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Abstract

Sparse elimination exploits the structure of a set of multivariate polynomials by measuring complexity in
terms of Newton polytopes. We examine polynomial systems that generate 0-dimensional ideals: a generic
monomial basis for the coordinate ring of such a system is de�ned from a mixed subdivision. We o�er a simple
proof of this known fact and relate the computation of a monomial basis to the calculation of Mixed Volume.
The proof relies on the construction of sparse resultant matrices and leads to the e�cient computation of
multiplication maps in the coordinate ring and the calculation of common zeros. It is shown that the size of
monomial bases and multiplication maps in the context of sparse elimination theory is a function of the Mixed
Volume of the Newton polytopes, whereas classical elimination considers simply total degree. Our algorithm
for the sparse resultant and for root-�nding has worst-case complexity proportional to the volume of the
Minkowski Sum of these polytopes. We derive new bounds on the Minkowski Sum volume as a function of the
Mixed Volume and use these results in order to give general upper bounds on the complexity of computing
monomial bases, sparse resultants and common zeros.

1 Introduction

Sparse elimination theory generalizes several results of classical elimination theory on multivariate polynomial
systems by considering the structure of the given polynomials, namely their coe�cients which are a priori zero and
their Newton polytopes. This leads to stronger algebraic and combinatorial results in general, whose complexity
depends on e�ective rather than total degree. The foundations were laid in the work of Gelfand, Kapranov and
Zelevinsky [15, 16].

The central object in elimination theory is the resultant, which characterizes the solvability of an overcon-
strained system. A generalization of the Sylvester resultant for two univariate polynomials is the sparse resultant
for an arbitrary number of multivariate polynomials, which, in many cases, has lower degree than its classical
counterpart, since its degree depends on the Bernstein bound [3] as explained in the next section. Bernstein's
bound is at most equal to Bezout's bound on the number of roots for an n� n polynomial system and for sparse
systems it is often smaller; the comparison between the two approaches is formalized in the following section.
E�ective algorithms for the construction of compact matrix formulae for the sparse resultant already exist. We
rely on the construction of [6] in order to o�er a simple proof of the fact that a mixed subdivision de�nes a
monomial basis for the coordinate ring of the given polynomial system.

We consider the important case of square polynomial systems, i.e. systems of n polynomials in n variables.
One approach to the solution of such systems is based on the construction of multiplicationmaps in the respective
coordinate ring and the latter problem requires the computation of monomial bases. This paper proves upper
bounds on the worst-case asymptotic bit complexity of these three problems, starting with monomial bases,
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Figure 1: The Newton polytope of polynomial c1y + c2x
2y2 + c3x

2y + c4x + c5xy. The dotted triangle is the
Newton polytope of the dense polynomial of the same total degree.

continuing with the implications on multiplication maps and concluding with root-�nding. Throughout, we
emphasize the relevance of Mixed Volume as a measure of the inherent complexity, while the complexity of our
algorithms is mostly dependent upon the volume of the Minkowski Sum. A central issue in the analysis, thus,
becomes the relation of Mixed Volume to Minkowski Sum, which we tackle in a general setting before establishing
the worst-case asymptotic complexity bounds.

Generically, a square polynomial system has a �nite number of isolated and distinct roots, so we restrict
attention to this case when considering monomial bases. Namely, the given polynomials de�ne a radical ideal whose
variety is 0-dimensional. For system solving only the latter hypothesis is required since there exist techniques for
coping with non-radical ideals.

Sparse resultants have a signi�cant potential for applications reducing to questions in elimination and to
polynomial system solving. Techniques based on ad-hoc resultants have led to impressive results on certain
problems in inverse kinematics, graphics and modeling [25, 24]. Currently, problems from computer vision,
direct kinematics and molecular structure are being successfully solved by the general sparse eliminationmethods
discussed in this paper, thus illustrating their practical relevance [13, 28].

We start with an introduction to the theory of sparse elimination in the next section and we continue with a
comparative exposition of previous work in Section 3 and a more detailed presentation of an e�cient resultant
matrix construction in Section 4. The de�nition of monomial bases through mixed subdivisions is presented in
Section 5, then a more e�cient way of de�ning them is shown equivalent to the original one and an algorithm for
their computation is presented. Section 6 proves how monomial bases specify multiplication maps and Section 7
shows how the latter allow polynomial system solving by two alternative ways. We relate Minkowski Sum
volumes to Mixed Volumes in Section 8 and use these results in Section 9 to formalize general upper bounds on
the complexity of constructing monomial bases and sparse resultant matrices as well as of solving polynomial
systems. Section 10 concludes with some open questions.

2 Sparse Elimination Theory

Sparse elimination theory considers Laurent polynomials in n variables, where the exponents are allowed to be
arbitrary integers. The polynomial ring is K[x1; x

�1
1 ; : : : ; xn; x

�1
n ] = K[x; x�1], for some base �eld K. We shall

be interested in polynomial roots in (K
�
)n, where K is the algebraic closure of K and K

�
= K n f0g.

De�nition 2.1 Let f be a polynomial in K[x; x�1]. The �nite set A � ZZ
n of all monomial exponents corre-

sponding to nonzero coe�cients is the support of f . The Newton polytope of f is the convex hull of A, denoted
Q = Conv(A) � IRn.

If we use xe to denote the monomial xe11 : : :xenn , where e = (e1; : : : ; en) 2 ZZ
n is an exponent vector, then

f =
X
aj2A

cjx
aj ; 8cj 6= 0:

Newton polytopes model the sparse structure that we wish to exploit in polynomials. Fig. 1 depicts the
Newton polytope for a bivariate polynomial and compares it with the Newton polytope of the dense polynomial
with the same total degree, i.e. a polynomial in which every coe�cient is nonzero.

Newton polytopes provide a bridge from algebra to geometry since they permit certain algebraic problems to
be cast in geometric terms. Thus we need some concepts from polytope theory.
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De�nition 2.2 The Minkowski Sum A+ B of convex polytopes A and B in IRn is the set

A +B = fa+ b j a 2 A; b 2 Bg � IRn:

It is easy to prove that A+ B is a convex polytope [34].

De�nition 2.3 Given convex polytopes A1; : : : ; An � IRn, there is a unique, up to multiplication by a scalar,
real-valued function MV (A1; : : : ; An), called the Mixed Volume of the given polytopes, which is multilinear with
respect to Minkowski addition and scalar multiplication, i.e. for �; � 2 IR�0 and convex polytope A0k � IRn

MV (A1; : : : ; �Ak + �A0k; : : : ; An) = �MV (A1; : : : ; Ak; : : : ; An) + �MV (A1; : : : ; A
0
k; : : : ; An):

To de�ne Mixed Volume exactly we require that

MV (A1; : : : ; A1) = n!V (A1);

where V (�) is the standard n-dimensional volume function.

An equivalent de�nition [34] is

De�nition 2.4 For �1; : : : ; �n 2 IR�0 and convex polytopes A1; : : : ; An � IRn, theMixed VolumeMV (A1; : : : ; An)
is precisely the coe�cient of �1�2 � � ��n in V (�1A1 + � � �+ �nAn) expanded as a polynomial in �1; : : : ; �n.

We now study systems of n Laurent polynomials in n variables. Let f1; : : : ; fn 2 K[x; x�1] be the polyno-
mials and Ai, Qi the support and Newton polytope of fi. A system is called unmixed when all supports are
identical; otherwise it is mixed. This article is concerned with the latter and more general case. The shorthands
MV (f1; : : : ; fn) and MV (A1; : : : ;An) are occasionally used for the Mixed Volume MV (Q1; : : : ; Qn).

The Newton polytopes o�er a convenient model for the sparseness of a polynomial system, in light of Bern-
stein's upper bound on the number of common roots. This bound is also called the BKK bound to underline the
contributions of Kushnirenko and Khovanskii in its development and proof [21, 19].

Theorem 2.5 [3] Let f1; : : : ; fn 2 K[x1; x�1; : : : ; xn; x�1n ] with Newton polytopes Q1; : : : ; Qn. The number of

isolated common zeros in (K
�
)n, multiplicities counted, is either in�nite, or does not exceed MV (Q1; : : : ; Qn).

For almost all specializations of the coe�cients the number of common zeros is exactly MV (Q1; : : : ; Qn).

Interesting extensions to this theorem concern the weakening of the genericity condition [7] and the case of
roots in (K)n [33, 23]. We state the latter result.

Theorem 2.6 [23] For polynomials f1; : : : ; fn 2 C[x; x�1] with supports A1; : : : ;An the number of common
isolated zeros in Cn, counting multiplicities, is upwards bounded by MV (A1 [ f0g; : : : ;An [ f0g).

The Mixed Volume is typically signi�cantly lower than Bezout's bound, which bounds the number of pro-
jective solutions by

Q
i deg fi, where deg fi is the total degree of fi. One example is the simple and generalized

eigenproblems on n � n matrices. The Bezout bound in both cases is 2n+1, while the exact number of right
eigenvector and eigenvalue pairs is 2n, which is exactly given by the Mixed Volume.

The two bounds coincide for dense polynomials, because each Newton polytope is an n-dimensional unit
simplex scaled by deg fi. By de�nition, the Mixed Volume of the dense system is

MV (deg f1S; : : : ; deg fnS) =
Y
i

deg fi MV (S; : : : ; S) =
Y
i

deg fi;

where S is the unit simplex in IRn with vertex set f(0; : : : ; 0); (1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g.
A technical assumption is that, without loss of generality, the a�ne lattice generated by

Pn+1
i=1 Ai is n-

dimensional. This lattice is identi�ed with ZZn possibly after a change of variables, which can be implemented by
computing the appropriate Smith's Normal form.

The central object in elimination is the resultant of n+1 polynomials in n variables. It is a single polynomial
in the polynomial coe�cients which characterizes the existence of nontrivial common zeros. In sparse elimination,
nontrivial roots lie in (K

�
)n and the sparse resultant of an overconstrained system is de�ned as follows [30].

Let c be the vector of all polynomial coe�cients, regarded as indeterminates, and let Z0 be the set of all such
vectors c for which the polynomials have a common zero. Let Z be the Zariski closure of Z0.
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De�nition 2.7 [35] The sparse resultant R = R(A0; : : : ;An) of polynomials f0; f1; : : : ; fn 2 K[x; x�1] is an
irreducible polynomial in ZZ[c]. If codim(Z) = 1 then R is the de�ning polynomial of hypersurface Z. If codim(Z) >
1 then R = 1. Furthermore, the degree of R in the coe�cients of polynomial fi equals MV (f0; : : : ; fi�1; fi+1; fn),
for i = 0; : : : ; n.

Some authors call this the Newton resultant to underline its dependence on the Newton polytopes. It is
interesting to note that it subsumes the classical de�nition of the resultant [37].

3 Related Work

A method for constructing generic vector bases of coordinate rings as monomials indexed by the lattice points in
the mixed cells of a mixed subdivision was �rst demonstrated by Pedersen and Sturmfels [31]. The term mixed
monomial bases highlights the fact that they apply to arbitrary systems and that they are obtained through a
mixed subdivision. A crucial hypothesis is that the given polynomials are generic, which is also assumed here.
Our approach is based on a matrix formula for the sparse resultant [6] which leads to an immediate proof and
applies also to arbitrary systems. Under appropriate choice of the various parameters our approach obtains the
same bases.

Sparse resultants have been studied by several authors and e�ective methods for the construction of matrix
formulae have been proposed in [6, 36, 11, 35]. The �rst e�cient and general method [6] is sketched in the next
section. The heuristic in [11] takes a di�erent tack in an e�ort to improve upon the upper bounds, namely by
avoiding the extraneous factor; it has been implemented and has given some encouraging preliminary results [13].
Exact matrix formulae for particular classes of polynomial systems are suggested in [36]; they are called of
Sylvester-type since they generalize the Sylvester determinant for two univariate polynomials.

Root-�nding methods based on matrices have a long history. The classical resultant provides a means for
root-�nding by the use of U -resultants [37, 22, 32, 5]. The reduction to an eigenvalue and eigenvector problem
was formalized in [2] and, independently, in [25, 24]. The latter articles discuss alternative strategies for dealing
with ill-conditioned or singular matrices, some leading to the generalized eigenproblem; this issue is revisited at
the end of Section 7. The de�nition of monomial bases and multiplication maps is also possible through Gr�obner
bases, so we can again reduce polynomial system solving to an eigenproblem; this approach is surveyed in [26].

The problem of monomial bases is equivalent to computing Mixed Volumes, for which various algorithms have
been proposed. We relate our proof on monomial bases to the most e�cient general Mixed Volume algorithm to
date, originating from Sturmfels' Lifting Algorithm [35] and modi�ed by the heuristic proposed by Emiris and
Canny [12]. Empirical results of this algorithm are reported in [13]. Other methods, exploiting special cases,
were proposed in [17, 39, 38] in conjunction to de�ning sparse homotopies for solving polynomial systems by
continuation.

4 Sparse Resultant Matrices

The main construction in our approach for establishing the result on monomial bases and for obtaining the sparse
resultant is the construction of a matrixM in the polynomial coe�cients, whose determinant is a nontrivial mul-
tiple of the sparse resultant. The �rst e�cient algorithm was proposed by Canny and Emiris [6] and subsequently
generalized by Sturmfels [35].

Given are polynomialsf0; : : : ; fn 2 K[x; x�1]. Let Q0 denote the Minkowski Sum of all input Newton polytopes

Q0 = Q0 +Q1 + � � �+Qn � IRn:

We shall de�ne a subset of the lattice points in Q0 that index the rows and columns of M . To this end, we adopt
a technique from [35]. Select n+ 1 linear lifting forms li : IR

n ! IR for 0 � i � n. Then de�ne the lifted Newton
polytopes bQi

4
= f(pi; li(pi)) : pi 2 Qig � IRn+1; 0 � i � n

and take their Minkowski sum bQ0 = bQ0 + � � �+ bQn � IRn+1:
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Given any polytope in IRn+1, its lower envelope with respect to vector (0; : : : ; 0; 1) 2 IRn+1 is the union of all
n-dimensional faces, or facets, whose inner normal vector has positive last component. In the rest of this article
we always consider lower envelopes with respect to vector (0; : : : ; 0; 1). The projection of all facets on the lower

envelope of bQ0 onto Q0 induces a mixed subdivision �0 of the latter.
The linear lifting functions li are chosen to be su�ciently generic, such that every point in the mixed subdi-

vision is uniquely expressed as a sum

p = p0 + p1 + � � �+ pn : pi 2 Qi:

This sum is called an optimal sum because the pi are speci�ed by the requirement that their lifted images add up
to a point bp on the lower envelope of bQ0. In other words, they minimize the aggregate lifting function

P
i li(pi)

over all (n+ 1)-tuples of points whose sum equals p.
The genericity requirement for li is achieved by picking, for i = 0; : : : ; n, a random integer vector of the

coe�cients of li. Each entry is independent and uniformly distributed with bit size Ll, for some constant Ll > 1.
Then the probability that the genericity condition fails is bounded by

Prob[failure] �
nY

i=0

ri=(n
22Ll) : ri is the vertex cardinality of Qi: (1)

For most problems in practice it su�ces to use one-word values for the li coe�cients. It is straightforward to
check deterministically whether a particular choice of lifting forms satis�es the genericity requirement.

A consequence of the uniqueness condition on optimal sums for points is that each maximal cell � in �0 is
uniquely expressed as a Minkowski sum

� = F0 + � � �+ Fn � IRn : Fi is a face of Qi; i = 0; : : : ; n:

This is called the optimal sum for � under the speci�c subdivision. Maximal cell � is the projection along
(0; : : : ; 0; 1) of a facet on the lower envelope of bQ0 that is uniquely expressed as the Minkowski Sum of those faces

in bQi corresponding to Fi. A property of mixed subdivisions is that cells are either mixed or unmixed, mixed cells
being Minkowski sums such that exactly one face in their optimal sum is a vertex and all others are edges.

De�nition 4.1 A mixed maximal cell of the induced mixed subdivision of Q0 is i-mixed if, in its expression as
an optimal sum of faces, the summand from Qi is some vertex aij:

� = E0 + � � �+Ei�1 + aij + Ei+1 + � � �+En; where Ek is an edge of Qk:

It can be shown that, if V (�) denotes n-dimensional volume,

MV (Q0; : : : ; Qi�1; Qi+1; : : : ; Qn) =
X

i-mixed �

V (�):

The rows and columns of M are indexed by the integer lattice points

E = (Q0 + �) \ ZZn;
where Q0+ � is a polytope obtained by perturbing Q0 by some arbitrarily small � 2 Qn, chosen to be su�ciently
generic so that every perturbed lattice point lies strictly inside a maximal cell. The mixed decomposition,
corresponding to ��, on Q0 + � is denoted �0

�. The obvious bijection e 7! xe; e 2 ZZ between the integer lattice
and the set of Laurent monomials allows us to consider E either as a point set or a monomial set.

For every p 2 �, for some cell �, de�ne a row content function RC(�) such that RC(p) = (i; j) if and only if
aij is a vertex in the optimal sum of � and i is the maximum index for which the summand is a vertex. Than the
row of M corresponding to p contains the coe�cients of xp�aijfi. Coe�cient cik appears in the column indexed
by column monomial xq if cikxq is a term of xp�aijfi. The entries of this row that do not correspond to any
column monomial are zero.

Lemma 4.2 [6] The above construction of M produces a well-de�ned and square matrix with size jEj, where j � j
denotes set cardinality.
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We now sketch the proof establishing the generic nonsingularity ofM , i.e. nonsingularity when the polynomials
have generic, or indeterminate, coe�cients. Let matrix cM be obtained from M by specializing all coe�cients to
powers of a new variable t and denote by cMpq the entry of cM with row index p and column index q, for some
p; q 2 E , then

Lemma 4.3 [6, Lemma 16] For all non-zero elements cMpq with p 6= q, degt(
cMpq) > degt(

cMqq).

Lemma 4.4 Every principal minor of M is generically nonzero.

Proof Let N be the square submatrix of M corresponding to a given principal minor and let bN be the
corresponding submatrix of cM . If bNpq is the entry indexed by p; q 2 E , then

det bN =
Y
q

bNqq + higher order terms in t; the product being over all q 2 E indexing the rows of N:

By the previous lemma, this term does not vanish for su�ciently small positive t, hence det bN is nonzero. Now
detN equals the product of det bN multiplied by a power in t, therefore it is also generically nonzero. 2

This also implies that M is generically nonsingular. We can now formalize the properties of M .

Theorem 4.5 [6] Matrix M is well-de�ned, square, generically nonsingular and its determinant is divisible by
the sparse resultant R(f0; : : : ; fn). Moreover, the degree of detM in the coe�cients of f0 equals MV (f1; : : : ; fn),
while its degree in the coe�cients of fi for i = 1; : : : ; n is greater or equal to MV (f0; : : : ; fi�1; fi+1; fn).

From De�nition 2.7 the degree of detM is exact in f0 whereas an extraneous factor in the coe�cients of
f1; : : : ; fn may exist. For �nding all isolated roots of polynomial systems an exact expression for the sparse
resultant is not required so we use detM to compute a superset of the roots.

M generalizes the classical Macaulay matrix since it reduces to the latter on dense systems. A greedy variant
of this algorithm that typically leads to smaller matrices has been implemented by J. Canny and P. Pedersen
and described in [13]. The construction of M leads to the explicit construction of the sparse resultant R by two
alternative methods discussed in [6, 8].

5 Monomial Bases for Coordinate Rings

For n generic Laurent polynomials f1; : : : ; fn in n variables, the de�nition of monomial bases from mixed subdi-
visions was �rst demonstrated by Pedersen and Sturmfels [31]. Their proof relies on reducing the general problem
to binomial systems via Puiseux series. Theorem 5.4 veri�es their result. However, we use a di�erent proof which
is considerably simpler once the construction of resultant matrix M is established and which leads, in the next
section, to a constructive approach for �nding the common zeros.

The genericity of the polynomials is equivalent to saying that all coe�cients are generic so we regard them
as indeterminates. Let I = I(f1; : : : ; fn) be the ideal that they generate and V = V (f1; : : : ; fn) 2 (K

�
)n their

variety, where K is the algebraic closure of �eld K. Assume that V has dimension zero. Then its coordinate ring
K[x; x�1]=I is an m-dimensional vector space over K by Theorem 2.5, where

m = MV (f1; : : : ; fn) = MV (Q1; : : : ; Qn):

In addition, the ideal I = I(f1; : : : ; fn) is assumed to be radical, or self-radical, i.e. I =
pI, which is equivalent

to saying that all roots in V are distinct.
We add a generic f0 2 K[x; x�1] to the set f1; : : : ; fn and de�ne the Minkowski sum Q0 + � and its mixed

subdivision �0
� as in the previous section. Without loss of generality we can choose f0 such that it has the

constant monomial 1 as one of its monomials. This follows easily from the fact that given an arbitrary f0 in
K[x; x�1], we can divide it by one of its monomials without changing its roots in (K

�
)n.

Let B � E � ZZ
n be the set of all integer lattice points that lie in 0-mixed cells, in �0

�. Equivalently, B is the
set of all Laurent monomials with exponent vectors in the 0-mixed cells. By Theorem 4.5, jBj = m and we can
write B = fb1; : : : ; bmg.
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An important property of the matrix construction of the previous section is that postmultiplication with
certain column vectors expresses evaluation of the polynomials whose coe�cients have �lled in the rows of the
matrix. More precisely, for an arbitrary � 2 Kn,

M

2664
...
�q

...

3775 =

2664
...

�pfip(�)
...

3775 ; (2)

where p 2 E indexes the row of M that contains the coe�cients of xpfip (x) and q 2 E indexes the column
corresponding to monomial xq.

Since A0 contains 0n 2 ZZ
n we can always pick, without loss of generality, lifting function l0 such that Q0

contributes only its zero vertex 0n as a summand to the 0-mixed cells. The proof of Lemma 5.3 formalizes the
requirement on l0 and proves the feasibility of this construction. By de�nition, every row indexed by a monomial
in B contains the coe�cients of xb�0

n

f0 = xbf0, for some b 2 B.
The partition of E into B and E nB de�nes four blocks in M shown below, where the rightmost set of columns

and bottom set of rows are indexed by B. Submatrices M11 and M22 are square of size jE n Bj = jEj � m and
jBj = m respectively, while M12 and M21 are rectangular. Let � 2 V be a �xed common root. Relation (2)
becomes

M

266666664

...
�qc

...
�bi

...

377777775
=

266664
M11 M12

M21 M22

377775

266666664

...
�qc

...
�bi

...

377777775
=

266666664

...
0
...

�bif0(�)
...

377777775
(3)

where qc ranges over E n B and bi ranges over B.
By Lemma 4.4 every principal minor of M is generically nonzero, hence the inverse submatrix M�1

11 exists.
Then, we can de�ne m �m matrix

M 0 = M22 �M21M
�1
11 M12: (4)

Lemma 5.1 Assume that variety V = V (I) has dimension zero, ideal I is radical and B = fb1; : : : ; bmg is the
set of points in 0-mixed cells in �0

�. Then, all eigenvectors of M 0 are of the form [�b1; : : : ; �bm] for some root
� 2 V .

Proof We premultiply both sides of (3) with the non-singular matrix�
I 0

�M21M
�1
11 I

�
; (5)

where I stands for the identity matrix of appropriate size, and obtain

266664
M11 M12

0 M 0

377775

266666664

...
�qc

...
�bi

...

377777775
=

266666664

...
0
...

�bif0(�)
...

377777775
: (6)

The bottom part of this matrix equation is of interest:

M 0

264 �b1

...
�bm

375 =

264 �b1f0(�)
...

�bmf0(�)

375 :
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Let v0� be the column vector [�b1; : : : ; �bm ], with bi 2 B. Since � 2 (K
�
)n, every v0� belongs to (K

�
)m, namely,

it is nonzero; furthermore, (6) yields an eigenvector equation

M 0v0� = f0(�)v
0
� ) (M 0 � f0(�)I) v

0
� = 0: (7)

Since there are exactly m roots and we can construct one such vector per root, we obtain m such vectors.
This is the largest possible number of eigenvectors, hence all eigenvectors of M 0 are of this form. 2

Theorem 5.2 Assume that variety V = V (I) has dimension zero, ideal I is radical and B is the set of monomials
corresponding to integer lattice points in 0-mixed cells in the subdivision �0

� of Q0. Then B forms a vector-space
basis for the coordinate ring K[x; x�1]=I over K.

Proof Let f0(x) = c00 +
Pn

j=1 c0jxj 2 K[x; x�1] with c00; : : : ; c0n being generic indeterminates. The roots �
are distinct and, by the genericity of c0j, all eigenvalues f0(�) are distinct. This implies that all eigenvectors v0�
are linearly independent.

If the monomials in B are not a basis ofK[x; x�1]=I, then a non-trivial linear combination of them over K must
belong to I. Hence, there are elements k1; : : : ; km 2 K not all zero such that, for every � 2 V ,

Pm

i=1 ki�
bi = 0.

Construct now the square matrix below with v0�j = [�b1
j ; : : : ; �

bm
j ] as the j-th column, where V = �1; : : : ; �m;

this matrix has dependent rows: 26664
�b1
1 �b1

2 � � � �b1
m

�b2
1 �b2

2 � � � �b2
m

...

�bm
1 �bm

2 � � � �bm
m

37775 : (8)

This contradicts the independence of vectors v0�j so B is indeed a basis. 2

In other words, we have de�ned a canonical surjective homomorphism

K[x; x�1]! K[x; x�1]=I : g 7! g mod I =
X
bi2B

cbix
bi ; cbi 2 K

such that g 2 I , cbi = 0; 8 bi 2 B:
In words, every polynomial g is mapped to the canonical representative of its coset with respect to ideal I.

It turns out that we can compute the basis without going through the resultant matrix because the set B is
de�ned independently of f0. Consider a mixed subdivision �� of the perturbed Minkowski sum

Q+ � = Q1 + � � �+Qn + �

induced by l1; : : : ; ln, where both li and � 2 Qn are the same as above. The subdivision is speci�ed by de�ning
Minkowski Sum bQ = bQ1 + � � �+ bQn � IRn+1

of the lifted Newton polytopes bQi and projecting its lower envelope facets onto the maximal cells of ��. The
maximal cells in the subdivision are again either mixed, when they are the Minkowski sum of n edges, or unmixed.
The sum of all mixed cell volumes is m = MV (f1; : : : ; fn).

Lemma 5.3 Consider the mixed subdivision �� of Q + � induced by lifting forms l1; : : : ; ln. Then the set B of
points in the 0-mixed cells of �0

� equals the set of all integer lattice points in the mixed cells of ��.

Proof Recall that Q0 is the Minkowski sum of n+ 1 Newton polytopes, A0 contains the zero exponent 0n and
�0

� is the mixed decomposition of Q0 + � induced by l0; l1; : : : ; ln. Any point on the lower envelope of bQ0 is of

the form bp + ba0j, where bp is on the lower envelope of bQ and ba0j 2 bQ0. We wish to show that every such point,

for appropriate l0, has a unique summand from bQ0, namely the lifted image of 0n.
Consider points bp; bq on the lower envelope of bQ and assume that bp+ (0n; l0(0n)) and bq + ba0j lie on the same

vertical, for some a0j 6= 0n. We can pick l0 su�ciently large so that bp + (0n; l0(0n)) is on the lower envelope
whereas bp+ ba0j is not. For this it su�ces to require that

l0(a0j) >
nX
i=1

li(aiji); 8 a0j 2 Q0; a0j 6= 0n; 8aiji 2 Qi: (9)
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Consider a lower envelope facet b� of bQ, where its perturbed projection � + � is a mixed cell in ��. A similar
argument shows that under (9), for every facet b�, the sum (0n; l0(0n)) + b� is a lower envelope facet on bQ0. Then
the total volume of all cells in �0

� of the form 0n + � + �, where � + � is a mixed cell of ��, is m. All of these
cells are 0-mixed by construction, hence there are no more 0-mixed cells in �0

� .
An appropriate choice of l0, therefore, establishes a bijective correspondence between mixed cells of �� and

0-mixed cells of �0
�. The proof is completed by noting that the integer points in the latter cells are of the form

0n + p, where p 2 Q and, actually, p belongs to a mixed cell of ��. 2

This immediately leads to an equivalent statement of Theorem 5.2.

Theorem 5.4 Assume that variety V = V (I) has dimension zero, ideal I is radical and let B be the set of
monomials corresponding to integer lattice points in mixed cells in the subdivision �� of Q. Then B forms a
vector-space basis for the coordinate ring K[x; x�1]=I over K.

This gives rise to the following direct algorithm for computing the monomial basis: First, compute the Newton
polytopes Q1; : : : ; Qn. Second, pick su�ciently generic lifting functions l1; : : : ; ln and compute the induced mixed
subdivision �� of Q+ �. Third, identify all mixed maximal cells � of �� and, fourth, enumerate all lattice points
� \ ZZn for each �. Each of these lattice points is the exponent of a unique monomial in the basis.

The third step is the main part of the algorithm and, together with the equivalent problem of Mixed Volume
computation, has been addressed by several authors as described in Section 3. The main idea of the algorithm
from [35, 12] is to test all edge combinations, each combination including exactly one edge from each Newton
polytope: The combinations that pass all tests de�ne a mixed cell. To prune the search we eliminate edge
combinations by inexpensive tests on subsets of these combinations, relying on the observation that an edge
combination e1; : : : ; ek corresponds to a facet on the lower envelope of the respective k lifted polytopes only if
the same holds for every subset of these edges.

6 Multiplication Maps

This section shows how matrix M 0, de�ned in (4), is the matrix of the endomorphism in K[x; x�1]=I which
expresses multiplication by polynomial f0, hence it provides a multiplication map in K[x; x�1]=I. Multiplication
maps are the essential object in solving polynomial systems by matrix techniques. Again, we are assuming that
I is radical, the corresponding variety V zero-dimensional, m denotes the cardinality of V and K[x; x�1]=I is an
m-dimensional vector space over K.

Lemma 6.1 The rows of M 0 contain the coe�cients of polynomials xbif0 mod I, for some bi 2 B.

Proof Premultiplication of M by matrix (5) has the e�ect of adding scalar multiples of the rows indexed by
E n B to those indexed by B. Hence, the row of M indexed by bi 2 B now contains the coe�cients of

g = xbif0 +
X

p2EnB

kpx
pfjp ; for some kp 2 K:

On the other hand, (6) shows that each row of M 0 corresponds to a polynomial h which is a linear combination
of the monomials in B, over K. Thus g � h 2 I or g � h (mod I) and the the lemma is proven. 2

Since B provides a vector space basis for K[x; x�1]=I over K, every polynomial g 2 K[x; x�1]=I can be
expressed as a row vector vg 2 Km, whose entries are indexed by B and contain the respective coe�cients.

Theorem 6.2 Let M 0 denote both the matrix and the associated endomorphism in K[x; x�1]=I with respect to
basis B. Then this endomorphism expresses multiplication by polynomial f0 2 K[x; x�1]=I,

M 0 : K[x; x�1]=I ! K[x; x�1]=I : g 7! gf0 mod I:

In other words, if row vector vg expresses polynomial g 2 K[x; x�1]=I, with respect to basis B, then row vector
vgM

0 expresses polynomial gf0 2 K[x; x�1]=I with respect to the same basis.
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Proof From the previous lemma row bi of M 0 contains the coe�cients of polynomial xbif0 mod I. Let g =Pm

i=1 cix
bi , then

gf0 mod I =
mX
i=1

ci(x
bif0 mod I)

=
mX
i=1

ci

0@ mX
j=1

M 0
ijx

bj

1A =
mX
j=1

xbj

 
mX
i=1

ciM
0
ij

!
:

If bj 2 B indexes the j-th column of M 0, then the last polynomial can be expressed as the row vector indexed by
B with j-th entry

Pm

i=1 ciM
0
ij . By the de�nition of vg we have

vgM
0 = [c1; : : : ; cm]M

0 =

"
mX
i=1

ciM
0
i1; : : : ;

mX
i=1

ciM
0
im

#
;

and the claim is established. 2

7 Polynomial System Solving

Matrix M 0 essentially allows computation within the coordinate ring. This is the essential property in �nding all
roots of the given system of polynomials by matrix-based techniques. Notice that, although the computation of
monomial bases did not require the use of f0, here we do need this extra polynomial.

In computing matrix M by the algorithm in [6], f0 is linear with generic coe�cients, as in the proof of
Theorem 5.2. In practice, we let one coe�cient be an indeterminate u and we pick random coe�cients c0j, for
j = 1; : : : ; n, from some range of possible integer values of size R > 1, so

f0 = u+ c01x1 + � � �+ c0nxn 2 K[x; x�1; u]:

This is essentially the U -resultant construction, extensively studied in the context of classical elimination. Recall
that the resultant characterizes the solvability of the system, therefore the addition of an additional, arti�cial
constraint f0 may eliminate some of the solutions of f1 = � � � = fn = 0 unless f0 includes free variable u, which
takes the value �Pj c0j�ij at root �i = (�i1; : : : ; �in).

A bad choice for c01; : : : ; c0n is one that will result in the same value of f0 � u at two distinct roots �1 and
�2. Assume that �1 and �2 di�er in their i-th coordinate for some i > 0, then �x all choices of c0j for j 6= i; the
probability of a bad choice for c0i is 1=R, and since there are

�
m

2

�
pairs of roots, the total probability of failure

for this scheme is

Prob[failure] �
�
m

2

�
=r : c0j 2 f1; : : : ; Rg; j = 1; : : : ; n:

It su�ces, therefore, to pick c0j from a su�ciently large range in order to make the probability of success
arbitrarily high. Moreover, it is clear that any choice of f0 coe�cients can be tested deterministically at the end
of the algorithm.

The construction of M is not a�ected by this de�nition of f0. By abuse of notation we write the new
multiplication map matrix as M 0 + uI, where M 0 is a numeric matrix, u is the new variable and I is the m �m
identity matrix. M 0 is de�ned in the same way as before, since no assumptions were made about the coe�cients
of f0 besides their genericity. For solving the polynomial system we have to specialize f0 and separate the matrix
entries dependent on u from the numeric matrix.

Now to de�ne an eigenproblem (7) becomes, for the i-th root �i 2 V ,

[M 0 + (u� f0(�i))I]v
0
� = 0)

24M 0 �
0@X

j

c0j�ij

1A I

35 v0� = 0;

which implies that the i-th eigenvalue of M 0 is
P

j c0j�ij and the respective eigenvector is the same as before.
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If the generated ideal I is radical then every eigenvalue has algebraic multiplicity one. We can relax the
condition on I by simply requiring that each eigenvalue has geometric multiplicity one. Algebraic multiplicity
captures the usual notion of multiplicity, whereas geometric multiplicity expresses the dimension of the eigenspace
associated with an eigenvalue. If there exist eigenvalues of higher geometric multiplicity we can use the properties
of the U -resultant to recover the root coordinates [37, 22, 32, 5].

By Lemma 5.1 each eigenvector v0� ofM 0 contains the values of monomialsB at some common root � 2 (K
�
)n.

De�ne vector
v� = �M�1

11 M12v
0
� (10)

of size jEj �m, indexed by E n B. By construction we obtain the following

Lemma 7.1 The concatenation of vectors v� and v0� lies in the kernel of the homomorphism de�ned by the top
jEj �m rows of M in (6): 24 M11 M12

35� v�
v0�

�
=

�
0
0

�
; (11)

where 0 here is a zero vector of length jEj �m. Therefore the element of v� indexed by p 2 E n B is the value of
monomial xp at root �.

It follows that vectors v� and v0� together contain the values of every monomial in E at some root �.

Lemma 7.2 Let p0; p1; : : : ; ps 2 E , s � n, be a set of points such that, the matrix with i-th row pi � p0 has rank
n. Then, given v� and v0�, we can compute the coordinates of root � 2 V (I). If p0; p1; : : : ; ps 2 B then v0� su�ces.

Proof Let P be the s � n matrix whose i-th row is pi � p0. By linear algebra, there exists nonsingular s � s
matrix Q such that QP is an upper-triangular matrix with nonzero diagonal d1; : : : ; dn 2 ZZ.

Now consider the column subvector of [v�; v0�] indexed by points pi, which is in bijective correspondence with
the rows of P . Apply the sequence of elementary row operations speci�ed by Q to the elements of this column
subvector as follows: a row swap is an exchange of vector entries, the scaling of a row by c corresponds to raising
the respective entry to c and the addition of row i, multiplied by c, to row j corresponds to multiplication of
vector entry j by the i-th entry raised to c. Let q denote this vector transformation. The resulting vector has the
last s� n entries equal to 1.

Let � = (�1; : : : ; �n) and e2; en; gn 2 ZZ, then this transformation can be written as follows:

QP =

266666666664

d1 e2 � � � � � � en
...

0 � � � 0 dn�1 gn
0 � � � 0 0 dn
0 � � � 0

...
0 � � � 0

377777777775
then q :

26666666664

�p1�p0

...

�ps�p0

37777777775
7!

266666666664

�d1
1 �e2

2 � � ��en
n

...

�
dn�1

n�1 �
gn
n

�dn
n

1
...
1

377777777775
:

The �nal step consists in reading o� the coordinates of � from the modi�ed vector. For ease of notation
assume that no row exchanges were necessary. The value of coordinate n is obtained by taking the dn-th root of

the n-th entry of the vector. The (n � 1)-st entry equals �
dn�1

n�1 �
gn
n so �n�1 is the dn�1-th root of the vector's

(n � 1)-st entry divided by �gn
n . The rest of the root coordinates are computed in an analogous fashion; this is

in a sense the backwards substitution phase where the row elementary operations are transformed so that they
apply to the exponents. 2

n + 1 points are necessary and su�cient, if a�nely independent, to recover all root coordinates. E always
includes n+ 1 such points because the lattice spanned by it has dimension n. If the dimension were lower every
Newton polytope would have zero volume. and all Mixed Volumes would be zero.

A simple procedure to �nd such a set of points is the following: Select any set of n points from E and consider
them as column vectors of a matrix. While this matrix does not have full rank, add the minimum number of
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points from E so that the matrix may achieve full rank. Continue until a full-rank matrix is obtained, which is
guaranteed to happen after selecting at most jEj lattice points. This gives a set of n independent vectors; picking
an additional distinct point produces a simplex.

In practice it is typically both feasible and as e�cient to just examine the integer lattice points until we �nd n
pairs of points such that each pair has vector di�erence equal to (0; : : : ; 0; 1; 0; : : :; 0). This is, moreover, usually
possible within B.

A shortcut is to \hide" one of the n variables in the coe�cient �eld. This produces an overconstrained
system without adding extra polynomial f0, thus keeping the problem dimension low. Our experience with the
implementation of this algorithm suggests that hiding a variable is preferable for several systems in robotics and
vision [13]. Formally, we consider the given polynomials as

f1; : : : ; fn 2 K(xn)[x1; x
�1
1 ; : : : ; xn�1; x

�1
n�1]

and proceed with the construction of M and M 0 as before. We can ultimately recover the coordinates of all
common zeros as before under the hypothesis that they are isolated and that the value of xn is not repeated
between any two roots. Since we are free to hide any variable, it su�ces that there exist some xi that has
geometric multiplicity one for every root. Otherwise, we can solve an (n� 1)� (n� 1) system for every value of
the hidden variable.

Submatrix M11 which is diagonalized is the largest upper left submatrix created by appropriate row and
column permutations, independent of xn and nonsingular. In contrast to the previous case, we do not have a
priori knowledge of the sizes of M11 and M 0, nor is the reduction to an eigenproblem immediate, because M 0 is
a matrix polynomial in the hidden variable xn. Assume that the highest degree of xn in the given polynomials is
d, then

M 0 = Adx
d
n + � � �+A1xn +A0;

where the Ai are square numeric matrices. If Ad is nonsingular, the zeros of the systems are recovered from
eigenvalue � and eigenvector v:

M 0(�)v = 0 , (I�d + A�1d Ad�1�
d�1 + � � �+A�1d A0)v = 0

,

26664
0 I 0 � � � 0
...

...
0 0 � � � 0 I

�A�1d A0 �A�1d A1 � � � �A�1d Ad�2 �A�1d Ad�1

37775
26664

v
�v
...

�d�1v

37775 = �

26664
v
�v
...

�d�1v

37775 :
A discussion of di�erent strategies for reducing to a generalized eigenproblem when Ad is singular is beyond the
scope of this paper.

8 Mixed Volumes and Minkowski Sums

A crucial question in the complexity analysis of these algorithms is the relation between the Mixed Volume and the
volume of the Minkowski Sum Q of polytopes Q1; : : : ; Qn in n-dimensional space. Before analyzing complexities,
then, we establish some results on the relation of these two quantities. We denote by e the basis of the natural
logarithm.

For completeness we start with the result on the class of unmixed systems, �rst shown in [6].

Q1 = � � � = Qn:

Lemma 8.1 For unmixed systems, V (Q) = �(en)MV (Q1; : : : ; Qn).

Proof For unmixed systems of polytopes, MV (Q1; : : : ; Qn) = n!V (Q1) which is, by Stirling's approximation,
�(nn=en)V (Q1). The Minkowski Sum volume is V (Q) = nnV (Q1) and the claim follows. 2

To model mixed systems we have to express their di�erence in shape and volume. This is a hard problem in
general so we restrict attention to the case where all polytopes have a nonzero n-dimensional volume. De�ne the
following two objects: the polytope of minimum volume Q�, 1 � � � n, such that

V (Q�) = minfV (Qi) j i = 1; : : : ; ng;
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and the system's scaling factor s 2 IR, s � 1 which satis�es the following condition:

minimize s : Qi � sQ�; i = 1; : : : ; n:

The �rst step is a lower bound on the Mixed Volume as a function of a single polytope.

Lemma 8.2 If V (Qi) > 0 for i = 1; : : : ; n and Q� is the polytope of minimum volume, then MV (Q1; : : : ; Qn)
� n!V (Q�).

Proof One of the most important inequalities in convexity theory is the Aleksandrov-Fenchel inequality [14, 1]
which states that

MV 2(Q1; : : : ; Qn) � MV (Q1; Q1; Q3; : : : ; Qn)MV (Q2; Q2; Q3; : : : ; Qn);

for arbitrary polytopes Qi � IRn. A consequence of this is

MV n(Q1; : : : ; Qn) � (n!)nV (Q1) � � �V (Qn):

These results, along with an extensive treatment of the theory, can be found in [4, 34].
The last inequality implies

MV n(Q1; : : : ; Qn) � (n!)nV n(Q�)

which yields the claim since both volume and Mixed Volume are positive-valued functions. 2

Theorem 8.3 Given polytopes Q1; : : : ; Qn � IRn such that V (Qi) > 0 for all i, de�ne Q� and the system's
scaling factor s as above. Then V (Q) = O(ensn)MV (Q1; : : : ; Qn).

Proof By de�nition,

Q �
nX
i=1

sQ� = nsQ�;

hence V (Q) = (ns)nV (Q�). By the previous lemma, MV (Q1; : : : ; Qn) � n!V (Q�). Application of Stirling's
approximation completes the proof. 2

This bound generalizes the unmixed case in which s = 1. Moreover, it is asymptotically quite tight, as seen
by the following example. Let

Q1 = � � � = Qn�1; Qn = sQ1;

where s > 1 and Q� = Q1. Then Q = (s+n�1)Q1, hence V (Q) > snV (Q1), and MV (Q1; : : : ; Qn) = s n!V (Q1).
Therefore

V (Q)

MV (Q1; : : : ; Qn)
= 


�
en

n

� s
n

�n�1�
:

For s = n2 and s = 2n the lower bound becomes, respectively,



�
en
p
s
n�2
�

and 


�
en

sn�1

(log s)n

�
:

We extend the result to the Minkowski Sum Q0 of n+1 polytopes compared with the sum of all n-fold Mixed
Volumes D, i.e. the sum of Mixed Volumes of all subsets of n polytopes. Notice that from De�nition 2.7, D is the
total degree of the sparse resultant. Let the scaling factor s of n+1 polytopes be de�ned as the minimumpositive
real such that Qi � sQ�, for i = 0; 1; : : : ; n, where Q� has the minimum volume among all n + 1 polytopes.

Theorem 8.4 Given polytopes Q0; Q1; : : : ; Qn � IRn, such that V (Qi) > 0 for all i, V (Q0) = O(snen=n)D,
where D is the sum of the n+ 1 n-fold Mixed Volumes and s is this system's scaling factor.

Proof Q0 � s(n+1)Q� hence V (Q0) � sn(n+1)nV (Q�). The sum of all n-foldMixed Volumes is bounded below
by the sum of n Mixed Volumes, each on a set of polytopes containing Q�. Then, by Lemma 8.2, D > nn! V (Q�)
therefore V (Q�) = O(en=nn+1)D. This implies V (Q0) = O(snen(1 + 1=n)n=n)D and the claim follows from
limn!1(1 + 1=n)n = e. 2
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9 Asymptotic Complexity

We have sketched an algorithm for computing monomial bases that consists of testing various edge combinations
on whether they lie on the lower envelope of the respective lifted Minkowski Sum or not; the algorithm is described
in detail in [12]. Ignoring the pruning, the algorithm has to test gn combinations, where g is an upper bound
on the number of edges in every Newton polytope. If r is an upper bound on the number of polytope vertices,
g � r2 and the number of tests is O(r2n). Note that r is bounded by the maximum number of monomials in any
polynomial; the latter provides a di�erent model of sparseness studied in [20].

Each test is implemented as a Linear Programming question, that decides whether the centroid bp of the lifted
cell de�ned by n edges lies on the lower envelope of bQ or not:

maximize t 2 IR : bp� tz =
nX

i=1

riX
j=1

�ijbvij ; riX
j=1

�ij = 1; �ij � 0; 8 i = 1; : : : ; n; j = 1; : : : ; ri;

Scalar t expresses the distance between bp and the lower envelope point that lies on the same vertical, so a cell lies
on the lower envelope if and only if the optimal value of t is zero. Vector z is the unit vector along the (n+ 1)-st

axis, called the vertical axis. Point bvij is the j-th vertex of lifted polytope bQi. The constraints ensure that bp lies
on the same vertical as a variable point de�ned as the Minkowski sum of points from the lifted polytopes.

Linear Programming may be solved by any polynomial-time algorithm; in what follows we apply Karmarkar's
algorithm [18]. The complexity is O(n7r6(Ll + Ld)), where Ll is the maximum bit-size of a coordinate in any
lifting form li, i = 1; : : : ; n and Ld is the bit-size of the maximum coordinate of any Newton polytope vertex and
is bounded by the maximum degree in any variable of an input polynomial.

Theorem 9.1 The worst-case bit complexity of our algorithm for computing a monomial basis for the coordinate
ring of n polynomials in n variables is rO(n)(logd� log �), where r is the maximum number of vertices per polytope
and thus bounded by the maximum number of monomials in any polynomial, d is the maximum degree in any
variable and � < 1 is the probability of failure of the lifting scheme. For a constant probability � and systems with

maximum degree d � 2r
O(n)

the complexity is rO(n).

Proof There are r2n edge tests at most, each reducing to a Linear Programming application with bit complexity
O(n7r6(Ll + Ld)). From (1), rn=(n22Ll) is the probability � that the lifting fails, then Ll = O(n log r � log �).
The general bound is now immediate. 2

This is asymptotically optimal because the monomial basis problem is equivalent to Mixed Volume which
generalizes Convex Hull Volume which is #P-hard. Moreover, it has recently been shown that the Mixed Volume
problem is #P-complete [29]. For most practical applications the extra hypothesis is satis�ed and the tighter
bound rO(n) applies.

Now we generalize and formalize the analysis of obtaining resultant matrix M for n + 1 polynomials, based
on the results from the previous section and ignoring the polylogarithmic factors in the asymptotic bounds;
this is denoted by O�(�). Again the construction of the mixed subdivision �0

� requires several applications of
Linear Programming for which any polynomial-time algorithm may be used; the following bounds were based on
Karmarkar's algorithm.

Lemma 9.2 [6] Given are n + 1 polynomials in n variables. Constructing resultant matrix M has worst-case
bit complexity O�((nr)5:5jEj), where r is the maximum number of vertices in any Newton polytope and E =
(Q0 + �) \ ZZn. The complexity of explicitly constructing the sparse resultant is bounded by a polynomial in jEj
and n.

The cardinality of an integer point set is asymptotically bounded by the volume of their Convex Hull [10],
hence jEj = O(V (Q0)). Recall that the scaling factor s of an overconstrained system with Newton polytopes
Q0; : : : ; Qn is the minimum real such that Qi � sQ�, where Q� has minimum volume.

Theorem 9.3 The construction of resultant matrix M for a system of n + 1 polynomials in n variables has
worst-case bit complexity O�(snenr5:5n4:5D), where s is the system's scaling factor, e is the basis of the natural
logarithm, r is the maximum number of Newton polytope vertices, bounded by the maximum number of monomials
per polynomial, and D is the sum of all n-fold Mixed Volumes.
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Proof Theorem 8.4 implies jEj = O(snen=n)D and, together with the previous lemma, establishes the claim. 2

For typical systems encountered in applications s will be a constant and the algorithm's complexity becomes
cO(n)O�(r5:5D) for some constant c > 1. Since D is the total degree of the sparse resultant it is a lower bound
on the algorithm's complexity.

Passing to the problem of recovering the isolated roots, recall that the initial steps are, given matrix M ,
to compute matrix M 0 and �nd its eigenvectors. We try to �nd n + 1 points in B su�cient for recovering the
coordinates of the roots. If this is infeasible, there always exist n + 1 points in E that allow us to recover the
coordinates through computation of vector v� of (10), for each root �.

Let MM (�) be the asymptotic complexity of matrix multiply as a function of the matrix size; currently
MM (k) = O(n2:376) [9]. It is known that inverting a matrix and computing its determinant and characteristic
polynomial all have the same asymptotic complexity as matrix multiply [40]. The overall bit complexity depends
on the bit sizes of the given coe�cients and the root coordinates. Let the maximum bit size of these parameters
be respectively Lc = log c and L� = log�, where c and � are the maximum coe�cient and the maximum root
coordinate. Then,

Lemma 9.4 Given matrix M , all common isolated zeros of polynomials f1; : : : ; fn are computed with asymptotic
algebraic complexity bounded byMM(jEj)+mMM(n)+O(jEjn2), where m is the Mixed Volume. The bit complexity
is MM(jEj)O(jEj logc)+mMM (n)O(n2d log�) +O(jEjn2 log d), where c; � and d are, respectively, the maximum
polynomial coe�cient, root coordinate and polynomial degree in a single variable.

Proof The matrix operations to compute M 0, eigenvectors v0� and v�, if necessary, cost MM (jEj). The last
two execute on operands of bit size jEj logc resulting from the calculation of M 0, hence the �rst term of the
overall complexity. For each of the m roots, a MM (n) operation produces the root coordinates as in the proof of
Lemma 7.2, assuming that we have found n+1 a�nely independent integer lattice points. The operands here are
values of E monomials at the roots, hence their maximum bit size is n2d log� for a monomial with every variable
raised to nd and hence with total degree n2d. Enumerating the independent points has worst-case complexity
O(jEjn2) since it reduces to a rank test on a jEj � n matrix. The entries of this matrix are exponent vectors of
bit size at most logd. 2

Theorem 9.5 Given is a polynomial system f1; : : : ; fn in n-variables, de�ning a zero-dimensional, radical ideal
and let linear polynomial f0 be as above. Assume that the scaling factor s of the overconstrained system is constant
and that the sum of all n-fold Mixed Volumes obeys D = �(nm), where m = MV (f1; : : : ; fn). Then the worst-case
bit complexity of computing all roots of f1; : : : ; fn is 2O(n)m4 log c+mn5d log� + 2O(n)m log d, where c; d and �
are respectively the maximum polynomial coe�cient, polynomial degree in a single variable and root coordinate.

Proof We boundMM (k) by k3 for simplicity and we apply Theorem 8.4 to the bound in the previous lemma. 2

Gr�obner bases methods exhibit the same asymptotic complexity, namely single exponential in n and polynomial
inm. The merit of the sparse eliminationmethods, though, lies in the fact that their complexity is directly related
to the sparseness of the given system and, hence, they are expected to perform better for several problems in
practice.

10 Open Questions

The main open question concerns extending these results to multiple roots, in other words non-radical ideals.
Suggestions and ideas may originate from current work on the same problem in the context of Gr�obner bases [27].

An interesting question is to quantify the relation between Mixed Volume and Minkowski Sum volume when
polytopes are allowed to have zero n-dimensional volume. In this case our lower bound on the Mixed Volume is
trivial and we need a di�erent means of expressing the di�erence in shape and volume of the given polytopes.

For practical applications, an important question is numerical accuracy and conditioning of the matrices. This
issue deserves separate treatment.
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