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Abstract

The separation principle - since its introduction by Shannon for ergodic sources
and discrete memoryless channels - has been a guideline in designing communication
systems. It states that separate optimization of source and channel coding modules is
optimum and by joint optimization of sourceand channel coder, the overallperformance
of the system cannot be improved any further. Therefore, to achieve minimum end-to-
end distortion, one has to transmit information at maximum rate at which reliable
communication is possible. In this paper, we consider a class of time-varying channels
where the impulse response of the channel changes with time. We consider the cases
where the side information regarding the state of the channel is available at the receiver
and/or the transmitter. Availability of the channel state information at the receiver
can result in the possibility of using different channel codes based on the state of the
channel. At the same time, having this information at the transmitter can be used to
transmit signals over the channel with time-varying power. It has been shown that that
availability of this information at both the transmitter and the receiver can increase the
rate at which information is transmitted reliably [5]. We show that this is also the case
when these information are available at either the receiver or the transmitter alone.

We also demonstrate that if the channel side information is available at the receiver,

the separation principle does not hold any longer. Specifically, when the state infor
mation is present at both the receiver and the transmitter, then for the time-varying
additive noise Gaussian channels with constraint on the average power, the power allo
cation that achieves maximum capacity is, in general, not the same as when minimum
end-to-end distortion is targeted. Explicit power control algorithms for narrow-band
Rayleigh fading channels are found and shown that different power allocation strategy
and considerable overall improvement can be expected when rate-distortion function of
the source is taken into consideration.

We also show that for time-varying channels with informed receiver superposition
codes - constructed in a similar fashion as for broadcast channels - can be used to achieve

the capacity. Indeed, this class of channels is a generalization of the broadcast channels.
Both for the time-varying channels with informed receiver and the broadcast channels,
the separation principle fails and different channel codes should be used based on the
distortion-rate function of the source. Finally, time-varying channels with informed
transmitter are investigated and shown that the capacity of these channels are achieved
through allocation of power based on the state of the channel.



1 Introduction

The joint source and channel coding theorem has been stated for different classes of sources

and channels. For example, Shannon derived this theorem for ergodic sources with rate-

distortion function R{D) and discrete memoryless channels with capacity C [10]. This

theorem usually has two components known as positive and converse coding theorems.

More precisely, Shannon showed that, for all c > 0, there exists a block code to transmit

the information over the channel with distortion D+cor less through transmitting (^ —e)
source letter per use of channel. Conversely, if a coder transmits t message letters through

n use of the channel resulting in end-to-end distortion of D, then

jC>R(D)-e, (1)

for all e > 0. Note that the above theorem implies that only two parameters, namely the

rate of the source at distortion level D, R{D), and the capacity of the channel C, is sufficient

to determine if reliable transmission of the source over the channel is feasible. Therefore,

to achieve minimum end-to-end distortion one has to aim for maximum possible channel

capacity.

Also, an implicit consequence of the above theorem is what is known as the separation

principle. Based on this principle, the operation of the transmission of a source over a

channel can be split into a source coding module and a channel coding module without

loss of optimality. In other words, the channel encoder can be designed -without any

consideration of the source- to achieve transmission rate close to the channel capacity, and

at the sametime, the source encoder should compress the source as much as possible without

any consideration of the channel encoder being used.

Even thoughthe separation principle has become a guideline in designing communication

systems, one has to be aware of the fact that there are instances where the separation

principle does not hold. For example, if the ergodicity assumption of the source is not valid

or if it is not possible to characterize the capacity of the channel byonlyone parameter, then

the separation principle is not necessarily valid and further investigation of the statistical

characteristics of the source and/or channel become necessary. Also, while transmitting

correlated sources over multi-access channels, it can be shown that the separation principle



does not hold [2]. In [14], it is shown that source-channel separation principle always holds

if the source is stationary or the capacity 1 of the channel is insensitive to the "good"
codes being required for all sufficiently long block-lengths or only for infinitely many long
block-lengths.

If we assume that the amount ofincurred delay 2should be bounded, then joint source

and channel coding design can be advantageous. For example in the case ofcausal coding

of a source transmitted over the binary symmetric channel it has been shown that the

separation principle is not valid [16]. Also, for channels with memory, one can show that

the quantization of the source considering the channel statistics can improve the overall

end-to-end performance of the quantization operation[15].

In this report(paper), we are considering the class of time-varying channels where the

statistics of the channel changes with time. These variations are usually characterized by

considering the impulse response of the channel to be time-varying or the noise conditions

change over time. Time-varying channels can be used to model a largeclass of channels. An

example is the Rayleigh fading channel where due to the multi-path the instantaneous value

of the signal to noise ratio (SNR) can be an order of magnitude lower or higher than the

nominal SNR value [5]. The information regarding the state of the channel can be used in

either the receiver and/or the transmitter to improve the overall performance of the system.

It is known that availability of these information at both the receiver and the transmitter

can increase the rate at which reliable transmission is possible. We show that availability

of these information at either the receiver or the transmitter alone can also increase the

overall transmission rate.

Another interesting question with respect to these channels is the validity of the sepa

ration principle. Specifically, for the informed receiver and/or transmitter, is the two stage

processing - separate source and channel coding - still optimum or can further improvement

be realized through joint source and channel coding? We show that if the channel state

information is available at the receiver then the separation principle is not valid anymore.

This is, however, not true in the case of informed transmitter.

In the next section, we first outline and formalize the channel model used throughout the

*A different definition ofcapacity is used in [14] than the usual definition based on the mutual information
of the input and output of the channel.

2This delay is usually characterized by the block size of the codes used in the source and the channel
coders



paper and then characterize four fundamental cases based on the availability of the channel

state information at the transmitter and/or the receiver where each case is treated separately

in the subsequent sections. We also show that the broadcast channel can be considered as

a specific case of the time-varying channel with informed receiver, and similarly to this case

the separation principle of the source and channel does not hold any longer.

2 Time-Varying Channels

Time-varying channels are modeled with linear time-varying impulse response, namely

h(t.w(t)), and additive channel noise, n(t). The channel state is indexed by w(t) € ft

which is assumed to be stationary and ergodic and all the states w{t) are assumed to be

positive recurrent. Furthermore, it is assumed that the set ft, which can be uncountable,

is known to both the transmitter and the receiver and they both have information about

the possible states. It is also assumed that the channel at each state is memoryless for the

duration of that state. Based on the availability ofw{t), at all time t, at the receiver and/or

receiver one can distinguish four different cases:

Case I (Informed transmitter and receiver): Both the receiver and the transmitter

are aware of the state of the channel

Case II (Informed receiver): Only the receiver knows about the current state of the

channel.

Case III (Informed transmitter): Only the transmitter knows about the current state

of the channel.

Case IV : Neither the receiver nor the transmitter knows the channel state.

These classes ofchannels are known as channels with side information [11], Figure 1. In the

case where the state ofthe channel is available, we assume that it is known instantaneously

and without any delay 3.

Availability of the channel state information at the receiver and the transmitter has

different consequences. Having this information at the transmitter results in being able to

vary the transmitted channel symbol as well as the frequency ofchoosing each input symbol

based on the state of the channel. For example, in the case of channels with constraint on

In the case where the state of the channel needs to be estimated and it is not provided as a side
information then this delay cannot be assumed to be zero.
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Figure 1: Schematic of a communication system with side information

the transmitted power, the transmitted power can be varied based on the state of the

channel. Having this information at the receiver, however, provides the capability of being

able to decode the output of the channel based on the state of the channel or to use different

channel codes altogether.

An important class of channels are the additive white Gaussian noise (AVVGN) channels,

that is, channels where the channel noise is assumed to be additive and has Gaussian

distribution. If we assume that this noise is white, then the capacity of this channel is given

as a function of single parameter, namely the SNR as

C(7)=|log(l+7), 2:

where SNR is denoted by 7. As far as the capacity is concerned, the effect of time-varying

impulse response is then to modulate the value of 7. Therefore, we can index the states of

the channel based on the noise power of the states.

From a practical aspect, by monitoring the value of the received SNR, the receiver

can get a good indication of the status of the channel. This is true since the state of the

channel is classified based on its noise level. If now this information is not sent back to the

transmitter then one can assume that the operating situation is similar to that of Case

II and the transmitted power is constant throughout the transmission [9]. And, if this

information is sent back to or is available directly from the channel at the transmitter,

then the situation is similar to that of Case I. This is very similar in nature to that of



closed-loop or fast power control algorithms currently used in wireless transceivers. In such

transceivers, the receiver updates the transmitter about the status of the received signal

(and hence the channel) and requests for either increasing or decreasing the transmitted

signal power [13].

We define the capacity of the channel as the maximum possible information rate that

can be transmitted reliably over a channel or

Cmax = max ^2ptRi,c (3)

where 1 = ft is the sample space of the state process, i?,,c is the information rate transmitted

and pi is the probability of being at state i GI. The state process being ergodic, p, also

corresponds to the fraction of time spent at state i. Note that the value of R{ is not

necessarily the same for the four cases stated under investigation and clearly the overall

capacity can be different.

Our primarily goal is to replicate a source signal while encountering minimum end-to-end

distortion. Assuming that the distortion function used is additive we then have

£min = min £/>,£(£,,<,), (4)

where D{R) is the distortion-rate function of the source being transmitted and Rifd is the

transmission rate at state i. Note that

Anin < X>,£(#t,c) (5)

or the solution of (3) gives an upper bound for the distortion D^ in (4).

Definition: The source and channel coding separation holds if

Anin = Y^PiD(Ri,c) (6)

If the separation principle does not hold then it is advantageous to combine source and

channel coding in a sense that the codes used to transmit information over the channel

should be designed considering the distortion-rate function D(R) of the source.

Considering the AWGN channel, we assume that there is a constraint on the average



power of the transmitted signal. In this case, both (3) and (4) are constrained optimization

problems with the constraint being on the average power S. Let Si be the transmitted

power used at state i, then this constraint can be written as:

I>$ < S. (7)

This constraint defines a polytope S of all the /-tuple points (5i,52, ...Si) that satisfy the

above, where / is the cardinality of the state process J. Note that it is possible to have

different transmitted power for each state i only if the transmitter is aware of the current

state of the channel.

If the rate R{ at state i is a function of 5,, the power used at that state, then we can

define the distortion-power function D = D o C as

D(Si) = D(C(Si)) (8)

where D is the distortion-rate function and C is the capacity function which in the case of

the AWGN channel is \ log( 1+ jf-). Now since C is a convex increasing function of 5, and

D is a convex decreasing function of #,, it is straightforward to show that D is a convex

decreasing function. The optimization problem (4) can now be rewritten as

^min = min^piJD(5l). (9)

In the following sections, we look at the Case 1,11,111 outlined previously in more

details. Case IV is the usual case with no information available at either the transmitter

or the receiver and its behavior is similar to that of average channel with transmitted power

being constant at S = S for all the state. In the case of the AWGN channel, the capacity

is then

c=5log(1 +¥)- (10)
where N = Y,ieiPiNii Ni being the noise power at state i. Clearly, in this case the separa

tion principle holds and joint source and channel coding does not provide any improvement

over two-step processing (separate source and channel coding).



3 Case I: Informed Transmitter and Receiver

In this case, both the transmitter and the receiver are instantaneously aware of the status of

the channel. Therefore, the transmitter has the capability of sending information at variable

power and can also use different source and channel coder at different states. The latter

is possible since the receiver can switch to the corresponding source and channel encoder

simultaneously. Such coding system can be looked at as a "time diversity" system with

multiplexed input and de-multiplexed output [5]. It is then straightforward to show that

Cmax = ][>/(*,•;}'•), (11)

where J(A*,-.Y{) is the mutual information between the input and the output random pro

cesses of the channel at state i [11]. In the case where there is constraint on the average

signal power then the capacity is given by:

Cmax = max ^ Pil( %i? ^ )
i€l

s.t. £p,-S,-<5 (12)

where now /(.Y,;^) is a function of 5, - the signal transmission power at state i. For

example, in the case of the AWGN channel where I{Xi\Y{) = l/21og(l + 5,/A7,). it is

straightforward to show that

Si + N{ = 0 for all i such that 5, > 0
(13)

Si + N{> 6 for all i such that 5,- = 0

where $ is a positive constant number [5].

If the aim is to minimize the distortion ofa source signal having distortion-rate function

D(R), then using a similar multiplexed input and de-multiplexed output scheme for the

channel as well as source encoding and decoding, the minimum distortion is found through
solving the following optimization problem

Anin = min £>,£(/(*,; Y,))



s.t. ^2piSi<S. (14)

Clearly, unless D(R) is a Unear function, the solution to (14) is not the same as (12). This

means that for each channel state z, different channel coder should be used based on the

distortion-rate function of the source and as a result the separation principle does not hold.

For example, for the AWGN channel the minimum distortion is reached if

$,+N, li?=i/2iog(i+5,/^,) = 0 for all i such that 5, > 0
-D'(R)\ * '
s7+N, \R=i/2log(i+st/Ni) < 0 ^ all i such that 5t- = 0

An implication of the above is to include more number of states with high noise level and at

the same time decrease the allocated power of those the states which have low noise level.

Also, the more "convex" the distortion-rate function of the source, the more advantageous

the above policy and hence the joint source and channel coding becomes. We can now state

the following theorem:

Theorem 1 For a time-varying channel with informed transmitter and receiver and con

straint on the average signal power transmission, the separation does not hold and the

minimum end-to-end distortion is not necessarily achieved by transmitting at the channel

capacity.

Note that the above is true even though the source is stationary. This result may seem

to be in contrast to that of [14] where it is shown that the stationarity of the source is a

sufficient condition for the separation principle to hold, however, there is no contradiction

as we are considering sources with fidelity criterion, while [14] considers only the case of

D = 0.

In the following, we consider the Rayleigh fading channel. We show that we can model

this channel as a time-varying channel and joint source and channel coding results in a

different power allocation algorithms, hence the separation principle does not hold.

3.1 Narrow-band Rayleigh Fading Channel

In this section, we first discuss the development outlined in [5] to find the optimal power

control assignment for narrow-band Rayleigh fading channels. This is done through capac

ity optimization formalized as in (3). We then show that by using optimization (4), an

9



alternative power control algorithm results which has different characteristics and is depen

dent on the distortion-rate function of the source being transmitted. An implication of this

is that the power control algorithm that achieves maximum capacity is not necessarily the

same as the case which achieves minimum end-to-end distortion, and as a result, different

channel coder should be used at each state of the channel. In other words, the separation

principle is not valid.

Due to multi-path and constructive or destructive combining of these paths, the envelope

of the received signal is shown to vary in time and follows a Rayleigh distribution. It is then

possible to define channel gain, G, which corresponds to the received signal power when the

transmitted signal, 5, is constant and 5=1. Then G has exponential distribution given

by /g(<7) = e~9'• Let 7 be the received SNR when the transmitted power is constant and

equal to 5, then

t = -jT (16)

Now. if we let 5(7). the transmitted signal power, vary in time as a function of 7 with an

average value 5, then the received SNR is 7^(7)/S and the optimization (3) becomes

s.t. JS(7)/(7)«*7 =5 (1"

where /(7) is the distribution of7 which is exponential with mean 75 = ^. It can then be

shown that the following power control algorithm is the solution of the above optimization

problem

S(y) _
5 I 0 7<7o

where 70 is the so-called cut-off SNR which is bounded above from zero and is found by

substituting (18) into (17).

The power control algorithm used in practical applications is usually based on the re

ceived SNR. If this SNR is lower than what is expected, then the receiver can request the

transmitter to increase its transmitting power and hence increases the received SNR. The

power control algorithm proposed by (18) and shown in Figure 2 has the following two

distinguished differences from what is usually used in practice.

J_ _ I 7 > 7o,0 7 T_70

10
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• It imposes a cut-off SNR (70) where if the received SNR is below this value, then the

transmitted power of that user is set to zero.

• 5(7) is a strictly increasing function of 7 and approaches 5/70 as 7 -* 00.

An implication of these two properties is that in the multi-user, multi-access environment,

where users share transmission medium and each user signal is considered as noise to the

other users, the users are split into two groups, those who will be cut-off due to their low

signal level (first property) and those who as a result can improve their signal level (second

property).

We now show that by considering the optimization (4) a different power control al

gorithm can be found which is close to what is used in practice and both of the above

properties are not necessarily present.

Following the same procedure as above, we have the following optimization problem

D nun = mm

s.t.

/^Qiogu
/5(7)/(7)d7=5

11

75(7) )) f(l)dl
(19)



Using the Lagrange multiplier method, the optimal policy has to satisfy

7 JS(l) ,7J=7o,9 -^,7 =7o, (20)i + 2my\ s

or

¥-i-(W-;
where g is defined as,

*(«,»)=-D'WIfcih,,,^,. (22)

Note that <7 is a positive increasing convex function in both 5(7) and 7 4. Clearly, 70 is a

constant greater than zero which can be found by substituting (21) into (19).

From (22) we have

*(^ =O,7) =-0'(O), (23)
where D'{Q) is the slope of the distortion-rate function when no information is transmitted.

Now since 5(7) > 0, (21) is defined only for

where the right hand side is the cut-off SNR which we denote by yc. This is a rare event,

however, for sources where D'(0) = -00, -)c = 0 and there is no cut-off SNR. This is in

contrast to the maximum-capacity power control algorithm of (18).

As 7 — 00, from (21), one can show that

—j 0- (2o)

This suggest that the asymptotic behavior of(21)is also different from that of the maximum-

capacity policy of (18) and is similar to the power control algorithm used in practice.

Relations (24) and (25) can be explained intuitively by noting the convexity property of the

distortion-rate function, where its behavior around R = 0 results in (24) and its asymptotic

behavior (R —• 00) results in (25).

4If D'(R) isconstant for all value ofR{D(R) is a linear function ofR) then (21) is similar to (18) which
maximizes the capacity.

12
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Example:

Let us assume exponential distortion-rate function D{R) = 2~'3R. R > 0. where 13 is a

nonzero positive real number. Since -D'(0) = /?ln2, then for all 0 < 00, the cut-off SNR.

7c, is bounded above from zero. Then we can show that the minimum-distortion policy is

5(7)
= <

/ 1 \g?i l .. ^ _.
26:

otherwise

and

7m =7c I1+ -q J (27

where 7m is the 7 corresponding to the maximum ^1. For 0 = 2, which corresponds to
distortion-rate function of high-rate quantizer [6], we can further simplify the above to

S(l)
= <

and

1 1/3 -v 7 c. 7c

0

_ 27
7m ~' o 7c

13

otherwise

(28)

:29:



Figure 4: Cut-off SNR (7J vs. 0

Figure 3 shows the optimum distortion power allocation policy for different value of 3

{0 = 0,1,2) where the respected cut-off SNR, 7C, is shown in Figure 4. Note that 0 = 0

corresponds to the power allocation for maximum-capacity which is repeated from Figure

2.

Now, as 0 —0, 7m —> 00 and the policy (26) becomes similar to the maximum-capacity

policy. This is expected since D'(R) -* 0 is independent of the value of R. At the other

extreme, as 0 — 00, -ym — e7c -> 0, since 7C ^ 0 as shown in Figure 4. Note that the value

of 0 is an indication of the convexity of the distortion-rate function. As a result, as the

distortion-rate function becomes more convex, the difference between maximum-capacity

and minimum-distortion becomes more pronounced as shown in Figure 5. Note that as

the distortion-rate function becomes more convex (0 becomes larger), the overall distortion

due to the use of minimum-distortion policy decreases whereas maximum-capacity policy

distortion flattens and becomes insensitive to the distortion-rate function. Also, forexample

for 0 = 2, the amount of reduction in the overall distortion is significant (more than an

order of magnitude) which points to the advantages of joint source and channel coding.

14
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3.2 Optimization using Distortion-Power Function

If the channel noise is not additive Gaussian then the capacity of the channel cannot be

found using (2) and one needs to generalize the derivation of the previous section. As it

was stated in the introduction, it is possible to define a distortion-power function for each

channel state and show that it is a decreasing convex function of the signal transmission

power used at that state. Even though the distortion-rate function is the same for each

state, they will have different distortion-power functions since the corresponding noise at

each state is different. The higher the noise power, the less convex this function for a given

distortion-rate function. The optimum solution can be achieved through minimization of

(9) subject to the constraint on the average power. Distortion-power D(Si) being a convex

function, the solution of this optimization is given by [7]

^p =A all i such that 5, >0
d%^ <A all i such that 5t =0

(30)

where Di(Si) is the distortion-power function at state i. As a result, the optimum pol

icy is the constant slope policy similar to that being proposed to minimize the total rate-

15



constrained distortion [12]. Implicit in the above solution are the following conclusions:

• In general, there is a cut-off state where the noise power is too high to allocate any

power to that and all the states with higher noise power.

• As the noise level decreases, the amount of allocated power diminishes to zero.

4 Case II: Informed Receiver

This case corresponds to the situation where the receiver instantaneously becomes aware

of the state of the channel but the transmitter does not have this knowledge. In this case

the transmitting power cannot be varied by the transmitter but the receiver will have the

capability to decode different codes based on the channel state. We assume that both the

receiver and the transmitter know the above. In other words, even though the transmitter

does not know about the current state of the channel, it knows that the receiver has this

knowledge. Therefore, it is possible for the transmitter to present the information in such

a way that the receiver can extract the most amount of information.

The situation is similar to the broadcast channel problem considered by Cover [3] where

a transmitter wants to send information to two different receivers through the same trans

mission medium but with different channel characteristics - the noise level of the channels

are different. The broadcast channel problem is to find the capacity region where each

point in this region corresponds to a set of rates that can be simultaneously transmitted to

all the receivers. The general two receiver case has been solved by Cover but the capacity

region corresponding to three or more receivers is still an open problem. As a result, in

this section we only consider a channel with two states, namely good and bad states where

the probability of being in the good state is denoted by q. In general, each two-state time-

varying channel can be characterized by a two-receiver broadcast channel with additional

parameter q. Even though only the two-state channel case is considered, we must add that

the conclusions drawn are general enough to include multi-state channels.

In the appendix, we state some of the formal definitions and theorems related to the

broadcast and the physically degraded broadcast channels for two receiver case. Superposi

tion codes are usually used to achieve the capacity region, where two codes with the same

input alphabet X but different output alphabets ~S>\ and 3^2 corresponding to different chan-

16



nels are designed. At each transmission instant the codes intended to both receivers are

added and then transmitted. The good receiver first decodes the information intended for

the bad receiver, which can be done free of error, and then subtract this from the received

code to get the information intended to itself. For the bad receiver, however, the informa

tion sent to the good receiver is considered as an additive noise. For example, in the case of

the AWGN channel, two codes corresponding to two different SNR values of %f anc* aS+N
are designed, where as in the appendix, iV"i and N2 are the noise power of the good and

bad receivers, respectively, and 0 < a < 1.

In the following sub-sections, we first derive the optimal code design policy to achieve

maximum-capacity as well as minimum-distortion. We show that these two policies are

not necessarily the same. In other words, the channel coders used to achieve optimum

performance are not the same (the separation principle does not hold) and as a result,

while designing channel coders, it is necessary to consider the characteristics of the source.

The case of the AWGN channel is considered in more details.

4.1 Maximum-Capacity Optimization

Let A' —Yi —Y2 be the corresponding broadcast channel of the two-state time-varying
channel and define

C,(/(u))i/((/;y2) +9max{/(A';y1|r)-/(r;y2),0}. (31)

where f(u) is the probability distribution of random variable U, then the capacity of the
time-varying channel is given by

Cmax = maxC(/(u)). (32)
/(«)

In the case ofthe AWGN channel, C(f(u)) can be described by a single parameter a as

C(a) = R2(a) + 9max {£,(<*) - R2(a),0} , (33)

where

*(., =Hi+g),
17



and the optimization problem (3) becomes

Cmax = max C(a). (35)

Note that (33) can be interpreted as the possibility of reliable transmission of information

at rate R2(a) all the time, and extra information at rate R\(a) - R2(a) only during the

time where the channel is in the good state.

For q < ai where

x/(JVi + JV2):i + 4JV15-(JV1 + JV2)
a> = 25 (36)

Ri{a) < R2(a) and as a result. (35) can be rewritten as

Cmax = max <#2(0), max C{a) \
I aj<Of<l J

(/22(0), m9x{qR1{Q) +{l-q)R2{a)})= max

Note that the value of a/ is independent of q and depends only on the noise power of the

channel, namely JVj and N2, and the transmission power S.

Let us define qm as

- - IS

then only if q > qm, a = 1 can result in Cmax and similarly, a = 0 can result in Cmax only

if q < qm. Now if we assume a > a/, then taking the derivative of C(a) with respect to a,

one arrives at

dC(a)^q S 1-g S
da 2aS + Ni 2 aS+ N2' { '

Equating the above to zero, we get the following relation between a that maximizes the

capacity (am,c) in term of q
q(N, + N2) - Nt

-2qS + 5
<W = ^ Ln'n • (40)
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In the interval of our interest, namely a/ < am,c < 1, amiC is an increasing function of q.

Substituting (40) into C(a), we have

C(amc) =ilog ( < »*-*) +ilz«) ^ (1-**S +N2\
V ' 2 6U-2g Ni )T 2 6V \-q N2-Nj [ }

Let qi be the value ofq which makes (41) to be equal to R2{0) and find qh by equating am<c

to 1 or

__ 1 N2-Ni
qh~2 2{2S +N2 +Nl)' (42)

Clearly, qt < qh < \ where qi = qh = 1/2 if and only if N2 = JVX, which is the case if the

channel had only one state.

We can now define the superposition region {qi,qh) only if qh > qm. Note that only if

Q€ (9/*9a) one can achieve higher capacity through use of superposition codes. Outside

of this region, one either designs the channel code for the good state {q > qh) or for the

bad state (q < qi). Also, note that both qh and qi are less than 1/2, or superposition codes

should not be used if the channel is in the good state at least half of the time. In most

time-varying channels encountered in practice, the fraction of time spent in the bad state

is small (e.g 1%). For such channels, to achieve maximum capacity, one has to design the

channel coder for the good state and consider the information transmitted during the bad

state as loss of capacity.

Example:

Let 5/Ar! = 7 and S/W2 = 3. Then from (42) and (38) q'h = 0.462 and qm = 0.666. Now

since q* > qh, it is not possible to define superposition region and the optimal policy is to

use a = 1 if q > qm, and to use a = 0, otherwise.

If S/Ni = 7 and S/N2 = 1, then

q* = 0.333,

qh = 0.367, (43)

qi = 0.329.

Since q* < qh , it is possible to define superposition region as (0.329,0.367) where superpo

sition codes should be used if q belongs to that interval. In the next sub-section, we show

that if we consider the distortion-rate function and aim for minimum-distortion instead of
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maximum-capacity, the superposition region changes and the separation does therefore not

hold.

4.2 Minimum-Distortion Optimization

We assume that successive refinement of the source as defined by Equitz and Cover is

possible [4]. In other words, it is possible to generate two information streams with rates R2

and Ri - R2 such that both {RuD(Ri)} and {R2,D(R2)} are on the distortion-rate curve.

This condition is not too restrictive as a large class of sources such as Gaussian distributed

sources with squared-error and Laplacian distributed sources with absolute error can be

successively refined [4]. Similarly to (33), then for the AWGN channels, we define

D(a) = D(R2(a)) + qmm{£(#i(a)) - D(R2(a)),0}, (44)

where R\ and R2 are defined as (34), and the optimization problem is to find

Anin= min D(a). (45)
0<a<l

Note that if R^a) < R2{a) then £>(#i) > D(R2). Therefore, for the a, given by (36). we

can rewrite the above as

Dmin =mm\D(R(0)), min D{a)\ (46)
I aj<o<l J

Let us define qx as
a 1-D(R2(1))

q~ 1-D(R1(0)Y * '

then only if q > qM, a = 1 can result in D^n and similarly, a = 0 can result in D^n only if

q < q*. Note that, similar to the maximum-capacity optimization, the superposition region

can be defined only if qh > q*. Now if a > a;, then D{Ri(a)) < D{R2(a)) and by taking

the derivative of the both sides of (44), we arrive at

dD(a) _ qS (l-g)5 ,
^T-2(c,S +N1)DI<Rl)-2(aS +N1)D(R2)' (48)
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where

£'(«.) =^rU=«,(„, i=l,2. (49)
and equating (48) to zero, we find the following relation between q and amij,

„_ <*m,dS + Nj
q = rWD~\ • (50)Om.rfS +tfi +g^cwS +tfa)

Note that since D(Ri) < D(R2), D'{R2{a)) < D\RY{a)) < 0, and

D'{Ri)
D'{R2)

<1, (51)

where the equality holds if and only if the distortion-rate function is linear or Ri = R2.

Note that this constitutes a small class of sources. If we now substitute amj found from

(50) into D(a), then

where A = D'(Ri{a))/D'(R2(a))\Q=Qmd, and qt can be found by equating the above to

D(R2(0)).

The right hand side of the superposition region, qh, can befound by substituting amj =

1 into (50). Note that

* * 2S +Nl +N2 (°3)
with equality holding if and only if D'{Ri)jD\R2) = 1. More surprisingly,

Urn qh = 1. (54;

Noting that if amyd = 1, then D'{R2) = D'(0), we can rewrite the above as

i,,J52-»* =1- (55)

Therefore, for the sources with D'(0) = -oo, ifq< qt, the channel codes should be designed

based on the noise power of the bad state and if q > qi superposition codes should be used
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to achieve minimum end-to-end distortion.

In general, the value of D'{Ri)lD'{R2) is related to the convexity of the distortion-

rate function of the source. The more convex this function, the smaller the value of

D'(Ri)/D'(R2), the closer qh to 1, and the superposition codes become attractive for the

time-varying channels encountered in practice. Also, it becomes more advantageous to

jointly design the source and the channel coder. We can now state the following theorem:

Theorem 2 For a two-state time-varying channel with informed receiver and constraint

on the average signal power transmission, the separation does not hold and the minimum

end-to-end distortion is not necessarily achieved by transmitting at the channel capacity.

Example:

Let us assume that the rate distortion of the source is given by D{R) = e~0R where 0 is a

positive real number. Then

"• ~!-(,&)"» (°6)
and from (50),

9= ; ^-T-T-. 7jf2 ♦ (5.

where qh corresponds to ctmj = 1 or

qh = -jjz . (58)

Superposition region is defined only if q« < qh> In Figure (6), we show the three operating

regions, a• = 0,a = 1,0 < a < 1, for the case where ^- = 10 and ^- = 2. As 0 —oo, the
distortion-rate function becomes more convex and qh —> 1.

4.3 Broadcast Channel

The two-state time-varying channel with informed receiver and constraint on average trans

mitted power can be characterized by {^-, ^,<?}. If q= \, then the corresponding time-
varying channel is equivalent to the broadcast channel where one transmitter simultaneously

sends information to two receivers. Therefore, the analysis done in the previous section is
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Figure 6: Different operating region for S/Ni = 10 and S/N2 = 2

equally applicable to the broadcast channel. For example, in the case of the broadcast chan

nel, the superposition codes should be used only if 1/2 is in the superposition region found

from the analysis of the corresponding time-varying channel. In the case of maximum-

capacity analysis, qh < 1/2 and q = 1/2 is always outside the superposition region. If

q* < qh, then the capacity is maximized if a = 1, otherwise a = 0 should be used to achieve

maximum capacity.

The situation, however, is not the same if we intend to minimize the total distortion

of the signals received at both receivers. This is true since it is now possible for the

superposition region to include q = 1/2. For this to be true, it is necessary to have qM < qh

and qi < 1/2 < qh. The first condition guarantees that superposition region exists where as

the second one implies that q = 1/2 is in that region.

Example:

In the case of AWGN channel and distortion-rate function D{R) = 2~/3R, q* and qh are

given by equations 56 and 58, respectively. Ifwe now assume that -jq- = 7and •£- = 1, then
for

0.539 < 0 < 6.871

superposition region exists and q = 1/2 is in that region.
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5 Case III: Informed Transmitter

This is the case where the transmitter is aware of the state of the channel but the receiver

does not have any information on the variations of the channel. Therefore, it is not possible

to change the channel coders or to use superposition codes as was the case in the previous

two sections. It is however possible to vary the transmitted power based on the channel

state due to the knowledge of the transmitter of the current state of the channel.

In his paper, "Channels with side information at the transmitter", Shannon derives the

capacity of memoryless discrete channel with side information available at the transmitter

[11], where the side information is the current state of the channel. The main theorem of

the paper which we partly re-state for the completeness is as follows:

Theorem 3 The capacity of a memoryless discrete channel K with side state information,

defined by pt and qtj{i) 5 is equal to the capacity of the memoryless channel K' (without

side information) with the same output alphabet and an input alphabet with ah input letters

X = (#i, x2, •••, Xh) where each Xi = 1,2, •••, a. The transition probabilities rx(y) for the

channel K' are given by

h

qxiy) = qXi,x2....,xh{y) =£p<g<xt(y). (59)
t=i

Any code anddecoding system for K1 can be translated into an equivalent code and decoding

system for A* with the same probability of error.

The application of this theorem can become clear by the following example. Let us

consider a time-varying binary symmetric channel with two states as shown in Figure 7.

where a and 0 are the probabilities of error at each state. The above theorem states that

the capacity of this channel is equivalent to the channel A*' shown in Figure 7. where for

example the input alphabet {A,B) corresponds to transmitter sending A when in state 1

and B when in state 2. The transitional probabilities of this equivalent channel (A*') is

found using (59).

Sincethere are only two output channel symbols, twonon-zero probability input symbols

are sufficient to achieve the capacity. Depending on the value of a or 0 being smaller or

pt is the probability of state t and qu{j) is the conditional probability, if in state 1 and i is transmitted,
that j will be received.
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Figure 7: Time-varying binary symmetric channel
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Figure 8: Channel A"' for different values of a and 0

greater than 1/2, it can be shown that different two input symbols of K' achieves the

capacity, as shown in Figure 8.

Let us assume that Pe(i), i = 1,2, are the probabilities of the error at state / which are

convex function of 5, and are always smaller than 1/2. Then, the capacity of the channel

K is achieved if the left hand coder in Figure 8 is used. This means to transmit the same

input symbol of the coder K independent of the current state of the channel. To maximize

the overall capacity, one has to therefore minimize the overall probability of the error or to

solve the following constrained optimization problem:

min Pttm =PiPe{l) + P2Pe(2)

s.t. piS\ +p2S2 = 5,
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where pi is the probability of being in state i. Then, Pe(i) being a convex function of 5t,

the solution to the above problem is given by [7]

%^ = 0 all i such that Si > 0

zygp- <9 all i such that 5,- = 0

where 0 is a constant. Therefore, the solution is the constant slope of Pe{i) as a function

of 5. The maximum achievable capacity is then given by 1 - K(Pe,m) 6 per transmitted

symbol.

Example:

If binary phase shift keying (BPSK) is used to transmit information over the channel [8],

then the probability of error at state i (Pe{i)) is given by

Pe(i)=±eTkUjf) t=l,2 (62)

where 5, and A7,- are the signal and noise power at state i, respectively and

erfc(x) = —— \ e~^ d£.
V71" Jx

Then Pe{i) is convex function of 5, and less than half. The optimum power allocation policy

can be shown to be

NiSie^ = e t = 1,2, (63)

for all those i such that 5,- ^ 0, where as before 0 is a constant.

End of Example

Direct generalizations of the above derivation is possible. First, it can readily be ex

tended to more that two channel states. Secondly, (61) still results in maximum capacity if

P(Si) is given by a general convex function of 5, which is always smaller than 1/2 for all i.

This does not impose any restriction as P(5t) is indeed a convex function of 5,.

Intuitively, as the block sizeof the transmitted symbolincreases, the bit error probability

in each transmitted symbol approaches the average probability of error. The capacity is

'mP^m) is defined as H(Pe>m) = Pe,m log(Pe.m) + (1 - Pe,m)log(l - Pe,m).
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then maximized when this average probability of error is minimized through intelligent

allocation of signal power based on the state of the channel. Note that even though the

behavior of the channel is similar to that of "average channel" - the channel codes used do

not change with time - the improvement over the average channel can be expected through

power assignment. At the same time, since the channel code used does not change with

time, the rate at which the information is being transmitted is constant over the time and

hence it is not possible to use similar type of optimization as was done in the previous

two cases. Therefore, the solutions to the optimization problem (3) and (4) are the same

and the separation principle holds. We conjecture that this is not only true for the binary

symmetric channels considered here but also for more general channel classes such as the

AWGN time-varying channels.

27



References

[1] T.M. Cover and J.A. Thomas, Information Theory, Wiley series in telecommunications,

John Wiley, 1991.

[2] T.M. Cover, A. El Gamal and M. Salehi, "Multiple access channels with arbitrarily

correlated sources," IEEE Trans, on Information Theory, Vol. 26, No. 6, November

1980.

[3] T.M. Cover, "Broadcast channel," IEEE Trans, on Information Theory, Vol. 21, No.

1, January 1972.

[4] W.H.R. Equitz and T.M. Cover, "Successive refinement of information," IEEE Trans,

on Information Theory, Vol 37, No. 2, March 1991.

[5] A. Goldsmith, Design and Performance of High-Speed Communication Systems over

Time-Varying Radio Channels, Ph.D. dissertation, University of California at Berkeley,

1994.

[6] N.S. Jayant and P. Noll, Digital Coding of Waveforms, principles and applications to

speech and video, Prentice-Hall, Signal processing series. 1984.

[7] M. Minoux, Mathematical Programming: Theory and Algorithms, Wiley, 1986.

[8] P.Z. Peebles, Jr., Digital Communication Systems, Prentice-Hall, Englewood, New Jer

sey, 1987.

[9] L.H. Ozarow, S. Shamai, A.D. Wyner, "Information theoretic considerations for cellular

mobile radio," IEEE Trans, on Vech. Technology, Vol. 43, No. 2, May 1994.

[10] C.E. Shannon, " Coding theorems for a discrete source with a fidelity criterion," IRE

National Convention Record, Part 4, pages 142-163,1959.

[11] C.E. Shannon, "Channels with side information at the transmitter," IBM Journal

Research Development, Vol. 2, pp. 289-293, 1958.

[12] Y. Shoham and A. Gresho, "Efficient bit allocation for an arbitrary set ofquantizers."

IEEE Trans, on Acoust. Speech and Signal Processing, Vol. 36, No. 9, September 1988.

28



[13] TIA/EIA/IS-95, "Mobile-station-base-station compatibility standard for dual-mode

wideband spread spectrum cellular system," Telecommunications Industry Associa

tion, July 1993.

[14] S. Vembu, S. Verdu and Y. Steinberg, "The source-channel separation theorem revis

ited," IEEE Trans, on Info. Theory, Vol. 41, No. 1, Jan. 1995.

[15] V.A. Vishampayan and N. Farvardin, "Joint design of block source codes and modu

lation signal sets," IEEE Trans, on Info. Theory, Vol. 38, July 1992.

[16] J.C. Walrand, P. Varaiya, "Optimal causal coding-decoding problems," IEEE Trans,

on Info. Theory, Vol. 29, No. 6, November 1983.

29



Appendix

In this appendix some of the formal definitions and theorems related to the broadcast and

the physically degraded broadcast channels for two receiver case are re-stated from [1].

Definition: A broadcast channel consists of an input alphabet X and two output alphabets

y\ and y2 and a probability transition function f{y\,y2\x).

Definition: A broadcast channel is said to be physically degraded if

f{yuV2\x) = f(yi\x)f(y2\yi).

Theorem 4 If the rate pair (J?i, R2) is achievable for a physically degraded broadcast chan

nel, the rate triple (Ro,Ri,R2 —Rq) is achievable for the channel with common information,

provided that Ro, the rate of the common information, is less than R2.

Note that Ro can be arbitrary close to R2.

Theorem 5 The capacity region for sending independent information over the degraded

broadcast channel X — Y\ -> Y2 is the convex hull of the closure of all (Ri,R2) satisfying

R2<I(U;Y2)

Ri^HX^WU) (64)

for some joint distribution f{u)f(x\u)f(y\,y2\x).

Theorem 6 All Gaussian broadcast channels are physically degraded and the capacity re

gion (R\,R2) is given by

* <Hl+£)

where 0 < a < 1 is an arbitrary number and S is the power of the transmitted signal.
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