking and synchronous.

The latency of the earlier request can actually be overlapped with the execution of the instructions

that follow the earlier access and precede a2. These instructions could be purely local operations or

could also be remote accesses that would not reveal the non-blocking nature of the previous access.

The only constraint is that a2 should not complete ahead of the earlier access.

The aim of this analysis is to discover all such constraints. We call this set of constraints the

delay set, D. The delay set is a set of pairs of access statements that appear in the control 
ow

graph. Since an access statement could correspond to multiple run-time accesses, for every pair of

access statements (a1; a2) that appears in D, we have to ensure that all previous a1 accesses are

complete before the completion of a2 access that is initiated later. E�cient ways of handling these

situations are discussed in a later section.

Shasha and Snir proved that there exists a minimum delay set, D. We restate their theorem in

a di�erent form. Before stating the theorem, we rede�ne the notion of a back-path.

De�nition: a1; b1; b2; :::; bk; a2 is a back-path if:

1. (a1; b1) 2 C and (bk; a2) 2 C.

2. For all i 2 [1::k� 1], [bi; bi+1] 2 P [ C.

3. Let bm; bm+1; :::; bm+n be access statements corresponding to program segment Pl such that

(bm�1; bm) 2 C and (bm+n; bm+n+1) 2 C. Then, for all i not in [m..m+n], bi does not belong

to Pl.

Theorem: [a1; a2] belongs to D if and only if there exists a back-path from a2 to a1.

The signi�cance of this theorem is that it is su�cient to consider back-paths that visit each

program segment at most once. To understand the intuition behind the constraint, let us examine

the two invalid back-paths shown in Figure 8.

In case 1, there exists another back-path (a2; b1; b2; b3; b4; a1) from a2 to a1 that does not visit

the second program segment twice. We can remove the accesses that appear between the two visits

to the second program segment. In case 2, there is no valid back-path from a2 to a1. There are

back-paths from b4 to b1 and from b6 to b5. This means that the delay set will contain [b1; b4] and

[b5; b6]. With this delay set, E cannot contain [b4; b5] and [b6; b1] since that would make E[D cyclic

and violate the system contract.
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a1

a2

b1

b2

b3

b4

b5

b6

a1

a2

b1

b2

b3

b4

b5

b6

                    Case  1 Case  2

Figure 8: Invalid Back-paths

Lock:

Unlock:  requestA = 0

Proc: 1 Proc: 2

 requestB = 1
 turn = 1

 requestB = 0

 requestA = 1
 turn = 2

 while   (requestB
          && turn != 1);

 while   (requestA
          && turn != 2);

 numTrans++;

 fund += giftAmt;

 numTrans++; 

 fund -= giftAmt;

Figure 9: Peterson's Locks

The import of Shasha and Snir's theorem is that we need to consider only minimal back-paths

(back-paths that do not contain other valid back-paths) in constructing the delay set. We extend

this characterization to an algorithm that computes the minimal delay set in section 7.

To summarize, in this section we characterized the type of executions that can violate sequential

consistency. We then developed a technique for detecting at compile-time whether such violations

are possible. We then presented a technique for constructing the delay set, which encapsulates all

the restrictions on the completion of remote accesses.

6.4 Example

In this section, we examine Peterson's locking algorithm (Figure 9) and determine the delay re-

quirements imposed on accesses. There are two processes accessing the following shared variables:

requestA, requestB, turn, numTrans, and fund. The sequence of reads and writes to requestA,

requestB and turn ensures that only one of the processors is updating the variables numTrans

and fund. The program orders and the con
ict relations are shown in Figure 10. The solid lines

represent the program order and are unidirectional. The dashed lines represent the con
ict relations

and are bidirectional.

We can compute the delay set by determining for every pair of accesses whether there is a

back-path. This leads to the set of constraints that is shown as solid lines in Figure 11. We observe
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 Write requestB

 Write turn

 Read requestA

 Read turn

 Write turn

 Write requestA

 Read requestB

 Read turn

 Write requestA  Write requestB

Proc: 1 Proc: 2

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read numTrans

 Write numTrans

 Read fund

 Write fund

a1

a2

Figure 10: Con
ict edges

that all the accesses to the variables requestA, requestB, and turn have to be blocking accesses,

which is not surprising considering that they are a compact set of accesses designed to ensure

mutual exclusion. On the other hand, there are weaker constraints on the accesses to numTrans

and fund. One should note that even if the update operation does not appear in a region that

is guarded by the lock, we would not be able to discover a back-path from access a2 to access a1.

The variables numTrans and fund might not re
ect the actual number of transactions executed

due to race conditions. However, the program's execution would be sequentially consistent. The

distinction is that a program's execution could be sequentially consistent even if it contains race

conditions.

6.5 Evaluating Shasha and Snir's Algorithm

One of the problems with Shasha and Snir's algorithm is its dependence on the sequence of accesses,

which could sometimes be misleading. If the variables numTrans and fund are accessed in reverse

order by the two segments, there would be a back-path from a2 to a1 and the accesses would

be construed as fragments of a synchronization operation. The algorithm would then require the

accesses to be executed synchronously. We will try to alleviate this problem by exploiting global

precedence/synchronization information. This is described in section 9.

Another problem with the approach is the rapid growth of the delay set as we compose more

program segments (Figure 12). Suppose we had our example generalized to three di�erent agents

updating the shared variable. The resulting con
ict relations would introduce a new back-path from

a2 to a1. Here also, an analysis of synchronization operations would invalidate such a back-path

and reduce the size of the delay set.
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 Write requestB

 Write turn

 Read requestA

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read turn

 Write requestB

Proc: 2

 Read turn

 Write turn

 Write requestA

 Read requestB

 Write requestA

 Read numTrans

 Write numTrans

 Read fund

 Write fund

Proc: 1

Figure 11: Delay Constraints

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read numTrans

 Write numTrans

 Read fund

 Write fund

Creditor

 Read requestB

 Read requestC  Read requestC

CreditorDebitor

 Read requestA  Read requestA

 Read requestB

 Read turn

 Write turn

 Write requestA

 Write requestA  Write requestB

 Read turn

 Write turn  Write turn

 Read turn

 Write requestB  Write requestC

 Write requestC

a1

a2

Figure 12: Composing three copies
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7 Cycle Detection Algorithm

To compute the delay set, if the number of program segments is �xed, there exists an algorithm

whose complexity is polynomial in the number of memory access statements in the program. How-

ever, the running time of this algorithm grows exponentially with the number of program segments.

In fact, we can reduce the Hamiltonian Path problem on a graph of n nodes to computing the delay

set on a program with n program segments; thus, we can show that the problem is NP-Complete.

In this section, we �rst prove that the problem of constructing back-paths is NP-Complete. For

the sake of completeness, we also present an exponential time algorithm for computing the delay

set for a general program. We then restrict the analysis to SPMD programs, and exploit the code

uniformity of the program segments to devise a polynomial-time algorithm.

7.1 Path Recognition is NP Hard

We can prove that the problem of �nding a back-path from an access a1 to an access a2 that does

not visit a thread more than once is NP Hard[7]. We show that the Hamiltonian Path recognition

problem[7] can be reduced to a particular instance of the back-path recognition problem (BPR).

Given a general graph (V;E), we will construct a parallel program with program order P and

con
ict relation C, such that a Hamiltonian path exists in the original graph if and only if there

exists a particular back-path involving P and C edges.

Let the vertices in V be v1; : : : ; vn. We want to check whether there exists a simple path of

length n � 1 from v1 to vn. We will construct a parallel program with n� 1 threads that access a

set of shared variables of the form vij . For every vertex in V , we are going to construct a program

thread that initiates a set of accesses in a particular order. The structure of this parallel program

is de�ned by the accesses initiated by each thread and the order in which the accesses are initiated.

To specify the code for the threads, we will de�ne a function CodeSeq. The code for thread j

is based on the list of neighbors of vertex vj in G. Let w1; : : : ; wd be the neighbors of vertex vj .

Then the function CodeSeq(j; i) expands to the following code:

CodeSeq(j,i):

Write vij;

Read wi+1
1 ;

Read wi+1
2 ;

...

Read wi+1
d ;

We use CodeSeq to de�ne the code for threads P1 through Pn�1.

Pj is de�ned as:

CodeSeq(j, n-1);

CodeSeq(j, n-2);

...

CodeSeq(j, 1);

The structure of thread Pn is di�erent from the other threads. It initiates only two accesses, and

we will show that there is a Hamiltonian path from v1 to vn if and only if there exists a back-path
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Figure 13: Constructing a parallel program for a given graph.

between the two accesses initiated by thread Pn.

Pn is de�ned as: Write vnn; Read v11
Figure 13 illustrates this construction for a simple graph consisting of four vertices. There exists

a Hamiltonian path from vertex x1 to vertex x4 in the graph and a back-path between the two

accesses initiated by P4.

Theorem: There exists a Hamiltonian path from v1 to vn in the graph G if and only if there

exists a back-path from Read v11 to Write vnn , which are accesses initiated by thread Pn.

Proof: We will �rst show that if there is a Hamiltonian path from v1 to vn in G, there exists

a back-path between the accesses initiated by Pn.

Let u1; : : : ; un be the Hamiltonian path from v1 to vn where u1 is v1 and un is vn. Consider

the access sequence Read u11, Write u11, Read u
2
2, Write u22, Read u

3
3, Write u33, : : : , Read u

n
n, Write

unn. By construction, (Read uii, Write uii) 2 C and (Write uii, Read u
i+1
i+1) 2 Pui

. Also, this access

sequence visits each thread exactly once. Therefore, this is a valid back-path from access Read v11
to Write vnn .

We can also show that if there is a back-path between the two accesses initiated by Pn, there

is a Hamiltonian path in G that originates from vertex v1 and ends in vertex vn. To prove this,

we make some important observations about such a back-path. In particular, the back-path would

have the following properties:

1. All con
ict edges that appear in the back-path are of the form (Read x, Write x).

2. All program edges that appear in the back-path are of the form (Write vkj , Read v
k+1
l ) where
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vertex vl is adjacent to the vertex vj in G.

3. The back-path visits exactly n� 1 threads (excluding the thread Pn).

These properties follow from the structure of the parallel program and the de�nition of back-

path. The accesses initiated by a thread after a Write vkj access are either reads to variables of

the form vml with m � k + 1 or writes to variables of the form vml with m � k. The accesses

initiated after a Read vkj access are either reads to variables of the form vml with m � k or writes

to variables of the form vml with m < k. Therefore, if there is a back-path from an access Op1 vrq
to an access Op2 vts, then the back-path must contain exactly t � r P edges of the form (Write

vkj , Read vk+1l ). Since t = n and r = 1, the back-path has the above mentioned properties. These

properties also imply the existence of a Hamiltonian path from v1 to vn due to the constraint that

a back-path does not visit a thread more than once.

Therefore, to solve the hamiltonian path recognition problem on a graph, we can use the re-

duction speci�ed in this section and formulate an equivalent back-path recognition problem. This

implies that BPR is NP Hard.

7.2 Exponential Time Back-Path Recognition Algorithm

We present a simple algorithm for detecting the back-paths in a parallel program. To prevent a

back-path from revisiting a thread, we impose an ordering on the threads and orient the con
ict

edges from lowered numbered to higher numbered threads.

Let Ts be the thread that contains the processor edge [u; v]. The goal is to determine whether

there exists a path from v to u that is comprised of P and C edges. Let T1; T2; :::; Tk be the other

threads that make up the program. The algorithm for detecting a back-path from v to u is as

follows:

1. Pick a permutation p1; p2; :::; pk of the set [1::k].

2. Orient the con
ict edges (i.e., assign directionalities) such that no con
ict edge is directed

from Tpj to Tpi where i < j. Also, remove all con
ict edges from the thread Ts to the other

threads except for those edges that involve the accesses u and v.

3. Determine whether the vertex u is reachable from vertex v in this modi�ed graph.

4. If a back-path is discovered, add the edge [u; v] to the delay set. Otherwise, repeat the process

for a di�erent permutation.

The intuition behind the algorithm is to guess an ordering of the threads that can be used in

the proof of violation of sequential consistency. Given a particular ordering of threads, the process

of orienting the con
ict edges ensures that a path would visit a thread at most once.

This algorithm is exponential in the number of program segments. It is, however, polynomial

in the number of access statements in the program. That is, given a �xed number of threads, the

complexity of the algorithm grows polynomially in terms of the number of access statements.
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7.3 Cycle Detection for SPMD Programs

The programming model used by Shasha and Snir allows each program segment to be di�erent.

Under the popular SPMD model, the threads share a common code image and a common entry

point, but they might follow di�erent paths in an asynchronous manner. This means that the same

instruction might be executed by an arbitrary number of processors, and each processor is capable

of imitating the functionality of any other processor.

In the previous section, we examined the algorithm for determining the execution constraints

on a program composed of threads executing di�erent code segments. This algorithm is polynomial

when the number of threads is �xed. However, the complexity of the algorithm grows exponentially

with the number of threads. For the SPMD model, a simple cycle �nding algorithm on all the code

segments that might exist at runtime is not feasible. First, the number of processors executing

(NUMPROCS) might not be known at compile-time. Second, even if NUMPROCS is known at

compile-time, replicating the control 
ow graph of the code image NUMPROCS times and running

the cycle �nding algorithm is computationally infeasible for large number of threads. In this section,

we provide an e�cient algorithm for �nding the minimum delay set for an SPMD program. We

�rst describe a transformation of the given control 
ow graph. We then present an algorithm for

detecting back-paths in the resulting graph, and we close the section by proving that the back-paths

in the two graphs are equivalent.

7.3.1 The Transformed Graph

In this subsection, we show how we prepare the control 
ow graph for our back-path detection

algorithm. Let the control 
ow graph G be (V; P ), where V and P are respectively the access

statements and the control 
ow edges (also referred to as the processor edges) of the graph. The

graph does not contain nodes for local accesses or local computation (see Figures 3 and 4). The

�rst step is to determine the con
ict edges of the graph. Let (u; v) be a con
ict edge if u and v are

accesses to the same object in the shared address space and at least one of the accesses is a write

operation. Let C be the set of these edges.

We generate a new graph, G0, with nodes V 0 and edges E0. V 0 is two copies of the accesses in

G, which we label with L and R for left and right.

V 0 = f< v; L >; < v;R > j v 2 V g

T1 = f(< u; L >;< v;R >); (< v; L >;< u;R >) j (u; v) 2 Cg

T2 = f(< u;R >;< v;R >) j (u; v) 2 Cg

T3 = f(< u;R >;< v;R >) j [u; v] 2 Pg

E0 = T1 [ T2 [ T3

The transformation is based on the following observation. We have two copies of every access

u in the SPMD program. The copy < u; L > appears as endpoints of the back-paths, while the

copy < u;R > will always appear as an interior node in these paths. The T1 edges connect the

left and right nodes. The T2 edges are con
ict edges, but they exist only between a pair of right

nodes. The T3 edges are processor order edges and also link the right nodes. The left nodes have

22



 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read turn

 Write turn

while (turn != MYPROC);

numTrans++;

fund += giftAmt;

turn++;

Figure 14: SPMD Program and Modi�ed Control Flow Graph

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read turn

 Write turn

 Read numTrans

 Write numTrans

 Read fund

 Write fund

 Read turn

 Write turn

Figure 15: Transformed Graph

no internal edges. Therefore, a path from < v; L > to < u; L > is composed of a T1 edge followed

by a series of T2 and T3 edges and terminates with a T1 edge.

For every edge [< u; L >;< v; L >] 2 P , we check whether there exists a path from < v; L >

to < u; L > in the graph G0. We construct the set D that consists of all edges [u; v] that has a

path from < v; L > to < u; L >. If we introduce delay constraints to ensure that for every edge

[u; v] 2 D that the access u is completed before v, there will not be any noticeable violation of

sequential consistency.

To illustrate the use of the transformed graph, examine the program that appears in Figure

14. It is similar to the examples studied in the previous section, but ensures mutual exclusion by

specifying a predetermined order on the updates made by the processors2. The transformed graph

is shown in Figure 15. The T2 edges are shown as dotted lines, the T1 edges as dashed lines, and

the T3 edges as solid lines. Note the absence of control 
ow edges linking the \left nodes" and

2Note, however, that there is no parallelism in this example!
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the presence of con
ict edges that link a pair of \right nodes". This is di�erent from the former

representation in which the con
ict edges always link a pair of nodes that occur in di�erent program

segments.

7.3.2 The Back-Path Algorithm

We can piece together our observations on the structure of the transformed graph to derive an

algorithm for determining back-paths. The �rst two steps are used for transforming the control


ow graph.

1. Compute the processor order, P. This is the transitive closure of the control 
ow graph.

2. Compute the con
ict edges by identifying all accesses to a given variable. This is done

conservatively using dependence analysis techniques.

3. Construct the transformed graph, and compute the reachability matrix (the set of vertices

reachable) for all vertices < u; L > using a standard graph algorithm.

4. If [u; v] 2 P and if the vertex < u; L > is reachable from vertex < v; L >, [u; v] belongs to

the delay set.

All the di�erent stages of the algorithm can be completed in polynomial time. To be more

precise, if n is the number of accesses in the program, the delay set can be computed in O(n3) time.

Theorem: For SPMD programs, the Back-Path algorithm computes the same delay set as the

standard Shasha and Snir's algorithm.

Proof: To prove the validity of algorithm, we show the equivalence between the paths in the

program graph composed of all the threads' code images and the paths in the transformed graph.

We can thus show that the delay set computed by our algorithm is correct.

We will �rst show that a path from < v; L > to < u; L > in G0 corresponds to a valid back-path

in G. Let S be a back-path from access v to access u in the graph G0. The path is comprised

of T1, T2, and T3 edges. Let S be < u1; R >;< u2; R >;< u3; R >; :::; < uk ; R >. Consider the

accesses u1; u2; u3; :::; uk in the original control 
ow graph. This set of accesses can be used to

prove violations of sequential consistency in the event of the access v completing before the access

u. This can be proved by constructing an equivalent back-path that involves these accesses and

chains together di�erent threads of an SPMD program.

Since the di�erent threads of an SPMD program execute the same code, we can utilize an

arbitrary number of threads in our construction and attach the di�erent accesses to di�erent threads.

If < ui; R > is connected to < ui+1; R > by a T2 edge (which is a con
ict edge), we assign the access

ui+1 to a new thread that has not been assigned any accesses earlier in the path. If < ui; R > is

connected to < ui+1; R > by a T3 edge (which is a processor order edge), we assign the access to

the same thread as the access ui. We repeat the process and might use up to k threads. The result

is a sequence of accesses on di�erent threads that constitute a back-path from v to u assuming that

the number of threads we used in constructing the cycle is less than the total number of threads

that would exist at runtime.

On the other hand, we also have to prove that any back-path that might exist in an SPMD

program would be spotted by our algorithm. This is easy to prove since every path comprising of
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P and E edges has a corresponding path of T2 and T3 edges in the transformed graph. This might

not be a simple path in that it might pass through the same access statement more than once in

G0. However, if u is reachable from v in G, then < u;R > is reachable from < v;R > in G0. This

implies that we will compute the same delay set.

If the total number of running threads is less than the number of threads used in the back-

path, we have made a conservative error in �nding the delay set. The delay set computed by this

algorithm is conservative in assuming unlimited number of threads per program. The assumption is

that the number of processors that the program would utilize at runtime is not known at compile-

time. This process provides an executable that can be used on a machine of an arbitrary size. If

the number of threads is limited to k, any back-path that involves more than k threads would not

be a valid proof for sequential consistency violations.

If the machine size is known at compile-time, we can modify our algorithm to restrict the

number of threads that a back-path visits to be less than the number of processors in the machine.

This is easily accomplished by attaching an unit weight on the T1 and T2 edges and a zero weight

on the T3 edges. As a result of this transformation, a path of weight k in the graph visits exactly k

program segments. The decision problem of deciding whether a delay edge between u and v is now

resolved by determining the existence of a path of weight that is less than the number of processors.

8 Code Generation

In this section, we describe how the delay set information is used to maximize the pipelining bene�ts

of the latency hiding techniques.

The input to this phase is the control 
ow graph, the delay graph computed by the back-path

recognition algorithm, and the use-def graph for local variables. The control 
ow graph and the

delay graph are available from the previous compiler pass. The use-def graph needs to be computed.

The use-def graph represents the 
ow of data from de�nition to usage. Every de�nition of a variable

is associated with a list of program statements where the value might be used. This graph can be

obtained through standard compiler analysis techniques.

In this code generation process, we would like to satisfy the following constraints:

1. Delay constraints are observed.

2. Before every use of a local variable, the corresponding de�nition is complete.

Consider the program shown in Figure 16. The solid line is the delay edge, and the dashed line

is def-use edge for the local variable x.

In this section, we will discuss how the constraints on completion of accesses is expressed in

Split-C. We will describe di�erent code generation techniques with varying complexity. We will

also discuss the trade-o�s that show up during code generation.

8.1 A Simple Code Generation Module

The simplest code generation algorithm works as follows.

The compiler generates a temporary counter variable for every remote access statement. One

should bear in mind that an access statement might initiate multiple accesses during a program's
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if (foo()) {

}

x = X

   y = x + 1

Z = 1

y = 2

y = 2

if (foo()) {

   y = x + 1;
}

z = 1

get(&x, &X, ctr1)

   sync_ctr(ctr1);

sync_ctr(ctr1);

Figure 16: Code Generation

execution. The counter can be used to ensure completion of all the accesses that have been initiated

by the access statement. A Split-C code generated for a sample program is shown in Figure 16.

The counter variable is generated by the compiler. A split-phase get operation is initiated to fetch

the value of X into the local variable x. A later sync ctr operation on ctr1 ensures completion of

all accesses initiated by the access statement.

The sync ctr operation waits until the accesses are complete by waiting for the counter value

to be reset. A property that makes code generation easy is that a sync ctr operation behaves like

a null operation if the program has already executed a sync ctr on the same counter. In other

words, a particular control path through the program can encounter multiple sync ctr operations

on the same counter. This suggests the following simple scheme for code generation.

Let a be an access statement in the program. Let [a; b1], [a; b2],..., [a; bk] be the set of delay

constraints on this statement, and if a is a remote read operation, let [a; c1], [a; c2],..., [a; cl] be the

set of def-use edges for the local variable being de�ned by the statement. The compiler converts a

into a split-phase operation, and inserts a sync ctr operation just in front of the access statements

b1, b2,..., bk, c1, c2,..., cl. If, however, a write access does not have any delay constraints, we

transform the write access into a store access, which is more e�cient since it avoids acknowledging

the completion of the access.

8.2 Pragmatics of Code Generation

The primary drawback of the simple code generation algorithm is the excessive use of the sync ctr

operation. Certain obvious improvements can be made to the simple scheme. However, it is not

clear whether an optimal compile-time technique exists for code generation. As we will discover in

this section, the code generation problem is similar in spirit to other compile-time techniques that

need pro�ling information to generate near-optimal code.

Even though correctness of the program's execution is not violated by introducing extra sync ctr

operations, we would like to minimize their use since there is a cost attached to executing a sync ctr

operation. The �rst step is to reduce the number of program points at which sync ctr operations

are introduced.
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Here is the modi�ed algorithm for introducing sync ctr operations:

1. Every remote access operation a is split into two operations: the corresponding split-phase

initiate and a sync ctr operation.

2. Let s be the sync ctr operation associated with the split-phase initiate statement i. Rules

are used for propagating s through the control 
ow graph in order to increase the number of

instructions between i and s.

(a) If s is ahead of b in a basic block in the control 
ow graph and if there are no delay or

def-use constraints of the form [i; b], then move s past b. If there are delay or def-use

constraints of the form [i; b], s is placed in front of b.

(b) If s is at the end of a basic block, propagate s to all the successors of the basic block,

and continue the motion of the di�erent copies of s.

(c) If s is ahead of another copy of s, merge the two s operations into a single s operation.

This algorithm propagates the sync ctr operations as far away from the initiation as possible.

Also, if the access a is constrained to complete before the set of access statements b1, b2,..., bk and

if for some statement bl there is no possible 
ow of control that hits bl without encountering one

of the other bi statements, then the algorithm does not introduce a sync ctr operation ahead of

bl. The simple algorithm would have incurred the penalty of an extra sync ctr operation. A dual

set of rules exist for propogating the initiate operation to program points that would be executed

earlier during program execution. The goal is to maximize the distance between the initiate and

the sync operation.

However, the algorithm still su�ers from two drawbacks. First, there could be still certain

control paths that execute more than one sync ctr operation (as in Figure 16). Second, if there is

a delay constraint in which the initiation and the sync ctr are nested within di�erent conditionals

and loops, our algorithm could execute unnecessary sync ctr operations.

For example, given a delay constraint [a; b] where b appears inside a loop, but a does not, we

would not want to introduce a sync ctr operation inside the loop since that would require the

operation to be executed as many times as the loop would be executed. All but the �rst sync ctr

operation would be redundant. To avoid the cost of unnecessary sync operations, we could employ

a loop-unrolling technique. We could separate the �rst iteration of the loop from the other iteration

and introduce the sync ctr operation only in the code for the �rst iteration.

The opposite problem occurs for a delay [a; b] where a appears inside a conditional, but b

does not. It is not clear where the sync ctr operation should be introduced to ensure optimal

performance. If we have the sync ctr operation just ahead of b, we could su�er the penalty of

executing the operation even when a access had not been executed. Note that this does not a�ect

the correctness of the code due to the nature of Split-C counters. On the other hand, if we introduce

the sync ctr operation at the end of the conditional containing a, we might be hiding only part

of the latency by prematurely waiting for its completion. Static analysis cannot help in choosing

between the two alternatives. Relative costs of remote accesses and local memory operations (for

updating counters) could be used as an heuristic for code generation.
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a1

a2

a3

a4

a5

a6

Write X

Write Y

Post F

Wait F

Read Y

Read X

Figure 17: Synchronization operations

9 Using Synchronization Information

The delay set computed by algorithms presented in the earlier sections is obtained without analyzing

synchronization. Synchronization constructs create mutual exclusion or precedence constraints on

accesses executed by di�erent processors. We can use this information to prune the number of

back-paths discovered in our analysis, which would result in a decrease in the number of constraints

imposed on the program. We consider an example in which precedence information increases the

applicability of the pipelining optimization.

In Figure 17, we have two program segments that access the variables X and Y . A simple appli-

cation of our back-path algorithm would prevent pipelining of these accesses. Since the variables are

accessed in di�erent orders within the two program segments, the analysis algorithm would impose

delays between the accesses. However, if the synchronization behavior is analyzed and used, we

will conclude that some of the delays are unnecessary. Processor 1 initiates a post operation after

accessing these variables, and processor 2 does a wait before accessing these variables. Assume that

the accesses in the �rst program segment have to be completed before the post operation. Since

the other program segment will read the values only after the post operation is complete, we can

pipeline these accesses without violating sequential consistency. This example illustrates one way

in which our algorithm is overly conservative. We can trace this problem to the characterization of

the con
ict edges. The con
ict edges are bidirectional since, in general, we are unable to predict the

runtime execution order. However, the con
ict edges may sometimes be ordered if we incorporate

synchronization analysis into the algorithm. In this section, we will examine three synchronization

analyses: post-wait synchronization, barriers, and locks.

9.1 Analyzing Post-Wait Synchronization

Post-wait synchronization is commonly used for producer-consumer dependencies in parallel pro-

grams. We exploit the strict precedence established between the operations executed by the pro-

ducer before the post operation and the operations executed by the consumer after the wait

operation3. We represent this precedence relationship by a directed precedence edge from the

post operation to the wait operations. In our discussion, we use R to denote the set of precedence

edges.

3In our analysis, we assume that it is illegal to post more than once on an event variable.
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a1

a2

a3

a4

a5

a6

Read Y

Read X

Write Y

Write X

Write F

Read F

Figure 18: Synchronization operations as reads and writes

Consider the example in Figure 17 in more detail. When we apply the back-path algorithm, we

obtain a delay set that requires the completion of a1 before the initiation of a2 (and the completion

of a5 before a6). The delay set is: [a1; a2]; [a2; a3]; [a1; a3]; [a4; a5]; [a5; a6]; [a4; a6]. The semantics of

post-wait can be used to identify the precedence edge from a3 to a4, which leads to weaker delay

constraints by directing the con
ict edge between a3 and a4. If we require the delay set to contain

[a2; a3]; [a1; a3]; [a5; a6]; [a4; a6], we can direct the other con
ict edges [a1; a6] and [a2; a5], and thus

destroy the remaining back-paths.

This example illustrates a process of gradual re�nement of the precedence and the delay set

information. We start with a minimum amount of precedence information based on synchronization

operations. As we build the delay set, we obtain more precedence information that can then be

used to provide directionality to the con
ict edges. In our example, we discovered that a1 precedes

a6 after including [a1; a3] and [a4; a6] in the delay set. This suggests that certain delay relations

are more fundamental than others and that a systematic process is required for building the delay

set. In our algorithms, we initially discover the delay restrictions between normal accesses and

synchronization operations before computing delay restrictions between a pair of normal accesses.

This, however, was not the case when we had no precedence information. The con
ict edges

were bidirectional to start with, and they remained bidirectional even as new delay relations were

discovered since none of the con
ict edges were ordered.

Our synchronization analysis works only if the programmer uses the synchronization primitives

provided by the language. If the programmer builds synchronization operations using primitive

reads and writes on shared memory locations, we would not be able to detect the synchronization.

In Figure 18, we have the same program but with the post and wait operations replaced by primitive

reads and writes on the 
ag variables. In this case our algorithm is still correct, but we would then

not be able to prune the delay set.

The process of invalidating a back-path need not always involve providing an execution order to

a con
ict edge, as shown by the example in Figure 19. Since there are back-paths from a3 to a1 and

from a6 to a4 and a3 and a4 are synchronization accesses, [a1; a3] and [a4; a6] belong to the delay

set. This information, when combined with the precedence edge [a3; a4], implies that a1 precedes

a6 for any execution of the program. Since a back-path for a1 corresponds to a possible runtime

access sequence where all the accesses in the sequence execute before a1, a6 will never occur in a

back-path for a1. Therefore, we can remove a6 while determining the existence of back-paths to

a1. Removal of a6 destroys the back-path from a2 to a1, which otherwise would have resulted in
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Write A

Write Ca1

a2

a3

a4

a5

a6
Post F

Write A

Write B

Wait F

Write B

Write C

Figure 19: Synchronization analysis

[a1; a2] being added to the delay set.

Based on the examples we have studied, we can propose a general scheme for �nding the

delay set. We initially �nd the delay restrictions between ordinary accesses and synchronization

operations using the general back-path recognition technique. We then compute the complete

precedence information by combining the delay restrictions and the precedence relation between

the synchronization operations. To use information from post-wait operations, we need to determine

the dominator tree of the control 
ow graph. A node u is said to dominate a node v if u appears

on every path from the \entry" node of the graph to v. A node w is said to be the immediate

dominator of the node v if there is no other dominator of v which is dominated by w. The dominator

tree is one in which each node is connected to its immediate dominator. By building the dominator

tree, we can determine e�ciently whether a post operation would be executed after an access u, or

whether u is always executed after a wait operation.

We now present the modi�ed algorithm for computing the delay set.

1. Obtain the dominator tree for G based on the program order.

2. Compute the delay restrictions between normal accesses and synchronization accesses using

the standard back-path algorithm. Let this delay set be D1.

3. Compute the set of precedence edges, R, between the post and wait constructs.

4. For every pair of access statements a1 and a2, check whether there exists two other statements

b1 and b2 that satisfy the following constraints.

(a) a1 dominates b1 and b2 dominates a2,

(b) [a1; b1] 2 D1 and [b2; a2] 2 D1, and

(c) [b1; b2] 2 R

Add [a1; a2] to R if b1 and b2 exist.

5. For every con
ict edge (a1; a2), if [a1; a2] 2 R, direct the con
ict edge from a1 to a2.

6. To compute the delay constraint for a pair of access statements a1 and a2, apply the back-

path algorithm on a graph where all access statements b that satisfy the condition [a1; b] 2 R

have been removed.
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2

3

1

if  (...) {
   barrier();
}
barrier();
...
barrier();

Figure 20: Inaccuracies in analysis of barrier statements

9.2 Analyzing Barrier Synchronization

The barrier statements can be used to separate the program into di�erent phases that do not

execute concurrently. To use a barrier for ordering the phases, we have to arrive at the barrier at

the same time. If the barriers are nested within conditionals and if there are unequal number of

barriers for di�erent paths through the conditional, then di�erent processors might be executing

barrier operations that correspond to di�erent program points. For example, in Figure 20, some

of the processors might be executing the barrier statement that is numbered 3 while others are

executing the number 2 barrier statement. This makes it di�cult to partition the program into

di�erent phases. However, we can recognize the common situation in which the number of barrier

statements executed is the same for every path through the control 
ow graph. We can then set

up the precedence relations, and use the algorithm discussed earlier in the section.

9.3 Lock Based Synchronization

We can extend our synchronization analysis to locks, even though there are no strict precedence

relations implied by the use of locks. The �rst task is to determine the delay constraints between

normal accesses and synchronization accesses, which we denote by the set D1. We then determine

the set of accesses guarded by a lock. An access a is said to be guarded by the lock l, if the following

conditions hold:

1. a is dominated by a lock l operation (which we will call b1), and there are no intervening

unlock l operations.

2. a dominates unlock l operation, which we will call b2.

3. [b1; a] 2 D1 and [a; b2] 2 D1

If access statements a1 a2 are guarded by the lock l, we remove all other access statements that

are guarded by the same lock before checking for a back-path from a2 to a1. This is a valid operation

by the following reasoning. If a2; b1; b2; :::; bk; a1 is a back-path, then the accesses corresponding

to b1; b2; :::; bk must occur after a2 and before a1. It follows from our de�nition of being guarded

by a lock that none of b1; b2; :::; bk can be guarded by the same lock and still appear in a violation

sequence. This improvement to the delay set construction allows accesses within critical regions to

be overlapped.

31



barrier

Read  X
...
...
Read  X

barrier

Write  X
...

...

Proc: 2Proc: 1

...
Write  X

Post  F
Read  X
...
...

...
Wait  F

Read  X

Proc: 2Proc: 1

Figure 21: Phases

10 Eliminating Remote Accesses

In the previous sections, we studied methods for computing the delay set, which can then be used

in determining when accesses can be pipelined. The criterion is whether the observer can detect

violations of sequential consistency when certain accesses are made non-blocking. In this section,

we extend the approach to eliminate remote accesses. Again, a remote access can be eliminated if

we can ensure that sequential consistency would not be violated.

10.1 Eliminating Redundant Accesses within a Basic Block

We start by examining the problem when multiple accesses to a particular variable appear within

a single basic block. Let a1 and a2 be read accesses to the same variable in the global memory.

If the variable is a read-only variable (there are no writes to the variable), then we can eliminate

the second read access and reuse the value obtained by the �rst read. This optimization is also

applicable if the variable is a read-only variable in this phase of the program (that is, there are no

write accesses that can take place at the same \time" as these two read accesses). That is, if all

write accesses (to the same variable) occur either before the �rst read access or after the second read

access, the two reads are going to get the same value. In order to incorporate this optimization,

the compiler generates code to store the value obtained by the �rst read operation in a compiler

generated temporary local variable.

Two examples are shown in Figure 21. In the �rst case, there is a barrier synchronization that

marks the transition to a read-only variable. In the second case, the post-wait synchronization

ensures that the read accesses take place after the write. If compile-time analysis can prove that

the variable is not modi�ed in some phase of the program, we can eliminate all but one read access.

This could be due to a global phase (indicated by a barrier synchronization) or could be due

to exclusive access to a variable (indicated by locking constructs). The synchronization analysis

techniques presented in the previous section can derive this information. After synchronization

analysis, if there are no delay constraints between two read accesses to a variable, it indicates the

absence of con
icting writes and the value can be cached without impacting correctness.

It is not always necessary to have mutually exclusive access to the variable to exercise these

optimizations. Just as we were able to pipeline global accesses as long as the optimizations do not
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...
Write  X
...

Proc: 1

Read  X
...
(no global
 accesses)
...
Read  X

Proc: 2

Figure 22: Intervening Local Operations

...
Write  X
...

Write  Z

Proc: 1

Read  X
...

...
Read  X

Read  Z

Proc: 2 Proc: 3

...

...

Write  X

Write  Z

Figure 23: Intervening Global Operations

expose violations of sequential consistency, we can eliminate repeated accesses to the same variable

in the absence of certain patterns that might expose these optimizations. We study some speci�c

cases before proposing the general technique.

In Figure 22, we have two read accesses to a variable that are separated by a local computation.

Would the program produce inconsistent results if the second read access was eliminated and the

value read initially was reused? It turns out that the program would not produce inconsistent

results regardless of the access pattern of the other threads. There is no way to distinguish the

reuse of a cache value from the situation in which the processor issues the �rst read access, completes

the intervening instructions, and issues the later read before any other thread could modify the

value. The delay set includes the processor edge between the two reads; however, this is to ensure

that the second read obtains a value that is not \earlier" than the initially read value. A reuse

of the cached value would trivially satisfy this requirement. Another view of this optimization is

as a combination of prefetching and piggy-backing of accesses. The absence of intervening global

accesses allows us to advance (or prefetch) the second read access to a point that is immediately

after the �rst read access. We can then combine the two read accesses without violating sequential

consistency.

In fact, reuse of a cached value can be e�ected even when there are intervening global accesses,

as long as the previous analysis shows that the second read operation could be prefetched at the

point of the �rst read. There should not be a sequence of delay edges from the �rst read to the
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z = Z
z = Z

x1 = X

y = x1 + 1

x2 = X

print x2 + y + z

x2 = x1 = X

y = x1 + 1

print x2 + y + z

Figure 24: Caching by prefetching

z = Z

z = Z
x1 = X

y = x1 + 1

x2 = X

print x2 + y + z

x2 = x1 = X

y = x1 + 1

print x2 + y + z

Figure 25: Caching by postponing

second read. An example is shown in Figure 24. There are global accesses between the two reads

of X . However, there are no delay restrictions on the completion of the second read access with

respect to the intervening global accesses. This implies that if the second access can complete

before the read of Z, such a behavior would not be observed. We can therefore \move" this access

ahead of the other global accesses. We now have two adjacent read accesses to X and the value

therefore needs to be read only once. This code movement is not required in practise and is useful

only to illustrate the correctness of the optimization.

In Figure 25, there are no constraints on the �rst read access of X , and it can therefore be

postponed to a later point in the program so that it appears next to the other global read. However,

this is a much tougher optimization since it requires the postponement of all the computation that

requires the value obtained by the �rst read operation.

In the examples presented so far, caching was used to eliminate redundant reads. Caching

belongs to a class of optimizations that are illustrated in Figure 26. In each case, global accesses

are eliminated. A read of a variable that has been recently updated by the same thread can be

eliminated if the written value is still available. This is similar to constant propagation and is also a

component of common subexpression elimination (since we can discover similarities between more

complicated expressions that involve read accesses to this variable). Also, when a thread issues

two successive writes to the same variable, we can bu�er the earlier writes in a local variable and
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...
X = x1

X = x2

...
X = x2

... ...
x2 = tmp

x1 = X

x2 = X

tmp = x1 = X

... ...
X = x1 X = tmp = x1

x2 = X x2 = tmp

Constant Propagation or Common
         Subexpression Elimination

Write-backs instead of write-through

Caching

Figure 26: Transformations

write back only the last write access to the variable. This is equivalent to having a write-back

cache instead of a write-through cache. The use of temporary variables (which are introduced by

the compiler) is shown in the �gure.

As mentioned earlier, these optimizations can be made only when code motion allows the second

access to be made immediately after the �rst access, which in turn is possible only when there are

no intervening global accesses that have to be executed synchronously with respect to these two

accesses. In other words, there should not exist a sequence of two or more delay edges that forms

a path from the �rst access to the latter one. A path comprising of a single delay edge does not

restrict the incorporation of the prefetch optimization.

The algorithm for eliminating redundant accesses is outlined below:

1. Obtain the delay constraints on accesses using the algorithms presented in previous sections.

2. For every pair of accesses u and v that access the same variable and belong to the same

basic block, determine whether there is a sequence of two or more delay edges that forms a

path between u and v or whether there exists a global access w that appears after u and is

constrained to execute before v. If there is no such pattern, eliminate a global access using

one of the transformations shown in Figure 26.
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data = NOT_READY;
while (data != READY)
    numTries++;

Figure 27: In�nite use of cached value

10.2 Caching across Basic Blocks

The caching optimization does not, in general, work across basic blocks. The primary di�culty is

ensuring that the threads make progress and see the new values of variables some �nite time after

they have been updated. In Figure 27, for example, caching of data might result in an in�nite loop.

To avoid this problem, we can estimate conservatively at compile-time whether a cached value

might be used in�nitely often due to stale data. This decision process involves following def-use

chains and computing the set of variables whose value might depend on the value obtained by the

remote read. If there is a loop termination condition that depends on the value of any one of these

variables, then the compiler should be conservative and not insert a caching optimization. The

analysis required is complex, and we therefore do not implement caching across basic blocks in our

prototype compiler.

11 Potential Bene�ts

We quantify the potential bene�ts of our approach by hand-coding the optimizations in a small

set of applications. The execution times of these applications were improved by 20-50% through

message-pipelining and one-way communication optimizations. These were measured on the CM5

multiprocessor. The relative speedups should be even higher on machines with lower communication

startup costs or longer latencies (when the fraction of the latency that can be overlapped is higher).

We present the results from four applications:

1. FFT: Computing the fast-fourier transform.

2. Stencil: 4-point stencil computation on a regular grid.

3. CG: Computing the conjugant gradient of a sparse matrix.

4. EM3D: Solving Maxwell's equations on an irregular grid.

Figure 28 gives the performance results of these experiments. The �gure gives the normal-

ized execution times with the unoptimized execution time set to 1. Thus, a relative speed of 0.5

corresponds to a factor of 2 speedup. Other optimizations, such as caching remote values, are

also enabled by our analysis, and result in additional performance improvements on some of these

applications.
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Figure 28: Normalized Execution Times

12 Related Work

As mentioned earlier, our work is based on the pioneering work by Shasha and Snir[17]. Since then,

not many researchers have looked at the problem of optimizing explicitly parallel programs that ex-

hibit control parallelism. Midki� and Padua[14] describe eleven di�erent instances where standard

optimizations (like code motion and dead code elimination) cannot be directly applied to parallel

programs. Midki� et al[15] extend Shasha and Snir's algorithm to handle array based accesses by

determining all the minimal cycles in the program and eliminating some of these cycles using array

subscript analysis techniques. However, their analysis technique is computationally expensive even

for programs with a small degree of parallelism since both the minimal cycle detection problem and

the array subscript analysis problem have exponential running times. The algorithm presented in

this paper for SPMD programs does not deal with array analysis. We believe their techniques for

handling array subscripts could be incorporated into our SPMD framework. We currently handle

array accesses using less sophisticated array analysis, but strong synchronization analysis that de-

tects the di�erent phases of the program and thus eliminates many of the con
ict edges. In fact, all

the applications mentioned in section 11 are \bulk-synchronous", and have barrier synchroniza-

tions at the end of every meaningful phase of the program. Therefore, the number of con
ict edges

discovered by our algorithm is minimal, and imposes minimal delay constraints on the program's

execution.

Related work has been done in using synchronization constructs to extract more information

about a program's behavior. Callahan and Subhlok[4] use synchronization information to frame

data-
ow equations for a parallel program. Grunwald and Srinivasan[9] have extended this anal-

ysis to study post-wait constructs appearing inside loops. They also do this in the context of

data-
ow analysis of parallel programs to discover optimizations like constant propagation across

threads. Strict precedence information is required for these optimizations. Our analysis requires

only mutual-exclusion information for decreasing the number of con
ict edges, and hence we expect

synchrnonization analysis to be extremely useful for discovering pipelining optimizations. It is also

important to note that the optimizations discussed in section 10 deal with constant propagation
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and common-subexpression elimination within a single thread. These are important optimizations

for generating good scalar code. To the best of our knowledge, the analysis discussed in this report

is the �rst attempt at incorporating the standard scalar code optimizations for parallel programs.

Compilers and runtime systems for data parallel languages like HPF and Fortran-D[10] imple-

ment message pipelining optimizations. The Parti runtime system and associated HPF compiler use

a combination of compiler and runtime analysis to generate code for overlapping communication,

aggregating groups of messages, and other optimizations [3]. Compiling data parallel programs is

fundamentally di�erent than compiling SPMD programs. First, it is the compiler's responsibility

in a data parallel setting to map parallelism of degree n (the size of a data structure) to a machine

with PROCS processors, which can sometimes lead to signi�cant runtime overhead. Second, the

analysis problem for data parallel languages is simpler, because they have a sequential semantics.

Standard data-dependence techniques can be used in data parallel language to determine whether

code-motion or pipelining optimizations are valid.

13 Conclusions

We have presented analysis techniques and optimizations for SPMD programs on distributed mem-

ory multiprocessors. The main optimization is masking latency of remote accesses by message

pipelining and prefetching. Other optimizations such as common subexpression elimination and

constant propagation are also enabled by code motion. The potential payo� of a few of these op-

timizations is quanti�ed using hand optimizations on a small set of applications. The performance

improvements are as high as a factor of two on the CM5, with even better performance expected

on future architectures with lower communication startup.

The new form of analysis that is needed for explicitly parallel programs in a general (not data-

parallel) execution model, is cycle detection, as introduced by Shasha and Snir. The analysis

computes the constraints required on access completion to conform to the sequentially consistent

model of execution for parallel programs. We show that their formulation of the analysis led

to an NP-complete problem and, therefore, an algorithm that was exponential in the number of

processors. Applied to an SPMD program, their algorithm relied on analyzing PROCS copies of

the code. We improve on their basic algorithm by reformulating the problem and gave a polynomial

time algorithm that uses only two copies of the code and computes nearly the same set of cycles. We

improve on the accuracy of the analysis by using synchronization information, and discover more

opportunities for incorporating latency masking optimizations. This analysis is important since

most parallel programs reduce the number of con
icting accesses through synchronizing operations.

We also extend the analysis to incorporate standard scalar optimizations like common-subexpression

elimination in parallel code. We also showed how to use this analysis to generate code for an abstract

machine language, Split-C.
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