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Abstract

Active Documentation for VLSI Design

by

Mário J. Silva

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Science

University of California at Berkeley

Professor Randy H. Katz, Chair

The main proposal of this dissertation is the integration of design and documentation in a VLSI

design system using hypermedia technologies. We introduce and demonstrate the use of active

documents in VLSI design. These are multimedia presentations that incorporate invocations to

the tools to display and modify the design data.

The combination of design and documentation systems offers a new way of creating integrated

environments for designers in general, and introduces a new paradigm for VLSI design. We show

that it is possible to develop effective design methodologies that enable creating design and docu-

mentation in a single thread without intruding in the design process.

Active documentation is also used as a new paradigm for creating a common interface to hetero-

geneous tools and data used in system design environments. We add a new integration layer that

hides heterogeneity by enabling designers to control the flow of information between independent

systems through a document manipulation paradigm. We also show how information-based ser-

vices available through electronic commerce could be integrated into the design environment

using this paradigm. Active documents become a vehicle for transporting design data and opera-

tions between frameworks in independent organizations, enabling the creation of virtual enter-

prises for development of electronic systems.

We develop a realistic model for creating a system supporting the integration of design and docu-

mentation based on a new infrastructure that attempts to re-use existing framework services and

design and documentation tools with minimal modification. From the data point of view, it intro-
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duces a new layer within the design database. This new layer contains descriptions of how the

design data is organized and presented. It is a data structure with references to the design data,

configuration and history data. It also includes mechanisms to tool invocations to present the data.

The new presentation layer is organized as a set of active of documents. Designers manipulate

them just like the documents produced by documentation processing systems.

Randy H. Katz
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Chapter 1

Introduction

In current VLSI design environments, designers are well supplied with tools to help them

create and analyze their designs. More recent work has concentrated on the development

of a set of integrated services to help cope with the complexity management of the design

process and its data. These are collectively know as CAD frameworks [Harr90]. Despite

these efforts, little has been done to help designers understand their designs.

In intensive design environments, we believe thatunderstanding is synonymous with doc-

umentation. Inevitably, documentation becomes central to the design process itself. The

best definition of design is recursive: it is the process of writing its documentation.

We believe that a quantitative improvement in documentation would be possible if today's

electronic-based media could be exploited. Hypermedia is the ability to link together text,

graphics, audio, and video into a coherent, navigable document. Our approach uses a

hypermedia system as a front-end to the CAD system. This kind of front-end provides a

radical new means for documenting system designs via multimedia presentations. For

“I am speaking of an intelligent writing which ... can defend itself, and
knows when to speak and when to be silent.”

— Socrates
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example, segments of a videotaped design review could be used as annotations to the files

specifying a design artifact.

This dissertation discusses the integration of hypermedia technology within CAD environ-

ments for three purposes:

1. Combination of design and documentation activities.

2. Providing a common user interface to heterogeneous design and documentation tools.

3. Supporting the exchange of design-related information between designers in indepen-

dent groups and remote design information services via electronic documents.

These are discussed in terms of our experience with:

1. Developing a system model that supports this integration.

2. Prototyping a system that implements the model.

3. Using and evaluating the system.

A common user interface to the design tools has long been identified as one of the critical

sub-systems of a CAD framework. Unlike more traditional CAD interfaces, the one we

propose is founded on the metaphor of manipulating design documents. It uses a hyper-

linking mechanism for relating pieces of design data and for coordinating design tool exe-

cutions. This makes possible the construction of several forms of multi-media design

documentation, as well as a new way to access design history. As a result, we have added

a new viewport to the design environment, in which tools, component libraries and design

files can be accessed and organized in a simple, yet powerful way (see Figure 1.1).

We also have exploited the use of the documentation interface for other purposes. Docu-

mentation handling processes can be used as a metaphor for exchanging information

between CAD systems. These can be used to define protocols for passing design data as

multi-media documents, offering a new way to provide interoperability.
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Documentation-based interfaces to assist designers in accessing services distributed

across the Internet have become popular with new kinds of information systems like the

World Wide Web [BL94b]. These access the data through information servers as if they

were part of a network-based hypermedia system. Electronic design-specific commercial

services, such as component information or remote simulators, could be made available to

designers via this infrastructure. In this dissertation, we describe the documentation based

Figure 1.1 The New Viewport into the Design Environment

Our goal is to give designers an integrated view of all the data, documentation, tools,
and framework services available to them. We use a common metaphor based on
documentation. All design information is organized as a hypermedia document, which
can be browsed by an electronic notebook. The data is still manipulated by the tools,
but viewed as part of the design documents.

T o o l s

Managers
Data & Flow

Design

Notebook
Electronic

Information Web

Libraries

documents

documents

documents

commands
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interface we developed to support interaction and retrieval of information from design

documentation.

In the remainder of this chapter we start by discussing how design complexity has been

addressed in the past and propose a new paradigm based on documentation. Section 1.2

presents the case for VLSI design methodologies that integrate design and documentation

activities into a single thread. In Section 1.3 we review new information services and

forms of collaboration available to designers over the Internet, and advocate the use of a

documentation manipulation metaphor for exchange of design related information

between these independent design environments. Finally, in Section 1.4 we summarize

our research goals and give an overview of the dissertation.

1.1  A New Approach to Address Design Complexity

In an early paper, Newton and his collaborators advocated the use of computer aids for

managing the design process [Newt81]. Gajski and Kuhn described the VLSI design pro-

cess as a spiral, where designers use the tools to create successively less abstract represen-

tations in different domains [Gajs83] (Figure 1.2). At about the same time, Séquin

discussed how complexity inevitably becomes the crucial problem in VLSI design and the

ways to address it [Sé83]. These include the creation of new levels of abstraction, hierar-

chical structures, methodologies, partitioning and separation of design and implementa-

tion. Their vision has guided research in VLSI system design since then. This has resulted

in the creation of successively higher levels of abstraction for capturing design descrip-

tions and for handling the design process (see Figure 1.3).

However, new levels of abstraction never completely hide the lower levels. To complete a

design, it is usually necessary to interact with design tools that work at the lower levels of

representation. For instance, designers may synthesize automatically a large CPU block

from a VHDL model, but they will always have to verify the connections between the

modules and from modules to the pads of the chip. If timing issues are important, it is

likely that a simulation at the transistor level will be performed involving the circuitry in
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critical paths. More important, to make changes into the design, designers will likely have

to correlate descriptions at different levels, in a process called back-annotation. The addi-

tion to the design environment of new levels of abstraction and new tools for handling

them has the benefit of enabling designers to create much larger systems, but the liability

of making them more difficult to design and maintain.

In our view, this new kind of complexity needs to be addressed by a new generation of

systems that integrate design and documentation tools. These include aids for producing

and organizing design related documentation. These documents then operate as the inter-

face for accessing the multiple views of the design space, illustrating alternative aspects of

the design.

Certain aspects of system design are not well supported by today’s design environments.

Modern synthesis and verification tools address the problem of creating and interconnect-

ing modules at the chip and printed circuit board levels (see Figure 1.4). However, this

level of automation covers a rather restricted subset of the complete system design pro-

ElectricalBehavioral

Layout

transistor

gate

register

Figure 1.2 The Spiral of VLSI Design

The VLSI design process evolves from more abstract to more detailed representations
in multiple domains. Designers use the tools to create or synthesize them and verify
their accuracy.
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cess. In almost every case, system design also involves the procurement of modules and

components that must be integrated. It also encompasses interaction with service provid-

ers, such as manufacturers, and other groups working in related activities, such as product

marketing and definition. Instead of starting systems design from a pre-defined library of

modules and manufacturing processes, we observe that designers also work intensively as

information hunters. Design systems, should assist designers to locate and retrieve infor-

mation and document the decisions made.

1.2  Combining Design and Documentation

A project’s internal documentation is of crucial importance for design teams, where inter-

faces have to be shared and high personnel turnover is unavoidable. But the text process-

ing system is not well integrated with the design system. As a result, designing and

documenting VLSI artifacts are largely non-integrated processes. In many cases, the

Framework Tools

design
ALU 16 bit

design process or
problem level

behavior level describe
alu

verify task level register level counter

simulator resource level gate level xor

spice component level transistor level nMOS

Figure 1.3 How Complexity Has Been Addressed

We have been coping with complexity by introducing successfully higher levels of
abstraction both in the design representations and the tools that manipulate them.
However, since new layers of abstraction do not completely hide the lower levels,
designs are becoming more difficult to understand and designers must become familiar
with increasing numbers of representations.

ab
st

ra
ct

io
n
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design documentation is created only after the implementation is complete (see Figure

1.5).

Commercially available CAD frameworks, such as those from Cadence or Mentor Graph-

ics, partially address this problem by providing “hooks” to text processing systems such as

Frame Technology’s FrameMaker. Since the primary focus of these facilities is to make

Figure 1.4 Dimensions of Electronic Systems Design Complexity

VLSI design automation has enabled the creation of increasingly complex modules
through higher levels of abstraction for their specification and for the methodologies
used. However, as we move up in the vertical axis we observe that the level of support
available to designers decreases. We can produce very complex modules, but electronic
systems still have relatively few components. This happens because, at the system
level, design methodologies have to be substantially different: instead of using tools to
synthesize the artifacts, designers need to hunt for information about modules that
could be used, and interact with design and manufacturing services. This information is
currently available mostly in the form of documents. The new generation of design
environments must provide support for searching and organizing this kind of design
information. New tools could then help automate the process of making design
decisions at the system level.

transistor gate register algorithm

m
od

ul
e

ch
ip

bo
ar

d
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em
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datasheets and other documentation available on-line to end-users, they provide little

assistance in documenting a VLSI system as it is being created.

We believe that the understandability of designs would be significantly improved if the

processes of design and documentation could be better integrated. Both types of informa-

tion should be made available and manipulated concurrently from the same user interface.

Design specifications should be easily accessible while browsing the design models.

Object derivations and design histories represent important information needed to under-

stand a design. Today this design information cannot be accessed as understandable docu-

ments.

To create the design data and its documentation in a single thread, designers will need:

M
an

uf
ac

tu
re

D
es

ig
n

D
oc

um
en

t

M
an

uf
ac

tu
re

Design

Document

and

Now

With integrated
design and
documentation
tools

Figure 1.5 Design and Documentation in Single Thread

Currently design and documentation activities run independently during the design
process. Our goal is to combine them into a single thread. To achieve this, we need to
integrate design and documentation tools into a common framework, providing
support for ensuring consistency between design and documentation data and a
common interface to manipulate them.

time

time
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• support for maintaining consistency between related pieces of information. A modifica-

tion to a component’s behavior, will require the designer to find what parts of the sys-

tem’s documentation will need to be re-written. He or she should be able to navigate

from one to the other and quickly identify the portions of the design and documentation

affected by a change.

• A single interface to design and documentation data. To easily reach any piece of

design data and documentation, designers should have views where both are interpreted

as information related to the task at hand that can be manipulated uniformly.

However, these should be provided without enforcing intrusive methodologies. Even with

better coupling between design and documentation tools, it is essential that the design

flow does not force designers to write documentation or when to write it. We view integra-

tion between design and documentation as providing a set of mechanisms for merging

design and documentation data into presentations that enable designers to quickly find and

modify the all the design related information.

Our approach for combining design and documentation is to create a common support

infrastructure, where all of the tools that manipulate design information are well inte-

grated. We use the termtool ensembles to describe these sets of tightly integrated tools,

which can be synchronized to help a designer perform a complex design task as well as if

he or she were using single tool customized to assist him in the task.Active documents are

the interactive presentation of a design produced by using a tool ensemble. We elaborate

these two concepts in the context of VLSI design in the remainder of this section.

1.2.1 Active Documentation

Hypertext techniques have been used in the VLSI design domain, primarily for on-line

help [Lee87]. A new opportunity was made possible by the technology of active docu-

mentation [Terr90]. Active documents contain objects, beyond static text or figures, with

which readers can interact. A traditional figure is a black-box to the document processing
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system. Anactive figure could be the main window of a running design tool, to which the

user sends commands and observes changes to the document. Adding interactive objects

to a document begins to blend some of the notions of document processing with a direct

interface to a CAD system. For instance, in the production of a document, a logic simula-

tor could be used to illustrate the timing protocol for interfacing with a library module, or

a schematics editor could be invoked to display circuit diagrams, allowing readers to

examine details at their will (see Figure 1.6).

In VLSI design, we observe a general trend towards executable specifications. The devel-

opment of VHDL, the VHSIC Hardware Description Language, resulted from the users’

need to verify specifications via execution [IEE87]. Companies constructing VLSI com-

ponents are increasingly including VHDL models with their documentation. VLSI compo-

▼

▼

table with active values
(spreadsheet)

diagram is presented
when page rendered

simulator runs and
updates timing diagram
when value changes.

rst

shift

ck

shift

hf
data ID

T
72

23
5

ID
T

72
23

5 data

Figure 1.6 A VLSI Active Design Document

Active documents have their contents filled-in as they are rendered. Designers’
interactions with an active document may cause its contents to be modified or other
portions of the document to be displayed. The figure illustrates how active documents
could be used as a better replacement for traditional paper documents in VLSI Design.
Instead of static pictures, we could have the design tools display insets with the actual
design data. Changing parametric data in a document’s table would cause the circuit
being described to be re-simulated and the update of the inset showing the waveforms.
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nents would be much easier to understand if these specifications could be executed and

observed directly within the documents that describe them. As a result, active documents

will appear to designers as the next evolutionary step.

The current generation of design frameworks has focused on providing common services

to the tools: intertool communication, common databases and the same user interface look

and feel. More recent work on process management services for VLSI design enable the

creation of sequences of tool executions in the time domain, by finding dependencies

between data and running sequences of tools to optimize the data [Klei94]. A need also

exists to present the results produced by the tools on the user’s screen. To display some

design details or to perform some user level tasks, several tools have to be running concur-

rently with some graphical arrangement between them. From the design data organization

point of view, this corresponds to adding a newpresentation layer to the conceptual model

of the design environment (see Figure 1.7). We propose the a definition of this new layer,

based on documentation.

Figure 1.7 New Layer

Historically, VLSI design data bases started by defining common data models to
represent the design artifacts. These have later been extended to support multiple
configurations of the data. More recent research defines conceptual models for the
design flow, which are based on representations of the design process history. We
propose a newdata presentation layer. This describes how data is presented to the users
and how to link pieces of more loosely related pieces of information, such as a design’s
layout and the associated documentation. In our model, the data in this layer is
represented as active documents.

Design Data Model

Configuration Data Model

History Data Model

New Presentation Data Model
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1.2.2 Tool Ensembles in VLSI Design

The idea of combining tools to produce ensembles is not new. We have seen the same idea

exploited in different ways as new generations of platforms for running CAD systems

were introduced. It is instructive to discuss how it has been applied in successive genera-

tions of software produced at Berkeley. The Unix environment, where most of the initial

CAD systems were built, popularized the notion of combining tools by thefilters and

pipes paradigm. In this environment, design tasks are defined as sequences of tool execu-

tions that use as input the output of the previous tool and run as a batch job. A good exam-

ple of such an ensemble is theMosaico layout system. This is a script to route the macro-

cells in a chip following the conventional steps: channel definition, global routing,

detailed routing and compaction. In the script, each step corresponds to a tool invocation.

Nonetheless, this paradigm has became obsolete. The capability tointeractively exploit

design options has become more important. An example of a new generation of tool

ensembles in VLSI is the MIS logic synthesis system [Bray87]. MIS is a shell and a set of

independent tools, all combined into a single program. Users normally start the shell and

then invoke the tools interactively to operate on a logic-level representation of a circuit.

Another advantage of this architecture is that it does not require loading and storing the

circuit representation into a file and re-initializing the system between operations. This

becomes especially important as circuit complexities increase to millions of gates. Many

tool re-initializations would have a significant impact on performance.

In spite of that, MIS is a single program. In VLSI design, many situations arise when a set

of independent tools are needed for the same task. For instance, consider the situation of a

designer adjusting the timing performance of a circuit. In general, this is accomplished

with a circuit editor, a simulator and a waveform displayer. When the circuit is modified,

the user needs to re-simulate it and look at the new waveforms. Frameworks, such as the

Octtools, were designed to make it possible to create these tool ensembles as set of inde-

pendent programs [Harr86].



13

However, existing frameworks still do not satisfy our requirement for integrating design

and documentation tools and access them through a common interface. Design frame-

works do not provide interfaces to send and receive commands from documentation tools.

There are also several examples of application frameworks based on documentation sys-

tems, such as FrameMaker and Interleaf. These provide hooks for integrating external

tools and retrieving information from databases. However, the limitations we find are of

the same type: interfaces to design tools are very limited. Tools view themselves as the

center of the universe. There is not a general mechanism for invoking other tools as a peer.

In both domains frameworks are designed so that there is a specific tool that works as the

center of the environment. In the Octtools, all applications have to be started from VEM,

the design database browser. With Framemaker, it is possible to modify a design tool to

display its contents inside an inset, but it would be impossible to have it running in a sub-

window of a design tool for displaying a related piece of documentation data.

Our goal is to create a common framework, where tools in both domains could be inte-

grated in a symmetric way. No specific tool or design domain should have a special role

that would make it the center of gravity of the design environment.

1.3  Support of multi-organizational design methodologies

The expansion of the Internet in recent years created the opportunity to develop new mod-

els for collaboration between organizations. Groups of independent companies, called Vir-

tual corporations, will work together to market, design and manufacture products

[Davi92]. We believe that, to support this, concurrent engineering environments currently

supported by a single framework, will evolve into heterogeneous, wide-area distributed,

multi-framework environments, independently managed at different locations.
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The Internet is also opening a new market, where information based services can be trans-

acted electronically. Many new services for hire could be made available to support elec-

tronic designers, such as remote simulators, emulators or on-line component information.

Information systems like the World Wide Web popularized an interface to heterogeneous

information services based on documentation. We favor the application of this information

manipulation model to electronic design related electronic commerce and exchange of

information between organizations participating in virtual enterprises. This model has the

advantage of being well integrated with the information centric view of the design envi-

ronment supported by the new integrated design and documentation interface.

1.4  Dissertation Overview

In this dissertation, we present the design, implementation and usage experience of a new

CAD System for VLSI design. This is called the Henry System, or more simply Henry1.

Figure 1.8 shows the windows of an active document produced with some of the design

and documentation tools integrated with the existing implementation.

Figure 1.9 shows the methodology we used for developing the Henry System. We built it

as vehicle for studying the research goals outlined in previous sections. These can be sum-

marized as:

• Development of a framework and tools supporting integrated design and documenta-

tion methodologies.

• Providing a new common interface to the design environment, based on documenta-

tion. This creates a new inter-operability layer, unifying the interactions between VLSI

designers and the multiple heterogeneous systems in use.

1.  The name is given after Henry, the Navigator, the first creator of a research enterprise,
founded on scientific innovation and systematic collection of information.
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Figure 1.8 An Active Document Describing a VLSI Design

The figure shows an active document describing the design of a transmission line and
output buffer for a signal in a VLSI chip. The active document was produced with the
Henry System, a prototype integrated design and documentation system whose design
and implementation is presented in this dissertation. Going clockwise from the top-left
corner, we can see windows of the Navigator, an electronic notebook design for the
system, Spice3, a circuit simulator, Magic, a layout editor, and FrameMaker, a
documentation processing system. All the windows were created as the result of
pressing “buttons” in the Navigator’s window. All the design tools shown have been
modified to have the same capability of sending commands to other tools to display
windows with related information.
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• Integration of information-based services available through electronic commerce into

the design environment.

In Chapter 2, we survey previous research works and current initiatives that complement

our work. We cover on-line document representation formats, hypermedia systems, previ-

ous approaches for integrating design and documentation, computer aids for supporting

collaborative work and research in electronic design frameworks.

Chapter 3 presents protocols, message formats and information systems used for commu-

nications in the Internet. We also review extensions for sending active documents through

electronic mail systems, the World Wide Web, and new information services we anticipate

it will offer to designers.

In Chapter 4, we describe the conceptual model for the next generation of design environ-

ments. These will be composed of multiple heterogeneous frameworks operated by coop-

erating independent groups. In the new environment, design and documentation are

seamlessly integrated. We start by examining the assumptions used for building existing

design frameworks that, in our view, are no longer valid. From these new requirements,

Figure 1.9 Methodology of the Dissertation

For the development of the Henry System we adopted an iterative methodology. We
created an initial model for the system and used it in the implementation of a first
prototype. This was used by a group of users. We then modified the model based on the
observation and evaluation of the use of the prototype.

Prototype

Model

Development

Implementation

Evaluation
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we derive the implications for the next generation. We propose the documentation para-

digm for organizing and manipulating design and documentation data. This is also used to

provide a unified method to integrate heterogenous tools and frameworks.

Chapter 5 presents the architecture of the Henry System. This implements the main blocks

of new design environment organization introduced in Chapter 4. We describe the com-

munications infrastructure for supporting integrated design and documentation and

exchanging design information as active documents. Then we present Henry as seen by its

primary users: the designers and system integrators. The former see it as a collection of

aids for manipulating all information as documentation. The latter view it as an infrastruc-

ture for building ensembles of design and documentation tools.

In Chapter 6, we present tools and authoring techniques that enable the use of integrated

design and documentation methodologies within the new design environment. We

describe the conceptual model of the Navigator, an electronic design notebook that uses

the services of the Henry System presented in Chapter 5.

Chapter 7 describes the implementation of the various components of the existing proto-

type. This includes Henry’s support services, the interfaces offered to design and docu-

mentation tools, and the Navigator. We also present design scenarios involving

interactions with electronic commerce services using active documents. These were proto-

typed using Henry’s software.

In Chapter 8, we describe a usability test involving the use of Henry in laboratory sessions

and class projects by the students of a VLSI design course. We present the goals set for the

experiment, how it run, the documents produced, the collected data, and our conclusions.

Chapter 9 summarizes the main contributions of this thesis, recapitulates the lessons

learned from this project and gives directions for further research.
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Chapter 2

Related and Previous Work

In this chapter, we review existing software supporting the production of documents and

the design process in various domains related to our application. We cover operating envi-

ronments for electronic design systems, documentation processing tools, hypermedia,

design rationale capture systems, and tools supporting collaboration.

2.1  Introduction

The integration of documentation and design is not a new idea. For example, this has been

used with some success in the Mathematica system [Wolf91]. Mathematica notebooks

allow the designer to sprinkle documentation among the Mathematica expressions and

their outputs. The text can be expanded or hidden on demand. At least one Mathematica

text book has been written as nothing more then notebooks [Gray91]. One of our goals is

to combine VLSI design and documentation in an identical way. However, the same goal

is much more difficult to achieve in our domain. A Mathematica document is handled in a

single-user environment, by a single tool, and contains only a limited set of data types. In

We use [logic] to simplify and summarize our thoughts. We use it to explain
arguments to other people ... We use it to reformulate our own ideas. But I
doubt that we often use logic actually to solve problems or to “get” new
ideas. Instead, we formulate our arguments and conclusions in logical terms
after we have constructed or discovered them in other ways; only then do we
use ... formal reasoning to “clean things up.”

— Marvin Minsky, The Society of Mind
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a typical VLSI design environment, a project is the product of multiple users running

many Unix-based tools that manipulate many complex data types.

To handle this type of complexity, multiple approaches have been proposed in the past. In

general, these rely on capturing the design history into data structures of different forms

and combining it with the design data in different ways, including:

• Design information management systems. These organize the design history and data

into hypermedia presentations, and provide means of quickly locating information

related to the design. Systems in this class are organized around a single hypermedia

tool that can display various non design-specific data types, such as text and pictures.

Design data needs to be converted into the supported data types before being used by

these systems. The problems of this approach is that the semantics of the CAD data is

lost in the conversion process (for instance, when a VLSI layout is converted into a bit-

map), and severely limits the capability of the searching and indexing tools. This also

makes the update of this information very difficult. To perform an engineering change,

once the desired design information is located with the system, one needs to start the

appropriate design tool, perform the modifications, convert the design data into text and

images, and, finally, re-index it. Nevertheless, the advantages of capturing the design

history and data into these systems have been demonstrated in domains other then

VLSI, such as mechanical design [Brad91]. Our goal is to create a similar system

where design information can be searched and indexed using the design tools, hence

overcome this limitation. This requires the development of an architecture for integrat-

ing the information manipulation tools with the design tools, so that the former can

send commands to coordinate the operation of the latter. This would enable VLSI

designers to look into layouts using layout editors directly, instead of bitmap viewers,

and also make it possible for the information system to highlight a specific circuit in a

layout as a result of a query.
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• On-line help and documentation systems. We include in this category the developments

of the major electronic design automation companies, which are incorporating text pro-

cessing systems such as FrameMaker within their frameworks. This is meant to provide

hypertext documents for on-line help, and better documentation for library compo-

nents. Additionally, designers use the system to write their own designs documents,

mainly datasheets. Our project also offers designers support for documentation, but its

main purpose is something else. Our system does not aim to prepare manuals. Instead,

it is conceived as a design team notebook that doubles as a front-end to the design tools.

It implements a conceptual model for documentation that is intended to capture aspects

common to all types of documents manipulated in electronic design.

• Design process management systems. These systems store definitions of the various

operations that can be performed in a design environment and capture the design his-

tory to find dependences between the various pieces of data [Klei94]. Our research does

not attempt to create another of these systems. The goal is to offer mechanisms in the

design support infrastructure that make design process management an integrated part

of the design information management system. Such an integrated system would simul-

taneously provide an operational view to the design data and help maintaining the

design documentation.

• Design rationale capture systems. These systems create an new data structure with data

not available in the design representations or history: the explanation of why the design

decisions have been made [Carr91]. This type of information needs to be given explic-

itly by the designers during the design process. We believe this to be too intrusive for at

least the initial phases of typical VLSI design projects. As in any other creative activity,

designers use other types of reasoning other then logic reasoning when creating their

designs [Mins86]. These include the exploration of analogies and trial-and-error start-

ing from “ball-park estimates.” Our interest is in capturing of the design data, history

and annotations into a spaghetti-like structure that could later be refined by the design-

ers into documentation understandable by other designers. For this reason, the body of
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research on design rationale is largely complementary to our work on tools for inte-

grated design and documentation. However, we still see design rationale capture tools

as a system component that could be useful for some types of electronic design, if inte-

grated with an electronic design system like Henry.

• Design collaboration support systems. These systems create applications that build on

the metaphor of an engineering notebook to create shared workspaces to which design-

ers can add design information and also any other type of design-related data. The

resulting electronic notebook is then seen as a medium for sharing, locating and reason-

ing about design information [Toye93, Gorr91]. These systems also use hypermedia to

create presentations of the design data and its documentation, and are conceptually very

similar to ours. Henry also includes an electronic notebook, designed as an editor of

hypermedia documents. However, our research goals are not the same. Henry’s note-

book is the first tool in this class conceived to specifically support VLSI designers. We

focus our research on active documents on the interactions between the notebook and

various types of design tools and process management services used in VLSI design

environments.

In the remainder of this chapter we analyze in more detail previous research works in the

fields enumerated above and existing software systems related to the theme of our disser-

tation. We organize the discussion as follows:

Section Describes Page

2.2 Operating environments and design frameworks used by electronic
systems designers.

22

2.3 Documentation Processing Systems. 29

2.4 Hypertext and Hypermedia Systems. 31

2.5 Design Rationale Capture Systems. 38

2.6 Computer Supported Cooperative Work. 40

2.7 Summary of related research and technologies. 42
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2.2  Operating Systems Services and Application Frameworks

In a computer system, an applications framework stands between the applications and the

operating system and the set of standard programs and libraries bundled with it. It pro-

vides common services required by the tools of an application domain not provided by the

operating system, such as a common database supporting domain-specific data types.

Of special interest to us are Electronic CAD Frameworks, or simply CAD Frameworks as

they are known to electronic systems designers. Recent surveys of the most important

concepts associated with electronic CAD Frameworks have been published recently

[Barn92, Harr90].

Figure 2.1 shows the common reference model adopted by software engineers for applica-

tion frameworks [Nati90]. A complete design framework offers several common services,

including:

• User interface libraries, to be used by the all the framework applications to ensure a

common look and feel.

• Message services1, for communication between the tools and framework services.

• Design data management and representation, to support the domain-specific data types

and control concurrent accesses to the design data.

• Design process management, for controlling the execution of design-related activities.

These services are targeted to multiple classes of users: designers, tool programmers and

framework system administrators.

There are various commercial frameworks attempting to implement this architectural

model. Examples include PowerFrame from DEC, DesignFramework from Cadence, and

Falcon from Mentor Graphics. Several organizations work on reference implementations

1. sometimes also called inter-tool communication.
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or the standardization of the interfaces between the tools and the multiple framework com-

ponents, the most important being the CAD Framework Initiative (CFI) in the U.S., and

the JESSI Framework in Europe.

Frameworks have also been proposed in other design-related domains. Of particular rele-

vance is the research in software engineering environments and its application to CASE1,

1. CASE — Computer Aided Software Engineering.

Figure 2.1 Framework Reference Model

This is the reference model for an applications framework. It is accepted by several
standards organizations, including CFI. It has been applied in various domains,
including computer-aided software engineering and computer-aided design of
electronic systems. The model emphasizes the use of interchangeable “plug-and-play”
tools that use a common set of services.

message services

data integration services
repository services

process management

servicesuser interface
services

t o o l s
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because of its similarity with electronic CAD. The common framework reference model

presented above was initially developed for software engineering environments. However,

despite many similarities, there have been no records of successful adoptions of CASE

frameworks for VLSI design, nor of notebook-based interfaces to a CASE environment.

To some extent, this is because software is oftenself-documenting, with extensive text

documentation sprinkled throughout the code. In fact, this idea of embedding code and

documentation has been explored long ago in this domain, with environments like Knuth’s

WEB system [Knut84], which he used to develop the TEX text formatting program. What

we intend to provide with active documents is a similar capability, to add documentation

to the data describing the artifacts and manipulate them with an integrated set of tools.

There is not a static interface between a computer’s common software environment and an

applications framework. Over time, the common software environment of every computer

evolves to support new standardized services previously covered by frameworks. Services

like inter-tool communication, which are provided by individual CAD frameworks today,

are now part of the next generation of commercial operating systems and will be common

to all frameworks.

The rest of this section describes reviews the standard software environments and design

frameworks adopted by the generality of VLSI designers. Then, we describe design pro-

cess management systems in more detail.

2.2.1 COSE and CDE

COSE1 is a consortium of UNIX vendors that attempts to define a common standard for

this operating system. COSE is addressing multiple areas in computer systems, including

networking, operating systems and computer interfaces. UNIX is clearly the dominant

platform for VLSI CAD software today. COSE standards have been endorsed by the CFI,

the association of CAD software vendors and users.

1. COSE —Common Open Software Environment.
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Of the technologies under development by COSE, CDE1 is the one that will have most

impact on our application and is closest to reaching the commercialization stage. CDE is a

set of many diverse components, including several closely related to our research on

active documents:

• A common user interface look and feel. This is essential for our active documents,

which are intended to integrate many applications under a common manipulation para-

digm.

• Message services for the communication between the tools in the desktop.

• Session management and remote application invocation, to start design and documen-

tation tools from active documents when required.

• An hypertext-basedhelp system.

• A visual scripting language, to quickly create programs using all the above software.

For the development of the Henry System we used either software components providing

similar capability or developed our own. Some of the components, such as the session

manager, could be simply replaced once CDE is finally released. Other services could

make use of the new COSE services, but would still require the use of some of our exten-

sions. For instance, the COSE message services are intended for communication between

desktop applications. The Henry System supports a much more general inter-application

communications model, from messages between the tools running in a designer’s machine

to client-server communications between independent organizations on a wide-area net-

work.

2.2.2 CFI

The CAD Framework Initiative has been focusing on the definition of a common architec-

ture and interface standards for the various elements of an electronic design applications

1. CDE — Common Desktop Environment.
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framework [CAD93, CAD94]. This includes, among other, methods for inter-tool commu-

nication, design representation and design process management. There is also one sub-

group interested in standardizing component information representation. All these efforts

complement our research. Integrated design and documentation would never be conceiv-

able without common interfaces to access design data and control tools executions.

Currently, it is very hard to have tools from different CAD frameworks working together,

as there are only very poor interfaces between them. Users perceive this as the strongest

limitation of these systems, because they often choose to adopt tools from different ven-

dors for handling specific design steps. In a typical design environment one can easily find

a VHDL simulator, a logic synthesis system, or a circuit layout system, each supplied

from a different vendor. As a result, the common reference model adopted by CFI does not

correspond to the observed reality: design environments often have multiple incompatible

instances of the same design support services.

The Henry System supports an environment based on a framework with an architecture

which is derived from the CFI reference model. This is extended into an environment

where design objects, documentation, and the tools that manipulate them are all first-class

objects handled seamlessly from the same interface. In addition, Henry also extends the

model of a design environment based on a single framework, into one composed of multi-

ple heterogeneous frameworks that communicate information through active documents.

2.2.3 Design Process Management Systems

The design process, also known as design flow or design methodology is the procedure or

set of procedures used to complete a design. Kleinfeldt et al., recently surveyed the state

of the art in this domain and compared the existing systems [Klei94]. We adopt their ter-

minology throughout this dissertation.

Design process management refers to the computer aids for helping designers define, exe-

cute and control the methodology. It is one of the main components of a modern CAD
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framework. The basic entities in the conceptual model of a design process management

system aretools, tasks andflows:

• A tool is a program execution. It may be the execution of a shell command, that triggers

activation of a script or an application program, or a command to a running program,

through a remote procedure call.

• A task corresponds to a definition of a sequence of tool invocations. It contains defini-

tions of what tools to use, what data is given as input and produced as the output. Tasks

are used to encapsulate design activities without the designers having to indicate the

invocation details of the tools.

• A flow is a definition of a sequence of tasks. This is usually specified through data

dependencies, as in a UNIX makefile. But it can also be temporal, when obtained from

a log of tool invocations.

There are various examples of design flow management systems that let designers anno-

tate the captured design history and use it as documentation. A prototype system named

VOV at U. C. Berkeley used a record/playback approach to manage the design process.

The flow dependencies are collected into a design traces, which can then be used to illus-

trate a given design methodology [Caso91]. This can also be seen as a constrained, but

automated way of building design documentation. The user interacts with the example

design, changing the files and re-running the tools to visualize the effects of the change.

Moreover, this is documentation that can be re-used: designers use the design files as tem-

plates for the specific project at hand, modifying them as necessary.

In Papyrus, another process management system from Berkeley, there is a facility to pro-

duce design meta-data from the design process history [Chiu92]. For example, a logic

minimizer, such asespresso, can output either tables or algebraic representations. From

the analysis of the options given to invoke a the tool, it is possible to derive the types of

the produced objects. In addition, if the environment contains design estimating tools to

compute the power, area or delay, the analysis of the history data can be used to find what
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modules are instantiated and automatically compute these parameters at the chip level. We

believe that the same technique could also be used to produce human-readable documents,

illustrating to designers important characteristics of a project’s data.

At CMU, research has focused on the elaboration of models for representing the design

process, and development of task management and process planning tools [Bush89,

Dani89, Jaco92]. Although this will be helpful for designers, it also implies adding

another layer of abstraction and further complexity. Process management tools do not

offer the necessary aids to make design details more understandable. A system like Henry

would be the necessary complement. On the other hand, we would like to be able to use

these tools in a more information centric design system where they could be seen by the

designers as agents for assisting in the generation and maintenance of the design docu-

mentation [Riec94].

2.2.3.1 What is a Design Tool?

Unfortunately, the term tool becomes overloaded with different but related semantics,

when we put together the multiple research areas related to active design documents. For a

electronic designer, a tool represents any CAD program in general. This does not always

mean the same to researchers in design process management. In the early days, these

started by assuming that only non-interactive programs executions would have to be man-

aged. However, the new generation of interactive CAD programs can receive commands

from remote procedure calls. Methodology management systems now need to interpret

each of the commands as what was formerly understood as a tool.

Interactive programs can also have several operating modes associated with the mouse

commands. For user interface designers, each of these modes is also called a tool. Even

some CAD programs use the term tool to designate these modes. For instance, the Magic

layout editor [Oust85] defines several modes, such as abox tool, to operate on the rectan-

gles defining the various layers of the layout, and a irsim tool,to interact with the data pro-
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duced by the logic simulator that it runs as a sub-process. In each of these modes, the user

then has several commands available.

In summary, a designer invokes application programs to operate on the data. Interactive

applications may have a single or multiple operating modes. In each mode, several com-

mands are available for execution. Due to overloading, the term tool can designate an

application program, an operating mode, or a command. In this dissertation, we usually

employ the term in the designer’s assertion, as a CAD application that he can control to

operate on design data. However, when we discuss interactions between design process

managers and the tools that manipulate active documents, the term should be understood

as viewed in design flow management.

2.3  Documentation Processing Systems

Our concept of active documents is a generalization of the concept of on-line structured

documents. The book edited by André et al. [Andr89] reviews the history of systems for

processing on-line structured documents, their conceptual models and existing standards.

On-line structured document processing systems are designed primarily to produce docu-

mentation on paper. Active documents can have buttons, to jump to different pages in

other documents, and insets displaying the windows of independently running programs.

However, they inherit from structured documents all the fundamental concepts, such as

the tree-like data structures representing the documents’ hierarchies and a page rendering

model.

 The latest generation of documentation processing systems is based on direct manipula-

tion user interfaces [Schn82]. These are characterized by 1) continuous representation of

the objects of interest and 2) physical actions on the objects with immediate visual feed-

back. State of the art documentation processing systems in this category are FrameMaker,

Interleaf, Microsoft Word and Word Perfect.
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The conceptual models used for representing documents in these systems are all very sim-

ilar. A good evidence of this assertion is that all these systems now support or have

announced to support the capability to import and export documents in the SGML format,

is the ISO standard for on-line documentation representation. We review this format in

more detail in the rest of this section.

2.3.1 SGML

SGML (Standard Generalized Markup Language) is a relatively old standard format for

electronic documents [fS86]. The book by Goldfarb provides an extended review of this

standard [Gold90]. SGML is a language that can describe all the structuring elements of a

document represented electronically, such as heading types, character types and paragraph

formats, and mathematical expressions. A SGML document contains two parts:

1. a DTD1, which defines the style of the document. This contains the definitions of the

structuring elements used in the document, ortags in SGML terminology.

2. The tagged text of the document.

SGML seemed to be doomed to become a standard supported only by a few specialized

applications until very recently, when HTML2, a format derived from it, was adopted as

the primary on-line document format for the World Wide Web [BL94b]. HTML is an

extended subset of SGML [BL93b]. It adopts a pre-defined SGML DTD and extends it

with new tags to be interpreted by the document processing system as hypertext links.

Recently, the popular WWW system introduced an HTML extension, where new tags

have been defined to provide a simple electronic form representation capability [Andr93].

With these extensions, some of our concepts for active design documents could be repre-

sented. However, more would be required to support it completely. Our model involves

1. DTD — Document Type Definition — the document structure definition part of a SGML docu-
ment.

2. HTML — Hypertext Markup Language
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interactions between multiple tools to create document presentations. For instance, we

would like to include in an active document a simulation deck and commands to produce

an animation. When displaying the document, the simulator would be called to process the

commands, read the deck and display the waveforms in a figure. As HTML only supports

text and images, this type of interaction cannot be represented in the document.

One of the early applications intended for SGML was its use as a system-independent doc-

ument representation format that could be supported for many years. In the electronic

design domain, these characteristics made it well suited for producing documentation of

designs of military type products that would have to be maintained for long periods. The

electronics industry also used it as a way of distributing components documentation in

much cheaper ways than on paper, using CD-ROM and on-line databases. There is a pro-

posed standard for a SGML DTD designed to represent the structure and data types

included in electronic data sheets. This is known as the Pinnacles DTD [ATL94] and is

being considered for adoption by the CFI.

2.4  Hypertext and Hypermedia Systems

A hypertext system allows authors or groups of authors to link information together. The

term was coined in the early 1960s by Theodore Nelson to describe the idea ofnon-

sequential writing. The mechanisms available to authors to create these connections

include annotations to existing texts, notes directing readers to other documents and paths

through bodies of related information. Recent tutorials and research surveys on hypertext

technologies include the bookHypertext and Hypermedia by Nielsen [Niel90] and an arti-

cle by Conklin [Conk87].

With a computer system, the process of activating explicit connections, orlinks, between

portions of documents can be automated. An hypertext is not a simple a collection of

information. It also contains an implicit navigation process defined by its authors. This

contains in general many possible paths, from which one is chosen by the user while

browsing the information. In addition, hypertext systems that support multiple users can
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be used to communicate and collaborate through annotations to the collection of shared

information. Hypermedia is an extension of hypertext, where the body of information can

be any media type, such as audio, video or static and animated graphics.

Hypertext techniques are not exclusive to hypermedia systems. In recent years, hypertext

is a technology that has progressively penetrated virtually all desktop computing operating

systems and applications. All major direct manipulation-based text processing systems

mentioned in the section above support hypertext links, either directly or through some

other mechanism that gives authors the capability to create the same effect.

The concept of an Hypermedia Framework, an environment supporting hypertext links

between media of many types manipulated by distinct tools was pioneered by systems like

Intermedia, developed at Brown University [Meyr86, Yank88, Haan92]. If we see the data

types available in the design environment as new media types, we could look to this data

as a body of information that could be annotated using the above described hypermedia

techniques. A CAD framework extended to support them could then be also seen as an

hypermedia framework with integrated support for electronic design specific data types.

One of the main goals of our research is precisely that of creating this extension.

There are multiple reports on early experiments combining hypertext and CAD applica-

tions, such as the work of Delisle and Schwartz [Deli86]. However, all the early hypertext

systems suffer from many limitations, due to the almost unlimited amount of information

that can be accessed from any link. In a 1988 paper, Halasz enumerated the main unre-

solved issues that the next generation of hypermedia systems should address [Hala88].

These include support for search and query of hypermedia information,virtual structures1

for dealing with changing information, and collaborative work. Malcolm et al. describe in

more detail the reasons why hypermedia systems do not support the needs of engineering

enterprises. According to them, “current hypermedia tools do not support the needs of col-

1. This concept of a virtual hypertext structure, which is dynamically built for the user as he or she
browses the information corresponds directly to our interpretation of active document concept.
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laborative work groups in distributed heterogeneous environments and cannot be inte-

grated into the existing and planned computing environments” [Malc91]. The limitations

enumerated are 1) poor inter-operability of existing hypermedia systems, 2) absence of

support for a shared workspace model, and 3) a distinction betweenauthors andreaders

of design documents. In our view, these still remain unsolved today.

Our research on the integration of design and documentation data is an attempt to address

these problems from the electronic design perspective. In the rest of this section we

describe in more detail a few related hypermedia systems that attempt to provide answers

to some of these limitations.

2.4.1 Open Hypermedia Systems

A key contribution to the integration of pieces of information produced by independently

developed systems through hypermedia is the concept ofopen hypermedia, pioneered by

the Sun Link Server [Pear89]. This research product eventually gave origin to the Tooltalk

Message Server [SunS92], which is now part of the standard environment defined by

COSE/CDE and CFI. The Link Server enables the creation of links between objects in

independent applications using a common protocol. It provides a storage mechanism for

link information and communicates with the applications. Each application is responsible

for unique object identification, storage and provide the communications interface with

the link server. We illustrate its operation through an example. Consider a situation where

an application displays circuit layout and another shows documents of the specification of

each of its components. In an hypertext system using both tools to show documentation

associated with each piece of layout, we would have to add a remote procedural interface

to them to accept the commands of the Link Server protocol. Each circuit in the layout

would be annotated with the name of the associated document. Activation of the link

would consist in a command given at the layout tool, which would be translated into a

message to the Link Server containing the identification of the document. This would in

turn send a command to the text processing tool to open the document.
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The major limitation of this approach is that it requires the modification of the applica-

tion’s code to support the link server’s communication protocol. If an application already

has a remote procedure call interface, a new one must be built complying with the mes-

sage server protocol. However, in most cases system integrators do not have access to the

source code of the tools. As a result a solution like this would be practical only if all appli-

cation developers decide to support it.

Another approach, which does not require applications to have a remote command inter-

face, or any other modification to their code, consists in intercepting some of the mouse

commands sent to the applications and have them interpreted by the link server. This has

been attempted in systems like Microcosm, developed at the University of Southampton,

UK [Foun90, Davi92]. We describe their operation using the same scenario as above,

involving a circuit layout and a document editor. An hypertext system including both tools

would start the layout editor and set it up to intercept any mouse clicks on its window. The

link database would contain a table for translating each mouse location into layout coordi-

nates in the first application and from these into the document names of the second. A

mouse click on the layout editor would be intercepted by the Microcosm link server,

which would translate into a file name which would be given as argument in a open com-

mand to the document editor.

This has the additional advantage of offering a consistent user interface for activating

links, common to all tools. Another significant advantage is that all the information rela-

tive to the hyperlinks is stored in a common database, independent of the tools.

However, this approach has major drawbacks that make it unusable in our application

domain, which demands support for simultaneous design and documentation. In the above

example, a simple modification to the circuit layout would render the information in the

link database obsolete and very hard to update. Another limitation is that building the

links database on the link server is much more complicated. In the example above, a com-
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plex application-specific program, would be required to generate and maintain the link

translation tables.

Our approach stands in the middle. Unlike Microcosmos, the Henry System requires

applications to have a remote procedure call interface to invoke its commands. From the

designer’s point of view its operation looks identical to the Sun Link Server. Information

about links is also partially kept in the form of annotations or markers in the design tools

data or documentation files. The architectural difference between the Henry communica-

tions server and the Sun Link Server is significant to tool integrators: the former is

designed as an extensible server, capable of handling multiple inter-tool communication

protocols. This makes it possible to integrate tools defining their own remote procedure

call interface without modifying their code.

2.4.2 Compound Document Manipulation Architectures

A link server like Tooltalk is only one of the necessary operating system components

required to support the creation of hypermedia systems involving any of the applications

available in a computing environment. To create active documents built of a tool ensemble

of GUI1 applications, it is also necessary to have a mechanism to compose them. The

applications should appear to the user as embedded insets in the pages of an on-line com-

pound document.

Support for this type of documents is already available on personal computers and is

slowly being added to UNIX workstations. An example of a complete set of services is the

second version of OLE2, available in the Windows operating system [Mic93]. A similar

system is also available for Apple personal computers. There is a recent initiative to make

this architecture an operating system independent standard [App93]. The latest version of

the X Window System (release 6) adds new extensions that would enable the creation of

1. GUI — Graphic User Interface.

2. OLE — Object Linking and Embedding, a Microsoft, Inc. product.
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applications that contain other applications running in its sub-windows. These, in conjunc-

tion with the Tooltalk message server and other new UNIX services could be used to cre-

ate on-line compound documents.

For our research, as we were aware since the beginning that these undergoing develop-

ment efforts, we decided not to develop a new model for creating composite embedded

documents. Instead, our research focused on design-specific aspects of the integration of

heterogeneous information, such as the integration of design and documentation activities

through active documents. Our model for presentation of active documents assumes that

one of the above mechanisms for embedding applications into hypermedia documents is

available, although this is not supported by our prototype system.

2.4.3 Notebooks

Support for on-line compound documents, when available in the computer platforms used

by VLSI designers, will find a direct application in electronic design notebooks. An elec-

tronic notebook is a replacements for the notebooks used by scientists and engineers in

many domains.   We developed a prototype of VLSI design notebook as part of the Henry

System.

Electronic notebooks are hypermedia systems customized to a specific application, sup-

porting viewing and annotation of the domain-specific data formats. These offer dramatic

new possibilities, when compared to their paper-based ancestors. They are not restricted to

containing data of relatively small sizes; massive amounts of information, from data asso-

ciated with the design (e.g., product information, data sets) to the design objects them-

selves can be accessed from within the notebook. Once information is stored in a

computer-based notebook, it becomes much more available for sharing and ultimately for

reuse. However, there are some limitations of the electronic media that make paper note-

books still attractive, such as their portability and ease of use.
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The following are examples of projects in other design domains that also involved the

development of an electronic notebooks:

• Virtual Notebook System (VNS) originally developed at Southern Methodist Univer-

sity for medical researchers [Gorr91]. This is the earliest documented attempt to design

and use an electronic notebook. VNS exploits the notebook metaphor for its user inter-

face, allowing users to organize heterogenous data as if they were writing into a paper

notebook. However, the single user notebook is extended to a distributed, multimedia

hypertext system. VNS was conceived as a set of tools for information acquisition,

sharing, and integration within collaborative research groups.

• Electronic Design Notebook (EDN), was developed at GE Laboratories within the

DARPA Initiative in Concurrent Engineering (DICE) [Ueji90]. The purpose is to cap-

ture and preserve the design intent of an engineering project and to support cooperative

work with computers.

• SHARE is another project, in the mechanical engineering domain, developed under the

same initiative [Glic93, Toye93]. The electronic notebook explores the idea of a paper

notebook metaphor to support sharing of design-related information and communica-

tion within the project team.

The notebook we developed for the Henry system, called the Navigator has many similar-

ities with the above designs. However, the research goals we set for the Navigator are sub-

stantially different. We do not see the electronic notebook as the main front-end of the

design environment, from which information is entered and searched. From Henry’s per-

spective, the Navigator is simply another tool, specialized for browsing the web of infor-

mation related to the design and creating annotations to that information. We were

interested in studying its operation in conjunction with existing VLSI design and docu-

mentation tools, and designed the Navigator to make full use of Henry’s infrastructure.

Another novel aspect of the Navigator is its new user interface, which enables users to use

the notebook as readers and authors simultaneously.
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On the other hand, the Navigator does not provide any special support for user communi-

cation using the documents as the medium, or for concurrency control mechanisms for

simultaneous authoring of the same active document by elements of a design group. This

aspect is in part covered by the above notebooks and by the large existing body of research

on engineering design data management.

2.5  Design Rationale Capture Systems

Design rationale (DR) designates the reasoning supporting the design. The goal of DR

capture systems, also calledargumentation systems, is to create explicit representations of

the decisions made by a group of designers. Design rationale is a form of description of a

design artifact that augments what is available in the normal documentation. In addition to

the structure and function of the artifacts, it attempts to describe the reasonswhy the

design choices have been made. An up-to-date survey of the research in this domain is

available in a recent special publication coordinated by Carrol and Moran [Carr91]. The

motivations indicated by these authors for constructing explicit design rationale are: 1) to

support reasoning processes in design, 2) to facilitate communication among the various

participants in the design process, and 3) to further the accumulation and development of

design knowledge across design projects and products.

Argumentation systems, use some form of extension of the IBIS1 model for capturing the

deliberations of a group of designers, developed by Rittel in the 1970s [Ritt70]. The data

structures of a DR capture system can be seen as a way of producing structured documen-

tation. Most of these systems also have a hypermedia-based user interface, similar to that

supported by Henry. The following are examples of argumentation systems developed for

other domains:

1. IBIS — Issue-based Information System
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• PHIDIAS is a system for environmental design, developed at the University of Colo-

rado [McCa90]. It combines features of a CAD system with elements of an argumenta-

tion system, i.e., a system that tracks design alternatives and the rationale for their

resolution. PHIDIAS makes it possible to structure the discussions about a design.

These are stored in a hyperdocument, along with graphics and text nodes.

• gIBIS is an hypertext system based in the IBIS model, developed at MCC [Conk88].

This has been used at NCR in a software development experiment [Yake90]. The

authors’ analysis of the experiment indicate that reviews of the captured rationale made

a number of problems evident relatively early in the design process. This more than

paid for the cost of capturing and organizing the rationale.

Despite the many similarities, our goals for developing Henry are substantially different

from these previous efforts. We do not intend to capture the rationale explicitly, but only to

provide designers with a system that helps them organize the information related to the

design. In our view, the interest in forcing a structured design methodology upon design-

ers for capturing the rationale is arguable: the developers of PHIDIAS report that docu-

menting design decisions as somehow separate from their realization can be disruptive. It

can also prevent the smooth flow of reflective exploration [Fisc91].

Recently, work in this area has been exploring new directions motivated by these that

depart from the IBIS model of organizing the design decisions process. Conklin and Yake-

movic, based on their past experience, recently proposed “a new approach to design ratio-

nale that emphasizes supporting the design process in such a way that a trace of the

rationale is captured with little disruption of the normal process” [Conc91]. This corre-

sponds directly to our main goal of combining design and documentation in VLSI design,

for capturing the rationale nonintrusively.

Another direction was pursued by Garcia, which uses an expert-system based approach

applied to heat and ventilation systems design [Garc92]. In this system, an interface based

on active design documents is also used. The basic motivations to employ active docu-
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ments in her application (design) to a design-rationale capture approach are similar to

ours: the need to have 1) low documentation overhead and 2) easy access to relevant infor-

mation. However, her research is on developing a model of the design from which docu-

mentation can be generated and checked for consistency. She calls these documents

Active Design Documents (ADD), because they evolve dynamically with the design spec-

ification, as ours do. However, this notion of active documents has little in common with

our concept, which is derived from hypermedia. Her documents are generated automati-

cally from the designer’s interactions with a single tool, while ours result from a user con-

trolled authoring process involving many tools.

2.6  Computer Supported Cooperative Work

Computer Supported Cooperative Work (CSCW) is an umbrella for a group of related

technologies that are used to support collaboration. Several recent surveys give an in-

depth introduction to research in the field [Grud94, Grud91]. Another term used in con-

junction with CSCW isgroupware. The distinction between both is controversial. We

understand groupware as a designation for the multi-user computer applications used in

CSCW.

The most successful groupware application is electronic mail. Other applications include

shared calendars and hypermedia systems for group communication. Lotus Notes is the

most widely used groupware application.

In the design of the Henry System we did not explore the use of active documents prima-

rily as a communication media. We use active documents as structured descriptions of the

design information. These can be exchanged in communications, butare not seen as the

communication tool. Hence, Henry is not currently a system supporting all the needs of a

group VLSI designers. We assumed that user-to-user communication in a production

design environment would be supported by groupware applications such as Lotus Notes,

shared white boards, and video-conferencing. These could then be integrated when avail-

able in the UNIX machines that support today’s CAD tools.
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Nevertheless, we have adopted the communications models and the software of active

mail systems in Henry for exchanging active documents between CAD systems. We

describe these groupware applications in more detail in the rest of this section.

2.6.1 Active Mail

Active mail systems (also known ascomputational mail systems) are based on a very sim-

ple idea: instead of sending plain text in a mail message, what is sent is a computer pro-

gram. At the recipients end, the mail handling software recognizes that a message is to be

executed rather then read, and evaluates it. Messages containing these programs are called

active messages. An example of common groupware application built upon active mail is

a calendar system. A user sends a list of possible dates for a meeting to a group in a pro-

gram embedded in a mail message. When the recipients activate the program, their calen-

dars are consulted and a list of dates when the recipient is available is returned. After

collecting all the responses, the meeting organized can then decide on the date and send

another active mail message to automatically mark the calendars when received.

A discussion of the basic mechanisms and applications of these systems is given by

Borenstein [Bore92]. The main problems related to the implementation of these systems

are security and handling of heterogeneity. Security is problematic because these systems

must handle unsolicited messages that may contain harmful programs. Supporting hetero-

geneity is essential, given the diversity of computer platforms where mail is read.

One way to address both problems is to use an interpreted programming language for the

active messages. This is the approach followed by ATOMICMAIL, a computational mail

system based in the LISP language [Bore92]. Recently, ATOMICMAIL evolved into a

new version [Bore94], based on the Tcl language and the Tk graphic user interface toolkit

[Oust94].

Goldberg et al. propose an alternative system for active mail [Gold92]. This is based in an

entirely different mechanism: instead of programs, this system passes special messages
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which contain communication ports. When the recipient calls a special program to process

the message, it opens a connection to the indicated port and communication is initiated. As

a result their system is a framework for rendez vous between groupware applications

through electronic mail then a system for exchanging active messages.

In the communications architecture of the Henry system, we adopted the active mail

model based on active messages for exchanging documents between users through elec-

tronic mail. Active mail is more general, since it does not require establishment of direct

connections, and handles the problems of security and heterogeneity.

2.7  Summary

The Henry System attempts to unify two essential parts of the VLSI design environment:

the design system and the documentation processing system. Until now, these have rarely

been considered together. Our research is unique in that it is the first to consider the com-

plete integration of the two, so that design and documentation activities can be combined

into a single thread.

The design of a new integrated system combining the features of both domains would be

an impossible task, given the complexity. However, from the evaluation of the related sys-

tems presented in this chapter, we conclude that many of the needed components could be

adapted without modification. What is required is a set of mechanisms for facilitating inte-

gration and the creation of a new model for developing design methodologies supporting

simultaneous use of existing design and documentation tools. We provide these mecha-

nisms and methodologies in Henry, via its common interfaces based on documentation.

The architecture of its support services and tools, and its implementation and evaluation,

are the subject of the following chapters.
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Chapter 3

Internet System Software and

Applications

The Henry System exploits several large software systems for handling communications

in the Internet. This chapter introduces the protocols and applications we adopted and dis-

cusses their utility for designers.

3.1  Introduction

Conventional CAD Frameworks support a group of users in a local area network. The

design process involves manipulation of information that is located in a single database.

Henry was designed to support design processes involving the use of multiple Frame-

works and on-line information services by independent groups. These exchange control

and data in the form of active documents.

In a heterogeneous distributed design environment, adoption of commonly accepted com-

munication standards is of fundamental importance. For an information service provider,

the selection of a protocol is synonymous to finding the best way to make its data available

to the largest group of consumers. Given the kinds of services and interactions we are

“The universe is looking less and less like a great machine and more and
more like a great thought.”

— Ortega y Gasset
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interested in supporting with active design documents, this can be implemented with cli-

ent-server communications. To satisfy these requirements rapidly, we must adopt the pro-

tocols of the Internet, which is now the largest and fastest growing computer network.

Virtually all computer platforms in use by systems designers today are delivered with cus-

tomized versions of this software already installed.

The Internet also has the advantage of being supported by a vast library of publicly avail-

able support software. This has simplified dramatically the implementation effort of the

Henry System prototype, to be presented in Chapter 7. A significant part of Henry’s com-

munication software was either directly installed from public domain software or slightly

adapted to work with our environment.

In this chapter, we do not describe the protocols for sending electronic mail or creating

virtual connections between processes running in different hosts. Good introductory books

are readily available [Come91, Come93]. Instead, we discuss how message formats and

the higher level protocols that are built upon the basic communications infrastructure can

be used to exchange active documents, perform business transactions and make design

information easily accessible to end-users.

The remaining of the chapter is organized as follows. In Section 3.2, we introduce MIME,

the standard Internet format for transporting multimedia data. Next, we present Enabled

Mail, a conceptual model for handling MIME messages containing programs that are

directly activated by the system or the reader upon reception. In Section 3.4 we summa-

rize the World Wide Web, a hypermedia system for accessing all the information available

on the Internet. Section 3.5 enumerates services based on electronic commerce that we

anticipate that will be available to electronic systems designers in the near future.

Section 3.6 summarizes the main ideas.
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3.2  MIME — Multipurpose Internet Mail Extensions

In the Henry system, we adopted the common format for messages exchanged between

sites on the Internet. This consists of a set of RFC822-type [Croc82] message headers fol-

lowed by a MIME1 [Bore93] formatted message body. Headers define how to route mes-

sages to the destination and the data format used in message bodies. They were first

developed for use in electronic mail with the SMTP2 protocol [Post82], but have been

adopted for NNTP3, the network news protocol [Kant86]. More recently, the same basic

formatting convention was used in the design of HTTP4, a client-server protocol for navi-

gating hypermedia documents distributed across the Internet [BL94].

MIME defines how multi-media data is encoded in the messages transported by these pro-

tocols. MIME defines a set of conventions that communications applications use for

encapsulating different media into a single message and defining the data types being

transmitted.

By extending these conventions, it is possible to transport design and documentation-spe-

cific files and pass them automatically to the appropriate tools for processing. For

instance, to transfer a layout in the format used by the Magic editor [Oust85], the sender

and recipient would agree in defining a new application-specific name for that format. Fol-

lowing the established convention, this type would be calledapplication/x-magic. With a

properly configured electronic mail software, a message containing a MIME encapsulated

layout would cause the automatic invocation of the Magic editor when the message was

read by a designer.

1. MIME — Multi-purpose Internet Mail Extensions, the extensible Internet standard for format-
ting electronic messages containing not only text but other types of data.

2. SMTP: Simple Mail Transfer Protocol

3. NNTP — Network News Transfer Protocol

4. HTTP — Hypertext Transfer Protocol, currently in the approval process as an Internet Draft.
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MIME also supports the encapsulation of multiple data-types in different sections of a sin-

gle message. These are calledmultipart messages. For instance, for transferring a Frame-

Maker document and a Magic layout, a MIME multipart message would be constructed

containing two new content types, defined asapplication/x-framemaker andapplication/x-

magic.A MIME message containing these two types is show in Table 3.1 .

3.3  Enabled Mail

The MIME extensions to the Internet message format alone are not sufficient to support

the needs of designers. MIME assumes that only one operation can be associated with

each contents type. This works in most situations, where the operation that is defined is an

invocation of the tool used as thepreviewer used for that type. In a VLSI design environ-

ment, there are many possible tools and operations that a designer may want to perform on

any specific data type. For example, a netlist can be loaded into a simulator, a schematics

editor or a design rules checker.

Enabled Mail (EM) is an extension of the traditional message handling model used in

electronic mail [Bore94]. It proposes a new conceptual model of the message handling

process, from end to end. EM defines mechanisms for sending MIME documents and pro-

grams for remote evaluation, and specifies conditions for delivery and time of execution.

To control which operations will be applied to a data type, we need such an extension. We

have adapted an initial version of Enabled Mail (EM) for use in the Henry System. At this

point, only a preliminary version of the Enabled Mail software and documentation has

been distributed. The Henry System is one of the first applications testing the usability of

this model and accompanying software. We adopt EM’s conceptual model and adapted its

support software for handling inter-tool communications. We expect that in the future EM

will be submitted as an Internet RFC1 and become a standard.

1. RFC — Request For Comments, the name used to designate Internet standards.
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Description Example MIME Message

RFC822 Headers From: Mario <msilva@CS.Berkeley.EDU>
To: Randy <randy@CS.Berkeley.EDU>
Subject: layout of the pseudo-NMOS gate

MIME-defined RFC822
headers specify the content
type of the message.

MIME-Version: 1.0
Content-Type: multipart/mixed;
                      boundary=”xxxxx”

Empty lines separate message
headers from contents

Prologue, any text can go
here.

Randy, here’s the Magic layout and the
FrameMaker document explaining the design.

The FrameMaker document,
is between thexxxxx delimit-
ers.

It is sent in a similar struc-
ture:

(1) headers, defining the con-
tent-type and encoding of
data, (2) one empty line, and
(3) the encoded document.

--xxxxx
Content-Type: application/x-framemaker
Content-Transfer-Encoding: base64

HsGKasdaJUdsfjUYTdflkZKJddHwieueKJH
Kd kJLKJHLsdfsjkdlLkjhLKJdHLdfgKbyHL
KJH KJHadkjhgsdJssJdLddHGsdPUJHgkjhG
ksUYTkjhgUIYJHTERWjhgOIUkjhPOIUjkG
LJuweKJHGklJHGlkOIUkjhkPOPIkljlkPIOP

The Magic layout is sent in a
similar way.

As magic represents the lay-
out in text format, there is no
need to encode it.

--xxxxx

Content-Type: application/x-magic;
                      charset=US-ASCII

tech scmos
timestamp 719814828 ...etc

end ofmultipart/mixeddata
Epilogue, any text can go
here.

--xxxxx--
Bye, Mario.

Table 3.1 Format of a MIME message

MIME extends RFC822 electronic mail messages to transport any data type in such a
way that it can be processed automatically by mail readers. A user reading the mail with
a properly configured MIME-capable mail reader would see the contents of the
FrameMaker and Magic data displayed automatically by the tools.
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EM defines a new message format also based on MIME. A new message contents type,

calledmultipart/enabled-mail,is used for active messages. Amultipart/enabled-mailmes-

sage contains by definition two parts. The first can be of any MIME data type. The second

part, contains a program that, when invoked, has access to the data in the first part and can

perform operations on that data.

The language proposed for use in the second part is Safe-Tcl, a system-independent inter-

preted language derived from Tcl [Oust94], a generic interpreted extensible language

developed for being embedded in interactive tools. Safe-Tcl is an “extended subset” of the

Tcl language. All the features of the Tcl language that could compromise the security of a

system that automatically evaluates messages received from indiscriminate origins is

removed. Safe-Tcl also defines new commands for manipulating and storing the data in

the first part ofmultipart/enabled-mail messages.

The MIME type defined for scripts in Safe-Tcl language isapplication/Safe-Tcl. This type

can also accept parameters specifying when evaluation of the active message will take

place. In most cases, we useevaluation-time=delivery, meaning that the Safe-Tcl script

will be run as soon as the message is received. Table 3.1  shows how the same data used in

the example of the previous section could be sent in an EM message.

3.3.1 Enabled Mail and Security

Of special interest is Enabled Mail’s support for secure automatic activation of messages

upon delivery. By using the Enabled Mail extensions to standard Internet mail, we can

submit commands and programs for remote evaluation by electronic mail.

This is achieved by having two language interpreters in the Safe-Tcl program evaluation

environment. The first is an untrusted interpreter of the Safe-Tcl language. The second, is

a trusted interpreter that runs the full Tcl language. A secure environment for passing

active messages is obtained by running the scripts included in the messages in the

untrusted interpreter. When access to the design environment’s data or tools is needed,
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Description Example Enabled Mail Message

RFC822 headers. From: Mario <msilva@CS.Berkeley.EDU>
To: Randy <randy@CS.Berkeley.EDU>
Subject: active msg with pseudo-NMOS gate

MIME-defined RFC822
headers.

MIME-Version: 1.0
Content-Type: multipart/enabled-mail;
                      boundary=”yyyyy”

Empty lines separate message
headers from contents.

Prologue. Randy, here’s an active message that installs the
design data you requested into your database

The FrameMaker document,
and the Magic layout are sent
in a multipart/mixed mes-
sage as before, but now
encapsulated inside the first
part of the top-level message

--yyyyy
Content-Type: multipart/mixed; boundary=”xx”

--xx
FrameMaker document
--xx
Magic layout
--xx--

The 2nd part of the EM mes-
sage contains a script of com-
mands in the Safe-Tcl
language.

--yyyyy

Content-Type: application/Safe-Tcl;
                      evaluation-time=activation

Safe-Tcl script to install the data in the
recipient’s database

End of EM message.
Epilogue.

--yyyyy--
Bye, Mario.

Table 3.2 Format of an Enabled Mail message

Enabled-Mail messages include MIME data and a script with commands in an
interpreted language. A user reading the mail with a properly configured MIME-capable
mail reader would have the script to execute automatically upon reading the message.
The script could include for instance the commands to install the received data into the
design database after user inspection.
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control is passed to the trusted command interpreter. The trusted interpreter performs

authentication and control of system resources given to the script running in the untrusted

interpreter.

3.4  World Wide Web

The World Wide Web (WWW or W3) is a set of protocols, an addressing scheme and data

formats for accessing all data available on the Internet [BL94b].

The WWW defines a collection of pieces of information in which all items have a refer-

ence by which they can be activated, stored or retrieved, called a URL1 [BL93a]. Items

could be any file on any host of the Internet, a user’s electronic mail address or a program

invocation. This information is handled by a collection of clients and servers. The former

are the computers (or, more exactly, the programs) used to access or activate the informa-

tion.

When a client starts, it displays a hypertext document, with links to other pieces of infor-

mation, including other documents. The primary document format of the WWW is

HTML2. This is derived from SGML3, the ISO standard for representing on-line docu-

mentation [fS86]. Clicking in highlighted areas of the document causes the client to

retrieve another information object from another computer, the server. The retrieved data

may be another hypertext document, which enables the execution of a navigation process.

In the WWW, servers and clients can be of many types. The most common types of serv-

ers available on the Internet, such as those that use electronic mail, electronic news, and

network file access protocols can be accessed from WWW clients.

1. URL: Universal Resource Locator

2. HTML: Hypertext Markup Language

3. SGML: Standard Generalized Markup Language.
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In addition, the WWW defines HTTP, a specific communication protocol optimized for

transferring documents as the result of the activation of hyperlinks. Clients can access all

information available from different servers using a graphical user interface. Retrieving a

document or a design file can be done with a few mouse clicks.

The HTTP protocol, the HTML document format and the URL addressing mechanism are

currently being considered by the Internet organizations for approval as new standards.

The WWW uses the MIME conventions to tag data formats passed between documents.

As a result, the techniques above described for extending MIME to exchange design data

can be used also to transfer it using the WWW protocols.

3.5  Electronic Commerce

Electronic Commerce is a new business infrastructure that enables the creation of a mar-

ketplace on the Internet. Electronic commerce uses:

• The World Wide Web, for making the information easily available to end-uses.

• Electronic Data Interchange, to perform business transactions [oS91a].

• Encryption, to authenticate buyers and sellers and to protect the information exchange

from being accessed by third parties.

Example initiatives that are developing electronic commerce services are:

• FAST, a research project at Information Sciences Institute [Nech93].

• EINET Galaxy, developed by MCC1.

• CommerceNet, a Silicon Valley initiative grouping the electronics industries in the

area2.

1. The URL for EINET is http://galaxy.einet.net/

2. The URL for CommerceNet is http://www.commerce.net/
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With the infrastructures for electronic commerce in place, new design methodologies

based on the outsourcing of design and manufacturing services will become possible.   We

anticipate that electronic commerce will make it possible to offer multiple new services to

electronic design and manufacturing organizations:

• CAD outsourcing. There will be available specialized CAD systems for specific design

tasks. For instance, a company may sell the use of dedicated hardware and software for

performing large and expensive simulations. The advantages of using this service are

those associated with outsourcing in general: 1) economies of scale1, 2) focus on core

competencies2, and 3) the flexibility of usage based costs3.

• Collaborative Design and Design/Manufacturing Integration. This involves adopting

standards for conferencing, shared editing and exchange of design information. These

enable much closer interactions between contractors and sub-contractors, speeding and

increasing the quality of the artifacts produced.

• On-line Component Information Services. This will offer the ability to quickly retrieve

datasheets and select components for a specific purpose. A great deal of component

related information, mostly digitized from paper databooks, is already distributed by

CD-ROM. As the Internet becomes more common, and mechanisms for selling this

information are developed, it will eventually move to on-line services. This informa-

tion contains design information that designers want to incorporate into their design

databases, such as schematic symbols, simulation models, and application notes. On-

1. Economies of scale — An organization with more experienced and specialized designers in one
specific domain can in general provide services on that domain to other organizations at a
smaller cost then that of supporting an in-house department offering the same service.

2. Focus on core competencies — By not investing in resources that can be provided by external
partners, organizations can invest more on the areas where they can develop sustainable com-
petitive advantages.

3. Usage based costs — Organizations will not have to support large up-front costs in CAD hard-
ware, software and services. Their costs will scale uniformly as their needs of design related
resources evolve over time.
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line component information services will have more up-to-date information that will be

easier to retrieve and install. New billing methods, based on the actual information

retrieved, will be possible, making this information affordable to smaller organizations.

• Broker Services. New brokerage services will support the search for specialized infor-

mation about design, prototyping and manufacturing services, or about electronic com-

ponents. They can also evaluate it and give recommendations and endorsements of

special providers. For instance, these recommendations could be provided as active

documents containing a methodology for designing the client’s product. The proposed

design methodology included in the active document could have links to cell libraries,

simulation services and other internet resources that could be used for the design.

• Business Services. These will be the non-design specific services that will form the

backbone of electronic commerce infrastructures. They will include 1) electronic Yel-

low Pages containing indexed catalogs of design services, 2) electronic White Pages

with catalogs of people, 3) electronic payment services using Electronic Data Inter-

change (EDI) standards and 4) electronic Notaries (also called certification authorities)

for authentication of the participants in business transactions.

3.6  Summary

MIME is used to format multi-media data in the Internet protocols used for electronic

mail, network news and client-server communications. As MIME is extensible, it can eas-

ily be used to encode design data. Interchange formats such as EDIF and VHDL are likely

candidates to become universally recognized MIME types.

However, when transporting documents and data it is also necessary to have a mechanism

for indicating which operations to perform on the received data. This can be achieved by

extending MIME to also support active messages. These can also contain programs to be

evaluated upon delivery, in addition to the data. As we describe in the next chapters, active

messages are also the vehicle used by the Henry System to exchange active documents.
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Given the ubiquity of the WWW and new services supported in electronic commerce, we

can anticipate that these will also spawn many new services dedicated to designers of elec-

tronic systems. The next generation of CAD systems for VLSI design will have to provide

seamless interfaces to access the services offered by electronic commerce. We believe that

design systems like Henry, which use a documentation metaphor to interact with design

tools and data, will also be specially well suited to give an integrated interface to access

electronic commerce services.
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Chapter 4

The Next Generation Design Environment

As discussed in previous chapters, integration of design and documentation depends criti-

cally on a seamless interface that enables access to all design related information and

tools. We observe that existing framework technology is not providing the necessary sup-

port and is not making progress in that direction. To successfully integrate all the informa-

tion, we need to examine the existing design environment and find ways of interacting

with it in a uniform way. This chapter presents our vision for a next generation design

environment, providing this type of integration. We discuss the assumptions made by the

designers of existing environments that are no longer valid, make new assumptions, derive

new requirements and evaluate new support technologies. These will be used to support

the architectural design of the Henry system, described in the next chapter.

4.1  Introduction

The requirements for a CAD system for electronic design evolve continuously, as design

complexity increases and new design automation tools and techniques are introduced. As

the design complexity increases, computer and network technologies improve, and as our

“Be liberal in what you receive, but conservative in what you send.”

— John Postel
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understanding of design matures, new generations of design environments progressively

replace the existing ones.

Historically, we have moved from an initial situation where designers run a set of indepen-

dent tools, to design systems where tools shared a common data base, to design frame-

works that attempt to integrate the entire design process (see Section 2.3 on page 29).

In the ideal implementation of a design framework-based environment, all tools have been

specially designed for and integrated into the framework.There is one only instance of

each of the framework services, shared by all. Tools use the framework services and give

notification to the framework of any actions they perform on the design data.

However, the common design framework approach is extremely difficult to implement in

the real design world, because there is no such thing as the best framework with the best

tools for every conceivable design task. As a result, current design environments typically

span multiple independent frameworks. There is little or no support for global design

information and methodology management in such an environment.

In addition, with the advent of the Internet into the business world, we are beginning to

observe a significant difference in the way electronic systems are designed. The Internet is

quickly becoming available to virtually every organization in the electronic systems

design industry. We anticipate that most information and services used by designers today

will soon become available as part of a large distributed hypermedia system, intercon-

nected via Internet protocols. We are moving from a tool-centered design environment

built around a set of common services into a newinformation-centric environment, where

designers focus on the creation of an information web. This contains not only the informa-

tion describing the artifacts being designed but also references to component and design-

service suppliers, manufacturing and prototyping services, and product marketing data,.

In this chapter, we present the conceptual model for a new generation of design environ-

ments that are well suited for these new realities. We propose means to manage design
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data and processes that enable simultaneous use of multiple frameworks, based on the new

paradigm for combining design and documentation through an open hypermedia

approach. Currently, it is typical to have a VLSI design start in a schematics and simula-

tion framework, then move to another framework for logic synthesis, then to another for

the circuit layout. The process of moving the design data between these frameworks is not

automated. Our goal is to make it possible to create design methodologies that could con-

trol the transfer of the design data between the various systems and designers involved as

a process of exchanging multimedia documents containing the data.

The remainder of this chapter is organized as follows. We start by discussing in

Section 4.2 the assumptions made by the designers of the current generation of design

frameworks that we believe are no longer valid, and new requirements. Next, in

Section 4.3, we present the implications of these new requirements for the architecture of

the next generation design environments and the available technologies that can be used in

their implementation. Section 4.4 closes the chapter with a summary of the main ideas for

the conceptual model of the new environment.

4.2  Requirements

The current generation of framework-based design environments makes the following

assumptions:

1. A single framework controls the entire design process;

2. All design related information and services are available locally to the design team;

3. The design is the product of a single organization;

4. The framework is essentially used to manage design specific tools and artifact repre-

sentation data.

In our view, these assumptions are no longer valid. The next generation of information-

based design environments will have four new basic requirements:
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1. Support for use of multiple, independently managed, heterogeneous frameworks;

2. Capable of accessing on-line services available through electronic commerce;

3. Flexible structure, adapted to new business models;

4. Capture more design-related information and earlier in the design process.

We present and discuss these requirements in the remaining of this section.

4.2.1 Multiple Heterogeneous Sets of Tools

Design frameworks have been designed under the assumption that the design environment

would consist of a single framework capable of integrating all of the tools needed by the

design team within the organization. All the information related to a given product’s

development and the critical tools will eventually be managed bytheir framework.

However, a recent innovation in product development technology is the introduction of

concurrent engineering methodologies [Cart92]. Concurrent product engineering calls for

the assembly of multi-disciplinary teams, including marketing specialists, designers, and

manufacturing engineers, working together in the development of a new product.

In our view, this assumption has failed to address satisfactorily the needs of multi-disci-

plinary design teams. For example, consider electronic systems design. A complete elec-

tronic system involves integrated circuit, printed circuit board and mechanical designs.

Integrated circuit design is typically divided into independent steps: architectural design,

logic design, physical design. Given the variety and the complexity of the problems that

have to be addressed at the various levels, it is not possible for a single framework sup-

plier to offer a complete set of best-in-class tools covering the entire system design pro-

cess. On the other hand, given this diversity, we are also unlikely to see the emergence of

a dominant framework design that imposes a standard interface used by all design

domains. In addition, porting tools not specifically designed for a chosen framework
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requires an extraordinary effort, never completely successful, on adapting the new tools to

different interfaces.

This has lead design system integrators to search forbest-in-breed tools in each specific

domain. Existing CAD systems are an assembly of the design frameworks required to run

the tools selected for use in the design environment. In general, a separate framework is

used for each design domain. Inside each domain, there is tight integration between the

individual tools and the use of automated design methodologies. Transfer of information

between these domains requires export/import of design information, using industrial

standard formats for design data interchange (EDIF, Calma, IGES, VHDL).

The new generation of design environments should support integrated design methodolo-

gies involving uniform access methods to the data and tools managed by independent

frameworks.

4.2.2 Interaction with Electronic Commerce Services

Another important assumption in the design of current Framework technology is that

design will take place within a single organization and that all information required in the

design process will be available within it.

However, we observe multiple electronic commerce initiatives whose primary objective is

to create a global electronic marketplace built upon the Internet (see Section 3.5 on

page 51). A significant part of the support for these initiatives comes directly from the

computer and electronics industries. As a result, we can expect that an important mass of

information organized as web of documents with critical importance to designers will

soon be available interactively or via automated search methods.

The new electronic commerce services targeted to designers that we anticipated in

Section 3.5 are not distant from reality. Cadence, the largest CAD Software vendor today,

is considering providing CAD outsourcing services. These are similar to those offered for

Management Information Systems (MIS) by companies like EDS. Designers not only rent



60

the hardware, but also the design tools. In addition, consulting services might be offered,

both in the form of assistance by expert designers and of pre-design process flows for

completing specific design tasks. Services of this kind would be appealing to small organi-

zations, and could easily be provided through the electronic commerce infrastructure.

The requirement for the next generation design systems is that they should be able to make

efficient use of electronic commerce services, supporting integration of remote informa-

tion, tools and machinery, accessed via electronic data interchange transactions.

4.2.3 New Business Models: The Virtual Corporation

Another important development is that system design organizations are adopting new

business models for design, manufacture and commercialization of electronic systems.

These models are based on networks of small and medium independent corporations and/

or autonomous divisions within large corporations. This new business model has been

called thevirtual corporation [Davi92]. In the virtual corporation, products and services

appear to the costumer as marked, designed, manufactured and supported by a single

entity, but are in reality the product of a consortium of independent business units working

in tight cooperation.

Although it is likely that virtual corporations will be founded on the infrastructures devel-

oped for electronic commerce, they will also go far beyond the electronic data interchange

model of electronic commerce. Electronic commerce is dedicated to faster trade of com-

modities. The virtual corporation implies development of long-term, but still dynamic,

relationships. These are based on information sharing, common product design/develop-

ment methodologies, and complementary core competencies of the organizations

involved. Homa Bahrami characterized the emerging organizational system for high-tech-

nology firms as a“federation” or a “constellation” of business units that are typically

interdependent; relying on one another for critical expertise and know how[Bahr92].
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For designers and their organizations this implies a tremendous change. An organization

embarking in a virtual corporation business model needs to pay much more attention to

what information is given and obtained. It will be an even greater challenge for design

environment integrators. In more traditional concurrent engineering, the goal is to inte-

grate marketing/design/manufacture activities within a single corporation, by standardiz-

ing on a common design framework. In the virtual corporation, concurrent engineering

must take place in an environment composed of highly heterogenous frameworks, config-

ured and managed independently by multiple business units.

To achieve this purpose in full, two critical aspects must be considered: the time required

to exchange products between organizations and the trustworthiness of the organizations

exchanging it.

Time is significant, even when the product consists exclusively of electronically trans-

ferred information and the existing Internet infrastructure and software could be used.

Order processing and verification can still take days in many existing organizations. To

make it faster, common standards for conferencing, shared editing and exchange of design

information must be adopted. It also implies that mechanisms to automate the transfer of

information between design environments must be deployed and used.

Ensuring trustworthiness of design services is a hard problem. Although good privacy and

authentication can be easily provided with current software, these are only the initial secu-

rity issues that need to be addressed by a virtual corporation. When an organization gives

away the information relative to its knowledge in its domain of expertise, it needs to have

some guarantee that those who receive it will not use in ways that may cause damage to

their own interests. For instance, if an organization has to rent the simulation hardware of

a service provider to prototype a new design, the simulation files could easily be dupli-

cated and made accessible to a third party without knowledge from the client. Virtual cor-

porations need a combination of legal and technical mechanisms to prevent this. When a

chip is sent to fabrication in a silicon foundry, some level of trust already exists between
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the design and manufacturing organizations. which is also enforced with Intellectual Prop-

erty law. However, we are assuming collaborations implying exchange of much more crit-

ical information. There is incomparably more knowledge in a VHDL simulation model of

a system then in a set of fabrication masks. In the virtual corporation business model, trust

is achieved primarily by locking-in customers and suppliers through the simultaneous cre-

ation of symbiotic relationships and critical dependencies. This means giving quick access

to more information, but also creating an increased dependency on continued access to

that information for those who are using it. In the example above, the survival of the sim-

ulation service provider would depend on the construction of a reputation for not selling or

using the simulation models received. On the other hand, the survival of the design com-

pany would also depend of the quality of service provided to the simulation service pro-

vider.

What is required by design organizations operating using the virtual corporation model is

an automated process of supporting collaborative relationships. For design environments,

this is achieved by introducing flexible methodologies that enable progressive introduc-

tion of automation in the information exchange processes between collaborative business

units. From the designers’ perspective, the design environment becomes a network of

information and service providers relying on each other. The network needs to provide

quick access to information to trusted partners, assuring:

• secure access to critical resources;

• establishment of proper accounting methods for the use of information;

4.2.4 More Design-Related Information Needs to be Integrated

We believe that the model of a common CAD framework is inadequate to support the

increased demand for addition of new tools and data types within the environment. As dis-

cussed above, electronic commerce will make the quantity and diversity of information

available grow by orders of magnitude. In addition, the demand for larger and much more
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heterogeneous information databases does not end here, as manufacture and documenta-

tion data become more deeply inter-related with the design data.

Better integration is necessary with the more general business tools that also manipulate

design information, such as the FAX and electronic mail processing tools available on per-

sonal computers and workstations. System design involves many non design-specific

tools, not integrated within any design framework, but which have a crucial role in the

design process. Over time, portable mobile computers, liveboards and video conferencing

hardware will become common to designers. Information captured by these new devices

will also be able to be used as reference and documentation material for the design pro-

cess. Designers will want to access corporate design information and will have to produce

documents that include hypertext references to design objects in the team’s common

repository.

A key requirement is to support continuous expansion of the design environment. New

data types, tools and information manipulation devices useful to designers are being intro-

duced every day. The approach for integrating these into the common design framework

may be too inflexible, requiring prohibitively expensive system integration costs and tak-

ing too much time. An alternative method is to have a mechanism to support quick inte-

gration of whole new information processing systems, running in separate frameworks,

into the design environment.

4.3  Architectural implications for new design environments

As discussed in the previous section, there are currently no efficient ways to access uni-

formly all the information available to designers. The capability to automate design meth-

odologies spanning the entire product design and development cycle is even more remote.

This requires synchronizing the execution of the tools and framework services in the mul-

tiple design frameworks used.
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We believe that any feasible solution for addressing this problem, given the current status

of design automation, needs to depart from the existing organization of the design envi-

ronment. Typically this is independently developed and managed by different frameworks.

In this organization, each framework is adapted to a specific design domain and tailored to

the organizational demands of the design team using it. However, we believe that it is pos-

sible to create a new set of mechanisms to create and manage inter-dependencies between

the data, tools and users of each set of tools. To achieve this, the development of the fol-

lowing common services is needed:

• Messaging mechanisms for passing data and control information between frameworks

within a design group and inter-groups.

• Data and methodology management systems capable of tracking the design data and

process flow at the global level. This is accomplished through monitoring, synchroniz-

ing and controlling the execution of exchanged messages within the environment.

• Uniform methods for accessing and manipulating information, to cope with the chal-

lenges of heterogeneity.

The relationship between the above components and how they fit together to extend the

existing design environment is illustrated on Figure 4.1. In the remainder of this section,

we propose an initial conceptual model, and discuss technologies that could be used in

their implementation.

4.3.1 Common Messaging Services

Electronic CAD tools are just now beginning to support the Tooltalk message services, the

standard for inter-tool communications adopted by COSE and CFI (see Section 2.2 on

page 22). In Tooltalk, a set of messages (or commands) that a tool accepts is defined for

each class of tool. Tools conforming to the conventions can then become interchangeable.

However, many more design tools exist based on other proprietary protocols. It is also
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Figure 4.1 The New Design and Documentation Environment

The figure pictures our global vision of the new design environment as seen from the
documentation point of view. Full integration of design and documentation is supported
by the introduction of new components into the existing environment. Central to the
system is a common message exchange system, capable of handling human and inter-
framework communications. New common data and methodology management
systems based on the common messaging system will be used to support complex
design flows involving the tools, data and process management services of multiple
design and documentation frameworks. Finally, a new viewport into the design
environment, based on documentation, is required to provide uniform access to the
heterogeneous data and tools of this environment. The arrows indicate how control
information flows between the components of the system.
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unlikely that the COSE message services will be standard on the more ubiquitous non-

UNIX platforms.

It is then likely that we will tend to a situation where several inter-tool communication

protocols will be common, and will co-exist with many other custom protocols. As a

result, it is critical to developmessage transport systemsto address this situation. Within

each framework, tools still intercommunicate using the existing inter-tool communica-

tions facility. However, when communication with an external framework is required, the

message needs to be routed through an inter-framework messaging system that can trans-

late between the used protocols.

This communications model is identical to that adopted for the Internet in the 1970s and

1980s. Instead of forcing every network to use the same set of protocols, the Internet cre-

ated a set of communication protocols that would enable independent networks built on

incompatible communications systems to exchange messages easily.

We believe that the existing Internet messaging protocols can be extended to support the

type of inter-framework and inter-tool communications we envision for the next genera-

tion design environments. As discussed in the previous chapter, we have extended its com-

munications software for use in the Henry System. We build on data transfer protocols

developed on top of TCP/IP, such as SMTP for electronic mail, and HTTP used by the

World Wide Web for client-server communications.

Adoption of these Internet protocols makes possible communications between design

teams using incompatible environments, as messages containing design data could be pro-

cessed manually or with the aid of widely available software. At the same time, it enables

electronic commerce transactions and supports cooperation among organizations ready to

automate information exchange between their environments.

In summary, we are now in a world of interconnected heterogeneous design environments

for which a common communications model and protocols for automatic exchange of data
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is needed. Internet protocols address the basic requirements for inter-organizational com-

munications and could be used for inter-framework communication.

4.3.2 Common Data and Methodology Management Services

A basic requirement for a an integrated design and documentation system is its need to

synchronize the execution of multiple tools to ensure that they display correlated data.

Another important requirement is the ability to re-play the execution of the tools, to

update the design and the documentation when an object is changed.

In a fully integrated environment, with multiple frameworks, this makes it necessary to

add two new components:

• support for managing data configurations containing data manipulated by the tools run-

ning in multiple frameworks;

• availability of design process management systems capable of controlling execution of

sequences of tools running within distinct frameworks.

In the typical industrial environments where designers must use multiple frameworks, it is

already common practice to have an in-house developed or supported common set of pro-

cess and data management utilities, independent of any framework [Rusu94]. Data is

checked-in and checked-out between one vendor’s framework database and another when

the design flow moves from one tool to the other.

However, tools currently do not exist to support the design flow at this level. We believe

that this could be achieved by designing data and methodology managers that can be com-

posed to work with the framework’s management systems, creating an hierarchy of man-

agement systems for design and data. Existing data managers would be in charge of data

within their domains, while the high-level managers coordinate configurations composed

of the data configurations in each environment. As an example, consider a design environ-

ment where three independent frameworks are used: one for schematics and simulation,

another for printed circuit board layout and another for chip layout. Data in each design
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domain would be managed by the corresponding framework, as it is done today. However,

when users interact with the new global data manager, they can see the entire data, define

global configurations involving data in the three frameworks, and pass control of individ-

ual objects from one framework to another. Similarly, existing methodology managers

would be in charge of the design process management within their domain, while the high-

level methodology manager would compose design flows managed by the domain specific

methodology management systems.

Scallan has proposed a similar idea, based on the concept of a higher-level engineering

framework, which manages the tools and data at the global level, integrated with multiple

CFI-compliant application-specific frameworks [Scal94]. To make this possible, he pro-

poses a new Inter-Framework Protocol, defined as a new set of CFI inter-tool communica-

tion messages. These would have to be supported by every framework in use.

We envision an identical hierarchy, but adapted to the virtual corporation model. It must

be capable of being incrementally introduced into today’s heterogeneous environments,

where the inter-framework protocol would be based on common Internet protocols, com-

plemented with message transport services for translating between tool-specific formats.

The new global management systems need to have special characteristics, not generally

present in the management sub-systems of current frameworks:

• Non-intrusive. Individual data and process management systems should be able to work

independently of global management systems. A designer working with a set of VLSI

layout tools tightly integrated in a common framework with its own data and process

management tools should perform all the layout related optimization without the need

of running the global management services.

• Cooperative with other management systems. Framework-specific management tools

should pass dependency constraints up to and down from the global management ser-

vices, to support system level design and documentation tools that process information

from multiple domains.
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• Support design transactions between frameworks and independent multi-framework

environments. There is a need not only to pass design information between different

databases, but also to control exchange of information and synchronize execution of

tools and user commands to different frameworks.

4.3.3 Uniform Methods to Manipulate Design Information

The third major element of the new design environment is a common method to access

and manipulate information in its various formats. A common user interface will be an

essential part of these new distributed heterogeneous environments. In our view, a com-

mon user interface for a design environment composed of many tools requires more than

the same interface look and feel. The capability to create compositions of tools to support

a given task, behaving as a single application as far as the user is concerned, is the critical

need. We use the termtool ensembles to describe these sets of tightly integrated tools.

We believe that a documentation paradigm for the user interfaces of tool ensembles will

become common practice. This idea of accessing and manipulating heterogenous informa-

tion as documentation has been extensively used in WWW navigation systems like

Mosaic [Andr93]. With the WWW, multimedia active documents became the dominant

paradigm for accessing remote services through the Internet. They offer a very powerful

metaphor for manipulation of distributed information, and are effective in encapsulating

the underlying heterogeneity.

4.4  Summary

We view the next generation design environment as a constellation of information sys-

tems, each with its own support services. The systems are integrated in such a way that

they can cooperate to assist users in the system design process at the highest level.

Cooperation and uniform access methods are provided by new components of the design

environment:
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• Common message services.

• Common data and process management services.

• A new viewport into the design space, based on the manipulation of active documents.

Building the next generation design environment is a challenging engineering problem.

Such an environment will be implemented on top of existing information systems: multi-

ple CAD frameworks optimized for different design domains, documentation systems,

software development environments, and groupware.

In the next two chapters, we describe the conceptual models, architectures and implemen-

tations of tools and services developed for the Henry System, an initial prototype environ-

ment embodying some of the ideas exposed here. This environment combines tools and

frameworks from two independent domains, design and documentation, into a open

hypermedia system. In Chapter 5, we describe the architecture of Henry, its support ser-

vices and their implementation. Chapter 6 describes the design, implementation and inte-

gration of the Navigator and other tools and frameworks into this environment and

develops some design scenarios involving the use of the prototype environment.
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Chapter 5

The Infrastructure for Integrated Design

and Documentation

We have built a prototype for integrated design and documentation, called the Henry Sys-

tem. Henry adopts a new architecture for the design environment, based on common mes-

saging services. Henry’s primary design goal was to explore mechanisms for combining

design and documentation activities. This is achieved by seeing the design process as the

creation of multimedia presentations involving the tools and design data. In this chapter,

we discuss the architecture and implementation of the infrastructure for supporting active

documents offered by the Henry System.

5.1  Introduction

We present the Henry design environment architecture by showing it from multiple views.

The same approach was used by CFI in its Framework Architecture Reference (FAR) doc-

ument [CAD93]. The Views defined in that document are summarized in Table 5.1.

In the design of the Henry System we have not addressed all the views, but only those

where we had to introduce new perspectives. We are interested in how the tools, data and

“The two most important tools an architect has are the eraser in the
drawing room and the sledge hammer on the construction site.”

— Frank Loyd Wright
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framework services could be seen by users and system integrators as part of a hypermedia

system. This implies that we need to re-visit the first four views of Table 5.1 and analyze

them from this viewpoint. However, the study of the design environment from this per-

spective is orthogonal to how the design specific information is modelled and how it is

managed in the database. We are interested in using the design tools in a different way, not

in changing the way they represent or access the information.

The Henry System architecture is presented in the next three sections. These are followed

by Section 5.5 on page 100, which contains a summary of the main ideas discussed. In

Section 5.2, we present the communications infrastructure. In Section 5.3, we present the

Henry architecture from the user’s view, as a system that enables designers to access all

the information as documentation. In Section 5.4, we discuss the system integrator’s per-

spective of the system, as an infrastructure that offers services for building ensembles of

design and documentation tools.

View Describes

User View How the design framework is seen from its users: design-
ers, administrators, tool developers.

Tool Integration View How tools are encapsulated and integrated.

Framework Services View System environment, system extension language, data and
methodology management services, session management.

Communications View The flow of events, data and control information between
the components of the framework.

Data Management View Conceptual model for management data.

Design Information View Conceptual model for design data.

Table 5.1 Summary of CFI’s Framework Architecture Reference Views

The Framework Architecture Reference (FAR) specification consists on the definition
of the indicated views. In the Henry System, we address the top four views differently.
This chapter discusses our perspective of these views.



73

There is not a one-to-one mapping between the next three sections and corresponding

Views in the CFI Framework Architecture Reference. Section 5.2, “Communications in

Henry,” on page 73, discusses aspects of the “Communications View” and of the “Frame-

work Services View.” Section 5.3, “Henry as an Open Hypermedia System,” on page 87,

addresses the “User View” and “Tool Integration View”. Finally, Section 5.4, “Henry as

an Infrastructure for Building Tool Ensembles,” on page 94, discusses the “Framework

Services View and also the “Tool Integration View.”

5.2  Communications in Henry

As discussed in the previous chapter, given the enormous quantity and heterogeneity of

information available to designers, existing design environment architectures will evolve

into a new generation. In the new architecture, we envision design data distributed across

a wide-area network, organized as web of related pieces of information. In this environ-

ment, inter-framework communication will be based on the exchange of messages con-

taining documents.

The Henry System uses a new protocol for communication suited for the new active docu-

ment-based environment. Active documents have the capability to send and receive com-

mands and data. We call these commands active messages, as they resemble the messages

used in active mail systems discussed in Section 2.6.1 on page 41.

Active messages contain data and commands to be performed on that data upon delivery.

Active messages in Henry can be transported via SMTP1 [rfc821] and handled by conven-

tional mail readers, as in active mail systems. However, we use them not only for commu-

nication between end-users, but fundamentally for intertool communication. For instance,

a user browsing an active design document may generate an active message requesting a

database to return the layout of a circuit being described. The layout could come in the

1. SMTP — Simple Mail Transfer Protocol, the Internet standard for exchanging electronic mail
messages between hosts.
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form of another active message addressed to the layout editor, that would in turn display

the data contained in the message.

Intertool communication is based on RPC1 protocols [Birr84]. Intertool communication

takes place either between the various tools run at the designer’s workstation or between a

tool and a service at a remote location. The protocols used in local area networks, such as

Tooltalk [SunS92], are optimized for activating remote commands with small latencies.

Data is assumed to be available via a common file system using NFS2 [Grou88]. This

combination of protocols does not scale well when we consider larger networks consisting

of multiple organizations exchanging commands and data: they were not oriented to sup-

port the transaction-oriented paradigm for accessing information required by our applica-

tion.

A protocol better adapted for the exchange of active messages is HTTP3 [BL94a], the cli-

ent-server communications protocol used in the WWW4. In Henry, we use HTTP to trans-

port active messages. HTTP also uses MIME5 [Bore93] as the encoding mechanism to

pack information into messages.

The global view of the integrated design and documentation environment from the com-

munications point of view is depicted on Figure 5.1. An information web is formed by a

network of active documents. These documents are exchanged and modified through a

network of inter-commutating processes that exchange active messages, which we call

1. RPC — Remote Procedure Call, a protocol for activating procedures in programs running in
different address spaces

2. NFS — Network File System, a protocol and associated client and server software transparent
access to files in remote computers.

3. HTTP — HyperText Transfer Protocol, the basic communications protocol of the WWW.

4. WWW — World Wide Web, the software system that views the Internet as a big hypermedia
system. We introduced the WWW in Section 3.4 on page 50.

5. MIME — Multi-purpose Internet Mail Extensions, the extensible Internet standard for format-
ting electronic messages containing not only text but other types of data. MIME was introduced
in Section 3.2 on page 45.
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HUB

Figure 5.1 The Information Centric Design Environment Organization

All design information is viewed as a web of active documents, including design files
and scripts of commands. Tools are used to manipulate documents. Documents are
packed intoactive messages, containing data and operations to be performed on the
data by the receiver of the message. Active messages are exchanged via specialized
message servers, called HUBs. HUBs stand between document manipulation tools and
the information web. HUBs can be setup to manage the exchange of information
between the ensemble of tools run by a user or between groups of users. The format of
active messages and the message exchange protocols used are defined by Internet
standards. We use MIME for active message representation and HTTP as the message
transport protocol.
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HUBs. HUBs also provide additional functionality, as a side effect of the evaluation. In

general, the result of processing a message includes

• forwarding the message to other HUBs, users or specific tools.

• modification of the information web, by converting messages into new documents.

The organization of the design environment based on a web of HUBs has the flexibility

required to adapt to the dynamic constellations of business units that characterize the vir-

tual corporation. In the Henry System, each user has an associated HUB running on his

workstation. Users’ HUBs manage the activation and inter-tool communication between

the tools run by each user. In addition, groups of users can set up a HUB for handling mes-

sages for which the dispatching procedure requires knowledge of the group organization,

such as broadcasts of messages addressed to team members assigned to a specific task. In

an electronic system design team, group HUBs resolve message addresses like “logic

designers” or the “PCB design manager.” In a similar way, deeper hierarchies can be

established to support larger groups with multiple teams.

As HUBs use the Internet message exchange protocols and formats, it is possible to create

design environments with heterogeneous frameworks and many levels of integration. The

possibility of exchanging design objects and commands to remote design systems via

electronic mail makes it possible to create multi-organizational design environments oper-

ating at various levels of integration. At one site, processing of a given active message

could consist in forwarding the embedded commands for execution by a running tool. In

another less automated environment, the same message could be placed into a user’s mail-

box to be handled manually. To complete processing, the designer at the receiving site

would have to examine the contents of the message, retrieve its contents, call the appropri-

ate tools and return the resulting data formatted according to the conventions in use.

In our presentation of the communications architecture of the Henry System, we first

present the conceptual model for message handling. Then, we describe the general opera-
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tion of the HUB by following the path of a message from its generation by a user com-

mand to its delivery to a design tool.

5.2.1 Conceptual Model for Message Handling

The common format adopted for active messages exchanged between HUBs is Enabled

Mail (EM), the proposed standard format for active mail. However, the paradigm used to

transport active messages in Henry is different from active mail systems. The former uses

HTTP, the protocol used in the WWW, while the later uses SMTP, the Internet mail trans-

fer protocol. Henry uses a RPC-based protocol to “pull” information from information

servers, while electronic mail is designed to “push” information to receivers of informa-

tion.

Enabled Mail assumes an environment for activating messages consisting of two interpret-

ers of the Tcl language. One runs Safe-Tcl, a restricted subset of the commands of the Tcl

language, while the other fully supports it. The former runs as an untrusted interpreter that

evaluates the commands embedded in incoming active messages; it has no access to any

system resources. The later evaluates the commands received from the untrusted inter-

preter, after verifying that the evaluation would not compromise the integrity of the sys-

tem. Programs run by the untrusted interpreter may only access the data in the active

message and send commands for evaluation to the trusted interpreter.

We have extended Enabled-Mail by adding new commands to the Safe-Tcl language. The

new commands define an interface to access a library of message handling functions for

sending commands to design and documentation tools. In the Henry System, the HUB

also runs the two interpreters required in the Enabled Mail model. The message handling

functions that communicate with the tools run in the trusted Tcl interpreter. On the other

hand, the scripts embedded in active messages run in the untrusted interpreter. When part

of the contents of a message needs to be saved into a file or a command has to be sent to a

tool, a Tcl command is sent for evaluation in the trusted interpreter (See Figure 5.2.).
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5.2.2 Operation of the HUB

Receiving and processing a message in the HUB is a fairly complex operation. It is easiest

to understand by following the step-by-step process from when a message is generated,

sent to a HUB and finally delivered to another tool. To illustrate these concepts, we

develop a scenario where a user requests a SPICE circuit simulation. To integrate SPICE

into our architectural model, we developed a modified version of the simulator that

Figure 5.2 Message Handling in Henry

We use the Enabled Mail conceptual model for Message Handling. The Safe-Tcl
commands embedded in active messages are evaluated in an untrusted interpreter. This
interpreter cannot access any system resources, only the information contained in the
message. To pass the data to the design tools, the unsafe environment has to use the
commands available in the trusted Tcl interpreter. This interpreter checks that the
commands received will not affect the integrity of the system before saving any data
into files or invoking any operations on the tools.
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accepts commands from a TELNET protocol port concurrently with commands typed in at

the user interface.

Assume that a user while browsing an active document, presses a button to request a sim-

ulation. A procedure associated with the button activation is invoked to generate the active

message. The generated message is formatted using the MIME-compliant conventions

described above, and is sent to the HUB for processing.

The generated simulation request is amultipart/enabled-mail message that contains the

netlist, simulation models, simulation commands, and a Safe-Tcl script for their evalua-

tion. The Safe-Tcl script included in the message is evaluated once received at the HUB.

This results in the generation of the files required by the simulation and sending the appro-

priate commands to SPICE to perform the simulation. The files retrieved from the mes-

sage are:

1. A simulation deck with the netlist and models.

2. A script of SPICE commands to read the deck, perform the simulation, and display the

waveforms needed to illustrate the design detail presented in the active document.

After parsing the message, the Safe-Tcl script invokes a HUB procedure to connect to the

SPICE simulator via the TELNET protocol. Finally, the script of SPICE commands is sent

to the simulator for evaluation.

There are two major steps involved in the process of dispatching the simulation request

message to a tool such as SPICE:

1. Transform themultipart/enabled-mail message into one or more files to be processed

and the commands to be sent to the tool.

2. Establish a connection with the tool and send it the command(s) to evaluate.

The description of the processing of this relatively simple request illustrates the enormous

possibilities that are opened to system integrators by using an integration mechanism
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based on active messages. The Safe-Tcl scripts embedded within the messages could be

made much more complex or new Tcl scripts could be added to the HUB to be executed as

pre- and post-conditions for message activation. Database check-in and check-out opera-

tions, various types of design space name resolution functions, and process history log-

ging are examples of handling functions that could be attached to every processed

message for evaluation upon activation.

The HUB is structured in software layers, as is common in communications systems.

There are two main layers:

1. The Message Transport Layer (MTL).

2. The Message Handling Layer (MHL).

The generic architecture of the Henry HUB is shown in Figure 5.3. The functions that sup-

port the operations of converting MIME messages to commands and data objects, as well

as those for evaluating the active part of messages and associated handlers, constitute the

Message Handling Layer. The Message Transport Layer, consists of the functions that per-

form the low level interface to start the tools and send them the commands and data. Both

are described in more detail below.

5.2.2.1 The Message Transport Layer

The Message Transport Layer provides support for interfacing the clients and servers inte-

grated in the Henry System, encapsulating the different protocols they use under a com-

mon interface. We identify three sub-layers in the Message Transport Layer, as shown on

Figure 5.4. The lower level layer, provides an interface to communicate with each proto-

col integrated within the HUB. In our implementation, we support, among others: (1)

TCP/IP streams using the UNIX socket interface, (2) Sun RPC [Grou88, Corb91], and (3)

communication through a common X Window System server [oS90, Sche92]. Each of

these interfaces is supported via a library of C or C++ routines that can be invoked as Tcl

commands. On top of the basic communication primitives, we have a layer consisting of
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several modules, one for each tool or framework integrated in the Henry System. Each

module defines a set of new Tcl commands for interfacing with the tool, based on the com-

munications primitives defined by the lower protocol-specific layer. On top of this, we

have a layer that abstracts the tools and attempts to provide a uniform interface to the Mes-

sage Handling Layer above.

The top-level sub-layer defines the interface between the Message Handling Layer and the

Message Transport Layer. This interface consists of a new Tcl command,hmessage,used

Figure 5.3 Architecture the Henry System HUB.

The Message Transport Layer, converts messages exchanged in various protocols into a
common format. We adopted the Internet generic message format, consisting in
RFC822 style headers and MIME formatted body. We support active messages through
an extension to MIME that defines a new contents type for representing a script in an
extension of the Tcl language. These scripts are evaluated in the Message Handling
Layer. Each command in the scripting language is processed by a dedicated handler.
Handlers can be added and modified to make HUBs perform new or modified functions
as a side effect of dispatching active messages.
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to call the operations that can be performed on every tool. The general form of thehmes-

sage command is

hmessage application-address operation operation-parameters

where thetool-address field is a three element list containing

1. The name of the application to which the message is directed.

2. The internet address of the user running the tool.

3. The host name and display where the tool should run.

Figure 5.4 The Sub-Layers of the HUB Message Transport Layer

At the bottom, we have a command interface to access existing remote procedure call
(RPC) and inter-process communication mechanisms. At the next layer, we have tool-
specific interface modules. Each module defines the commands that can be sent to a
tool, while abstracting the lower layer. The top layer offers a tool-independent single
command interface for sending commands to each tool. These three layer of modules
define the interface between the two main layers of the HUB.

Unix Socket and RPC interface

Tool-specific interface modules

Tool-independent command interface

Message Transport Layer (MTL)

Message Handling Layer (MHL)
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An example of a completely specified tool address is:

{Magic msilva@CS.Berkeley.EDU mercenary:0}

This represents a message to the tool calledMagic, run by the user with electronic mail

addressmsilva@CS.Berkeley.EDU on hostmercenary, X display 0.

Thehmessage command defines an essential interface in the HUB architecture. It has two

major roles:

1. Defines the point of transition between the tool independent message handling software

and tool-specific message processing.

2. Defines a point of transition between the untrusted execution environment for active

messages and the trusted environment;hmessage is declared safe for invocation from

the Safe-Tcl untrusted interpreters used to evaluate active messages1.

An essential aspect of the Henry architecture is the design of a common interface to

abstract the tools at this level. In a system comprising heterogeneous tools, a common

framework is critical for supporting the different command syntaxes used by the tools. For

instance, to read a file into an application’s address space, we observe that SPICE3 uses

the commandsource, whereas Magic usesload and FrameMakeropen. All these prefer

the syntax

command  [parameters],

but VEM uses the inverse, i. e., polish notation.

We have identified the common operations supported by the tools to which we interface.

These are listed in Table 5.2. By creating a uniform syntax to invoke these common oper-

ations, we make the tool interface uniform to higher layers of software. This uniformity

also makes it easier for integrators to create hyperlinks to tools that have different com-

1. declared harmless in Safe-Tcl terminology.
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mand language syntaxes and terminologies, as they do not have to remember the specific

command names used for the most common operations.

Another important aspect of the design of the Message Transport Layer is that its opera-

tion is based on stateless communications. The HUB does not maintain any connections

with communicating peers. In Henry, message delivery always implies establishing a new

connection with the receiver, exchanging the information and closing the connection.

We also designed the semantics of the MTL interface so that when delivering a message to

a tool, the sender needs not worry about the tool’s state. We recreate all the pre-conditions

for successful execution of the message being delivered. For instance, when a client sends

a command change the contents of a file, it does not have to send commands to start the

tool or open the file in advance. These are implicit on the request and are invoked auto-

matically by the HUB if required.

Command Function

ping check if a tool is running

start send the ping message to a tool and start it if no answer is
received

open <object> send the start message and open, source or load the object
given as argument

do <command> perform the command in the tool’s command language
syntax. This provides the “escape” function to execute any
tool specific command not offered by this interface.

quit  terminate execution of the tool

Table 5.2 Common Operations Supported by the Tools Integrated with the HUB
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5.2.2.2 The Message Handling Layer

The HUB’s top software layer is the Message Handling Layer. It provides the utilities for

parsing the MIME messages used in the standard format and the environment for evalua-

tion of the Safe-Tcl scripts contained within active messages.

The MHL is organized as a framework where multiple customizable operations can be

applied to messages as they are processed (see Figure 5.5). In the MHL, operations on

messages are performed byhandlers.These can be of two types:header handlers and

command handlers. The former operate on the message headers while the later are the

Safe-Tcl routines that evaluate the scripts embedded in active messages.

Handlers can be written to perform many distinct functions. One of the most important is

name resolution. Messages in general do not contain fully specified names of destination

addresses, object versions to operate on, or the tools to be activated by the messages. For

instance, thehmessage command could be written as follows when received by the HUB:

hmessage [MHL_tool LAYOUT_EDITOR] open [MHL_check-out NAND2],

In the Tcl language, this means that the handlers for the layout editor used at the HUB and

the check-out of the current version of the 2-input nand gate would be invoked before exe-

cution of thehmessage command. After execution of the handlers, the command would

read as

hmessage {Magic msilva localhost:0} open /users/msilva/design/version3/nand2.mag

Another important function of the HUBs handlers is the support for activating and manag-

ing hypermedia-type links between the integrated design and documentation tools. This

will be discussed in more detail on the next section, in the context of the user’s view of the

design environment.
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Figure 5.5 The HUB Message Handling Layer

Messages are translated into a common format in the HUB, and then processed by a
configurable sequence ofmessage handlers. There are two types of handlers:header
handlersandcommand handlers.Header handlers operate on the message as a whole,
without parsing its contents. For example, they can used be used to resolve addresses or
to keep an history of message activations. Command handlers are the procedures
executed when the commands embedded in the active messages scripts are evaluated.
Both handlers make use of a library of utilities, called the HUB services.

Message Handling Layer
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5.3  Henry as an Open Hypermedia System

From the user’s point of view, one of the main requirements for an integrated design infor-

mation processing system is that it should provide quick, uniform and easily understand-

able mechanisms for accessing and manipulating all the information related to the design

process. As discussed in Chapter 1, to satisfy this requirement we use hypermedia docu-

ments as the common metaphor for the interface with the design process, tools and data.

Using the hypermedia interface, designers gain access to a web of design information.

From his or her perspective, the system operates as follows:

1. The designer selects a piece of design related-information.

2. When the designer activates the selection, he or she sees a list of descriptors for other

pieces of information. These are related to the object upon which the operations are

being performed.

3. Activation of one of the operations, launches the invocation of another tool. The new

tool fetches and/or generates other pieces of information.

A similar type of interaction is already used with some combinations of tools by VLSI

designers. For instance, there are commercial versions of integrated simulation systems

containing a schematics editor, waveform displayer and circuit simulator. In these sys-

tems, a user can select a net on the editor and then request the waveform displayer to show

the last simulated signal associated with the net. Our goal is to generalize this interaction,

so that users can define and associate multiple actions with any design object, select one

and invoke it.

In Hypermedia terminology, we call these operationslive link activations. We use this

term because they do not simply cause the display of other information, but rather send an

arbitrary command to a running tool.

In a traditional Hypertext system, a link is an object containing information about two

anchors. An anchor is a portion of text that is sensitive to user’s activation. In general,
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anchors can be in distinct documents. When the user activates the first anchor, the result-

ing action is the display of the second anchor. In a hypermedia system, the link concept is

generalized. A link anchor may be any type of object, and activation may cause a pop-up

menu to be activated from which the user selects one of several possible operations.

The remaining of this section is organized as follows. In the first sub-section we describe

the general operation of the linking mechanism. Next, we describe how tools are adapted

to become part of the Henry System. We then describe how links can be customized and

the system extended to perform new operations via the activation of links. Finally, we

describe how users interact with HUBs in the system.

5.3.1 The Henry Linking Mechanism

The linking mechanism in a system like Henry needs to comply with two major require-

ments:

1. A facility for creating links quickly and easily needs to be in place.

2. The linking mechanism needs to be specifically adaptable to work with a diverse spec-

trum of interactive tools with different hypertext support capabilities.

As in the Intermedia system [Haan92], our goal for the Henry environment is to create a

framework where hyperlinks are as easy to do as cut and paste within personal computer

software. However, we need to achieve this in a heterogeneous environment where each

application is developed using a different set of user interface and inter-tool communica-

tion libraries. This has been called anopen hypermedia system [Pear89]. To integrate all

design and documentation tools in use, the linking system must support a wide spectrum

of tools with different hypertext capabilities. On one end we have modern documentation

processing systems, such as FrameMaker, that already have built-in hypertext and remote

command invocation support. On the opposite side, we have interactive tools with com-

mand based interfaces and no inter-tool communication capabilities. Yet we would still

like to integrate these with minimum effort.
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In Henry, live links exploit active messages to define the actions and the link anchors.

These are sent between applications using the HUB services. This interpretation of open

hypermedia merges well with the concept of a information-based design environment

described above. Figure 5.6 contains a diagram of the Henry design environment, as seen

from the perspective of its users. The HUB is seen as a common background process, used

by different sets of tools.

Henry requires that individual applications provide the support for defining and activating

anchors. The only support it provides is that of sending the commands using the message

system. If an object displayed by an application is to be used as the end-point to a tradi-

tional hypermedia link, then the application must provide a way for that object to be re-

displayed when a command is received by the tool. If the object is to be used as the start-

ing-point of a link, then the application must provide the support for loading and sending

the active message associated with the link to the HUB.

5.3.2 Making Design Tools Hypertext-aware

The work required for integrating an existing tool into the system depends on the capabil-

ities it already offers for defining anchors and for inter-tool communication. In documen-

tation tools that already support hyperlinks, the existing anchors can be re-used. This is

how we integrate FrameMaker into our system. We use its built-in hypertext markers as

anchors and associate with them new commands that send active messages to the HUB.

In design systems, where design data representations associate annotations (or property

lists) with design objects, good integration is relatively simple to achieve. In VLSI editors,

support for entering and displaying of annotations in schematic and layout representations

is almost universal. A straightforward approach would consist of storing shell commands

in the annotations. Then we use or add a new user command to execute the contents of any

object’s property. Henry has a simple shell script, also calledhmessage, that formats the

arguments into an active message in the HUB MTL format and sends it to the user’s HUB.

This shows the simplicity of the mechanism for defining anchors in interactive design
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Figure 5.6 The Design Environment from the Users’ Perspective

The Henry System user sees the design environment as a set of multiple design
frameworks, desktop and documentation tools, and tools to access Internet services. All
the tools are connected the user’s HUB. The HUB is seen as a service that provides
support for creating and managing links between pieces of information. In addition to
the design and documentation tools, users may also need to interact with new design
support services that make generate and produce useful information related to links and
their activation.
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tools. In general, the tool integrator must provide a more sophisticated user interface to

activate links, hiding the details of defining and storing active messages in design object

properties. Their contents can be executed as shell commands.

For those VLSI layout tools which do not support annotations but do allow for the place-

ment of labels, an alternative is to use a special layer where labels are interpreted as hyper-

text links. To create a link at a given point in a layout, the user places a label with the

corresponding active message invocation command. Link activation is made as described

above, by “executing” the label as a shell command. We used this approach to integrate

the Magic layout editor into the Henry system (see Figure 5.7).

To integrate some tools, simpler mechanisms to define live links are necessary. For

instance, in command interpreter-based interactive tools it is not possible to define

anchors. However, it is still possible to define mechanisms for activating live links. To

integrate the SPICE3 simulator, we added a new macro to the simulator’s command inter-

face. To activate a link, users type in the macro command. This macro executes the same

shell command used by Magic to send ahmessage to the HUB. The command then gener-

ates the active message that is sent to the HUB.

5.3.3 Link Configuration

In our description of the mechanisms for following and creating links, we have omitted

many information details that are needed to completely characterize a live link. So far, we

simply definedwhat information is displayed when a link is activated. A link representa-

tion also needs to include other information, which is generally ignored given the assump-

tions upon which hypermedia systems are built:

• Where: this information indicates the geometric area where the object will be presented

upon activation of the link. It may be an application geometry specification on a X

server display, or it could be a page or an inset in an application displaying multimedia

documents.



92

Figure 5.7 Magic as a Hypermedia Tool

To integrate the Magic layout editor into the Henry system, we implemented two
extensions to the editor’s source code:

1) a new command,leval, was created to evaluate the contents of a “label” as a shell
command. In the example shown here, the designer of a logic gate placed the label with
text “hmessage...” on the layout shown on the window on the left. This corresponds to
a MTL message accepted by the HUB. Whenleval is invoked with the label selected,
the label text is passed to a shell command that sends it to the HUB. The HUB in turn
directs FrameMaker to open the document on the right. This document has hypertext
links to various sections of the documentation and to other tools.

 2) The built-in hypertext facilities in FrameMaker can be used to send commands to
other running programs. We modified Magic to accept commands both from its
command window a from a TCP/IP socket. When the document on the right references
the layout, the designer has placed a hypertext command that sends a message to the
HUB. That message is then converted into a command to open the layout file which is
passed to Magic through the TCP/IP connection.
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• When: In general, links are to be activated immediately. However, in a wide-area design

environment such as the Henry System, a live link could involve access to resources

not immediately available.

• How: this information indicates what tool will be used to display the information. It

could be a generic name to be resolved by the HUB, such as a VHDL simulator, or the

specific path name of the executable of a running program.

This shows that there is more information that needs to be considered when activating a

link and that an extensible mechanism for specifying links is required. Henry’s active

messages, based on extensible formats and a communications language, offer that mecha-

nism.

5.3.4 User Interaction with HUBs

A HUB acts as a link server that relays users’ requests for accessing information to the

tools that manipulate it. HUBs are extensible: new support services can be implemented as

handlers in the MHL. Independent processes can also be invoked from the handlers as a

side effect of link activation. One obvious extension would be to keep a history of all the

links followed by the designers in a given project. This history could be browsed and used

for multiple purposes useful to designers, such as producing a graph of dependencies

between pieces of information.

HUBs are designed to run in the background. They do not have a top-level window from

which users interact. However, we designed HUBs assuming that a human operator is

assigned to them. For the HUBs that control the communication with users’ tools, the

operator is the user. A HUB requests its operator’s assistance when it does not have all the

knowledge required to dispatch an active message. User’s HUBs frequently pop-up dia-

logs requesting information on how to proceed. One of its handlers is thesession manager,

a special handler that asserts that tools are started before active messages addressed to

them are sent. If a tool is not running, the session manager starts the tool and delays deliv-
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ery of the message until is ready to process it. In the current implementation of the Henry

System, this always causes the dialog shown on Figure 5.8 to be displayed. From the dia-

log, the user can cancel the activation of the link or select the machine in the network

where the tool displaying the requested anchor will run.

5.4  Henry as an Infrastructure for Building Tool Ensembles

In Chapter 1, we discussed the concept of atool ensemble in the context of VLSI design.

We view a tool ensemble as a set of multiple tools that cooperate and synchronize their

executions to provide assistance to a user in a single task.

In today’s environments, the existing mechanisms for creating ensembles only allow for

specification of sequences of tools. Some process management systems capture tool exe-

cutions that may run in parallel, but there is no model for defining how the tools synchro-

nize their executions. Another important need is a way to specify how a tool’s main

Figure 5.8 The HUB’s Session Manager Dialog Window

HUBs run in the background, but can pop-up dialogs requesting assistance when
messages require exceptional processing. When the HUB attempts to send a command
to a tool (Magic in the figure) and the tool is not running, a dialog pops up, requesting
the designer to confirm that he wants to start the tool and select the host where it will
run.
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window is embedded into the windows of other applications to create a compound active

document.

In our view, a combination of services and conventions is necessary to support the require-

ments for creating tool ensembles composed of multiple graphic interactive applications:

• Inter-tool communications.In Henry, these are HUB-based for locating tools and send-

ing commands between the tools.

• Tool Embedding.To create compound documents, a tool should be able to display its

window within another tool’s main window. For example, this makes it possible for a

schematic editor to open an inset within a document rendered by another tool. Support

for embedding requires an extensive set of conventions and support software adhered

to by the tools. As described in Section 2.4.2 on page 35, all the major operating sys-

tems support (or soon will support) this capability.

• A common user interface paradigm.All tools should adhere to the same interaction

style. We adopted the documentation paradigm. We view every window as a viewport

to a piece of documentation in a multimedia information system.

• A glue mechanism to bind tools together. A common model and specification method is

required for describing tools’ executions synchronization commands exchanged and

how tools windows are embedded within each other. In this model, it should be possi-

ble to specify any constraints required to make a set of tools behave to the user as a sin-

gle application. In the Henry System, we also use an extension of the Tcl language for

gluing the components of a tool ensemble.

In the context of the Henry System, active documents and tool ensembles are synony-

mous. Active documents are multimedia presentations written as scripts in this gluing lan-

guage. The language aspects related with the representation and presentation of active

documents will be detailed in the next chapter.
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The remaining of this section is organized as follows. In the first subsection, we discuss

the attributes of tool ensembles and the importance of having ensembles where no tool has

a special role. Next, we discuss our view of the role of extension languages as a funda-

mental component for building tool ensembles.

5.4.1 Symmetric Tool Ensembles

From the HUB point of view, there is no central tool coordinating any aspect of the other

tools. It is up to the system integrator to create the necessary composite tools and to define

the constraints on them. We call thesesymmetric tool ensembles, since no tool has a pre-

established role of container, communications broker or special service provider.

This contrasts with typical VLSI design and generic hypermedia systems, which are orga-

nized around a common front-end that can call external tools to extend the basic tasks sup-

ported by the main tool. In our application domain, at different times designers work on

design, documentation, or both simultaneously. In this environment, no design or docu-

mentation specific tool has a special role.

Tools need to respect common conventions to be proper components of a symmetric tool

ensemble. The most important consideration with regard to intertool communication is

that tools have to be designed to operate both as clients and servers.

This is not typical in current VLSI CAD environments. Tools that have built-in intertool

communications generally work either as clients or servers, but not both. A good example

is the Octtools framework [Harr86]. VEM, the front-end to this system, only accepts com-

mands from applications started from its console window. In computer networks terminol-

ogy, it does not register its listening sockets and does not listen in awell-known socket. As

a result, software systems that may need to re-use the graphic editing facilities of VEM are

forced to run as applications invoked from VEM after it is started.

With respect to containment, it is also unusual to observe tools whose main window can

work both as a container and contents to the windows of other tools. For example, Frame-
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Maker, has a built-in capability to invoke tools to change the contents of figures displayed

within FrameMaker documents. However, it is not possible to have FrameMaker running

as an inset within other applications.

5.4.2 The Role of the Extension Language

Henry’s support for building tool ensembles is far from complete. Tool embedding is a

particular need that must be further developed. However, the existing system already

shows the critical need for an Extension Language (EL) for building tool ensembles of

interactive tools and how the language could evolve to support the missing features. The

key feature in Henry’s support for tool integration is the availability of a powerful EL that

can be embedded within the tools, and the communications service for sending the com-

mand language scripts to the tools.

Our view of an extension language differs from CFI’s perspective (see Figure 5.9). The

CFI Framework Architecture Reference Model defines an EL as a component of a central

cockpit that includes the session management component of the Framework. However, in

the CFI architecture there is no reference to an EL for the intertool communication service

or its availability in the tools. We advocate having the extensibility based on command

language interpreters available not only in a specific service, but in all tools and services

in the design environment.

5.4.2.1 Extension Languages and Concurrency Control

The Henry HUB is founded on stateless communications between clients and servers.

However, this makes it necessary to provide an additional concurrency control mecha-

nism. Interactive tools accept commands from the user interface concurrently with mes-

sages received from the remote command execution interface. As a result, sequences of

commands sent to an interactive tool for remote execution may be disrupted by the execu-

tion of commands directly typed by a designer.
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Figure 5.9 The Extension Language in Henry and CFI environments

The figure contrasts Henry’s architecture with CFI Architecture regarding the role of
the extension language (EL). Henry (A) supports a (preferably extensible) scripting
language interpreter in every component of the environment. It provides access to the
tools’ command interpreters. The Henry EL is based on Tcl. The CFI architecture (B)
considers a single EL interpreter running at the framework’scockpit. The EL is based
on Scheme, a LISP dialect. The language is extended with commands to invoke the
functions of the various Application Program Interfaces (API) offered by the tools.
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There are several ways to deal with this problem. All solutions can be reduced to a capa-

bility for executing an uninterrupted sequence of commands at the receiving end. In some

instances, tools support receiving multiple commands in a single command line. We could

translate a sender’s message into a message to the receiver containing a sequence of com-

mands at the HUB. Some tools support macros. In this case, we could translate a message

into two commands, one for loading a pre-defined macro and another for executing it. For

tools that do not have an embedded command interpreter or a macro facility, implement-

ing support for concurrency control requires architectural changes to the applications.

5.4.2.2 Extension Languages and Inter-operability

Our experience with a common extension language to program the environment’s inter-

tool communications service indicates that it is a better mechanism for controlling system

interoperation in CAD environments. Here, the crucial problem is the need to exchange

control information between independently developed systems, as data interchange for-

mats become increasingly accepted.

Henry’s approach dramatically reduces the effort necessary to create an interface for inter-

tool communication. To interface foreign tools in Henry, all that is required at the proce-

dural interface level is the capability to send a command for execution at a remote tool. On

the other hand, Application Program Interfaces (API), such as those used by CFI, require a

complex process of development of long specifications of remote procedure calls. The

capability to send commands to remote tools does not provide the same level of interoper-

ability as would a completely specified API supported by all tools. On the other hand, it is

much simpler to implement. The CFI has been attempting to develop a common interface

for the last years without visible success. An equivalent effort would be required at the EL

level. However, the low-level of interoperability provided by the capability to send com-

mands to remote tools serves our purpose of being able to exchange control commands

and synchronize executions of independent tools.
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5.5  Summary

This chapter reviewed the architecture of the Henry System and how we have adapted

existing design and documentation tools to become part of an integrated environment.

There are three key aspects in the Henry architecture: its support for heterogeneity, its

approach to make tools become part of a hypermedia system, and its extensibility.

Henry supports heterogeneity in many ways. From the communications perspective, the

use of MIME-based messages and Internet message protocols facilitates cooperation

between organizations with very different design environments. At the local level, Henry

defines a common command interface to all the tools. Active messages enable inter-tool

communication by encapsulating the data and the commands to the tools in MIME mes-

sages that can be sent across organizations.

In the Henry environment, hyperlinks’ actions are defined by active messages. Link

anchors are commands that can be stored as markers or executable properties in the tools.

This requires minimal modifications to existing tools, while offering a powerful linking

mechanism and the capability to make modifications to data and documents without

affecting the link information.

Extension languages are an essential component of the Henry architecture. They are used

in active messages, as the interface for communication with the tools, as the mechanism

for extending and customizing the environment, and as the glue language for describing

active documents.

In the Henry System, active documents are ensembles of tools used to create and display

multi-media presentations involving design and documentation tools. So far we have only

discussed the infrastructure we have built for supporting active documents. The topic of

the next chapter is the tools developed for handling these documents.
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Chapter 6

Tools For Integrated Design and

Documentation

This chapter presents the tools and authoring techniques developed for the Henry System.

We describe the conceptual model of the Navigator, an electronic design notebook con-

ceived as a test-bed for exploring the integrated VLSI design and documentation para-

digm.

6.1  Introduction

In the previous chapter, we presented various tool integration mechanisms available in the

Henry System, such asexecutable annotations as a method to anchor hyperlinks to objects

displayed by CAD tools. In this chapter we focus on authoring techniques and tools that

fully exploit the idea of integrating the design and documentation of VLSI systems.

Our model for integrated design and documentation is founded on the observation that

there is a one-to-one correspondence between entities in the conceptual models used in

documentation processing and electronic engineering systems. For instance, in word pro-

cessors, non-text objects in diagrams can be drawn using a palette of tools. Each tool

“When Prince Henry’s mariners went farther south than Europeans had
ever gone before, they faced new problems... The cosmopolitan commu-
nity at Sagres helped to make the quadrant, the new mathematical tables
and other novel instruments, which became part of Prince Henry’s
exploring equipment.”

— Daniel J. Boorstin, “The Discoverers”
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draws a specific graphic object. This is similar to what VLSI designers do: to add or trans-

form a piece of design data, they invoke a tool to perform the operation. Table 6.1 shows

the correspondence between the most important concepts in both domains.

Of special interest to us is the similarity of the techniques used to handle complexity in the

two domains. Both extensively explore the use of contexts. When a user types a character

in a word processor’s window, the position in the document where the character will be

introduced and the font type that will be used are inferred from the defaults already set.

Similarly, when a designer checks-out an object from a database, he does not have to indi-

cate the version or view he wants to access. The designer’s location in the design space is

inferred from the previous commands given to the database. In our view, a document’s

design concept document representation

private workspace, group workspace,
library/archive

notebook, project binder, manual

design alternative conditional text

design configuration document version

design methodology document template

context (current configuration,
activity, tool, view,...)

context (cursor, default font for paragraph,...)

hierarchy sectioning, imported documents

instantiation import by reference

tool space drawing tools palette

activity history session log

object attribute annotation, link, footnote

Table 6.1 Design versus documentation concepts

We observe a one-to-one mapping between every fundamental design concept and a
related concept used in documentation processing systems.
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visual representations for context and structure could be extended to indicate the designers

location in the design space. For instance, a design with multiple configurations could be

associated with a document in which each page represents a configuration. Moving to a

new page in this document has the side-effect of switching to a new default configuration

in the design.

Given the existing trend towards offering user interfaces inspired by a documentation met-

aphor and the structural similarities among electronic design and documentation, we

believe that documentation should be the common metaphor for manipulating design

information. The direct conceptual correspondence between design and documentation

gives us a new opportunity to create better interfaces to manipulate the information in an

extremely complex environment.

To explore these ideas, we developed a prototype electronic book which makes use of the

infrastructure provided by the Henry System. The Henry notebook, called the Navigator,

is conceived as an editor for documents that can contain active messages anchored to

selected objects. The Navigator offers an user interface that was specially designed to

facilitate browsing and creation of active messages inside a document.

The Navigator has another distinctive feature. Existing documentation processing systems

support authoring and browsing as two independent operating modes. In the Navigator

there is no such separation. Active messages can be added, displayed and modified

directly while browsing a document. This is an essential feature in our application domain,

since the document authors — the VLSI designers — also constitute the audience of the

documents produced with the electronic notebook.

The remaining of this chapter is organized as follows. Section 6.2 presents our operational

model for a design environment founded on an electronic notebook paradigm for brows-

ing a project’s information web. Section 6.3 introduces a new conceptual model for repre-

senting and handling active documents, developed for the Henry System. Section 6.4

discusses the design of the Navigator. Section 6.5 closes the chapter with a summary of
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the main ideas. In the next chapter, we describe how the tools developed for the Henry

System have been used.

6.2  Integrated Design and Documentation with Electronic Notebooks

Figure 6.1 shows the flow of information in the Henry environment. Design data and doc-

umentation are organized as an information web. The Navigator is an electronic counter-

part to the engineering notebooks used by designers today. It is used to annotate the design

as it evolves and doubles as a browser for this complex web of information. From the doc-

uments, users access the tools, design libraries and design management aids. Interaction

with the tools produces even more design data and documentation ready for incorporation

into the design information web.

In this section, we begin by discussing the principles we follow for producing active

design documents with electronic notebooks. Then, we present the kinds of authoring aids

that can be provided in general, and conclude with a description of those we developed for

the Henry system in particular.

6.2.1 Organization of Documentation in Electronic Notebooks

In our view, the documentation produced with electronic notebooks should follow the

minimalist principles advocated by John Carrrol for creating instructional documentation

[Carr90]. The objective, according to its proponent, isto minimize the obstrusiveness to

the learner of training material.

Marc Rettig proposed the adoption of this principle for producing documentation of soft-

ware systems [Rett91]. There are three aspects that must be considered in the design of

minimalist documentation: 1) allow learners to start immediately on meaningful realistic

tasks, 2) reduce the amount of reading and other passive activity, and 3) help to make

errors and error recovery less traumatic and more pedagogically productive.
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Figure 6.1 The Information flow as seen from Henry’s Electronic Notebook

In the information-centered environment of the Henry System, designers access tools,
libraries and design data, and flow managers via documents. These are connected into
an information web through active messages stored within the documents. Active
messages fire the commands to the tools. Command executions create additional data,
which is integrated into the web as new documents. Henry’s electronic notebook, the
Navigator, is a program that runs on the designers’ workstations. The Navigator is a
tool specialized in the interactive edition of active documents and browsing of the
information web of the Henry System.

T o o l s

Managers
Data & Flow

Design

Notebook
Electronic

Information Web

Libraries

documents

active
message

active
message

active
message

documents

documents

commandsactive
message



106

We adopt similar goals for the organization of design documentation produced with note-

books:

1. Designers should have quick access to design tools and data. The command used to

apply an operation to a piece of design data should be easy to invoke from the note-

book. The resulting logging information should also be easily incorporated into the

notebook. For instance, to capture a sequence of design operations, it should be possi-

ble to create with a single command a window running a shell that has its execution log

automatically captured into a file. The file would be editable from the notebook to cre-

ate annotations to activated programs and links to opened and created files.

2. Annotations should be small and made self-describing by incorporating links to the

data and tool operations they are intended to document. For instance, instead of creat-

ing a table in a document with a list of the parameters of each device model used in a

simulation deck, it is better to create a note with a link to the point in the simulation

deck where the models are described. This requires less work, enforces consistency

between data and documentation, and makes it easier for the designer to change one of

the parameters if required.

3. The notebook should provide assistance for the construction of active documents and

the debugging of errors in the authoring of these documents. For instance, if a link acti-

vation to send a command to a layout editor from the notebook fails, the notebook

should provide detailed explanation of what failed in each of the processes involved

and the steps to fix it. In Henry, these would be the Navigator, the HUB and Magic. The

link activation could fail for many reasons, such as the HUB not running or the file con-

taining the layout being inaccessible. A diagnostic message saying “cannot activate

link” is not as informative as a message saying “Cannot open layout. File /user/

adder.mag is protected.”
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6.2.2 Authoring Active Documents with an Electronic Notebook

Creating the information web for a design has many similarities with authoring in a

generic hypermedia system. For hypertext-based documentation systems, no unique para-

digm exists for writing documents. Bottom-up and top-down processes are used equally

[Niel90]. Generic hypertext systems have only limited aids for document builders, such as

document consistency checkers to verify that there are no dead-end nodes, or browsers for

the document structure.

In Henry, we provide authoring aids that complement those available in generic hyperme-

dia systems. In addition to the electronic book for interactive edition and navigation on the

design information web, we envision three types of aids for addressing designers’ specific

needs:

• Document building toolkits. These are sets of tools that automate the process of cre-

ation of design documents.

• Active clip-art. These are libraries of active document templates that can be re-used to

document similar designs.

• Documentation agents. These are programs that assist designers in the production of

documents and organization of the information web.

We discuss these different types of aids in the remainder of this section.

6.2.2.1 Document Building Toolkit

The idea of a toolkit for building hypermedia documents and applications has been pro-

posed for general purpose hypermedia authoring [Sher90, Putt90]. We use the same

approach, but focus on the development of aids particular to our specific application, the

documentation of hardware designs. There are three types of tools in the Henry toolkit for

generating VLSI specific documentation:
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• Document generators. These are simple tools to produce documents that summarize

information about a design or generate documents that explain the design’s structure.

As an example, in a top down process for writing documentation, we could easily write

a tool that automatically generates a document, having a page summarizing the data

about each component in a design andlinks reflecting the hierarchy. VLSI tools that

compute statistical information about a design, such aschipstats from the Octtools

framework [Harr86], are natural components of these toolkits.

• Modified design tools to help navigation within documents. An example of a VLSI spe-

cific aid is a layout browser adapted to display the documentation about a component

when a user presses a button over the area defined by its protection frame. In the Henry

System, this is supported by our modified version of Magic. In this tool, we can anno-

tate objects with references to active messages for displaying related documentation.

Messages can then invoked at the request of the designers1.

• Tools and macros to automate the creation process. These are accelerators for automat-

ing the process of generating links. For instance, in the Henry System we have auto-

mated the process of adding links to layout files and simulation plots. A user can create

a button to display a layout file in the current page with a single command, both in the

Navigator and in FrameMaker (see Figure 6.2.).

6.2.2.2 Active Clip-Art

Other aids are libraries of pre-defined sections of documents and document templates, that

designers can cut-and-paste into their specific documentation. This is analogous to the

clip-art libraries distributed with word processors, with the difference that active clip-art

libraries include active documents.

Active clip-art can be used by designers for several purposes. Document templates can be

pre-defined for generic tasks. In Henry, pre-defined notebook pages offer a simple way to

1. This mechanism has been described in more detail in Section 5.3.2 on page 89.
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include points of access to data and tools from the Navigator. In effect, this converts

design into the process of changing or filling-in the blanks of an electronic document tem-

plate. Templates can also be used to enforce or guide the use of a given design methodol-

ogy within a project team.

Figure 6.2 Domain-specific Accelerators for Creating Active Documents

In the Henry System, we have extended FrameMaker with new macros for automating the
process of creating links. These can be invoked from a new pull-down menu. The same
technique has been used in the Navigator. With a single mouse click, a user can generate
an active message to create the windows from the design tools that display a given file.
The commands also associate each generated active message with a “button” or an
“inset” that is automatically mapped into the current page.
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A good example for active clip-art is the application notes that manufacturers publish to

describe how to integrate the components they produce into systems. Application notes

could be made available as active documents including the data files and tool commands.

This way, designers could efficiently reuse the documentation and methodologies embod-

ied by the demonstrated application.

In our experiment with Henry as an integrated design and documentation system for

teaching VLSI design, described in the next chapter, we developed active templates for the

laboratory sessions reports. We used pre-defined active documents as a means to describe,

automate and document the interactions that students had to perform with design tools

(see Section 8.4.1 on page 159 for a detailed discussion).

6.2.2.3 Agents

We envision the use of agent software [Maes94, Etzi94] for helping in the creation of the

information web of VLSI designs. However, the adaptation and use of agents software in

our domain goes beyond the scope of this dissertation. Here, we simply make the case for

using agents as a potentially valuable aid for helping designers in finding and generating

design documentation.

Agent programs could be set up to work in the background, monitoring designers actions,

suggesting and performing operations on the design, and finally producing human-read-

able documentation of the design decisions.

Agents could be also employed to locate and retrieve information necessary for the

design, such as components, their models and representations, or manufacturing services.

We believe that the Henry System, with its interfaces for viewing heterogeneous design

information as documentation distributed on the WWW1, provides an initial framework

for developing this class of agents for the electronic design domain.

1. WWW — the World Wide Web [BL94b]
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6.3  Document Representation and Manipulation

We developed a new conceptual model for active documents for the Henry System. Docu-

ments in this model are described in a programming language. The language is supported

by a procedure library that offers functions for 1) loading a document description from a

file into a data structure, 2) interactively change this data structure using the language

commands and 3) save the data structure back into a file. The Navigator and other tools we

developed for Henry to create and manipulate active documents make use of this common

representation and support library (see Figure 6.3).

The Henry active documentation description language, called DocScript, is an extension

of Tcl/Tk [Oust94]. We use a programming language for describing active documents

“Document Building
Toolkit”User Interface

“The Navigator”

Persistent
data
structure
&description
language

Library of
re-usable
“pages”

Documentation
generation tools

Figure 6.3 The Role of the Document Description Language in Henry

Henry’s electronic notebook, the Navigator, uses DocScript, an extension to Tcl/Tk we
developed for describing active document. The language is supported by a library of
routines to parse and write the descriptions from/into files and to manipulate the data
structures generated by the language constructs. The same language is used by the other
tools of Henry’s Document Building Toolkit.

 front-end
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because we wanted to exploit the full generality offered by embedding complete programs

within a document. The same approach was used in Ness, an extension to the Andrew

Toolkit to support active documents [Hans90]. Our approach for developing a document

description language follows the strategy of the designers of PostScript [Taft90], an exten-

sion of the language Forth [Kell86] with new primitives for describing the contents of

documents to be sent to printers. We viewed Tcl/Tk as an user interface description lan-

guage and extended it to describe active documents containing dialogs and program invo-

cations.

In the remaining of this section, we start by presenting a basic conceptual model for

describing active documents. This model is based on hypermedia and only contains non-

design specific primitives for describing active documents. We then present higher-level

concepts that we added to this model for ensuring the consistency of the documentation

and design data. Finally, we compare DocScript with SGML, the ISO standard for on-line

documentation representation.

6.3.1 Basic Conceptual Model for Document Representation

The basic conceptual model for representing active documents used by the Navigator is

based on hypertext. The model is inspired by the HIP hypermedia system developed at U.

C. Berkeley [BSB90].

Each concept in this model has an associated DocScript command which, when invoked,

creates a named instance of an object representing the concept. The concepts of the basic

model and the associated DocScript commands are shown graphically in Figure 6.4.

A framecorresponds to a page in a traditional document. In the same way that a traditional

page is partitioned into paragraphs and figures, a frame contains a set ofactive notes, or

simplynotes,that are organized spatially within the frame through abinding. A binding is

an instantiation of a note within a frame, using the binding’s geometry specification for the



113

note. A note is an encapsulation of a documentation object: it could be a graphic user

interface object, such as a button or a control panel, or a running tool.

DocScript supports non-linear views of the documents through the concept of apath. A

path is an ordered set of references to frames, used to reference an order for traversing a

subset of the frames that compose adocument.

Document“Example Document”

Path pth

Frame fre

Note nte -type text

“The Henry System”

pth add fre end

fre bind add bdg -note nte 10 10

Action acn \

{puts stdout “acn was called”}

nte anchor add anr {select char 5 to 9} path pth

frame fre

binding bdg

no
te

 n
te The Henry

Document “Example Document”

Figure 6.4 Code for Describing a Minimal DocScript Document

The figure shows the DocScript description of a very simple active document and the
visual representation of the objects created by this description. The description reads as
follows: Document “Example Document” contains apath namedpth, a frame named
fre and anote namednte.This is of typetext and contains the string“The Henry
System.” The path containsframe fre. The frame displays an instance ofnote nte at
point 10 10 in the document’s coordinate system, referenced bybinding bdg. The
document also definesaction acn, which prints string“acn was called.” Thisaction is
invoked fromanchor anr. This is defined as characters5 to 9 of the string innote nte
(the sub-string“ Henry”).

System

action acn

anchor acr
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The synchronization of the contents of windows running in separate address spaces is

made throughanchors. An anchor defines a region or a piece of data in the context of a

note. An anchor can be a range of text of some generic object identifier. It is possible to

associateactions (scripts of commands) that are run byHenry in response to pre-specified

events, such as a mouse button click or a frame being flipped.

Table 6.2. summarizes the relationships between the concepts of the basic model.

6.3.2  Integrated Design and Documentation Concepts

We extended the basic model for describing active documents presented above with new

concepts with richer semantic contents. These are used to describe the operations that have

to be executed for synchronizing the design data and its documentation. For instance, we

would like to be able to have the design database switch its context information automati-

cally. For example, when a user navigates into a page describing a past release of a given

project, the related information should be displayed in the design tools that are open. The

Object Definition

Document {Frame} + {Note} + {Path}

Path [*Frame]

Frame {Binding}

Binding *Note + geometry

Note documentation data +
{Anchor}

Anchor {Event -> Action}

Key:
{} = set Of, [] = list Of, -> = Map, * = pointer To

Table 6.2 Summary of the Model for Representing Active Documents

The table summarizes the relationships between the various concepts used to represent
active documents in the Navigator.
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problem is better introduced in the context of a simple design scenario. Assume a note-

book containing the description of the design of an ALU, with two configurations,FAST-

Config andSMALLConfig. The document is organized around two frames,FrameFAST,

describing design configurationFASTConfig,andFrameSMALLdescribingSMALLCon-

fig. When a designer scrolls the notebook fromFrameFAST to FrameSMALL, it is neces-

sary to send a command to the database to change the default configuration. This makes it

possible to maintain consistency between the contexts in the database and what is seen

through the notebook interface. When a design object is accessed for display or editing by

a design tool in any part of the notebook, the correct version in the database is always

accessed.

Design contexts are defined as extended concepts in the active documentation model. For

their representation, we use reserved property names and procedures that are associated

with the objects of the basic model. All DocScript objects have the following defined

attributes:

• A variable table. Each table contains property names and values that are associated

with the documentation object.

• An activateHook. This is a special attribute, also common to all DocScript concepts,

that can define an arbitrary Tcl procedure to be executed when the object is a activated.

In DocScript, activation means the instant of time when an object is about to be ren-

dered. For instance, a Document’s activateHook is called when the document is

opened, and a Frame’s activate hook is invoked when the Frame is about to be ren-

dered.

• A deactivateHook. This is another special attribute in all identical to activateHook, but

with deactivation occurring at the instant symmetric to that of the activation of the

object.

In addition, DocScript supportspersistent procedures. These are defined like regular Tcl

procedures, but are saved with the document on which they were defined when it is closed.
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With this combination of extensions we were able to support the synchronization require-

ments between data and documentation described in the above example. To have the con-

tents of an active document synchronized with the data in a design database, we could

write a script with the database initialization operations and define it as a persistent proce-

dure associated with the document’sactivateHook. Similarly, we could define a procedure

to change the default database view and invoke it with a different view name as argument

from each Frame’sactivateHook.

However, synchronization between design data and documentation becomes more com-

plex when we consider interactions between an electronic notebook and a database. For

example, we must be able to synchronize the actions of a designer looking into different

configurations at the same time from a document and passing information between them.

Context information from the documentation processing tool, such as the location of the

insertion cursor, also becomes important. Consider the situation illustrated on Figure 6.5,

where a designer is calling an editor on an element of the ALU displayed onFrameSmall

of the example above, modifies it, and saves it at the current location of the insertion cur-

sor. As the cursor is left pointing to some position inFrameSMALL, the consistent opera-

tion is to read the object fromFASTConfigand append it toSMALLConfig. For this reason,

the database resolution mechanism needs to be re-configured automatically from the docu-

mentation front-end, based on the parts of the document being displayed and the current

location of the cursor. Similar situations arise in other scenarios, such as when a designer

wants to create or visualize two alternatives of a design in different frames.

6.3.3 DocScript versus SGML

We chose to develop our own language for describing active documents because at the

time this project started we did not have access to software to parse and manipulate

SGML. For DocScript, we could reuse the Tcl language parser with relatively few exten-

sions.
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This is FrameFAST.
It describes FASTConfig

The figure shows
schematic of object O.

schematic editor

This is  FrameSMALL.
It describes SMALLConfig.

The cursor is here

M

versions of O

(1) read O

(6) read O(4) write O

(3) read O

Figure 6.5 The Effect of the Cursor Position in the Design Database State

Names are resolved based on their location within the document upon reading, and on
the location of the cursor upon writing. Assume a document describing a hypothetical
hierarchical design with objects M, N and O organized in 2 configurations,FastConfig
andSmallConfig. Consider the sequence of operations of the figure. When the cursor is
left in FrameSMALL, clicking on the figure inFrameFAST will start a tool for editing
the version of objectO in ConfigurationFASTConfig. When the session with the editor
is closed, a new version is appended toSMALLConfig in the database, and shown in
FrameSMALL after the cursor.

N versions of N

Object Database

(2)

(5)

O
O

M
N
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DocScript documents can embed arbitrary user interface dialogs defined in Tcl/Tk. This

makes our language very powerful for creating active documents with complex user inter-

faces. Creating an active document with a complex user interface in SGML would be

much harder and would require the development of a complex extension to this represen-

tation format. And of course, the resulting description for the active document would no

longer be standard.

However, given the popularity achieved by SGML in the WWW1 and its adoption by the

CAD industry to describe electronic components, we would now choose to sacrifice some

flexibility and represent our active documents in this language. As a document description

language, DocScript also has limitations that would require the development of large

extensions to make it practical for describing full VLSI documentation. For instance, there

is no support in DocScript for typesetting mathematical expressions.

6.4  The Navigator

The Navigator is a prototype documentation tool we developed for the Henry System. It

operates as an electronic notebook for browsing design information webs and as an inter-

active editor for DocScript documents. We conceived it as a tool to operate in the earliest

stage of documentation, for entering the initial annotations to a design during the explor-

atory phases.

The Navigator re-uses most of the visual elements of a typical multimedia documentation

processing system, while adding extensions to support direct manipulation of the objects

of our conceptual model for active documentation. In this section, we discuss the user

interface design philosophy, oriented towards supporting simultaneous design and docu-

mentation.

1. the WWW uses HTML (Hypertext Markup Language) [BL93b], a SGML document type, as
the primary document representation format.
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In the Navigator, we emulate the user interface of FrameMaker as closely as possible.

There were several reasons for this. First, FrameMaker already provides a user interface

that has demonstrated high usability. Secondly, FrameMaker is currently thede factostan-

dard for presenting on-line documentation in the electronic CAD industry. Most designers

are familiar with this tool. Third, designers are likely to use FrameMaker in conjunction

with the Navigator to display other documentation, such as on-line data-sheets of off-the-

shelf components and tools’ documentation.

The elements of the user interface of the Navigator are shown on Figure 6.6. The most

important modifications to the FrameMaker user interface include:

• Merging the authoring and browsing modes. FrameMaker has a default authoring

mode and a “hypertext” mode. In the first, it is not possible to activate hyperlinks. In

the latter, modification of the contents of a document is disabled. Users switch between

them by typing an escape sequence1. This makes modification of an active document

also being used to navigate in the design information web very cumbersome. In the

Navigator, there is no such modal behavior. A normal mouse click has the effect a user

would expect from an active object, while a mouse click modified by a control key

pressed simultaneously will pop-up a dialog for configuring the behavior of the object.

For instance, in anote containing a “button,” a mouse click on the note would result in

the invocation of the DocScript procedure associated with that event. On the other

hand, a mouse click in simultaneous with the control key, would activate the control

panel for changing the label and the DocScript procedure.

• Controls for handling the activation of active documentation objects. In FrameMaker

and other documentation tools in general, active objects are restricted to hypertext but-

tons that have to be explicitly fired by a user mouse command. In the Navigator, a

frame can also be active. When it is mapped into the screen, a command can be invoked

1. <esc> F l k
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Figure 6.6 The Elements of the User Interface of the Navigator

The user interface of the Navigator was inspired by FrameMaker’s user interface.
However, we have incorporated extensions to facilitate simultaneous authoring and
browsing of active documents. In the figure, we label some of the elements of the
Navigator’s user interface. The layout chosen for the various controls clearly separates
the browsing functions (at the bottom of viewport windows) from authoring functions
(at the top). However, both are easily available. For instance, a simple mouse-click on a
note containing an active object (such as a button) has the effect of activating the object
as expected by a document reader. However, a mouse button press in simultaneous with
the control key on the same object immediately pops-up a window with a dialog
presenting the options for modifying the object.

text file Note

button Note

Session window

Viewport

browsing tools

authoring
tools

button to change path

buttons to change frame

reload frame

pop-up window
to configure

bitmap Note

to display/edit
simulation deck

button Note

to run simulation

to display result
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for instance to update the contents of the information displayed or to send a synchroni-

zation command to another tool or database. The buttons we added enable user re-acti-

vation of active objects, such as frames, which do not have a button-like behavior1.

• Multiple viewports for editing a document. In the Navigator, aviewport is the main

window that displays a frame in a document. By having multiple viewports, we can

change the contents of two frames concurrently. This is useful, for example, when

simultaneously exploring two possible design alternatives in order to include the result

of both analysis in the same document. On the other hand, FrameMaker supports two or

more open windows into the same document, but only one can be used to modify the

contents of the document.

6.4.1 The Navigator Versus Other Documentation Tools

We summarize the differences between the Navigator and two other documentation pro-

cessing tools that have been integrated in the Henry System, NCSA Mosaic and Frame-

Maker, in Table 6.3.

The Navigator, being a prototype tool, retains several limitations that preclude its use in an

industrial-strength VLSI project. There is no support for printing DocScript documents,

association of hypertext commands to words in text notes, display of color images, or run-

ning of embedded applications. These limitations result from the lack of certain features in

the current version of the Tk toolkit (3.6). These shortfalls are expected to be remedied in

the next release of the toolkit.

The Navigator’s main limitation, its poor text processing capabilities, would require a

complete redesign of the tool, but one that would add little value to the project. This

involves extending DocScript to support structured documents and the capability to

import and export documents in the SGML format. However, many document processing

1. This is similar to the “Reload” button available in Mosaic to enable users to refresh the contents
of an URL.
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systems already exist, with their vendors committed to support SGML in the near future.

We believe that adapting one of these documentation systems to operate as Henry’s note-

book would be a more feasible option then redesigning the Navigator.

6.5  Summary and Conclusions

An electronic notebook is a key component of an integrated design and documentation

environment. Its main feature is the capability to make designers perceive the design as

organized in an information web. An electronic notebook provides uniform access meth-

ods to design tools, component libraries and design process management services.

SGML, despite its limitations for describing active documents having sophisticated

embedded dialogs, is quickly becoming the de facto standard for on-line documentation

representation. Given the importance of making documents easily portable, one should

FrameMaker Mosaic Navigator

Text Processing excellent poor poor

Remote Control hard to setup limited very good

Access to External Data poor excellent poor

Customizability good poor very good

Simultaneous
Authoring + Browsing

poor UI none good

Table 6.3 Feature Comparison Between FrameMaker, Mosaic and the Navigator

The table compares key features in the three main documentation tools used in the
Henry System. Framemaker is very good text processing. The Navigator is controlled
from remote tools very easily and is very easily customizable (this is inherent from
being built using the Tcl language and the Tk toolkit). Mosaic is excellent for pulling-in
documentation from external resources. The table shows that the tools, in their current
stage, are mostly complementary. The integration of these three tools into the Henry
system, makes it superior in terms of the overall capability for handling design
documentation.
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consider sacrificing the flexibility of using a user interface language such as Tcl/Tk as the

basis for representation of active documents in favor of SGML.

We have no knowledge of a single documentation tool combining all the needed features

for browsing a design information web. The Henry system provides integration at the

inter-tool communication level between three documentation tools that complement each

other: the Navigator, Mosaic and FrameMaker. This combination provides most of the

necessary features. However, to properly support documentation in a wide-area multi-

organizational design environment, these should be better integrated. In addition, Mosaic

and the Navigator have documentation processing limitations that makes difficult their use

in an industrial-strength VLSI design.

None of the documentation tools we integrated supports concurrent editing of a document.

The lack of groupware tools integrated with Henry, strongly limits the adoption by large

teams of a methodology based in simultaneous design and documentation. However, we

believe that it would not be difficult to integrate these tools with the Navigator. The study

of integrated design and documentation aided by groupware tools is future research.
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Chapter 7

The Henry System Implementation

In this chapter, we present the implementation strategy and some of the details of the tools

and support infrastructure that compose the Henry prototype. We also describe scenarios

that we used to test and evaluate the operation of Henry.

7.1  Introduction

Our implementation goal was to quickly prototype an environment to help us develop the

architecture and tools described in the two previous chapters. We tried to reuse existing

software as much as possible. In many situations, the results are far from optimal. Many

implementation details must be understood to install and use the system that would be hid-

den in a more robust release. On the other hand, this approach had the advantage of pro-

viding us with an early test vehicle to evaluate the feasibility of many of our ideas with

reduced implementation effort.

The existing prototype of the Henry System consists of a set of design and documentation

tools, that communicate with a common message HUB. This is used for passing messages

“Plan to throw one away; you will, anyhow.”

— Frederick P. Brooks, Jr.
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between the tools. Some of the tools had to be modified to communicate with the HUBs.

These incorporate a collection of inter-tool communication interfaces we designed for

sending and receiving commands (see Figure 7.1).

This chapter is organized as follows. We start by presenting our implementation of two

operating system services required by the HUBs, but which are not available in the UNIX

systems used to develop Henry. In Section 7.3 we describe the implementation of the

interfaces between the HUBs and the tools. In Section 7.4, we discuss the implementation

of the Navigator, Henry’s electronic design notebook. This is followed by the presentation

of the implementation of the interface to the World Wide Web in Section 7.5. Section 7.6

presents design scenarios involving access to resources available on the Internet using

Figure 7.1 The Components of the Henry Prototype

The Henry prototype is composed of the message HUB and a set of design and
documentation tools.The tools have been adapted to communicate with the HUB. The
HUB supports all the interfaces used to communicate with the tools in its Message
Transport Layer. The actual dispatching of messages between the tools is performed at
the HUB’s Message Handling Layer.

Message Handling Layer (MHL)

Message Transport Layer (MTL)

H
U

B

Emacs Magic

Spice3FrameMaker

Mosaic Navigator VEM
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Henry. In Section 7.7, we review the evolution of the Henry System since its inception.

Finally, in Section 7.8, we summarize the chapter and present our ideas for implementa-

tion of a next version.

7.2  System Services Implemented by the HUBs

For the implementation of the HUBs we had to develop two system services, not offered

by the current versions of the operating systems available in most UNIX workstations.

These are thesession manager and theservices registry.

The session manager is invoked to assert that a tool has been started. First, it determines if

the user is already running the tool in one of the machines of the network. If not, it starts it

on the host selected by the user, using the UNIXrsh command, and waits for it to respond.

If the tool is accepting input from remote clients, then the session manager simply returns.

The services registry of Henry is intended to keep track of the host and port locations of

the applications a user has running on the network. In our environment, design tools

dynamically assign an unused port for receiving commands from clients. Once they have

the port assigned, they inform the registry of the host and port where they can accept com-

mands. This registry is used by the Henry session manager for rendez-vous with the tools.

We describe the implementation of these two services in more detail in the remaining of

this section.

7.2.1 Session Management

The session manager is invoked when the HUB receives a message addressed to a tool. To

deliver the message, the session manager attempts to establish a connection with the Inter-

net port in the network assigned to the tool in the services registry. However, as the tool’s

execution may have been stopped or it may not have been started, the connection may not

be possible. At this point, the session manager restarts the tool and waits until the new lis-

tening socket is registered. The tool then becomes ready to receive the message.
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In our implementation, the session manager is not an independent module, but a set of pro-

cedures. For each tool there is a module that groups the procedures that handle communi-

cations with the tool. In each module, there is astart procedure, which is invoked at the

beginning of all other procedures used for communication in the modules. The collection

of these start procedures constitutes our implementation of the Henry session manager.

The procedures that form the session manager are built upon a collection of procedures for

starting interactive applications anywhere on the network. These procedures in turn

invoke the commands ofexpect, an extension to Tcl for controlling interactive sub-pro-

cesses [Libe95].

7.2.2 Services Registry

The session manager needs to locate the listening address of running programs. In the

Internet, well-known sockets are only defined for a small number of general services.

Some applications register in pre-defined TCP/IP ports, but this is bad programming prac-

tice, as it may create conflicts between programs using the same pre-defined port. Most

applications listen for requests in a dynamically assigned port. After obtaining such a port,

they make the port known to the network using one of many available naming mecha-

nisms. Typical examples include a file containing the port number in a common file sys-

tem or a pre-established property in the X Window System server [Sche92, oS90] used by

the application. To integrate a new tool in the Henry System, there are two approaches. In

the first, we modify the tool to use Henry’s own registry directly. In the second, we find

what registry the tool uses, start it and wait for it to register. Then we transfer its listening

port location information to the Henry registry.

We chose not to implement the Henry registry as another separate process or as part of the

HUB. Instead, we decided to use the property tables available in X servers to maintain a

database of the ports and hosts where tools are accepting connections. This works well in

our environment, where all interactive tools need a X server to run. It also makes the sys-

tem more flexible, as design and documentation tools can be started independently of the
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HUB. In addition, it also makes the system more robust. If the HUB crashes at some point

during a design session, a new HUB process can be restarted without affecting the opera-

tion of the tools. This is possible because the HUB uses exclusively stateless protocols and

can find the listening ports of the running tools by once again consulting the registry data-

base in the X server.

The HUBs also register with the associated user’s X server, as would any other tool. This

enables tools to find the port where the HUB listens when they have to transmit a message

as a response to a user command. However, some applications and external HUBs without

access to a user’s display may also need to find its listening port. For instance, consider the

situation when active messages have been sent to the design environment of another user.

These are sent to his electronic mail address or to an URL that his associated with his

name. In both cases, messages have to be delivered to the recipient’s HUB from a program

that operates as a gateway and has no access to the X registry. For this reason, we also

make HUBs advertise their host and listening port in a pre-defined location in the file sys-

tem.

To make tool integration easier, we createdservrg, a library that provides functions to help

applications register the address of their listening sockets in the Henry common registry. It

also provides functions for clients, such as the HUB session manager, to find the host and

port where they are listening to their requests. The library offers three language interfaces,

for C/C++ programs, and Tcl and UNIX shell scripts. This gives to system integrators sev-

eral alternatives for making tools use Henry communication services.

7.3  Interfaces with Design Tools and Frameworks

The Henry System already contains a diverse collection of commonly used design and

documentation tools that we have integrated. These include:

• FrameMaker, a documentation processing system with hypertext support, developed by

Frame Technology, Inc.
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• Magic, a VLSI layout editor [Oust85]. Magic can also operate as a front-end to IRSIM,

a logic simulator.

• SPICE3, a circuit simulator which is linked tonutmeg, a front-end for waveform dis-

playing.

• GNU Emacs, an extensible text editor based on the LISP language. Hypertext exten-

sions have been developed for Emacs. GNU Emacs runs also as a front-end to a very

sophisticated software development environment.

• VEM, the front-end to the Octtools VLSI Design Framework [Harr86].

• The tools developed at the NCSA to interface with the World Wide Web, namely

Mosaic [Andr93] and thehttpdserver.

• The new tools we wrote to support integrated design and documentation, such as the

Navigator, presented in the previous chapter.

This list gives a good snapshot of the different types of interactions performed by current

system designers. It includes tools used for information retrieval, software development,

integrated circuit layout and simulation, and documentation. We believe that other tools

addressing design aspects not covered by those we integrated, such as logic synthesis and

printed circuit board design, use fundamentally the same types of interactions and could

be integrated in similar ways.

All the tools integrated in the Henry System have bidirectional communication capabili-

ties with the message HUB. The HUB is written as a shell that accepts commands in the

Tcl language. It runs a script distributed across several files in Tcl that perform the dis-

patching of messages coming in from its communication interfaces. The HUB also accepts

interactive commands but this capability was added for enabling easy interactive debug-

ging. When it starts, the HUB places itself running in the background, with its window

iconified.
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The organization of the HUB’s software is shown on Figure 7.2. We incorporated a collec-

tion of extensions into the basic Tcl shell. These are written as C libraries that add new Tcl

commands to the language. The extensions offer primitives for communicating with the

tools in the form of additional Tcl commands. We organized these extensions as generic

packages for inter-tool communication between any generic Tcl program and the tool to

which the package interfaces. These include:

• Expect, for spawning tools by the session management services, as described in the

previous section.

Figure 7.2 Extensions Loaded by the HUB Tcl Interpreter

The HUB is a C program running a Tcl interpreter and several extensions. Some were
developed by us, while the others were developed externally and put in the public
domain. The extensions add new commands to the basic Tcl language appropriate to
communicate with the tools used to produce active documents. The tool interfaces and
the session management services are implemented as Tcl procedures that call the
commands added by the extensions. On top of the tool interfaces, we have the message
dispatching routines, also completely written in Tcl.
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• Tcl-DP, a package to support distributed processing, developed at Berkeley [Smit93].

We use Tcl/DP’s TCP sockets manipulation primitives to communicate with Magic and

Spice3.

• TclFrame and TclTCP, developed at GE Labs. TclTCP replicates the functionality

available in Tcl/DP for handling TCP/IP sockets. TclFrame uses TclTCP to interface

with FrameMaker using its public Sun RPC-based interface [Fra]. We have ported this

software to interface with the latest release of the FrameMaker system.

• tclEmacs. We have written this package to interface with the GNU Emacs editor. The

package modifiesgnuserv,an extension to Emacs for accepting commands from remote

clients. These may invoke a set of shell commands that create the connections with the

server running on the Emacs editor. We modified gnuserv to register the emacs server

using our server registry conventions and modified the shell commands to be run as Tcl

procedures implemented in the C language.

In the remainder of this section. we describe in more detail the implementation of the

interfaces to the design tools integrated with the Henry System. Each of these interfaces is

supported by a library of Tcl procedures. Although these are currently used only by the

HUB, they are ready to be incorporated as an extension into any Tcl-based program.

7.3.1 Interface to Spice3

We modified the code ofnutmeg, the simulation font-end distributed with Spice3, to inte-

grate this tool with the Henry System. The front-end is controlled via commands in an

interpretive language specific of this application. We changed it to listen to an unassigned

Internet port and pass the commands received on that port to the local interpreter. Upon

initialization, the modified nutmeg registers the host name and port number in the X server

to which it is connected. For registration, it follows the conventions defined for the Henry

System and implemented by the servrg library, presented in Section 7.2.2 on page 127.
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It is also possible to send commands from nutmeg’s main window to any Henry applica-

tion. This enables a user to ask for the presentation of a layout or the description of a

design being simulated. We wrote a macro in nutmeg’s command language that executes

in turn a tcl-DP script as a child process. The macro uses nutmeg’s shell command, that

provides a user interface to the UNIXsystem() call.

7.3.2 Interface to Magic

We also had to make changes to the source code of Magic to integrate it with the Henry

system. For receiving commands, we modified the Magichelper. This is a subprocess

started from Magic to receive events from the attached X display. The helper collects key

inputs, writes them into a UNIX pipe to the parent and signals it when a command line is

ready for processing. The changes to Magic’s helper were similar to those we made to the

Spice3 front-end. We modified it to listen in a new Internet port, register it according to

the Henry’s server registry conventions, and multiplex the commands received with those

typed-in at the graphic user interface.

To send commands from Magic to other tools, we added a command to the parent process,

similar to the shell command available in nutmeg. We also added a new command for

retrieving the contents of a label and pass it for evaluation by the shell. This makes it pos-

sible to execute annotations to the design. Annotations could then contain for instance

commands to display related documentation. Magic supports the addition of new operat-

ing modes for the mouse, calledtools. With a newhypertext tool, it is possible to use a lay-

out as a map for quickly guiding a designer to the documentation of specific detail of the

layout.

7.3.3 Interface to VEM

VEM is the front-end to the Octtools environment. To enable communication between

Henry and the Octtools, we created a new program that runs as an independent process

and operates as a gateway between VEM and the HUB. This process is started from VEM
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as one of its RPC1 applications and is also linked with the Tcl/Tk libraries. This makes it

possible to pass commands in both directions.

When a designer starts VEM from the Henry environment, it is called with the options to

automatically start the gateway. This registers as the VEM editor in Henry’s registry. It is

then possible to invoke VEM commands through this gateway.

Communication from VEM to the HUB is also possible. When the gateway starts, it also

calls VEM to register a new command, calledExec-Tcl-Command. When this command is

typed-in at VEM’s window associated with the gateway, its arguments are passed back for

execution on the gateway. This interprets the arguments as a those of asend HUBTcl

command, which is evaluated in the local Tcl interpreter. As a result, the arguments of the

Exec-Tcl command in VEM end-up being evaluated in the HUB’s Tcl interpreter.

This integration approach has the main advantage of not requiring any changes to VEM’s

source code. However, it also has limitations. It forces the creation of an additional pro-

cess and routing of messages though it. This would be acceptable if we could have a single

gateway running all the time in the background. However, because VEM forces com-

mands to be typed from windows and only allows one-to-one mappings between its RPC

applications and its windows, designers are forced in practice to start and stop the gateway

almost continuously. This happens whenever they have to run another RPC application on

the facet connected to the gateway or need to send a command from a remote tool to a

facetdisplayed in a different window.

7.4  Navigator Implementation

The Navigator is implemented as a C++ program with a Tcl/Tk based user interface. The

fundamental and more complex data structures in the tool are described in C++. These

include the data structures that describe open documents and the viewports created for

1. RPC — Remote Procedure Call.
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interacting with them. There is a set of Tcl commands to call the C++ methods that manip-

ulate the data structures. The user interfaces and the linking between the visual controls

and the Tcl commands to manipulate the data structures are written in Tcl/Tk.

It is very simple to communicate between the Navigator and its associated HUB. We could

have used Tk’s send command, which is used to invoke a Tcl procedure running in a

remote interpreter attached to the same X display. The procedure invocations and the

results are transported on the X protocol through the common display server. However, we

have chosen to use Tcl-DP, an extension to Tcl that offers the same capability over a TCP/

IP connection. We did not decide to incorporate this extension for remote command invo-

cation because of its faster response time. Latencies in both cases are in general smaller

than a few seconds, hence acceptable by the users. However, sometimes networks have

much larger response times. In that case, the behavior of Tk’s send command is uncontrol-

lable, generating many unwanted time-out exceptions. Tcl-DP provides a much better way

to handle communications under such situations.

The Navigator uses DocScript, Henry’s native language-based environment for manipulat-

ing the data structures representing active documents1. DocScript is implemented as a set

of C++ classes, one for each basic documentation concept supported by the language.

Each class constructor generates a new Tcl command which is then invoked to configure

and retrieve the attributes of the class and call its methods. The DocScript library contains

about 13,000 lines of code.

Custom user interface dialogs can be introduced in any document by defining new Doc-

Scriptnote types as a set of Tcl procedures. There is also a set of simple pre-defined note

types that can be instantiated in any document. Currently, these include a button, a bitmap

viewer, a text entry, labels and a text file editor. Adding a new note type is relatively sim-

ple for those who now how to program in Tcl. As an example, the Navigator’s file contain-

1. . We described DocScript in Section 6.3 on page 111
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ing the Tcl procedures that describe a button note, contain approximately 50 lines of code.

This process could also be automated, by adding a user interface builder to the system.

This is an interactive tool for creating the user interface of a dialog from a palette of avail-

able widgets. XF is an example Tcl/Tk user interface generator that could be adapted for

this purpose [Delm93].

The advantage of having active documents described in a programming language is not

limited to the gained flexibility. This feature had a dramatic impact on the speed of devel-

opment and debugging of the Navigator. We could write the initial active documents with

a text editor. Later on, the same tool could be used to detect and fix errors in active docu-

ment’s descriptions.

In addition to the document data structures, the C++ part of the Navigator was also used to

describe the data structures for the run-time environment. These describe the sessions

open with each document and the viewport windows used to manipulate their contents. In

the Navigator, a session is a class containing pointers to the DocScript data structures that

describe the documents being edited and the objects with visual representations used to

manipulate them. The C++ part of the Navigator contains approximately 7,000 lines of

code. The Tcl/Tk part, containing the user interface has about 6,600 lines of code.

The run-time performance of the Navigator is very acceptable, considering it was

designed as a throw-away prototype without any concern for performance. DocScript doc-

uments have on average 5,000 kilobyte per frame and can be parsed on a Sun

SparcStation2 workstation in less then one second perframe. The rendering time depends

considerably on the complexity of theframes, which depends on the number and type of

notes contained. Typical times are in the range of 2-5 seconds/frame.

7.5  Interface with the WWW

As described in Chapter 5, the Henry System system is designed to exchange active mes-

sages. These are represented using an extension to MIME. In the current implementation,
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HUB processes do not support MIME directly. The Message Handling Layer is simply a

procedure that dispatches messages using thehmessage interface with the Message Trans-

port Layer.

As a result, in the current prototype, messages sent between the tools that run locally in a

user’s environment are not converted into MIME. Exchange of MIME formatted mes-

sages only takes place in communications with other users and external servers. Decoding

of MIME messages is made by a separate program, based on the publicly available MIME

support software. This translates themultipart/enabled-mail MIME format used for active

messages into sequences ofhmessage commands to the HUB and a set of data files, whose

names are passed as arguments to thehmessage commands.

Figure 7.3 shows the software modules used to process messages when communication

with external HUBs and Internet-based services is involved. There are two interfaces for

exchanging information with tools running in external user environments. One uses

SMTP, the Internet protocol for electronic mail [Post82]. The other uses HTTP, the client-

server communications oriented protocol of the World Wide Web (described in

Section 3.4 on page 50). The rest of this section presents these two interfaces in more

detail.

7.5.1 Active Messages Transported by Electronic Mail

To send an active message by electronic mail from a tool, a user of the system clicks on a

button or selects highlighted text in one of the tools. This has the effect of sending an

hmessage to the HUB. As the HUB runs a Tcl interpreter, it is straightforward to send a

file to another user. The followinghmessage accomplishes it:

hmessage HUB [exec mail user@host < file]

In Henry, we also havemailmessage, a script that we wrote to generate active messages

from hmessagesand send them by electronic mail. Mailmessage generates amultipart/



137

Figure 7.3 Implementation of Henry’s Interface to the WWW.

The current version of the HUB message handling system does not manipulate MIME
formatted messages directly. It supports only thehmessage format, developed for
sending commands to design and documentation tools. However, the Henry System
can process active messages. It uses external software modules to translate active
messages into files and sequences ofhmessage commands that are then sent to the
HUB. Postmessage and mailmessage are two scripts that can translate an hmessage
command into an active message containing the command and the files it references.
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enabled-mailMIME message1 with the commands and files indicated as arguments, and

pipes it tosendmail, the UNIX program to send mail over the Internet.

To deliver active messages received by electronic mail in the Henry environment, a user

needs to configure his mail agent program to automatically activate multipart/enabled-

mail type messages. We achieve this via a mail classifying program2. The user’s environ-

ment is modified to pipe automatically all messages to the classifier upon delivery (in the

~/.forward sendmail configuration file). The classifier is configured to store non-active

messages in the user’s mailbox and folders. Active messages, however, are piped directly

into swish, the Safe-Tcl interpreter of the Enabled-Mail software distribution. Henry’s

active messages contain directives to load our extensions. These consist of Tcl procedures

to convert active messages into messages in thehmessage format and dispatch them to the

HUB of the receiver. HUBs are assumed to be running while the associated users are in

session. If a HUB to which a message has to be relayed is not running at the time of deliv-

ery, the mail classifier simply places the message into a special folder. The message can

then be read and possibly re-activated at a later time.

7.5.2 Active Messages Transported by the WWW Protocol

The sequence of operations for sending an active message using the WWW interface is

similar to the one used to send it via electronic mail. The only difference is that we use a

different postmessagescript. Whilemailmessage takes a user’s electronic mail address as

argument,postmessage takes an URL. This runs on a Tcl interpreter with theexpect exten-

sions.Postmessage spawns a sub-process running thetelnet program which in turn con-

nects to the WWW server of the URL and sends the generated active message using the

HTTP POST command.

1. mulripart/enabled-mail is the MIME extension we adopted for encoding active messages, as
described in Section 3.3 on page 46.

2. There are several programs available for this purpose. An example isslocal, which is part of the
MH mail handling system [Rose85]
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Users may receive active messages from the HTTP interface in three ways:

•  As a reply to posting in a URL using thepostmessage script. HTTP servers in general

return a HTML document with information about the result of the execution of the

commands they receive.

• As a reply to retrieving the contents of a URL when using Mosaic to browse the

WWW. The hmessage

hmessage Mosaic open URL

starts Mosaic and sends it a command to GET the URL indicated.

• Through the HTTP server running in their environment. In this case, we adapted the

same Enabled-Mail support software used to dispatch an active message received by

electronic mail to a HUBs to interface with NCSA’shttpd server. We use its Common

Gateway Interface (CGI) [McCo94] to activateswish and pass it the contents of the

received active message.

7.6  Exploring Internet-based Design Scenarios

We now describe how electronic commerce services could be accessed and provided using

our software. What follows is not a report of our experience using Henry in actual designs,

but the description of sequences of design operations that can actually be performed with

the existing prototype. The design of the Henry architecture proceeded through the devel-

opment of these mock-up scenarios. We used them to validate the architecture and inter-

operation between the various components of the environment.

For the first scenario, we consider a SPICE simulation service that is accessed over the

Internet. As a second scenario, we consider a designer selecting and ordering an off-the

shelf chip, its documentation, models and application notes from a catalog on the WWW.

It is not simple to create usable electronic commerce services for designers. A number of

challenges must be addressed, including:
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• Authentication of clients and security of communications. For these, we can use cryp-

tography techniques. Certification authorities [Chok94], digital signatures [oS91b] and

Privacy Enhanced Mail [Linn93, Kent92] are developed technologies that could be

used for this purpose [Brow94]. Certification authorities are network services that can

prove the authenticity of a user or an electronic document produced by the user. These

are the electronic equivalent of today’s notaries. Digital signatures are special check-

sums that are appended to electronic documents to certify that their contents have not

been tampered and could not have been produced by anyone else but their authors. Pri-

vacy Enhanced Mail is an Internet standard describing algorithms and conventions for

encrypting electronic mail messages.

• Billing. For this we could use existing software for automatic placement of orders and

payment, based on EDI, the Electronic Data Interchange standard [oS91a].

• Intellectual property protection. This is of major importance both to service providers

and users. They need to have guarantees that their simulation models will not be given

to someone else. We believe that a combination of legal and technical mechanisms

could be created to provide the necessary protection, such as automatically exchanged

and electronically authenticated non-disclosure agreements or binary representations of

simulation models.

Our goal in developing scenarios of how designers could use of electronic commerce

focuses on finding the appropriate flow of information and sequencing of tool invocations

required to implement the services. In the development of the scenarios presented here, we

assume that the above problems could be addressed by re-using existing software. In the

rest of this section, when we mention billing, authentication or encryption, we refer to the

point in the flow simulated by the scenario where these operations would be performed. In

the mock-ups we built using the tools integrated in Henry, these are not actually executed.
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7.6.1 The Remote Circuit Simulation Service

A remote simulation service could be very useful to small design organizations that cannot

afford to purchase the expensive hardware accelerators and software for prototyping com-

plex systems. In our mock-up, we usedSpice3 as the simulator andnutmeg, its front-end

for viewing simulation waveforms. Other simulation tools could easily be included too.

Network-based simulation services have been implemented before. These were accessed

either made available by electronic mail, a simple client-server protocol or the creation of

an account at the service provider. However, these services’ availability and usage

accountability were limited. We describe below a protocol for making this service billable

and available to anyone on the Internet. We also assume that the service is used for long-

running expensive simulations. As a result, its users need to have feedback about the sim-

ulation status after submission of the job and the capability to abort it on demand.

In our scenario, the remote circuit simulation service is organized as follows (see also

Chapter 7.4). There is a WWW home page that advertises the service. From there, it is

possible to retrieve the terms and conditions for its use. When a designer decides to use

the service, he or she can fill-in the contractual forms interactively. Once completed and

authenticated, the designer receives a document with a digitally signed contract. The doc-

ument includes a URL that can be used in the future to request simulations. Simulation

requests received at this URL are authenticated and billed to the client when completed.

To send a simulation request to the service, the designer runs either thepostmessage script

to send the simulation deck to the assigned URL in the service’s HTTP server or mails the

deck using themailmessage script. In both cases, the request is encrypted with the simula-

tion service’s public key and authenticated with the designer’s digital signature. In

response, the designer receives another document with the acceptance of the request.

For designers without the Henry software, a variant of thepostmessage script is available

from the simulation server as an active message. When activated, the message prompts the
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Figure 7.4 Flow Diagram of the Simulation Server

The figure shows the sequence of steps performed by the first time user of the prototype
simulation service. There is an initial registration process (steps 1-3).Once registered,
designers use a simple script to submit a simulation deck (step 4). They can then
connect to the service to monitor and control the execution of the simulation and
retrieve the result (steps 5 and 6).
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designer for the location of the simulation deck and automatically submits it, encrypted

and signed.

The service acceptance document contains an anchor to a new URL that can be used by

the designer to observe the simulation status from Mosaic.Postmessage waits for this

receipt, saves it into the designer’s archives and then signals Mosaic to open it through its

Remote Control interface.

The simulation service runs the Henry System tools. A simulation request is received by a

script that is invoked byhttpd. Once the simulation deck is decrypted and authenticated,

an asynchronous request is sent to the HUB to start the simulation. This request is actually

a script withhmessages to Spice3 to load the deck, run the simulation, plot the results and

finally send anhmessage back to the HUB to execute a program to notify the client about

the end of the simulation.

In the submission form, and also while checking the status of a simulation, clients can set

options about how the simulation result is to be delivered. This is indicated by specifying

a URL of the receiver. The URL may refer to an electronic mail address or an HTTP

server where the simulation result may be posted. Users may also opt to receive only the

indication of the URL in the service provider that may be used to retrieve the simulation

result once it is finished.

When the simulation is complete, the form with the simulation status also includes a but-

ton which, when activated, retrieves the simulation result. In our prototype environment,

results are formatted as MIME messages containing Spice3raw files1. Mosaic is config-

ured to automatically invokenutmeg to display the contents of MIME messages of this

data type.

1. Spice3 raw files contain the waveforms produced in a simulation in binary form.
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The implementation effort to prototype this scenario using the software of the Henry Sys-

tem was rather small, around two weeks. The main limitation was the lack of a tool to

compose and send a simulation request. The current version of Mosaic has no support for

posting large files to HTTP servers. The form-based user interface of Mosaic when user

input request is required is also somewhat limitative. In our view, this is another argument

for organizing design systems as an ensemble of tools capable of accessing the WWW

instead of having one single tool that centralizes all the data presentation and communica-

tions with Internet services.

7.6.2 The On-line Component Selection and Ordering System

Our goal for this scenario was to develop a mechanism for selling complex VLSI compo-

nents on the Internet. Information would be presented in a similar way to that used by the

MSU Microsystems Prototyping Lab library project1. However, we made different

assumptions about how this information would be available. Access to part of the infor-

mation would be restricted and given for a fee. A business transaction would be performed

automatically using electronic commerce. In addition, instead of providing bitmaps of the

layouts in GIF format and delay information as tables, we wanted to be able to send the

layouts in a CAD interchange format and simulation models along with propagation times

tables. In addition, we wanted to have the files automatically installed in the clients data-

bases via active messages.

To order a component, a designer first consults a manufacturer’s database with their speci-

fications and application notes illustrating their use. Once connected to the database, he or

she receives a document with a catalog of the available information. From the catalog, he

or she can retrieve apreview, containing publicly available information about the compo-

nent, such as its basic characteristics, cost and usage terms. Next, if the designer decides to

1. The Mississippi State University Microsystems Prototyping Lab Standard Cells Library is
located at
URL http://www.erc.msstate.edu/mpl/libraries/stdcells/
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order it, he fills-in an electronic form containing the company’s identification, type of

framework where the component models and schematics will be installed, interchange for-

mats accepted, address and payment method. In return, the designer receives a HTML

document. This contains the transaction receipt and information on how to retrieve the

information.

Clients can retrieve the information in several forms. The simplest way is by activating the

hyperlinks to the URLs in the library server pointing directly to the simulation models and

schematic symbols for the purchased component. With minimal extensions to the MIME

configuration files on both sides, we can have the appropriate tools invoked to display

design files directly from Mosaic. However, as in this method we retrieve the files one at a

time, activation of links between the files that constitute the component’s information

package is not possible. This is because the links use relative addressing to refer to other

files.

Full browsing capability only becomes possible when clients have the Henry tools

installed. These may download all the component’s information in a single active mes-

sage. This contains the complete set of files for that component plus a script to install them

in a directory structure reflecting that of the server. Links between the files in the package

can then be directly activated.

In our implementation of this scenario, the component library runs the NCSAhttpd

WWW server. Clients access it using Mosaic and retrieve the design information as active

messages. Figure 7.5 shows the windows seen by the user when retrieving the component

information and Figure 7.6 shows a diagram with the information flow. The component

catalog and order forms are written in HTML. The library is simulated with directories

containing different implementations of various class projects in CMOS technology. The

designs and associated documents were produced by the students of a VLSI design course

who used an initial prototype of the Henry System. Each directory contains files in various

formats, including FrameMaker and Navigator’s documents, Spice3 simulation decks and
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Figure 7.5 The User Interface of the Electronic Component Library

The figure shows the sequence of windows presented to the designer when ordering
from the Henry Catalog.

3) An active message with the infor-
mation package requested is received
by Mosaic. Henry’s Safe-Tcl based
active message browser is called to
evaluate it.

4) The active message script then starts the tools to browse the
files in component’s the information package. Links between
the files may be activated. Finally, the designer may go back to
the Safe-Tcl script window and give a command to install the
files into the local project database.

1) Electronic Catalog Home Page 2) Browse the Catalog, then fill the form to place an order
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Figure 7.6 Information Flow in Transactions with the Component Library

The figure shows the flow of information between the Henry design environment and
an Electronic Component library, from selection and ordering to installation into the
local project database.
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Magic layouts. As a result, each project’s information package is an active document, with

files of various types containing hyperlinks between them. The active message with the

information for a component is formatted as a MIMEmultipart/enabled-mailmessage

containing 1) a MIME composite message, whose elements are the individual design data

and documentation files to be installed and 2) a Safe-Tcl script.

The advantages of speed and reduced work to retrieve this information are obvious. Once

the standard protocols and appropriate tools are in place, we can replace paperwork and

many tool commands with a few button-clicks and the filling of an electronic form.

One way to protect information in a component library, while giving designers the possi-

bility to use it, is by supplying clients the component’s interface specifications and docu-

mentation along with an authorization to use a remote simulation service, such as the one

described in Section 7.6.1. Only the simulation service has access to the detailed model

and this can be set up to restrict its use to simulations submitted from authorized clients.

This way, designers can see how their systems would work with a component without

actually having access to its model.

7.7  How the Henry System Evolved

We have been studying the integration of design and documentation via active documents

in VLSI environments for the past four years. Over this time, the architecture of the Henry

environment underwent major reformulations, as our perspective of the approaches to be

taken changed. The major goals however remained the same. We wanted to provide a path

for evolving from separate design and documentation environments to a new environment

integrating both domains, while re-using as much as possible the existing software.

Initially, we were interested in using an existing hypermedia system, combined with exist-

ing CAD tools. The hypermedia system would be used as front-end to access the design

data via the tools. We considered several options, including:

• Gain Momentum, a commercial hypermedia system
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• HIP, a research hypermedia system built on top of the Picasso application framework

[BSB90].

• FrameMaker, a text processing system with hypertext facilities.

We found severe problems with using any of these tools for our purpose. Gain and Picasso

demanded about 64 megabytes of memory to run, and would take several minutes to start.

In a 16M machine, the start-up time was around 15 minutes and the application would

swap continuously. Two years later, we had to conduct our experiments using even less

powerful machines while running the design tools concurrently1. For this reason alone,

these systems would have to be excluded. In addition, we also found other major problems

related with the authoring capabilities. Both Gain Momentum and Picasso were essentially

closed systems with respect to inter-tool communication. Apart from a facility to invoke

shell commands, no other interface was offered.

Gain Momentum seems to have been designed for creating graphically sophisticated pre-

sentations that could later be browsed repetitively by many users. On the other hand, we

were interested primarily in tools for environments where the authors and readers are the

members of the design teem and authoring does not require knowledge of a new complex

user interface.

FrameMaker is considerably less demanding in terms of resources. It was still a resource

demanding application for our intended experimental environment, but we still ended up

integrating it as the choice tool to display formatted documentation. FrameMaker has a

very sophisticated API that enables automatic insertion of insets from other running tools,

emulation of all keyboard interactions and simple hypertext support. However, its extensi-

bility for our purposes is very limited. There is no extension language, only a keyboard

macro facility which does not allow invocation of hypertext commands. With Version 4,

Framemaker now enables the extension of the user interface with the addition of new

1. The usability experiments of the Henry System will be described in detail in the next chapter.
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menus. However, this facility is still just a minimal supplement for our needs and did not

exist at the time. In addition, Framemaker needs to operate in a separate major mode to

make hypertext commands are available, which disables all other commands. This makes

simultaneous browsing/authoring of FrameMaker documents very hard.

After evaluating and dismissing all the options based on an existing hypermedia front-end,

we decided to write our own. The Navigator was conceived as an electronic design note-

book, architecturally similar to the VNS [Gorr91]. The Navigator had a much less sophis-

ticated user interface and documentation processing facilities. This made it a smaller

application, suited to run in the low-end workstations where our initial experimentation

with the use of the system in actual design took place. We designed the Navigator to make

the creation of links to external design tools much simpler than in any other system. It sup-

ported multiple communications protocols and was easily extended, as it was programmed

in Tcl.

However, our experience with the system made us consider a major shift in the overall

architecture of the environment to make the system more flexible. There were too many

questions for which the solution based on a common front-end provided no good answers.

What would happen when the information in the notebooks had to migrate to other docu-

mentation tools to produce the final user’s documentation? Why was it necessary to have

the Navigator running when activating a “link” between two external tools, such as Spice

and FrameMaker? At this point, we began to understand that it was necessary to separate

the communications subsystem of the Navigator from the user interface for manipulating

documents. We also realized the true importance of designing the system as a symmetric

tool ensemble, where every tool could be run both as a client and as a server of every other

tool.

The communications subsystem of the Navigator became what is the HUB in the current

version of the Henry System. The HUB runs as a separate process. We began to look to the

“commands” sent from the Navigator to design tools as “messages.”
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This architecture also looks identical toTooltalk [SunS92]. The Navigator and Tooltalk

adopted the same basic principles for intertool communication, such as stateless commu-

nications. At the time, we considering replacing of the HUB by a commercial Tooltalk

server. However, Tooltalk only became available recently and there are practically no

design tools supporting it even today.

After further experience, we began to realize that a pre-defined set of messages to inter-

face with tools would not provide the necessary support for some of the interactions we

needed to perform from active documents. A fairly large sequence of messages is required

to supply the inputs for a simulation, activating a simulation and request the return of the

results to a simulator. Some interactions, require the orchestration of a sequence of com-

mands that have to be sent concurrently to distinct tools.

That lead us to consider active messages, containing programs for evaluation instead of

messages with pre-defined formats. Tcl seemed the natural choice, given our experience

and the possibility of reusing most of the existing code. In addition, as design teams begin

to span multiple organizations and electronic commerce services become available, there

is the need to send design data in the messages. Careful attention to the security aspects of

the protocol is necessary. At that point, we decided to adopt the Internet standard message

exchange protocols and MIME message formats for intertool communication. Then, we

learned about Enabled-Mail using MIME and Tcl. We reused its conceptual model for

active message delivery at the architecture level and most of the Enabled-Mail prototype

implementation in the HUB.

7.8  Summary and Conclusions

The Henry System is now on its second major version and its architecture and operational

model have reached stability. We believe that new design flows in future industrial

projects integrating design and documentation tools will reuse many of the techniques first

demonstrated by the Henry prototype.



152

In a future version of the system, rather than refining the implementation of its compo-

nents, we would try to make use of more robust software, now available in most worksta-

tion operating systems, such as session management services.

While we were developing Henry, Tooltalk was introduced, becoming part of COSE, and

is now endorsed by CFI. Although there are not may design tools currently supporting

Tooltalk, we expect its popularity in the CAD world to increase significantly in the next

years. The next version of the HUB would certainly re-use Tooltalk’s message services,

using specialized communications for those tools not supporting Tooltalk’s message stan-

dards.

Henry’s Message Handling Layer services still need further development. They need to

support a links database and additional services based on it, such as a new process man-

agement system. This implies that we need to support more complex data structures. This

will necessarily imply a re-implementation in C++. Based on our experience, a Tcl-only

implementation such as the one we have now would not be manageable.

Instead of using public domain design tools, the new version of Henry should have inter-

faces to the best commercial tools available. This is now becoming possible, as more CAD

vendors provide their tools as part of CAD frameworks that provide programming inter-

faces for controlling the tools.

Finally, the Navigator should be replaced by a more user-friendly document editor with

support for inter-tool communication and more sophisticated text processing capabilities.

Among many other additional features, we believe that it should also read and write

SGML documents and be well integrated with the World Wide Web. Documents should be

opened as easily when given their location in the form of a URL as they are now when we

give their location in the file system.
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Chapter 8

Active Documentation Experiment

This chapter describes our experiences with making available an early prototype of the

Henry system for use by the students of a VLSI design course. There were two main rea-

sons for undertaking this experiment. First, we wanted to verify that Henry accomplished

its main goal, the production of active documents combining design and documentation

tools. We believed that these could be obtained without adding a significant amount of

overhead in documentation or data management work to the design team. Secondly, to

understand the strengths and weaknesses of the documentation model, we needed users.

The design methodology adopted for the Henry was based onuser centered design, that is,

obtaining early user feedback and iterative development [Norm86]. The study involved

five groups of two students during one semester. In this chapter, we discuss the goals set

for the experiment, how it was run and what we learned from it. The experiment enabled

us to detect many design flaws of the initial version of Henry. The comments received

were encouraging about the possibilities opened with the new documentation tools used

during the design process, while pointing at the same time to the limitations of the proto-

type.

“There is nothing more difficult to carry out, nor more doubtful of suc-
cess, nor more dangerous to handle, than to initiate a new order of
things. For the reformer has enemies in all those who profit from the old
order and only lukewarm defenders in those who would profit by the
new order...”

— Machiavelli
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8.1  Introduction

We followed usability engineering techniques [Niel92] for the design and implementation

of the Henry System. These include prototyping, early use, testing and iterative develop-

ment. We discussed the implementation of the Henry prototype in the last chapter. Here,

we describe its use, testing and the modifications to the system derived from our observa-

tions.

The version of the system under test described here is not the same as the one described in

the previous chapters, but an initial prototype. This underwent substantial architectural

changes after we incorporated the changes by the experiment described in this chapter (see

Section 7.7 on page 148 for a description of the organization of the system at the time the

experiment took place).

The initial users were a group of students ofEE141 — Digital IC design, a course offered

in the Fall Semester of 1993. There were 80 students enrolled, mostly undergraduates in

the senior year. About 10% of the attendants were graduate students majoring in IC

design. The course covered the design of digital logic gates and their interconnection

[Raba95]. Students attended eight laboratory sessions and completed two design projects.

Four lab sessions, called thesoftware labs, involved the use of design tools; the other four,

thehardware labs, required the use of instrumentation to measure electrical characteristics

of digital ICs and circuits assembled with discrete components.

Of these students, we selected ten from a group of volunteers. They used the Henry Sys-

tem throughout the semester, for completing the design and documentation of the software

labs and design projects. Students worked in teams of two. We had to limit the participa-

tion because the prototype makes extensive use of FrameMaker, for which we only had

five licenses. In addition, the experiment had to take place during the regularly scheduled

laboratory hours, and we wanted to provide the most focused assistance. As a result, the

number of subjects, while not large enough for producing statistically significant conclu-
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sions, turned out to be ideal for the first real attempt to use the system to produce simple

designs.

The remainder of this chapter is organized as follows:

8.2  Setting the Goals

With this experiment we wanted to observe the result of exposing the students to new

methodologies and design aids for designing and documenting their class projects. In the

process we would also remove the obvious bugs and detect any design flaws at the archi-

tectural level. The knowledge gained would then be applied to the design of subsequent

versions of the prototype.

The experiment took place under special constraints. Participation in the project was vol-

untary. We felt it wouldn’t be ethical to force the students to use a system at this early

stage of its development. For this reason, we made very clear to the subjects of this exper-

iment that:

• They only had to participate if they wanted to.

• They could leave the experiment at any time.

• Their participation in the experiment had no influence on their grades.

Section Presents Page
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156
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experiment.

172
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• Reports produced with the Henry System would be graded based exclusively on the

quality of the designs; the media used to write them would have no influence.

• Occasionally they would receive small questionnaires, but they were not obliged to

respond to them.

• Their interactions with the tools would be automatically recorded, but the information

would be kept confidential and would not be used for grading purposes.

An experiment run under this setting could not be used to produce scientific evidence

demonstrating the advantages of Henry’s approach. The number of participants, complex-

ity of designs and duration of the experiment were far too small to produce results that

could be extrapolated for an industrial VLSI design project.

In this experiment, we wanted to observe users and see if they were spontaneously com-

bining design and documentation tasks. We also wanted to check if the design methodol-

ogy supported by Henry leads to better quality designs and documents and if it is more

time consuming.

The main goal for this period of initial usage was to obtain the best possible indication of

the usability of the Henry System. We designed a few questionnaires to be filled voluntar-

ily. We gave these to our subjects just after the projects made with Henry were completed.

In addition, we tried through direct informal contacts to perceive the reactions of our

users.

8.3  Adapting the Prototype to the Users Environment

We started the development of the Henry System well before we were given permission to

undertake the experiment with the students of this VLSI design course. The system we

had before the experiment was substantially different than the one the students used. In

this section, we describe the major extensions and modifications made to adapt Henry to

its experimental users. In the preparation stage we were driven by Paul Heckel’s rules for
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designing a user interface [Heck91]. These emphasize knowledge of the needs of the audi-

ence and design optimization to satisfy those needs.

The tools used in the course had to be integrated. Henry was initially designed to operate

with the Octtools framework [Harr86]. In this course, the students would be primarily

using the Magic layout editor and the Spice simulator. This forced us to write an interface

to send and receive commands from these tools.

Henry had to be modified to consume as little system resources as possible. A methodol-

ogy employing simultaneous design and documentation is more demanding in terms of

computational resources then the traditional design followed by documentation methodol-

ogy. This is because the tools that support these two activities must run concurrently. Fur-

ther, the workstations available to the students were somewhat underpowered: DEC 2100

workstations with 8MB of memory each1. The waiting time to start one of the tools in this

environment was about 2 minutes!

To work around these limitations, we extended the Henry session manager to enable tools

to be launched from any machine of the network. We also programmed it to start by

default all instances of the each tool on a dedicated machine. This way, applications could

share memory and start quicker. The Henry session manager also was modified to pop-up

a substantial number of informational messages. These entertained users with data about

the progress of their tool invocations. Progress messages had the effect of reducing the

frustration associated with using such a complex system under such limited resources.

Once the tools were started however, command activation would take place in a few sec-

onds. With these modifications, we were hoping to have made the environment minimally

usable for the experiment.

We converted the manuals and tutorials of the tools the students would be using during the

course into active documents. This was achieved by translating thetroff based documenta-

1. Later in the experiment, we had access to DEC 3100 machines with 24 MB of memory.
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tion into FrameMaker hypertext documents. In these documents, we added messages with

commands to the tools being taught. Students could see the commands being sent to the

tool being introduced as they read about its operation. The on-line tutorials were used to

show prospective users the advantages of an integrated design and documentation system.

and what could be done with the Henry prototype. Then, as they decided to enroll in the

experiment, on-line tutorials were used to introduce students to the operation of active

documents while learning the tools required for the course.

We wanted the system to look as simple and intuitive as possible to the users. For this rea-

son, we removed all the features and commands that would not be used in the experiment.

For instance, as the students would not be interacting with a design database, but would

simply keep their data in files, we removed all the facilities to manage design contexts.

Individual design configurations would be managed by simply putting the files related to a

design configuration in a directory. Interaction between design documents and the various

configurations was going to be achieved by programming the active documents to invoke

the Unixcd1 command automatically every time a new page describing a different config-

uration was about to be rendered.

8.4  The Documents Produced

Table 8.1 summarizes the documents produced during the experiment. There were two

main types of documents that we wanted the students to produce: software lab reports and

project reports. The contents of these two types of documents and how they were pro-

duced are described in the remaining of this section.

One group decided to use Henry to write some of their hardware lab reports. However, as

the students had no access to workstations in their hardware labs, these documents were

elaboratedafter the measurements and observations were captured. These documents are

less interesting to our study because they do not contain interactive design tools’ activa-

1. cd — change directory.
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tions. They simply present the captured data in tables, bitmaps and text annotations.

Hence, they are not active documents in the sense we understand them.

8.4.1 Software Lab Reports

For the software laboratories, we created templates that allowed the students to follow the

sequences of operations they had to perform and introduce their observations directly into

the active documents.

The first software lab session was dedicated to “hands-on” familiarization with the tools.

The students that volunteered to participate in the experiment had access to the on-line

active tutorials and manuals. For instance, they could read the Magic tutorials on one

FrameMaker window and then type in the suggested commands on an adjacent Magic

window. Or, they could simply click in a hypertext button in the Navigator or FrameMaker

and see the result of the execution of that command on the Magic window (see

Week
Due Title Description

Num of
Documents

3 swlab 2 Magic Layout & DRC 5

4 swlab 3 Magic Circuit Extraction & Spice Simulation 5

6 hwlab 1 CMOS Inverters (extra) 1

9 proj 1 Design Logic Gate 1

10 swlab4 Detect error in layout of ALU using IRSIM simulation 3

11 hwlab 3 BJT Switching times (extra) 1

15 proj 2 Transmit signal through a long metal line and output

pad

1

Table 8.1 Summary of the Documents Produced During the Experiment

Students used the Henry System throughout the course. The table indicates, for each
document type, the week in the course when it was due and how many groups of the
initial five returned active documents
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Figure 8.1). The students who did not participate in the experiment had to sit with the

binders with all the documentation open on their knees, while they typed-in the commands

they were going to learn in that tutorial.

 On the second lab session, the students had to design their first layouts (2 inverters and

one NAND gate). Through the on-line tutorials, they learned how to produce designs of

Figure 8.1 The Henry Help System as an Active Document

The tutorials andman pages for the tools used were converted into FrameMaker
documents and then extended with hyperlinks to the design tools. We chose small page
layouts and large fonts, so they could be easily readable from the screens while not
taking too much real-estate from the displays. This way, users could “play” with the
tools while reading their documentation. At the same time, active documents could
send the commands being explained to the tools for illustration of the concepts being
presented. We created indexes of the FrameMaker documentation in the Navigator, so
that users could be exposed to it since the beginning The figure shows (1) the
Navigator’s index to the Magic tutorials, (2) a Magic tutorial page in FrameMaker, and
(3) the layout described in the FrameMaker page shown by Magic.
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minimum area respecting the spacing constraints imposed by the manufacturing process.

We provided a Navigator template. The template had one frame for each gate that had to

be designed with the buttons already configured to point to the files they would have to

create and the tutorial pages they had to read.

The third lab session consisted on the extraction of the netlist representations of the gates

designed in the previous session, followed by observation of their electrical characteristics

with SPICE3. This lab session was run the same way as the previous. This time however,

the Navigator templates were enriched with more buttons to access the text files contain-

ing the simulation decks, run the tool that extracts a SPICE netlist representation from a

Magic layout, and invoke the simulator. Figure 8.2 shows the windows of an active docu-

ment produced by a group of students as a report for this lab session.

In the fourth lab session, students started from the layout of an eight-bit ripple-carry adder

which contained some errors. They had to perform logic simulations and identify the sig-

nals that did not have the expected behavior. Based on that information, they had then to

identify the wrong connections in the layout, fix them and verify that the modifications

produced the intended result. Figure 8.3 shows a Navigator frame and the windows started

from it for working on the identification of design errors. For this lab, we decided to pro-

vide a lab template distributed between two documentation tools. Hyperlinks were mostly

invoked from the Navigator, while data was to be entered using FrameMaker. The deci-

sion to take this approach was based on the user’s feedback. Each tool was to be used for

the purpose it was best suited. The Navigator acted as a control panel for invoking the

tools and synchronizing the contents of the various windows, while FrameMaker was used

to display the tutorials and type-in the answers to the lab questions. This strategy was very

well accepted by the users. Two of the groups that had given up using the system, decided

to give it a second try and returned their reports as an active document. We also observed

that the students at this time were finally mastering the use of the system as it was

intended: two of the reports were returned at the end of the three-hour lab session, instead

of one week later as they would normally have to. This was only possible because they
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Figure 8.2 An Active Document Containing the Report of Software Lab 3.

The figure shows a frame in the Navigator for performing and documenting the design
tasks in part 2 of software lab 3. The original template included buttons to access design
files and the pages in the help system relevant to the task to be performed. Students
have enriched the frame by filling-in the text notes and adding new buttons to edit the
files thy produced.
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Figure 8.3 An Active Document Describing the Detection of a Layout Error

The figure shows a report of the fourth software lab session. This involved layout
extraction, detection of errors with a logic simulator and their correction using the
layout editor. In this session, we used the Navigator (window on top, left) mostly as a
control-panel where the students could place or modify the behavior of the buttons to
activate the tools. The answers were typed-in on FrameMaker (top right). In the center,
we can see the windows for entering simulation commands and visualizing waveforms
(from the IRSIM simulator). The Magic window at the bottom shows the layout.
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were focusing on completing the design and documentation parts of the problem at the

same time.

8.4.2 Projects

The first project consisted in the design of a CMOS gate whose logic function of given.

The best design would minimize the product , where  is the area of the gate and

the square of the gate propagation time. All logic implementation styles presented in the

lectures were to be tried. Students had to look to all approaches, select the two most prom-

ising, create and simulate an initial version of the two, and finally optimize the one that

produced the best result. We provided them with only a very crude template. This time the

objective of the project was to let students find the appropriate design flow. Figure 8.4

shows the windows of an active document with a design report for this project.

The second project consisted in the design of a circuit to send a signal across a chip on

polysilicon, and then off-chip onto a load capacitance. The design had to meet an average

propagation delay requirement while minimizing a combination of power and area. The

signal propagated across two sections. In the first, the students had to design buffers to

operate as repeaters at equally spaced points in the transmission line. The second section

involved the design of a multi-stage output buffer to drive the off-chip load. The approach

to be followed consisted in finding the optimum design point iteratively, through varia-

tions in several design parameters, such as the division of delays between the two sections

the circuit. Figure 8.5 shows a representative frame of an active document for this design.

8.5  Observation Data

We collected feedback on the usage of our system in three forms:

1. Traces of tools’ usage.

2. Questionnaires.

3. Direct observation and informal contacts with the subjects.

A tp
2× A tp

2
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Figure 8.4 An Active Document Illustrating the Design of a Logic Gate

The Navigator’s frame summarizes the project results.There are buttons to pop-up the
windows of (1) FrameMaker, to show the schematic and discussion of the optimization
process, (2) Magic, to display the final layout, and (3) Spice, to simulate the VTC and
propagation times. The Navigator’s window also contains the summary of the design
process. It shows the basic characteristics of previous versions, why they were
abandoned, and the buttons to display their layouts on demand.
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Figure 8.5 An Active Document for the Design of a Long Interconnect

The Navigator Frame summarizes the project data. It contains buttons to display a
design “summary sheet,” the schematic of the final design and the layouts of the various
buffer stages. From the Navigator’s window, the reader can choose to re-simulate the
final propagation time (an operation that takes several minutes) to quickly display an
image with the simulation result.
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We discuss each of these types of information in the remaining of this section.

8.5.1 Automatic Usage Statistics Collection

We decided to instrument the tools to collect usage data. This had the appealing advantage

of enabling us to trace the users interactions with a document in a non-intrusive way. From

the traces it would be possible to observe how the system was being used. For instance, we

would be able to see if the users were designing and documenting simultaneously, or were

still designing before documenting.

For the usage data collection, we set up a server process running on a pre-defined host and

listening on a predefined port. This server collected messages sent automatically by each

tool of the Henry System to signal various types of events we wanted to monitor. As an

example, we built wrappers for the design tools used in the experiment to send a message

when a tool was started or stopped. This would allow us to compare the number of times

the tools were started from the navigator or independently and the time lengths tools were

active.

Unfortunately, as we later found, the data collected for this purpose were not meaningful,

given the conditions under which the design projects were completed. The ratio between

tools being started from active documents to tools started independently we monitored

was 0.11. However, we observed that the heaviest users of the Henry System did not use

the instrumented design tools for their projects most of the time. They opted for using the

original versions, available in the much more powerful workstations of the various

research groups they were working for at Berkeley. They used non-monitored tools to do

most of the design and documentation work. The project’s data and documentation was

moved to the instructional network only near the end of the project, to create and test the

links between the various pieces of data.

The Navigator was instrumented to send a number of messages when an usage event

occurred, such as flipping a frame or a new document was opened. Table 8.2 lists the event
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types that could be generated from the Navigator, their meaning, and the number of occur-

rences logged during the period of the experiment. Within these messages there was infor-

mation about the number of objects of various types within the active document, such as

the number of frames and notes. This allowed us to observe how the documents grew as

the projects evolved.

8.5.2 Questionnaires

We planned to offer three questionnaires, at different times in the experiment:

Event Description
Number of Events
Collected

OPENVPT opened new viewport on a document 662

CLOSEVPT closed viewport on a document 448

SAVEDOC saved document into file 423

CLOSEDOC closed document 427

FLPFRAME jumped to a new frame 2355

CGHPATH selected a new path 16

TOOLSTART sent “start” command to a tool 82

TOOLEXIT sent “exit” command to a tool. 0

TOOLOPEN sent “open” command to a tool. 584

TOOLCLOSE sent close command to a tool 0

TOOLCMD user sent any other command to a tool 263

Table 8.2 Navigator Usage Statistics

The events related to user’s interaction with the Navigator that were logged into the
statistics server. Each message logged contained not only the event type but also
identification information of the user, document edited and information about the
number of objects of each type in the document’s data structures. That allowed us to
trace the number of times documents were consulted and how they grew over time.
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1. After the tutorials and the first two lab reports were due (week 8);

2. Immediately after the first project was retuned (week 10);

3. Immediately after the second project was complete (week 15).

We strived to ask questions that could be answered easily by the participants and give us

an idea of how the system was being used. We also encouraged the students that were not

using the active documentation system to answer the questionnaires.

The first questionnaire was given relatively early and was designed to collect the general

reactions to the use of the system. The other two were much more objective: we requested

more quantitative answers. We wanted to compare the relative times spent doing design

and documentation and the grades obtained by the participants and see if the students

using the Henry System were getting comparatively better grades and/or spending less

time.

The answers received were small in number, but high in relative terms. Three out of the 5

groups involved in the usage of the system replied to all questionnaires. The first question-

naire was answered by all groups. Unfortunately, given the voluntary involvement of the

students and the absence of a motivation to participate by those not using the Henry tools,

we did not receive answers from the students not using the system.

Answers to the first questionnaire were sent back not immediately after it was handed out,

but several weeks later. Most were received 5 weeks before the end of the semester, when

the second round of mid-terms was finished. Table 8.3 summarizes the results.

The answers to first questionnaire give the best insight on the students perception of the

Henry System. After the tenth week of the semester, competition for the best grades

became all consuming. For many students, the final grade in this course decides their

admission to the best graduate schools. It was very difficult to get any of the student’s time

for collaborating in the active documentation experiment once that point in the semester

was reached.
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Question/Possible Answers

1. How have you used the Navigator so far (check all that apply)? 5

1.1
1.2
1.3
1.4

Never
To access the tutorials
Return my reports
Start design tools.

0
3
4
2

2. For how many hours? 5

2.1
2.2
2.3
2.4

Less than 1
Between 1 and 5
Between 5 and 10
More than 10.

0
2
1
2

3. 3. What is your impression so far? (Comment) 3

4. Are you spending more or less time writing your reports than you would if you were writing a
paper-based report?

5

4.1
4.2
4.3
4.4

More time
Same time
Less Time
Comments

3
0
2
5

5. Which documents are easier to understand? Active documents or the paper documentation? 5

5.1
5.2
5.3

Active documents
Paper documentation
Comments

4
1
3

6. What do you think of the general idea of combining the design tools with the documentation
tools the way the Navigator does?

5

6.1
6.2
6.3
6.4

Good idea
No big deal
Bad idea
Comments

5
0
0
5

Table 8.3 The First Questionnaire

The Table summarizes the 9 questions and answers of the first questionnaire. The
questionnaire was handed-out just before they started the first design project. At this
point, students already had considerable experience with the design and documentation
tools of the Henry System and the templates for filling-in the lab reports.

R
ep

lie
s
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The few answers to the two questionnaires about the projects indicate that students saw no

advantage to writing on-line documentation. Contrary to the template-based lab reports,

project reports were much more efficient to write by hand with the Henry tools. Except for

one group that was determined to use the system until the end, they all decided to abandon

the use of the tools for documenting their projects. The reason was that introducing sche-

matics and typing math formulas was too time consuming and was not worth the effort:

project reports would be thrown away once graded by the instructor.

8.5.3 Informal Contacts

Informal contacts did not give us quantitative data, but they were the source of the most

important feedback during the experiment. We encouraged “bug reports” and suggestions.

We received many, both directly and by electronic mail. In the first weeks of the experi-

7. Resources. Do you think the speed, available memory, and screen size available are appropri-
ate for running the Navigator?

5

7.1
7.2
7.3
7.4

Not enough resources
Resources OK
More than enough
Comments

5
0
0
1

8.  What is the main limitation of the current prototype? 4

8.1
8.2
8.3
8.4

The way tools inter-operate
The user interface
Other: describe
Comments

3
0
1
2

9. Have you ever thought of anything that could improve the usability of the system? (Comment) 3

Question/Possible Answers

Table 8.3 The First Questionnaire

The Table summarizes the 9 questions and answers of the first questionnaire. The
questionnaire was handed-out just before they started the first design project. At this
point, students already had considerable experience with the design and documentation
tools of the Henry System and the templates for filling-in the lab reports.

R
ep

lie
s
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ment, there were many obvious design flaws and programming errors that had not been

exercised. This form of contact provided a very fast feedback path that enabled us to pro-

duce quick fixes. Without this fast feedback, the experiment would not have survived. The

students’ interest fades rapidly if the prototype under test does not meet minimum usabil-

ity requirements and the main complaints and suggestions for improvement are not

addressed.

The most interesting suggestions for improvement were given orally. Students tend to

loose interest in using the system if they do not see a continuous genuine interest in their

participation. They also need to perceive that someone is listening to their input. In addi-

tion to being with the students during the regular sessions, we also decided to make fre-

quent unsolicited visits to the instructional software labs during the off hours, while the

students were working on the class projects. This way, we could be in more direct contact

while they were using the system and also provide better assistance.

8.6  Hypotheses for an Industrial Strength Experiment

A complete human factors study was out of the scope of this experiment. This would

require a level of involvement and commitment from the students to the study we could

not expect. For example, in an evaluation scenario we developed, we considered dividing

the participants into two sub-groups to prove the effectiveness of Henry (the first hypothe-

sis). One would use the Henry System and the simultaneous design and documentation

approach. The other would use the traditional tools and methodology. Both would be

under observation. Protocol analysis of the design process would be used to determine the

findings from the experiment [CWE91].

However, the students’ single motivation to participate was the excitement of having an

opportunity to use a new tool and being the first to attempt a new circuit design methodol-

ogy. In this setting, it would be impossible to convince students in the group not using the

Henry System to freely accept to participate in the experiment. It would also be impossi-

ble to prove the third hypothesis (better reusability) under these conditions. To accomplish
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this, we would need the users to work on a follow on project that used their previous

project. However, it would be unrealistic to assume that we could find and convince any-

body of the scientific interest of re-using or re-designing an already graded class project.

The Henry System is now at a stage where it is ready to go for a new iteration of the

usability test cycle involving a test group of designers in an industrial environment. In our

view, Henry only needs to integrate a set of commercial VLSI CAD tools before being

submitted to a test by such group. In the new test, we would like to prove the following

hypotheses:

Hypothesis 1: The Henry System effectively supports design methodologies involv-

ing simultaneous design and documentation.

Hypothesis 2: Documents produced with Henry do not demand significative addi-

tional effort.

Hypothesis 3: Designs and their documentation when produced with Henry are

more reusable.

The following criteria could be established for testing the relative validity of each hypoth-

esis:

1. For the first hypothesis, we would again trace tool invocations and the size of design

data and documentation files produced by the students using the Henry System. The

traces would indicate whether design and documentation data had been produced con-

currently or in sequence.

2. To measure the second hypothesis, we would count how many students were still using

the system by the end of the experiment. If only a relatively small fraction of the users

decided to abandon the experiment, we could assume they were finding it useful.
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3. To assert the validity of the third hypothesis, we would give a questionnaire to future

users of the data produced by the test group. The questionnaire would ask for qualita-

tive comparisons between the design information produced before and after the intro-

duction of the Henry System.

8.7  Summary and Conclusions

During this initial period, Henry was used to help the design and documentation process in

multiple situations that are common in VLSI design. Henry was substantially tested in

design projects involving interaction between data entry tools, translators and simulators.

Projects included designs that followed a pre-established flow, based on document tem-

plates, and designs for which there was no pre-established rationale and designers had to

create their own methodologies as part of the design process.

In general, the comments received were encouraging about the possibilities offered by the

new documentation tools used, while pointing out their limitations.

The main benefit we obtain from this experiment was the learning experience. By expos-

ing the prototype early, we were able to eliminate many design flaws of the initial proto-

type. This enabled us to demonstrate the integrated design and documentation architecture

presented in this dissertation.

The current version of the Henry prototype contains many of the modules of the initial

system tested by the students. The fundamental difference is that they are organized in a

different way. Most architectural changes resulted from our observations during the exper-

iment. These included:

• Handling of inter-tool communications and link dispatching functions in a separate pro-

cess, independent of all the tools (the HUB). This makes it possible for a designer to

activate links between tools, such as FrameMaker and Magic, without running the Nav-

igator.
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• The abandonment of the Navigator as a documentation tool in favor of FrameMaker.

The advantages of a better interface for simultaneous design and documentation do not

compensate for the data entry limitations.

• Introduction of support for handling messages and commands sent asynchronously.

This results in a more user-friendly way of processing commands that take very long to

execute, such as starting a new design tool. When a tool needs to be started, a window

that indicates the progress of the operation is displayed, giving the user the chance to

perform other interactions concurrently.

The experiment could not prove the advantage of using an integrated design and docu-

mentation approach in VLSI design in general. However, the experiment indicates that a

methodology based on active documents can be effective when pre-defined design flows

are used. In this case, templates can be made available for the design data and documenta-

tion, considerably accelerating the production and improving quality of the design infor-

mation.

The experiment also shows that the use of active documents requires designers to spend a

considerable amount of time learning the mechanisms of link creation and activation

between the tools. However, this limitation is likely the result of having to use an initial

prototype. A more robust implementation of the Henry System would integrate a user

interface supporting compound active documents such as those available on current per-

sonal computers and the design tools we have in Unix workstations. In such an environ-

ment, the operations for creation and operation of links between portions of active

documents would be much more intuitive.
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Chapter 9

Conclusion and Directions for Future

Work

We conclude this dissertation with a summary of the contributions, recommendations for a

future experiment and directions for further research.

9.1  Research Contributions

The main proposal of this dissertation is the integration of design and documentation in a

VLSI design system using hypermedia technologies. We introduced and demonstrated the

use of active documents in VLSI design. These are multimedia presentations that incorpo-

rate invocations to the tools to display and modify the design data.

The combination of design and documentation systems offers a new way of creating inte-

grated environments for designers in general, and introduces a new paradigm for VLSI

design. Our experience developing and using the Henry System indicates that:

• For design methodologies that follow a pre-established flow, it is possible to produce

better documentation more quickly. This is possible through the reuse of existing docu-

mentation as a template for new designs’ documentation.

“An artist never finishes his work; he merely abandons it.”

— Paul Valéry

“We are inventing new forms of doing business.”

— J. Marty Tenenbaum
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• It is possible to develop effective design methodologies that enable creating design and

documentation in a single thread without intruding in the design process. Traditionally,

VLSI design and its documentation are done separately. In our prototype system we

have shown design documents being dynamically created as the designer enters com-

mands to activate the tools.

Another contribution is the use of active documentation as a new paradigm for creating a

common interface to heterogeneous tools and data used in system design environments:

• We added a new integration layer that hides heterogeneity by enabling designers to

control the flow of information between independent systems through a document

manipulation paradigm.

• We have shown how information-based services available through electronic com-

merce could be integrated into the design environment using this paradigm. Active doc-

uments become a vehicle for transporting design data and operations between

frameworks in independent organizations, enabling the creation of virtual enterprises

for development of electronic systems.

We developed a realistic model for creating a system supporting this integration, based on

a new infrastructure that attempts to re-use existing framework services and design and

documentation tools with minimal modification:

• From the data point of view, it introduces a new layer within the design database. This

new layer contains descriptions of how the design data is organized and presented. It is

a data structure with references to the design data, configuration and history data. It

also includes mechanisms to tool invocations to present the data. The new presentation

layer is organized as a set of active of documents. Designers manipulate them just like

the documents produced by documentation processing systems.

• Our model supports integration of heterogeneous tools in a unique way: we require

tools to support a mechanism for remote command invocation, but do not require tools

to comply to a specific protocol. Having a remote command invocation protocol makes
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it possible to control the consistency between related information displayed by different

tools. By not requiring tools to adopt an established protocol, we can integrate applica-

tions whose behavior we cannot modify. To achieve integration, we proposed the con-

cept of an extensible communications server that can accommodate multiple tool-

specific communication protocols.

With respect to design and documentation tools, we developed the notion of a document

building toolkit. This designates a set of design specific aids that complement those

offered by a generic hypermedia authoring toolkit. These generate or maintain updated

parts of a project’s documentation from the design data and metadata. For instance, one

tool could generate a project’s report with a structure reflecting the design hierarchy.

Another tool could be used to retrieve the design history and append it to a section of an

active document for the project.

We also proposed an innovative interface to an electronic design notebook. This elimi-

nates the separation between authoring and reading modes that are prevalent in other elec-

tronic notebooks and other more general hypermedia authoring tools. We found that this

separation is the main obstacle to simultaneous authoring and browsing, one of the design-

ers’s most basic requirements.

The conceptual model for representing active documents in the notebook extends a basic

hypertext model with procedural attachments to document’s objects. These are automati-

cally activated when the documents’ objects are rendered or modified. These procedures

are used to maintain contexts between design and documentation data. Our experience

shows that this model provides a simple yet powerful mechanism for maintaining consis-

tency between the various pieces of information being manipulated.

9.2  Notes and Recommendations for a Future Experiment

A research project is never completed, and ours is no exception. Our usability experiment

was limited in the number of users, size and duration of the projects. It did not produce
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definitive proof of the advantage of using an integrated design and documentation meth-

odology. That could be achieved only with a much larger and longer study involving a

more advanced prototype.

Obtaining strong evidence on the advantages of our approach would require conducting an

experiment without the limitations we faced:

1. Lack of a real design environment. A large VLSI project is developed by a much larger

design team and involves communication via documents with many people, such as the

manufacturing team and system integrators.

2. Contrary to real VLSI design projects, the documentation for the course projects did

not have to be maintained for a long period. They are never looked at again!

3. The scale of the projects undertaken (a few gates only) was smaller by orders of magni-

tude than a typical VLSI project.

4. The number of designers involved was too small to produce statistically significant

data.

These constraints make a class setting inappropriate for this kind of study. Nevertheless, a

research university environment like ours still provides unmatchable conditions for early

testing of a prototype system introducing a new paradigm. Two final recommendations,

for those who wish to conduct similar experiments in the future:

1. Voluntary participants do not work for free. They only collaborate in the gathering of

observation data when they perceive a personal benefit in their participation. It is hard

to obtain comparative data from design projects not using the same approach. It is bet-

ter to assume from the beginning that no comparative data will be available. Given that

they all have different schedules, it is virtually impossible to find extra hours to meet

with all the students participating in the experiment. Do not plan activities in the final

third of the semester. They will be two busy as the final deadlines approach and the

experiment inevitably gets the lowest priority.
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2. Make sure that the goals set for the class projects by the instructor are compatible with

the goals of the experiment. For instance, in our experiment, the goal set by the instruc-

tor for the first project was to reach the best possible point in the design space. Design

documentation was of little importance. As a result, there was no motivation for high

quality documentation, and students didn’t document as they would in an industrial

design. For the second project, the quality of the project documentation was given

much more importance in the grading criteria. This is illustrated by the project cover

sheets shown on Figure 9.1.

9.3  New Directions

Many of the architectural concepts for design environments advanced in this dissertation

have not yet been implemented. Others were implemented in the existing prototype sys-

tem, but never extensively tested. We summarize some of them here, as the basis for direc-

tions for future research.

9.3.1 Message Oriented Design Management Systems

The Henry System represents only an initial contribution to the grand vision for a new

generation of design environments (outlined in Section 4.3 on page 63). More work is

necessary to demonstrate convincingly the advantages of using a complete, integrated,

information centric design environment, where the tools in multiple heterogenous frame-

works can be accessed from a single documentation-based user interface.

One major missing piece is a design flow management system controlled by the users

through active documents. Such a system could also produce information about the status

of the design in the form of active documents.

Existing frameworks’ process management systems are designed to control the execution

of sequences of batch tools that read and write into files. With the introduction of new

operating system environments, these will evolve into systems that interact with OS ses-
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sion managers that invoke design tools, and monitor and activate their executions through

sequences of messages.

In an environment with multiple frameworks, active documents should be able to send

commands to the individual design management systems to work as a common front-ends.

Electronic systems designers should not need to deal with the details of interfacing with

Figure 9.1 Project Summary Sheets

These sheets had to be filled-out by the students. Instructors used them to grade the
projects and they gave the students an idea of the relative importance of the various
parts of the design. The first project was designed to be “self-graded.” The product

 obtained by each student was by far the most important parcel of the final grade.

On the second project, the instructors have put more much more emphasis on the
clarity, conciseness and presentation of the design.

A tp
2×
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diverse design management systems to create effective active documents describing the

entire design process. These documents should interface with a new kind of information

manager, controlling the flow of design data between the various frameworks used in the

design environment. The information manager would not control the design data and pro-

cess flow within each framework directly. It only orchestrates the transfer of design data

and control flows between them.

9.3.2 Design Space Exploration Tools

Historically, the introduction of new data types into VLSI design environments lead to the

development of “spot” tools that later become essential to designers. We believe that the

same will happen with documentation (see Table 9.1).

new computer-
based
representations... ... spawn new tools

mask layout layout DRCs, compactors, editors...

netlist electrical and logic simulators,

logic synthesis, ERCs, editors,...

behavior behavioral simulators, behavioral synthesis, hardware/software
co-design

history trace management, design estimators

documentation document consistency checkers,

documentation generators

Table 9.1 New Design Data Representation Formats Spawn New Design Tools

Historically, the introduction of new computer-based representation formats into design
environments was followed by the development of new tools that manipulate, verify
and synthesize the design from the new descriptions. By integrating documentation into
the design environment, we are also creating the opportunity to develop a new
generation of tools that will become essential to designers.
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The classes of tools for integrated design and documentation we enumerated in Chapter 6

are just a sample of the new possibilities. These possibilities include:

• Automatically generating human-readable documents.

• Searching documentation for design-related information and making architectural

design decisions based on the information found.

• Check consistency between data and documentation.

9.3.3 Use of New Devices to Manipulate the Design Information

The electronic notebook we developed for Henry runs on UNIX workstations. Thus, it

cannot replace paper-based engineering notebooks designers use today. Its limitations are

derived fundamentally from not being portable and having a poorer user interface for add-

ing information (see Table 9.2). However, the electronic design notebook does have some

important advantages. It is not limited in the same ways as its paper-based ancestor. An

electronic book can support multiple users, be distributed across a network, and provide

Electronic Notebook Paper Notebook

- not portable + extremely portable

- difficult to use + very easy to use

+ massive amounts of data can be
annotated

- small amounts of manually
entered data

+ sharable, reusable - unsharable, not reusable

+ multi-user, distributed - single-user

Table 9.2 Electronic Notebooks versus Paper-based Notebooks

The paper notebooks’s strongest limitations lie precisely where electronic notebooks
are at advantage and vice-versa. However, electronic notebook’s current limitations are
likely to be overcome in the next 5-10 years.
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multimedia and hypertext linking. It can be used by groups of designers to share,

exchange, and understand information about designs.

Advances in low-power wireless portable terminals will in the long run make these

devices attractive to designers. One of these prototypes is being developed by the Infopad

project at Berkeley [Shen92]. This project is also researching the use of this terminal to

provide an electronic design notebook, based on the Henry Architecture. This capability

will be used as the proof-of-concept demonstrator for the entire project.

Adoption of electronic design notebooks in industrial environments will also depend on

legal issues. Currently, engineering notebooks are notarized, to prove first-to-invent

claims in intellectual property litigation. An electronic mechanism equivalent to this nota-

rization must also be developed before the use of electronic notebooks is widely embraced

by VLSI designers.

Liveboards, electronic devices that replacechalkboards, are examples of other devices

that are candidates for integration into VLSI design environments. In our view, we will

evolve from the networks of workstations we use today intoubiquitous computing envi-

ronments, where designers could chose from many devices to interact with the design

environment [Weis91].

9.3.4 Use of Video in VLSI Design

When we started this research, our initial motivation was to create structured multimedia

documentation for VLSI designs, including video presentations. Project meetings would

be videotaped. Previous research on the use of video in related design domains indicates

that indexing and creation of mechanisms for quickly locating and displaying the relevant

video materials are essential, or they are never reused. We would like to experiment with

the idea of having the video on-line and indexed. Indexes would be used as anchors for

links to and from the design tools. For instance, the layout of a cache module of a CPU

could have a sequence of links to the location in the video material of presentations or dis-
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cussions about the design. This would constitute an almost effortless process of capturing

decisions. However, the software necessary for making this integration possible is cur-

rently lacking. To study the usability of video in VLSI design, we would need at least:

• Software for indexing the video material. We would like to be able to use voice recog-

nition software to detect project-related words in the video material and use them as

link anchors.

• Software for archiving, transmitting, and presenting the video information.

• An integrated set of design and documentation tools that supported the notion of acti-

vating hypermedia links.

These capabilities are not yet in a state that would enable the construction of a prototype

for studying the applicability of video to VLSI design. Facing this situation, we focused

on the development of a software infrastructure that would enable the use of design tools

as part of an hypermedia system. That resulted in the work presented in this dissertation.

However, a study of the use of video in design environments could now be initiated. We

now have access to software for voice recognition, video capture and multicast over the

Internet, and multimedia video-on-demand servers. These could be used to build data-

bases for the project-related video information that would be accessed from active docu-

ments.

9.4  Final Words

When this project started, the idea of creating active documents was unknown to VLSI

designers. The introduction of Mosaic in 1993 and the rapid growth of the Internet helped

to make the concept of a wide-area hypermedia network one that is now commonly

accepted. Active documents provide the interface paradigm that makes it possible for

remote programs to produce new active documents as the result. In the past year alone, we

grew from a few active documents, in a few experimental systems in research projects

around the world, into millions of active documents used daily by millions of users. Our
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research in developing a design system centered on active documents is of interest to sys-

tem integrators in many other domains.

The explosive growth of the World Wide Web and new services supported in electronic

commerce creates synergies for introducing other kinds of new services for designers as

well as CAD systems that provide seamless interfaces to access them. Services will cover

the entire system development process, from marketing to distribution, information gath-

ering to design, and from simulation and prototyping to manufacture. Design will become

the process of creating a web of links between these services.

Creating such infrastructure will be a large effort in terms of definition of communication

protocols between information systems from independent engineering and business

domains. However, we believe this would be a profitable investment for our society. The

new infrastructure will enable collaboration between those who have large and highly

automated design and manufacture systems and those with creative ideas but limited

resources. Some day, anyone with a brilliant idea will have the possibility to marshall the

resources necessary for producing a new artifact using the information web. The most

sophisticated design tools, computational prototyping facilities, manufacturing technolo-

gies and the help of the best consultants will be available at virtually no initial cost. Physi-

cal proximity to critical resources or financial power will not be the main cause for

differentiation between societies. For system integration industries, competitive advan-

tages will be fundamentally built on the capabilities for defining new solutions and

quickly orchestrating the flow of information between the resources required to produce

them. This is the vision that inspired the development of the Henry System. To us, this

research represents the start of a long endeavor to make this vision a reality. We hope to

have inspired our readers to join us in the effort.
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