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Abstract

Let N be an open queueing network where the servers have generally distributed service
times (with possibly di�erent means) and the outside arrivals to the servers are Poisson. De�ne
NC,FCFS (respectively, NE,FCFS) to be queueing network N where each server has a constant
(respectively, exponentially distributed) service time with the same mean as the corresponding
server in N , and the packets are served in a First-Come-First-Served order.

It has long been conjectured that for all networks N , the average packet delay in NC,FCFS
is upper bounded by the average packet delay in NE,FCFS. In this paper, we present a coun-
terexample to this conjecture.

1 Introduction

1.1 De�nitions

Let N be an open queueing network where the servers have generally distributed service times
(with possibly di�erent means) and the outside arrivals to the servers are Poisson. De�ne NC,FCFS

(respectively, NE,FCFS) to be queueing network N where each server has a constant (respectively,
exponentially distributed) service time with the same mean as the corresponding server in N , and
the packets are served in a First-Come-First-Served order.

In general we assume each outside arrival to N is associated with some class. A packet of class `
moves from server i to server j next with probability p`ij . The special case of a Markovian network
N is de�ned as a network with only one class of packets.

Note thatNE,FCFS is a product-form network (more speci�cally it's a Jackson queueing network,
see [BS93]) and therefore the average packet delay is easy to determine for networks of this type
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(see, for example, [Wal89] [BS93]). On the other hand, it is not known how to compute average
packet delay for all but the simplest NC,FCFS networks.

1.2 Previous Work

All previous work leads one to conjecture that NE,FCFS has greater average packet delay than
NC,FCFS for all networks N . For example, the average packet delay is an increasing function of of
the variance in the service time distribution for each of the following single queue networks: the
M/G/1 queue, the M/G/1 queue with batch arrivals, the M/G/1 queue with priorities, and the
M/G/k queue [Whi83] [Whi80] [Ros89, pp. 353{356].

With respect to networks of queues, [HBW94] generalized an earlier result of [ST91] to show
that for all Markovian networks N , NE,FCFS has greater average packet delay than NC,FCFS. There
are also empirical studies of several non-Markovian networks N (i.e. general classed networks)
which show that the average packet delay measured is greater for NE,FCFS than for NC,FCFS (see
empirical results of [HBB94] [MC86] [HC86]).

The above results have led to a general belief that greater variance in service times leads to
greater average packet delay [Whi84] [Wal94] [Fer94] [Kle94]. Counterexamples to this theory have
only been found in the case where arrivals are not (strictly) Poisson [Wol77] [Ros78]. For example
Figure 1 indicates why counterexamples can be found which use batch Poisson arrivals such as those
in [Wol77]. In this paper, we demonstrate a counterexample for the case of Poisson arrivals.

1.3 This Paper

In this paper, we demonstrate an N for which

averagedelay(NC,FCFS) > averagedelay(NE,FCFS)

More speci�cally, de�ne NC,PS to be the queueing network N where each server has a constant
service time with the same mean as the corresponding server in N and the service order is Processor
Sharing. By [BCMPG75] and [Kel75], we know that the average packet delay in NC,PS is equal to
the average packet delay in NE,FCFS for all N .1 In this paper we demonstrate a queueing network
N for which:

averagedelay(NC,FCFS) > averagedelay(NC,PS) = averagedelay(NE,FCFS)

In the next section we describe the network N and then we prove the inequality.

1This powerful theorem is also described more recently in [Wal89] and [Kle76].
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Figure 1: Non-Poisson (in this case batch-Poisson) arrivals can favor more variance in service
distributions. For example, if three packets arrive in a batch (as shown here serving in the top three
servers), they'll collide at the next server unless their service-completions are staggered.
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2 Network Description and Analysis

2.1 Network Description

Let N be the queueing network shown in Figure 2. The servers in N either have service time 1
or �, as shown. The only outside arrivals are into the top server. Packets arrive from outside N
according to a Poisson Process with rate � = 1

n3
, where n is the number of servers in N . Half the

arriving packets are of type solid and half are of type dashed (by \type" we mean class). Packets
of type solid are routed straight down, only passing through the time 1 servers. Packets of type
dashed are routed through the dashed edges, i.e. through all the � servers and through every other
1-server.

2.2 Intuition

We will compare the average delay inNC,FCFS with the average delay in NC,PS, as shown in Figure 3.
By PASTA (Poisson Arrivals See Time Averages) it will be su�cient to compare the average delay
experienced by an arriving packet p at NC,FCFS and NC,PS.

The intuition behind the analysis is as follows: Since � is so low, usually for either network, p will
see no other packets during its traversal of the network. In this case NC,FCFS behaves identically to
NC,PS. With some probability, however, one other packet will be present in the network during p's
traversal of the network. The expected delay on p in this case is greater for the NC,FCFS network
than for the NC,PS network. Figure 4 shows us why: Consider �rst NC,FCFS. Suppose q is of
type solid and some packet p of type dashed enters NC,FCFS within

n
2
seconds after q. Then p will

eventually catch up to q, and from this point on, q will delay p by one second at every other server
throughout the rest of the NC,FCFS. That is, p will be delayed by �(n) seconds. Now observe
that the same scenario would only cause a delay of at most 2 seconds in NC,PS, because when
p catches up to q, it will only interfere with q for two servers and then p will pass q forever. A
worse situation for NC,PS is the case where p meets up with another packet of the same type as p
during its traversal (since in that case p is clearly delayed by �(n)). Observe, however, that this
scenario can only happen if the two packets both arrived at NC,PS within a second of each other.
This occurs with such low probability for our choice of small � that the scenario's a�ect on average
delay is negligible.

Lastly, we have to consider the case that two or more packets are present in the network during
p's traversal of the network. The expected delay on p in this case is greater for the NC,PS network
than for the NC,FCFS network, but this case occurs with such low probability that its e�ect on p's
delay is also negligible.
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Figure 2: Network N . Packets arrive at the
top; half follow the dashed route, while half
follow the solid route. The service times at
the servers are either 1 or � as shown.
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Figure 3: NC,FCFS and NC,PS networks
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Figure 4: Example illustrating how a packet, p, of type dashed and a packet, q, of type solid clash
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2.3 The details

De�ne

P kn
i = Pr fthere are i arrivals during the last kn secondsg:

Recall that arrivals are Poisson with rate � = 1=n3, where n is the number of servers. So,

P kn
i �

ki

n2i

P kn
i = �

�
1

n2i

�
, for �xed i; k

By PASTA, the expected delay a newly arriving packet experiences is equal to the average
packet delay for the network. We will compute an upper bound on the delay an arrival experiences
in NC,PS and a lower bound on the delay an arrival experiences in NC,FCFS. We will show

lowerbound(E fDelay on arrival in NC,FCFSg) > upperbound(E fDelay on arrival in NC,PSg):

2.3.1 upperbound on E fDelay on arrival in NC,PSg

Let p represent an arriving packet in NC,PS.
Clearly, p may only be delayed by packets which are in NC,PS during the time p is in NC,PS.

Note that if k packets are in NC,PS, they may take up to time kn to clear the system. So, if we
call p's arrival time 0, packet p may be delayed if one of the following occur:

� 1 other packet arrives during (�n; n).

� 2 other packets arrives during (�2n; 2n).

� 3 other packets arrives during (�3n; 3n).

� etc.

We will compute the expected delay on p due to each of the above events, and then we'll sum
these. This will be an overcount, but that's o.k. because we're just upperbounding.
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E fDelay on p caused by 1 other packet arriving in (�n; n)g

= E fDelay on p caused by 1 other packet of same type arriving in (�n; n)g

+E fDelay on p caused by 1 other packet of opposite type arriving in (�n; n)g

= Pr f1 other same type arrival in (�n; n)g �E fDelay on p j one other same type arrival in (�n; n)g

+Pr f1 other opp. type arrival in (�n; n)g �E fDelay on p j one other opp. type arrival in (�n; n)g

= �(
1

n2
) ��(

1

n
� n) (get delay of n only if same type packet arrived in (�1; 1))

+�(
1

n2
) ��(1) (opposite type packet causes at most delay of �(1))

= �(
1

n2
) �O(1)

= �(
1

n2
)

E fDelay on p caused by 2 other packet arriving in (�2n; 2n)g

� Pr f2 other packets arrive during (�2n; 2n)g �Max fDelay on p j 2 other arrivals in (�2n; 2n)g

= �(
1

n4
) �O(2n)

= �(
1

n3
)

E fDelay on p caused by 3 other packet arriving in (�3n; 3n)g

� Pr f3 other packets arrive during (�3n; 3n)g �Max fDelay on p j 3 other arrivals in (�3n; 3n)g

= �(
1

n6
) �O(3n)

= �(
1

n5
)

To compute an upper bound on E fDelay on pg, we sum the above terms. From the above
computations its clear that the delay on p from the remaining summands not shown above is
negligible. We �nd that

E fDelay on pg = O(
1

n2
)
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2.3.2 lowerbound on E fDelay on arrival in NC,FCFSg

Let p represent an arriving packet in NC,FCFS. Assume p arrives at NC,FCFS at time 0. To
lowerbound the E fDelay on p in NC,FCFSg, we consider only the delay on p caused by 1 packet
arriving during (�n; n). Observe that if 1 packet (other than p) arrived during (�n; n), and if the
packet was of a di�erent type than p, then p and the packet would meet, and the delay caused to
p (if p is dashed) is �(n).

E fDelay on p caused by 1 other packet arriving in (�n; n)g

= Pr f1 other packet arrives during (�n; n)g �E fDelay on p j one other arrival in (�n; n)g

= �(
1

n2
) ��(n) (see Intuition Section)

= �(
1

n
)

Thus,

E fDelay on pg = 
(
1

n
)
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