Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DETERMINISTIC SIMULATION OF RANDOMIZED
PROTOCOLS OVER NOISY CHANNELS

by

S. Venkatesan and V. Anantharam

Memorandum No. UCB/ERL M94/102

30 December 1994

DETERMINISTIC SIMULATION OF RANDOMIZED
PROTOCOLS OVER NOISY CHANNELS

by

S. Venkatesan and V. Anantharam

Memorandum No. UCB/ERL M94/102

30 December 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DETERMINISTIC SIMULATION OF RANDOMIZED
PROTOCOLS OVER NOISY CHANNELS

by

S. Venkatesan and V. Anantharam

Memorandum No. UCB/ERL M94/102

30 December 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Deterministic simulation of randomized protocols over
noisy channels*

S. Venkatesan'! V. Anantharam?

Abstract

Suppose the input to a function f is split between two processors connected by
noiseless binary channels. The communication complerily of f measures the num-
ber of bits they must exchange to compute f. Since its introduction by Yao, this
interactive model of computation has been widely studied, with the objective of char-
acterizing the inherent cost of communication in distributed computation. Since all
practical channels are noisy, it is of interest to study the effect of channel noise on the
complexity and reliability of this communication. In this direction, L.J. Schulman
recently proved that: any noiseless-channel deterministic protocol of complexity L
that computes f correctly can be deterministically simulated over noisy channels with
O(L) transmissions, while incurring error probability 2-£) in computing f. How-
ever, Schulman’s result can be strengthened. We prove that: any noiseless-channel
randomized protocol of complexity L which computes f with error probability ¢ can
be deterministically simulated over noisy channels using O(L) transmissions, while
incurring error probability € 4+ 2-%%) in computing f. During the simulation, the
two processors generate the randomness they need using channel noise, so that, in a
certain sense, they turn noise to their advantage. This result is significant because
allowing randomization and a small probability of error can substantially reduce the
(noiseless-channel) communication complexity of certain functions.

Index Terms:

Communication complexity, randomized protocols, noisy-channel simulation of
protocols, generating randomness from noise.

*Research supported by NSF IRI 9005849, IRI 9310670, and NCR 8857731.

tCornell University and U.C. Berkeley.

!Univ. of California, Berkeley. The major portion of this work was completed when the author was
affiliated with Cornell University.

§ Address all correspondence to the second author: 570 Cory Hall, Dept. of EECS, U.C. Berkeley,
Berkeley, CA 94720.

1 Introduction

In [4], A.C. Yao introduced the notion of
communication complezity in connection
with the following problem:

Suppose Sx, Sy, and W are fi-
nite sets, and f: Sx x Sy — W.
Two processors know z € Sy
and y € Sy respectively, and
both wish to know f(z,y). To
this end, they communicate with
each other over a pair of binary
channels. How many transmis-
sions do they need to compute f,
given any pair of arguments?

Roughly speaking, the number of trans-
missions needed is the communication
complexity of the function.

Yao’s original motivation for studying
this problem was to provide a framework
to understand the significance of commu-
nication in distributed computation. Since
then, it has been shown to have impli-
cations for other problems, like time-area
tradeoffs in VLSI and depths of Boolean
circuits. (See [1] or [2] for a survey of re-
search in this area.)

In all these investigations, the chan-
nels connecting the two processors have
been assumed to be noiseless. However,
all practical channels are noisy, and it is
therefore important to study the effect of
channel noise on the complexity and reli-
ability of the communication between the
two processors. One particularly interest-
ing question is the following: is it possi-
ble to simulate noiseless-channel protocols
over noisy channels (through appropriate

coding techniques) with only a constant
factor overhead in the number of trans-
missions, if a small error probability in
the computation can be tolerated? The
analogous question in the case of the data
transmission problem (one-way communi-
cation) was, of course, addressed by Shan-
non in 1948, resulting in his famous coding
theorem. Note that Shannon’s theorem
cannot be directly applied here, because
of the interactive nature of the exchange
of information: in general, neither proces-
sor knows in advance all its future trans-
missions, and therefore cannot code large
blocks of data as in the data transmission
case. Recently, however, L.J. Schulman
[3] proved the following result in this di-
rection:

Theorem 1.1 Assume that f can be cor-
rectly computed by two processors, using
at most L transmissions on any pair of
arguments, when the channels connecting
them are noiseless. Suppose the two chan-
nels are actually binary symmetric chan-
nels (BSCs), each with crossover probabil-
ity p (0 < p < 1/2). Then, it is possi-
ble for the two processors to compute f
on any pair of arguments with an error
probability of at most 2~L, while using no
more than K L/(1— h(p)) transmissions in
all. Here, K is a universal constant, and

h(p) = —plog, p — (1 — p)log,(1 - p).

Thus, long enough protocols can indeed
be simulated with a constant factor over-
head while incurring an arbitrarily small
error probability (a result analogous to
Shannon’s theorem). The key idea in the
proof is the use of tree codes by both

processors, as a mechanism for recovering
from errors caused by channel noise.
Now, in the noiseless-channel case, it is
known that allowing the processors access
to independent sources of randomness and
tolerating a small probability of error in
the computation can significantly reduce
the communication complexity of certain
functions. For example (2], consider the
decision problem of determining whether
or not two bitstrings of length n are equal
(when each processor knows one of them,
to begin with). Any deterministic error-
free solution requires at least n + 1 trans-
missions on some pair of inputs. However,
if even one of the processors has a source
of random bits, it is possible to solve the
problem with O(logn) transmissions on
any pair of inputs (provided, of course,
that a small error probability is allowed).
Therefore, it is natural to ask whether a
result in the same spirit as Schulman’s can
be proved for the simulation of private-
coin randomized protocols over noisy chan-
nels. This is the subject of the present
paper. Somewhat surprisingly, it turns
out that long enough randomized protocols
can be deterministically simulated over
noisy channels with only a constant fac-
tor overhead in the number of transmis-
sions, while incurring an error probabil-
ity that is arbitrarily close to that of the
given protocol. No restrictions are placed
on the sources of randomness that the two
processors use in the original randomized
protocol. This strengthens Schulman’s re-
sult (which, however, is used in an essen-
tial way here). An interesting feature of
the result is that the processors use chan-

nel noise as a source of randomness, thus
turning it to their advantage in a certain
sense. A more precise statement of our
result is given below:

Theorem 1.2 Let ¢ be a given noiseless-
channel private-coin randomized protocol
of complezity L, which computes the func-
tion f with an error probability < € on
any pair of arguments. Now, suppose the
two channels are actually BSCs, each with
crossover probability p (0 < p < 1/2).
Then, for every a > 1, 8 > 1, and
v > 8448, there ezists a way of deter-
ministically simulating ¢ over the BSCs,
using 2 [B [aL] /h(p)]+4 [7/(1 = h(p))] L
transmissions in all, and incurring an er-
ror probability on any pair of arguments
of at most ¢ + 2P.(a,f,v,L,p), where
P.(a,8,7,L,p) equals

i {2 gt
h(£)>h(p)/B

+ (B[aL] /h(p)) 2" RAPHO A}

y=8448
2048)L,

+ 2-(a—l)L + 2—(

Here,

u l1-u
D(u||v) = ulog, ;+(1—u)log2 (1 — v) .

Here is a rough outline of the proof:

In Section 3, we show how an arbitrary
private-coin randomized protocol ¢ can be
modified to another one, 1, of the same
complexity L, in which each processor uses
only R = [aL] independent and unbiased
bits for randomization (for any a > 1).

The price to be paid for this is a slight in-
crease in error probability (exponentially
small in «L).

Then, each of the processors generates
the required number of random bits using
channel noise, by a deterministic process.
In Section 4, we show that R independent
and unbiased bits can be deterministically
generated, using [BR/h(p)] transmissions
over a BSC of crossover probability 0 <
p < 1/2 (for any # > 1), with a failure
probability that decreases exponentially in
BR.

Once the required random inputs have
been generated, we essentially have a de-
terministic protocol of complexity L, to
which Schulman’s result applies. In its
original formulation, this result is proved
for protocols in which all messages are one
bit long. (This is not a significant restric-
tion, since any protocol can be artificially
converted to a “bit-by-bit” one with at
most double the complexity.) However, in
Section 5, we modify the proof to directly
apply to arbitrary protocols and, in the
process, also correct certain (minor) errors
in the original proof.

But first, in Section 2, we introduce all
the required definitions and notation.

2 Preliminaries

As in Section 1, let Sy, Sy, and W be fi-
nite sets, and f : Sx X Sy — W. Pro-
cessors Ax and Ay wish to compute f
by communicating across a pair of binary
channels, when each of them knows one
of the arguments of f. The communica-

tion proceeds according to some agreed-
upon protocol, i.e., a set of rules that deter-
mines, at each stage, which processor is to
transmit, and what that processor’s trans-
mission should be, based on all the infor-
mation available to it until then. Proto-
cols can be either deterministic or random-
ized. In this section, we will formally de-
fine private-coin randomized protocols (of
which deterministic protocols are degener-
ate special cases).

In a private-coin randomized protocol
¢, Ax and Ay have access to separate
and independent sources of randomness,
ie., Ay knows wx € Qg x drawn ac-
cording to the p.d. Py x, and Ay knows
wy € sy drawn independently accord-
ing to the p.d. Pyy. We will use Py to
represent the product p.d. Py x - Pyy on
Q¢.x X Qg y. They can then base their
transmissions not only on their respective
arguments (z or ¥) and on all past trans-
missions, but also on their respective ran-
dom inputs. Since Sx and Sy are finite
sets and the protocol is required to termi-
nate in finitely many steps, there is no loss
of generality in assuming that Q4 x and
24,y are also finite, but arbitrarily large,
sets. Py x and Pyy are arbitrary proba-
bility distributions.

We need the following preliminary def-
initions: let Ay = Sx X Qg x and Yy =
Sy x Qgy. We will refer to elements
of Sx and Sy as arguments, to elements
of Q4 x and Q4 y as random inputs, and
to elements of Xy and), simply as in-
puts. By a rectangle, we mean a prod-
uct set of the form F = Fy x Fy, where
Fx C & and Fy C Y. Fx and Fy are

respectively the X - and Y - projections of
F. The rectangles G = Gx x Gy and
H = Hx X Hy are said to X-partition
F, if Fx is the disjoint union of Gx and
Hyx, and Fy = Gy = Hy. (Note that
F itself is the disjoint union of G and H.)
Y -partitions are analogously defined.

The protocol ¢ can be described in
terms of an associated rooted binary tree
Ty. The nodes of Ty are all rectangles,
with the root being Xy x). Each in-
ternal node is either X- or Y-partitioned
by its children (and is thus the disjoint
union of its children). All left (resp. right)
edges are labelled by 0 (resp. 1). Each
leaf F is marked with an element of W
which is called the computed value asso-
ciated with that leaf (denoted by V4(F)).
The root is at level 0, its children are at
level 1, etc.. Clearly, all the rectangles at
any given level must be disjoint. Further,
the leaves of the tree must all be disjoint,
and their union must be Xy x Vs.

For each pair of inputs (z,wyx) and
(y,wy), the protocol associates a unique
path in the tree from the root to some leaf,
and a corresponding sequence of trans-
mitters and transmissions, in the follow-
ing way: initially, Ax and Ay are at the
root, and after &k transmissions, they are
at some node at level k. If this node is
Z-partitioned by its children (here, Z is
either X or Y'), then the next transmis-
sion is by Az. This transmission is 0 if
the input of Az is contained in the Z-
projection of the left child of the node (in
this case, the processors move next to the
left child of the current node), and is 1 oth-
erwise (in this case, the processors move

next to the right child of the current node).
The protocol ends when a leaf is reached.
Both processors then take the computed
value associated with that leaf (denoted by
Vs(z,wx,y,wy)) as the value of the func-
tion f.

Clearly, the root-to-leaf path taken by
the two processors is the unique one every
node along which contains the pair of in-
puts ((z,wx),(y,wy)). The total number
of transmissions, L4(z,wx,y,wy), equals
the depth of the leaf reached. The proba-
bility, €4(f; z,¥), that ¢ errs in computing
f(z,y)is Py {V¢($’st y,wy) # f(z,y)}-

We define the complezity of the protocol
¢ as

max LOS(x,“)X’ 3/,‘-01)
(T,"’X’vaY)

Ly =
and its probability of error in computing f
as
€s(f) = max ¢(f;z,y).
(z)
The e-randomized complezity of f is then
defined as

Cr(f,€) = min{Ly: es(f) < €}

Note that we must have ¢ < 1 — |W|™!
in order to have functions with nontriv-
ial complexities. For, if ¢ > 1 — |W|™!,
then Ax can simply pick an element of W
according to a uniform distribution, and
transmit it to Ay. Both can then take
this element to be the value of the function
being computed, thus incurring an error
probability of only 1 — |W|™1.

3 From ¢ to ¢

Let ¢ be a private-coin randomized pro-
tocol of complexity L, which computes f
with error probability € (as defined in Sec-
tion 2). In general, the sources of random-
ness associated with ¢, (R4 x,Ps x) and
(R¢,y, Psy), are arbitrary. In this sec-
tion, we show that ¢ can be modified to
a new private-coin randomized protocol,
¥, of the same complexity L, such that
Qx = Qy = {0,1,...,28 — 1}, and
Py x and P,y are uniform distributions
on {0,1,...,2F — 1}. (Here, R is any in-
teger > L.) Thus, in v, each processor
uses R independent and unbiased bits for
randomization. We will refer to such pro-
tocols as “R-uniform.” The price one pays
for this “uniformization” is a possible in-
crease in the error probability.

Theorem 3.1 Let R = [aL] (for some
a > 1). There ezists an R-uniform ran-
domized protocol v of the same complexity
L as ¢, such that

e(f) e+ 2.27-1L

Proof: The idea of the proof is to approx-
imate all relevant probabilities in the pro-
tocol ¢ by dyadic rationals with denomi-
nator 2%, This is made precise below.

For each z € Sx, y € Sy, and each
node F = Fx X Fy in Ty (the binary tree
representing ¢), let

)\x(z‘,f) = P¢,X {wx : (a:,wx) € Fx},
Av(y, F) = Pyy{wy :(y,wy) € Fr}.

Note that, during the execution of ¢ on the
arguments = and y, the probability that

Ax and Ay pass through the node F is
just Ax(z, F)- Ay(y,F).

Next, for each z € Sx and each
node F in Ty, Ax defines an interval
lax(z,F),bx(z,F)) contained in [0,1), in
the following way:

a) If F is the root, then

[ax (=,), bx(z, F)) = [0, 1).

b) If F is any node other than the root
which is the left child of its parent (G, say),
then

ax(:l,‘,]:)
bx(z,F) =

ax(z,G),
ax(z,G)+ Ax(z, F).
¢) If F is any node other than the root

which is the right child of its parent G,
then

bx(z,F) = bx(z,G),
ax(z,F) = bx(z,G)- Ax(z,F).
Finally, Ax defines Mx(z,F) and

Nx(z,F) to be the unique integers m and
n satisfying

m-—1/2 m+1/2
—23—/' <ax(z,F)< _QT/’
n—1/2 n+1/2

SR <bx(z,F)< 5R

If F is the root, then Mx(z,F) = 0
and Nx(z,F) = 2R, Also, if Ax(z,F)
is sufficiently small, M x(z, F) could equal
Nx(z,F).

In an analogous manner, Ay defines
intervals [ay (y, F), by(y, F)) and integers
My (y,F) and Ny(y,F), for each y € Sy
and each node F in Tj.

Note that

Ax(z,F) bx(z,F)—ax(z,F),

Ay (y, F) by (y, F) - ay (v, F),
for all z, y, and F.

Also, if F is an internal node which is

X-partitioned by its left child G and right
child H, then

Mx(z,F) = Mx(z,0),
NX(x’g) = MX(xaH)a
Nx(z,H) = Nx(z,F),

so that the (possibly empty) set of integers
{k:Mx(z,F)< k< Nx(z,F)}
is the disjoint union of
{k: Mx(z,G) < k < Nx(z,G)}
and
{k:Mx(z,H) < k < Nx(2,H)}.

An analogous statement holds if F is Y-
partitioned by its children.

We are now in a position to describe the
R-uniform protocol . The binary tree
T, associated with 1 is isomorphic to Ty,
i.e., it has the same form as Ty. Further,
if an internal node in Ty is X-partitioned
(resp. Y-partitioned) by its children, then
the corresponding node in T, is also X-
partitioned (resp. Y-partitioned) by its
children, so that the same processor trans-
mits at corresponding nodes. Recall that
the nodes of Ty, must be rectangles con-
tained in Xy x)y, where

Xy
Yy

Sx x {0,1,...,2’*-1},
Sy X {0,1,..., R

-1

The rule for obtaining the nodes of Ty, is
this: replace each node F in Ty by the
rectangle i = Uy x Uy, where Ux equals

U{z} x {k : Mx(z,F) < k < Nx(z,F)}

and Uy equals
U{v} x {k: My(y,F) < k < Ny(y, F)}.
Y

Note that U could be empty if Ax(z,F)-
Ay (y, F) is sufficiently small for all (z,y).

Finally, each leaf in T\, has the same
computed value as the corresponding leaf
in T¢.

It is easily verified that this yields an R-
uniform protocol. Clearly, ¥ has the same
complexity as ¢. It only remains to esti-
mate the error probability that ¥ incurs in
computing f.

Fix any pair of arguments (z,y). Let
U be any leaf of Ty, and F the corre-
sponding leaf of Ty. Let pg(F,z,y) (resp.
Py(U, z,y)) be the probability that, in the
protocol ¢ (resp.), Ax and Ay reach the
leaf F (resp. U) when their arguments are
z and y. For convenience, we will drop the
arguments z, ¥, F, and I/ in the equations
to follow. Note that

ps = (bx —ax) (by — ay)

(F) (B7),

Therefore, |py, — py| is bounded above by

I()—(bx—ax)

and

Nx — Mx
2R

Ny — My
oR

Py

Ny - Mx
oR

b | () (o)

oR
< g—g—bxl+ %—ax
+ %—byl+‘%—ay
)
= 9.9-oL
Thus,

lp'l‘(u?x’y)_pé(}-am’y)l < 2°2_0L-

But, €4(f;z,y) (resp. ey(fiz,y)) is just
the sum of ps(F, z,y) (resp. py(ld,2,3))
over all leaves F (resp. U) whose com-
puted value does not equal f(2,y). From
the last inequality, and the fact that the
total number of leaves is no more than 2L,
we get

A

&(fiz,y) < el fiz y)+2F (2-2“"1‘)
< e42.27(@NL

Since this holds for every pair of argu-
ments z and y, we have

€(f) < e+ 2.2 1L

This completes the proof. o
From now on, we will forget about ¢ and

focus attention on . In fact, it is ¢ that

we will simulate over the noisy channels.

4 Generating the random
inputs for 3 from noise

In order to execute the protocol ¥, each
processor. needs R = [aL] independent

and unbiased bits as a random input.
However, our objective is to simulate 1
deterministically over a pair of BSCs (each
having crossover probability 0 < p < 1/2).
Here is where channel noise actually helps,
as a readily available source of random-
ness! Suppose one processor transmits
N 0’s across its BSC to the other. The
channel output is then an i.i.d. sequence,
21,23, ...,ZN, of 0-1 valued random vari-
ables, each of which is 1 with probability p.
In this section, we show how this random
sequence can be processed deterministi-
cally to generate R independent and unbi-
ased bits, except for a certain failure prob-
ability. This probability approaches zero
exponentially as R increases, provided the
“rate” N/R is maintained at some fixed
level above 1/h(p). Thus, as far as this
part of the simulation is concerned, a nois-
ier channel is better.

Theorem 4.1 Let N = [BR/h(p)] (for
some 8 > 1). There ezists a mapping g :
{0,1}V = {A} U {0,1}" (A is the empty
string), such that, for any b € {0,1}F,

1-6

Prig(Z1,2s...,Zn) = b} = —5

where 8, the probability of generating the
empty string, is at most
D(sllp) D(1-s
min {2"’33 ww 4 9 PRAHE
<s<
"(9)>h(:)/ﬂ

+ (ﬁR/h(p))rr’;[ﬁh(s)—h(p)]}

Proof: Choose any s satisfying 0 < s < p
and h(s) > h(p)/B. Consider the following

map from {0,1}" to {A} U {0,1}%, based
on the type of a sequence:

For0<EkE<N:

a) if h(k/N) < h(s), map all sequences
having exactly £ 1’s to A.

b) if h(k/N) > h(s), partition the (})
sequences having exactly k 1’s into 2R + 1
disjoint subsets, with each of the first 27
subsets having exactly l(’,:’)/ 2RJ elements,
and the last one having the remaining
(%) mod 27 elements. Then, map each of
the first 27 subsets to one of the 2% 0-1
sequences of length R in an arbitrary 1-
1 way. Map all the sequences in the last
subset to A.

With this map, it is clear that all 2R
0-1 sequences of length R are equiproba-
ble (since any two sequences of the same
type have the same probability, and, by
construction, every b € {0,1}" has the
same number of preimages in any given
type class).

It only remains to prove that &, the
probability of generating the empty string,
is bounded above as claimed. This is done
using standard large deviation bounds.
Let ¢ = 1 — p in what follows.

N
6 = mod 2R] prgVk
h(kJNY2h(s)
N -
+ Z (.)pqu k
0<k<N

h(kN)<h(s)

k N-k

2R p'q

IA

2

s<k/N<1-s

(e

k/N<s

N -
+ z: (k)pqu k.
k/N>1-s

The first term equals

>

s<k/N<1-s
S 2R2—Nh(s)

9R 9=NIh(k/N)+D(k/N|p)

2

3<k/N<1-s

9Ro-Nh(s) E 1
0<k<N
(N — 1)2R2—Nh(8)

< (BR/h(p))2” FmPR=A(E),

9~ND(k/N]lp)

IA

By the Chernoff bound for the tails of a
binomial distribution

> (Jl)pqu—k < 2-N-DGsl)
k/N<s
< o~PREGR
and
> (JZ)pqu-k < 9-N-D(-sllp)
k/N>1-s
< o PRI
Therefore

§ < (BR/h(p))2~ RmP(e)=h(r)]
+ 9 BRER | o-pREGER)

This holds for every s satisfying 0 < s <
pand h(s) > h(p)/B. In particular, choose
that s which minimizes the above expres-
sion, to complete the proof. o

So, before the actual simulation of 1,
each processor sends N = [BR/h(p)] 0’s

across its BSC to the other (here, R =
[aL]), which then attempts to generate
R unbiased bits, by the above procedure.
The probability that at least one of them
fails to do so is bounded above by twice

gy, {r e o M
h(2)>h(p)/B

+ (BlaL) /h(p))2-:(_f»)[ﬁh(s)—h(;’)]}.

5 Simulation of ¢ over the
noisy channels

In this section, we will describe how the
actual simulation of ¢ over the noisy chan-
nels is to be carried out. We will assume,
for the purposes of this section, that both
Ax and Ay have successfully generated
the random inputs they need to execute
¥. Thus, Ax has an input (z,wy) € X,
and Ay has an input (y,wy) € Y.

5.1 Modifications to T,

It will be convenient to modify T, in two
ways:

a) Starting from the root and proceed-
ing level by level, check if any node corre-
sponds to an empty rectangle. If so, delete
that node and all its descendants from
the tree, and collapse its sibling and par-
ent (which must correspond to the same
nonempty rectangle) into one node. (This
amounts to getting rid of all redundant
transmissions in 1.) All nodes in the new
tree correspond to nonempty rectangles.

b) Extend each leaf of the new tree that
is a left child (resp. right child) by a se-
quence of left (resp. right) edges, up to
depth 2L. The rectangle corresponding to
any of these new nodes is assumed to be
the same as that of the leaf of which it
is a descendant. All the new left (resp.
right) edges are labelled by 0 (resp. 1).
We will refer to the original leaves of T,
as parent-leaves, and to all the new nodes
as pseudo-leaves. The term internal node
will be used only for the internal nodes of
the original tree.

To each internal node %/, associate a
transmitter m(U) (either X or Y) in the
following way: if U is X -partitioned (resp.
Y -partitioned), then 7 () equals X (resp.
Y). Assume, without loss of generality,
that the root is X-partitioned, i.e., that
the first transmission on any input is by
Ax. I U is a parent-leaf, define n(l/) to
be the transmitter associated to its par-
ent. If U is a pseudo-leaf, define 7(/) and

/¢(U) to be the transmitter and computed
value associated to the unique parent-leaf
of which it is a descendant.

Intuitively, these modifications have the
effect that, on each input, the proces-
sor that transmits last simply repeats its
last transmission until there have been 2L
transmissions in all.

For convenience, we will continue to re-
fer to this modified tree as T),. Note
that these modifications cannot increase
the complexity or probability of error in
computing f.

Let U = Ux x Uy be any node in Ty.
Define By [U;z,wx] for each (z,wyx) €
Ux in the following way:

10

a) f 7(U) = X, let Bx [U;z,wx] be the
bit that Ax transmits at I/ on the input
(z,wx).

b) If 7(U) =Y, let Bx [U;z,wx] be the
dummy symbol *.

Define By [U;y,wy] analogously, for
each (y,wy) € Uy.

During the simulation, each processor
is given a “pebble” which it moves be-
tween the nodes of T, according to cer-
tain rules. L, R, B, and H will denote
the “pebble moves” of left, right, back,
and halt respectively. We will use (i : L),
(U :R), and (U : B) to denote the left
child, right child, and parent respectively
of U. (U : H) will denote U itself. Note
that not all pebble moves are possible at
all nodes.

5.2 Construction of state trees

For the purposes of the simulation, Ay
and Ay construct two different state trees
¥x and Ly respectively, whose construc-
tion we describe next. In what follows, Z
represents either X or Y:

Yz is a tree of depth 2L, every leaf of
which is at level 2L (the root is at level 0).
Each internal node in £z has at most 8
children. Each edge is labelled by a track
7, which has two components: the first
is a “pebble move” pebmov(7) (L, R, H,
or B), and the second is a “transmission”
trans(t) (0, 1, or *). A state s at level ¢ in
¥z (1 <t <2L) will be referred to by the
sequence of ¢ tracks labelling the ¢ edges
leading to it from the root. (The root it-
self is represented by the null sequence A.)
(pebmov;(s), trans;(s)) will denote the **

of these tracks. (It will be seen that all
edges originating from a given state are
labelled by distinct tracks, so that there
can be no ambiguity in referring to states
in this way.) If some edge originating at
state s is labelled with the track 7, then
(s : 7) will refer to the corresponding child
of s.

Each state s corresponds to a “peb-
ble position” pebpos(s) (a node in Ty).
The root of ¥z corresponds to the root
of Ty. If s = (s':7), then pebpos(s) =
(pebpos(s’) : pebmov(T)).

The children of any state s in £z can
be figured out as follows: let M represent
any pebble move that is possible at v =
pebpos(s). Let v' = (v: M). Then, s has
a child corresponding to the track

a) (M,0) iff 7(v') = Z and the pebble
move L is possible at v'.

b) (M,1) iff 7(v') = Z and the pebble
move R is possible at v'.

c) (M, *) iff w(v’) is not Z.

(This is where the difference between
Yx and Xy comes in.) Note that, if
7 (pebpos(s)) = Z, for some state s at level
t > 1in Xz, then trans;(s) is 0 or 1. Oth-
erwise trans(s) is #.

Since there are at most 4 possible peb-
ble moves at pebpos(s), and for each pos-
sible move, s has 1 or 2 children, the total
number of children of s does not exceed
8 (as claimed earlier). This concludes the
description of the state trees.

The following lemma is crucial:

Lemma 5.1 Letd > 2and 0 < p < 1.
Let M be any integer such that M 2> d,
M > 1/(1-p), and D(1 - g || 1/M) >

1

log, 2d?. Then, there exists a labelling of
the edges of a complete d-ary tree of any
finite depth with the integers 1,2,...,M
such that the following condition (“relative
Hamming distance > p”) is satisfied:

For any !l > 1, and any two paths of
length | originating at the same node in
the tree, the Hamming distance between
the sequences of integers labelling the two
paths is at least pl.

Proof: Appendix. a

When d = 8 and g = 1/2, it is easily
verified that M = 216 satisfies all the con-
ditions in the lemma. Thus, it is possible
to label the edges of ¥x and Xy with the
integers 1,2,...,2!% in such a way that the
“relative Hamming distance > 1/2” condi-
tion is satisfied. Fix some such labelling in
both ¥x and Zy. We will refer to these
integer labels as indices. If s is a state at
level ¢ > 1 (in either state tree), then, for
1< 7 <t, I[s;i] will denote the index la-
belling the i edge from the root to s. (It
will be clear from the context which state
tree is being referred to.)

In each round of the simulation, each
processor will have to convey an index to
the other. For this purpose, Ay and Ay
agree on a common block code for the set
of 218 indices, of blocklength n. (We will
specify later how 7 is to be chosen.) Any
such code is specified by an encoding map
C :{1,2,...,2'} — {0,1}" and decod-
ing sets Dq,Ds,,...,Dye which partition
{0,1}". The worst-case probability of er-
ror associated with such a code when it
is used over the BSCs connecting the two

processors is defined as

Jax, Pr {Dk|C(k)} .
For purposes of analysis, we may assume
that Ax and Ay choose that block code
of blocklength n (having 2!¢ codewords)
which has the least worst-case error prob-
ability. We will denote this minimum er-
ror probability by 8(n). (An exact formula
for 6(n) is not known. Ultimately, we will
upper bound §(n) by considering a simple
repetition code.)

5.3 Simulation algorithm

The simulation of % on any pair of in-
puts, (z,wx) and (y,wy), proceeds in 2L
rounds, indexed by t = 1,2,...,2L. To
start with, at ¢ = 0, each processor is at
the root of its own state tree (sx(0) =
sy (0) = A), and has its pebble at the root
of T¢ (U,\'(O) = UY(O) = X,/, X y¢,)

In the t** round (1 <t < 2L), Ay does
the following;:

a) It decides on a pebble move for the
t* round, movx(t) (we will explain later
how), and updates its pebble position to

Ux(t) = (Ux(t - 1) : movx(t)).

b) It takes its track for the t** round to
be

7x(t) = (movx (2), Bx [Ux (t); z,wx])
and accordingly updates its state to
sx(t) = (sx(t-1):7x(2)).

Note that Ux(t) = pebpos(sx(t)).

12

c) It then takes its indez for the tth
round to be

mx(t) = I[sx(t);1],

i.e., the index labelling the edge in Tx
along which it just moved, and transmits
the n-bit codeword for mx(t) across its
BSC to Ay. Assume that Ay decodes this
message as 1y (1).

Similarly, Ay decides on a pebble move
movy (t), track 7y (t), and an index my(t)
for the t** round (1 < t < 2L), updates
its pebble position and state to Uy () and
sy (t) respectively, and transmits the n-bit
codeword for my () across its BSC to Ax.
Assume that Ax decodes this message as
my ().

Ay also maintains an estimate, 3y(t),
of sy(t) (for 1 < t < 2L), based on the
sequence of indices (7y(1),...,my(2))
it has received from Ay in the first ¢
rounds. This estimate is computed us-
ing the following (suboptimal) minimum-
distance rule:

Choose 3y (1) to be that state s at level
t in Xy, for which the sequence of in-
dices (Z[s;1),Z[s;2],...,Z[s;t]) is clos-
est in Hamming distance to the received
sequence (1y (1), my(2),...,7my(¢)). Re-
solve ties arbitrarily.

Similarly, Ay maintains an estimate,
Sx(t), of sx(t) (for 1 < t < 2L), based
on (x(1),...,mx(t)).

Finally, define §x(0) and 3y (0) to be the
roots of the respective state trees.

In round ¢ (for 1 < ¢t < 2L), Ax uses
the state estimate 3y (¢ — 1) to determine
its pebble move movx(t) in the following
way:

a) If Ux(t — 1) = pebpos[3y(t - 1)),
then Ax assumes that the two pebbles
indeed coincide, and decides to simu-
late a step in the protocol %. To do
this, it checks who transmits at the node
Ux(t — 1). K it is Ax, then it takes
movx(t) to be L or R, according as
Bx [Ux(t - 1);z,wx]=0or 1. Ifitis Ay,
then it takes movx(t) to be L or R, ac-
cording as trans;_; (8y(t — 1)) =0or 1.

H Ux(t — 1) # pebpos[y(t — 1)], then
Ax decides to take remedial action to
bring the two pebbles together. There are
two cases here:

b) If Ux(t — 1) is a strict ancestor of
pebpos [3y (t — 1)), then Ax takes movx(t)
to be H, in the hope that Ay will move its
pebble back until the two pebbles coincide.

¢) Otherwise, Ax takes movx(t) to be
B, hoping that Ay will either stay put at
its current pebble position or move its peb-
ble back (as appropriate), until they meet
at the least common ancestor.

Similarly, Ay uses the state estimate
8x(t-1) to determine its own pebble move
movy- (1) in round ¢, for 2 < ¢ < 2L. In the
first round, A4y has no information to base
its pebble move on, and therefore always
takes movy (1) = H.

The total number of transmissions used
by both the processors is 4nL. At the
end of 2L rounds, Ay checks if Ux(2L)
is a (parent- or pseudo-) leaf of Ty. If so,
it takes the output of the simulation to
be Vy(Ux(2L), the computed value asso-
ciated with that leaf. If Ux(2L) is not a
leaf, then Ax concludes that the simula-
tion failed. Ay makes a similar decision
based on Uy (2L).

13

~\

We will show that, with high probabil-
ity, both processors will arrive at the cor-
rect computed value of 3 for the given pair
of inputs (z,wx) and (y,wy).

5.4 Analysis

We will use lca(-,-) to denote the least
common ancestor of a pair of nodes in Ty,
or a pair of states in Xy or Zy.

Definition 5.1 For 0 <t < 2L, mark(t)
equals

2{depth [lca(Ux(1),Uy(1))]}
— max {depth(Ux (t),depth(Uy(t)}.

Observe that mark(0) equals 0 and
mark(1) equals —1. In general, mark(t)
is an indication of the progress of the sim-
ulation at the end of the ¢** round. From
the description of the algorithm, it should
be clear that, for any ¢, the X-projection
(resp. Y-projection) of the least common
ancestor of Ux(t) and Uy () contains the
input (z,wx) (resp. (y,wy)). So, while ei-
ther processor’s pebble may deviate from
the correct path in T, their least com-
mon ancestor is always on the right path.
Consequently, if lea(Ux(2L),Uy(2L))is a
(parent- or pseudo-) leaf of Ty, the simu-
lation must be successful.

Lemma 5.2 The simulation is successful
if mark(2L) > L.

Proof: mark(2L) > L implies that
depth [lca(Ux(2L),Uy(2L))} > L

which means that lea(Ux(2L),Uy(2L)) is
a leaf of Ty, |

Definition 5.2 For 1 < t < 2L, the tt
round is “good” for Ax (resp. Ay) if
Sy (t) = sy(t) (resp. 3x(t) = sx(t)). The
t** round is “good” if it is good for both
Ax and Ay.

Lemma 5.3 For 1 <t < 2L - 1, if the
tth round is good, then

mark(t + 1) = mark(t) + 1.
If the t** round is bad, then
mark(t + 1) > mark(t) — 3.

Proof: For both parts, consider three
cases: (a) Ux(t) = Uy (t) (b) one of Ux (1)
and Uy (t) is a strict ancestor of the other
(c) the least common ancestor of Ux(t)
and Uy (1) is not equal to either Ux(t) or
Uy (). The analysis is straightforward. O

Corollary 5.1 The simulation is success-
ful if the number of bad rounds, out of
rounds 1,2,...,2L — 1, is less than (L —

1)/4.
Proof: If the number of bad rounds is less

than (L —1)/4, then mark(2L) - mark(1)
is

> 1 (2 -1- 2 e (B

4
= L.
Since mark(l) = -1, this means that
mark(2L) > L. o

Assume L > 2, so that (L - 1)/4 >
L/8. The probability of failure is then
bounded above by the probability of hav-
ing at least L/8 bad rounds (out of rounds

14

1,2,...,2L — 1), which is no greater than

Pr{Ax has > L/16 bad rounds}
+ Pr{Ay has > L/16 bad rounds}

since a round is bad if and only if it is bad
for at least one processor. We will now
estimate the first of these probabilities. A
similar analysis will hold for the second
one.

Definition 5.3 Suppose the t* round is
bad for Ax. Then, the error interval as-
sociated with this bad round is the sequence
of roundst -1+ 1,1 —1+2,...,1. Here, |
is the length of the error interval, defined
as t — depth [lca (3y (1), sy (1))).

Now, the number of bad rounds for Ay
is clearly no greater than the size of the
union of the error intervals associated with
all the bad rounds (since each bad round is
contained in the error interval it defines).
Therefore,

Pr{Ax has > L/16 bad rounds}
< Pr{union of all the error intervals
for Ax has size > L/16}.

Lemma 5.4 If the size of the union of all
error intervals for Ax is > L/16, then
there must ezist disjoint error intervals,
the sum of whose lengths is > L/32.

Proof: Omitted (see [3]). a

Consequently, it suffices to estimate
the probability that Ay has certain bad
rounds defining disjoint error intervals of
total length > L/32.

Lemma 5.5 The probability of Ax hav-
ing bad rounds that define disjoint error
intervals of total length > L/32 is no
greater than

24L (8) [6(n)]1/4)L/32

provided 8 - [§(n)]'/* < 1.

Proof: Let rounds #;,%3,...,%; be bad
rounds for Ay, defining disjoint error in-
tervals of lengths I;,ly,...,l; (for some
1<k <2L-1,4,0y....0k >1,0 <
thh-h<ty<tg—lag< - St —lr <t <
2L —1). Also, assume that Iy +---+ 1 >
L/32.

For each choice of k,11,...,tk, l1,. .., 1k,
there are several ways of choosing “wrong”
states sy,82,...,8; at levels ¢),1q,...,1,
so as to get error intervals of lengths
li,15,...,1lx. This number is

< (B -1 1) (8% - 1)
< gllt-+lk)

since each state has at most 8 children.
Fix some such choice of sq,..., s;.

Let us bound p.(s;,...,sk), the prob-
ability that Ax takes 8y(i;) to be s; (for
each 1 <7 < k). To do this, first condition
on the final state of Ay, viz., sy (2L). Let
Pe(S1,. .., Sk|s) be the probability that Ax
takes 8y (2;) to be s; (for each 1 < 7 < k),
given that sy (2L) equals s (for some state
s at level 2L in Zy).

Let m(t) = I[s;t] (1 < t < 2L).
These are the actual indices transmitted
by Ay during the simulation, if its fi-
nal state is s. Assume that Ax decode

15

these as (1), m(2),...,Mm(2L). And, for
1 < i< kandl <t < ¢, let
gi)(t) = T[s;;t]. These are the in-
dices labelling the edges from the root to
s;. Finally, let M, denote the sequence
(m(t),m(t+1),...,m(t')). Similarly, de-
fine M,y and Qg:t),.

Note that pe(si,...,sk|s) is bounded
above by

Pr{d[ﬂql.t.7qgi1;] < d[Ml,in Ml,t:’]
fori=1,2,...,k Isy(?L) = s}

since 8y(t;) = s; means that m(1,t;)
is closest to ¢;(1,t;) (by the minimum-
distance rule). _

But Mj,-), = 5‘,{,,_,.,, since, by as-
sumption, the length of the error interval
corresponding to round ¢; is /;. Therefore,
the above probability is equal to

Pr{dlis 1160 Q1)
< d[My;—ti41,0, My -t 41.0,)
fori=1,2,...,k |5y(2L) - s}.

Further, by the “relative Hamming dis-
tance > 1/2” condition,

d[Mti—Ii'f'],ti?ng-)-li-l-l,t.'] > li/2.

This, together with the triangle inequality,
means that if

d[Mt.'—l.-+l,t,) QS:)—lg+l,t,’]
< d[Mfi-li""]vti’Mti-li‘l'l,ti]
then
A Myiti41,00 My—tp41,1.] > Li/4.

Consequently, the last probability is no
greater than

Pr{d[Mt,'-I.'-!-l,tn Mt.'—l.'-l»l,t.‘ > 11/4]
fori=1,2,...,k Isy(2L) = s}.

By the disjointness of the error intervals
and the memorylessness of the channel,
this is the probability of the intersection
of k independent events, and is therefore
equal to

k
II Pr{d[Alt;—l;-l-l,tnMii—1i+1,ti > 1;/4]

=1
fori=1,2,...,k |3y(2L) = s}
k
< TTM6(r)/
=1

[(n))

since the probability of error for any index
is at most é6(n). So
1‘+...+[!

Pe ($1,...,8kl8) < [6(n))" + .
Since this holds for any s, we can remove
the conditioning on sy (2L), to get

‘] +~-+l!
Pe(s15--586) S [6(n)] T+ .

Now, take the union over all possi-
ble chioices of s;,...,sx (no more than
g(hi++k) in number) to conclude that the
probability that rounds #;,...,%; are bad
for Ay and have associated error intervals
of lengths Iy,...,I; is

< 8. [5(n)
(st)™

(8 [6(n)]1/4) L/32

Gt
4

IA

16

provided 8[6(n)]'/* < 1. (Recall that I; +
-+ -+l was assumed to be at least L/32.)

Finally, there are no more than 22 .
22L ways of choosing k, t1, . . ., tk, 11, . . ., Ii.
Taking the union over all such choices, we
can conclude that the probability of Ay
having bad rounds that define disjoint er-
ror intervals of total length > L/32 is

< 2 (8 fs(n))

as claimed. 0o

It follows that the probability that Ay
has at least L/16 bad rounds is bounded
above by the same quantity. A similar
analysis holds for Ay also. Putting to-
gether all the pieces now, we can conclude
that the probability that the simulation
fails on any pair of inputs is

< 2.2 (8[5(n)/4) ™

provided 8 [6(n))*/? < 1.

An exact formula for §(n) is not known.
We can, however, upper bound it by con-
sidering the simplest possible code, viz., a
repetition code. Represent each index by
16 bits, and encode each bit by simply re-
peating it 7 times (for a total of n = 167
bits). Use majority decoding. The proba-
bility that a bit is decoded wrongly is no
greater than 2770 (3llp) (Chernoff bound).
A union bound now gives

§(n) < 16 -2~ mDGlIR)/16,

Since D(}|lp) > 1 — h(p) for 0 < p < 1/2,
we have

§(n) < 162 T2,

Therefore

2. 2% (8 [5(n)]"/*
n! l—’l! p))—8448)L

2048

)L/32

< 2.27(

This bound is meaningful only if n =
[v/(1 = k(p))], for some v > 8448. In this
case, it can be verified that the condition
8[6(n)]* < 1 is also satisfied. We have
proved the following result:

Theorem 5.1 Let n = [v/(1- h(p))]
(for some v > 8448). It is possible for
the two processors to simulate v over the
BSCs on any pair of inputs, using 4nL
transmissions in all, with a failure proba-
bility (in arriving at the correct computed

value of) of no more than 9.9~ (%)L,

We have now completed the proof of the
main theorem stated in the introduction.

Appendix

Proof of Lemma 5.1: Fix any M sat-
isfying the conditions in the statement,
viz, M >d, M > 1/(1 - p), and D(1 -
i || 1/M) > log, 2d?. The proof is by in-
duction on n, the depth of the d-ary tree.

The case n = 1 is trivial (since M > d).
Assume that there exists a labelling of the
edges of a complete d-ary tree of depth
n — 1 (for some n > 2) with the integers
1,2,..., M, such that the “relative Ham-
ming distance > p” condition is satisfied.

Choose independent random permuta-
tions, 05, of {1,2,...,M} (for1 <i<d
and 0 £ j £ n—1). Take d copies of the
“good™ labelled tree of depth n—1. In the

17

it" of these (1 < i < d), replace each in-
teger labelling an edge out of a vertex at
level j (1 < j £ n—1) by its image un-
der 0;j. (The root is at level 1, its children
are at level 2, etc..) Clearly, each of the re-
sulting labelled trees is also “good.” Next,
join the roots of the d copies to a com-
mon vertex, to get a d-ary tree of depth
n. (The new vertex is the root of the new
tree.) Label the i** edge out of this root
with a;0(1).

Our aim is to show that the result-
ing random labelling satisfies the “relative
Hamming distance > u” condition with
positive probability (thus establishing the
existence of a “good” labelled tree of depth

As noted before, the condition is satis-
fied for any two distinct paths that orig-
inate from any node other than the root.
So, consider two paths of length & (1 <
k < n) originating from the root. Then,
we essentially have two independently cho-
sen random strings of integers between 1
and M, labelling the edges along the two
paths. The probability that the Hamming
distance between these two strings is < pk
is > o—k-D(uli1-57) — 2=k-D(1-uli37) by the
Chernoff bound, provided z < 1 - 1/M,
which we have assumed to be true.

There are no more than d* - d* pairs of
distinct paths of length & originating from
the root. This, together with the union
bound, means that the probability that
the “relative Hamming distance > u” con-
dition is violated by some pair of paths is

n
< Z d2ko—k-D(1-ull3p)
k=1

= 3 [@epu-mii],
k=1

But D(1 - p||1/M) > log, 2d? by assump-
tion, and therefore,

d2o-Da-uld) o L
2
Consequently,

2": [d22-D(1-ullz‘z)]k
k=1
d29-D(1-4ull3)
= 1 = g29-DO-4ll)
< 1.

This proves the existence of at least one
“good” labelling. O

18

References

[1] L. Lovdsz. “Communication complex-
ity: A survey”. In B.H. Korte et al.,
editors, Paths, Flows and VLSI layout.
Springer-Verlag, 1990.

[2] A. Orlitsky and A. El Gamal. “Com-
munication complexity”. In Y. Abu-
Mostafa, editor, Complezity in Infor-
mation Theory. Springer-Verlag, 1988.

[3] L.J. Schulman. “Deterministic coding
for interactive communication”. Proc.
of the 25th Annual Symposium on the
Theory of Computing, 1993.

[4] A.C. Yao. “Some complexity ques-
tions related to distributive comput-
ing”. Proc. of the 11th Annual Sym-
posium on the Theory of Computing,
1979.

19

	Copyright notice 1994
	ERL-94-102

