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Abstract

Relations between the �eld of values of a matrix A and those of its
Schur complements are established. This work began with an attempt
to get rid of pivoting from Gauss elimination under certain circum-
stances when the �eld of values F(A) does not contain the origin. The
upper bound proved in this paper must be improved before it is of more
practical use. However, the proof of the upper bound does provide an
intuition on how a tight upper bound looks like.
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under grant No. 20552402 and the University of Tennessee through the Advanced Re-
search Projects Agency under contract No. DAAL03-91-C-0047, by the National Science
Foundation under grant No. ASC-9005933, and by the National Science Infrastructure
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1 Kahan's Theorems

Let A be an n�n complex matrix. The �eld of values of A is de�ned to be

the set

F(A) def
= fx�Ax=x�x : 0 6= x is a n-dimensional vectorg:

(Here the superscript * means taking conjugate transpose.) Toeplitz{Hausdor�

Theorem says that F(A) is convex. Now partition A as

A =

 
H R
L V

!
; (1)

where H is of m�m (1 � m � n� 1). If H is invertible,

X
def
= V � LH�1R (2)

is called the Schur complement ofH in A. The following theorem establishes

a relation between F(A) and F(X).

Theorem 1 Let � 2 F(X). Then there exist a � 2 F(A) and a positive

number 
 with 1 � 
 � 1 + kLH�1k22; where k � k2 is the spectral norm of a

matrix, such that � = 
�.

Proof: Note  
I 0

�LH�1 I

! 
H R
L V

! 
I �H��L�

0 I

!

=

 
H R
0 V � LH�1R

! 
I �H��L�

0 I

!

=

 
H R�HH��L�

0 X

!
def
= C: (3)

Denote

M =

 
I 0

�LH�1 I

!
:
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Then C =MAM� by (3). For any n{dimensional vector y, letting x =M�y,

we get then
y�Cy

y�y
=
x�Ax

x�x
� x

�x

y�y
: (4)

Consider now those vector y having form

y =

 
0
z

!
; (5)

where z is of n �m{dimension. Then

y�Cy = z�Xz; x =

 
�H��L�z

z

!
: (6)

Hence kxk22 = kzk22 + kLH�1zk22 � (1 + kLH�1k22)kzk22. Since kyk2 = kzk2,

1 � x�x

y�y
� 1 + kLH�1k22:

By the de�nition of the �eld of values of a matrix, the conclusion of the

theorem follows from (4).

It has been proved that the �eld of values of any 2 � 2 matrix is an

ellipse. More precisely, let T =

 
a b
c d

!
, and let U be the 2 � 2 unitary

matrix such that

U�TU =

 
�1 �
0 �2

!
;

where �1 and �2 are the eigenvalues of T , � is nonnegative and equals to

(jaj2 + jbj2 + jcj2 + jdj2 � j�1j2 � j�2j2)1=2. The �eld of values F(T ) is the
ellipse with two foci �1 and �2 and semi-minor j�j=2. (It is a straight line

segment joining �1 and �2 if � = 0, i.e., T is a normal matrix.) On the other

hand, an ellipse on the complex plane corresponding to in�nitely many 2�2

matrix unless the ellipse degenerates to a point.

There is only one Schur complement in a 2� 2 matrix

 
a b

c d

!
which

is d� bc
a provided a 6= 0.
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For any vector x 6= 0, partition it conformly to (1) as x = (xT1 ; x
T
2 )
T .

(Here the superscript T means taking transpose.) Note

x�Ax = x�1Hx1 + x�1Rx2 + x�2Lx1 + x�2V x2:

We claim that there are complex numbers a; b; c; d and �j with kxjk2 = j�j j
such that

x�1Hx1 = aj�1j2;
x�1Rx2 = b��1�2;

x�2Lx1 = c�1��2;

x�2V x2 = dj�2j2:

As a matter of fact, we could simply take �j = kxjk2, then solve for a; b; c; d

in the following way:

� The case x1 6= 0 and x2 6= 0: Then �1 6= 0 and �2 6= 0. Hence

a =
x�1Hx1
j�1j2 ; b =

x�1Rx2
��1�2

; c =
x�2Lx1
�1��2

; d =
x�2V x2
j�2j2 :

� The case x1 = 0 and x2 6= 0: Then �1 = 0 and �2 6= 0. Set a = b =

c = 0 and d = x�2V x2=j�2j2.

� The case x1 6= 0 and x2 = 0: Then �1 6= 0 and �2 = 0. Set a =

x�1Hx1=j�1j2 while set b = c = d = 0.

Claim: The �eld of values of the 2� 2 matrix T =

 
a b
c d

!
, which is an

ellipse, is contained in F(A).
Proof: The case when x1 = 0 or x2 = 0 is trivial. In the following we

consider the case when none of the two is zero. For any g = (�1; �2)
T , let

�j = �j=�j . It is easy to verify

g�Tg

g�g
=

 
�1x1
�2x2

!�

A

 
�1x1
�2x2

!

j�1j2kx1k22 + j�2j2kx2k22
2 F(A):
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Recall the equations (4), (5) and (6). Consider now x2 = z (with z�z = 1)

and x1 = �H��L�z. For the present case x�1Hx1 + x�2Lx1 = 0. Thus

aj�1j2 + c�1��2 = 0. Assume, for the moment, �1 6= 0. Then ��1 = � c
a
��2,

provided a 6= 0. By (4), we see (z�z = y�y = 1) j�2j = 1)

z�Xz = x�Ax = d� bc

a
;

if a 6= 0, which is guaranteed if we assume 0 62 F(H). If, however, � = 0, then

by the construction of the 2 � 2 matrix T , x1 = 0 which implies L�z = 0.

Thus z�Xz = x�Ax = x�2V x2 = d, which can be regarded as the Schur

complement in a matrix like

 
d 0
0 d

!
. Thus we have proved

Theorem 2 If 0 62 F(H), then any point in F(X) is a Schur complement

in a 2� 2 matrix whose �eld of values is contained completely in F(A).

2 The Region of Schur Complements of All 2� 2

Matrices with a Fixed Field of Values

Lemma 1 Let T be a 2� 2 matrix, and D a 2� 2 diagonal unitary matrix.

Then T and DTD� have the same Schur complement.

Given an ellipse E(�1; �2; m) with the two foci �1 and �2 and semi-minor

m, all possible 2� 2 matrices whose �elds of values are E(�1; �2; m) are

U

 
�1 �

0 �2

!
U�;

where U runs over all 2� 2 unitary matrices, and � = 2m. Since any 2� 2

unitary matrix U can be decomposed as

U =

 
d1 0
0 d2

! 
c �s
�s �c

!
;

5



where jd1j = jd2j = 1 and jcj2+ jsj2 = 1. By Lemma 1, to study Schur com-

plements of all possible 2� 2 matrices with the �eld of values E(�1; �2; m),

it su�ces for us to consider these matrices 
c �s
�s �c

! 
�1 �
0 �2

! 
�c s
��s c

!

=

 
jcj2�1 + jsj2�2 � c�s� cs(�1� �2) + c2�

�c�s(�1 � �2)� �s2� jsj2�1 + jcj2�2 + c�s�

!
; (7)

whose only Schur complement is

�1�2
jcj2�1 + jsj2�2 � c�s�

: (8)

Lemma 2

E(�1; �2; m) = fjcj2�1 + jsj2�2 � c�s� : jcj2+ jsj2 = 1g
= fjsj2�1 + jcj2�2 � c�s� : jcj2+ jsj2 = 1g:

From now on, for convenience, we will not distinguish a complex num-

ber and the unique point it represents on the complex plane. For a set D
consisting of complex numbers, the notation jDj is de�ned as

jDj = maxfjzj : z 2 Dg:

We assume E(�1; �2; m) does not contain the origin, i.e.,

E(�1; �2; m) 63 0: (9)

Our interest is the region R(�1; �2; m) of all possible values of (8) for all

possible c and s subject to jcj2 + jsj2 = 1. By Lemma 2, we see

R(�1; �2; m) = f�1�2=z : z 2 E(�1; �2; m)g: (10)

Now, we try to �nd an upper bound for jR(�1; �2; m)j Let t1 and t2

be two tangent lines of E(�1; �2; m) coming from the origin. The two lines

divide the complex plane into two sectors. E(�1; �2; m) lies in the smaller
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+

Figure 1: An Ellipse

one. Let � be the angle of the smaller sector. (Note 0 � � < �! � = 0

if �2
�1

is real.) Draw two lines `1 and `2 connecting the origin and �1, the

origin and �2, respectively. Let  be the smaller angle between `1 and

`2 (0 <  � � and  = � if m = 0). Let ` be the line joining �1 and �2.

Consider now a point in R(�1; �2; m), which is of form (8). Its absolute value

reaches its maximum when the absolute value of its denominator reaches its

minimum, which means, by Lemma 2, the maximum occurs at the closest

point of E(�1; �2; m) to the origin. Let c0 and s0 with jc0j2 + js0j2 = 1 be

the numbers for which��� jc0j2�1 + js0j2�2 � c0�s0� ��� = min
jcj2+jsj2=1

n��� jcj2�1 + jsj2�2 � c�s�
���o :

Then it is easy to see c0�s0� = 2jc0s0jm. In another word, c0�s0� has to be

real and positive. Draw a circle with center jc0j2�1 + js0j2�2 and radius

2jc0s0jm. The following facts are easy to establish:

� The circle lies inside the ellipse E(�1; �2; m) completely;
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� The center of the circle lies on the line ` joining the two foci �1 and

�2;

� The circle is tangent to the boundary of the ellipse at two points one

of which is closer to the origin. Let P denote the closer point:

1. The point P lies on the line segment joining the origin and jc0j2�1+
js0j2�2, the center of the circle;

2. P = jc0j2�1 + js0j2�2 � c0�s0�, in another word, P is the closest

point to the origin among all other points of E(�1; �2; m).

Without loss of generality, we may assume j�1j � j�2j. Rewrite (8) into
�1�2

jc0j2�1 + js0j2�2 � c0�s0� = �1 � �2
jc0j2�1 + js0j2�2 �

1

1� c0�s0�
jc0j2�1+js0j2�2

: (11)

By drawing a perpendicular line from the origin to the line `, one can easily

see that1 ���� �2
jc0j2�1 + js0j2�2

���� � 1

cos( =2)
:

One the other hand,
c0�s0�

jc0j2�1 + js0j2�2 � sin
�

2
:

1By the elementary knowledge of triangular algebra, we know (refer to Figure 1)

cos� =
j�2j

2 + j�1 � �2j
2 � j�1j

2

2j�2(�1 � �2)j
: (12)

If cos� � 0, i.e., �=2 � � < �, then���� �2
jc0j2�1 + js0j2�2

���� � 1;

otherwise, cos� > 0, i.e., 0 < � < �=2, then���� �2
jc0j2�1 + js0j2�2

���� � 1

sin �
�

1

cos( =2)
;

since � � �=2�  =2.
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where �=2 � maxfarcsin r
jzj : r and z is the radius and the center of a circle

inside E(�1; �2; m)g. Clearly

 � �; � � �:

Hence it follows from (11) that���� �1�2
jcj2�1 + jsj2�2 � c�s�

���� � 1

cos  
2
(1� sin �

2
)
�maxfj�1j; j�2jg: (13)

Theorem 3 An upper bound for jR(�1; �2; m)j is
1

cos  
2
(1� sin �

2
)
�maxfj�1j; j�2jg � 1

cos �
2
(1� sin �

2
)
�maxfj�1j; j�2jg:

In the case when E(�1; �2; m) is a circle, i.e., �1 = �2 = �, we have an

exactly answer:

jR(�; �;m)j= j�j2
j�j �m =

1

1� sin �
2

� j�j;

which means the upper bound by Theorem 3 overestimates it by a factor

�
cos

 

2

��1
� 1:

3 An Application

In this section, we present an upper bound for jF(X)j (refer to (2)) by

simply applying Theorems 2 and 3. To this end, we assume

0 62 F(A): (14)

It follows from (14) that 0 62 F(H) � F(A). Hence Theorem 3 applies to

any ellipses inside F(A) and Theorem 2 applies to F(X). Let t1 and t2 be

the two tangent lines to the boundary of F(A) from the origin. Then F(A)
lies in the smaller sector of the complex plane divided by the two lines t1

and t2. Let � be the angle of the smaller sector, and �=2 � maxfarcsin r
jzj :

r and z is the radius and the center of a circle inside F(A)g.
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Theorem 4 Under the assumption of (14), we have

jF(X)j � 1

cos �
2
(1� sin �

2
)
� jF(A)j � 1

cos �
2
(1� sin �

2
)
� jF(A)j: (15)

The inequality (15) is very pessimistic when � comes very close to �. As

a matter of fact, if � = �� � with � very small, one can verify that the factor

before jF(A)j satis�es

h(�)
def
=

1

cos �
2
(1� sin �

2
)
=

1

2 sin �
2
sin2 �

4

� 16

�3
:

However, if � is relative away from �, the inequality (15) will give a reason-

able estimate of the magnitude for jF(X)j. The following table illustrates

roughly how fast h(�) grows as � approaches �.

� 0 �=4 �=2 3�=4 9�=10 99�=100

h(�) 1 1.7534 4.8284 3:4329 � 10+01 5:1922 � 10+02 5:1606 � 10+05

Appendix 1: Compute the Closest Point of E(�1; �2; m) to the Ori-

gin.

We assume that (9) holds throughout.

We will not deal with the trivial case �1 = �2, i.e., E(�1; �2; m) is a

circle.

In Section 2, we have learned several properties associated with the clos-

est point of E(�1; �2; m) to the origin. Mathematically, the closest point is

unique and can be found by solving certain equations. As a matter of fact,

the equation to be solved eventually end up with an algebraic equation of

order 4 (Two real roots of which correspond to the closest point to the ori-

gin and the furthest point from the origin, respectively; the other two roots

are complex conjugates.). In this appendix, we present a numerical method

based on Newton iteration to compute the closest point. (The furthest point

can be computed in a similar way.) Recall that

E(�1; �2; m) = fjcj2�1 + jsj2�2 � c�s� : jcj2 + jsj2 = 1g
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by Lemma 2. A short argument will lead to

Proposition 1 The shortest distance between the points of E(�1; �2; m) and

the origin is the minimal values of the function

f(t) = jt�1 + (1� t)�2j � 2m
q
t(1� t); 0 � t � 1;

and if f(tmin) = min
0�t�1

f(t), then the closest point Pclt to the origin is

Pclt = f(tmin)
tmin�1 + (1� tmin)�2
jtmin�1 + (1� tmin)�2j :

The longest distance between the points of E(�1; �2; m) and the origin is the

maximal values of the function

F (t) = jt�1 + (1� t)�2j+ 2m
q
t(1� t); 0 � t � 1;

and if F (tmax) = max
0�t�1

F (t), then the furthest point Pftt form the origin is

Pftt = F (tmax)
tmax�1 + (1� tmax)�2
jtmax�1 + (1� tmax)�2j :

Let tmin, Pclt and tmax, Pftt be as de�ned in Proposition 1. Set2

b = m; c =
j�2 � �1j

2
; a =

p
b2 + c2: (16)

The following proposition restricts the possible values of tmin and tmax.

Proposition 2 1
2

�
1� c

a

� � tmin; tmax � 1
2

�
1 + c

a

�
.

Proof: We give a proof for tmin, only. As an exercise, the reader is asked to

do the other. First of all, we claim the line segment joining the origin and

2With these parameters, the equation that describes the boundary of the ellipse
E(�1; �2;m) can now be written as

jz� �1j+ jz � �2j = 2a:

11



tmin�1 + (1� tmin)�2 is perpendicular to the boundary of the ellipse at Pclt.

This can be easily seen. To see what are the possible values that tmin can

take, we shall determine how big the distance between each of the two foci

and tmin�1+(1�tmin)�2 could be. To this end, let's perform a transformation

(a shift and a rotation, generally) on the complex plane such that the foci of

the ellipse are transformed to (�c; 0) and (c; 0), respectively. Suppose Pclt is

transformed to (a cos�; b sin�) with 0 � � < 2�. Assume, for the moment,

� 6= 0; �. The point tmin�1 + (1 � tmin)�2 after the transformation can be

located by �nding the intersection of the new x-axis and the line passing

through Pclt and perpendicular to the boundary of the ellipse. It is easy to

see that the equation of the line is

y � b sin�

x� a cos�
� b cos��a sin � = �1:

Letting y = 0 gives x = c2

a cos �. In the other word, The point tmin�1 +

(1 � tmin)�2 is transformed to ( c
2

a cos�; 0). It is easily veri�ed that this

remains true even for � = 0; �. Therefore the distance between each focus

and tmin�1 + (1� tmin)�2 is between c� c2

a and c+ c2

a . Now, note

jtmin�1 + (1� tmin)�2 � �1j = 2(1� tmin)c;

jtmin�1 + (1� tmin)�2 � �2j = 2tminc;

from which the desired result follows.

The following proposition is easy to establish by using geometrical argu-

ments.

Proposition 3

� The most general case b > 0 and c > 0:

1. If j�1j = j�2j, then tmin =
1

2
, and there are two tmax one of which

lies in the open interval (1
2

�
1� c

a

�
; 1
2
) while the other in the open

interval (1
2
; 1
2

�
1 + c

a

�
). And moreover the sum of the two tmax is

equal to 1;

12



2. If j�1j > j�2j, then 1

2

�
1� c

a

� � tmin < 1

2
, and 1

2
< tmax �

1

2

�
1 + c

a

�
;

3. If j�1j < j�2j, then 1
2
< tmin � 1

2

�
1 + c

a

�
, and 1

2

�
1� c

a

� � tmax <
1
2
;

� The case c = 0: tmin = tmax =
1
2
;

� The case b = 0 and c > 0:

1. If j�1j = j�2j, then tmin =
1

2
, and tmax = 0 and 1;

2. If j�1j > j�2j, then tmin = 0 and tmax = 1;

3. If j�1j < j�2j, then tmin = 1 and tmax = 0.

Set �j = xj + iyj where xj ; yj for j = 1; 2 are real and i =
p�1. Let

(recall m = b in (16))

f1(t) = jt�1 + (1� t)�2j (17)

=
q
(tx1 + (1� t)x2)2 + (ty1 + (1� t)y2)2;

f2(t) = 2m
q
t(1� t): (18)

Then f(t) = f1(t)� f2(t). Taking derivatives gives

f 01(t) =
(x1 � x2)(tx1 + (1� t)x2) + (y1 � y2)(ty1 + (1� t)y2)p

(tx1 + (1� t)x2)2 + (ty1 + (1� t)y2)2
;

f 001 (t) = � [(x1 � x2)(tx1 + (1� t)x2) + (y1 � y2)(ty1 + (1� t)y2)]2
[(tx1 + (1� t)x2)2 + (ty1 + (1� t)y2)2]

3=2

+
(x1 � x2)2 + (y1 � y2)2p

(tx1 + (1� t)x2)2 + (ty1 + (1� t)y2)2

=
(x2y1 � x1y2)2

[(tx1 + (1� t)x2)2 + (ty1 + (1� t)y2)2]3=2
> 0;

f 02(t) =
m(1� 2t)p
t(1� t) ;

f 002 (t) = � m

2[t(1� t)]3=2 < 0:

13



From these formula it follows f 00(t) = f 001 (t) � f 002 (t) > 0. Since f 0(t) =

f 01(t)� f 02(t)! �1 as t! 0+, and f 0(t) = f 01(t)� f 02(t)! +1 as t! 1�,

we see

f 0
�
1

2

�
1� c

a

��
< 0; f 0

�
1

2

�
1 +

c

a

��
> 0:

f 0(t) has exactly one zero between 1
2

�
1� c

a

�
and 1

2

�
1 + c

a

�
which is tmin.

Newton iteration can now be applied to �nd the point of interest. One

remaining question is how to get a good initial guess. The following way

is used in my MATLAB code. It is assumed j�1j � j�2j (otherwise, simply

swap �1 and �2). Then
1

2

�
1� c

a

� � tmin <
1

2
. Our motivation for choosing

an initial guess is based on Propositions 2 and 3 and the observation that

the t making jt�1 + (1 � t)�2j reach its minimum should be close to tmin.

Here are the formulas for � , an initial guess of tmin (refer to Figure 1 and

the equation (12)).

� If cos� � 0, set � = 1

2

�
1� c

a

�
;

� If cos� > 0, set � = j�2j cos�
2c .

Appendix 2: The Tangent Lines of the Ellipse E(�1; �2; m) from the

Origin.

Let the assignments to xj , yj , a, b and c in Appendix 1 hold throughout

this appendix. Assume also (9) holds throughout. The slopes k of the two

tangent lines from the origin to the boundary of the ellipse are the roots of

the following algebraic equation of order 2:

[(4a2� (x1 + x2)
2 � (y1 � y2)

2]k2 + 4(x1y2 + x2y1)k (19)

+ [(4a2 � (x1 � x2)2 � (y1 + y2)
2] = 0:

A by-product of this is that the assumption (9) holds if and only if (19) has

real solutions.
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Figure 2: E(1� 2i; 3 + 2:3i; 1)

Appendix 3: Some Typical Graphes for R(�1; �2; m).

This appendix displays four graphes Figures 2{5 forR(�1; �2; m) in di�erent

situations. They are telling us what a typical R(�1; �2; m) looks like.
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Figure 3: E(1; 6; 1)
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Figure 4: E(2� 2i; 2+ 2i; 1)
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Figure 5: E(2 + 3i; 2� 3i; 1)
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