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Abstract

We study network invariants, abstractions of systems consisting of arbitrary many identical compo
nents. In particular, we study a case when an instance of some fixed size serves as an invariant. We show
that the existence of such an invariant is undecidable in general, present a procedure that will find it,
if one exists, and finally give conditions under which such an invariant does not exist. These conditions
can be checked in finite time, and if satisfied, they can be used in further searches for an invariant.

1 Introduction

The ability to create abstractions has been key in formal verificationof complex digital systems (for example,

see [CGH+93]). Usually, an abstraction is generated manually, at the considerable expense of time by the

expert with the deep understanding of both the verification tool, and the system being designed.

One specific class of abstractions applies to systems with many identical components (also referred to as

networks or iterative systems). Ideally, an abstraction of such a system should not depend on the actual

number of components. Such an abstraction is called a network invariant. Once an invariant of manageable

size is found it allows:

• a verification of a large system with a fixed number of components; and at the same time also

• a verification of the entire class of systems with the same structure but with different number of

components.

This is of particular interest for distributed systems where algorithms (e.g. mutual exclusion) are usually

designed to be correct for systems of any number of concurrent processes.

Although iterative systems have been studied for a long time [Hen61], only recently there has been a

significant interest in the formal verification of such systems. In the framework of model checking, Browne,

Clarke and Grumberg [BCG89], and Shtadler and Grumberg [SG90] have studied conditions under which
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the satisfaction of formulae of certain temporal logics is independent of the size of the system. In [SG90]

the conditions seem to be quite restrictive, while in [BCG89] the conditions cannot in general be checked

automatically. Wolper and Lovinfosse [WL90] have studied formal verification of iterative systems generated

by interconnecting identical processes in a certain regular fashion. They also present some decidability

results for related problems. Kurshan and McMillan [KM89] present slightly more general results which can

be applied both to process algebra and automata-based approaches. In both cases, automatic tools are used

only to verify that a finite state system suggested by the user is indeed an invariant. Kurshan and McMillan

have hinted that it might be a good idea to check whether a system of some fixed size serves as an invariant.

This idea was further developed by Rho and Somenzi [RS92, RS93], who have studied different network

topologies and presented several sufficient conditions for the existence of such an invariant.

In this paper we address a problem of finding an invariant automatically. More precisely, we introduce

a notion of a tight invariant, and give some results that can help a search for it. Intuitively, an invariant of

a class of systems is a finite-state system that can exhibit any behavior that some system in the class can,

and possibly some additional behaviors. Thus, in pre-order based formal verification paradigms (where a

system is verified if it does not exhibit any undesirable behavior), an invariant is a conservative abstraction:

if an abstraction is verified, so is every system in the class, but not vice versa. A tight invariant is an exact

abstraction: if an abstraction is verified, so is every system in the class, and if an abstraction is not verified

than there exists a system in the class which exhibits undesirable behavior. Thus, a tight invariant must

exhibit exactly those behaviors that are exhibited by systems in the class.

Finding a tight invariant is easy if a finite invariant exists, i.e. if any behavior exhibited by a system

in the class is also exhibited by some system in some finite subclass. The main contribution of this paper

is the test that can show that a finite invariant does not exist. The test is constructive in a sense that

if successful, it identifies a set of behaviors that cannot be "covered" by any finite subclass, but must be

exhibited by a tight invariant. Once identified, such a behavior can be added to the behaviors of some finite

subclass to possibly generate a tight (but not finite) invariant. Unfortunately, we can not hope for a general

algorithm that identifies all such sets of behaviors, because the existence of a finite invariant is undecidable

(see Theorem 1). To the best of our knowledge no other algorithmic tests for the non-existence of a finite

invariant are available.

The rest of the paper is organized as follows. In Section 2 we formally define the class of automata we

consider, as well as rules by which these automata can be combined to form iterative systems. In Section 3

we apply these concepts to formal verification by language containment, and in Section 4 we illustrate them

on typical examples. The focus of our paper is the computation of the finite invariant presented in Section 5,



n times

Figure 1: An open network Nn.

where results on the decidability and the existence as well as the test for the non-existence of a finite invariant

are given.

2 Basic Definitions

In this section we formalize the notion of an iterative system consisting of many identical automata.

We assume that the state of the basic cell is fully observable and that the transitions of the basic cell can

depend on the states of its left and right neighbors (see Figure 1). These restrictions still enable us to

model many regular hardware arrays, such as stacks, FIFO buffers and counters. Other examples that fit

into our framework are a token passing mutual exclusion protocol [WL90] and the ever-so-popular Dining

Philosophers Problem [KM89]. Werestrict ourselves to automata on finite tapes. Thus, using our approach

only safety properties can be verified.

In this paper, we adopt a standard definition of an automaton. More precisely, an automaton A over

some finite alphabet E is a quadruple (S, I, T, F), where S is some finite set of states, I C S is a set of initial

states, TCSxExSisa transition relation, and F C S is a set of final states. The language of A (denoted

by C(A) is a set of all strings x\X2 ... x* € E* for which there exists a sequence of states so,s\,.. .,st such

that so € I, &k € F and (s,_i, x,-, «,-) € T for all t = 1,..., k.

Next, we formalize a notion of connecting two subsystems to form a bigger one. Given some sets1 E,

E.A and Ej? and some automata A = (Sa,IaiTa,Fa) over alphabet S^xS and B = (Sb,Ib,Tb,Fb) over

alphabet E x Eb , a concatenation by E, denoted by A •£ B is an automaton over alphabet E^ x E x Eb

*Any of E, "ZA and Eb can be empty provided that S/j X E and E X "Eg are non-empty. By convention if S is a set
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Figure 2: A basic cell; ps and ns denote present and next states.

defined by:

A.xB = {SAx SbJa x Ib,Ta.*b>Fa x Fb),

where TU^b contains exactly those 7-tuples ((sa , s#), (era,<r, o*b), (*>!, <b)) satisfying both (s^, (0^4, a), tA) G

Tyt and (sb,(<t,<tb),<b)GTb.

A reader familiar with process algebra will easily interpret this operation as pairing ports in A that

correspond to E, with corresponding ports in B.

We say that an automaton A = (5, /, T,F) is a cell if it is defined over alphabet S€ and the following

condition holds:

(s, (si,S2,S3,S4,S5,S6),i) € T -$=> s = S3 and t = s4.

Intuitively, the alphabet of a cell consists of three parts: s\ and S2 are the present and the next state of

the left neighbor, S3 and 54 are the present and the next state of the cell itself, and finally S5 and $e are the

present and the next state of the right neighbor, as shown in Figure 2.

Given a cell Cover alphabet S6 and anautomaton E over S4 (called an environment) a network oflength
n is defined by:

Nn = E -s* C -s* C -54... -54 C.
v v '

n times

If the behavior of the environment is unrestricted, i.e. ifC(E) = (S4)* we say that the network is open. In
that case:

Nn = C -s* C -s« •.. -54 C.

n times

Otherwise, we say that the network is left-closed. In this paper, we will consider only open and left-closed

networks, but the results are easily dualized for right-closed networks. Also, in the rest of this paper all
concatenation will be by S4, so without ambiguity we write • for -54.



Conceptually, networks can be parts of larger systems, but we require that all coordination is done

through concatenation by S4, on the left or right. For such a coordination one needs to consider only the

peripheral components of the languageof Nn, as shown in Figure 1. Therefore, weintroduce a notion of an

observable part, first for elements of 52n+4:

0((si, S2, .. ., S2n+4)) = («1, 82, S3> S4, S2n+1, *2n+2, «2n+3, $20+4),

and then, we extend the notion naturally to strings S1S2 .. .S* G(S2n+4)* by:

0(sis2 .. .sk) = 0(si)0(s2).. .O(sjb),

and languages £ C (S2n+4)* by:

0(C) = {x|x = 0{y) for somey€C}.

For clarity, we write £n for 0(C(Nn)) where N„ is a network of length n.

An iterative system {Nn\n > 1} is the class of all networks generated by the same cell and environment.

Given an iterative system {Nn\n > 1}, an invariant is any finite-state automaton A satisfying C(A) D £«>

where £«, = IXLi £*»• IfC(A) = £«, we say that Ais a tight invariant. Ifin addition £(4)= \J^sl Cn for
some n* < oo we say that A is a finite invariant.

An invariant is an abstraction of every network in an iterative system. How such an abstraction can be

utilized is described in the following section.

3 Applications to Language Containment

We now consider the application of these concepts to formal verification by language containment. Given

an iterative system and some regular language Cp describing a property to be verified, we want to show that

Cn C Cp, independently of n [KM89]. If A is an invariant of such a system, then:

C(A) CCP =* Cn C Cp, Vn. (1)

If A is a tight invariant (1) can be strengthen to:

C(A) CCP «=* £„ C Cp, Vn. (2)

If A is a finite invariant (2) reduces to:

£„C£P, Vn=l,...,n* <=» £n C £p, Vn. (3)



Obviously, a tight invariant exists if and only if £«> is regular. One may try to find a finite-state

automaton A such that (2) holds even if £<» is not regular. In other words, one may try to find an invariant

that is not tight, but that has a language contained in the languages of all other invariants. Unfortunately, if

£oo is not regular, such an invariant does not exist. To see this, assume that A is such an invariant. Let x be

some string in C(A) —Coo (since C(A) is regular and £«> is not, such a string always exist). Since a language

containing just x is also regular, one can construct an automaton A' such that C(A') = C(A) —{x}. Now,

A' is an invariant and C(A) £ C(A'), contradicting the assumption that A is the tightest regular invariant.

We have defined an iterative system both in terms of the basic cell and the environment. An invariant

of such a system is its abstraction in one specific environment. It is also useful to study the corresponding

open system. An invariant of such a system is an abstraction applicable to any environment. If A is an

invariant of an open system, and E is a model of some specific environment, we can verify the behavior

of the system in the environment E by verifying relations similar to those in (l)-(3), except that C(A) is

replaced by C(A) fl C(E). This approach may result in saving if we consider a system in several different

environments, but it may be disadvantageous in cases when a tight invariant exists for a closed system, but

not for an open one. We will describe one such a case in the following section.

4 Examples

The following three examples illustrate three possible cases: when a finite invariant exists (Example 1),

when a tight invariant exists, but a finite one does not (Example 2), and finally when a tight invariant does

not exists (Example 3). All three examples are abstractions of buffers with different discipline of passing

a token. In all three cases cells are initially in idle state. The state token indicates that a particular cell

holds a token. In Examples 1 and 2, a cell moves to a special dead state once it has delivered a token. In

the description that follows variables psn_i, nsn_i, psn+i and nsn+i take value of the present and the next

state of immediate neighbors of the cell under consideration. For simplicity, in all three examples all states

are considered final. Also, all systems are open.

Example 1: In this example a cell can hold a token for any (possibly infinite) number of steps before

delivering it to its neighbor. A cell can deliver only one token. More precisely the transition relation of the

cell is defined by:

idle —• idle : if psn-i # token or ns„_i ^ dead
idle —• token : if ps„_i = token and nsn_i = dead
token —> token : always
token —• dead : always
dead —• dead : always



In this case a finite invariant exists. In fact it is achieved for nm = 3. For n > 3, a language £n can be
described by languages of the leftmost and the rightmost cell and the following additional constraint:

"If the rightmost cell ever moves from idle to token it will happen at least n - 2steps after the
leftmost cell leaves the token state."

Clearly, £3 (strictly) contains all £n's, n > 3.

Example 2: In this example a cell holds a token for exactly one step. Again, once it delivers a single
token, a cell will move to the dead state. The transition relation of the basic cell is:

idle —• idle : if psn-i = idle
idle —• token : if psn_i = token and nsn-i = dead
token —• dead : if psn-i = dead and nsn_i = dead
dead—• dead : if psn-i = dead and nsn_i = dead

In this case a finite invariant does not exist. All strings in £„ (n > 2) that are long enough must satisfy the
following constraint:

"The rightmost cell moves idle to token exactly n- 2 step after the leftmost cell leaves the token
state."

Obviously, for all n > 3 there are some strings in £n+i which are not in £„. However, a tight invariant
invariant exists, and it is similar to the one in the previous example, except that the peripheral cells are
restricted to remain in the token state for one step only. In fact, a tight invariant can beobtained asa union

of£i, £2 and the observable part of the language ofthe network consisting ofthe two peripheral cell like
those in this example and one internal cell like those in Example 1.

Example 3: This example is similar to the previousone, except that once a cell delivers a token it will

move back to the idle state and become ready to accept a new token.

idle —• idle : if psn-i ^ token
idle —• token : if psn-i = token
token —• idle : always

In this case £«> is not regular, so a tight invariant cannot exist. Indeed, £«> must include C\ and all strings

for which there exists k > 0 such that the rightmost cell moves from idle to token exactly k steps after the

leftmost cell leaves the token state. Notice that for any given string k must be constant. It is straightforward

to show that such a language is not regular.

However, if we include in the description of the system an environment which allows at most one token

in the system, a tight invariant exists and is similar to the one in Example 2.



5 Computing a Finite Invariant

In this section we focus on the problem of computing a finite invariant. We first discuss the decidability

of the existence of finite invariant. Then, we give a simple semi-decision procedure that will find a finite

invariant, if one exists. Finally, we attack the problem from the other side, giving somesufficient condition

for the non-existence of a finite invariant.

5.1 Decidability

First, we describe a particular iterative system that we use for proving the key result of this section. For

an arbitrary (one-way tape, deterministic) Turing machine TM with empty tape, let the iterative system

IS(TM) be generated by the cell that is a composition of two finite-state components described bellow.

The states of the component denoted by T are in 1-1 correspondence to the tape alphabet of TM. The

initial state is blank. The state of component T of the i-th cell in the network is at any time equal to the

value of the t-th letter on the tape.

The component C is a copy of the finite-state control of TM augmented by two special states L and R.

If C is any other state than these two, we say that the cell is active. The initial state of C is L. While in

it, a cell waits until its left neighbor is active and have to move to the right. At that points C moves to

appropriate state of TM's control,possibly changing the state ofT and after that moves to Lor R depending

on whether a head has to be moved left or right. Similarly to L, in state R a cell monitor its right neighbor.

An environment E of IS(TM) is almost identical to the basic cell, except:

• it does not have an L state, hence it does not monitor its left neighbor,

• the component C must be modified to halt whenever TM's control calls for move to the left,

• the initial state of C must be equal to the initial state of TM's control.

It should be clear from the description that IS(TM) is left-closed and that it simulates TM. In particular,

the following result holds.

Lemma 1 An left-closed iterative system IS(TM) has a finite invariant if and only if TM uses finite

memory.

Proof: Assume that TM uses at most M tape symbols. Then £„ is the same for all n > M. Hence,

an automaton with the language \Jn=i &n is a finite invariant. On the other hand, ifTM uses infinitely
many tape locations for all n there must be a string in Cn not in Ck for any k < n, because cell n must be

activated for the first time at least one step after the Ar-th cell is. D



Theorem 1 The existence offinite invariant for a left-closed iterative system is undecidable.

Proof: It is undecidable whether an arbitrary one-way tape, deterministic Turing machine with empty
tape uses finite memory, and by Lemma 1 that problem is reducible to deciding the existence of a finite
invariant for a left-closed iterative system. D

At present, it is not clear whether this proof can be extended to open systems. In fact, this result is

similar to Theorem 4.3 in [WL90] and Theorem 4 in [Hen61]. In all cases, the proofs substantially rely on
the ability todistinguish one cell in the network: in our case, it is the environment, in [WL90] the first cell is
explicitly distinguished, and in [Hen61] one cell isdistinguished by different boundary condition. Therefore,
the decidability ofthe existence ofa finite invariant for open systems isstill an open problem.

5.2 Existence of Finite Invariant

In this section we develop a sufficient and necessary condition for the existence of finite invariants, and

propose a semi-decision procedure to check for thatcondition. But first, we need to introduce some auxiliary
notation and results.

In what follows, all results refer to an iterative system {Nn\n > 1} induced by a cell C. We use A, B

and D to denote arbitrary automata, and assume that their alphabets are such that operations applied to
them are well defined.

We denote by A®B an automaton with the language £(j4) UC(B) and by (A) an automaton with the

language 0(C(A)). Both A®B and (A) are easily constructed, e.g.see a classical textbook by Hopcroft and

Ullman [HU79]. We write A < B if:

0(C(A)) C 0(C(B)).

If both A < B and B < A hold, we write A = B.

Proposition 1 The following holds:

a) < is a pre-order,

b) concatenation, language union and partial observation are monotonic with respect to <, i.e. if A < B,

then the following also holds:

AD < BD,

A@D < B®D,

(A) < (B),



C) Nn-C = (Nn)-C,

d) (A)G(B) = {AeB),

e) (A®B)D = (A-C)®(B-C).

Proposition 1 is easily proven by elementary automata theory.

Theorem 2 If N\<A and A-C < A, then A is an invariant.

Proof: It suffices to show that for all n > 1 Nn < A. The proof proceeds by induction. The base case

N\ < A holds by the assumption of the theorem. Now assume Nn < A. We have

Nn+i = Nn-C<A-C<A,

where the first inequality follows from part b) of Proposition 1 and inductive assumption, and the second

inequality is the assumption of the theorem. •

Both Kurshan and McMillan [KM89] and Wolper and Lovinfosse [WL90] require by definition that an

invariant satisfy the conditions similar to those in Theorem 2. We have adopted a broader definition,

motivated by the application described in Section 3. Still, Theorem 2 provides the only finite procedure

known to us, for verifying that a given automaton with non-trivial language is indeed an invariant.

Theorem 3 A finite invariant exists if and only if there exists n* < oo sucA that:

n*

Nn*+i < 0<JVn). (4)
n=l

Proof: The only if part is obvious. By Theorem 2 to prove the "if part it suffices to show that

A —®n=1(Nn), satisfies the relation A •C < A (N\ < A holds trivially). We prove this by the following

chain of reasoning:

£n»+l c

n=l

c

n=l n=l

n* n*

C®(C((Nn)-C) c *(©<*»»
n=l n=l

n* n*

©«*»>• Q < ©(^n) <=
n=l n=l

n* n"

(0{*n»'C < ©(^n)
n=l n=l

10
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Figure 3: A naming scheme for parts of the string.

where the first equivalence is elementary, the second follows from the definition of © and (•) and part c) of

Proposition 1, the third one is by part d) and the final one by part e) of Proposition 1. D

Note that we have actually proved a stronger claim: if the condition ofTheorem 3 holds, then 0jj=1(.Nn)

is an invariant. This immediately gives us the following semi-decision procedure:

1. initialize A = {Ni) and n = 2,

2. ifA-C<AthenHALT

3. let A = A © {Nn), let n = n + 1, go to step 2.

If the procedure terminates, it will produce a finite invariant A. However, if a finite invariant does not

exist, the procedure will not terminate. We do not address here the efficiency issue for the procedure above.

We just note that every iteration requires a solution of the difficult problem of language inclusion between

(possibly non-deterministic) automata.

5.3 Proving the Non-existence of a Finite Invariant

In this section, we show a sufficient condition for the non-existence of a finite invariant. The condition can be

checked algorithmically, and, if satisfied, it provides useful information on sets of strings that every invariant

must include in its language.

In this section we consider a generic open iterative system induced by a cell (S,I,T,F). Unless stated

otherwise, we assume that s is some string in (52n)*. We use | • | to denote the length of a string. To refer

11



Figure 4: A symbolic representation of a string

to parts of the string we use the naming scheme detailed in Figure 3. We call a pair sx>y = (s^y,s|y) a

transition, for all z = 1,..., \s\ and all y = 1,..., n. If s, t and u are transitions, for simplicity we write

(s, t, u) GT instead of:

(t\(s\s\t\t\u\u%t2)€T.

The reader might find it useful to visualize claims in this section, as suggested in Figure 4. It shows a

symbolic representation of a string s € (52n)*, with n = 6 and \s\ —6. Each transition is represented by an

arrow. Conditions for s to be in £(Mj) can be restated in terms of this symbolic representation as follows:

initialization: present-state components of all transitions in the first column (except the top and the bottom

one) must be initial,

consecution: in every row (except the top and the bottom one) any two neighboring transitions must be

consecutive (i.e. the next-state component of the left one must be equal to the present-state component

of the right one); we represent this constraint symbolically by a rectangle like the one marked C in

Figure 4,

transition: in every column, any three neighboring transitions must satisfy transition relation T; we rep

resent this constraint symbolically by a rectangle like the one marked T in Figure 4,

termination: next-state components of all transitions in the last column (except the top and the bottom

one) must be final.

12



An n-row string corresponds to Nn-2 network; the first and the last row do not correspond to states of any

cell in the network. Therefore they have to satisfy only transition requirements imposed by the first and the

last cell in the networks (i.e. by the cells corresponding to the second and next-to-last row of the string).

We now return to the non-existence of a finite invariant. Our strategy is to search for a sequence of

strings: xi,x2, •.. satisfying 0(xt) € £«, but 0(x,) g Cj for any j < i. We will show that in certain cases

these relations can be established in a finite number of steps. We consider only a special case when x,+i is

obtained by extending xt- in a certain regular fashion. If that is the case we write x1+i = a(xj). Next, we

define precisely the extension operator a.

Given strings s 6 (52n)* and t 6 (52n+2)* such that \t\ = \s\ + 1 we say that t = aik(s) if the following
holds:

1. tXtV = sx,v for all x = 1,..., \s\, y = 1,..., n (t obtained from s by adding one row of transitions on

the top, and one column of transitions on the right),

{0(s ) for all x = 1 ... i
Ofs* Y\ f r all —' + 1' \t\ (tne °bservahle P3^ oft is the same as the observable

part of s, except that the a'th column is repeated twice),

3. t\t\tX = < '3',a? - „ ~~ ,''''' , (the last column of t is the same as the last column
I sM,*-i for alli = * + l>...,n+l v

of s, except that the fc'th row is repeated twice).

Figure 5 shows an example of such a pair of strings. Full thin lines connect transition that must be equal

to satisfy conditions 2 and 3 above. All of these equalities can be satisfied only if s satsify certain constraints.

It is easy to check that these constraints are exactly CI to C3 defined below.

In the rest of this paper we assume that all exstensions have common i and k, so without ambiguity we

write a(s) for Qtjfe(s). Also, we use the following abbreviation for any j > 0:

oP(s) = a(a(.. .a(s)...)).
v v '

; times

Proposition 2 A string a(s) exists if and only if all of thefollowing hold:

CI: sx,n = sXtn-i, for allx=l,...,i

C2: sx+itn = s*,n-i, for all x = i,..., \s\ - 1,

C3: sx,i = s$ii, sXi2 = s;i2, for allx = i,..., \s\.

Jfa(s) exists, then it is unique.

13



Figure 5: Strings satisfying t = 0:3,3(5).

It is easy to check that a(s) satisfies initialization and termination requirements, if s does. Also, if s

satisfies consecution requirement and:

C4: sl>n_i = st-n,n-i,

then a(s) also satisfies consecution requirement. Similarly, if s satisfies transition requirements and:

C5: S\a\tk = S|a|,Jb+l = *|a|,Jfc+2»

then q(s) also satisfies transition requirement. From this point on, we do assume properties C4 and C5.

We make this assumption without loss of generality because they are always satisfied by a2(s), which also

satisfies all other restriction on s mentioned in this section. Equalities imposed by C4 and C5, are shown

with thin dotted line in Figure 5.

The part of our strategy is to find a sequence of strings xi,x2,..., xf- = a(xi_i), ••• satisfying x,- E £i-

The following lemma describes a case when all of these relations are satisfied if one of them is.

Lemma 2 Lei s satisfy C1-C5, and lei t = a(s). If:

C6: (sXin-i,sx>n,tx>n+i) eT for allx = l,...,|s|,

C7: s\,\,x = tl\t\,x f°r a// x = 2,..., n,
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then:

Figure 6: Illustration of Lemma 2.

seC(Nn.2) => teC(Nn-i),

seC(Nn-2) =*> cJ(s)eC(Nn-2+j)forallj>0.

->.•••'

(5)

(6)

Proof: Conditions C6 and C7 include exactly those conditions for t G C(Nn-i) to be satisfied, which

are not already satisfied by s G£(-/Vn_2). Thus, (5) holds. If s satisfies C6 and C7 so does a(s). Therefore,

we can repeatedly apply (5) to get (6). •

Figure 6 illustrates the requirements imposed by C6 and C7.

The second part of our strategy is to find a sequence of strings xi, x2,... that Xj &£,• for any j < i. In

Lemma 3 we establish a condition which enables us to prove this relation in a finite number of steps.

Lemma 3 Let s satisfy C1-C5, and let t = ot(s). If:

C8: sx,„_i is the unique element ofthe set {u = (u1, u2)|3v,u>,z = (u2,z2): (v,tx>n,u) GTA(w,tx+itn,z) G

T}forallx = l,...,|s|, and

C9: there exists a sequence of transition «n+i,«„,.. .,1*4,1x3 such that un+i = t\t\,n+i, and ux (for all

x = n, n —1,..., Z) is the unique element of the set: {v\3w : (w, ux+i,v) GT},
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then:

Figure 7: Illustration of Lemma 3.

0(/)G£„-i =• 0(s)G£„-2,

0(s)g£n_2 ==> 0(a>(s))$Cn-2+j for all3 >Q.

(7)

(8)

Proof: Assume 0(t) G £n-i, let string t' be such that t' G C(Nn-\) and 0(f) = 0(t). Also, let s'

be the string obtained by removing from t' the (n + l)'st row and the last column. It follows from C8

that the (n - l)'st row of s' is exactly equal to the (n - l)'st row of s. Since C1-C3 also hold, we have

that 0(s') = O(s). We claim that s' G C(Nn-2) and thus O(s) G £„_2. That s' satisfies initialization,

consecution, and transition requirements follows from the assumption: t' G £(7Vn_i). It follows from C9

that <jt,|>x = ux for all x = n -f 1,..., 3,so we can conclude that all next-state components ofti '̂s are final

states (since t'G£(JV„_i)). It follows from C2 that s[,,| n = <|t/|n+1 = un+i, so we can again apply C9 to
obtain S|,/|>x = «*+! for all x = n,..., 2. Thus, s' satisfies termination requirements as well.

It is easy to check that a(s) satisfies C8 and C9 if s does. Therefore, we can repeatedly apply (7) to

get (8). •

Figure 7 illustrates the chain of reasoning in Lemma 3. Values of the transition in row 5 (from the

bottom) are implied from transitions in row 6 by C8. Transitions in the last column are implied by C9, and

they must also appear in column 6 by C2.

A reader will notice that the condition C9 is used only to establish termination. If all the states of the
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basic cell are final, Lemma 3 holds even if C9 is not satisfied.

We are now ready to postulate sufficient conditions for the non-existence of a finite invariant.

Theorem 4 Let s be such that it satisfies C1-C9 and let fi(s) = {0(aj(s))\j > 0}. If s is such that:

£,nft(s) = 0, /ora//j=l,...,n-3 (9)

£n_2nfi(s) = {s} (10)

then:

a) a finite invariant does not exist,

b) £oo D Q(s)

Proof: From (6) and (10) we have for all j > 0:

cS(s) G£„-2+j, (11)

but, from (10), it follows that for all 0 < m < j:

cJ-m(s)tCn-2, (12)

so, from (6) and (12) we have:

a>(s) $ £„_2+m for all 0 < m < j. (13)

Finally, we combine (11), (9), and (13), to claim that for every j > 0 there exists at least one string in

£n-2+j which is not in Ck for any k < n —2 + j, so a finite invariant cannot exist. Also, part b) follows

from (11). D

Consider Example 2 in section 4 and the following string2 in £3:

idle —• token

token —• dead

s = tale taie token dead —• dead

dead —• dead

dead —• dead

Assume that the extension operator a,* is applied with i = 2, and k = 1. It is now straightforward to

check that conditions C1-C9 are satisfied. It is also straightforward to define an automaton accepting Q(s),

thus (9) and (10) can be easily checked by a language containment checking tool. Since C1-C9, (9) and

(10) are all satisfied we conclude that a finite invariant does not exist and that £00 2 (A U£2 U ^(s)).

The following procedure shows how Theorem 4 can be used to search for an invariant:

2For x < 4, we omitwriting only s\<y and assume that s\%y = a*+1 .

idle ' idle ' idle

idle idle idle

idle idle token

idle token dead

token dead dead
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1. letA=(N1),

2. choose a string s and let n denote its "width" (i.e. s G(52n)*),

3. let A= Ae SET^JV,'); if A•C < A then HALT,

4. if s satisfies C1-C9, (9) and (10) for some a,-*, where 1 < i < \s\, 1 < k < n then let A = A © fi(s),

5. if AC < A then JL4ITelse go to step 2.

If the procedure terminates it willgenerate a tight (but possiblynot finite) invariant A. Unfortunately, wecan

not claim that the procedure will terminate even if a tight invariant exists and all strings are systematically

enumerated in step 2. It might be more efficient to apply this procedure interactively, i.e. to let the user

choose a string and then execute other steps automatically.

6 Conclusions

We have studied the existence of a finite invariant of an iterative system consisting of many identical au

tomata. We have shown that the if we allow constraints on the environment, the existence is undecidable,

but we have also pointed out that the proof does not exist presently for the case of an unconstrained envi

ronment. We have presented a semi-decision procedure that will generate a finite invariant, if one exists. We

have also provided sufficient conditions for the non-existence of the finite invariant. Those conditions can

be checked in finite time so a semi-decision procedure can be defined that will recognize a pattern satisfying

those conditions, if such a pattern exists. These results can then be used in a search for an invariant that

is possibly tight but not finite. It is possible that neither of these procedures terminate. This is consistent

with the decidability result (at least for closed systems).

This work can be naturally extended in several ways. From the theoretical point of view, the decidability

of existence of a finite invariant for open iterative systems needs to be studied. From the practical point

of view, it would be useful to generalize the conditions for non-existence. This can be done by analyzing

sequences of strings where not only a single element, but a whole substring is repeated many times. It is also

possible to construct cases where the non-existence can be proved by analyzing a sequence of sets of string,

rather then just a sequence of strings. Finally, in order to verify liveness properties, these results need to be

extended to the automata on infinite tapes.
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