
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



EDGE-STREETT/EDGE-RABIN AUTOMATA

ENVIRONMENT FOR FORMAL VERIFICATION

USING LANGUAGE CONTAINMENT

by

Ramin Hojati, Vigyan Singhal, and Robert K. Brayton

Memorandum No. UCB/ERL M94/12

10 March 1994



EDGE-STREETT/EDGE-RABIN AUTOMATA

ENVIRONMENT FOR FORMAL VERIFICATION

USING LANGUAGE CONTAINMENT

by

Ramin Hojati, Vigyan Singhal, and Robert K. Brayton

Memorandum No. UCB/ERL M94/12

10 March 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



EDGE-STREETT/EDGE-RABIN AUTOMATA

ENVIRONMENT FOR FORMAL VERIFICATION

USING LANGUAGE CONTAINMENT

by

Ramin Hojati, Vigyan Singhal, and Robert K. Brayton

Memorandum No. UCB/ERL M94/12

10 March 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Edge-Streett/Edge-Rabin Automata Environment for

Formal Verification Using Language Containment

Ramin Hojati* Vigyan Singhal! an<* Robert K. Brayton

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, USA

Abstract

We present the edge-Streett/edge-Rabin environment for doing verification using language contain

ment. This environment has a number of desirable properties compared with the L-process/L-automaton

environment ([Kur87b]), which is a practical language-containment-based formal verification environ

ment:

• It contains the L-environment as a subset.

• It can be exponentially more compact than the L-environment.

• We present BDD-based algorithms for main verification functions in this environment, and ar

gue that they are efficient. Furthermore, if the specifications come from the L-environment, our

algorithms reduce to the algorithms of [HTKB92] and [HBK93] for the L-environment.

• It is in some sense maximal, i.e. language containment check for the next natural extension to our

environment is NP-complete (as opposed to polynomial).

We have implemented our algorithms in our verification tool, and will present a flexible user interface to

this environment.

1 Introduction

Automatic formal design verification is the processof raising one's confidence in a design by proving properties

of a design. The system is usually modeled using a set of interacting finite-state machines. The semantics of

the interaction between the FSM's are given by a concurrency scheme. Two such schemes are interleaving

and synchronous concurrency models. Regardless of what modeling scheme is used, one ends up with one

'Research supported by Semiconductor Research Corporation Grant 93-DC-008
Research supported by NSF/DARPA Grant MIP-8719546



state machine, which can produce the same set of traces as the original model. Therefore, for our purposes

it suffices to assume we are only dealing with one finite-state machine, which we call the product machine.

Since the product machine corresponding to a hardware system can become rather large, abstraction is

used to trim some "un-interesting" details. Since abstraction enlarges the set of behaviors of the system,

in some cases, it becomes necessary to get rid of some unwanted behavior introduced by abstraction. An

example is the case of indefinite pause. Assume we have modeled that a system can pause at a state for an

arbitrary but finite amount of time. In this case, we rule out the behavior where the system stays at this

state forever by placing a constraint on the model. We refer to such constraints as fairness constraints.

One can use the acceptance condition of (finite) automata on infinite strings as a means of specifying

fairness constraints. For example, the acceptance condition of Buchi automata is that an infinite path

through the automaton (referred to as a run) is acceptable if it visits one of the final states infinitely often

([Tho90]). To specify that the system is not allowed to stay at state so forever, we mark all other states

except so as final states.

Having specified the hardware, which consists of the product machine and the fairness constraints, one

proceeds to prove properties of the design. There are two important ways of specifying properties: w-

automata (automata on infinite strings) and Computation Tree Logic (CTL) ([CES86]). In this paper, we

are concerned with the w-automata.

Using language containment for formal verification, one represents a super-set of the desirable behaviors

of the system using an w-automaton T. One can think of T as specifying acceptable patterns for the traces

of the system. An example is: only those traces are acceptable where each request is followed by a service.

This property can be specified by a two-state automaton. One then checks that the language of the system,

which is represented by an w-automaton 5, is included in the language of the property automaton T. Doing

so, the user is guaranteed that the system is incapable of producing traces which do not have the desired

pattern. This is called verifying a system with respect to a property. The user then continues verifying the

system with respect to other properties, until the user is convinced that the intersection of the languages of

the properties is equal (or maybe very close) to the desired set of behaviors.

The above scheme for doing formal verification first appeared in literature in [VW86]. [VW86] suggested

specifying both the system and the property using Buchi automata, and went on to give an algorithm for

language containment in this environment.

The usual method to verify that £(S) is contained in £(T), where C(S) and C(T) are the languages of the

system and property respectively, is by checking that C(S) C\ C(T) is empty (known as language emptiness

check). However, complementing an w-automaton is a PSPACE-complete problem, and the best known

algorithms have exponential complexity ([SVW87], [Saf89]).

The contribution of [Kur87b] was to introduce an environment, where the acceptance conditions of the

system and the property are complementary. The system is modeled by an L-process, whereas the property

is modeled by a deterministic L-automaton. We refer to this method for verification as the L-environment.

2



Computing the complement of the language of a property is trivial: just think of the L-automaton as an

L-process. Based on this paradigm, the first software tool for automatic verification of finite-state systems

using language containmentwas built ([HK90]). The advent of BDD's allows for handlingof very largestate

spaces. [HTKB92] and [HBK93] gave various efficient BDD-based algorithms for language containment and

debugging in the L-environment.

In this paper, we introduce a new language containment based formal verification environment. The

system is modeled using what we call edge-Streett automata, whereas the properties are modeled using

edge-Rabin automata. These automata are generalizations of Streett automata ([Str82]) and Rabin au

tomata ([Rab72]), which are used to specify languages over infinite strings. In terms of the abilityto express

specifications, this environment (called the RS-environment) is equally expressive as L-environment. How

ever, the RS-environment offers more compactness in expressing specifications. This allowsa user to be able

to specify the system and properties more succinctly. More importantly, since the equivalent L-environment

specification can be exponential in the worst case, the language containment should be much faster in the

RS-environment than in the L-environment because of exponentially smaller input size (the algorithms for

both L-environment and RS-environment are polynomial in terms of the input size).

Edge-Streett and edge-Rabin automata have complementary acceptance conditions. Hence, the com

plementation task remains trivial for deterministic edge-Rabin automata. We present efficient BDD-based

algorithms for language containment and debugging in the RS-environment which are extensions of the

algorithms for the L-environment presented in [HTKB92] and [HBK93]. The RS-environment has several

desirable features:

• It contains the L-environment as a subset. Moreover, all algorithms are designed in a manner, so that

if the specifications are from the L-environment, the algorithms reduce to their counter-parts in the

L-environment. In other words, if we don't use the more expressive features, we don't pay for them.

• There are specifications in the RS-environment, which can be expressed in the L-environment only

with an exponential blowup.

• All of the algorithms in the RS-environment are efficient, i.e. running times are expected to be com

parable with their counterparts in the L-environment (besides language containment, we present algo

rithms for early failure detection, debugging, and hierarchical verification). In other words, if the more

powerful constructs are used, the price is small.

• We argue that the RS-environment is maximal in the following sense. Language containment in it can

be done in (small) polynomial time. We show that the next natural extension causes the language

containment problem to become NP-complete.

We have implemented most of our algorithms in our verificationframework, currently under development.

A more convenient user interface to the RS-environment, which supports various specification means, is



described in this paper. It remains to be seen how effectively users are able to express their specifications

succinctly using the RS-environment when the same specifications cannot be described equally succinctly in

the L-environment.

The flow of the paper is as follows. In section 2, definitions and preliminaries are presented. In section

3, the RS-environment is described, and some theoretical results about its expressiveness are proved. In

section 4, the algorithms for various verification tasks are given. Section 5 describes a user interface to the

environment. Section 6 concludes the paper.

2 Preliminaries

Definition 1 A Finite State Machine or Automaton is a tuple (A, Q, T, /), where A is a finite alphabet,

Q is a finite set of states, T is a transition relation on Q x Ax Q, and I is a set of initial states. A run r

of an u-string x is an infinite sequence of states, such that the first state r*o 6 /, and Vi:, (r,-, x,, r,+i) G T.

The set of states occurring infinitely often in a run r, called the infinitary set, is denoted by inf(r). Since

the set of states Q is finite, inf(r) is always a non-emptyfinite set.

Definition 2 An L-process is a FSM plus a set of acceptance conditions. The acceptance conditions

are a set of edges R known as recur edges, or a set C of subsets of states known as cycle sets. A string

is accepted if it has an accepting run. A run r is accepting if no recur edge is traversed infinitely often,

and inf(r) is not contained in any of the cycle sets (i.e. the run does not get stuck in one of the cycle sets

forever).

Remark We use the phrase "acceptance conditions" and "fairness constraints" inter-changeably, especially

when we talk about automata used for specifying the system, namely L-processes and edge-Streett automata.

Definition 3 An L-automaton is the same as an L-process, except that the acceptance conditions are

interpreted in exactly the opposite way: a run r is accepting if at least one of the recur edges is traversed

infinitely often, or inf(r) is contained in one of the cycle sets.

3 Edge-Rabin and Edge-Streett Automata

3.1 Definitions

Definition 4 An edge-Streett automaton S is an automaton A augmented with a set of acceptance or

fairness constraints of the following form:

• Positive edge constraints. This is a set, each member of which is a set of edges of A.

• Negative edge constraints. This is a set of edges of A.



• Canonical Fairness Constraints (CFC's). These are a set of constraints of theform F0o(5,) + G0o(7}),

where Si and Ti are sets of states of A, and 1 < i < h.

An u-string x of A is accepted (x 6 C{S)) if there is a run r of x in A such that all of thefollowing conditions

are satisfied:

1. For each set of positive edges, r traverses at least one of the edges in set infinitely often.

2. For each negative edge e, r does not traverse e infinitely often.

3. For each CFC, either inf(r) nSi^<j> , or inf(r) C Ti.

Remark CFC's can express a form of fairness known as strong fairness. Hence, CFC's are sometimes

referred to as strong fairness constraints.

Definition 5 An edge-Rabin automaton R is an automaton A augmented with a set of acceptance or

fairness constraints of the following form:

• Positive edge constraints. This is a set of edges of A.

• Negative edge constraints. This is a set, each member of which is a set of edges of A.

• CFC's. These are a set of constraints of the form F°°(5,) AG°°(7;), where 5,- and T{ are sets of states

of A, and 1 < i < h.

An uj-string x of A is accepted (x G £(R)) if there is a run r of x in A such that at least one of the following

conditions is satisfied:

1. For positive edges, r follows at least one of the edges in the set infinitely often.

2. There is a set of negative edges, such that r does not follow any of the edges in the set infinitely often.

3. For at least one of the CFC's, say the i— one, inf(r) f\Si ^ <f>, and inf(r) C Ti.

Notation For an edge-Streett or an edge-Rabin Automaton, a (fairness) constraint is one of the following:

a set of negative edges, a set of positive edges, a CFC of the form F°°{Si) + G°°{Ti) or F°°(5,) AG°°(7}).

Remark One can translate the edge-Streett (edge-Rabin) automata into Streett (Rabin) automata, which

are automata with all fairness constraints expressed as CFC's, with a factor of 2 blow-up in the state space

size. The transformation is known as the node-recur transform, and was first described in [Kur87a],

Theorem 3.1 For every deterministic edge-Rabin automaton R, there is an edge-Streett automaton S, which

accepts the complement of the language of R and has at most the same number of fairness constraints.

Proof: For the set of positive edges in R, create a set of negative edges in S. For the set of sets of negative

edges in R, create a set of sets of positive edges in 5. For each F°°(Si) A G°°(7i), create a constraint



G°°{Si) + F°°{Ti). Let x e £(S). Then x has a unique run in both 5 and R. Call it £. We will show that £

is rejected in 72. Assume not. Then, £ satisfies one of the three acceptance conditions in Definition 5. Since

a string x has a unique run in both R and S, it is easy to see that the unique run of x in S is accepted iff

the unique run of x in R is rejected. •

Remark When BDD's are used for representing sets ofstates, computing the complement of an edge-Rabin

automaton by the above procedure is trivial, since complementing a BDD can be done in constant time.

One may ask whether it is possible to make the environment even more powerful without sacrificing too

much efficiency. A natural extension, one may consider, is having acceptance constraints of the form of a

product ofsumsof an arbitrary number of F0O(5,)'s and G°°(7})'s. First, note that sumof a set of F°°(S,)'s

is just equivalent to iroo(U»(,S'»))- So, only one F00 suffices. It remains to ask whether allowing more G°°'s

will sacrifice the efficiency. [EL85] basically answered this question (they were looking at a slightly different

problem).

Theorem 3.2 The problem of determining whether the language of an automaton with acceptance conditions

of the form Ui{G°°(Si) + G°°(Ti)) is empty, is NP-complete.

Proof: The problem is in NP. The answer is a set of states which can be traversed infinitely often, such

that all fairness constraints are satisfied. Just guess this set of states, and check that this set is contained

in Si or 7} for all i. To prove the problem is NP-complete, just use the reduction of [EL85] to show the fair

state problem with fairness constraints of the above type is NP-complete. [EL85] reduces 3SAT to a graph

with fairness constraints of above type. Now, the language of the automaton is non-empty iff the original

formula was satisfiable. •

Note that the language emptiness check for Streett automata is done in (small) polynomial-time. Hence,

the next natural extension to the RS-environment makes the language emptiness check, which is the most

important operation in formal verification, NP-complete. This gives the RS-environment a sense of maxi

mally.

3.2 Comparison with the L-environment

In this section, we demonstrate why the RS-environment is more "powerful" than the L-environment. Our

conclusion is that in the worst case, L-processes are exponentially less compact than Streett automata. We

then present an example of this exponential blow-up for the translation of Rabin automata into L-automata.

3.2.1 Edge-Street automata versus L-processes

In this section we show that there are systems which can be represented compactly as Streett automata but

any L-process representation incurs an exponential blowup. Conversely we show that edge-Streett automata

contain L-processes, i.e. all L-process specifications can be thought of as edge-Streett automata without any

increase in the specification size.



The proof for the following theorem showing compactness of edge-Streett automata relative to L-processes

is similar to a proof for demonstrating exponential blowups in conversion of deterministic Streett automata

to non-deterministic Buchi automata ([Saf89]).

Theorem 3.3 For every n > 0, there exists a deterministic edge-Streett automaton with 3n states and 2n

accepting pairs such that any equivalent non-deterministic L-process has at least 2n states.

Proof: Let the alphabet £ = {0,1,2}. We will look at a word x G T>w as an infinite sequence of vectors of

length n. Let the language C be the set of all words in which, for all i G {1,..., n}, 1 appears in the i-th

place in infinitely many vectors iff2 appears in the i-th place in infinitely many vectors. The language £ is

accepted by a deterministic edge-Streett automaton, 5 = (£,Q, 6, {q0}) with 2n CFC's: F°°(Si) + G°°(Ti),

where 1 < i < 2n. S consists of 3n states, Q = {qo}\J{(qi,a)\i G {l,...,n},a G S}. For the next state,

whenever the automaton reads a letter it jumps to the state with the next higher ft and a equal to the input

symbol. Formally, 6((ft,a),6) = (g(,+i)modn>&)> and 6(qo,b) = {qi,b). The acceptance condition for 5 makes

sure that for each i, either both (ft, 1) and (ft, 2) are included in the infinitary set or neither of them is.

Formally,for i G{1,..., n}, Si = {(ft, 1)} and T{ = Q\{(ft, 2)},and Si+n = {(ft, 2)} and Ti+n = Q\{{qif 1)}.

Assume that there is a non-deterministic L-process L with less than 2n states that accepts £. For each

R C {1,..., n), let xR G (0 + l)n and yR G (0 + 2)n be vectors such that, Vi G R : xR>i = 1,yR<i = 2,

and Vi $? R : x^,,- = y/?(; = 0, where x^if and yRii denote the i-th letters of xR and yR, respectively. Now

the word zR —({xR)2 yR)w belongs to £. Consider an accepting run £R and consider equal segments of

length (n2" -+• n) (call each such segment a period) in this run. Each period corresponds to a run over input

(xr)2 1/r- For each period, look at the sequence of 2" states that occur just before each of the xR vectors.

Since L has less than 2n states, there exist a state qR, a non-empty run-segment irR, and i,j G{1,..., ,2"},

such that for infinitely many periods, £R is in state qR just before the i-th and j-th xR vector and ttr is

the path segment between these two visits to qR. Since tr is traversed infinitely often, none of the edges in

this path is a recur edge. Now, since L has fewer than 2" states, there exist R ^ R' such that qR —qR>.

Without loss of generality, R' £ R. Now we alter the run £R so that whenever we reach qR, we add the

additional path segment -kRi. This will result in an altered run C, corresponding to a new word w in which,

for all i G R'\R, 1 appears infinitely often in i-th place in a vector, but 2 does not. Thus w £ £. Since none

of the extra edges traversed by £ are recur edges, and since £R is an accepting run (i.e. inf(C) cannot lie

inside a cycle set since inf(f«), which is a subset of inf(C), does not), w is accepted by L. Hence, the proof

by contradiction. •

Remark [EL85] provides a practical example of when strong fairness constraints are needed.

We now show that edge-Streett automata specifications contain L-process specifications.

Theorem 3.4 Given a (deterministic) n state L-process with c cycle sets and r recur edges, there erists a

(deterministic) n state edge-Streett automaton with c positive edge constraint sets, one negative edge con

straint set containing r edges and 0 CFC's.



Proof: For each cycle set, construct a set of positive edges such that the destination state of each edge is

outside the cycle set. Let the set of negative edges be the set of recur edges. The proof now follows from

the definition of L-processes and Streett automata. •

3.2.2 Edge-Rabin Automata versus L-automata

Most of the properties one is interested in proving about a system, are the so called trace properties, which

are properties which should hold of every trace (execution) of the system. The w-regular languages are

the largest set of trace properties known, for which there are automatic verification procedures. All such

properties can be expressed by w-automata.

However, language containment is much easier if the property is expressed as a deterministic automata. It

is known that deterministic Rabin automata can specify any w-regular property ([Tho90]). So, in principle,

we do not need to use any non-deterministic properties in the RS-environment. For the L-environment the

situation is a little bit worse, since there are w-regular languages which cannot be expressed by a single

L-automaton. However, any w-regular language can be expressed as an intersection of a set of L-automata

([Kur93]). Language containment is then accomplished by checking language containment against each of

these L-automata. Hence, in the L-environment, we may need to perform many language containment checks

to check a property which can be done with one check in the RS-environment. We will provide an example

of this situation later. Note that any deterministic L-automaton can be trivially expressed as an edge-Rabin

automaton (using a construction similar to that in the proof for Theorem 3.4.

Given any arbitrary deterministic Rabin automaton R, the only known procedure to convert that to a

set of deterministic L-automata, is to convert R to an equivalent deterministic Muller automaton M and

then obtain a set of deterministic L-automata, the cardinality of the set being the number of cycles sets in

M ([Kur93]). However, it has been shown in [Saf89] that conversion of a deterministic Rabin automaton to

a deterministic Muller automaton incurs a blow-up, the lower bound of which is exponential.

In general, given a deterministic Rabin automaton R, we can also use the following algorithm to get a

set of deterministic L-automata, the intersection of whose languages is the same as £(R).

1. The acceptance condition of R can be thought of a sum-of-products term. Rewrite this

term as a product-of-sums (POS), taking the infinitary operators as variables. Note

that ~F°° = G00, and G~ = F°°.

2. For each sum term, create an L-automaton, by translating F°°(Si) into a set of recur

edges, whose starting points are in Si, and G°°(Ti) into a cycle set Ti.

The procedure is exponential in the worst case. This procedure does not alter 5,'s and Ti's or the

transition relation of the automaton. It may be possible that by changing these sets or the transition

relation, one can obtain better algorithms, although this is unlikely. To illustrate this point, consider the

following example.

8



Assume that we are given an automaton with In states, on a complete graph. Assume we have n

acceptance conditionsof the form F00({2fc})AG00({2A; + 1}), i.e. forsomek, wevisit state 2k infinitely often,

and we don't visit state 2&+1 infinitely often. This condition can be expressed as C = xiyi+x2!/2+. •-+xnyn,

where each x, is an F°°(S;) condition and each yt- is a G°°(7f) condition. L-automata can only express

conditions of the form xi + x2 + ... -f xm, where each x, is either an F°°(Si) or a G°°(7f) condition. To

represent an arbitrary expression of F°°(5,) and G°°(Ti) conditions, we have to express these in a POS of

infinitary conditions. Then the expression is realized by a set of L-automata, each one of which expresses

one of clauses in the POS form. All these L-automatahave the sametransition relation (the complete graph

on 2n states). The condition C is the Achiles' Heel function, whose minimum POS form has 2" terms

([BHMSV84]). Thus if we transform our system to a set of L-automata with the same transition relation,

we get an exponential number of L-automata. However, it may be possible to come up with another set

of L-automata, with differing transition relations, so that we can express the property C with polynomial

number of L-automata, each polynomially sized in n. This remains an open question and we state it as

follows.

Open Question: Given any arbitrary deterministic Rabin automaton with n states and h CFC's, is it

possible to obtain s deterministic L-automata L\,Li, ...,£,, each with polynomial number of states in n

and h and polynomial cycle sets in n and h, such that s is polynomial in n and h and £(R) = f)J=1 £(!,-)?

4 Computations in Edge-Streett/Edge-Rabin Environment

In this section, we show how to generalize computations of [HTKB92] and [HBK93], which are BDD-based

algorithms for the L-environment, to the RS-environment. All algorithms have the very desirable character

istics that if the specifications are from the L-environment, the computations are the sameas [HTKB92] and

[HBK93]'s. If not, the computations still remain efficient. In other words, if we don't use the extra power,

we don't pay for it; if we do, the price is small.

4.1 Language Emptiness for Edge-Streett Automata

This is the main verification computation. Usually, it is used in the following scenario. The system is

given in terms of edge-Streett automata. The property is given in terms of a deterministic edge-Rabin

automaton. The edge-Rabin automaton can be easily and efficiently complemented into an edge-Streett

automaton. Then, the language containment check reduces to checking emptiness of the combined edge-

Streett automata.

[HTKB92] presented several algorithmsfor this task in the L-environment. In this paper, we concentrate

on their most efficient algorithm and generalize it to the RS-environment. This algorithm depended on

several graph operators. We present generalization of each one of these to the caseof edge-Streett automata.

We assume that the negative fair edges have been removed, and all sets are restricted to the set of reachable

9



states. The task is reduced to finding a fair path in the automaton, (called a bad path in [HTKB92]). By

following this path, we obtain a string which is accepted by the automaton. This means the language of the

automaton is not empty, and hence can act as a counter-example, which is reported to the user.

1. The forward stable set operator. Given a set of states 5, this operator computes the set of states in

5, which can reach some cycle in 5. There is a corresponding backward stable set operator, which

computes the set of states reached from some cycle. These operators remain unchanged. The fixed

point computation for the forward stable set operator is F(x, S) = t/(X, S) •3y(T(x, y) AX(y)), where

F(x, S) is the set returned by the operator, S is the initial set, X is the set we are recurring on, T

denotes the transition relation for the graph after the negative fair edges have been removed, and v

signifies a greatest fixed-point computation.

The fixed point computation for the backward stable set operator is B(S,y) = u(X,S) •3x(T(x, y) A

2. The forward bad path operator. Assume we are given a set of positive fair edges, and n conditions of

the form G°°(7;) + F°°(5,). Given a current set of states 5, this operator returns a set of states x € 5,

such that:

• For each set of positive edges, there is a path in S, starting at x, and reaching some edge in the

set.

• For each condition G°°{Ti) + F°°(S,), either x 6 Ti, or there is a path in S, starting at x. and

reaching a state in F°°.

The computation for this operator is FP(S) = ]"I;=i(#"(*.$ 0 5) + 7*) AIlj=i(#"(*. Ej)h where c
is the number of CFC's, 5»- and 7} are the sets in the i-th CFC F0C(Si) + G°°(Ti), R*{x,A) represents

the set of states that can reach the set A, p is the number of positive edge constraints, Ej represents

the j-th set of positive edges, and FP(S) is the result of the forward bad path operator.

The corresponding backward bad path operator is similar to the forward bad path operator, except

that the direction of the path is the reverse. The computation for the backward bad path operator is

BP{S) = nLi(Rm(SinS>y) + Ti)AIlPj=:i(Rm(EJ>y^> where R*(A>y) ^presents the set ofstates that
can be reached from A.

3. The trim operator. This operator tries to quickly eliminate the set of states, which cannot contain fair

behavior, i.e. they cannot reach a fair path. The operator is defined as follows, given an initial set of

states 5.

Perform the following until no more change: {

1. For each G°°(7i) + F°°(5t), if 77n$ can only reach itself, let S = Sn7/nS,-.

10



2. For each set of positive edges {(a,-, 6,),..., {ak,bk)}, if X>«" + £^ can only

reach itself, let S = S D(£,. a,) n (£t- 6.).

}

The final algorithm of [HTKB92] consisted of an initial check for easy failures, and then some main

computation. The main part of the algorithm remains unchanged, i.e.

Start with reachable states.

Repeat until convergence:

1. Apply forward bad-path.

2. Apply forward stable set.

3. Apply backward bad-path.

4. Apply backward stable set.

Note that in the above algorithm, our graph operators are thought of as transformations, which chop off

portions of the current set. The trim operator can be applied at any point of time, and is usually applied

before the main computation.

Definition 6 Let Fair+- denote the set of states, which can reach some fair cycle, and are reached from

somefair cycle. A fair cycle is a (non-simple) cycle, whose traversal satisfies all the fairness constraints. A

fair state is any state involved in a fair cycle.

Theorem 4.1 The above algorithm computes Fair+-.

Proof: Let the set returned by the above algorithm be U. We will first show Fair+- C U. Let x € Fair+-.

Then, x can reach a fair cycle. So, it is not deleted by forward bad-path and stable set operators. Similarly,

x is reached by a fair cycle. So, it is not deleted by the backward operators. Since, x is a reachable state, we

conclude x e Fair-h-. Now, let x E U. We will show x € Fair-h-. Assume to the contrary. Further assume

that x cannot reach a fair cycle (the case that x is not reached by a fair cycle is symmetric). Then, there

are two cases:

Case 1. x cannot reach a cycle, in which case, x is deleted by forward stable set operator.

Case 2. x can only reach non-fair cycles. Consider the subgraph reachable from x. Consider a leafSCC (one

which cannot reach any other SCC) of this graph. Call it C. Since C was not deleted by forward bad-path

operator, it must be the case that all positive edge constraints are satisfied, i.e. for each set of positive edges,

one of the edges is included in C. Now consider the t& CFC. Every state in C is either included in 7} or

can reach some 5,. Since, states in C can only reach themselves, it follows that C is either included in 7}

or contains some node of Si. Hence, a cycle 7 which goes through all nodes and edges of C satisfies the /—

fairness constraint. We conclude that 7 satisfies all positive edgeconstraints and all CFC's. Hence. 7 is fair.

But this is a contradiction to x not being able to reach any fair cycles. •

11



Theorem 4.2 When the system is described by an L-process and the property by an L-auiomaton, then

above computation reduces to that of [HTKB92J.

Proof: This is immediate by noticing,

1. Ti = <f>, for all Ti in G°°(Ti) + F°°(Si), and Si's are the complement of cycle sets.

2. There are no positive edge constraints.

•

Remark The computational complexity of this algorithm is not much different from [HTKB92]'s. The

main difference is in the bad-path operator, which only involves taking an extra OR in each computation

with respect to a CFC, or a set of positive edges.

4.2 Early Failure Detection

Early failure detection tries to find easily detectable failures. In our environment, a failure translates into an

w-string accepted by an edge-Streett automaton. Again, assume we are given the automaton with negative

fair edges removed. Following the same basic hierarchy as [HTKB92], we define the following cycles:

1. Cycles of the first kind. These are cycles contained either in n»(^«') or m Dt(^«')» an(^ satisfying the

positive edge constraints.

2. Cycles of the second kind. These are cycles intersecting p|,-(5f), and satisfying the positive edge

constraints.

3. Cycles of third kind. Any cycle not of the first two kinds.

To find the cycles of the first kind, run the stable set operator on Hi^')- If tne resulting set is not

empty, run the main computation on this set with the positive edge constraints. If we find no cycles, we can

similarly check for cycles of the first kind for f)i(Ti).

To find cycles of the second kind, run the main computation on the set of reachable states, with the

fairness constraints being as follows:

• Positive edge constraints.

• A constraint of the form Fco(F), with P = p|t(5i). If a non-empty set is returned, we have some fair

behavior.

Theorem 4.3 // there are no cycles of the first or second kind, the main computation can be restricted to

f\i(Si)r\R, where R is the set of reachable states.

Proof: We are deleting the states in HiC'S'")'8 fr°m consideration. However, because there are no cycles of

first or second kind, there cannot be any fair cycles involving states in f*|f.(5,-)'s. •

12



Theorem 4.4 In case our specification is an L-environment specification, early failure detection reduces to

that of[HTKB92].

Proof: Similar to the proof for Theorem 4.2. •

4.3 Debugging

In this section, we generalize the techniques of [HBK93] for debugging in the L-environment. The problem

is to find a "good" debug trace, i.e a string accepted by an edge-Streett automaton, which is short. A debug

trace consists of a path to a fair cycle, and the fair cycle itself. We would like to minimize both the path

and the cycle. We assume that a set of states containing some fair state is passed to the debugger. [HBK93]

presents techniques which guarantee the path to the fair cycle is minimum if a set containing all fair states

is passed to the debugger. If a subset T of fair states is given, then a debug trace is returned, whose path

is shortest among all debug traces, whose fair cycles have a representative in the set T. The debugger also

heuristically minimizes the length of the fair cycle. In this section, we generalize these techniques. Again,

our computation reduces to [HBK93]'s if an L-environment specification is given.

4.3.1 Finding a Path to a Fair Cycle

First, we discuss how the path to a fair cycle, which is minimum (in the above sense) is computed. Given

the set T passed to the debugger, we start with the set of initial states, and do a breadth-first search until

some state x G T is encountered. If the strongly-connected component containing x (denoted by SCC(x),

and computed as in [HBK93]) is fair, we are done. Otherwise we take out SCC(x) from T and continue the

search. The algorithm can be summarized as follows:

0. Let T be the set passed to the debugger.

1. Let frontierset = {initial.states C\T), cur.reached = frontierset, curJT = T.

2. Until frontier.set ^ <f> {

Pick a state x in frontierset.

If SCC(x) is fair, then done. If not, delete SCC(x) from frontierset and curJT.

}

3. Set frontierset and cur.reached to the intersection of curJT and the set of states

reachable from cur.reached in one step. Return to step 2.

The check for a fair SCC is more complicated than that of [HBK93], and will be described below. The

idea is to check, for each CFC Foo(S,)-|-G00(7;), whether the SCC W intersects Si. If not, we restrict W to

Ti and continue until all CFC's can be satisfied. The CFC's which cause such a restriction can be marked

as inactive, since further restrictions will not affect their the satisfaction of these CFC's. After all CFC's

have been satisfied, we check if all the positive edge constraints can be satisfied. The entire algorithm runs

as follows:

13



0. Let an SCC W be given.

1. If W is a single state with no self-loops, return FALSE.

2. Otherwise, let cur.W = W. Mark all F0O(5l) + G°°(7i)'s as active

3. Do the following for every active F°°(Si) •+• G°°(7i) until cur.W does not change any more:

if cur.W DSi=<f> {

Let cur.W = cur.W C\Ti, and mark the i— constraint as inactive.

If cur.W = <f> return FALSE.

}

4. If all the positive edge constraints are satisfied (i.e. for each positive edge

constraint, some edge in that constraint is present in T(x,y) restricted to cur.W),

return TRUE. Otherwise, return FALSE.

Note that the above algorithm can delete some states in SCC(x), in which there cannot be fair behavior.

In this case, we have to compute a closest state in cur.W to cur.reached. But, there may be a fair cycle

now closer than the one found by this procedure. To find it, we have to start expanding from cur.reached

and examining various SCC's until cur.W is reached or a closer fair SCC is found. In practice, we will just

take cur.W as the fair SCC. In this case, a closest state in cur.W to curjreached is computed, which will

serve as the initial state of the fair cycle (the computation of the fair cycle is described in the next section).

4.3.2 Finding a Short Fair Cycle in a Fair SCC

The algorithm of section 4.3.1 returns a set of states W containing a fair cycle, and a state x which serves

as the starting point in the cycle. It also guarantees that 5,- C\ W ^ <f> for all active F°°(5,) + G<x,(7})'s.

Hence, we can restrict our attention to 5,'s of active ones. Now, we need to find a short cycle which visits a

state in each Si. The algorithm of [HBK93] finds a fair cycle, when the fairness constraints are of the form

rj^roo(5'i). If we disregard the positive edge constraints, since all inactive CFC's are already satisfied and

for all active CFC's 5,- O W ^ <f>, we can call their algorithm on Si's of the active CFC's. Note that this

solution may be sub-optimal since we have not considered the 7f's of the active CFC's. For example, assume

W is a complete graph on 2 vertices, and we have a CFC F°°({2}) -f G°°({1}), and the starting state is 1.

Our algorithm will return the cycle (1,2), whereas the cycle consisting of the self-loop on 1 is a shorter fair

cycle.

Also, the positive edge constraints may not be satisfied by the solution returned by the algorithm of

[HBK93]. To satisfy a given positive edge constraint (consisting of the set of edges £,(x,y)), if C =

(co,.. .,cm_i) is the fair cycle returned by [HBK93]'s algorithm, we look for a closest state Cj in C to

the starting vertices of the edges in F,(x,y). Let the chosen starting vertex be u. We then choose a closest

path from some vertex v to C(j+i)modm) sucn tnat («, v) € £»(x, y). We call this operation patching the cycle

with respect to a positive edge constraint. We repeat this process for all positive edge constraints.

14



The algorithm to find a fair cycle is, thus, summarized as:

1. Take all the active F°°(5l) + G°°(7i)*s.

2. Find a cycle by calling algorithms of [HBK93] on S,-'s of active F°°(St) +G°°(7;)'s.

3. Keep patching the cycle with respect to each positive edge constraint until all such

constraints are satisfied.

4.4 Hierarchical Development

We look at the design process as a hierarchical activity. The designer first abstracts the design, and proves

some properties about it. At the next stage, the designer adds more detail to the design. For example, a

module is implemented by three modules. By definition of a subsystem implementinganother, the behavior

of the implementation at a lower level must be contained in the behavior of the specification at a higher

level. This means that language of the lower level implementation must be contained in the language of the

higher level specification.

Since systemsare specified using edge-Streett automata, this means that we need to check language con

tainment between two edge-Streett automata. [Kur93] presents an algorithm for languagecontainment of two

L-processes (this comes up in the environment described in [Kur93] because of application of homomorphic

reductions). We present an algorithm with the same flavor for our problem.

Assume two edge-Streett automata Si and 52 are given. We assume that 52 is deterministic. Using the

following two lemmata, we reduce the problem of containment of £(Si) into £(52), into a set of language

containments between edge-Streett and edge-Rabin automata.

Lemma 4.5 £(5i) C £(52) iff£{S\) C £{Si), for 1 < i < n, where n is the number of fairness constraints

of S2, and each 5,- has the same transition structure of Si, but only one of the fairness constraints of S2 (the

set of negative edges is considered as one fairness constraint, whereas each positive edge and each constraint

F°°(Si) + G°°(Ti) is a separate fairness constraint).

Proof: (=>)

Assume £(5i) C £(52). Let x be a trace of Si. We have to show x is a trace of each 5,-. Assume x is not a

possible trace of some Sj. Then, that fairness constraint is not satisfied on x. Hence, x is not a trace of So.

So, £(Si) £ £(S2), which is a contradiction.

Assume to the contrary that £(Si) £ £(52). Let x be a string in £(Si) and not in £(S2). Then, some

fairness constraint of S2 is not satisfied on x. Let it be constraint j. Then, x is not a trace of Sj, which is a

contradiction. •

Lemma 4.6 If a deterministic edge-Streett automaton S has only one fairness constraint, then one can build

a deterministic edge-Rabin automaton, accepting the same language, which has the same transition struct un

as S, and at most two fairness constraints.

15



Proof: We have to show the transformation for each kind of fairness constraint. We have three cases:

1. The constraint is a negative edge constraint. Create a Rabin automaton with these edges being negative

edge constraints.

2. The constraint is a positive edge constraint. Create a Rabin automaton with these edges being positive

edge constraints.

3. The constraint is of the form F°°(5,-) + Gco(7i). Create a Rabin automaton with two CFC's: F°°(SI)A

G°°(Q), and F°°(Q) AG°°(7;), where Q is the set of all states in 5.

It is easy to see that for each of the above three transformations, the language of the deterministic edge-Rabin

automaton is the same as the language of the corresponding edge-Streett automaton. •

Remark Note that the our algorithm for language containment between two edge-Streett automata is

rather efficient. For checking whether £(Si) is contained in £(S2), we have to solve n problems (n being the

number of constraints of S2), each of which can be solved very efficiently. Since, these fairness constraint

are given by the user, we expect their number to be small.

Remark One can also use the algorithm reported in [Saf92] for the above task. Given a deterministic

Streett automaton with n states and h CFC's, [Saf92]'s algorithm returns a deterministic Rabin automaton

with n2hlo&h states and h + 1 CFC's accepting the same language. Note that this algorithm is exponential

in the number of CFC's. If this number of small, as it is expected to be in practice, this algorithm may be

practical.

If S2 is non-deterministic, then the procedure is more expensive. [Saf92] proposed an algorithm for de-

terminizing a non-deterministic Streett automaton. This algorithm returns a deterministic Rabin automata.

Then, the following algorithm decides whether £(Si) is contained in £(52), when S2 is non-deterministic.

1. Build S2, the node-recur transform of S2

2. Determinize S2, and get a deterministic Rabin automata, S2'.

3. Check if £(Si) C £(S2') using the techniques specified in section 4.1.

Theorem 4.7 //S2 has n states and h CFC's, then 52' in the above algorithm, has at most 2nlo8" states.

Proof: This follows from the fact that step 1 increases the state space size by a factor of 2, and the complexity

result of [Saf92]. •

5 User Interface

Given that our final environment is the edge-Streett/edge-Rabin environment, we can create a more flexible

user interface. The users specify their processes, using finite state machines. They can attach various kinds

of fairness constraints to their FSM's. There are two general categories of fairness constraints: positive

16



and negative. The positive fairness constraints are a set of constraints defining what traces are acceptable,

whereas the negative ones define which ones are not.

5.1 Fairness Constraints

There are three types of positive fairness constraints:

1. Nodes. A set of nodes one of which has to be traversed infinitely often.

2. Edges. A set of edges one of which has to be traversed infinitely often.

3. CFC. A constraint of the form F°°(Si) + G°°(7;).

There are four types of negative fairness constraints:

1. Node. A node which can only be visited finitely many times.

2. Edge. An edge which can only be visited finitely many times.

3. Subset. A set of states which should either be exited infinitely often, or be visited only finitely often.

4. CFC. A constraint of the form F^iSi) A G°°(7}), which should not be satisfied.

A string is accepted if it has a run where all the positive and negative fairness constraints are satisfied. The

above constraints can be attached to each machine or to the whole system. If a constraint is attached to

an individual machine, then any satisfying run must satisfy that constraint on that machine. A constraint

attached to a single machine has a different meaning when viewed in the product machine environment. For

example, a positive fair node of an individual machine translates into a set of positive fair nodes for the

product machine.

One can also attach a constraint to a set of machines. For example, if we would like to say a fair node is

one where the first machine is at state 3 and the second machine is at 5, we can do so. Note that one does

not have to specify what happens to other machines.

Theorem 5.1 A system with the above fairness constraints can be expressed as an edge-Streett automaton.

Proof: We show how each non-standard fairness constraint supplied by the user can be converted to one

compatible with Definition 4. Mark the incoming and outgoing edges of a set of positive nodes as a set of

positive edges. Mark all incoming and outgoing edges of a negative node as negative edges. Transform each

negative subset constraint on the set 5 into Foo(S)+Goo(0). Transform each negative CFC FTO(S,)AGco(7;)

mtoGK>(S'i)-rF<x>(Ti). m

17



5.2 Acceptance Conditions

For specifying properties, we again have two sets of acceptance conditions (for properties, we choose to call

them acceptance conditions): positive and negative acceptance conditions. There are three types of positive

acceptance conditions:

1. Node. A node which has to be traversed infinitely often.

2. Edge. An edge which has to be traversed infinitely often.

3. CFC. A constraint of the form F°°(Si) AG°°(7i).

There are four iypes of negative acceptance constraints:

1. Nodes. A set of nodes which can only be visited finitely many times.

2. Edges. A set of edges which can only be visited finitely many times.

3. Subsets. A set of states which should either be exited infinitely often, or be visited finitely often.

4. CFC. A constraint of the form F°°(Si) + G°°{Ti), which should not be satisfied.

A string is accepted if one of the positive or negative acceptance constraints is satisfied.

Theorem 5.2 An automaton with the above acceptance conditions can be expressed as an edge-Rabin au

tomata.

Proof: The proof of this lemma is similar to the proof of Theorem 5.1. •

6 Conclusions

In this paper, we have presented a new environment, the RS-environment, for formal verification using lan

guage containment. Efficient BDD-based algorithms for this environment were given. The RS-environment

contains the L-environment as a subset, although it can in some cases be exponentially more compact. All

of the algorithms presented have the nice property that if the specifications are from the L-environment, the

algorithms reduce to their counter-parts in the L-environment. If not, the algorithms remain efficient. The

algorithms have been implemented in our verification framework, and are ready to be tested in the future.

References

[BHMSV84] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. Logic Minimization

Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

18



[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. AutomaticVerification of Finite-State ConcurrentSystems

Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems,

8(2):244-263, 1986.

[EL85] E.A. Emerson and C.L. Lei. Modalities for Model Checking: Branching Time Strikes Back. In Proceed

ings of the ACM Symposium on Principles of Programming Languages, pages 84-96, 1985.

[HBK93] R. Hojati, R.K. Brayton, and R.P. Kurshan. BDD-Based Debugging of Design Using Language Con

tainment and Fair CTL. In Proceedings of the Conference on Computer-Aided Verification, Elounda,

Crete, Greece, June 1993. To appear.

[HK90] Z. Har'El and R.P. Kurshan. Software for Analytical Development of Communication Protocols. AT&T

Technical Journal, pages 45-59, January 1990.

[HTKB92] R. Hojati, H. Touati, R.P. Kurshan, and R.K. Brayton. Efficient w-Regular Language Containment. In

Proceedings of the Fourth Workshop on Computer-Aided Verification, pages 371-382, Montreal, Quebec,

Canada, 1992.

[Kur87a] R.P. Kurshan. Complementing Deterministic Buchi Automatain Polynomial Time. Journal of Computer

and System Sciences, 35:59-71, 1987.

[Kur87b] R.P. Kurshan. Reducibility in Analysis of Coordination. In Discrete Event Systems: Models and

Applications,volume 103 of LNCIS, pages 19-39. Springer Verlag, 1987.

[Kur93] R.P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Princeton University Press,

1993. To appear.

[Rab72] M.O. Rabin. Automata on Infinite Objects and Church's Problem, volume 13 of Regional Conference

Series in Mathematics. American Mathematical Society, Providence, Rhode Island, 1972.

[Saf89] Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of

Science, Rehovot, Israel, March 1989.

[Saf92] S. Safra. Exponential Determinization for w-Automata with Strong-Fairness Acceptance Condition. In

Proceedings of the ACM Symposium on the Theory of Computing, 1992.

[Str82] R.S. Streett. Propositional Dynamic Logic of Looping and Converse is Elementary Decidable. Informa

tion and Control, 54:121-141, 1982.

[SVW87] A.P. Sistla, M.Y. Vardi, and P.L. Wolper. The Complementation Problem for Buchi Automata, with

Applications to Temporal Logic. Theoretical Computer Science, 49:217-237, 1987.

[Tho90] W. Thomas. Automata on Infinite Objects. In J. van Leeuwen, editor, Formal Models and Semantics,

volume B of Handbook of Theoretical Computer Science, pages 133-191. Elsevier Science, 1990.

[VW86] M.Y. Vardi and P.L. Wolper. An Automata-Theoretic Approach to Program Verification. In Proceedings

of the IEEE Symposium on Logic in ComputerScience, pages 332-334, 1986.

19


	Copyright notice 1994
	ERL-94-12

