
Relative Perturbation Theory:
(I) Eigenvalue Variations �

Ren-Cang Li
Department of Mathematics

University of California at Berkeley
Berkeley, California 94720
(li@math.berkeley.edu)

July 25, 1994

Computer Science Division Technical Report UCB//CSD-94-855, University of
California, Berkeley, CA 94720, December, 1994.

Abstract

In this paper, we consider how eigenvalues of a matrix A change when
it is perturbed to eA = D�

1AD2 and how singular values of a (nonsquare)

matrix B change when it is perturbed to eB = D�
1BD2, where D1 and

D2 are assumed to be close to unitary matrices of suitable dimensions.
We have been able to generalize many well-known perturbation theorems,
including Ho�man-Wielandt theorem and Weyl-Lidskii theorem. As ap-
plications, we obtained bounds for perturbations of graded matrices in
both singular value problems and nonnegative de�nite Hermitian eigen-
value problems.

1 Introduction

Relative perturbation theory for eigensystems and singular systems has been
becoming a hot topic in the last �ve years and ever since It was �rst studied by
Kahan [18] in 1966, later by [1, 6, 8, 9, 29] and most recently by [7, 10, 11, 13,
15, 25].

�This material is based in part upon work supported by Argonne National Laboratory
under grant No. 20552402 and the University of Tennessee through the Advanced Research
Projects Agency under contract No. DAAL03-91-C-0047, by the National Science Foundation
under grant No. ASC-9005933, and by the National Science Infrastructure grants No. CDA-
8722788 and CDA-9401156.
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1.1 What to be Covered?

This paper deals with perturbations of the following kinds:

� Eigenvalue problems:

1. A and eA = D�AD for Hermitian case, where D is nonsingular and
close to I or more generally to a unitary matrix;

2. A and eA = D�
1AD2 for general diagonalizable case, where D1 and

D2 are nonsingular and close to I or more generally to some unitary
matrix;

3. H = D�AD and eH = D� eAD for graded nonnegative Hermitian case,
where it is assumed that A and eA are nonsingular and often that D
is a highly graded diagonal matrix (this assumption is not necessary
to our theorems below).

� Singular value problems:

1. B and eB = D�
1BD2, where D1 and D2 are nonsingular and close to

I or more generally to two unitary matrices;

2. G = BD and eG = eBD for graded case, where it is assumed that B
and eB are nonsingular and often that D is a highly graded diagonal
matrix (this assumption is not necessary to our theorems below).

The above perturbations include component-wise relative perturbations of the
entries in symmetric tridiagonalmatrices with zero diagonal [8, 18], in bidiagonal
and biacyclic matrices [1, 7, 8], in graded nonnegative Hermitian matrices [9, 25]
and in graded matrices of singular value problems [9, 25] and more [10].

1.2 Notation

We will adopt this convention: capital letters denote unperturbed matrices and
capital letters with tilde denote their perturbed ones. For example, X is per-
turbed to eX .

Throughout the paper, capital letters are for matrices, lowercase Latin let-
ters for column vectors or scalars, and lowercase Greek letters for scalars. The
following is a detailed list of our notation, but still more notation will be intro-
duced when it appears for the �rst time.
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Cm�n : the set of m � n complex matrices;
Cm : Cm�1 ;
C : C 1 ;

Rm�n: the set of m � n real matrices;
Rm: Rm�1;
R: R1;
Un: the set of n � n unitary matrices;

0m;n: the m � n zero matrix (we may simply
write 0 instead);

In: the n�n identity matrix (we may sim-
ply write I instead);

X�: the complex conjugate of a matrix X;
�(X): the set of the eigenvalues of X,

counted according to their algebraic
multiplicities;

�(X): the set of the singular values of X,
counted according to their algebraic
multiplicities;

�min(X): the smallest singular value of X 2
Cn�n ;

�max(X): the largest singular value ofX 2 Cm�n ;
kXk2: the spectral norm of X, �max(X);

kXkF : the Frobenius norm of X,
rP

i; j

jxijj2,

where X = (xij);
kXkp: the p-H�older operator norm of X to de-

�ned later;
jjjXjjj: some unitary invariant norm of X to

de�ned later.

1.3 Organization of the Paper

In x2, we de�ne two kinds of relative distances which will be heavily used in the
rest of this paper. It is proved in Appendixes A and B that the relative distances
are really (generalized) metrics on the space of nonnegative real numbers or that
of nonpositive real numbers and that some of them are actually a metric on R.
A brief summary of what we will accomplish in this paper in comparison with
well-known perturbation theorems with the metric of absolute value on C will
be conducted in x3. Full statements of these well-known theorems are presented
in x3. We devote two sections to present and discuss our theorems. x5 handles
nonnegative de�nite cases, singular value problems and graded cases, while x6
handles the rest of the perturbations listed in x1.1 and singular value problems
again for comparison purpose. In x7, we give a brief account of established
theorems related to our relative perturbation theorems. We will briey remark
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how our relative perturbation theorems can be applied to generalized eigen-
value problems and generalized singular value problems. Finally, our proofs of
theorems are presented in xx9|12.
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2 Relative Distances

2.1 The p-Relative Distance

Given �; � 2 C , the p-relative distance between them is de�ned as

RelDistp(�; �)
def
=

j�� �j
p
pj�jp + j�jp ; (2.1)

where 1 � p � 1. We de�ne, for convenience, 0=0
def
= 0. RelDist1 was �rst

used by Deift, Demmel, Li, and Tomei [6] for de�ning relative gaps.

Proposition 2.1 Let 1 � p �1 and �; � 2 C .
1. RelDistp(�; �) � 0 and the equality sign holds if and only if � = �;

2. RelDistp(�; �) = RelDistp(�; �);

3. RelDistp(��; ��) = RelDistp(�; �) for all 0 6= � 2 C ;
4. RelDistp(1=�; 1=�) = RelDistp(�; �) for � 6= 0 and � 6= 0;

5. RelDistp(�; �) � 21�1=p and the equality sign holds if and only if � =
�� 6= 0;

6. RelDistp(�; 0) � 1 if � 6= 0; RelDistp(�; �) > 1 for p > 1 and RelDist1(�; �) =
1, if �� < 0; Finally, RelDistp(�; �) < 1 for all p if �� > 0.

7. RelDistp(�; �) increases as p does.

8. if �; �1; �; �1 2 R and � � �1 � �1 � � and �1�1 � 0, then

RelDistp(�; �) � RelDistp(�1; �1): (2.2)

Moreover if either � < �1 or �1 < � holds, the inequality (2.2) is strict.

Proof: Properties 1{6 are trivial. Property 7 holds because p
pj�jp + j�jp is a

decreasing function of p for 1 � p � 1. To prove Property 8, it su�ces to show
that

RelDistp(�; �) > RelDistp(�; �1); (2.3)

where � � �1 < � and ��1 � 0. Consider function f(�) de�ned by

f(�)
def
=

1� �
p
p
1 + j�jp ; where �1 � � � 1.

We claim that the function f(�) so de�ned is strictly monotonically decreasing.

This is true if p =1. When p <1, set h(�)
def
= [f(�)]p. Because for 0 < � < 1

h0(�) = �p(1 � �)p�1(1 + �p�1)
(1 + �p)2

< 0;
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f(�) is strictly monotonically decreasing for 0 � � � 1. For �1 � � � 0, set

g(�)
def
= h(��). Since for 0 < � < 1

g0(�) =
p(1 + �)p�1(1� �p�1)

(1 + �p)2
> 0;

g(�) is strictly monotonically increasing for 0 � � � 1, and thus h(�) and f(�)
is strictly monotonically decreasing for �1 � � � 0. This completes the proof
of that the function f(�) is strictly monotonically decreasing. There are several
cases to deal with in order to prove (2.3).

1. if � � 0, then 0 � �=� < �=�1 � 1 and

RelDistp(�; �) = f(�=�) > f(�=�1) = RelDistp(�; �1);

2. if � � 0, then 0 � �=� < �1=� � 1 and

RelDistp(�; �) = f(�=�) > f(�1=�) = RelDistp(�; �1);

3. if �1 � 0 < �, then 0 � �1=� � 1. Let �0 be the one of �=� and �=�
which lies in [�1; 0]. Now if � = �1 = 0, (2.3) is trivial; otherwise either
� � �1 < 0 < � or � < �1 = 0 < � is true, and thus �1 � �0 < 0 �
�1=� � 1, so we have

RelDistp(�; �) = f(�0) > f(�1=�) = RelDistp(�; �1);

as was to be shown.

The proof of Property 8 is completed.

Remark: In Property 8 of Proposition 2.1, the assumption �1�1 � 0 is es-
sential. This can be seen by noting that for � > � > 0, �� � �� < � < �
while

RelDistp(��; �) = �+ �
p
p
�p + �p

< 21�1=p = RelDistp(��; �):

Now, we introduce another global notation of this paper. Henceforth p and
q are reserved for a dual number pair as de�ned below

1

p
+
1

q
= 1; where 1 � p � 1 and 1 � q � 1.

In general, when people say the relative perturbation in a real number � is
at most �, it is meant that � is perturbed to another real number � in the sense
that if we write � = �(1+ �) then � 2 Rand j�j � � (see, e.g., [8]), which is also
equivalently to say ������ � 1

���� � �:

So it would be interesting to relate our p-relative distance to this common sense
of relative perturbations.

6



Proposition 2.2 Let 0 � � < 1, and �; � 2 R. We have the following:������ � 1

���� � �) RelDistp(�; �) � �; (2.4)

and

RelDist1(�; �) � � ) max

������� � 1

���� ; ������ � 1

����� � 2�

1� �
; (2.5)

RelDist2(�; �) � � ) max

������� � 1

���� ; ������ � 1

����� �
p
2 �

1� �
; (2.6)

RelDist1(�; �) � � ) max

������� � 1

���� ; ������ � 1

����� � �

1� �
: (2.7)

For general 1 � p � 1, if 21=p� < 1 we have

RelDistp(�; �) � �) max

������� � 1

���� ; ������ � 1

����� � 21=p �

1� 21=p�
: (2.8)

Asymptotically,

lim
�!�

RelDistp(�; �)��� �� � 1
��� = 21=p; (2.9)

thus (2.4), (2.5), (2.6) and (2.7), (2.8) are at least asymptotically sharp.

Proof: (2.4) is trivial to show since � � � = �(1 + �)� � = ��. To prove (2.5),
(2.6) and (2.7), we set either � = �=� or � = �=�. Then � > 0. It follows from
the left-hand side of (2.5) that

j� � 1j
� + 1

� �) j� � 1j � �(� + 1) = �(� � 1) + 2�:

So if � � 1, one deduces � � 1 � 2�
1�� ; and if � � 1 one has 1 � � � 2�

1+� . This
completes the proof of (2.5). The proof of (2.7) is analogous. So is that of (2.8)
by noting that 21=pRelDistp(�; �) � RelDist1(�; �). To show (2.6), we see that

the left-hand side of (2.6) implies j��1jp
1+�2

def
= � � �. So

(� � 1)2 = �2(�2 + 1)) �2 � 2

1� �2
� + 1 = 0

solving which gives

� =
1� �

p
2� �2

1� �2
) � � 1 =

��
p
2� �2 + �2

1� �2
:
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Hence

j� � 1j � �
p
2� �2 + �2

1� �2
=

�

1� �
�
p
2� �2 + �

1 + �
� �

1� �
�
p
2

since

p
2��2+�
1+� is decreasing for 0 � � � 1.

Proposition 2.3 Let e� = �(1 + �1) and e� = �(1 + �2). If j�ij � � < 1, then

RelDistp(�; �)

1� �
+

�

1� �
� RelDistp(�; e�) � RelDistp(�; �)

1 + �
� �

1 + �
; (2.10)

RelDistp(�; �)

1� �
+
21=q�

1� �
� RelDistp(e�; e�) � RelDistp(�; �)

1 + �
� 21=q�

1 + �
: (2.11)

Proof: We will only provide a proof of (2.11). Since j�j(1� �) � je�j � j�j(1+ �)

and j�j(1� �) � je�j � j�j(1 + �),

RelDistp(e�; e�) =
je�� e�j

p

q
je�jp + je�jp

� j�� �j � j��1 � ��2j
p
pj�jp + j�jp(1 + �)

� j�� �j � p
pj�jp + j�jp q

p
�q + �q

p
pj�jp + j�jp(1 + �)

=
RelDistp(�; �)

1 + �
� 21=q�

1 + �
;

RelDistp(e�; e�) � j�� �j + j��1 � ��2j
p
pj�jp + j�jp(1� �)

� j�� �j + p
p
j�jp + j�jp q

p
�q + �q

p
p
j�jp + j�jp(1� �)

=
RelDistp(�; �)

1� �
+

21=q�

1� �
;

as were to be shown.

Proposition 2.4 below shows how to bound RelDistp(�2; �2) by RelDistp(�; �),
and vice versa.

Proposition 2.4 Let �; � 2 C . For 1 � p � 1,

RelDistp(�
2; �2) � 2RelDistp(�; �): (2.12)

If, moreover, �; � 2 R and �� � 0, then

RelDistp(�; �) � RelDistp(�
2; �2): (2.13)
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Proof: There is nothing to prove if � = � = 0. Assume at least one of the two
is not zero.

RelDistp(�
2; �2) =

j�2 � �2j
(j�j2p + j�j2p)1=p

=
j�+ �j � (j�jp + j�jp)1=p

(j�j2p + j�j2p)1=p � j�� �j
(j�jp + j�jp)1=p

� 21�1=2p(j�j2p+ j�j2p)1=2p � 21=2p(j�j2p+ j�j2p)1=2p
(j�j2p + j�j2p)1=p RelDistp(�; �)

= 2RelDistp(�; �)

which proves (2.12). To prove (2.13), without loss of any generality, we may
assume �; � � 0. Notice that � + � � (�2p + �2p)1=2p and (�p + �p)1=p �
(�2p + �2p)1=2p. So

RelDistp(�; �) =
j�2 � �2j

(j�j2p + j�j2p)1=p
(j�j2p+ j�j2p)1=p

(�+ �)(j�jp + j�jp)1=p
� RelDistp(�

2; �2);

as was to be shown.

Let f�1; � � � ; �ng and fe�1; � � � ; e�ng be two sequences of n real numbers in
ascending (descending) order respectively, i.e.,

�1 � � � � � �n; e�1 � � � � � e�n; (or �1 � � � � � �n; e�1 � � � � � e�n): (2.14)

Now we consider some partial solutions to the question: What are the best
one-one pairings between the �i's and the e�j's under certain measures?.

Proposition 2.5 If all �i's and e�j's are nonnegative, then

max
1�i�n

RelDistp(�i; e�i) = min
�

max
1�i�n

RelDistp(�i; e��(i));
where the minimization is taken over all permutations � of f1; 2; � � �; ng.

Proof: For any permutation � of f1; 2; � � �; ng, the idea of our proof is to con-
struct n+ 1 permutations �j such that

�0 = �; �n = identity permutation

and for j = 0; 1; 2; � � � ; n� 1

max
1�i�n

RelDistp(�i; e��j(i)) � max
1�i�n

RelDistp(�i; e��j+1(i)):
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The construction of these �j 's goes as follows: Set �0 = � . Given �j , if �j(j+1) =
j + 1, set �j+1 = �j; otherwise de�ne

�j+1(i) =

8<:
�j(i); if ��1j (j + 1) 6= i 6= j + 1,
j + 1; if i = j + 1;
�j(j + 1); if i = ��1j (j + 1):

With Property 8 in Proposition 2.1, it is easy to prove by induction that such
constructed �j's have the desired properties.

Remark. Proposition 2.5 may fail if not all of the �i's and e�j's are of the same
sign. A counterexample is as follows: n = 2 and

�1 = �2 < �2 = 1 and e�1 = 2 < e�2 = 4:

Another point we want to make is that given two sequences of �i's and e�j's as
above, generally we do not have

nX
i=1

[RelDist2(�i; e�i)]2 = min
�

nX
i=1

�
RelDist2(�i; e��(i))�2 : (2.15)

(2.15) may even fail when all �i; e�j > 0. Here is a counterexample: n = 2

0 < �1 < e�1 < �2 = e�2=2 < e�2;
where �1 is su�ciently close to 0, and e�1 is su�ciently close to �2 which is
�xed. Since as �1 ! 0+ and e�1 ! ��2

[RelDist2(�1; e�2)]2 + [RelDist2(�2; e�1)]2 ! 1;

[RelDist2(�1; e�1)]2 + [RelDist2(�2; e�2)]2 ! 1 +
1p
5
;

(2.15) must fail for some 0 < �1 < e�1 < �2 = e�2=2 < e�2. But we still have
Proposition 2.6 below.

Proposition 2.6 Let �i's and e�j's be as described above and in ascending or-
der. Assume that both sequences contain exactly k negative numbers and n� k
positive numbers, i.e.,

�1 � � � ��k < 0 < �k+1 � � � ��n; and e�1 � � � � e�k < 0 < e�k+1 � � � � e�n:
Then given a permutation � of f1; 2; � � � ; ng, there exists another permutation �
of f1; 2; � � � ; ng such that

1 � � (j) � k for 1 � j � k

and
nX
i=1

�
RelDist2(�i; e��(i))�2 � nX

i=1

�
RelDist2(�i; e��(i))�2 :

10



The proof of this proposition depends heavily on Property 6 of Proposition 2.1.

Let k be an positive integers, and set

�n+1 = � � � = �n+k = e�n+1 = � � � = e�n+k = 0:

Appending these 0's to the two previous sequences, we have two larger sequences,
each of which has at least k zeros. The following proposition says that it is
always better to pair zeros with zeros.

Proposition 2.7 Given a permutation � of f1; 2; � � �; n+kg, there is a permu-
tation � of f1; 2; � � �; ng such that

n+kX
i=1

�
RelDist2(�i; e��(i))�2 � nX

i=1

�
RelDist2(�i; e��(i))�2 :

A combination of Propositions 2.6 and 2.7 illustrates two things:

1. It is always better to pair zeros to zeros as many as possible;

2. It is always better to pair numbers to these of the same signs as many as
possible.

2.2 Barlow-Demmel-Veseli�c Relative Distance

We introduce another notion of relative distance: R̂elDist which is de�ned as
follows.

R̂elDist(�; �)
def
=
j�� �jpj��j : (2.16)

We treat 0=0 � 0 and 1=0 = 1. We call R̂elDist(�; �) the Barlow-Demmel-
Veseli�c Relative Distance between � and � because it was �rst used by Barlow
and Demmel [1] and Demmel and Veseli�c [9] for de�ning relative gaps between

the spectra of two matrices. Regarding to R̂elDist, we have

Proposition 2.8 Let �; � 2 C .

1. R̂elDist(�; �) � 0 and the equality sign holds if and only if � = �;

2. R̂elDist(�; �) = R̂elDist(�; �);

3. R̂elDist(��; ��) = R̂elDist(�; �) for all 0 6= � 2 C ;

4. R̂elDist(1=�; 1=�) = R̂elDist(�; �) for � 6= 0 and � 6= 0;

5. R̂elDist(�; 0) =1 if � 6= 0;
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6. if �; �1; �; �1 2 R and � � �1 � �1 � � and �� � 0, then

R̂elDist(�; �) � R̂elDist(�1; �1): (2.17)

Proof: Properties 1{5 are trivial. To prove Property 6, it su�ces to show that

R̂elDist(�; �) � R̂elDist(�; �1); (2.18)

where 0 � � � �1 < �. Since the function 1
� � � for 0 � � � 1 is monotonically

decreasing and 0 � �=� � �=�1 � 1,

R̂elDist(�; �) =
1p
�=�

�
p
�=� � 1p

�=�1
�
p
�=�1 = R̂elDist(�; �1);

as was to be shown.

Remark: In Property 6 of Proposition 2.8, the assumption �� � 0 is essential,
since the inequality (2.17) is clearly violated if � < 0 < �1 < �1 � � and �1 is
su�ciently close to 0.

As before, let us relate Barlow-Demmel-Veseli�c relative distance to the com-
mon sense of relative perturbations.

Proposition 2.9 Let �; � 2 R. If 0 � � < 1, then������ � 1

���� � �) R̂elDist(�; �) � �p
1� �

; (2.19)

if 0 � � < 2, then

R̂elDist(�; �) � �) max

������� � 1

���� ; ������ � 1

����� �
 
�

2
+

r
1 +

�2

4

!
�: (2.20)

Asymptotically,

lim
�!�

R̂elDist(�; �)��� �� � 1
��� = 1;

thus (2.19) and (2.20) are at least asymptotically sharp.

Proof: The left-hand side of (2.19) implies � = �(1 + �) for some � 2 R with
j�j � �. So

R̂elDist(�; �) =
j��jp

�2(1 + �)
� �p

1� �
;

as required. To prove (2.20), we set either � = �=� or � = �=�. Since � < 2,

� > 0. R̂elDist(�; �)
def
= � � � gives

j� � 1jp
�

= �) �2 � (2 + �2)� + 1 = 0;
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solving which yields

� =
2 + �2 �

p
(2 + �2)2 � 4

2
= 1 +

 
�

2
�
r
1 +

�2

4

!
�:

Hence

j� � 1j �
 
�

2
+

r
1 +

�2

4

!
� �

 
�

2
+

r
1 +

�2

4

!
�

as was to be shown.

Proposition 2.10 Let e� = �(1 + �). Assume that j�j � j�j and j�j � � < 1,
then

R̂elDist(�; �)

1� �
+

�

1� �
� R̂elDist(�; e�) � R̂elDist(�; �)

1 + �
� �

1 + �
: (2.21)

Proof: Since j�j(1� �) � je�j � j�j(1 + �) and j�=�j � 1,

R̂elDist(�; e�) =
j�� e�jq
j�e�j �

j�� �j � j��jq
j�e�j

� j�� �j � �j�jp
j��j (1 + �)

=
R̂elDist(�; �)

1 + �
� �

1 + �
;

R̂elDist(�; e�) � j�� �j + j��jq
j�e�j

� j�� �j + �j�jp
j��j (1� �)

=
R̂elDist(�; �)

1� �
+

�

1� �
:

as required.

Proposition 2.10, in contrast to Proposition 2.3, only provides bounds on how

R̂elDist varies when one of its arguments smallest in magnitude is perturbed

a little. Generally, we do not have a nice inequality like (2.11) for R̂elDist.
Following the lines of the proof above, one can establish

R̂elDist(�; �)

1� �
+

�

1� �

j�j+ j�jpj��j � R̂elDist(�; e�) � R̂elDist(�; �)

1 + �
� �

1 + �

j�j+ j�jpj��j ;
13



where e� = �(1+�1) with j�1j � �. So the ratio
j�j+j�jp
j��j which could be very large

plays a crucial role.

Proposition 2.11 For �; � � 0,

R̂elDist(�2; �2) � 2 R̂elDist(�; �);

and the equality sign holds if and only if � = �.

Proof: If either � or � is zero, no proof is required. Assume both are positive.

R̂elDist(�2; �2) =
�+ �p
��

j�� �jp
��

� 2
j�� �jp

��
= 2 R̂elDist(�; �)

as was to be shown.

Again there is no universal constant c > 0 so that R̂elDist(�; �) is bounded by

c � R̂elDist(�2; �2), unlike (2.13) in Proposition 2.4. One can always bound

RelDistp by R̂elDist, but not the other way around.

Proposition 2.12 For �; � 2 C ,

RelDistp(�; �) � 2�1=p R̂elDist(�; �);

and the equality sign holds if and only if j�j = j�j.
Proof: Since

j�jp + j�jp � 2
p
j�jpj�jp = 2

�p
j��j

�p
) p
p
j�jp + j�jp � 21=p

p
j��j;

from which the inequality follows.

Proposition 2.12 is useful in that, as we will see later, any bound with R̂elDist
yields a bound with RelDistp. Now consider the same pairing problem for this

newly-de�ned R̂elDist. First of all, the conclusion of Proposition 2.7 clearly

remains valid if RelDist2 is replaced by R̂elDist because of Property 5 in Propo-
sition 2.8; second, with the help of Property 6 in Proposition 2.8 we can prove

the same conclusion for R̂elDist as that for RelDistp in Proposition 2.5.

Proposition 2.13 Under the conditions of Proposition 2.5, we have

max
1�i�n

R̂elDist(�i; e�i) = min
�

max
1�i�n

R̂elDist(�i; e��(i));
where the minimization is taken over all permutations � of f1; 2; � � �; ng.

14



Remark. Proposition 2.13 may fail if not all �i's and e�j's are of the same sign.
A counterexample is as follows: n = 2 and

�1 = �1 < �2 = 1 and e�1 = 1

4
< e�2 = 2:

We have showed that (2.15) cannot holds generally. In what follows, we will see

that R̂elDist can do better.

Lemma 2.1 Let 0 < �1 � �2 and 0 < e�1 � e�2. Thenh
R̂elDist(�1; e�1)i2+hR̂elDist(�2; e�2)i2 � hR̂elDist(�1; e�2)i2+hR̂elDist(�2; e�1)i2 ;
or in another word,

(e�1 � �1)2e�1�1 +
(e�2 � �2)2e�2�2 � (e�2 � �1)2e�2�1 +

(e�1 � �2)2e�1�2 ;

and the equality sign holds if and only if either �1 = �2 or e�1 = e�2.
Proof: Complicated algebraic manipulations show that

e�1�1e�2�2� (e�1 � �1)2e�1�1 +
(e�2 � �2)2e�2�2 � (e�2 � �1)2e�2�1 � (e�1 � �2)2e�1�2

�
= �(�2 � �1)(e�2 � e�1)(e�1e�2 + �1�2) � 0;

and the equality sign holds if and only if either �1 = �2 or e�1 = e�2.
Armed with Lemma 2.1, by following the proof of Proposition 2.5, one can show
that

Proposition 2.14 Let f�1; � � � ; �ng and fe�1; � � � ; e�ng be two sequences of n
positive numbers ordered ascendingly (descendingly) as in (2.14). Then

nX
i=1

h
R̂elDist(�i; e�i)i2 = min

�

nX
i=1

h
R̂elDist(�i; e��(i))i2 ;

where the minimization is taken over all permutations � of f1; 2; � � �; ng.

Remark. It is clear to see that the conclusion of Proposition 2.14 remain valid
if we weaken the conditions by only assuming that �i's and e�j's are nonnegative
and the number of zeros in �i's equals that in e�j's. Proposition 2.14 may fail if
not all �i's and e�j's are of the same sign. Here is a counterexample: n = 2 and

�1 = �2 < �2 = 1 and e�1 = 1 < e�2 = 2:

15



2.3 Are RelDistp and ^RelDist Metrics?

Let Xbe a space. Recall that a function d : X�X7! [0;1) is called a metric
if it has the following three properties: for �; �;  2X

1. d(�; �) = 0 if and only if � = �;

2. d(�; �) = d(�; �);

3. d(�; ) � d(�; �) + d(�; ).

This de�nition excludes immediately the possibility that R̂elDist is a metric on

C , nor even on R since R̂elDist(�; 0) = 1 for � 6= 0. To get around this, we,
as any mathematician would do, extend this de�nition of a metric by calling
d : X�X7! [0;1] a generalized metric if it possesses the above three properties.

Now take a look at Propositions 2.1 and 2.8. We see that the functions

RelDistp and R̂elDist on C � C satisfy the �rst two of the de�nition of a (gen-
eralized) metric. Naturally, we would like to ask: Is RelDistp a metric on C?

and is R̂elDist a generalized metric on C? Or, equivalently, we may ask if for
�; �;  2 C

RelDistp(�; ) � RelDistp(�; �) + RelDistp(�; )? (2.22)

R̂elDist(�; ) � R̂elDist(�; �) + R̂elDist(�; )? (2.23)

At this point, we are able to formulate our incomplete answers into Proposi-
tion 2.15. Since the proof is quite long and tedious, we leave it to Appendixs A
and B. Denote

R�0
def
= [0;1) and R+

def
= (0;1):

Proposition 2.15

1. (2.22) holds for all �; �;  � 0 and 1 � p � 1, and thus RelDistp is a
metric on R�0;

2. (2.22) with p = 1; 2 or 1 holds for �; �;  2 R, and thus RelDist1,
RelDist2 and RelDist1 are metrics on R;

3. (2.23) holds for �; �;  � 0, but not on whole R, and thus R̂elDist is a
generalized metric on R�0, but not on R nor C .

Still the question whether RelDistp is a metric on C is open.
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3 Summary of Results

To help the reader to grasp quickly what we have accomplished in this paper, we
give here a table to summarize partially the simpli�ed versions of our theorems
in comparison with their corresponding well-known theorems in literature. Full
statement of these theorems and their stronger versions will be done in x5 and
x6. More results will be discussed in x7. Before we present the table, let us stick
to some notation: A; eA 2 Cn�n , and

�(A) = f�1; � � � ; �ng and �( eA) = fe�1; � � � ; e�ng; (3.1)

B; eB 2 Cm�n , and

�(B) = f�1; � � � ; �ng and �( eB) = fe�1; � � � ; e�ng: (3.2)

In the table, � always stands for some permutation of f1; 2; � � � ; ng; �i's and e�j's
are assumed in descending order, i.e.,

�1 � �2 � � � � � �n � 0; e�1 � e�2 � � � � � e�n � 0; (3.3)

Whenever, all �i's and e�j 's are real, we also require

�1 � �2 � � � � � �n; e�1 � e�2 � � � � � e�n: (3.4)

In Table 3.1, each row consists of four boxes. The �rst one describes conditions
under which the inequality in the second box holds; the third one states, besides
these in the �rst one, additional conditions in order for the inequality in the
fourth box to be true.
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Table 3.1. Summary: (i) Ho�man and Wielandt Type Theorems
Classical Bounds New Relative Bounds

A
andeA
normal

r
nP
i=1

j�i � e��(i)j2
� k eA�AkF

(Theorem 4.1)

eA = D�
1AD2

r
nP
i=1

h
RelDist2(�i;e��(i))i2

� min
�p

kI �D1k2F + kI �D
�1
2 k2F ;p

kI �D�1
1 k2F + kI �D2k2F

	
(Theorem 6.2)

A
andeA
Hermitian

r
nP
i=1

j�i � e�ij2
� k eA�AkF

(Theorems 4.1 and 4.3)

eA = D�AD

r
nP
i=1

h
RelDist2(�i;e��(i))i2

�
p
kI �Dk2F + kI �D�1k2F

(Theorem 6.3)

A
andeA
De�nite

r
nP
i=1

j�i � e�ij2
� k eA�AkF

(Theorems 4.1 and 4.3)

eA = D�AD

r
nP
i=1

h
^RelDist(�i;e�i)i2

� kD� �D�1kF

(Theorem 5.1)

A = X�X�1;eA = eXe� eX�1

r
nP
i=1

j�i � e��(i)j2
� �(X)�( eX)k eA�AkF

(Theorem 4.2)

eA = D�
1AD2

r
nP
i=1

h
RelDist2(�i;e��(i))i2

� �(X)�( eX)minfp
kI �D1k2F + kI �D

�1
2 k2F ,p

kI �D�1
1 k2F + kI �D2k2F g

(Theorem 6.1)

B
andeB

r
nP
i=1

j�i � e�ij2
� k eB �BkF

(Theorem 4.7)

eB = D�
1BD2

qPn

i=1

�
RelDist2(�i;e��(i))�2 �

1p
2

�
kI �D1k2F + kI �D

�1
1 k2F

+ kI �D2k2F + kI �D
�1
2 k2F

�1=2
(Theorem 6.7)

B
andeB

r
nP
i=1

j�i � e�ij2
� k eB �BkF

(Theorem 4.7)

eB = D�
1BD2

rPn

i=1

h
^RelDist(�i;e�i)i2

� kD�1�D�11 kF+kD�2�D�12 kF
2

(Theorem 5.2)
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Table 3.1. Summary (continued): (ii) Weyl-Lidskii Type Theorems
Classical Bounds New Relative Bounds

A
andeA
Hermitian

j�i � e�ij � k eA�Ak2

(Theorem 4.3)

eA = D�AD RelDist1(�i;e�i)
� kI �D�Dk2,
^RelDist(�i;e�i) � kI�D�Dk2

�min(D)

(Cf. (7.3) and (7.4))

A
andeA
De�nite

j�i � e�ij � k eA�Ak2

(Theorem 4.3)
eA = D�AD

^RelDist(�i;e�i) � kD� �D�1k2

(Theorem5.1)

A = X�X�1;eA = eXe� eX�1

� and e� real

nonnegative

j�i � e�ij
� �(X)�( eX)k eA�Ak2

(Theorems 4.4 and 4.5)

eA = D�
1AD2

RelDistp(�i;e�i)
� �(X)�( eX)min

�
q
p
kI �D�

1kq2 + kI �D�1
2 kq2;

q
p
kI �D��

1 kq2 + kI �D2kq2
	

(Theorem 6.4)

B
andeB

j�i � e�ij � k eB �Bk2

(Theorem 4.7)
eB = D�

1BD2

RelDistp(�i;e�i) � min
�

q
p
kI �D�1

1 kq2 + kI �D2kq2;
q
p
kI �D1kq2 + kI �D�1

2 kq2
	

(Theorem 6.8)

B
andeB

j�i � e�ij � k eB �Bk2

(Theorem 4.7)
eB = D�

1BD2

^RelDist(�i;e�i)
� kD�

1
�D�1

1
k2+kD�2�D

�1

2
k2

2

(Theorem 5.2)

Table 3.1. Summary (continued): (iii) A Bauer-Fike Type Theorem
Classical Bounds New Relative Bounds

A = X�X�1 8e� 2 �( eA), 9� 2 �(A),
such that
je�� �j � �(X)k eA�Ak2

(Theorem 4.6)

EithereA = AD
oreA = DA:

8e� 2 �( eA), 9� 2 �(A),
such that
je���j
j�j � �(X)kI �Dk2

(Theorem 6.6)

19



Finally, let's consider the graded case for which we will use H = D�AD andeH = D� eAD for two n�n graded nonnegative de�nite Hermitian matrices with

A nonsingular and kA�1k2k�Ak2 < 1, where �A
def
= eA � A, and G = BD

and eG = eBD for two m � n graded matrices whose singular values are of
interest. Also it is required that B is nonsingular and kB�1k2k�Bk2 < 1 where

�B
def
= eB �B. Denote

�(H) = f�1; � � � ; �ng and �( eH) = fe�1; � � � ; e�ng;
and

�(G) = f�1; � � � ; �ng and �( eG) = fe�1; � � � ; e�ng;
and arrange them in the order prescribed by (3.3) and (3.4). Set

EA
def
= A�1=2(�A)A�1=2 and EB

def
= (�B)B�1:

Table 3.1. Summary (continued): (iv) Theorems for Graded Matrices
Classical Bounds New Relative Bounds

H
andeH
De�nite

s
nP
i=1

j�i � e�ij2
� k eH �HkF

(Theorem 4.1 and 4.3)

H = D�AD
andeH = D� eAD

r
nP
i=1

h
^RelDist(�i;e�i)i2

� k(I+EA)1=2�(I+EA)�1=2kF

(Theorem 5.4)

H
andeH
De�nite

j�i � e�ij � k eH �Hk2
(Theorem 4.3)

H = D�AD
andeH = D� eAD

^RelDist(�i;e�i)
� k(I+EA)

1=2�(I+EA)
�1=2k2

(Theorem 5.4)

G
andeG

s
nP
i=1

j�i � e�ij2
� k eG� GkF

(Theorem 4.7)

G = BD
andeG = eBD

r
nP
i=1

h
^RelDist(�i;e�i)i2

� k(I+EB)��(I+EB)�1kF
2

(Theorem 5.3)

G
andeG

j�i � e�ij
� k eG� Gk2

(Theorem 4.7)

G = BD
andeG = eBD

^RelDist(�i;e�i)
� k(I+EB)��(I+EB)�1k2

2

(Theorem 5.3)
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4 Known Perturbation Theorems for Eigenvalue

and Singular Value Variations

In this section, we will briey review a few most celebrated theorems for eigen-
value and singular value variations which will be generalized. Most of this
theorems can be found in Bhatia [3], Golub and Van Loan [14], Parlett [28]
and Stewart and Sun [30]. Notation introduced in x3 will be followed strictly.
Ho�man and Wielandt [16] proved

Theorem 4.1 (Ho�man-Wielandt) If A and eA are normal, then there is a
permutation � of f1; 2; � � �; ng such thatvuut nX

i=1

j�i � e��(i)j2 � k eA� AkF :

For a nonsingular matrix X 2 Cn�n , the (spectral) condition number �(X) is
de�ned as

�(X)
def
= kXk2kX�1k2:

Theorem 4.1 was generalized by Sun [33] and Zhang [37] to two diagonalizable
matrices.

Theorem 4.2 (Sun-Zhang) Assume that both A and eA are diagonalizable and
admit the following decompositions

A = X�X�1 and eA = eXe� eX�1; (4.1)

where X and eX are nonsingular and

� = diag(�1; � � � ; �n) and e� = diag(e�1; � � � ; e�n): (4.2)

Then there is a permutation � of f1; 2; � � � ; ng such thatvuut nX
i=1

j�i � e��(i)j2 � �(X)�( eX )k eA� AkF :

We will consider unitarily invariant norms jjj � jjj of matrices. In this we follow
Mirsky [27] and Stewart & Sun [30]. To say that the norm is unitarily invariant
on Cm�n means that it satis�es, besides the usual properties of any norm, also

1. jjjUXV jjj = jjjXjjj, for any U 2Um, and V 2Un;
2. jjjXjjj = kXk2, for any X 2 Cm�n with rankX = 1.
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Two unitarily invariant norms used frequently are the spectral norm k � k2 and
the Frobenius norm k � kF . Let jjj � jjj be a unitarily invariant norm living in
some matrix space. the following inequalities [30, p. 80] will be employed very
frequently in the rest this paper.

jjjXY jjj � kXk2 jjjY jjj and jjjY Zjjj � jjjY jjj kZk2:

Theorem 4.3 Suppose that A and eA are both Hermitian, and that (3.4) holds.
Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; � � � ; �n � e�n)��������� � ���������A� eA��������� : (4.3)

The inequality (4.3) was proved by Weyl [35] for the spectral norm, by Loewner
[24] and as a corollary of Ho�man-Wielandt theorem [16] for the Frobenius norm
and by Lidskii [23], Wielandt [36] and Mirsky [27] for all unitarily invariant
norms. Neither Lidskii nor Wielandt mentioned explicitly (4.3) which was done
by Mirsky [27]. For more detail, the reader is referred to Bhatia [3]. Theorem 4.3
has been generalized in many aspects. The following theorem is due to Bhatia,
Davis and Kittaneh [4].

Theorem 4.4 (Kahan, Bhatia, Davis and Kittaneh) To the hypotheses of

Theorem 4.2 adds this: all �i's and e�j 's are real and are arranged descendingly
as in (3.4). Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; � � � ; �n � e�n)��������� � �(X)�( eX )

���������A� eA��������� : (4.4)

The inequality (4.4) was proved by Kahan [19] for the spectral norm, as a
corollary of Sun-Zhang theorem [33, 37] for the Frobenius norm. In another
aspect, the inequality (4.3) for the spectral norm was generalized to `p operator
norm. The p-H�older norm of a vector x = (�i) 2 Cn is de�ned by

kxkp def
= p

vuut nX
i=1

j�ijp:

The `p-operator norm of a matrix X 2 Cn�n is de�ned by

kXkp def
= max

kxkp=1
kXxkp:

If X is nonsingular, its `p condition number is de�ned by

�p(X)
def
= kXkpkX�1kp:

Clearly, �2(X) = �(X), the (spectral) condition number. The following theorem
is due to Li [21, pp. 225{226].
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Theorem 4.5 (Li) Under the conditions of Theorem 4.4. Then

max
1�i�n

j�i � e�ij � �p(X)�p( eX)kA � eAkp;
where 1 � p � 1.

Generally, if one of A and eB is diagonalizable, we have the following result
due to Bauer and Fike1 [2].

Theorem 4.6 (Bauer-Fike) Assume A is diagonalizable, i.e.,

A = X�X�1; where � = diag(�1; � � � ; �n):

Then for any e� 2 �( eA), there exists a � 2 �(A) such that

je�� �j � �(X)k eA � Ak2: (4.5)

Regarding singular value perturbations, the following theorem was estab-
lished in Mirsky [27], based on Lidskii [23] and Wielandt [36].

Theorem 4.7 Arrange the singular values of B and eB in descending order as
in (3.3). Then for any unitarily invariant norm jjj � jjj

jjjdiag(�1 � e�1; � � � ; �n � e�n)jjj � ���������B � eB��������� : (4.6)

1One can prove a slightly more stronger inequality than (4.5)

je�� �j � kX�1( eA� A)Xk2:
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5 Statement of Theorems with ^RelDist: Non-

negative De�nite Matrices

In this section, we devote our attention to the relative perturbation theory for
eigenvalues of nonnegative de�nite matrices, including singular value problems.
We will consider the following problems:

� Eigenvalue problems:

1. A and eA = D�AD with A nonnegative de�nite and D being close to
some unitary matrix;

2. H = D�AD and eH = D� eAD with both A and eA positive de�nite
and kA�1k2k eA� Ak2 < 1, where D is some square matrix.

� Singular value problems:

1. B and eB = D�
1BD2 with D1 and D2 being close to some unitary

matrices of suitable dimensions;

2. G = BD and eG = eBD with both B and eB nonsingular and kB�1k2k eB�
Bk2 < 1, where D is some square matrix.

Theorems presented here are often better than these in the next section when
applying to nonnegative de�nite matrices. We will make this more concrete in
the coming section.

5.1 Eigenvalue Variations for A and eA = D�AD

Theorem 5.1 Let A and eA = D�AD be two n� n Hermitian matrices, where
D is nonsingular. Denote their eigenvalues as in (3.1) and arrange them de-
scendingly as described in (3.4). Assume that A is nonnegative de�nite. Then

max
1�i�n

R̂elDist(�i; e�i) � kD� �D�1k2; (5.1)vuut nX
i=1

h
R̂elDist(�i; e�i)i2 � kD� �D�1kF : (5.2)

It is trivial to relate the right-hand sides of the inequalities (5.1) and (5.2) to
the singular values of D. In fact, let SVD of D be

D = Ud�dV
�
d : (5.3)

One has for any unitarily invariant norm jjj � jjj������D� �D�1������ = ������Vd(�d � ��1d )U�d
������ = �������d ���1d

������ :
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Another point we would like to make is that A and D�AD have the same rank,
or in another word, A and D�AD have the same number of zero eigenvalues. In
order for the inequalities (5.2) and (5.1) to be true, 0 eigenvalues, if any, must
be always paired with 0 ones.

5.2 Singular Value Variations for B and eB = D�
1BD2

Theorem 5.2 Let B and eB = D�
1BD2 be two m � n matrices, where D1 and

D2 are square and nonsingular. Denote their singular values as in (3.2) and
arrange them as in (3.3). Then

max
1�i�n

R̂elDist(�i; e�i) � 1

2

�kD�
1 �D�1

1 k2 + kD�
2 �D�1

2 k2
�
; (5.4)vuut nX

i=1

h
R̂elDist(�i; e�i)i2 � 1

2

�kD�
1 �D�1

1 kF + kD�
2 �D�1

2 kF
�
: (5.5)

Now, Let's briey mention a possible application of Theorem 5.2. It has some-
thing to do with deation in computing the singular value systems of a bidi-
agonal matrix. For more details, the reader is referred to [6, 8, 10, 26]. We
formulate the application into a corollary.

Corollary 5.1 Assume in Theorem 5.2, one of the D1 and D2 is an identity
matrix and the other takes the form

D =

�
I X

I

�
;

where X is a matrix of suitable dimensions. With the notation of Theorem 5.2,
we have

max
1�i�n

R̂elDist(�i; e�i) � 1

2
kXk2; (5.6)vuut nX

i=1

h
R̂elDist(�i; e�i)i2 � 1p

2
kXkF : (5.7)

Proof: Notice that

D� �D�1 =
�

I
X� I

�
�
�

I �X
I

�
=

�
X

X�

�
;

and thus kD� �D�1k2 = kXk2 and kD� �D�1kF =
p
2kXkF .

It was proved by Eisenstat and Ipsen [10] that

je�i � �ij � kXk2�i; or equivalently

���� e�i�i � 1

���� � kXk2: (5.8)
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So as long as e�i and �i are of the similar magnitude which is guaranteed if kXk2
is small, our inequality (5.6) is sharper by a factor 1=2. As a matter of fact, it
follows from (5.6) and Proposition 2.9 that if kXk2 � 4 then���� e�i�i � 1

���� �
 
kXk2
4

+

r
1 +

kXk22
16

!
kXk2
2

=
kXk2
2

+O(kXk22):

Our inequality (5.7) is the �rst of its kind.

5.3 Graded Matrices

Theorem 5.3 Let G = BD and eG = eBD be two n� n matrices, where B andeB are nonsingular, and let �B = eB �B. Denote

�(G) = f�1; � � � ; �ng and �( eG) = fe�1; � � � ; e�ng;
and arrange them descendingly as in (3.3). If k�Bk2kB�1k2 < 1, then

max
1�i�n
^RelDist(�i; e�i)

� 1

2

(I + (�B)B�1)� � (I + (�B)B�1)�1

2

�
�
k(�B)B�1 +B��(�B)�k2

k(�B)B�1k2 +
k(�B)B�1k2

1� k(�B)B�1k2

�
k(�B)B�1k2

2

�
�
1 +

1

1� kB�1k2k�Bk2

�
kB�1k2k�Bk2

2
; (5.9)vuut nX

i=1

h
^RelDist(�i; e�i)i2

� 1

2

(I + (�B)B�1)� � (I + (�B)B�1)�1

F

�
�
k(�B)B�1 +B��(�B)�kF

k(�B)B�1kF +
k(�B)B�1k2

1� k(�B)B�1k2

�
k(�B)B�1kF

2

�
�
1 +

1

1� kB�1k2k�Bk2

�
kB�1k2k�BkF

2
: (5.10)

Remark. It is interesting to notice that if (�B)B�1 is very skew, then

R̂elDist(�i; e�i) = o(k(�B)B�1k2). Especially if k(�B)B�1 + B��(�B)�k2 =

O(k(�B)B�1k22), then R̂elDist(�i; e�i) = O(k(�B)B�1k22) also.

Theorem 5.4 Let H = D�AD and eH = D� eAD be two n � n nonnegative
de�nite Hermitian matrices whose eigenvalues are

�(H) = f�1; � � � ; �ng and �( eH) = fe�1; � � � ; e�ng; (5.11)
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and in descending order as in (3.4) and let �A = eA �A. If

kA�1k2k�Ak2 < 1; (5.12)

then

max
1�i�n

R̂elDist(�i; e�i)
�

(I + A�1=2(�A)A�1=2)1=2 � (I + A�1=2(�A)A�1=2)�1=2

2

� kA�1k2k�Ak2p
1� kA�1k2k�Ak2

; (5.13)vuut nX
i=1

h
R̂elDist(�i; e�i)i2

�
(I + A�1=2(�A)A�1=2)1=2 � (I + A�1=2(�A)A�1=2)�1=2


F

� kA�1k2k�AkFp
1� kA�1k2k�Ak2

: (5.14)
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6 Statement of Theorems with RelDistp

The rests of cases listed in x1.1, as well as singular value problems, will be
treated here. To be speci�c, we will consider

� Eigenvalue problems:

1. A and eA = D�AD for Hermitian case, where D is nonsingular and
close to I or more generally to a unitary matrix;

2. A and eA = D�
1AD2 for general diagonalizable case, where D1 and

D2 are nonsingular and close to I or more generally to some unitary
matrix;

� Singular value problems:

1. B and eB = D�
1BD2, where D1 and D2 are nonsingular and close to

I or more generally to two unitary matrices;

We retreat singular value problems for comparison purpose. As we will see
soon that we will prove more nice inequalities for singular value variations,
but these inequalities may be potentially less sharp than those in x5 for large
perturbations. Brief comparisons among theorems in this section and these in
the previous section will be given.

6.1 Eigenvalue Variations

The following theorem is a generalization of Theorems 4.1 and 4.2.

Theorem 6.1 Assume that n � n matrix A is perturbed to eA = D�
1AD2 and

both D1 and D2 are nonsingular. Assume also both A and eA are diagonalizable
and admit the decompositions as described in (4.1) and (4.2). Then there is a
permutation � of f1; 2; � � �; ng such thatvuut nX

i=1

h
RelDist2(�i;e��(i))i2 (6.1)

� min

�
k eX�1k2kXk2

q
kX�1(I �D2) eXk2F + kX�1(D��

1 � I) eXk2F ;
kX�1k2k eXk2

q
k eX�1(I �D�

1)Xk2F + k eX�1(D�1
2 � I)Xk2F

�
� �(X)�( eX)min

�q
kI �D1k2F + kI �D

�1
2 k2F ;

q
kI �D

�1
1 k2F + kI �D2k2F

�
:
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For any given U 2 Un, U eAU� = (D1U
�)�AD2U

� has the same eigenvalues aseA does, and moreover from (4.1)

U eAU� = ( eXU�)�1e� eXU�:

So applying Theorem 6.1 to matricesA and U eAU� leads to the following theorem
which we will refer as Theorem 6.1s, where \s" is for indicating that it is stronger.

Theorem 6.1s Let all conditions of Theorem 6.1 hold. Then there is a permu-
tation � of f1; 2; � � �; ng such thatvuut nX

i=1

h
RelDist2(�i; e��(i))i2 (6.2)

� �(X)�( eX ) min
U2Un

min

�q
kU �D1k2F + kU� �D�1

2 k2F ;q
kU� �D�1

1 k2F + kU �D2k2F
�
:

Suppose now A 2 Cn is an normal matrix, i.e., A�A = AA�. Perturb A
to eA = D�

1AD2. The question is: When is eA also normal? This is a rather

interesting question, and an instant answer is that eA is normal provided

D�
2A

�D1D
�
1AD2 = D�

1AD2D
�
2A

�D1:

However, this condition is, perhaps. too general to be useful. I do not know how
to approach this problem yet and therefore this question will not be addressed
further in what follows. On the other hand, if we happen to know that eA is also
normal, the following theorem, as a corollary of Theorem 6.1, indicates that the
eigenvalues of A and eA agrees to high relative accuracy.

Theorem 6.2 Let A and eA = D�
1AD2 be two n � n normal matrixes, where

D1 and D2 are nonsingular. Denote their eigenvalues as in (3.1). Then there
is a permutation � of f1; 2; � � � ; ng such thatvuut nX

i=1

h
RelDist2(�i;e��(i))i2 (6.3)

� min
U2Un

min

�q
kU �D1k2F + kU� �D�1

2 k2F ;
q
kU� �D�1

1 k2F + kU �D2k2F
�
:

We happen to know how to solve the minimization problem: �nd a U0 2 Un
such that for any unitarily invariant norm jjj � jjj

min
U2Un

jjjU �Djjj = jjjU0 �Djjj and min
U2Un

������U� �D�1������ = ������U�0 �D�1������ : (6.4)
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in terms of the singular value decomposition (SVD) of D. As a matter of fact,
let SVD of D be given in (5.3). It follows from Theorem 4.7 that

jjjU �Djjj � jjjI � �djjj and
������U� �D�1������ � ������I ���1d

������ : (6.5)

Fortunately, there is one U0
def
= UdV

�
d which realizes the two equality signs.

Theorem 6.2, now applying to Hermitian matrices, leads to

Theorem 6.3 Let A and eA = D�AD be two n� n Hermitian matrices, where
D is nonsingular. Denote their eigenvalues as in (3.1). Then there is a permu-
tation � of f1; 2; � � �; ng such thatvuut nX

i=1

h
RelDist2(�i; e��(i))i2 � min

U2Un

q
kU �Dk2F + kU� �D�1k2F

=
q
kI � �dk2F + kI ���1d k2F : (6.6)

It is worth mentioning that the permutation � in Theorem 6.3 may not be the
identity one, assuming eigenvalues are ordered in the way of (3.4). However, one
can always choose a � such that zeros are matched to zeros, negative eigenvalues
to negative ones and positive ones to positive ones (Cf. Propositions 2.6 and
2.7). A brief comparison of this theorem and the inequality (5.2) in Theorem 5.1
leads to the following conclusions:

1. Theorem 6.3 covers both the de�nite case and the inde�nite case, while
the inequality (5.2) in Theorem 5.1 covers the de�nite case only;

2. When applying to the de�nite case, (5.2) is sharper than (6.6). As a
matter of fact, (6.6) is a corollary of (5.2). It follows from (5.2) and
Proposition 2.12 that if A is nonnegative de�nitevuut nX

i=1

h
RelDist2(�i; e�i)i2 � 1p

2

vuut nX
i=1

h
R̂elDist(�i; e�i)i2

� 1p
2
k�d � ��1d kF

�
q
kI ��dk2F + kI � ��1d k2F ;

by Lemma 6.1 below.

Lemma 6.1

1p
2
k�d ���1d kF �

q
kI ��dk2F + kI � ��1d k2F ;

and the equality holds if and only if �d = I, i.e., D is unitary.
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Proof: Notice that for � 2 R����� � 1

�

���� � ����� � 1 + 1� 1

�

���� � p
2

s
j� � 1j2 +

����1� 1

�

����2
and the equality sign holds if and only if � = 1.

The theorem below is a generalization of Theorems 4.3 and 4.4 for the spectral
norm and that of Theorem 4.5.

Theorem 6.4 To the hypotheses of Theorem 6.1 adds this: all �i's and e�j 's
are nonnegative and are arranged descendingly as described in (3.4). Then we
have

max
1�i�n

RelDistp(�i; e�i) � �r(X)�r( eX)min

�
q

q
kI �D�

1kqr + kI �D�1
2 kqr ;

q

q
kI �D��

1 kqr + kI �D2kqr
�
; (6.7)

where 1 � r � 1.

Similarly to Theorem 6.1, there is a stronger version of this theorem as follows.

Theorem 6.4s Let all conditions of Theorem 6.4 hold. Then

max
1�i�n

RelDistp(�i; e�i) � �r(X)�r( eX)� (6.8)

min
U2Un

min

�
q

q
kU �D1kq2 + kU� �D�1

2 kq2; q

q
kU� �D�1

1 kq2 + kU �D2kq2
�
:

As a consequence of this theorem and the solution (6.5) to the optimization
problem (6.4), we deduce that

Theorem 6.5 Under the conditions of Theorem 6.3, if A is nonnegative de�-
nite and the eigenvalues of A and eA are in descending order as in (3.4), then

max
1�i�n

RelDistp(�i; e�i) = q

q
kI ��dkq2 + kI � ��1d kq2; (6.9)

where �d is de�ned in (5.3).

However, there is not much interest in this theorem for two reasons: One is that
(6.9) works for nonnegative de�nite matrices only just like the inequality (5.1)
of Theorem 5.1; and the other is that (6.9) is less sharper than (5.1). To see
this, we notice that (5.1) and Proposition 2.12 imply that

max
1�i�n

RelDistp(�i; e�i) � 2�1=pR̂elDist(�i; e�i) � 2�1=pk�d ���1d k2:

So with Lemma 6.2 below, one can deduce (6.9) from (5.1). But still (6.9) looks
nice and clean.
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Lemma 6.2

k�d � ��1d k2 � 21=p q

q
kI ��dkq2 + kI � ��1d kq2; (6.10)

and the equality holds if and only if �d = I, i.e., D is unitary.

Proof: Let � 2 �(D) so that k�d ���1d k2 =
���� � 1

�

��� : Then
k�d � ��1d k2 =

����� � 1

�

���� � j� � 1j+
����1� 1

�

����
� 21=p q

s
j� � 1jq +

����1� 1

�

����q
� 21=p q

q
kI ��dkq2 + kI � ��1d kq2;

as required.

So far we have considered the case when both A and eA are diagonalizable. In
what follows, we weaken this assumption by requiring only A to be diagonaliz-
able and derive relative eigenvalue perturbation bounds of Bauer-Fike Type [2].

Theorem 6.6 Assume that A 2 Cn�n is diagonalizable and admits the follow-
ing decomposition

A = X�X�1 where � = diag(�1; � � � ; �n): (6.11)

Assume2 also either eA = DA or eA = AD. Then for any e� 2 �( eA) there exists
a � 2 �(A) such that

min
�2�(A)

je�� �j
j�j � kX�1(D � I)Xkp � �p(X)kI �Dkp: (6.12)

6.2 Singular Value Variations

As to singular value variations, we will prove

Theorem 6.7 Let B and eB = D�
1BD2 be two m � n matrices, where D1 and

D2 are nonsingular. Denote their singular values as in (3.2). Then there is a
permutation � of f1; 2; � � �; ng such thatvuut nX

i=1

�
RelDist2(�i; e��(i))�2

� 1p
2

q
kI �D1k2F + kI �D�1

1 k2F + kI �D2k2F + kI �D�1
2 k2F :(6.13)

2Unlike in our previous theorems, here we do not have to assume that D is nonsingular.
Of course, if D is far away from I, the bound (6.12) does not tell us much; if D is close enough
to I, it has to be nonsingular.
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For any given U 2 Um and V 2 Un, U eBV � = (D1U
�)�BD2V

� has the same

singular values as eB does. Let the SVDs of D1 and D2 be as

D1 = Ud1�d1V
�
d1 and D2 = Ud2�d2V

�
d2: (6.14)

Applying Theorem 6.7 to matrices B and U eBV �, together with the solution
(6.5) to the optimization problem (6.4), leads to the following stronger version
of the theorem.

Theorem 6.7s Let all conditions of Theorem 6.7 hold. Then there is a permu-
tation � of f1; 2; � � �; ng such thatvuut nX

i=1

�
RelDist2(�i;e��(i))�2

� 1p
2

min
U2Um ; V 2Un

q
kU �D1k2F + kU� �D�1

1 k2F + kV �D2k2F + kV � �D�1
2 k2F

=
1p
2

q
kI � �d1k2F + kI ���1d1 k2F + kI � �d2k2F + kI � ��1d2 k2F ; (6.15)

where �d1 and �d2 are de�ned in (6.14).

Theorems 6.7 and 6.7s are of less interest since they provide less sharper bounds
than Theorem 5.2 does. We keep them around for comparison purpose, though
still they look pretty. Now, we are going to show how to derive (6.15) from (5.5)
of Theorem 5.2. It follows from (5.5) and Proposition 2.12 thatvuut nX

i=1

[RelDist2(�i; e�i)]2 � 1p
2

vuut nX
i=1

h
R̂elDist(�i; e�i)i2

� 1

2
p
2

�k�d1 ���1d1 kF + k�d2 ���1d2 kF
�

� 1

2

�q
kI � �d1k2F + kI ���1d1 k2F +

q
kI ��d2k2F + kI ���1d2 k2F

�
(by Lemma 6.1)

� 1p
2

q
kI � �d1k2F + kI � ��1d1 k2F + kI ��d2k2F + kI ���1d2 k2F ;

which shows (6.15). The proof in x10 of Theorem 6.7 is, however, of di�erent
spirit.

Theorem 6.8 Let B and eB = D�
1BD2 be two m � n matrices, where D1 and

D2 are nonsingular. Denote their singular values as in (3.2), and arrange the

singular values of B and eB in descending order respectively as in (3.3). Then
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we have the following

max
1�i�n

RelDistp(�i; e�i) � min

�
q

q
kI �D�1

1 kq2 + kI �D2kq2 ;

q

q
kI �D1kq2 + kI �D�1

2 kq2
�
: (6.16)

Similarly, applying Theorem 6.8 to matrices B and U eBV �, we will have
Theorem 6.8s Let all conditions of Theorem 6.8 hold. Then

max
1�i�n

RelDistp(�i;e�i)
� min

U2Um ; V 2Un
min

n
q
p
kU� �D�1

1 kq2 + kV �D2kq2; q
p
kU �D1kq2 + kV � �D�1

2 kq2
o

= min

�
q

q
kI ���1d1 kq2 + kI ��d2kq2; q

q
kI � �d1kq2 + kI ���1d2 kq2

�
; (6.17)

where �d1 and �d2 are de�ned in (6.14).

We can not say for sure that (5.4) of Theorem 5.2 is always sharper than the
inequality (6.17), but many evidences indicates so. Let's weaken (6.17) a little
bit into

max
1�i�n

RelDistp(�i; e�i)
� 1

2

�
q

q
kI � ��1d1 kq2 + kI ��d2kq2 + q

q
kI � �d1kq2 + kI � ��1d2 kq2

�
:(6.18)

(6.18) degrades (6.17) marginally in interesting cases. In what follows we will
show that (6.18) is a consequence of Theorem 5.2. To this end, let � 2 �(D1)
and � 2 �(D2) so that

kD�
1 �D�1

1 k2 =
����� � 1

�

���� and kD�
2 �D�1

2 k2 =
����� � 1

�

���� :
We notice that

RelDistp(�i; e�i) � 2�1=pR̂elDist(�i; e�i) (by Proposition 2.12)

� 1

21+1=p
�k�d1 � ��1d1 k2 + k�d2 � ��1d2 k2

�
(by Theorem 5.2)

=
1

21+1=p

������ � 1

�

����+ ����� � 1

�

�����
� 1

21+1=p

�
j� � 1j+

����1� 1

�

����+ j� � 1j+
����1� 1

�

�����

� 1

2

 
q

s
j� � 1jq +

����1� 1

�

����q + q

s����1� 1

�

����q + j� � 1jq
!
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� 1

2

�
q

q
kI � �d1kq2 + kI � ��1d2 kq2 + q

q
kI � ��1d1 kq2 + kI ��d2kq2

�
;

which gives (6.18).
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7 A Theorem of Ostrowski and Other Theorems

In this section, we briey review the current state of research on the problems
listed in x1.1, together with our remarks.

Let A be an n � n Hermitian matrix. Perturbing A to D�AD, where D
is nonsingular, is actually performing a congruence transformation to A by D.
The following theorem is due to Ostrowski [17, pp. 224{225].

Theorem 7.1 (Ostrowski) Let A; D 2 Cn�n with A Hermitian and D non-

singular. De�ne eA = D�AD. Denote the eigenvalues of A and eA as in (3.1)
and arrange them in the order as speci�ed by (3.4). Then there exist �j 's so
that

�min(D)
2 � �j � �max(D)

2 and e�j = �j�j ;

for j = 1; 2; � � �; n.

Ostrowski theorem implies immediately a relative perturbation bound on Her-
mitian eigenvalues.

Theorem 7.2 Let the conditions of Theorem 7.1 hold. Then

je�j � �j j
j�jj � kI �D�Dk2;

or in another words,e�j = �j(1 + �j) with j�jj � kI �D�Dk2;

for j = 1; 2; � � �; n.
Although the inequality (5.1) of Theorem 5.1 and Theorem 7.2 are independent
in the sense that one can not be inferred from the other, the latter is practically
more useful in the following aspects:

1. Theorem 7.2 covers more while the inequality (5.1) of Theorem 5.1 covers
nonnegative de�nite matrices only;

2. Theorem 7.2 is more friendly in the sense that it bounds directly on �j in

the expression e�j = �j(1+ �j) which makes it easy to bound variations of
RelDistp as shown in Proposition 2.3 and Part II of this series [22].

Ostrowski theorem also applies to singular value problems of matrices B andeB = D�
1BD by working with Hermitian matrices�
B�

B

�
and

 eB�eB
!
=

�
D2

D1

���
B�

B

��
D2

D1

�
:

(7.1)
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Corollary 7.1 Let B and eB = D�
1BD2 be two m � n matrices, where D1 and

D2 are nonsingular. Denote their singular values as in (3.2) and arrange them
in descending order respectively as in (3.3). Then

minf�min(D1)
2; �min(D2)

2g � e�j
�j

� maxf�max(D1)
2; �max(D2)

2g

which gives

je�j � �j j
�j

� maxfkI �D�
1D1k2; kI �D�

2D2k2g;

or in another words,

e�j = �j(1 + j) with jj j � maxfkI �D�
1D1k2; kI �D�

2D2k2g:
for j = 1; 2; � � �; n.
This corollary, though it is an immediate consequence of the above Ostrowski
theorem and the equation (7.1), has appeared no where. Corollary 7.1 also has
a advantage over Theorem 6.8s and the inequality (5.4) of Theorem 5.2 in that
it bounds directly on j in the expression e�j = �j(1 + j). Of course, one can
develop bounds on j with little e�ort from Theorem 6.8s and Theorem 5.2. It
turns out that Corollary 7.1 provides a less sharper bound than the following
theorem due to Eisenstat and Ipsen [10].

Theorem 7.3 (Eisenstat-Ipsen) Assume the conditions are as described in
Corollary 7.1. Then

�min(D1)�min(D2) � e�j
�j

� �max(D1)�max(D2)

which yields

je�j � �j j
�j

� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg;

or in another words, e�j = �j(1 + j) with

jj j � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg;
for j = 1; 2; � � �; n.
Theorem 7.3 always provide a sharper bound than Corollary 7.1 does, as the
following lemma indicates.

Lemma 7.1 For �; � � 0,

maxfj1� �2j; j1� �2jg � j1� ��j; (7.2)

and the equality sign holds if and only if � = �.
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Proof: The inequality is obvious if either maxf�; �g � 1 or minf�; �g � 1. It is
also clear if either � = 1 or � = 1. Now it su�ces for us to consider the case
when 0 � � < 1 < �.

1. 1� �2 � �2 � 1) �2 + �2 � 2) �� < 1) 1� �2 > 1� �� = j1� ��j;
2. 1� �2 < �2� 1) �2+ �2 > 2) �� + �2 � �2+ �2 > 2) �2� 1 > 1� ��;

also �2 > �� ) �2 � 1 > �� � 1. So �2 � 1 > j1� ��j.
From the above proof, it is clear that maxfj1� �2j; j1� �2jg = j1 � ��j if and
only if � = �.

Regarding to graded matrices, the following two theorems are due to Demmel
& Veseli�c [9] and Mathias [25].

Theorem 7.4 (Demmel-Veseli�c) Let the conditions of Theorem 5.4 hold.

Arrange the eigenvalues of H = D�AD and eH = D� eAD descendingly as in
(3.4). Then

je�j � �j j
j�jj � kA�1k2k�Ak2

or in another words,

e�j = �j(1 + �j) with j�j j � kA�1k2k�Ak2;

for j = 1; 2; � � �; n.

Theorem 7.5 (Mathias) Let the conditions of Theorem 5.3 hold. Arrange

the singular values of G = BD and eG = eBD descendingly as in (3.3). Then

je�j � �jj
�j

� kB�1k2k�Bk2;

or in another words,

e�j = �j(1 + j) with jj j � kB�1k2k�Bk2;

for j = 1; 2; � � �; n.

Finally, let us see what we can get from Theorems 7.2, 7.4, 7.5 and 7.3 and
Corollary 7.1, in terms of the two kinds of relative distances de�ned in x2.

1. From Theorem 7.2, it follows

RelDistp(�j ; e�j) � RelDist1(�j ; e�j) � kI �D�Dk2; (7.3)

R̂elDist(�j ; e�j) � kI �D�Dk2
�min(D)

: (7.4)
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The inequality (7.3) holds because

RelDist1(�j ; e�j) = je�j � �j j
maxfj�jj; je�jjg � je�j � �jj

j�jj � kI �D�Dk2;

and the inequality (7.4) holds because

R̂elDist(�j ; e�j) = je�j � �jjq
j�jj je�jj =

je�j � �jj
j�jj

s
j�j j
je�j j � kI �D�Dk2

�min(D)
:

2. From Corollary 7.1, we have

RelDist1(�j ; e�j) � maxfkI �D�
1D1k2; kI �D�

2D2k2g; (7.5)

R̂elDist(�j ; e�j) � maxfkI �D�
1D1k2; kI �D�

2D2k2g
minf�min(D1); �min(D2)g : (7.6)

3. From Theorem 7.3, it follows

RelDist1(�j; e�j)
� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg; (7.7)

R̂elDist(�j ; e�j)
� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jgp

�min(D1)�min(D2)
: (7.8)

The inequalities (7.7) and (7.8) are sharper than (7.5) and (7.6), respec-
tively.

4. From Theorem 7.4, we have

RelDist1(�j ; e�j) � kA�1k2k�Ak2; (7.9)

R̂elDist(�j ; e�j) � kA�1k2k�Ak2p
1� kA�1k2k�Ak2

: (7.10)

The inequality (7.10) has been derived in Theorem 5.4.

5. From Theorem 7.5, it follows

RelDist1(�j ; e�j) � kB�1k2k�Bk2; (7.11)

R̂elDist(�j ; e�j) � kB�1k2k�Bk2p
1� kB�1k2k�Bk2

: (7.12)

The inequality (7.12) turns out to be sharper than the last \�" in (5.9)
of Theorem 5.3.
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8 Remarks on Generalized Eigenvalue Problems

and Generalized Singular Value Problems

In this section, we are going to say a few words for the following perturbations.
As we shall see, the results in previous sections, as well as those in Li [22], can
be applied to derive relative perturbation bounds for them.

� Generalized eigenvalue problem:
H1��H2 � D�

1A1D1� �D�
2A2D2 and eH1�� eH2 � D�

1
eA1D1 ��D�

2
eA2D2

with all Ai and eAi positive de�nite and kA�1i k2k eAi�Aik2 < 1, where Di

are some square matrices and one of them are nonsingular.

� Generalized singular problem:
fG1; G2g � fB1D1; B2D2g and f eG1; eG2g � f eB1D1; eB2D2g with all Bi

and eBi nonsingular and kB�1i k2k eBi�Bik2 < 1, where Di are some square
matrices and one of them is nonsingular.

For the above mention generalized eigenvalue problem, without loss of any gen-
erality, consider only the case when D2 is nonsingular. Then the generalized
eigenvalue problem for H1 � �H2 � D�

1A1D1 � �D�
2A2D2 is equivalent to the

standard eigenvalue problem for

A
�1=2
2 D�1

2 D�
1A1D1D

�1
2 A

�1=2
2 ; (8.1)

and the generalized eigenvalue problem for eH1 � � eH2 � D�
1
eA1D1 � �D�

2
eA2D2

is equivalent to the standard eigenvalue problem forbD�A�1=22 D�1
2 D�

1
eA1D1D

�1
2 A

�1=2
2

bD; (8.2)

where �A2
def
= eA2 � A2 and bD = bD� def

= (I + A
�1=2
2 (�A2)A

�1=2
2 )�1=2. So

bounding relative distances between the eigenvalues of H1 � �H2 and these ofeH1�� eH2 is transformed to bounding relative distances between the eigenvalues
of the matrix (8.1) and these of the matrix (8.2). The latter can be accomplished
in two steps:

1. Bounding relative distances between the eigenvalues of the matrix (8.1)
and these of bD�A�1=22 D�1

2 D�
1A1D1D

�1
2 A

�1=2
2

bD; (8.3)

2. Bounding relative distances between the eigenvalues of the matrix (8.3)
and these of the matrix (8.2).

As to the above mention generalized singular problem, we shall consider
their corresponding generalized eigenvalue problems [20, 32, 34] for

D�
1B

�
1B1D1 � �D�

2B
�
2B2D2 and D�

1
eB�1 eB1D1 � �D�

2
eB�2 eB2D2;

instead.
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9 Proofs of Theorems 6.1 and 6.4

To prove the theorems, we need a little preparation. A matrix Y = (yij) 2 Rn�n
is doubly stochastic if all yij � 0 and

nX
k=1

yik =
nX

k=1

ykj = 1 for k = 1; 2; � � � ; n.

A matrix P 2 Rn�n is called a permutation matrix if exactly one entry in each
row and each column equals to 1 and all others are zero. Let ei be the ith column
vector of In. Each permutation matrix P corresponds to a unique permutation
� of f1; 2; � � � ; ng so that

P = (e�(1); e�(2); � � � ; e�(n));
and vice versa. The following wonderful result is due to Birkho� [5] (see also
[17, pp. 527{528]).

Lemma 9.1 (Birkho�) An n� n matrix is doubly stochastic if and only if it
lies in the convex hull of n! permutation matrices.

Lemma 9.2 Let Y = (yij) be an n� n doubly stochastic matrix, and let M =
(mij) 2 Cn�n . Then there exists a permutation � of f1; 2; � � �; ng such that

nX
i; j=1

jmijj2yij �
nX
i=1

jmi�(i)j2:

Proof: Denote all n � n permutation matrices as Pk, and their corresponding
permutations of f1; 2; � � �; ng as �k, where k = 1; 2; � � � ; n!. It follows from
Lemma 9.1 that Y can be written as

Y =
n!X
k=1

�kPk;

where �k � 0 and
Pn!

k=1�k = 1. Hence

nX
i; j=1

jmij j2yij =
n!X
k=1

�k

nX
i=1

jmi�k(i)j2 � min
1�k�n!

nX
i=1

jmi�k(i)j2;

as was to be shown.

The trick in the above proof is quite standard. It was �rst used by Ho�man
and Wielandt [16], and Sun [31] used it to prove a Ho�man-Wielandt type
theorem for a special class of matrix pencils.

The following lemma is due to Elsner and Friedland [12].
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Lemma 9.3 (Elsner-Friedland) Let Y = (yij) 2 Cn�n . Then there exist two
n� n doubly stochastic matrices Y1; Y2, so that entrywisely

�min(Y )
2 Y1 � (jyijj2) � �max(Y )

2 Y2;

where �min(Y ) and �max(Y ) are the smallest and largest singular values of Y ,
respectively.

Proof of Theorem 6.1: Let us �rst derive our perturbation equations.

X�1(A� eA) eX = �X�1 eX �X�1 eXe�;
A� eA = A�D�

1AD2 = A� AD2 + AD2 �D�
1AD2

= A(I �D2) + (D��
1 � I) eA;eX�1(A� eA)X = eX�1X� � e� eX�1X;

A� eA = A�D�
1AD2 = A�D�

1A +D�
1A�D�

1AD2

= (I �D�
1)A + eA(D�1

2 � I):

Thus, we have

�X�1 eX �X�1 eXe� = �X�1(I �D2) eX +X�1(D��
1 � I) eX e�; (9.1)eX�1X�� e� eX�1X = eX�1(I �D�

1)X� + e� eX�1(D�1
2 � I)X: (9.2)

Set Y
def
= X�1 eX = (yij), E = X�1(I � D2) eX = (eij) and eE = X�1(D��

1 �
I) eX = (eeij). Then the equation (9.1) reads �Y � Y e� = �E + eEe�, or compo-

nentwisely �iyij � yije�j = �ieij + eeije�j , so
j(�i � e�j)yij j2 � (j�ij2 + je�j j2)(jeijj2 + jeeijj2);

which yields

jeijj2 + jeeijj2 � hRelDist2(�i; e�j)i2 jyijj2:
Hence

kX�1(I�D2) eXk2F+kX�1(D��
1 �I) eXk2F � nX

i; j=1

h
RelDist2(�i; e�j)i2 jyijj2 (9.3)

which, together with Lemmas 9.3 and 9.2, show that

kX�1(I �D2) eXk2F +kX�1(D��
1 � I) eXk2F � �min(Y )

2
nX
i=1

h
RelDist2(�i; e��(i))i2

for some permutation � of f1; 2; � � �; ng. Since

�min(Y ) = kY �1k�12 = k eX�1Xk�12 � k eX�1k�12 kXk�12 ;
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so

k eX�1k2kXk2
q
kX�1(I �D2) eXk2F + kX�1(D��

1 � I) eXk2F
� k eX�1k2kXk2�min(Y )

vuut nX
i=1

h
RelDist2(�i; e��(i))i2

�
vuut nX

i=1

h
RelDist2(�i; e��(i))i2: (9.4)

Set eY def
= eX�1X = (eyij). Similarly, we get

k eX�1(I �D�
1)Xk2F + k eX�1(D�1

2 � I)Xk2F �
nX

i; j=1

h
RelDist2(�i; e�j)i2 jeyjij2

which, together with Lemmas 9.3 and 9.2, show that

k eX�1(I�D�
1 )Xk2F +k eX�1(D�1

2 �I)Xk2F � �min(eY )2 nX
i=1

h
RelDist2(�i; e��(i))i2 :

Since
�min(eY ) = keY �1k�12 = kX�1 eXk�12 � kX�1k�12 k eXk�12 :

Along the lines as we were proceeding in (9.4), we will reach

kX�1k2k eXk2qk eX�1(I �D�
1)Xk2F + k eX�1(D�1

2 � I)Xk2F

�
vuut nX

i=1

h
RelDist2(�i; e��(i))i2: (9.5)

The inequality (6.1) is now a simple consequence of (9.4) and (9.5).

A proof of Theorem 6.4 is based on the following result due to Li [21, pp. 207{
208]. For a X 2 Cm�n , introduce the following notation for a k � ` submatrix
of X = (xij):

X

�
i1 � � � ik
j1 � � � j`

�
def
=

0BBB@
xi1j1 xi1j2 � � � xi1j`
xi2j1 xi2j2 � � � xi2j`
...

...
. . .

...
xikj1 xikj2 � � � xikj`

1CCCA ; (9.6)

where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < j` � n.
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Lemma 9.4 (Li) Suppose that X 2 Cn�n is nonsingular, 1 � i1 < � � � < ik �
n and 1 � j1 < � � � < j` � n, and k + ` > n. ThenX � i1 � � � ik

j1 � � �j`

�
p

� kX�1k�1p :

Moreover, if X is unitary thenX � i1 � � � ik
j1 � � �j`

�
2

= 1:

Proof of Theorem 6.4: Let k be the index such that

�p
def
= max

1�i�n
RelDistp(�i; e�i) = RelDistp(�k; e�k):

If �p = 0, the inequality (6.7) is trivial. Assume �p > 0. Also assume, without
lose of any generality, that

�k > e�k � 0:

Partition X; X�1; eX and eX�1 as follows:

X = (X1; X2); X
�1 =

�
W �

1

W �
2

�
; eX = ( eX1; eX2); eX�1 =

 fW �
1fW �
2

!
;

where X1; W1 2 Cn�k and eX1; fW1 2 Cn�(k�1), and write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from the
equations (9.1) and (9.2) that

�1W
�
1
eX2 �W �

1
eX2
e�2 = �1W

�
1 (I �D2) eX2 +W �

1 (D
��
1 � I) eX2

e�2; (9.7)fW �
2X1�1 � e�2

fW �
2X1 = fW �

2 (I �D�
1)X1�1 + e�2

fW �
2 (D

�1
2 � I)X1 (9.8)

which gives

W �
1
eX2 � ��11 W �

1
eX2
e�2 = W �

1 (I �D2) eX2 + ��11 W �
1 (D

��
1 � I) eX2

e�2; (9.9)fW �
2X1 � e�2

fW �
2X1�

�1
1 = fW �

2 (I �D�
1)X1 + e�2

fW �
2 (D

�1
2 � I)X1�

�1
1 : (9.10)

Lemma 9.4 impliesW �
1
eX2


r

�
(X�1 eX)�1

�1
r

�
 eX�1X

�1
r

� k eX�1k�1r kXk�1r ;fW �
2X1


r

�
( eX�1X)�1

�1
r

�
X�1 eX�1

r
� kX�1k�1r k eXk�1r ;

sinceW �
1
eX2 is a k�(n�k+1) submatrix ofX�1 eX , andfW �

2X1 is a (n�k+1)�k
submatrix of eX�1X and k + (n � k + 1) = n + 1 > n. So it follows from (9.9)
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that  
1�

e�k
�k

!
k eX�1k�1r kXk�1r

�
 
1�

e�k
�k

!W �
1
eX2


r

=
W �

1
eX2


r
� k��11 kr

W �
1
eX2


r

e�2


r

�
W �

1
eX2


r
�
��11 W �

1
eX2
e�2


r

�
W �

1
eX2 � ��11 W �

1
eX2
e�2


r

=
W �

1 (I �D2) eX2 + ��11 W �
1 (D

��
1 � I) eX2

e�2


r

�
W �

1 (I �D2) eX2


r
+
e�k
�k

W �
1 (D

��
1 � I) eX2


r

� kW �
1 krk eX2kr

 
kI �D2kr +

e�k
�k
kD��

1 � Ikr
!

� kX�1krk eXkr p

s
1 +

e�pk
�pk

q

q
kI �D2kqr + kI �D��

1 kqr:

Similarly, it follows from (9.10) that 
1�

e�k
�k

!
kX�1k�1r k eXk�1r

� k eX�1krkXkr p

s
1 +

e�pk
�pk

q

q
kI �D�1

2 kqr + kI �D�
1kqr:

The inequality (6.7) is now a simple consequence of above inequalities.
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10 Proofs of Theorems 6.7 and 6.8

Proof of Theorem 6.7: We assume, without lose of any generality, that m = n;
otherwise, we can augment B and eB with zero blocks of suitable size. For
example if m > n, we do

B1 = (B; 0m;m�n); eB1 = ( eB; 0m;m�n) = D�
1B1diag(D2; Im�n):

Since this way only increases the number of zero singular values, and Proposi-
tion 2.7 says that zero singular values should be always paired to zero ones, we
still have (6.13) in the end once we prove it for B1 and eB1.

Assume now m = n and let the singular value decompositions of B and eB
be as

B = U�V � and eB = eU e�eV �; (10.1)

where U; V; eU; eV 2Un and

� = diag(�1; � � � ; �n) and e� = diag(e�1; � � � ; e�n): (10.2)

Notice

U�(B � eB)eV = �V � eV � U� eU e�;
B � eB = B �D�

1BD2 = B � BD2 + BD2 �D�
1BD2

= B(I �D2) + (D��
1 � I) eB:

Thus, we have

�V � eV � U� eU e� = �V �(I �D2)eV + U�(D��
1 � I)eU e�: (10.3)

One the other hand, we have

eU�(B � eB)V = eU�U�� e�eV �V;
B � eB = B �D�

1BD2 = B �D�
1B +D�

1B �D�
1BD2

= (I �D�
1)B + eB(D�1

2 � I):

Thus, we have

eU�U�� e�eV �V = eU�(I �D�
1)U�+ e�eV �(D�1

2 � I)V:

Taking conjugate transpose in both sides, we get

�U� eU � V � eV e� = �U�(I �D1)eU + V �(D��
2 � I)eV e�: (10.4)
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Set Q = U� eU = (qij) and eQ = V � eV = (eqij). Both are unitary. Similarly to the
derivation of the inequality (9.3), from the perturbation equations (10.3) and
(10.4) one can get

kI �D2k2F + kI �D��
1 k2F �

nX
i; j=1

j�ieqij � qije�j j2
�2i + e�2j ; (10.5)

kI �D1k2F + kI �D��
2 k2F �

nX
i; j=1

j�iqij � eqije�j j2
�2i + e�2j : (10.6)

Since

j�ieqij � qije�j j2 + j�iqij � eqije�jj2 = �2i jeqijj2 + jqijj2e�2j � 2<(�ieqij�qije�j)
+�2i jqijj2 + jeqijj2e�2j � 2<(�i�qijeqije�j)

� (�i � e�j)2(jqijj2 + jeqijj2);
where <(�) takes the real part of a complex number. The last \�" holds because

2<(�ieqij�qije�j) � �ie�j(jqijj2 + jeqijj2);
2<(�i�qijeqije�j) � �ie�j(jqijj2 + jeqijj2):

Now adding the corresponding two sides of the inequalities (10.5) and (10.6)
leads to

kI �D2k2F + kI �D��
1 k2F + kI �D1k2F + kI �D��

2 k2F
� 2

nX
i; j=1

[RelDist2(�i; e�j)]2 jqijj2 + jeqijj2
2

:

It is easy to see that the matrix whose (i; j)th entry is jqij j2+jeqij j2
2 is a doubly

stochastic matrix. Hence applying Lemma 9.2 leads to the inequality (6.13).

Proof of Theorem 6.8: Similarly to the remark we made at the beginning of the
above proof, we may assume, without lose of any generality, that m = n because
of Proposition 2.5. Then still, we have the perturbation equations (10.3) and
(10.4). Let k be the index such that

�p
def
= max

1�i�n
RelDistp(�i; e�i) = RelDistp(�k; e�k):

If �p = 0, the inequality (6.16) is trivial. Assume �p > 0. Also assume, without
lose of generality, that

�k > e�k � 0:

Partition U; V; eU; eV as follows

U = (U1; U2); V = (V1; V2); eU = (eU1; eU2) and eV = (eV1; eV2);
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where U1; V1 2 Cn�k and eU1; eV1 2 Cn�(k�1). Write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from the
equations (10.3) and (10.4) that

�1V
�
1
eV2 � U�1 eU2

e�2 = �1V
�
1 (I �D2)eV2 + U�1 (D

��
1 � I)eU2

e�2;

�1U
�
1
eU2 � V �1 eV2e�2 = �1U

�
1 (I �D1)eU2 + V �1 (D

��
2 � I)eV2e�2

which yield

V �1 eV2 ���11 U�1 eU2
e�2 = V �1 (I �D2)eV2 +��11 U�1 (D

��
1 � I)eU2

e�2; (10.7)

U�1 eU2 � ��11 V �1 eV2e�2 = U�1 (I �D1)eU2 + ��11 V �1 (D
��
2 � I)eV2e�2: (10.8)

Lemma 9.4 implies that
U�1 eU2


2
=
V �1 eV2

2
= 1, since U�1 eU2 is a k�(n�k+1)

submatrix of U� eU 2Un and V �1 eV2 is a k � (n� k+ 1) submatrix of V � eV 2Un
and k + (n� k + 1) = n+ 1 > n. So it follows from (10.7) that

1� e�k
�k

=
V �1 eV2

2
� k��11 k2

U�1 eU2


2
ke�2k2

�
V �1 eV2

2
�
��11 U�1 eU2

e�2


2

�
V �1 eV2 � ��11 U�1 eU2

e�2


2

=
V �1 (I �D2)eV2 + ��11 U�1 (D

��
1 � I)eU2

e�2


2

� kI �D2k2 + e�k
�k
kD��

1 � Ik2

� p

s
1 +

e�pk
�pk

q

q
kI �D2kq2 + kD��

1 � Ikq2:

Therefore

�p =
1� e�k=�k
p
p
1 + e�pk=�pk � q

q
kI �D2kq2 + kD��

1 � Ikq2:

Similarly, it follows from (10.8) that

�p =
1� e�k=�k
p
p
1 + e�pk=�pk � q

q
kI �D1kq2 + kD��

2 � Ikq2:

The inequality (6.16) is a consequence of the last two inequalities.
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11 Proof of Theorems 5.1, 5.2, 5.3 and 5.4

Proof of Theorem 5.1: Since A is nonnegative, there is a matrix B 2 Cn�n such
that A = B�B. With this B, eA = D�AD = D�B�BD = eB� eB, where eB = BD.
Let SVDs of B and eB be as

B = U�1=2V � and eB = eU e�1=2eV �;
where

�1=2 = diag(
p
�1; � � � ;

p
�n) and e�1=2 = diag

�qe�1; � � � ;qe�n� :
In what follows, we actually work with BB� and eB eB�, instead of A = B�B andeA = eB� eB. eB eB� �BB� = eBD�B� � eBD�1B�

= eB(D� �D�1)B�;eU�( eB eB� �BB�)U = e�eU�U � eU�U�;eU� eB(D� �D�1)B�U = e�1=2eV �(D� �D�1)V �1=2:

Thus, we have the following perturbation equation.e�eU�U � eU�U� = e�1=2eV �(D� �D�1)V �1=2: (11.1)

Write Q
def
= eU�U = (qij). It follows from (11.1) that

keV �(D� �D�1)V k2F = kD� �D�1k2F �
nX

i; j=1

je�i � �j jqe�i�j jqijj2:
Since (jqijj2) is a doubly stochastic matrix, applying Lemma 9.2 concludes the
proof of the inequality (5.2). To show (5.1), let k be the index such that

�p
def
= max

1�i�n
R̂elDist(�i; e�i) = R̂elDist(�k; e�k):

If �p = 0, no proof is necessary. Assume �p > 0. Also assume, without lose of
any generality, that

�k > e�k � 0:

Partition U; V; eU; eV as follows

U = (U1; U2); V = (V1; V2); eU = (eU1; eU2) and eV = (eV1; eV2);
where U1; V1 2 Cn�k and eU1; eV1 2 Cn�(k�1), and write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from the
equation (11.1) thate�2

eU�2U1 � eU�2U1�1 = e�1=2
2
eV �2 (D� �D�1)V1�

1=2
1
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which yields

e�2
eU�2U1�

�1
1 � eU�2U1 = e�1=2

2
eV �2 (D� �D�1)V1�

�1=2
1 : (11.2)

Lemma 9.4 implies that
eU�2U1


2
= 1 since eU�2U1 is a (n�k+1)�k submatrix

of eU�U and k + (n� k + 1) = n+ 1 > n. So it follows from (11.2) that

1�
e�k
�k

=
eU�2U1


2
� ke�2k2

eU�2U1


2
k��11 k2

�
eU�2U1


2
�
e�2

eU�2U1�
�1
1


2

�
eU�2U1 � e�2

eU�2U1�
�1
1


2

=
e�1=2

2
eV �2 (D� �D�1)V1�

�1=2
1


2

� ke�1=2
2 k2

eV �2 (D� �D�1)V1

2
k��1=21 k2

=

se�k
�k

eV �2 (D� �D�1)V1

2

�
se�k
�k
kD� �D�1k2;

an immediate consequence of which is the inequality (5.1).

Proof of Theorem 5.2: Set bB = BD2 and denote

�( bB) = fb�1 � b�2 � � � � � b�ng:
Applying Theorem 5.1 to B�B and bB� bB = D�

2B
�BD2 leads to

max
1�i�n

R̂elDist(�2i ; b�2i ) � kD�
2 �D�1

2 k2;vuut nX
i=1

h
R̂elDist(�2i ; b�2i )i2 � kD�

2 �D�1
2 kF :

Now applying Proposition 2.11, we obtain

max
1�i�n

R̂elDist(�i; b�i) � 1

2
kD�

2 �D�1
2 k2;vuut nX

i=1

h
R̂elDist(�i; b�i)i2 � 1

2
kD�

2 �D�1
2 kF :
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Similarly for BD2 and D�
1BD2, we have

max
1�i�n

R̂elDist(b�i; e�i) � 1

2
kD�

1 �D�1
1 k2;vuut nX

i=1

h
R̂elDist(b�i; e�i)i2 � 1

2
kD�

1 �D�1
1 kF :

Since R̂elDist is a generalized metric on R�0, we get

R̂elDist(�i; e�i) � R̂elDist(�i; b�i) + R̂elDist(b�i; e�i)
� 1

2

�kD�
1 �D�1

1 k2 + kD�
2 �D�1

2 k2
�
;vuut nX

i=1

h
R̂elDist(�i; e�i)i2 �

vuut nX
i=1

h
R̂elDist(�i; b�i) + R̂elDist(b�i; e�i)i2

�
vuut nX

i=1

h
R̂elDist(�i; b�i)i2 +

vuut nX
i=1

h
R̂elDist(b�i; e�i)i2

� 1

2

�kD�
1 �D�1

1 kF + kD�
2 �D�1

2 kF
�
;

as expected.

Proof of Theorem 5.3: Write

eG = (B +�B)D = (I + (�B)B�1)BD = bDG;
where bD = I + (�B)B�1. Now applying Theorem 5.2 above to G and eG =bDG yields the �rst inequalities in both (5.9) and in (5.10). To get the second
inequalities, we notice

(I +E)� � (I +E)�1 = I + E� �
1X
i=0

(�1)iEi = E� + E + E

1X
i=2

(�1)iEi�1;

where E = (�B)B�1, and therefore for any unitarily invariant norm jjj � jjj

������(I + E)� � (I +E)�1
������ � jjjE +E�jjj+ jjjEjjj

1X
i=1

kEki2

=

� jjjE + E�jjj
jjjEjjj +

kEk2
1� kEk2

�
jjjEjjj :

The rest is trivial.
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Proof of Theorem 5.4: Rewrite H and eH as

H = D�AD = (A1=2D)� A1=2D
def
= B�B;eH = D�A1=2

�
I + A�1=2(�A)A�1=2

�
A1=2D

=
� �

I + A�1=2(�A)A�1=2
�1=2

A1=2D
�� �

I +A�1=2(�A)A�1=2
�1=2

A1=2D

def
= eB� eB;

where

B
def
= A1=2D;eB def
=

�
I +A�1=2(�A)A�1=2

�1=2
A1=2D:

Set bD =
�
I + A�1=2(�A)A�1=2

�1=2
. Thus eB = bDB. Notice that �(H) =

�(B�B) = �(BB�) and �( eH) = �( eB� eB) = �( eB eB�) and eB eB� = bDBB� bD�. So
applying Theorem 5.1 to BB� and eB eB� yields the �rst \�" in both (5.13) and
(5.14).
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12 Proof of Theorem 6.6

There is nothing to prove if e� 2 �(A). Assume that e� 62 �(A). Here we will

prove the case when eA = DA only, since the proof for the case when eA = AD
is very similar. Consider eA � e�I.

eA� e�I = A � e�I + eA� A

= X(� � e�I)X�1 + (D � I)X�X�1

= X
h
I +X�1(D � I)X�(� � e�I)�1i (�� e�I)X�1:

Since eA� e�I is singular, we have for any 1 � p � 1

kX�1(D � I)X�(� � e�I)�1kp � 1

which gives

1 � kX�1(D � I)Xkpk�(�� e�I)�1kp = kX�1(D � I)Xkp max
�2�(A)

j�j
je�� �j

as was to be shown.
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A Is RelDistp a Metric?

In this appendix, we will prove (2.22) under certain conditions. As a result, we
will see

1. RelDistp is a metric on R�0;

2. RelDist1, RelDist2 and RelDist1 are metrics on R.

We strongly conjecture that RelDistp is a metric on C . Unfortunately, we are
unable to prove it at this point.

Lemma A.1 The following statements are equivalent:

1. RelDistp(�; ) � RelDistp(�; �) + RelDistp(�; );

2. RelDistp(��; �) � RelDistp(��; ��) + RelDistp(��; �) for some 0 6= � 2
C ;

3. RelDistp(��; �) � RelDistp(��; ��) + RelDistp(��; �) for all 0 6= � 2 C .

The proof of this lemma is trivial, just by Property 3 of Proposition 2.1. With
Lemma A.1 in mind and that swapping � and  does not lose any generality,
we may assume from now on

� � j�j � : (A.1)

The inequality (2.22) is trivial when one of the �; �;  is zero or � = � or � = .
So from now on, we may assume

�; �;  6= 0 and � 6= � 6= : (A.2)

Now there are three possible positions for �:

� < � or � < � <  or  < �:

When � < 0, we split the case � < � into two subcases:

� < � or �  � � < �:

Also in the case � < 0, without loss of generality, we may assume � = �1 by
Lemma A.1. We summarize the above cases we have to handle separately as
follows.

1. � < � < ;

2. � > 0, i.e., � and  are of the same sign;

3. � = �1 < 1 �  < �;
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4. � � � < � = �1 < 1 � ; and

5. � � � � � = �1 < 1 � .

Lemma A.2 (2.22) holds for � � � � , and the equality sign holds if and
only if � = � or � = .

This lemma actually implies that (2.22) holds if � lies between � and  for all
�;  2 R, not just these � and  satisfying (A.1).

Proof: Assume � 6= � 6= . Because of (A.1), we have  � � =  � � + � � �
and thus for 1 � p <1

RelDistp(�; ) =
 � �

p
p
p + j�jp =

 � �
p
p
p + j�jp +

� � �
p
p
p + j�jp

=
 � �

p
p
p + j�jp +

� � �
p
pj�jp + j�jp

+( � �)

 
1

p
p
p + j�jp �

1
p
p
p + j�jp

!

+(� � �)

 
1

p
p
p + j�jp �

1
p
p
j�jp + j�jp

!
= RelDistp(�; �) + RelDistp(�; )

+
( � �)(j�jp � j�jp)

p
p
p + j�jp p

p
p + j�jp �

p
p
p + j�jp � p

p
p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � p)

p
p
p + j�jp p

p
j�jp + j�jp �

p
pj�jp + j�jp � p

p
p + j�jp

j�jp � p
:

Now if � < � � j�j � , then j�jp � j�jp � 0 and j�jp � p < 0, and thus

( � �)(j�jp � j�jp)
p
p
p + j�jp p

p
p + j�jp �

p
p
p + j�jp � p

p
p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � p)

p
p
p + j�jp p

p
j�jp + j�jp �

p
pj�jp + j�jp � p

p
p + j�jp

j�jp � p
< 0:

Hence RelDistp(�; ) < RelDistp(�; �) + RelDistp(�; ). Consider now j�j <
� < . Then

( � �)(j�jp � j�jp)
p
p
p + j�jp p

p
p + j�jp �

p
p
p + j�jp � p

p
p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � p)

p
p
p + j�jp p

pj�jp + j�jp �
p
pj�jp + j�jp � p

p
p + j�jp

j�jp � p
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� ( � �)(� � j�j)
p
p
p + j�jp

 
1

p
p
p + �p

� �
p � j�jp
� � j�j �

p
p
p + �p � p

p
p + j�jp

�p � j�jp

� 1
p
p
j�jp + �p

� 
p � �p

 � �
�

p
p
j�jp + �p � p

p
p + j�jp

�p � p

!
< 0:

The last \<" is true because p
p
p + �p > p

pj�jp + �p and

0 <
�p � j�jp
� � j�j � p � �p

 � �
;

0 <
p
p
p + �p � p

p
p + j�jp

�p � j�jp �
p
p
j�jp + �p � p

p
p + j�jp

�p � p
:

So we also have RelDistp(�; ) < RelDistp(�; �)+RelDistp(�; ) for j�j < � < .
The proof for the case p <1 is completed.

When p =1,

RelDist1(�; ) =
 � �


=

 � �


+
� � �



=
 � �


+

� � �

maxfj�j; j�jg
+(� � �)

�
1


� 1

maxfj�j; j�jg
�

< RelDist1(�; �) + RelDist1(�; );

as was to be shown.

Lemma A.3 (2.22) holds for � � 0.

Proof: Lemma A.2 shows that (2.22) is true if � � � � . If either � < � or
 < �, (2.22) follows from Property 8 of Proposition 2.1.

As an immediate consequence of Lemma A.3, we have

Proposition A.1 RelDistp is a metric on R�0.

Lemma A.4 (2.22) holds for � � � � � < 0 < j�j � , and the equality sign
holds if and only if � = �.

Proof: Assume � 6= �. De�ne

f(�)
def
=

 + �
p
p
p + �p

for j�j � � � :
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Clearly if p =1, f(�) = +�
 increases in j�j � � � ; if 0 � p <1, we have

f 0(�) =
(p�1 � �p�1)
(p + �p)1+1=p

> 0; for j�j � � < .

So f(�) is an increasing function for all p. Hence

RelDistp(�; ) = f(��) < f(��) = RelDistp(�; ) < RelDistp(�; �)+RelDistp(�; );

as was to be proved.

Proposition A.2 RelDist1, RelDist2 and RelDist1 are metrics on R.

Proof: We have to prove (2.22) with p = 1; 2 and 1 for all 5 cases listed at the
beginning of this appendix. But Case 1 has been covered by Lemma A.2, Case
2 by Lemma A.3, and Case 4 by Lemma A.4. Cases 3 and 5 are to be dealt
with by Lemmas A.5 and A.6 below.

Lemma A.5 (2.22) with p = 1; 2 or 1 holds for � = �1 < 1 �  � �. When
p = 1; 2, the equality sign holds if and only if � = ; when p =1, the equality
sign holds if and only if either � =  or  = 1.

Proof: Assume � 6= . First consider the case p = 2. De�ne

f(�)
def
=

� + 1p
�2 + 1

+
� � p
�2 + 2

:

We are going to show that f 0(�) > 0 for � >  and thus

RelDist2(�1; �) + RelDist2(�; ) = f(�) > f() =
 + 1p
2 + 1

= RelDist2(�1; )

which concludes the proof for the present case. Since

f 0(�) = � � � 1

(�2 + 1)3=2
+

(� + )

(�2 + 2)3=2
:

So to show f 0(�) > 0, it su�ces for us to show for � >  � 1

(� + )(�2 + 1)3=2 > (� � 1)(�2 + 2)3=2;

or equivalently, to show for � >  � 1

(� � 1)2(�2 + 2)3 � 2(� + )2(�2 + 1)3 < 0:
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But tedious algebraic manipulations yield the following

(� � 1)2(�2 + 2)3 � 2(� + )2(�2 + 1)3

= �4 + 6 � 23(1 + 3)� + 2(4 � 1)�2 � 63(1 + )�3

�62(1 + )�5 + (1� 4)�6 � 2(1 + 3)�7 + (1� 2)�8

= �4 + 3(3 � 6�3)� 23(1 + 3)� � 2�2 + 3�2(3 � 6�3)

�64�3 � 62�5 + (1� 4)�6 � 2(1 + 3)�7 + (1� 2)�8

< 0;

as required. This completes the proof for p = 2.
We have to show (2.22) for p = 1 or 1. For the moment, let's see what

is the implication of (2.22) for any 1 � p � 1 for this particular case. Notice
 + 1 = � + 1� (� � ) and

RelDistp(�1; ) =  + 1
p
p
p + 1

=
� + 1
p
p
p + 1

� � � 
p
p
p + 1

=
� + 1

p
p
�p + 1

+
� � 

p
p
�p + p

+(� + 1)

�
1

p
p
p + 1

� 1
p
p
�p + 1

�
� (� � )

�
1

p
p
p + 1

+
1

p
p
�p + p

�
= RelDistp(�1; �) + RelDistp(�; )

+(� + 1)
p
p
�p + 1� p

p
p + 1

p
p
p + 1 p

p
�p + 1

� (� � )
p
p
�p + p + p

p
p + 1

p
p
p + 1 p

p
�p + p

:

So (2.22) holds if and only if

(� + 1)
�

p
p
�p + 1� p

p
p + 1

�
p
p
�p + p

� (� � )
�

p
p
�p + p + p

p
p + 1

�
p
p
�p + 1;

or equivalently

p
p
�p + p

�
( + 1) p

p
�p + 1� (� + 1) p

p
p + 1

�
� (� � ) p

p
�p + p p

p
�p + 1

which is true if and only if

p
p
�p + p

�
 + 1

p
p
p + 1

� � + 1
p
p
�p + 1

�
� � � : (A.3)

Our proof will be completed if we can prove (A.3) for p = 1 or1. When p = 1,
the left-hand side of (A.3) is zero and its right-hand side is � �  � 0. When
p =1,

the left-hand side of (A.3) = �

�
 + 1


� � + 1

�

�
=

� � 


� � � :

Hence (A.3) holds for both p = 1 and 1.

58



Lemma A.6 (2.22) with p = 1; 2 or 1 holds for � < � � � = �1 < 1 � ,
and is strict, unless p =1 and  = 1.

Proof: We want to prove for p = 1; 2 and 1
RelDistp(�1; ) < RelDistp(�1; �) + RelDistp(�; );

which, by Lemma A.1, is equivalent to

RelDistp(1;�) < RelDistp(1;��) + RelDistp(��;�):
Set � = ��. Then � >  > 1. For the moment, let's see what is the implication
of (2.22) for any 1 � p � 1 for this particular case. Notice that  + 1 =
� +  � (� � 1), and thus

RelDistp(1;�) =  + 1
p
p
p + 1

=
� + 

p
p
p + 1

� � � 1
p
p
p + 1

=
� + 

p
p
�p + p

+
� � 1

p
p
�p + 1

+(� + )

�
1

p
p
p + 1

� 1
p
p
�p + p

�
� (� � 1)

�
1

p
p
p + 1

+
1

p
p
�p + 1

�
+(� + )

p
p
�p + p � p

p
p + 1

p
p
p + 1 p

p
�p + p

� (� � 1)
p
p
�p + 1 + p

p
p + 1

p
p
p + 1 p

p
�p + 1

:

So (2.22) holds if and only if

(� + )
p
p
�p + p � p

p
p + 1

p
p
p + 1 p

p
�p + p

� (� � 1)
p
p
�p + 1 + p

p
p + 1

p
p
p + 1 p

p
�p + 1

� 0; (A.4)

or equivalently

(+�) p
p
�p + 1

�
p
p
p + �p � p

p
p + 1

�
� (��1) p

p
p + �p

�
p
p
�p + 1+ p

p
p + 1

�
;

or equivalently

p
p
p + �p

�
( + 1) p

p
�p + 1� (� � 1) p

p
p + 1

�
� ( + �) p

p
p + 1 p

p
�p + 1

which holds if and only if

p
p
p + �p

�
 + 1

p
p
p + 1

� � � 1
p
p
�p + 1

�
�  + �: (A.5)

We have to show (A.5) (or (A.4)) for p = 1; 2 and 1. When p = 2, We will
prove (A.4) by showing for � > 

(� + )(�2 � 1)p
2 + 1

p
�2 + 2

�p
2 + 1 +

p
�2 + 2

��(��1) 1p
2 + 1

+
1p
�2 + 1

!
< 0

(A.6)
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and thus our proof is completed. To show our claim, �rst, we notice that the
inequality (A.6) is equivalent to

(� + )(� + 1)p
2 + 1

p
�2 + 2

�p
2 + 1 +

p
�2 + 2

� <
1p

2 + 1
+

1p
�2 + 1

;

or equivalently

(� + )(� + 1)
p
�2 + 1p

�2 + 2
�
�p

2 + 1 +
p
�2 + 2

��p
�2 + 1 +

p
2 + 1

�
:

(A.7)
Notice that

The left-hand side of (A.7) � (� + )(� + 1);

The right-hand side of (A.7) �
�p

�2 + 1 +
p
2 + 1

�2
;

and �p
�2 + 1 +

p
2 + 1

�2
� (� + )(� + 1)

= �2 + 1 + 2 + 1 + 2
p
�2 + 1

p
2 + 1� �2 � ( + 1)� � 

> 2
p
�2 + 1

p
2 + 1� ( + 1)�

> 0;

because

( + 1)2�2 = �22 + 2�2 + �2

� 3�22 + �2;

4(�2 + 1)(2 + 1) = 4�22 + 4�2 + 42 + 4:

Next, we are going to show (A.5) for p = 1 and 1. When p = 1,

the left-hand side of (A.5) = ( + �)
2

� + 1
<  + �;

When p =1,

the left-hand side of (A.5) =
� + 


� � + ;

and the equality sign holds if and only if  = 1.
By now the proof of that RelDist1, RelDist2 and RelDist1 are metrics on R is
completed.

We briey summarize what we have proved in this appendix.
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1. When p = 1; 2 or 1, (2.22) is true for all �; �;  2 R, and thus RelDist1,
RelDist2 and RelDist1 are metrics on R;

2. (2.22) is true for all �; �;  � 0 and for all 1 � p � 1, and thus RelDistp
for any 1 � p � 1 is a metric on R�0;

3. (2.22) for 1 � p � 1 survives to Case 1, Case 2 and Case 4. But we
do not know whether it survives to Case 3 and/or Case 5. We believe it
would. Showing (2.22) survives to Case 3 is equivalent to showing (A.3)
for 1 �  < �; and showing (2.22) survives to Case 5 is equivalent to
showing (A.5) for 1 �  � �.
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B Is ^RelDist a Generalized Metric?

In this appendix, we will prove (2.23) under certain conditions. As a result, we
will see

1. R̂elDist is a generalized metric on R�0, and a metric on R+;

2. R̂elDist is not a generalized metric on R (nor on C , of course).

Similarly to Lemma A.1, we also have

Lemma B.1 The following statements are equivalent:

1. R̂elDist(�; ) � R̂elDist(�; �) + R̂elDist(�; );

2. R̂elDist(��; �) � R̂elDist(��; ��) + R̂elDist(��; �) for some 0 6= � 2 C ;

3. R̂elDist(��; �) � R̂elDist(��; ��) + R̂elDist(��; �) for all 0 6= � 2 C .
This lemma follows from Property 3 of Proposition 2.8. Again, now with
Lemma B.1 in mind and that swapping � and  does not lose any generality,
we may assume (A.1) holds, and also only cases (A.2) are interesting. Following
the similar arguments, we see nontrivial cases are exactly the same 5 cases as
we summarized in xA.

Lemma B.2 The inequality (2.23) holds for � � � � , and the equality sign
holds if and only if � = � or � = .

This lemma actually implies that (2.23) holds if � lies between � and  for all
�;  2 R, not just these � and  satisfying (A.1).
Proof: Assume � 6= � 6= . Because of (A.1), we have  � � =  � � + � � �,
and thus

R̂elDist(�; ) =
 � �p
j�j =

 � �p
j�j +

� � �p
j�j

=
 � �pj�j + � � �pj��j
+( � �)

 
1pj�j � 1pj�j

!
+ (� � �)

 
1pj�j � 1pj��j

!
= R̂elDist(�; �) + R̂elDist(�; )

+( � �)

p
j�j �

p
j�jp

j��j � (� � �)

p
 �

p
j�jp

j��j :
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Now if � < � � j�j � , then
pj�j �pj�j � 0 and

pj�j � p
 < 0, and thus

( � �)

p
j�j �

p
j�jp

j��j � (� � �)

p
 �pj�jp
j��j < 0:

Hence R̂elDist(�; ) < R̂elDist(�; �)+R̂elDist(�; ). Consider now j�j < � < .
Then

( � �)

pj�j �pj�jp
j��j � (� � �)

pjj �pj�jp
j��j

� ( � �)

p
� �

p
j�jp

j��j � (� � j�j)
p
 �p

�p
j��j

= � (
p
 �p�)(p� �

p
j�j)(p �

p
j�j)p

��

< 0;

as required.

Lemma B.3 (2.23) holds for � � 0.

Proof: Lemma B.2 shows that (2.23) is true if � � � � . If either � < � or
 < �, (2.23) follows from Property 6 of Proposition 2.8.

As a immediate consequence of Lemma B.3, we have

Proposition B.1 R̂elDist is a metric on R�0.

Lemma B.4 If � < 0 < �� �  � �, then the inequality (2.23) holds, and the
equality sign holds if and only if � = .

Proof: Assume � 6= . By Lemma B.1, we may assume � = �1. Then we want
to have

 + 1p


<
� + 1p

�
+
� � p
�

;

or equivalently,
( + 1)

p
� � (� + 1)

p
 + (� � ) < 0:

Since

( + 1)
p
� � (� + 1)

p
 � (� � ) = 

p
� +

p
� � �

p
 �p

 + ( � �)

=
p
�(

p
 �

p
�) +

p
� �p

 + ( � �)

= (
p
 �

p
�)(
p
� � 1 +

p
 +

p
�)

< 0;

as was to be shown.
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Lemma B.5 When � = �1 < 0 < �� � , the inequality (2.23) holds for all
� � � = �1 if and only if  � 3 + 2

p
2. If, however,  > 3 + 2

p
2, then (2.23)

holds for � � �p
p
�1p
+1 .

Proof: The inequality
 + 1p


� �1� �p�� +

 � �p��
is equivalent to

( + 1)
p
�� � (�1� �)

p
 � ( � �) � 0:

Write �� = �2, so the above inequality reads

� �2(
p
 + 1) + ( + 1)� + (

p
 � ) � 0: (B.1)

So that (2.23) holds for all � � � = �1 requires the inequality (B.1) is true for
all � � 1. Since the two zeros of ��2(p + 1) + ( + 1)� + (

p
 � ) are � = 1

and � =
�pp
+1 , and

 �p
p

 + 1
� 1

gives  � 3 + 2
p
2, we know that (2.23) holds for all � � � = �1 if and

only if  � 3 + 2
p
2. If, however,  > 3 + 2

p
2, then (2.23) is violated for

�p
p
�1p
+1 < � < �1.

We may summarize how (2.23) is doing under the 5 distinguished cases.

1. (2.23) survives to Case 1 by Lemma B.2;

2. (2.23) survives to Case 2 by Lemma B.3;

3. (2.23) survives to Case 3 by Lemma B.4;

4. (2.23) dies at Cases 4 and/or 5 , unless  � 3 + 2
p
2 by Lemma B.5.
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