
Combining Parallel and Sequential Workloads on a Network

of Workstations

Remzi Arpaci, Amin Vahdat, Thomas Anderson, and David Patterson

October 25, 1994

Abstract

This paper examines the plausibility of using a network of workstations (NOW) for a mixture of

parallel and sequential jobs. Through trace-driven simulation, our study identi�es a number of results that

should be of interest to NOW system designers. First, it is not su�cient to use workstation resources to

provide a supercomputer only by night. Next, parallel programs can cause a signi�cant number of lengthy

delays to interactive users. Finally, simple scheduling techniques can identify available workstations and

minimize user delays while providing parallel program performance comparable to a dedicated massively

parallel processor. If these scheduling policies are employed, parallel programmers and interactive users

can peacefully coexist on a NOW.

1 Introduction

Rapid improvement in workstation performance has resulted in widespread interest in using net-
works of workstations (NOWs) for parallel processing [Gelernter 1985, Kronenberg et al. 1986, Car-
riero & Gelernter 1989, Sunderam 1990, Blumrich et al. 1994]. Because of the economies of scale,
building parallel computers from mass-produced hardware and software components can be more
cost e�ective than building the system from scratch. Though massively parallel processor (MPP)
interconnects today have better performance than local area networks (LANs), emerging standards
such as ATM [Biagioni et al. 1993] and the repackaging of MPP interconnects as LANs [Cohen
et al. 1993] makes NOWs more attractive, even for communication intensive parallel programs.

To date, NOWs have been used only for batch-style programming on a dedicated cluster of
workstations, although idle machines represent a substantial untapped resource. As a consequence,
parallel programmers and interactive users often use logically similar but physically distinct com-
puting platforms, leaving both systems idle much of the time. Two reasons account for this
distinction in computing platforms. First, scheduling sequential and parallel jobs on a single plat-
form is di�cult because parallel programs must be co-scheduled [Ousterhout 1982, Gupta et al.
1991, Feitelson & Rudolph 1992] to achieve acceptable communication performance. Co-scheduling
ensures that a parallel job simultaneously runs on each of its assigned processors, allowing the job's
communication requests to be serviced without a context switch. Second, the interactive response
times that have made personal computing popular may be compromised if computing resources
are shared with demanding applications. As an example, many users of SRC's distributed load
balancing system, dp, were found periodically tapping their keyboards to keep their workstation
from being harvested by the system.

This paper examines the plausibility of using a NOW for a mixture of parallel and sequential
jobs. The goal of our research is to build a NOW that runs parallel programs with the same

1



performance as a dedicated MPP and runs sequential programs with the same performance as a
dedicated uniprocessor. To ensure that interactive response time is preserved, parallel jobs are
run only on idle workstations. To simplify the implementation of co-scheduling, parallel jobs are
scheduled only when there are enough idle idle workstations to run the entire job. Thus, a 32-node
parallel job will not run unless there are at least 32 idle workstations in the cluster. As a result
of these two basic assumptions, active sequential users are not slowed by parallel programs, and
parallel programs can be co-scheduled to achieve acceptable performance.

Currently, NOWs do not simultaneously execute sequential and parallel workloads because of
a number of logistical di�culties. First, the metric used to identify idle workstations must be
accurate, otherwise both sequential and parallel jobs are signi�cantly slowed. Next, users must
wait for the eviction of parallel jobs and the restoration of their workstation state upon return
to their machine: these delays can be quite lengthy and bothersome. Finally, a lack of available
machines in a NOW will slow parallel jobs because of queuing delay associated with waiting to be
scheduled on idle machines. Our study identi�es a number of results addressing these problems;
they are summarized in Table 1. Essentially, if a number of scheduling pitfalls are avoided, parallel
programmers and interactive users can peacefully coexist on a single LAN.

This paper is organized as follows. Section 2 describes our assumptions, methodology, and
traces. Our main results are presented in section 3. In section 4, we take our results into account
and demonstrate the feasibility of combining both parallel and interactive workloads. Section 5
puts the study in the context of related work. The paper concludes with a summary of our results.

2 Methodology

In this section, we give an overview of the methodology used in this study. In capsule, we traced a
research cluster of workstations running interactive jobs and a production MPP running parallel
jobs, and then simulated the behavior of combining the two workloads.

Our trace of workstation activity records the following values every two seconds: average system
and user cpu utilization, amount of active and mapped physical memory, local disk activity, and
terminal activity. This information is written to disk utilizing less than 1% of local disk bandwidth.
The trace program itself occupies 500 KB of physical memory and uses two to three percent of
the CPU over the two second period. We also maintain a log of all keyboard and mouse activity.
Every time a user starts typing or moves the mouse, we log an \active" event. If the keyboard
and mouse are both idle for 60 seconds, an \inactive" event is recorded.

The traced cluster consisted of a network of 53 DECstation 5000s. Each of these workstations
contains a MIPS R3000 processor, 64 MB of memory, a local disk, and runs the Ultrix 4.3 operating
system. The cluster is connected by a 100 Mbps FDDI ring. The users of these workstations are
electrical engineers who are members of the CAD group at UC Berkeley. This cluster is considered
to be one of the most heavily utilized at Berkeley. Data was collected for over one month, during
February and March of 1994. The workstation traces used in our simulations are composed from
two weekdays separated by two weeks, allowing the use of 106 workstations in our simulations;
unless otherwise noted, the simulator uses traces from 60 workstation-days.

To characterize the resource demands of parallel programs on an MPP, we traced the job
submission logs from the Los Alamos National Laboratories' CM-5 for the month of October,
1993. Each job submitted to the CM-5 has an entry in the log of the following form: submission
time, CPU time required, number of nodes utilized, and average memory used per node. Values
for disk and network activity on the CM-5 were not available. This particular CM-5 has 1024
nodes, in static partitions of size 512, 256, 128, 64, and two of size 32. Unless otherwise noted, the

2



simulator uses the job submission patterns of one of the two 32 node partitions for a particularly
busy weekday (October 26, 1993). Using di�erent days at LANL or di�erent workstation traces
did not produce qualitatively di�erent simulation results.

The results presented in this paper are obtained from a simulator that schedules the LANL
parallel jobs with the sequential workload. Parallel jobs are run one at a time in a round-robin
fashion with a two second time quanta. The simulator produces two metrics for evaluating the
performance of a NOW: normalized parallel program slowdown and the number of times a user is
delayed by parallel programs. Non-normalized slowdown is de�ned as the simulated \wall clock"
run time of a job divided by the CPU time. Slowdown can be caused by multiprogramming among
parallel jobs as well as the e�ects of the non-dedicated NOW environment. To isolate the latter,
slowdown on a NOW is normalized by dividing by the slowdown on a dedicated MPP. For example,
if a job experiences a slowdown of 2 due to queuing delay on an MPP and a slowdown of 3 on a
NOW, we report a normalized 50% slowdown.

Delays to interactive users are the other main e�ect of running parallel programs on a NOW.
For example, on returning to their workstations, users may notice a signi�cant delay because
their machine's virtual memory and �le cache were 
ushed by the execution of a parallel pro-
gram. Therefore, our simulation tracks the number of such potential user delays to quantitatively
determine the e�ect of di�erent scheduling policies.

The simulator assumes that parallel performance on a NOW is similar to that of an equal-
sized MPP. This is optimistic in assuming that the communication performance of parallel jobs is
identical in both environments and pessimistic in assuming that CPU performance is identical on
both platforms1. Also, we assume that network contention between parallel and sequential jobs
does not degrade communication performance. The simulator also assumes that when one of the
workstations used by a parallel job becomes unavailable (e.g. an interactive user resumes work),
the parallel program is halted until another available workstation is found. The process state is
then saved and migrated [Theimer et al. 1985, Douglis & Ousterhout 1991] to the new node.

3 Results

In this section, we present our results on how resources should be scheduled on a NOW. The �rst
of these indicates when a system needs to harvest cycles for parallel programs, the next two show
how combining both parallel and sequential loads onto the same system may impact both parallel
and interactive users, and the last two suggest techniques for scheduling resources in a NOW.

3.1 Response time is important for both parallel and sequential pro-
grammers

It has long been understood that the majority of people use their workstations during the day-time
hours. Figure 1 shows that this also holds true for the group of workstations we study. Over a
one week period, only 5% of keyboard and mouse activity occured between 1 AM and 8 AM.

Given such light night-time machine usage, one approach to combining parallel and sequen-
tial workloads on a single platform is to run the parallel jobs only at night. With this simple
approach, interactive users will not feel the e�ect of parallel jobs. Further, parallel programmers
can run their code without worry of being disrupted by sequential jobs, allowing them access to a
\supercomputer by night".

1Typically, MPP processors lag behind workstation processors in performance because of MPP system-

development time.

3



Result Consequence if ignored

Parallel programmers want more than a Parallel programmers dissatis�ed:
\supercomputer by night" they work during day as well
Delays to interactive users must be Users are interrupted frequently:
quanti�ed and avoided will not want machine donated to pool
E�cient context swap of memory Parallel and sequential performance su�ers
necessary for performance
De�nition of an available machine Parallel and sequential performance su�ers
should be empirically derived
A social contract can be used to limit Some users delayed much more often
user delays than others

Table 1: Five results and their consequences if they are ignored in scheduling resources in a network

of workstations.

0 %

2 %

4 %

6 %

8 %

10 %

12 am 6 am 12 noon 6 pm 12 amP
er

ce
nt

 o
f W

or
ks

ta
tio

ns
 w

ith
 K

ey
bo

ar
d 

&
 M

ou
se

 A
ct

iv
ity

Time of Day (hours)

Figure 1: Keyboard and Mouse Activity. The plot shows the percent of all keyboard and mouse
activity that occurs during each hour of the day. For example, 8% of activity occured between 12
noon and 1 PM. The sum of the bars equals 100 percent. Data is derived from one week of traces
on the Berkeley CAD group cluster.

4



Unfortunately, this solution leaves the parallel-programming community unhappy (and per-
haps sleep-deprived). Figure 2 plots the submission times of jobs executed on all partitions of
Los Alamos National Laboratories' CM-5 over a one month period. Not surprisingly, parallel
programmers also work during the day, with only 23% of MPP jobs submitted between 1 AM
and 8 AM. This pattern occurs despite active economic encouragement by LANL management to
submit longer running parallel jobs at night. This result is further evidence that parallel program-
mers also work in the edit/compile/debug cycle; 90% of all the CM-5 jobs complete in less than
two minutes. Quick response time is thus a boon for both sequential and parallel programmer
productivity.

3.2 A parallel workload can signi�cantly impact interactive users

With the previous result in mind, NOWs may be built to maximize the amount of resources
recruited for parallel programs. Undoubtedly, parallel program throughput is a key metric for
evaluating the success of a NOW. However, an aggressive machine recruitment policy can lead to
frequent delays to interactive users.

Here, user delays are de�ned as times when interactive users return to their workstation to
�nd a parallel job running on their machines or their workstation state changed by a parallel job
that ran to completion. These delays consist of two components: the time to import the user's
previous context and the time to export the parallel job from the machine. A machine recruitment
policy is the technique used for identifying a workstation as available for running a parallel job.
For example, one policy might consider a machine available if its average CPU utilization is less
than 20% for at least one minute.

Figure 3 shows a cumulative graph on how two recruitment policies a�ect the number of delays
to interactive users. The format of all graphs showing user delays in this paper are identical: the
x-axis shows the number of daily user delays while the y-axis shows the percentage of users who
su�er at least a given number of delays. The �rst recruitment policy, \CPU only", classi�es a
machine as available if its average CPU utilization is less than 20% for a one minute period.
With such a policy, one unlucky user would be delayed 80 times during the day on our measured
workload. The second recruitment policy uses a method similar to that in Condor [Mutka &
Livny 1991]: a machine is available if it's average CPU utilization is less than 20% and there is no
keyboard activity, both for a minimum of 15 minutes. This user-sensitive policy does signi�cantly
better; however, there remain three users who are delayed at least 15 times during the day. In the
next subsection, we show that each of these delays can be potentially quite lengthy.

3.3 Fast context swap is important for both parallel program through-
put and interactive response times

Two components contribute to the length of interactive user delays. First, the parallel process
must be migrated from the workstation and second, the interactive user's previous CPU, memory,
and �le cache contexts must be restored. These costs may have adverse a�ects upon not only
interactive users but to the parallel program performance as well.

First, we examine the a�ects of migration. One hypothesis states that since migration is the
rare case [Eager et al. 1986, Douglis & Ousterhout 1991], its performance need not be optimized.
To test this hypothesis, we varied the cost of process migration in our simulator. Figure 4 shows
that parallel programs on systems with high migration costs su�er an average slowdown of up
to 34% more than systems with lower migration costs. This slowdown can be attributed to the
larger \dead time" the parallel program experiences while the program waits for the migration to

5



0 %

2 %

4 %

6 %

8 %

12 am 6 am 12 noon 6 pm 12 am

P
er

ce
nt

 o
f J

ob
s 

S
ub

m
itt

ed
 a

t t
ha

t H
ou

r

Time of Day

 

Figure 2: Plot of submission times at LANL. Each bar shows the percent of all jobs submitted in
a particular hour, over a one month period. Data was taken from all partitions.

0 %

20 %

40 %

60 %

80 %

100 %

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 o
f u

se
rs

 d
el

ay
ed

 X
 ti

m
es

Number of Delays

CPU only
Condor

Figure 3: Plot of Delays per Day. The x-axis shows the number of times a user gets delayed,
and the y-axis shows the percent of times a user gets delayed x times. The CPU only line uses
a de�nition that runs jobs on machines when there is no load, while the 'Condor' line uses a
de�nition that is sensitive to both CPU and keyboard input.

6



complete before continuing. For example, Litzkow and Solomon report that the Condor system
requires two minutes for migration [Litzkow & Solomon 1992], which corresponds to a 28% parallel
program slowdown when compared to a system where process migration takes two seconds. High
migration costs can also have detrimental e�ects on interactive users as they may have to wait
longer for parallel processes to be evicted from their workstations before resuming their work.

The cost of restoring a user's working set consists mainly of restoring the physical memory.
Consider the four main resources of the workstation: CPU, main memory, disk, and network
interface. Reclaiming the CPU is inexpensive; restoring the state of registers, cache and TLB costs
no more than a few milliseconds. A similar argument can be made for the network interface because
little state changes upon a context switch. However, a considerably more state is associated with
the workstation's main memory and �le cache.

Figure 5 shows that replacing main memory pages can be quite costly. Interactive users will
quickly become frustrated if they expect near-instantaneous response times and instead must wait
for their state to be swapped back each time they resume work on their workstation.

Table 2 quanti�es the e�ect of 
ushing a machine's main memory and/or �le cache. Flushing
either one can have signi�cant e�ect on the execution time of some typical UNIX programs.
Depending on the application, slowdowns from 1 to 45 percent were observed. In an attempt
to simulate user activity, the last benchmark, user, is a shell script composed of typical Unix
commands (ls, grep, make, etc.) based on the commands found in the SPEC SDET benchmark.

Unlike the process migration case, there is no obvious solution to this problem. Including
a faster network paging scheme could help, as could pinning \important" memory pages down
(e.g. the X server, emacs code pages, etc.). Further, avoiding recruitment of machines with large
amounts of active memory should result in less costly delays to the user.

3.4 It is possible to empirically derive the de�nition of an available
machine

All systems that attempt to harvest available machines in a NOW must determine a working
de�nition for machine availability. Unfortunately, much of the previous work in this area relies
upon either synthetic workloads or ad hoc experimental methods to derive the de�nition of avail-
ability as we show in Section 5. We avoid this pitfall by providing a methodology for determining
whether a machine is idle: identify a typical cluster workload and determine the pro�le of the
target workload. For our target cluster, we determined a typical workload to be an application
suite that includes: compilation of the program trn, LaTEX of a 300 page document, and typing at
an emacs window. The graphs in Figure 6 demonstrate the CPU and memory pro�le for running
this workload.

From the pro�le, we can empirically de�ne an instantaneous de�nition of machine availability
for our workload: the methodology requires the de�nition of idle to be derived for each distinct
workload. On our particular cluster, an idle workstation must have CPU utilization less than 20%,
constant memory usage less than 20% of available memory, and no keyboard or mouse activity.
Since CPU utilization for emacs hovers in the 10-20% range, it might appear that using a CPU
threshold of 10% in the de�nition of an available machine is more appropriate. Unfortunately,
regular system daemon activity also produces CPU spikes of 10-20%. While it would be possible
to account for these spikes, it is simpler to set the CPU threshold to 20% and allow any keyboard
and mouse activity to mark a machine as unavailable.

Given this instantaneous de�nition of an available machine, we can also quantitatively derive
the recruitment threshold, or the amount of time the system should wait before attempting to actu-
ally harvest the machine. Intuitively, choosing the a small recruitment threshold would maximize

7



0 %

10 %

20 %

30 %

40 %

50 %

0 20 40 60 80 100 120 140 160 180

P
er

ce
nt

 S
lo

w
do

w
n

Migration Time (seconds)

Figure 4: E�ects of the cost of process migration. The �gure demonstrates parallel program
slowdown as a function of the cost of process migration.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

T
im

e 
to

 P
ag

e 
In

 W
or

ki
ng

 S
et

 (
se

co
nd

s)

Size of Working Set (MB)

Ultrix 4.2a
SunOS 4.1.2

Figure 5: The Cost of Paging. A program which utilized a varying amount of memory was run,
then stopped. A cleaner that uses all of physical memory was then run. After it completed,
the original program was continued, and the time to page in the working set was measured by
monitoring local disk activity. Experiments were performed on a Sun IPX running SunOS 4.1.2
and a DECstation 5000/200 running Ultrix 4.2a.

8



Program Run Time Slowdown Slowdown Slowdown
(seconds) (�le cache cleaned) (memory cleaned) (both cleaned)

LaTEX 15.0 18.2% 27.3% 45.5%
make 42.0 31.0% 30.9% 39.1%
gzip 23.3 1.0% 8.7% 8.7%
user 101.7 8.9% 2.0% 12.9%

Table 2: Replacement E�ects. This table displays the e�ects of cleaning the �le cache, memory, or
both on the run time of each of the benchmarks. Experiments were performed on a DECstation
5000/200 running Ultrix 4.2a.

20 %

40 %

60 %

80 %

100 %

0 5 10 15 20 25

P
er

ce
nt

 o
f R

es
ou

rc
e 

U
se

d

Time (minutes)

CPU Profile

0 %

10 %

20 %

30 %

40 %

50 %

0 5 10 15 20 25

P
er

ce
nt

 o
f R

es
ou

rc
e 

U
se

d

Time (minutes)

Memory Profile

Figure 6: Pro�ling a workload. Shows the behavior of programs as the trace program sees them.
On the left is CPU behavior during runs of gcc (from the 7 to the 12 minute mark), LaTEX(16
to 18), and typing in emacs (23 to 24). On the right is the corresponding memory behavior.
Experiments performed on a DECstation 5000/200 running Ultrix 4.2a.

9



parallel program throughput. Douglis and Ousterhout [Douglis & Ousterhout 1991] demonstrate
that machines that have only recently gone idle should be avoided since they are most likely to once
again become unavailable. Our simulations con�rm this result; Figure 7 plots parallel program
slowdown as a function of recruitment threshold. A 180 second recruitment threshold maximizes
parallel program throughput. This value ensures that the machine is likely to remain available,
and yet does not lead the system to squander a large amount of time that could have been used
to run parallel programs.

3.5 A social contract: limiting user delays with minimal e�ect on par-
allel performance

In this subsection, we demonstrate that a very simple scheduling mechanism can vastly reduce the
worst case number of user delays without adversely a�ecting the performance of parallel programs.
A social contract system guarantees that an individual will not be delayed more than a speci�ed
number of times during any day. Once a user has been delayed the threshold number of times,
that user's workstation will no longer be a candidate to run parallel programs.

Figure 8 shows the percentage of parallel program that complete with the 24 hour period as
a function of the social contract value and the number of user delays. For social contract values
greater than 5, the normalized parallel program slowdown presented is uniform at approximately
10% and almost all submitted parallel jobs are completed. Once the maximum number of user
delays drops below 5 however, more than half of the jobs in our parallel workload do not complete.
Thus, the social contract identi�es a tradeo� between maximum daily user delays and parallel
program throughput. Further, it distributes delays more uniformly among workstations.

4 Putting it all together

The previous section demonstrates that the de�nition of an available machine can be experimen-
tally derived and that through a social contract the number of user delays can be limited without
a�ecting parallel program throughput. Building upon these results, we set out to determine how
many machines are needed to support the 32-node LANL workload as well as the sequential jobs
of interactive users. Intuitively, as the number of machines available to run the parallel workload
decreases, the number of user delays will increase.

Figure 9 presents the results of this experiment. The graph shows the number of parallel
programs that did not complete as a function of the social contract. If available machines are
abundant, then the slowdown is independent of the social contract value, and a large fraction of
jobs complete. For that range, we �nd that slowdown is consistently about 10%. As machines
become more scarce, performance becomes highly sensitive to the de�nition of the social contract.
The graph shows that if only 10 daily user delays are allowed, at least 54 machines must be
available to run the workload; for less than 54 machines, a signi�cant number of jobs do not �nish
in the allotted time. If up to 20 daily user delays are tolerated, then 32-node parallel jobs can be
run on 50 workstations without noticeable slowdown.

5 Related and Future Work

There have been an abundance of studies on workstation clusters and their potential to support
distributed and parallel computing. Theimer and his colleagues estimated that roughly one-third
of their 25 workstations were free, even at the busiest times of the day [Theimer & Lantz 1989].

10



0 %

15 %

30 %

0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

 S
lo

w
do

w
n

Recruitment Threshold (seconds)

Figure 7: Recruitment threshold results. The �gure shows parallel program slowdown as a function
of the recruitment threshold. The minima is the point where a machine is likely to remain idle for
a long period of time.

0 %

25 %

50 %

75 %

100 %

0 2 4 6 8 10 12 14

P
er

ce
nt

 o
f P

ar
al

le
l J

ob
s 

C
om

pl
et

ed

Social Contract Value (Max Delays/Day)

0 %

20 %

40 %

60 %

80 %

100 %

0 5 10 15 20 25 30

P
er

ce
nt

 o
f u

se
rs

 d
el

ay
ed

 X
 ti

m
es

Number of Delays

Contract = 6
Contract = 9

Contract = 20

Figure 8: Social Contract Results. The left-hand graph shows the e�ect the social contract has
upon the percentage of parallel jobs that complete in 24 hours. On the right is a cumulative plot
of the percentage of users which were delayed at least a give number of times during a 24 hour
period.

11



Nichols measured 15 to 20% of workstations available during the day, which increased to roughly
30% at night [Nichols 1987]. Douglis and Ousterhout found that about two-thirds of machines
were available on average [Douglis & Ousterhout 1991], and Mutka and Livny [Mutka & Livny
1991] found similar results. Table 3 summarizes these results.

We have identi�ed a number of issues that have not been addressed by these previous e�orts.
First, the only workstation resource monitored is the CPU. While the processor is an important
aspect of the system, one should not overlook memory and disk. As far as interactive users are
concerned, these two resources may be expensive to reclaim, and thus disrupt the normal work
environment.

Second, the de�nition of an available machine appears somewhat arbitrary, explaining the
discrepancies between previous studies. For example, Nichols de�nes it as having no one logged
onto a machine, whereas in Sprite a machine becomes idle after one minute of no keyboard or
mouse activity plus a load average of less than 0.3. This di�erence in de�nition accounts for the
dramatic dissimilarities seen in Table 3. While both Nichols' and Douglis' studies took place in
the same year, there is a 40% net di�erence in their results. We avoid this problem by de�ning
available empirically. While it is necessary to understand when available workstations can be
utilized, it is not su�cient. Equally important is understanding the impact on interactive users.
To address this problem, we evaluate scheduling policies using metrics that include the e�ects on
parallel programs as well as on interactive users, and then use a de�nition of availability that best
suits both communities.

Third, previous studies concentrate on aggregate system availability. We show that it is impor-
tant to account for more than average workstation idleness. The distribution of idle times|that
afternoon idleness is more valuable than night-time idleness and that idle times come in short
bursts making the cost of process migration important|is also relevant.

In a related study, Leutenegger et al. [Leutenegger & Sun 1993] use simulation to study whether
parallel programs can run in a non-dedicated environment (such as a NOW). While demonstrating
that this may be possible without a signi�cant impact on the parallel programs, their work does
not discuss any potential impact upon interactive users. Further, all the simulations are driven by
synthetic models of both workstation and parallel program behavior. Our study makes use of real
traces from both a network of workstations and a parallel machine, and quanti�es the number of
interruptions experience by interactive users.

In the future, we plan on pro�ling workstations at several industrial sites: Hewlett Packard
Laboratories, Sun Laboratories, and SynOptics corporation. While we have taken traces of a
number of other workstation clusters around the Berkeley campus and found that the usage
patterns closely match the CAD cluster, we wish to determine if our measurements generalize
beyond research/educational environments.

6 Conclusions

By making use of trace-driven simulation, we conclude that a network of workstations in an
academic environment can sustain both an interactive and parallel workload. We identi�ed two
metrics in evaluating the success of a particular scheduling policy: parallel program throughput
and delays su�ered by interactive users. With the assistance of these metrics, we discovered �ve
results relevant to NOW system designers.

The �rst result shows it is necessary to provide a \supercomputer by day" as well as by night,
since parallel programmers work during the day time and demand interactive use of the system.
The second and third results demonstrate that simple machine recruitment policies will delay some

12



0

20

40

60

80

100

40 45 50 55 60 65 70 75

P
er

ce
nt

 o
f J

ob
s 

C
om

pl
et

ed

Number of Workstation in Cluster

Social Contract = 30
Social Contract = 20
Social Contract = 10

Figure 9: Workstations Necessary to Run Parallel Workload. The graph indicates how di�erent
social contract values a�ect parallel program throughput. Note that with lower social contract
values, more workstations must be allowed into the cluster to handle the parallel workload.

Who Year Idle De�nition Free (day) Free (night)
Theimer et al. 1984 Not described 33% N/A
Nichols 1986 No one logged in 15-20% 30%
Douglis et al. 1986 1 min idle,no load 66% 78%
Mutka and Livny 1987 1 min low cpu avg. 60% 80%

Table 3: Related work. How previous e�orts have de�ned idle and the consequences of those
de�nitions.

13



users a noticeable number of times, and that each delay could be costly to both interactive users
and parallel programs. Next, we provide a methodology for empirically deriving the de�nition
of an available machine: identifying a typical cluster workload and setting machine availability
thresholds (CPU and memory usage, keyboard activity, etc.) below values found in the pro�le for
the given workload. Finally, a simple scheduling policy, the social contract, limits the number of
delays any one user feels while preserving parallel job throughput.

14



References

[Biagioni et al. 1993] Biagioni, E., Cooper, E., and Sansom, R. Designing a practical ATM LAN.
IEEE Network, 7(2), 1993.

[Blumrich et al. 1994] Blumrich, M., Li, K., Alpert, R., Dubnicki, C., Felton, E., and Sandberg,
J. Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In
Proceedings of the 21st International Symposium on Computer Architecture, April 1994.

[Carriero & Gelernter 1989] Carriero, N. and Gelernter, D. Linda in Context. Communications

of the ACM, April 1989.

[Cohen et al. 1993] Cohen, D., Finn, G. G., and Felderman, R. ATOMIC: A Very-High-Speed
Local CommunicationArchitecture. In International Conference on Parallel Processing,
August 1993.

[Douglis & Ousterhout 1991] Douglis, F. and Ousterhout, J. Transparent Process Migration: De-
sign Alternatives and the Sprite Implementation. Software - Practice and Experience,
21(8):757{85, August 1991.

[Eager et al. 1986] Eager, D. L., Lazowska, E. D., and Zahorjan, J. Adaptive Load Shating
in Homogeneous Distributed Systems. IEEE Transactions on Software Engineering,
12(5):662{675, May 1986.

[Feitelson & Rudolph 1992] Feitelson, D. G. and Rudolph, L. Gang Scheduling Performance Ben-
e�ts for Fine-Grained Synchronization. Journal of Parallel and Distributed Computing,
16(4):306{18, December 1992.

[Gelernter 1985] Gelernter, D. Parallel Programming in Linda. In Proceeding of the International

Conference on Parallel Processing, pp. 255{263, August 1985.

[Gupta et al. 1991] Gupta, A., Tucker, A., and Urushibara, S. The Impact of Operating System
Scheduling Policies and Synchronization Methods on the Performance of Parallel Ap-
plications. In Proceedings of the ACM SIGMETRICS Conference, pp. 120{32, May
1991.

[Kronenberg et al. 1986] Kronenberg, N. P., Levy, H. M., and Strecker, W. D. VAXclusters: A
Closely-Coupled Distributed System. ACM Transactions on Computer Systems, 4(2),
1986.

[Leutenegger & Sun 1993] Leutenegger, S. T. and Sun, X.-H. Distributed Computing Feasibility
in a Non-Dedicated Homogenous Distributed System. In Supercomputing 93, 1993.

[Litzkow & Solomon 1992] Litzkow, M. and Solomon, M. Supporting Checkpointing and Process
Migration Outside the UNIX Kernel. InWinter 1992 USENIX Conference, pp. 283{290,
January 1992.

[Mutka & Livny 1991] Mutka, M. M. and Livny, M. The Available Capacity of a Privately Owned
Workstation Environment. Performance Evaluation, 12(4):269{84, July 1991.

[Nichols 1987] Nichols, D. Using idle workstations in a shared computing environment. In Pro-

ceedings of the Eleventh ACM Symposium on Operating Systems Principles, pp. 5{12,
November 1987.

15



[Ousterhout 1982] Ousterhout, J. K. Scheduling Techniques for Concurrent Systems. In Third

International Conference on Distributed Computing Systems, pp. 22{30, May 1982.

[Sunderam 1990] Sunderam, V. PVM: A Framework for Parallel Distributed Computing. Con-
currency: Practice and Experience, 2(4):315{339, December 1990.

[Theimer & Lantz 1989] Theimer, M. M. and Lantz, K. A. Finding Idle Machines in a
Workstation-Based Distributed System. IEEE Transactions on Software Engineering,
15(11):1444{57, November 1989.

[Theimer et al. 1985] Theimer, M., Landtz, K., and Cheriton, D. Preemptable Remote Execution
Facilities for the V System. In Proceedings of the 10th ACM Symposium on Operating

Systems Principles, pp. 2{12, December 1985.

16


