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ABSTRACT

This paper explores the use of Runge-Kutta integration methods in the construction of families of
finite dimensional, consistent approximations to non-smooth, control and state constrained optimal con-
trol problems. Consistency is defined in terms of epiconvergence of the approximating problems and
hypoconvergence of their optimality functions. A major consequence of this concept of consistency is
that stationary points and global solutions of the approximating discrete time optimal control problems
can only converge to stationary points and global solutions of the original optimal control problem. The
construction of consistent approximations required the introduction of appropriate finite dimensional sub-
spaces of the space of controls and the extension of the standard Runge-Kutta methods to piecewise con-
tinuous functions.

It is shown that unless a non-Euclidean inner product and norm are used on the control space, in
solving the approximating discrete time optimal control problems, considerable ill-conditioning may
result.

Key words. optimal control, discretization theory, consistent approximations, runge-kutta integration
AMS subject classifications. 49J15, 49M25, 49145, 65L06

t The research reported herein was sponsored by the Air Force Office of Scientific Research contract F49620-93-1-0165 and the National
Science Foundation grant ECS-93-02926.



1. INTRODUCTION.

Except for very special cases, optimal control problems can only be solved numerically, using such
discretization techniques as numerical integration (see, e.g. [6,10,11,19]) or collocation (see, e.g.,
(12,21,26,29,32]). Numerical integration is used in two ways: to implement conceptual optimal control
algorithms (see, e.g., [15,30]), and to construct approximating discrete time optimal control problems that
can then be solved by any applicable discrete time optimal control or nonlinear programming algorithm.
In this paper we are concerned with the latter. With a few exceptions, such as [16,31], most authors, for
example [6,10,19,20], dealing with the construction of approximating discrete time optimal control prob-
lems, assume that Euler’s method is used for integration.

The central question in discretization theory is whether solutions to the approximating problems
converge to solutions of the original problem. In the context of optimization, the term *‘solution”’ is used
ambiguously; it can mean ‘‘global solution”, *‘local solution’’, or ‘‘stationary point’’. Convergence of
global solutions, or in some cases, of stationary points of the approximating problems to those of the ori-
ginal problem, was treated in [6,10,11,13,19,20,24]. Rate of convergence of stationary points of approxi-
mating problems to those of the original problem was explored in [16] for a class of unconstrained prob-
lems. Possibly the most extensive treatment of the the issues of approximation of general, nonsmooth,
constrained optimal control problems by approximating problems obtained by Euler’s method, can be
found in [19]. In particular, we find in [19] proofs of the existence of solutions of the approximating
problems and convergence of discrete controls, satisfying an approximate discrete time Maximum Princi-
ple, to a control satisfying the Maximum Principle for the original problem.

Daniel [13] presents one of the first attempts to characterize consistency of approximations to an
optimization problem, and establishes conditions for the convergence of approximate global solutions to
approximating problems, obtained by discretization, to global solutions of the original problem. The
more recent and more elegant epiconvergence theory in [2,14], is set within the framework of a general
theory of convergence of set valued maps and yields the same results in a simpler, more straightforward
manner. Neither theory addresses issues of computation.

The theory of consistent approximations, presented in [24], is directed towards the construction of
finite dimensional approximating problems that can be used in conjunction with diagonalization strategies
and nonlinear programming algorithms to efficiently obtain an approximate, numerical *‘solution’’ to an
original infinite dimensional problem. The theory in [24] considers pairs consisting of an abstract optimi-
zation problem P, defined on a normed space %, and of an optimality function 6(-), whose zeros are the
stationary points of P. These pairs are approximated by pairs Py and 8y(-), N = 1,2,3,..., that are
defined on nested finite dimensional subspaces #y of % with 6y (-) an optimality function for Py (rather
than a discretization of 6(-)). Consistency of approximation is characterized in terms of epiconvergence
of the Py to P and (in the simplest case) of hypoconvergence of the 8y () to 6(").
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Epiconvergence of the approximating problems ensures convergence of global minimizers (and uni-
formly strict local minimizers) of the approximating problems to global minimizers (local minimizers) of
the original problem. Hypoconvergence of optimality functions ensures, directly or indirectly, several
desirable properties: (i) stationary points of the approximating problems converge to stationary points of
the original problem; (ii) the mathematical characterization of the constraints of the approximating prob-
lems must satisfy certain consistency conditions; and (iii) derivatives of the cost and constraint functions
of the approximating problems converge to those of the original problem.

In [24], consistent approximations were constructed for control and state inequality constrained
optimal control problems using Euler’s method and control subspaces spanned by piecewise constant
functions. In this paper we show that a large class of higher order, explicit Runge-Kutta (RK) methods
can be used to construct consistent approximations for the same problems. Two issues had to be
addressed: the selection of the finite dimensional control subspaces and the isometric transformation of
the resulting approximating optimal control problems into mathematical programming problems. The
selection of the control subspaces for use with RK methods is significantly more complex than for Euler’s
method and affects the precision of integration accuracy as well as original problem solution approxima-
tion. Isometric transformations of the approximating optimal control problems into mathematical prob-
lems defined on a Euclidean space preserve problem conditioning. As demonstrated by our computa-
tional results in Section 6, a considerable deterioration of conditioning can take when natural, but non-
isometric transformations are used.

This paper is organized as follows. Section 2 summarizes the relevant aspects of the theory of con-
sistent approximations. Section 3 introduces the optimal control problem and develops an optimality
function for it. In section 4 the approximating problems are constructed, by defining appropriate finite-
dimensional control spaces and constraint sets, and by defining approximate cost functions using an
extension of RK integration methods. Epiconvergence is proved. In section 5, the optimality functions
for the approximating problems are derived. These are shown to hypoconverge to the optimality function
for the original problem. Hence, the approximating problems are shown to be consistent approximations
for the original problem. Section 6 presents some numerical results.

2. CONSISTENT APPROXIMATIONS

In [24] we find a theory of consistent approximations to an abstract optimization problem, defined
on a normed space. The theory uses two concepts: epiconvergence of the epigraphs of of the approximat-
ing cost functions on the approximating constraint sets, which results in a type of *‘zero order’’ approxi-
mation, and the satisfaction of half of the relations that ensure the hypoconvergence of the hypographs of
optimality functions, of the approximating problems, which ensures a type of “‘first order’’ approxima-
tion. We will briefly review those results. Let #{be a normed linear space, with norm -1, let B € % be
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a closed, convex set and consider the problem

P ,?é“;‘; wv(n) (2.1a)

where w:B — IR is (at least) lower semi-continuous, and H < B is the constraint set. Next, let
N4 {1,2,3,...},let N be an infinite subset of N, and let { #y } y < N be a family of finite dimensional
subspaces of #{such that #y = # if #{is finite dimensional (R") and Hy, € Hy,, for all NyN, € N

such that Ny < N,, otherwise. Now consider the family of approximating problems

i , NE€N,
Py o N m (2.1b)
where yy : Hy — R is (at least) lower semicontinuous, and Hy < %/ .
Definition 2.1. We will say that the problems in the family { Py } y ¢ N converge epigraphically to P
Py - P) if
(a) for every n € H, there exists a sequence {Ty }y ¢ N, With 1y € Hy, such that 1y —m and

lim yy My) Sy(M);

(b) for every infinite sequence {Ty } 5 ¢ x, Where K < N, satisfying ny € Hy, for all N € K and
Ty =% 1, we have that € H and lim wy (y ) 2 w(n). 0

Epiconvergence does not require derivative information for its characterization. Hence we view

epiconvergence as ‘‘zero order’’ approximation property. In [2,14,24] we find the following result:

Theorem 2.2.  Suppose that Py =% P. (a) If {fiy } y e N is a sequence of global minimizers of
the Py, and fj is any accumulation point of {fly } v ¢ N» then f} is a global minimizer of P. (b) If
{fix } ¥ e N is 2 sequence of strict local minimizers of the Py, whose radii of attraction are bounded
away from zero, and f} is any accumulation point of {fiy } v ¢ n. then fj is a local minimizer of P. O

Epigraphical convergence does not eliminate the possibility of stationary points of Py, converging
to a non-stationary point of P: a most annoying result from a numerical optimization point of view. For
example, let # = R? withn = (x,y), and let f (1)) = fy (M) = (x —2)2, N € N. Choose

H2 {(x.y)e R? | x2+y2-250}, (2.2a)

Hy 8 ((x.7) € R?1 (x —-yP(x2+y2-2)<0, x2+y2<2+1/N}, NeEN.  (2.2b)

Then we see that Py —Z7 P. Nevertheless, the point (1,1) is feasible and satisfies the F. John optimality
condition for all Py, but it is not a stationary point for the problem P. The reason for this is an incompa-
tibility of the constraint sets Hy with the constraint set H which shows up only at the level of optimality
conditions. To eliminate the possibility of this happening, at least for first order non-stationary points,
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optimality functions were introduced in [24] as a tool for ensuring a kind of *‘first order’’ approximation
result, which, implicitly, enforces convergence of derivatives, and restricts the forms chosen for the
description of the sets H and Hy .

Definition 24. We will say that a function 6 :B — IR is an optimality function for P if (i) 0() is (at
least) upper semi-continuous, (ii) 6() <0 for all | € H, and (iii) for | € H, 6(fi) = 0 if f} is a local
minimizer for P. Similarly, we will say that a function 8y : Hy — R is an optimality function for Py, if
(i) Oy () is (at least) upper semi-continuous, (ii) 8y (n) <0 for all n € Hy, and (iii) if iy, € Hy is a local
minimizer for Py then Oy (fjy) =0 O
Definition 2.5.  Consider the problems P, Py, defined in (2.1a,b). Let 6(*), 8y(:), N € N, be optimality
functions for P, Py, respectively. We will say that the pairs (Py,0y), in the sequence { (Py,0y)} Nu
are consistent approximations to the pair (P, 6), if (i) Py —%' P, and (ii) for any sequence {Ny } y ¢ x>
K © N, withny € Hy forall N € K, such that iy — 1, lim 8y (ny) < 6(1)). 0

Note that the last part of this definition, concerning convergence of the optimality functions, rules
out the possibility of stationary points (points such that 6y (ny) = 0) for the approximating problems con-
verging to non-stationary points of the original problem. In the sequel, we will prove a stronger condi-
tion, namely convergence of the hypographs of Oy(‘) to the hypograph of 6(-), than is required by
Definition 2.5 (that is — 8y () =% —0()).

3. PROBLEM DEFINITION

We will consider optimal control problems with dynamic systems described by ordinary differential
equations,

x(@t)=hx(),u)), ae.for t € [0,1], x(0)=x,, (3.1)

where x(t) € R™, u(t) € R™, and hence h : R™ x R” —» R"™.

To establish continuity and differentiability of solutions of (3.1) with respect to controls, one must
assume that the controls are bounded in Lz [0, 1]. However, our approximating subspaces are dense in
L7[0,1], but notin LZ [0, 1]. Since it does not appear to be possible to establish differentiability of solu-
tions of (3.1) with respect to controls in L5'[0, 1], we will, as in [23], assume that the controls are ele-

ments of the pre-Hilbert space
L2 10,118 (L2011, (-, "), M), (3.2a)

which consists of the elements of LZ [0, 1], but is endowed with the L [0, 1] inner product and norm.
Note that L2 5 [0, 1] is dense in L7 [0, 1].



Since we also vary initial states, we will work in the pre-Hilbert space
He 8 R™ LM, (0,118 R™ xL7[0,1], (+, )y, M), (3.2b)
which is a dense subspace of the Hilbert space
H,=R™ xL%[0,1]. (3.2¢)

The inner product { -, - )5 and norm i, on H,, and hence also on H., 5, are defined as follows. For any
n=(u)€ Hyandn' = (§,w') € H,,

N )y BUEE)+ (w0 )y, (3.2d)

where (£,&’) denotes the Euclidean inner product, and the L, inner product (u,u’), is defined by
1
{u,v béj’o {u(t),v(t))dt. Consequently, foranyn =(E,u)€ H,,

miZ 2 (nn)y =182 + i, (3.2¢)

Next, let U ©B (0, pmay) ) {u € R" | lul <pp,, } be a compact convex set with non-empty inte-
rior, where p,,, is sufficiently large to ensure that all the control functions u () which we expect to deal
with take values in the interior of B (0, pp,,). We define

U8 (uelL?,[01]11u@)e U, Vt € [0,1]) (3.32)
and denote the set of admissible initial state-control pairs, 1} a (€, u),by
HAR"xU CH.,,. (3.3b)
The set H is contained in the larger set

BAR™ x {u€LT,(0,1] 1 u(t) € B(O,ppy), Vi € [0,1]} < He,. (3.3¢c)

Finally, we will denote solutions of (3.1) corresponding to a particular N € H by x"(-). We will con-
sider the following canonical minimax optimal control problem:

cp 1:12!}1' {woM) I y.M) <0}, (3.4a)

where the objective function, y, :B — IR, and the state endpoint constraint function, y.'H- R are
defined by

A A
y, () 2 vnéa:c ffa), y.me . emqi”iq af ‘), (3.4b)
with f¥:H — R defined by

FYm) = TVE,x(1)), (3.4c)
with [V:R™ xR™ - R, and we have used the notation q, 2 {1,2,...,4,}, q. 2 {1,2,...,q, }
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(with g, and g, arbitrary integers). The setq,. +g, = {1+g,,...,q. +q, }. In what follows, we will
let qéqou{qc +4, }. If we define H'2 {n€eHI|y.m)<0}, we see that CP, with H replaced by
H’, is of the form of the problem P in (2.1a).

Various optimal control problems, such as non-autonomous, integral cost, and free-time problems,
can be transcribed into this canonical form. Also, the endpoint constraint in (3.4a) can be discarded by
setting y, (1)) m—c°, and control unconstrained problems can be included by choosing Pmax and U
sufficiently large to ensure that the solutions u*(-) of CP take values in the interior of U.

Properties of the Defining Functions. We will require the following assumptions:

Assumption 3.1.

(a) The function h(,*) in (3.1) is continuously differentiable, and there exists a Lipschitz constant
K € [1,%0) such that for all x’,x” € R™, and v',v"” € B (0, ppa,) the following relations hold:

@, v)=h@ VNSK =21+ —v'1], (3.52)
U (V') = B (2 VRS K =B+ B —v"1], _ (3.5b)
b, (V) = b, VRS KW =2 D+ =71, (3.5¢)

(b) The functions §'(, "), {Z(-,) and {;(-, ), with v € q, are Lipschitz continuous on bounded sets.  [J
The following results can be found in [3]:
Theorem 3.2. If Assumption 3.1 is satisfied then

(i)  there exists an x € [0, ) such that for all ', € B and forall ¢ € [0, 1]
V@) - xS xin’ =07l ;
(ii)  there exists a k € [0,%°) such that forallm € Band allz € [0,1]
BN < k(1 + 1ED) ;
(iii)  the functions y, :B — IR and y, : B — R are Lipschitz continuous on bounded sets;

(iv) the functions f¥(*), v € q, have continuous Gateaux differentials Df ¥ : B x H w,2 = R™ that have the
form DfY(n;dm) = (Vf¥(M), ) y;
(v)  the gradients Vf¥(n) = (Vef'M), V,.f¥M)) € Ho, 5, v € q, are given by

Vef Y() = Ve£¥(E,x (1)) +p™Y(0) , (3.6a)

V. fYa) = b, (x(0),u @) p™V@) , Vi€ [0,1), (3.6b)

where p™V(¢) € R™ is the solution to the adjoint equation
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pY==h(x,u)p¥, p'(1)=V,'E x(1), (3.6¢)
and are Lipschitz continuous on bounded sets in B.
(vi) foranyv € q,and anyn € B and dn € H., ,, the directional derivative exists and is given by
dfYm ;on) =Df Y ;) = (Vf (), )y, (3.6d)
furthermore, it is Lipschitz continuous on bounded sets in both arguments. 0
Optimality Conditions.  Referring to [9], the following result holds because of Theorem 3.2;
Theorem 3.3 Foranyn € B, let
e (), & max {0,y ()} , (3.72)

and for any ,m" € Band 6 >0, let
¥m,M") 4 max { y,m) - W, M) - oy, M), . W ) =¥ @), } - (3.7b)

If Assumption 3.1 is satisfied andﬁ € H is a local minimizer of the problem CP, then

d¥, M,N;m-120, vneH. (3.8)
O

Next we define the optimality function 6 :B — IR, for CP. For any 1,1’ € Hand v € q, we define
the first-order quadratic approximation to f ¥(-) at 1} by

FY@m) 7Y + (VY)W -y + Ve’ - i3 . (3.92)
Then, the optimality function, with o > 0 as in (3.7b), is defined as

em) é"r,lrleir;l maX{ Jga;f" ‘(M. ") =y, (M) - oy. (M), ' A ‘.f M) -y, (nh} © (3.9b)

The existence of the minimum in (3.9b) follows from the convexity of the constraint set H and of the max
functions in (3.9b) with respect to 7)’, and f Y(1,M) — e as Il - o= [5, Corollary II1.20, p.4 6]). Note
thatif fV(n) m —co for all v € q, +¢,,, so that y, (1)) m =, then (3.9b) reduces to

A . , ,
em e i, vrga;if v + (VLN =)y + Ve’ =i -y, () . (3.9¢)
Referring once again to [3], we have the following result:

Theorem 3.5. Let 0:B — IR be defined by equation (3.9b). If Assumption 3.1 holds then, (i) 6(-) is
negative valued and continuous; (ii) the relation (3.8) holds if and only if B(ﬁ) =0. O



4. APPROXIMATING PROBLEMS

The construction of the approximating problems, required by the theory of consistent approxima-
tions described in Section 2, involves the construction of a family of finite-dimensional subspaces,
approximating cost functions, and approximating constraint sets. Our selection is largely determined by
the fact that we propose to use explicit fixed stepsize Runge-Kutta (RK) [7,18] methods for integrating
the dynamic equations (3.1a).

Finite Dimensional Initial-State-Control Subspaces. In Section 3, our optimal control problem CP
was defined on the normed space H.. ;. Given N 2 1, we will define the corresponding approximating
problems, CPy on finite dimensional subspaces Hy = R™ x Ly < H,, 5, where the Ly € L& 5 [0,1] are
finite-dimensional spaces spanned by piecewise-continuous functions.

Given an explicit, fixed stepsize RK integration method, we will impose, at the outset, two con-
straints on the selection of the subspaces Ly :

(i)  For any a bounded subset S of B, the RK integration method must give at least first order accuracy,
uniformly, in solving the differential equation (3.1), foranyn € § N Hy.

(ii)  The data used by the RK integration method is an initial state and a set of control samplesT. We

will require that each set of control samples corresponds to a unique element u € Ly.

The first constraint will be needed to prove that our approximating problems epiconverge to the ori-
ginal problems. For the subspaces Ly we present, we will actually be able to prove more than first order
accuracy. The second constraint is imposed to facilitate the definition of the approximating problems and
make it possible to define gradients for the approximating cost and constraint functions.

We will now show how explicit, fixed stepsize RK integration methods affect the selection of the
subspaces Ly. The generic explicit, fixed stepsize, s -stage RK method computes an approximate solution
to a differential equation of the form

i) =h@,x@), x©)=E, te[01], (4.1a)

where # : R xIR™ — IR™ is continuous. It does so by solving the difference equation

L
X1 =X +AY DK, i, To=x©0)=E, ke A2{0,1,...,N-1}, (4.1b)
i=ml

with A = 1N, 2, A kA, and K, ; defined by the recursion

¥ The term control samples will be clarified shortly.



Kei=h( +cA% +A')'fa,-,jxk_,), i€s, (4.1¢c)
Jj=l
where, according to our notation, s ) {1,...,s }. The variable x; is the computed estimate of x (; ).
The parameters a; ;, ¢; and b;, in (4.1b) and (4.1c) determine the RK method. These parameters are
collected in the Butcher array A = [c,A,b). The Butcher array is often displayed in the form:
< 0
¢y | az, 0

Cs as.1 Qs s-1 0

b, T b, b,

The following assumption on the Butcher array parameters will be assumed to hold throughout this paper:
Assumption4.1. (a) Foralli € s,c; € [0,1], (b) foralli € s, b; >0and Yiabi=1. 0O
Remark 4.2.  The condition }'/,,b; = 1 is satisfied by all convergent RK methods. Other conditions

must be satisfied to achieve higher order convergence for multi-stage RK methods. The condition b; >0
will be weakened slightly in the sequel.

Now, in our case, 3 (t,x)=h(x,u(t)), and the elements u(¢) of the subspaces Ly will be allowed
to be discontinuous from the left at the points ¢ = #; + c;A. To obtain an accurate integration method for
such functions, the values u (#; +c;A) must sometimes be replaced by left limits, as appropriate for the
particular choice of the subspace Ly. We will refer to these values as ‘‘control samples’’ and denote
them by u [t ;], where, for convenience, we have defined 7; ; 4 t, +c;A. Specifically, fort € [0, 1],

ult)d limu(t). (4.2)

Clearly if u (") is continuous at #; +¢;A, then u[t; +¢c;Al = u (4 +c;A). Equation (4.1c) evaluates h ¢
s times for each timestep k € Al So, if we collect those s samples into the matrix
©y Aw [te,1] - - - ulv 1), we can replace equations (4.1b) and (4.1c) with

s
G =X +AYLK;, Xo=x0)=&, k€ N, (4.3a)
i=]
where K, ; 8 K; (%, , ;) which is defined by
i-1 X
Kix,0)=h(x+AY,q; ;K;x,0),0'), i €s. (4.3b)
j=1

where ' is the i -th column of .



We will define the space of control samples, Ly, in such a way that there is a one-to-one correspon-
dence between elements of u € Ly and the samples of u used by the RK method. The definition of Ly is
somewhat complicated by the fact that some of the ¢; elements of the Butcher array may have the same
value. This causes the RK method to use samples at times #; + ¢; A more than once: a fact that results in a
reduction of the dimension of the required space of control samples.

To keep track of the distinct values of the ¢ elements of the Butcher array, we define the ordered set
of indices
18 {iyig....i, )8 (iesleee, vies, j<i}, (4.42)
and let
LA{ieslc=c,ijel}, jer. (4.4b)

Thus, the total number of distinct values taken by the elements c; in the Butcher array is r. For example,
ifc = {0,1/2,1/2,1}) thenr =3, = {i;=1,i3=2,i3=4},I;= {1},1,={2,3},and I3 = {4}.
If each ¢; is distinct then r = 5. Otherwise, r <s.

Clearly, the r distinct sampling times in the interval [t;, %], k¥ € A( are given by Teip J ET,
i; € I. Corresponding to each sampling time there is a control sample u [%,;,). The collection of these

control samples is an element, denoted by &, of the space RY x R” x R™. We will partition the vectors
# € RY xR" x R™ into N blocks, i, consisting of r vectors @il of dimension m, i.e.,

u= (170, il-l, ‘e ’EN-I) , (4.53)
where each &, k¥ € A(, in turn, is of the form
=@, ....a. (4.5b)

When convenient for the performing linear algebra, we will consider the elements # € RY x R” x R™,
as Nr xm matrices, i.e., we will identify RY x R” x IR™ with the space, R¥*™  of Nr xm matrices.
Similarly, we will identify R” x R™ with R"*",

Let G be the r x s matrix defined by

G = . (4.5¢)

where, forj€r, 1 f, is a row vector of |/ ;1 ones (11; 1 is the number of elements of / ;). Then the rela-
tionship between the components &, k € A, of a vector # € RY xR” x R™, with &} = u [%,;,] € R™,
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forj € rand i; € 1, and the vectors w; used by the RK method (4.2a,b) is given by o, = 4, G.

We are now ready to present two control representations that define subspaces Ly = L,(‘,, k=12,
N € N, such that Uy, Ly is dense in L5 [0, 1]. Both representations reduce to simple square pulses for
Euler’s method (r=1). In addition, we will define two finite dimensional spaces of the form

Ly 8 (RY xR" xR™, ()2, Mz}, k=12, NEN, (4.5d)

consisting of the elements i of RY xIR” x R™, but with inner products and norms chosen so as to coin-
cide with the corresponding operations in the spaces Lf, k =1,2. The spaces L_,/{, will be needed in
defining gradients for the cost and constraint functions of the approximating problems as well as in set-
ting up numerical implementations of optimal control algorithms.

Representation (R1): Piecewise r-th order polynomials.
Let the pulse functions be defined by
1 ift € [ty,t,4), k=0,...,N=2,

T x@) =1 1 ift € [, ), k =N-1, (4.6a)
0 elsewhere ,

and let
. N-1
Ly8 {u e LP0,111u@)= X u ()T 1), vt € [0,11}, (4.6b)
k=0
where u; (1) is the vector polynomial
r=1 1=t d
A k
uk(t)=25k,j —_— =6k P(t—tk), (4.6C)
= A

where B, ; € R", B, 4 (Be,0* * * Br,r-1) is the m xr matrix with columns B, ;, and

P@)A[1 t/A--- /Ay T . (4.6d)

Proposition 4.3. Let L, be defined as in (4.6b) and let V an Ly 5> RY xIR” xIR™ be defined by
Van@)=u, with af = ulvw,;l, ij€l, jer, k € Al Suppose Assumption 4.1(a) holds. Then
V o, n is a linear, invertible map.

Proof. From (4.2), (4.6a,b,c) and Assumption 4.1(a) if follows that
B =ulty +c,Al = u, (4 +¢,A) =B, P(c,8), k€ ALj €, iel, 4.7)
even if ¢; = 1 because u [, +A] = :1!:m+1 Au (t) = uy(t; +A). Thus, for each k € AL, we can rewrite (4.7)
{3

in matrix form, as i, = B T~! (we are thinking of &, as a matrix), where
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1 1 e 1

¢, G <,

71 = [p (€8 P(c;A) - -P(ci,A)] =| - - ; 4.8)

r=1 _r-=1 r=1
Ci, G 4}

The matrix T~ is a Vandermonde matrix and the r values Ci» ij € 1, are distinct. Therefore, T-! is non-
singular. Hence, foreachk € A, u (1) =i, T P (t — ;). It follows that V A, N 18 linear and invertible. O

To complete the definition, in (4.5d), of the spaces L-.,J we will now define the required inner product
and norm. We define the inner product between two vectors i,V € E,}, with u =V ;.’N(E ) and
v = Vi), by

o N-1 A
(@, vipi=(u,vh= L[, (ult +1), v +0)dt
k=0

-1
=NZ;LA(17k TP@),% T PG@))dt
k=0

N-1 A
=AY trace(d, T %L PP dt TTH),
k=0

N-1 _ _
=A Z trace(uk M, VD , (4.9a)
k=0

where T was defined by (4.8), P (-) was defined in (4.6d) and

A
MAT -i—LP(t)P(t)Tdt T7 =T Hilb(r)T7 , (4.9b)
where
[1 12 113 Ur |
12 113 14 - Ur+l
Hilb(r)=|1/3 14 15 (4.9¢)
| Ur 1ir+l 12r+1]  xr

is the Hilbert matrix, whose i, j-th entry is 1/i+j~1. Note that both Hilb(r) and T are ill-conditioned
matrices. However, the product in (4.9¢) is well-conditioned (the product corresponds to switching from
a power-series polynomial representation of the piecewise polynomials to a Lagrange expansion). The
matrix M, is symmetric, positive definite because Hilb(r ) is positive definite and T is non-singular.

Remark 44. A special class of functions within representation R1 is the subspace of r-th order, m
dimensional splines. The dimension of the spline subspace is only a fraction of the dimension of Ly. Our
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results for R1 are extended to splines in Appendix A2.
Representation (R2): Stepwise constant functions.
Forj€er,1I f defined in (4.4b), let

b4 ¥ b, (4.10a)

J ~
d;8A%b, , dy2o0. (4.10b)

J
If all the ¢; elements of the Butcher array have distinct values then d; = AY';_b;. At this point, we can

replace Assumption 4.1(b) with the following weaker assumption:

Assumptiond4.1 (') Forallj €r,b,;>0andd, = A. O

Note that Assumption 4.1(b’) implies that for all j € r, d;>d; ), andthatt, +d; € [t;,4,1).k € N[,
We introduce an additional assumption which does not rule out any standard RK methods.

Assumption4.5. Forj€randi;€1,d; < c;Asd;, sothatty ; € [t +d;_y, 1 +d;). O

We now define the pulse functions

1 ifte [tk +dj-l'tk +dj)’ k € N, J€ r,
2 _ 4.11
HN.k.j(’ )'{ 0 elsewhere , ( »
with TI§ . closed. With B, ; € R™, let
2 A N-lr 2
Ly (ueLF001u@)=Y ¥ B ;117 . ;(t), Vi€ [0,1]}. (4.11b)

ke j=1

Proposition 4.6.  Let L} be defined as in (4.11b) and let V, y 1L - RY x R" x R™ be defined by

Van)=u, with 17[ =ulw,l, jer, ijel, k € A, Suppose Assumptions 4.1(b’) and 4.5 hold.

Then V , y is a linear, invertible map.

Proof.  Assumption 4.1(b’) implies that any u € L7 is specified by a unique set of coefficients By ;.

Assumption 4.5 implies that 17[ =Py,; even if ¢;A=d; since ulz,;] is defined as the left limit of

u(t,;). Thus, V, y is invertible; linearity of V  y is obvious. O
To complete the definition, in (4.5d), of the spaces 5,3 we will now define the required inner product

and norm. We define the inner product between two vectors &,V € E,?, with u =Vl (@) and
V= V;}N(F), by

13-



N-1r d
(E,V),;;: (u,vlh= Y ZL,:(“O* +1),v(t, +1))dt

k=0 j=]
N-1r . _
=AY Y b ;{uf,v])dt
k() jm]
N-1 _ _
=AY trace(ify M, 7)), (4.12a)
k=0
where,
b, 0
My= . (4.12b)
0 b,

Since all b j >0, M, is diagonal, positive definite. Given & € L7, its norm is 17 f’g = (u,u)p2

Remark 4.7. In place of (4.10b), we could have used the alternate definition d; a AY/.,b; and set
il =u [t ;] forall j € s, k € AL In this way, samples corresponding to repeated values of ¢; in the
Butcher array would be treated as independent values and the space Ly would have to be correspondingly
enlarged. However, Proposition 6.1 in Section 6 indicates that (4.10b) is the preferable definition.

Definition of Approximating Problems. ForN € N, let
Hy&4R™ xLy , (4.13a)

where Ly = L, for representation R1 or Ly = L, for representation R2. Hy ©H,, , inherits the inner
product from H ., 5 which, for ',/ € Hy, withn’ = (£, u’) and n” = (§”,u”), is given by

(00" B E )+ (), (4.13b)
and hence for any 1| € Hy, Inﬂf, = {n,n)y. Similarly, we define the spaces I?N by
Hy AR™ x Ly, (4.142)
where Ly = Ly or Ly = L,?. The inner product on I?N is defined by
(.0, 8 (8.8 + (@ a7y, (4.14b)

and the norm correspondingly. Let W, y :Hy —)I:I-N be defined by W, y() = (§,V 5 n (1)), where
N = (§,u). Then we see that W y is a linear, nonsingular map, and, with our definition of the norms on
I?N, provides an isometric isomorphism between Hy and 17,,,. Thus, we can use the spaces Hy and ﬁN
interchangeably.

We now define control constraint sets for the approximating problems. Let U be the convex,
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compact set used to define U in (3.3a). Then, we define

Uyl (uelylafeUvke A, jer) (4.15a)
Hy AR™ xUy <Hy, (4.15b)
Hy AR™ xV3ly(Uy) S Hy . (4.15¢)

We assume that pp,,, was chosen large enough in (3.3c) so that Hy <B,

Next, with ) € Hy and 1 =W, y(n), we will denote the solutions of (4.3a,b) by {%1} N, or,
equivalently, { %"} /L. The variable %" is thus the computed estimate of x"(z, ). Finally, let

INMATER) = FAMATERD . veq, (4.16)
where {¥(:, ) was used to define f£¥(n) in (3.4c). Then we can state the approximating problems as:

CPy Jn o nM | v v <0}, 4.17)

where y, y() & max f¥(Mm)and y, y(2 max fYM).
vE Qo VE Qg

Note that for any n € H M Hy, where H was defined in (3.3b), W, y(0) € ﬁN because u(r) € U
for all ¢ € [0,1] implies that u ['ck,j] €U for all k€ A, j€s By (4.15c), this implies that
H N Hy < Hy. Unfortunately, for representation R1, if r 22 (except for the case r = 2 and the Butcher
array elements ¢ = {0,1}), Hy=H N Hy because, given i € Ly, generally Wan@le > lule, [4, p.
25). Hence, if {ny }yen N © N, is a sequence of approximate solutions to the problems CPy, itis
possible for any ny, N € N, to violate the control constraints. However, as we will see, the limit points
of such a sequence must satisfy the control constraints. This problem could have been avoided by choos-
ing Hy AN Hy (as in [24]) and letting I—IN 4 W, n(Hy), but the set ﬁN would be difficult to charac-
terize. For representation R2 (orRL,r = 1,0rr =2andc¢ = {0,1}),7 € fJN <> V;,’N(E) € U.

Nesting. The theory of consistent approximations is stated in terms of nested subspaces Hy. This
allows the approximate solution of an approximating problem CPy, to be used as a "warm-start” for an
approximating problem CPy, with a higher discretization level (N, > N ) (see [17,25]).

For representation R1, Ly €L,y so that doubling the discretization level nests the subspaces. If
u € Ly, then v =V 4 5y (u) can be determined from & =V, y(u) using (4.6c) and (4.8): for k € Al and
JENVy=U TP(c;/2N) and Vheo = T P((cj +1)/2N). For representation R2, Ly ©L,y where
d is the smallest common denominator for all of the b;, j € s in the Butcher array, which is finite assum-
ing, as is typically the case, that all b; are rational. Thus, the discretization level must be increased by
factors of d to achieve nesting. If u € Ly and & =V 4 y(u), then ¥ = Va,on(u) is given, for k € A/,
i,jer,andl =1,...,d,by vy, =il ford;_ <1/d <d;, where d; is defined in (4.10b).
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Epiconvergence. We are now ready to establish the epiconvergence of the approximating problems.
First we present convergence and continuity properties for the solutions computed by Runge-Kutta
integration on ﬁN. The proof of the following lemma is given in Appendix Al.

Lemma 4.8.  For representation R1, suppose that Assumptions 3.1(a), 4.1 hold. For representation R2,
suppose that Assumptions 3.1(a), 4.1, and 4.5 hold.

(i) Convergence. For any bounded subset S ©B, there exists k < % and N* < oo, such that for any
NES NHy andN 2 N*,

() -5 < % , k€ NU[N]. (4.18a)

Additionally, if the Runge-Kutta method is order p, (see [7,18]) and A (-, ) is p—1 times Lipschitz continu-
ously differentiable, then for representation R1, there exists x <o and N* <eo, such that for any
NMES NHy andN 2 N*,

lx“(tk)-i“ﬂs'l\';—p , K€ NU(N}. (4.18b)

The same result hold for representation R2if h(x,u) = h (x) + Bu where B is an nxm, constant matrix.

(ii) Lipschitz Continuity. The solutions { % },?’.o are Lipschitz continuous in 1} on bounded sets,

uniformly in k. That is, for any 1,1’ € § N Hy with S ©B bounded, there exists K <o, independent of
N, such that forj = Wa y(M) and = Wan®)

FALE AL P e P

ke%ﬁ’flv) & — X I s xin =nwig, (4.18¢c)

0

In proving consistency, we will need to add a version of Slater’s constraint qualification on the

problem CP.

Assumption 4.9. For every n € H such that y,.(n) <0, there exists a sequence { Ny } Nap such that
TINEH.\VC(TIN)<O,anan —)nasN — o, O

Theorem 4.10. (Epiconvergence) Suppose that Assumptions 3.1(a), 4.1 and 4.9 (and also 4.5 for
representation R2) hold. Let N= {d" } ;.; where d = 2 for representation R1 and d is the least com-
mon denominator of b j» J € s, for representation R2. Then, the problems { CPy } v ¢ N COnverge epi-
graphically to the problem CP as N — oo,

Proof. Let S ©B be bounded. Then, by Assumption 3.1(b) and Lemma 4.8(i), there exists «’, k < %
such that for any v € q and for any ny € S N Hy,

|fY0W) = FRNM)T = 18 Ey, x™ (1)) = TEy, 7)) < ™ (1) =501 < 7';— . (4.19)
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Now, let v/ € q, be such that y, (ny) = f¥(ny) . Then,

Yo (v) = Wo,w (M) = £ V() = Yo v ) S £V 0W) = F () < - (4.19b)

By reversing the roles of y, () and y, y(ny) we can conclude that

¥ (M) = Yo v ()1 S (4.20a)
Similarly,
W () = ey (W) S (4.20b)

Now, given n € H such that y. (n) <0, there exists, by Assumption 4.9, a séquence S = {ny } Na1» With
Nn € H, such that ny — n as N — oo (hence S is bounded), and y.(ny) <O for all N. Now, clearly for
each N =d", there exists j, € N, finite, and "', € H; such that (a) x/j, <-Yay.(ny), (b)
In;,"~nyI<1/N, since, for both representations R1 and R2, the union of the subspaces Hy, is dense in
H which contains H., , and HN Hy CHy, (c) y.(M ;,) £ 1/2y.(ny) due to Theorem 3.1(iii), and (d)
Jn<Jn+1. It follows from (4.20b) that Ve M Y S WM, )+ K ju SVay. (My) +k 1 j, <O for any
n,k € N. Now consider the sequence S” = {n,” } ;= j, defined as follows: if k = j, for some n, then
N =n;, for k = j,,jo+1,ju42,. .. ,jps=1. Then we see that Yot M) <0 for all £, 0, =1 as
k — o (hence S is bounded), and by (4.20a) and Theorem 3.2(iii) that limy, y(My) = y,(M). Thus,
part (a) of Definition 2.1 is satisfied.

Now let S = {ny } e k. K ©N, be a sequence with ny = (Ey,uy) € Hy and Y. n(y) <0 for
all N € K, and suppose that iy =% 1 = (§,u). For any v € R™, let d(v,U)éminv'e vlv =v'I. For
each N, V, y(uy)€ Uy so that aje U for all k € A, J €r. Thus, for representation R1,
li_m, e 0,1~ € kd(uy(t),U) = 0 since uy is composed of polynomials with bounded coefficients (hence
bounded derivative) defined over progressively smaller intervals. For representation R2, d (uy(¢),U) =0
for all N € K and ¢ € [0, 1] since uy is piecewise constant. This implies that u € U; hence n € H.
Furthermore, w.(M)<0 by (4.20b) and the continuity of y.(), and, again by (4.20a),
limy, y(My) =y, (M). Thus, part (b) of Definition holds. O

Remark 4.11.  The fact that Theorem 4.10 depends on Assumption 4.1 implies that consistency of the
RK method is not enough to ensure epiconvergence of the approximating problems to the original prob-
lem. This explains why, as Hager observed in [16), methods, such as the Improved Euler method of
integration, with b; = O for some j cannot be used for optimal control problem discretization. But also,
methods with b; < 0 for some j cannot be used. For example, the third order method with Butcher array

17-



0 0
A = 14 | 1/4
1 | =75 12/5

-6 89 5/18

when used to discretize the problem described in Section 6, results (observed numerically) in cost func-
tion approximations that are concave along some directions, while the original cost function is strictly
convex. Hence it cannot lead to epiconvergence of the approximating problems to the original problem.

Factors in Selecting the Control Representation.  The choice of selecting Ly = Ly versus Ly = L
depends on the relative importance of approximation error versus constraint satisfaction. It follows from
the proof of epiconvergence, that irrespective of which representation is used, if {Ny }yen is @
sequence such that ny € Hy, and ny — n, then € H. Thus 7 satisfies the control constraints. How-
ever, as mentioned earlier, if representation R1 is used, then ny may not satisfy the control constraints for
any finite N. Since a numerical solution must be obtained after a finite number of iterations, except for
the case r =2 and ¢ = { 0,1}, representation R2 must be used if absolute satisfaction of control con-
straints is required.

If some violation of control constraints is permissible, then representation Rl is preferable to
representation R2 because a tighter bound for the error of the approximate solution can be established for
R1 than for R2. To see this, let ny* = (&*y, uN*), N € N, be a local minimizer of the finite-dimensional
problem CPy. This solution is computed by setting ny* = W ;}N(ﬁN*), where ﬁN* is the result of a

numerical algorithm implemented on a computer using the formulae to be presented in the next section.

The accuracy of the approximate control solutions uy* can be determined as follows. Assume that
uy* — u* as N — o and that «* is a local minimizer of CP (if the uy™ solutions are uniformly strict
minimizers then «* must be a local minimizer by Theorem 2.2). Let #* € RY xIR" xIR™ be such that
#*] = u*(z,,;), fork € A(, j € r. Then

b = uy*ly S W = VS @ + 1V S @) = uy ™l = 1* =V I @O+ 17% - 2N I, - (4.21)

The quantity 1z* - EN*EEN is not affected by the choice of control representations. For smooth, uncon-
strained problems discretized by symmetric RK methods, a bound for §z* — EN*IEN can be found in [16,
Thm. 3.1] (see Proposition 6.1 in this paper for an improved bound for one particular method). The
quantity ke* - V 31y (@)1, is the error between 4™ and the element of L} or L,? that interpolates u*(¢) at
t =7 ;,k € ALand j € r. The piecewise polynomials of representation R1 are generally better interpo-
lators for u*(-), expect near non-smooth points, than the functions of R2. For u*(*) sufficiently smooth,
W*-v AW (@*)1, is of order r for representation R1 (see [4]), but only first order for representation R2.
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5. OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to develop optimality functions for our approximating problems we must determine the
gradients of the cost and constraint functions for the approximating problems.

At each time step, the RK integration formula is a function of the current state estimate X; and r
control samples & = (&, . . . ,&;). So,let F :R™ x (R" x R™) — IR" be defined by

F(x,w)=x +A¥ b;K,(x,wG), 5.1)

im]
where w = (w!,...,w") € R” xIR™ is being treated as an m xr matrix, = wG € R° *™, with G
defined in (4.5¢), and K;(x,w) is defined in (4.3b). Then, referring to (4.2a,b), we see that for any
N = (§,&) € Hy, with Hy defined in (4.14a)

W =F®.%), %=k, ke (5.2)

The derivative of F (-, ) with respect to the j -th component of w is, with / ; defined in (4.4b), given by

Fix,w)= Aijz,‘,b,-Ki(x,wG)

W jml
a s
=A Z ‘_TZb"Ki(x,(D)
lel a(.') im]
! s i1 p]
=A Z blhu(Yk,l’w )'l"AZbihx(Yk'i,W') 2 —IKP (x,ﬁ)) , (5.3)
IGIJ =] p-_—.]aﬁ)

where Yy ; 8 x + AY/ZIK; (r, ).

Theorem 5.1. LetN € N, € Hy andn =W, y(n). Also, let My € R™ *™ be an N -block diago-
nal matrix defined by

M, Adiag[AM ,AM, ... ,AM], (5.4)
where M =M, ifl—.N = E,} andM =M, ifLy = E,?. Then, for each v € q, the gradient of fx'(n) is
vy = (@ . VN (M) (5.52)
where y'(n) = (M), 7)) € Hy is computed according to
W) = Vel E 7 +5g (5.5)
WO =F GG PN . ke, jer, (5.5¢)

with 5,V determined by the adjoint equation
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P = FeGo, @) s ¢ PN =0YET , k€ AL (5.5d)
The quantities F, (-, ") and F, (-, *) denote the partial derivatives of F (x,w) with respect to x and the j-th
component of w,

Proof. First, we note that V 4 v as defined on Ly is invertible by Proposition 4.3 and V AN as defined
on L, is invertible by Proposition 4.6. Next, referring to [23, p. 68], we see that ;E" (ﬁ) is the gradient of
N @) with respect to & Similarly, YJ(m) is the gradient of f,/(n) with respect to # € R¥ x R” xR",
endowed with the standard /, inner product. Hence,

Df ¥ ;8n) = Df Y ; 8n) = (), 8E)+ (1Y), 5iF ),

= (YM), 88) + (ML, 8 ), = (), 88} + (Vv (v M), 8u )y, , (5.6)
g N

where ®n =(0E,8u)€ Hy and ®n = (8,8)=W, y(n). Since by definition of Vfy(m),
Dfy(m;dm) = (VfN(n),n )y for all 5n € Hy, the desired result follows from (5.6). a

Note that for all k € A, vY(M); € R'XIR™, and that forall k € A, j € randi; € 1,
J

(T f RO, ) - Vuf N, ) M = (R - Y ) (5.7)

Remark 5.2. At this point, we can draw one very important conclusion. For every v € q, the steepest
descent direction, in Hy, for the function fy(), at M, is given by —(3(M), 7 (MM5"), and not
-( (M),¥y(M)) which is the steepest descent direction that one would obtain with the standard inner pro-
duct on RY x R” x R™. The naive approach of solving the discrete-time optimal control problem CP,,
using the latter steepest descent directions, amounts to a change of variables that can result in severe ill-
conditioning, as we will illustrate in Section 6.

Theorem 5.3.  Suppose that Assumptions 3.1, 4.1 (and for representation R2 4.5) hold and that the map
Van() is defined as in Proposition 4.3 or Proposition 4.6. Then, the gradients Vfy(-), v € q are
Lipschitz continuous on bounded sets in Hy .

Proof. By Lemma 4.8(ii), the solutions X", of (4.2a,b) are Lipschitz continuous on bounded sets, with
respect to 'r-|, uniformly in k. A similar argument can be used to show that the adjoint variables p,""" are
Lipschitz continuous on bounded sets with respect to 1_]. uniformly in k. It follows from Assumption 3.1,
(5.5b), and (5.5¢) that ?"(') is Lipschitz continuous on bounded sets. Since V ;}N(-) is a finite-
dimensional, linear operator, it is bounded and hence Lipschitz continuous. Therefore, it is clear from
relation (5.5a) that V£ /() is Lipschitz continuous on bounded sets. O

We can now define optimality functions for the approximating problems, using the form of the
optimality function, presented in (3.9¢), for the original problem. For CPy, we define Oy : Hy — R,
with o > 0 and the set Hy is defined in (4.15c¢), by
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By (n) én'"e‘iﬁ,, max{ gréa:nf NN = Yo N M) = OV N, , max. ,f ~y.n) -%,N(ﬂ)+} (5.8a)

where \vc.N(n)+é max {0,y y(n) },and forv € q,
F R A £+ (VAN =) g, + Wl =i, . (5.8b)

For the purposes of numerical computation [22], we can express (5.8a) in the equivalent form
Oy(m) = _min { %-m2
"' € Hy
+max{ max £+ (GO, W DMR), 0 =) g, = Vo v ) = 0¥ N (..,
,max P+ (GO AOME) -7 5, = Ve w1} ) 5.9)

where 0 = W, v (1) and the set Hy is defined in (4.15b).

It should be obvious that the optimality function is well defined because of the form of the quadratic
term and the fact that the minimum is taken over a set of finite dimension. The following theorem
confirms that (5.8a) satisfies the definition for an optimality function. The proof is essentially the same as
the proof in [3, Thms. 3.6,3.7].

Theorem 5.4. (i) For every n € Hy, 8y(M) <0; (ii) Oy(°) is continuous; (iii) if fi € Hy is a local
minimizer for CPy then Oy (fi) = 0. O

Remark $.5. It can also be shown that 6y () = 0 if and only if dp Wy @, 7,1 =) 20 for all
n€Hy where Wy M,1) 3 max{y, yO) =W, v = oW, N, e v () =VYen(M)}.  Also,
since the matrix My is positive definite for any control representation, it can be seen from (5.9) that if ﬁ,

is a stationary point of CPy under representation R1 and ﬁz is a stationary point of CPy under represen-

tation R2, then W y (?] D=Wan (ﬁz). In particular, the control samples of the stationary points of CPy
are not affected by the choice of control representations.

Consistency of the Approximations. To complete our demonstration of consistency of approxima-
tions we will show that the optimality functions of the approximating problems hypoconverge to the
optimality function of the original problem. First we will present a simple algebraic condition which
indicates convergence of the gradients. We will need the column vector b € R", with components b j
defined in (4.10a), and the values d; defined in (4.10b).
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Theorem 5.6.  For representation R1, suppose that Assumptions 3.1 and 4.1 hold. For representation
R2, suppose that Assumptions 3.1, 4.1, and 4.5 hold. For N € N, let Hy be defined as in (4.13a), with
Ly =LyorLy =L§,andlet f¥ :Hy — R, v € q, be defined by (4.16). Let M = M if Ly = L} and let
M =M,if Ly = L. LetS be a bounded subset of B. If

M™% =1, (5.10a)
where 1 is a vector of r ones, then there exists a k<o and an N* <o such that for all

n=(&u)€ S NHy and N 2N*,

V@) -Viymly < % : (5.10b)

Proof. To simplify notation, we replace X" by %;, and 5" by p;". Let S < B be bounded and let
N=Eu)eS. Letit =V, y(u) and n = (& &). For each j € rand k € A[, F,,; (X, ) is given by
(5.3). Hence, with Y, ; 8 %, + AY /e ;K; (%, ®)and © = 7 G, the exists «; < * such that

W, (5, it) = Ab by (&, )1

SWF @, @)= A Y, bk, (Yy 1, GV +1A T bk, (Y p, ) - Ab by (B LN
lElj l€lj

s _ i-1 a _ s _
SAUY, Yhih (Wi @) ¥ =K, G N +A Y bylh, (Y, 7)) = by (G, G
lel im] pzlaw lel

<KiA2, (5.11b)

where we have used the Lipschitz continuity of A, (-, ©) and the fact that S bounded implies that %, and i}
are bounded, which implies that for all j € r, Ih, (%, , @)} and 8k, (%, , @)} are bounded. Therefore, it fol-
lows from (5.5c) that

YOk = (For G 8 Piot - For G ) 1)
= A6 ]G, BB+ b @, BIPY ) + O (8Y). (5.110)
Now, from equation (5.5a), V4 y(V,fx)) = ;,‘,’ ('r—|) M. Therefore, using (5.7) and (5.11c), we obtain
~ 7= ~ - 4, 0A?
Van(Vu N = %(b vy G B Y By -+ b by (B, 0 By )M + _(A"')' . (.119)

At this point we must deal explicitly with our two control representations. For representation R1,
uy (*) is a polynomial on each interval [, #,;). Thus, since § is bounded, for j,! € randij,i; € I, with
I defined in (4.4a), there exists K, < o, such that
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Wz - ah = hu vy ;] - uln, NS lAlc, - ¢ IS 14, (5.12)
where Assumption 4.1(a) was used to justify the last inequality. Let
D 8 (b hI . u ok -+ b hI G, uP IM ™ (5.13a)
and let D/, j € r, denote the j-th column of D, so that
Vu NI, 1= Van (VSN[ =D’ +0 ), (5.13b)

where V, fY(M)[7;, ;71 s the sample of Vfy(n)(-) computed according to (4.2). It follows from Assump-
tions 3.1(a) and 4.1(b’), equation (5.12) and the fact that p,",; is bounded for any 1 € S, that there exists

K3,K4 <, such that forany j € rand i; € I, and M;7; denoting the i, j-th entry of M1,

. r . r o~ . - _
1D/ = b, G, @)Y pa X i MNSVT b Ly G &) = by B, 2D T puM; 0
im] im]

r o
< Y w3hiz = aflipuMJi< kA, (5.13c)
im]

Consequently, if M~'5 = 1 then ¥/.M}b; = 1since M is symmetric. Hence forany j € r,
D/ — b, (i  uf) P 1S KA (5.13d)
Therefore, from (5.13b),
Vuf NI, )] = by G, 8T By +0 (). (5.13¢)

For representation R2, éy (") is not Lipschitz continuous on [¢;, %), so (5.12) does not hold. However,
since M = M, is diagonal, equation (5.13e) is seen to be true directly from equation (5.11d)if M “1p =1,
Now, since S is bounded, (i) by Lemmas 4.8(i) and A1.3 there exists Ks < % such that bx; —x"(r; )l < x5A
and 15 =p™"Y(t ) S %A and (i) By and b, (7, ul7, i;]) are bounded. Thus, making use of
Theorem 3.2(v) and equation (5.13e), the fact that both x"(-) and p"¥(:) are Lipschitz continuous, and
ulv,;,] = if{, we conclude that there exists kg < * such that

WV Y, i1 = Vo NI, 0 = Bk, (6T ), u [, ])TP"'V(Tk,i,-) = by X, u e ; DT i)
S KA. (5.14b)
Now, forj € r,i; € I,and k € A, we have that
VLY () = Vo NN STV FY0)(E) = Vo f YDt 1+ IV, fY 0D = Vo VDT 00

+IV, N, ] =V NN (5.15)
The second term in (5.15) is order O (A) by (5.14). We will show that the first and third terms in (5.15)
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are also order O(A). First consider representation R1. It follows by inspection of (3.6b) in Theorem
3.2(v) that V,, f¥(n)(") is Lipschitz continuous on ¢ € [f;,%.,,), k € A, because u € Ly} is Lipschitz con-
tinuous on these intervals. Since V,fy(n)() € Ly, it is also Lipschitz continuous on these intervals.
Finally, by Assumption 3.1(a), Te,i; € [, tp41] forall k € AL Thus, the first and third terms are of order
O(4) for all r € [0,1]. For representation R2, V, f¥(M)(") € Hy is constant on ¢ € [t, +d;_1, 4 +d;),
j €randk € Al Since u € Ly is constant on these intervals, it again follows by inspection of (3.6b) in
Theorem 3.2(v) that V, f¥(n)(") is Lipschitz continuous on these intervals. Finally, by Assumption 4.5,
Tk.iy € [t +d;_, 1, +d;], forall k € ALand j € r. Since dy=0and d, = A, the first and third terms are
of order O (A) for all ¢t € [0,1]. We conclude that there exist k, < % such that

WV, Y@ =V, fyml<x,A, te[01]. (5.15b)

Next we consider the gradient with respect to initial conditions €&. From Theorem 3.2(v) and (5.5b),
IVef ¥(m) = W8 = IVELY(E, x7(1)) = VL¥(E, By 1 + 1p¥(0) - 53 I. Thus, since S is bounded, it follows
from Assumption 3.1(b) and Lemmas 4.8 and A1.3, that there exists kg < % such that

IVef () = W1 < wg(x™(1) = Ty I+ Bp ¥ N0) = FY 1) S A . . (5.16)

Combining (5.15b) and (5.16), we see that there exists x < % such that forany € S N Hy,

IVF¥m) - VYl < % : 5.17)

The following proposition states conditions for (5.10a) to hold.
Proposition 5.7.
(a) Suppose M = M. Then (5.10a) holds if and only if the coefficients of the Butcher array satisfy

S 1
ijc}’-lgz, p=l...,r. (5.18)
j=1

(b)  Suppose M = M. Then (5.10a) holds if and only if forall j € r, b ; > 0.
Proof. (a) For M = M, it follows from (4.9b) that M~'5 = 1 if and only if
TTHilbs)'T™% =1. (5.192)

Now, it can easily be shown that
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Yjaibj Y iw1b; :
T = Zj-b e = | Zjeibici _|12 (5.19b)

’
roF -l s poar=1 Y
Xiabjei Xja1bj ¢ r

where the last equality holds if and only if (5.18) holds. Note that T~'5 is then the first column of
Hilb(r). Consequently,

1 1
Hilb(r)'T-15 = Hilb(r)!| 12| = e (5.19d)
1r 0
which leads us to conclude that
(1¢;, ¢
I (1) i 1, | A (l) ) i . (5.19€)
(:) 1¢ C{'l O l

(b) Clearly, (5.10a) holds if and only if M1 = b.ForM=M 2, if follows from (4.12b) that

b, :
Ml= H=E. (5.20)

O

Remark 5.8. The conditions (5.18) on the coefficients of the Butcher array for representation R1 are
necessary conditions for the RK methods to be r-th order accurate [7,18). The condition with p =1 in
(5.18) is the same as the second part of Assumption 4.1(b’).

Theorem 5.9.  For representation R1, suppose that Assumptions 3.1 and 4.1 and equation (5.18) hold
and let d = 2. For representation R2, suppose that Assumptions 3.1, 4.1, and 4.5 hold and let d be the
least common denominator for the elements b;, j € s of the Butcher array. Let N A {d" } pu; and sup-
pose that {ny }yeN is such that ny € Hy for al N€EN and Ny »n as N -, Then
OvMy) > 6(M) as N — oo,

Proof. Let ¥ H. xH, — IR be defined by

‘i"(n.n’)émax{ ‘gga;zf” 0.1 = v () - ov, (), max fran-v, (n)+} : (5.21a)

and ¥y :Hy x Hy — R be defined by
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¥ym.m) émax{ max f (M, 0) =y, y(N) — Oy, y(M),, max f Kr(n,n’)-wc,;v(n)} ., (5.21b)
VE Qo V€ Qe+

so that, 6() = miny ¢ H,‘f'(ﬂ»'l')o and Oy () = miny ¢ HN\IT‘ y(M,n"). Now, suppose that {1y } v is a
sequence such that, for all N, ny € Hy and Ny — 1. From the proof of Theorem 4.10, n € H. Let

ﬁ € H be such that 6(n) = ‘f‘(n,ﬁ), and let {M’y } ya; be any sequence such that, for all N, n’y € Hy
and 'y —)’ﬁ. Then,

Ovy) SE vy ) sy ) +

max{ J!éa;(o {fﬁ(ﬂN»ﬂ'N)—fv(ﬂN»ﬂ'N)}—[%.N(ﬂN)-‘I’N(ﬂN)]-[UWc,N(ﬂN)+-°\l’c(TIN)+]

max {fﬁ(ﬂn,ﬂ'lv)—f?v(ﬂn»ﬂ'n)}-[\Vc,N(TlN)—\IIc,N(ﬂN)]} (5.22)

VE Q-+

It follows from Theorem 4.11, Theorem 5.6, Proposition 5.7 and the fact that {Ty } y.; is a bounded set,
that each part of the max term on the righthand side of (5.22) converges to zero as N — =, The quantity

‘f’(’qN ,M’y) converges to B(n) since Ny =N, N’y —)ﬁ and ‘f‘(-, *) is continuous. Thus, taking limits of
both sides of equation (5.22), we obtain that li_meN (Mu) < 6(M) ( this proves that Definition 2.5 holds for

the optimality functions of the approximating problems). Now, for all N, let ﬁ ~ € Hy be such that

OvmMy) = ‘f‘N Mn ,ﬁN). Then, O(ny) < ‘17(1],,, ,ﬁN) and proceeding in a similar fashion as (5.22) and tak-
ing limits, we see that 6(n) < lim6y (ny). Hence, together with the previous result, we can conclude that
Ov(My) > 6(M) asN — oo, O

The following results is a direct result of Theorem 4.10 (epiconvergence) and Theorem 5.9:

Corollary 5.10. (Consistency) For representation R1, suppose that Assumptions 3.1, 4.1 and 4.9 and
equation (5.18) hold. For representation R2, suppose that Assumptions 3.1, 4.1, 4.5 and 4.9 hold. Let
N = {d" } . where d =2 for representation R1 and d is the least common denominator of the b j
J € s, for representation R2, Then, the family of approximating pairs (CPy,8y), N € N, constitute con-
sistent approximations for the pair (CP, 0) . O
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6. NUMERICAL RESULTS
We will now illustrate the usefulness of our analysis with an example. First, recall that by (5.5a),
forn = (£ u)€ Hy and v € q, V,f¥M) = Vi (v M) MR"), where y/(n), defined in (5.5¢), is the gra-
dient of fy(-) with respect to the standard inner product on RY xIR” xIR™. The gradient of fy(°) with
respect to the inner product on L_N is givenby V,, 17 ,)'(ﬁ) dy AN (Vufua) = ?;' M)M5, and satisfies
(VL N, Bu )y = (V, Fym), b ), = (yya), 8t ), 6.1)

where 1 = W an(M) and du =V, y(5u). It is well-known that a change in the inner product on a space
is equivalent to a transformation of coordinates. Since existing optimization software uses the standard
inner-product, it is convenient to define a transformation of coordinates that results in a gradient which
satisfies (6.1) for the standard /, inner product on R¥ x R” x R™.

To accomplish this, let L v =RY xIR” xIR™ endowed with the standard (Euclidean) inner product,
and let the transformation Q : Ly — L N » be defined by

di=Q@)=uaMy, (6.2a)
where My is defined in (5.4). Foreachv € q,let f ¥ : (Ry XL y) = IR be defined by
FREE)AFNE Q™)) = FY(E)). (6.2b)
Letn =W, yM) = (£,@)and { = (£, Q(@)). Then, using the chain rule,

v,f ¥a =0 %uf_ﬁ(ﬁ)) = WmMz2, (6.2¢)

Thus, with 87 = W, y®u), (V,f ¥(i),Q@0)), = (V,fyM),57 ), = (V,f¥M),6u ), Implicity,
the transformation, Q, creates an orthonormal basis for Ly. With this transformation, the approximating
problems can be solved using the standard norm and inner products on Euclidean space for which any of
the standard nonlinear programming methods apply directly. It is important to note, however, that control
constraints are also transformed. Thus, the constraint # € U becomes u My'% € U. For representation
R1, My is not diagonal (except if r = 1). This means that the transformed control constraints will, for
each k, involve linear combinations of the control samples u Lj€er.

We will now present a numerical example which shows, in particular, that without using the above
transformation, the approximating problems can be ill-conditioned.
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Example. Consider the following linear-quadratic problem taken from [16]:

min f @), f@)8x§), (6.42)
where x (¢) = (x,(1),x,(2))" and
. 0.5x,+u _[1
*= 0‘625x12+0.5x,u+0.5u2] > *0)= [o] . te€01]. (6.4b)

The solution to this problem is given by
u*(t) = —(tanh(1 - ¢) + 0.5)cosh(1 =¢)/cosh(1), ¢ € [0,1], (6.5)
with optimal cost x5 (1) = e2sinh(2)/ (1 + 2)® = 0.380797.

The approximating cost function is fy(u) = (0 1) Xy where { %} ) ,f"_o is the solution of the approx-
imating problem for a given control u € Ly. We discretized this problem using two common RK
methods whose Butcher arrays are:

0 0
A= 121172 A, = 12|12
1 1 -1 2 122 0 12
16 23 16 10 o0 1
V6 13 13 16

The scaling matrices My used to define the transformation Q in (6.2a) are given by (5.4) with

NERE 100
M=M=552 16 2|, M=M2=%040 : 6.6)
~12 4 001

which are the same for both RK methods since in A, ¢3 = ¢ = 1/2 implies r = 3 and 52 =2/3.

We solved the approximating problems with the initial guess u(t) =0, ¢ € [0, 1], stopping when the
stepsize was below machine precision (2.22e-16) or the norm of the gradient was smaller than the square
root of machine precision. Table 1 shows the number of iterations required to solve the approximating
problems for different discretization levels N with and without the transformation (6.2b). We see that
solving the discretized problems without the transformation required about 200% more iterations than
with the transformation. The situation can be much worse for other RK methods. The choice of
representation R1 versus representation R2 had no effect on the number of iterations required.



Number of Iterations
1
= i =1, = =]

N M=M, i=12 N
10 17 52
20 18 52
40 17 52
80 15 50

Table 1: Conditioning Effect of the Transformation Q on Approximating Problems.

We use the second RK method primarily to demonstrate the advantage of treating the samples aris-
ing from repeated ¢; values in the Butcher array as the same sample (see Remark 4.7). Let {uy* ) NeEN
where N € N, be solutions of CPy and suppose uy™ — u* where u* is a solution of CP. In [16, Thm.
3.1], Hager establishes, for symmetric RK methods [1,28], a tight upper bound on the error
Ey Ay A, NG -V AN (i#y" ), f second order in A = 1/N for smooth, unconstrained problems. Note
that V5, NUWE, u* (v, .j)» k € ALand j € r because u*() is smooth for smooth problems [26]. Hager
used the problem given in (6.4a) to demonstrate the tightness of this bound. For the particular RK
method described with the Butcher array A,, we can state the following improved result:

Proposition 6.1. Let CPéminM e uf (x*(1)), u unconstrained, and suppose that £ (-) and h(-,-) in
(3.1) are four times continuously differentiable. Suppose the approximating problems CPy are produced
by discretizing CP with the fourth order RK method with Buthcer array A,: ¢ = {0,1/2,1/2,1},
b=1{1/6,1/3,1/3,1/6} and the non-zero entries of A are aj1=az3=12 and a43=1. Let
{uy*Ine N» Where N © N, be solutions of CPy and suppose uy* — u* where «™ is a solution of CP.
Then Ef 81V, y@*) =V 4y (@ ) = 0 (4.

Sketch of Proof. In [16], it is shown, using a reasonable non-singularity assumption on the Hessians of
fn (), that the accuracy of the solutions of the approximating problems is determined by the size of the
discrete-time gradient of the approximating problem at & Ay A, N (™), that is, I?u (@*)I. This, in turn, is a
function of the accuracy of the state and adjoint approximations. For the RK method under consideration,
Hager shows that the variables #* {, k € A and J =1,3 are third order approximations to u*(tk) and
u*(tk + A), respectively. Thus, we need only show that u,;2 is a third order approximation to u*(tk +A/2).

Let Yy ) = X% + A2k (%, ) and Yy 5 = % + A2k (%, + A2k (%, @), &) represent the second and
intermediate values used by the RK method at the k-th time-step with # = &*. Hager introduces a clever

transformation, specific to symmetric RK methods, for the adjoint variables so that they can be viewed as
being calculated with the same RK method used to compute the state variables, but run backwards in
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time. The intermediate adjoint variables of interest here are denoted by g(2,k) and q(1,k). With this
transformation, the discrete-time gradients for the approximating problems has the same form as the
continuous-time gradient for the original problem. Since
Y@ = 281301720, (Y 1, B2 (1, k) + 1120, (¥ 5, 8*DF g 2, K)]. Since
2013k, (2" (1 + A12),u*(tx + A1 2V p* (4 +A12) =0, the size of y,(WF)? is the maximum of

Y, +Ye 2)/2=x"" (6 + A/ 2) and B(g (2, k) +q(1,k))/2 = p*" (5, + A/ 2)N. First,

Y, 147,
w(k)é k,1 k,2

5 =x + %[h O ugd) + h(x + %h(xk,uk‘),ukz)]

=X + A7[': Gog ud) + h (g + AR (xp, ud), u)], (6.7)

where A’ = A/2. Thus, w(k) is produced by the modified Euler rule applied to x;. Since the local trunca-
tion error for the modified Euler rule is order O (A%) and x; is order O(A%), w (k) = x*"(t, +A/2)l is
order O (A%. In the same way, it can be shown that Ig(2,k)+q(1,k))/2~p“ (t +AI2)l is O(A).
Thus, we can conclude that l}u (i?" ),?ﬂ =0 (A for all k € A, This implies that the solutions of the

approximating problems satisfy lir*§; , — u*(;, ;)1 = 0 (A% forallk € Aland j € r. ' O
Accuracy of Solutions Number of Iterations
N Ef | EMEL Ef E{ELy | M=M,, i=1,2 | M= -llvl
10 1.48e-4 2.86e-7 16 20
20 1.87e-5 7.94 1.76e-8 16.22 15 20
40 2.34e-6 7.99 1.09¢-9 16.13 15 23
80 3.07e-7 7.62 6.80e-11 16.07 15 27

Table 2: Rate of Convergence; Conditioning Effect of the Transformation Q.

Table 2 summarizes our numerical results using the RK method with Butcher array A,. The first
column gives the discretization level. Columns 2 and 3 show that doubling the discretization results in an
eight-fold reduction in the control error. Thus, as predicted by Proposition 6.1, Ef is O (A3). The next
two columns, agreeing with Hager’s observations that the optimal trajectories of the approximating prob-
lem converge to those of the original problem with the same order as the order of the symmetric RK
method, show that Ef; 2 | f (*) - f (@y*)1, is order O (A%. Finally, we include in the last two columns
the number of iterations required to solve the approximate problem with and without the transformation
Q. The effect of scaling is less spectacular than in the previous method, but still significant. The
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untransformed problem takes 25% to 80% more iterations to solve than the transformed problem.

The last table shows the accuracy of the approximating gradients for the particular control
u(t)=-1+2t. The first column shows the discretization level N. The second and third columns
confirm that the gradients for the approximating problems converge to the gradients of the original prob-
lem. Note that, based on the proof of Theorem 5.6, it is enough to show that the gradients converge at the
points 7 ;, k € AN,j€Er,andi ; € 1. The fourth column of Table 1 shows that the gradients that would
result if one treated the discrete-time optimal control problem directly do not converge.

M=M, M=M, =%1

N | Wan(Vf@) =% Myl | Wan(Vf@) -7 Mike | IVan(Vf@)=NY,b

10 1.67e-3 6.46¢e-4 1.48
20 3.77e-4 8.31e-5 1.48
40 9.94e-5 ' 1.05e-5 1.48
80 2.55e-5 1.33e-6 1.48

Table 3: Convergence of Gradients.

7. CONCLUSION

We have shown that a large class of Runge-Kutta integration methods can be used to construct con-
sistent approximations to continuous time optimal control problems. The construction of consistent
approximations is not unique: it is determined by the selection of families of finite dimensional subspaces
of the control space. When the elements of these subspaces are discontinuous functions, appropriate
extensions of Runge-Kutta methods must be used. However, in this case, not all Runge-Kutta methods
can be used because some Runge-Kutta methods do not result in consistent approximations. This was
observed both numerically and by failure to prove consistency of approximation with these methods. We
have considered two selections of control subspaces in this paper, one defined by piecewise polynomial
functions and one by piecewise constant functions. Splines can also be used and are treated in Appendix
A2. Each selection has some advantages and some disadvantages. A final selection has to be made on
the basis of secondary considerations, such as the importance of approximate solutions satisfying the ori-
ginal control constraints, the form that the control constraints take in the discrete-time optimal control
problems, or the accuracy with which the differential equation is integrated.

As in our case, the basis functions that are used implicitly to define the finite dimensional control
subspaces may turn out to be non-orthonormal. In this case care must be taken to introduce a non-
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Euclidean inner product and corresponding norm in solving the resulting approximating discrete time
optimal control problems. Neglecting to do so amounts to a change of coordinates that can lead to serious
ill-conditioning. This ill-conditioning is demonstrated in Section 6.

Finally, the use of the framework of consistent approximations opens up the possibility of develop-
ing optimal discretization strategies, such as those considered for semi-infinite programming in [17].
Such a strategy provides rules for selecting the number of approximating problems to be used as well as
the discretization level, the order of the RK method, and the number of iterations of a particular optimiza-
tion algorithm to be applied for each such approximating problem, so as to minimize the computing time
needed to reach a specified degree of accuracy in solving an optimal control problem. We hope to
develop such results in the near future.

APPENDIX A1

In this Appendix we will collect a few results used in the analysis of Sections 4 and 5. We will con-
tinue to use the notation of Section 4: A = 1/N, #; = kA, and 7, ; = #; +¢;A.

Lemma Al.l.  For representation R1, suppose that Assumptions 3.1(a) and 4.1 hold. For representa-
tion R2, suppose that Assumptions 3.1(a), 4.1, and 4.5 hold. For any bounded subset § ©B, there exists a
& <o such that forany n = (,u) € § N Hy, 151 S xA? for all k € A, where

B Bx(t) = x 1 y) + AT b A (X0 ) uly ;1) k € AL, (AL1)
i=]

x"(-) is the solution of the differential equation (3.1) and u [t¢,;]is defined by (4.2).

Proof: Let b j and d; be as defined in (4.10) and, for j € r, leti; € ] where [ is given by (4.4a). Then,
fke
writing x (-} = x"(-), since the solution of (3.1) satisfies x (f;,) = x(t)+ L lh (x(t),u(t))dt, we see that

s fra)
O =AY bh(x (1), ult ;1) -j,. h(x(t),u(t))dt
i=]

r o thdd; r o ned
= 2.’;:"41 h(x(fk),ll[‘tk,;l])dt - EJ} +d, h(x(t),u@t)d: , (Al.2a)
j=l -1 jar ¥

because d; —-d;_; =A5j, ulty,;}=ulv,;] for all i €l;, dy=0 and, by Assumption 4.1(b’),
d, =AY[_b; =AY5.1b; = A. Thus,

r n4d
1B0< Y f:‘ Ml’ Ve Ge (), [t D) = h (e (0), u (e )i
j-l {3 -1
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T fedd,
P> I,'M: Kl (0) —x (O + luly ;1 —u@)i]ar , (A1.2b)
j-l t -1

where k; <o is as in Assumption 3.1(a) and d; —d;_; > 0 by Assumption 4.1(b’). Now, fort € [t;,#; 4],

there exists x, < °° such that
() - x()l < L:Ih @), u(t)de < j;:mtcz[lx(t W+ 1] dt (A13)

by Assumption 3.1(a) and the fact that S is bounded. Also because S is bounded, if follows from
Theorem 3.2(ii) that there exists L <o such that Ix(¢!)I < k3[8i+1]J<L. Thus, for t € [te, te1d,
Ix(t)-x@l< L:Mtcz[l, +1]dt = Axy(L +1). There also exists k;< such that, for any k € A and
JEr, Mt ;l-u@)l<skA for t€[4+d;_,t,+d;) since (i) for representation Rl
T.,i € [t +dj_y. 1 +d;) by Assumption 4.1(a), 0<d;j<Aforj=0,...,r by Assumption 4.1(b’) and
i € Ly is a polynomial on [%.t4) and hence Lipschitz continuous on each sub-interval
[t +d;_1,t +d;); and (ii) for representation R2, & € L, is constant on ¢ € [z, +d;_1, 4 +d;) and
T,i; € [t +d;_, 1 +d;] by Assumption 4.5. Therefore,

r o te+d; I tedd) 2
Bl < EJ;.«!, lrq(rcz(L +1)+x)Adt = KAZLM’_ ldt = KkA®, (Al.4)
jerr = i
where x = kj(k3(L + 1)+ x4). This completes our proof. O

The next lemma concerns the functions Ky i = K;(x;, o) of the RK method defined by (4.3a,b).
The proof of this result is easily obtained from the proof for Lemma 222A in [7, p. 131].

Lemma A1.2 Suppose Assumptions 3.1(a) holds. Let S ©B be bounded. Then there exists L <o and
N* <cosuch that forall N 2N*,n€ § N"Hy,k € A, andi € s,

IKk,l —h(fk.u['ck_,-])lSLA. (AIS)
O

Next, we present a proof of Lemma 4.8,
Proof of Lemma 4.8.

(i) Convergence Letm = (& u)€ S NHy and, for k € A, let ¢, éfk“ =x"(#;). Then, legi =0<xA
and by adding and subtracting terms,

5
a1 =5+ AY B Ky ; —xM(tey)

im]

=& + x"(tk) —x“(tk,,,l) + AZb{h (x“(tk ), u [Tk,i]) +A2bi [Kk.i -h (xn(tk ),u [Tk.l'])] . (A1_6)
im] im]

The norm of the second term in this expression is bounded by ;A% by Lemma A1.1 where K; <, Using
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Lemma Al.2, Assumption 3.1(a), and the fact that |15; | <1 by Assumption 4.1(b), we conclude for the
third term that, there exists k;, < ¢ such that

Aan, [Kk,l' - h(xn(tk ) u [Tk,i])] I

i=]

SAYAK, ;- KGN, ulty DI+ AT MG, ulgg 1 - k), ulxy DI
iw] im]

SALs + Axysle,l . (A7)

Thus, forall k € A{
leg .l S (1 + 1045 ) ey I + 15342 (A1.8)

where k3 = x; + Ls. Solving (A1.8), we see that for all k € A ke, I < (1 + vczAs)”Ieo +x3’A < xA. This
proves (4.18a).

We prove (4.18b) in two steps. First suppose that Hy = Hy} = R™ x L)} and let n; € S N Hy) be
given. The expansion based on higher-order derivatives (see [7]) needed to prove (4.18b) requires
smoothness of k(x,u) between time steps. By the way we have defined control samples u [t¢,i), the
samples of u, € L, used by the RK method correspond to polynomials between time steps, implying that
h(x(t),u,(t)) is smooth between time-steps. Using the same type of reasoning in the proof of Lemma
Al.1, we conclude that there exists x < o, independent of 1, such that (4.18b) holds for representation
R1. Next, to prove (4.18b) for representation R2, let Hy = HZ = R™ xLJ. Letn, = (§,u) € S NHy?
be given and let Ny = (§,uy) = (WA §)""(WZ y(M2)) € Hy so that VA y(uy) = V3 y(up). Then for any
t €[0,1)],

™) —x™()l =1 L'h x™M(s), uy(s)) = R (x™(s), uy(s))ds|
< |j(:i{ (™(8)) = B (™5 )) + B (u y(s) — up(s ))ds 8

? t
<K, le"‘(s) - x"¥(s)Mds +1 (B (uy(s) = us(s))dst, (A1.92)
by Assumption 3.1(a). Using the Bellman-Gronwall lemma, we conclude that for any ¢ € [0, 1],
!
™M(@t) - xM(N s ke 1B 1N j'o(u 1(8) = uy(s))dst . (A1.9b)

Now, let 2'(¢) 8 uy(s), t € [0,1], 21(0) = & and 5%(t) B uy(s), 1 € [0,1), 22(0) = E. Let 7 and 52, k € A(
be the computed solution of z!(z) and z%(¢), respectively, using the RK method under consideration. We
note that 7! = 2,‘2 forall k € Alsince V§ y(u;) = Vi, ~n(u2). Then, since (4.18b) holds for representation
R1, z! = z1(t; ) + 5, where 15,1 S k,/N®, x; <o, forall k € A, Also, from (4.3a,b),
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=2 _ -2, « =2 v ot 2
Za =2+ Lhiualy  1=20+ L[ ua(s)ds =2504), (A1.9)
=] j=1

since T ; € [t+d;_y, 1, +d;) (by Assumption 4.5) with u,(-) constant on these intervals, and d, = A by
Assumption 4.1(b’). Since z! = 7,2, we must have

) =22 =5 + 8, =72 =08, , Vke A (A1.9d)
Hence, we conclude that
uﬁ'(u 1(8) = ug(s Ndst = k21t ) = 224 )N = 15, 1 S /NP . (A1.9)
Therefore,
D™ ) = TV < () = x Ml + V() — 5N+ Y - SIS KUINP, VE € AL, (AL9f)

where we have used (A.19b) and (A.19e), the fact that bx™(z,) — X" < ko/NP since (4.18b) holds for
T € S NHy by the first part of this discussion and the fact that %" = %™ since u;[t; ;] = uslty ;1.
Thus (4.18b) holds for representation R2 under the stated conditions.
(ii) Lipschitz Continuity  First observe that the term Y, 5; K, ; in equation (4.1a) is Lipschitz continu-
ous on bounded sets with respect to X and i, with constant k,, since it is a finite composition of Lipschitz
continuous functions. The constant k, decreases monotonically to the Lipschitz constant « of A (:,*) as
A—0. Thus, there is a single Lipschitz constant «; for ¥_,5; K} ; which is good for any A.
Let 1 = (§,) = W, y() and 0’ = (&,7") = W y(0). Define & 25"-%" and 87, = i —i7;".
Then, 8y = £E-&’, and
s
Ors1 =0 +AYb;[Ky,i =K '], k € A. (A1.10)
iml
Taking norms and using the assumption that 1b; | < 1, we obtain

s
|6k+1' < l&kl +AZ 1 b; ”Kk',- -Kk,i'l

im]

§
< 150+ Ay ¥ [83, 8 + 157, 1]

im]

, 12
< (14 A5 )15 0 + Avcls[ ):,lsﬂ{FJ
j=1

< (14 Ax;s)IBg | + Axys trace((8iz + - - ST)M (8! - - - 5&)T)">, (AL11)

where M = M, for representation R1 and M = M, for representation R2 and 1, = 1}/Apn(M ) < . Now
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we define g A 15,0 and, for k € A[,
Exa1 2 (14 Axys)e; + Arys trace((Gir! - - - Su) M (Biz! - - - 5a)T)"2, (Al.12a)

so that I5,§ < &;. Solving (A1.12a), we obtain that

k-1 —r 12
g = (14 A5 ) eo+ Axys ¥ (1 + Axys Y trace((3z;! - - - Si)) M (Bizj! - - - t‘>u,‘-')7)l , (Al.12b)
j=0
Therefore, assuming without loss of generality that k; 2 1, we have, forall £ € A[,

N-1
181 < (1+ Arys )Y Kgs[ 186k +A ¥, trace((6 - - - Sa)) M (5%, - - - 5T ) ]
j=l

N1 172
sL[l&-&'ll2+ [A Y trace(3i)' - - - 8}y M (i} - - - 7)) ]2]
j=0

172 - -
=L[u§-5'n2+uz7-ﬁ'ﬂ2] =Lin-n1lg, , (Al.12¢c)

where L = (N + 1)”2(1 + Ax;s W Kys and we have made use of the fact that if a; 20 for j € q then
z;]-l aj < quZ(qual aj2)1/2. 0
Lemma A1.3. Suppose that Assumptions 3.1, 4.1 hold for representation R1 and that Assumptions 3.1,

4.1, and 4.5 hold for representation R2. For any § ©B bounded, there exists k< and N* < o such that
foranym € S "Hy and N >N*,

x

pr —p <

, ke {0,...,N}, (A.13)

where p () is the solution to the adjoint differential equation (3.6¢c) and { p, } /L, is the solution to the

corresponding adjoint difference equation (5.5d).

Proof.  Proceeding as in the proof of Lemma 4.8(i), if we define e, ,; 4 Pi+1—P (t¢41) we can show that
lexl <Ll M +L,A%, k€ A, (Al.14)

where L, L, < 0, using (i) the fact that
5
P = Fo G ) Pras = Pran + AL b e B u [t 1 Pray + 0 (A9, (A1.15)
inl

(ii) Lemma Al.1 with h(x(#),u[7; ;1) replaced by —h, (x(t;),u[v; ;17 p(t,,,) and (iii) the result of
Lemma 4.8(i) that Lx (f, ) =X, ! < kA for all k € A, Now, by Assumption 3.1(b) and Lemma 4.8(), there
exists k; < o such that
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leyl=Ipy —p(ISILExN) - L, Ex() 1skiEy —x(DIS kA, (A1.16)
where x; = kK;. Thus, solving (A1.14) we conclude that for all k € A,
led <(L)Vleyt+LyA,

which, with (A1.16), proves (A1.13). 0O

APPENDIX A2

In this appendix, we use splines as the finite dimensional control elements in the construction of
approximating problems, for optimal control problems with enpoint inequality constraints and box-type
control constraints. We show that the resulting approximating problems, along with their optimality
functions, are consistent approximations to the original problem with its optimality function. In the pro-
cess, we will develop some results for splines that are interesting for their own sake.

We will construct our finite dimensional control spaces using spline basis functions, i.e. B-splines
[4). Thus,forr € N, r 21, let

N4r-1

L8 (ueLF0,1) |ut)= T oude(t) , t€[0,1]}, (A2.1a)
k=1
H{AR™ xL§) . (A2.1b)

where a; € R™, ¢ :[0,1] - IR are the basis function ¢, () = By, (1), as defined in [4] and r is the
order (one more than the degree) of the polynomials that make up the spline pieces. The subscript t is a
knot sequence which we choose for our purposes to be t = {k /N } Y¥'=1,, (note that, unlike in [4], our
indexing does not start at k=1). With this knot sequence, the B-splines constitute a basis for the space of
r —2 times continuously differentiable splines of order r that have breakpoints at times 7, =k /N,
k = {0,...,N }. Since splines are just piecewise polynomials between breakpoints with continuity and
smoothness constraints at the breakpoints, L") ©Ly and Hy") < Hy 8 R™ x L}, where Ly} is defined in
Section 4 for representation R1 with r-th order polynomial pieces. The control samples, u [t ;],
k =0,...,N-l, j €r, used by the RK integration method given in (4.3a,b) are related to the spline
coefficients by u [ty ;] = TN "oy ¢ (1., )-

We will use B-splines normalized so that E,,”_";"IB,:,,,‘(t) =1 for all ¢ € [0,1]. These B-splines

can be written in terms of the following recursion on the spline order r:

t - 'k—r-l

t, ~t
By rar ) = By, (¢t +A)+t—"7—3,,+l_,,,(: +A), k=1,...,N+r,r21, (A22a)
“ tker

lpm1 = Yeer1 1:

where A=1/N and
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1, St <t azh
Bk,],t= 0, otherwise ’ k = l,. .o ,N . o

For instance, cubic splines (» = 4) have the following basis functions [21]:

( t -14)°, fhaSt Sty

) A +30%(t =1, ) +3A( — 1,3 =30t =1, 3%, HaStSf,

o 6A 4A° - 6A(t - tk-Z) + 3(I - tk—Z) , oSt S b
A =3AYt =t ) 43A¢ = )P =t -1, fySt<t

The domain of the B-splines extends outside of the range ¢ € [0, 1] for the purpose of construction only.
The functions u (¢), given by (A2.1a), are defined only on ¢ € [0, 1). Animportant feature of B-splines is
that the support of each individual basis function is only r intervals [t;,#.;]. This is important for
efficient computation of u(r) from the spline coefficients and of the gradients of the cost and constraint
functions.

We define the control constraint sets for the approximating problems as,

UPBueLflow€U,k=1,...,N+r—1} (A2.3a)

HPAR™ xUY), (A2.3b)

where, for this appendix, we assume that U, used to define U in (3.3a), is a cartesian product of the form
m
Ué Xla;.by), (A2.3c)

with lg; | <o, |b; | <o and @; < b;. The approximating problems are thus:

CP, nlgillll" {WonM) | Y. . nM) <0}, (A2.3d)

The functions y, y(n) and y, y(n) are defined as in (4.17). We will keep the definition of the optimality
functions the same as given in Section 5. Note that the decision parameters for these problems tran-
scribed into coefficient space, HY", are the coefficients o,k =1,...,N+r-1 in the expansion of basis
functions rather than the Nr control samples u [t ;},k =0,...,N=1,j =1,...,r for the approximat-
ing problems defined in Section 4. Thus, the number of decision parameters needed for splines is sub-
stantially less than the number needed for the same order general piecewise polynomials.

The next three results state properties of the spline subspaces that are needed to prove epiconver-
gence of the approximating problems to the original problem. Corollary A2.2. is a non-recursive restate-
ment of the subdivision result presented in [33, Thm 3.1].
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Proposition A2.1. (Nesting of Basis Functions) ~Given an integer p 21, let t= { k/N } f2/**~ and

= {k/2N } {22371, Then,

1 p+l
Bk.p,t(’) = onp.iBﬂ-pﬂ'-l.p,f(t) , t€[0,1], k=1,... ,N+p—l , (A2.4)
im]

where Cp,i is the i-th coefficient of the polynomial (1+1)°. We can take By, ¢(t)e0if I <l-por
I > 2N +p -1 since the proposition is stated only on ¢ € [0, 1].

Proof. 'We can prove (A2.4) by induction on p. It is clear from (A2.2b) that (A2.4) holds for p = 1.
Now we will show that if (A2.4) holds for p = r, then it holds for p = r+1. From (A2.2a),

=ty ry
TBk r, t(t +A)+

-1
By ri,dt) = — B, 0 +4), k=1,... .N+r. (A259)

Substituting (A2.4) into this expression, letting A’ = A/2 and noting that B, (¢ +2A’) = B,_;(t + A’) and

= t’y, gives us

P=t'o4ryy 1 73 ny Y-t 1 14 /
By, ra1,t) = A 2r-l ZO‘, iBokraiz,r, vt +24°) + 2r A Féo""Bu"*"*l»’-t’(I +24Y)

t =ty

A BZk-r r, l'(t +A)

1 t =1 2%k
= E_r-{o’.l ra’ B2k-r-],r,t’(t +A,)+O',,2

r ! =154 —r-1) Vo =1
+ O, ——— 40, i ;| Byyryi_ (t + A
j[ r,j+1 rA’ r.j=1 rAN 2k -r+j l,r.t( )

oy og =
+O; r r A BZ&rt’(t"'A’)'"orr-o-l

A B 2k41,r, ¢t "'A')}

1 t =1t 'y4kr-1) tokoroy = =24 =r)1
= ?{cr,l—_rA/ Bokr +°r.l_—_rA By, + (o, 1+0r,2)—r By,

r V' ok-1)-raj =1 P =1 %oty
+X [(°r.f-1 +0, ) +(0,,j 40, ju) | Bakyajur

j=2 rA’ ry’
o 1=t L=ty g =t
+(o,,, "’°'r,r+l)Tsz + 0,41 A Bog + 0, r41- A Bops

where we have abbreviated B, , (¢ + A") with B, and we have used the following facts:
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(i) since ro, -0, 2=0,
Or 2t =15r1) = (r 0y, 1 = 6, DA 40, ot =154 ,_1))
=0y, 1 2p1 =+ =) 1)+ O, ot =124,y —A)

= O,.'l(t '2*.,_1 -+ (O',-.] + G,'z)(f - "2(k-r)-l) , (A2.5b)

(i) since g, , =ro; ;41 =0,

G, (' =t)=0, ,(t'y =t)=(0,,, =10, p . )A

=0, (' =1t =A)+0, p (g =t +t =175, ))

=(0r,r +0r rs1)(t 21— 1)+ G, )t =5, 3) (A2.5¢)
. a’-! (¢ +1) rr=1:(r—-j+2 . N
iii and since o, ; = ——————"— = , j=1,...,r+l implies that
() ri = g GD G -1 J P
O j-1(r+2=j)=ro; +joj41 =0, j=2,...,r, we see that
r Py =1 1=t 5%kr-1)
O, jj——— +0, j,—m————
r,j-1 rA/ r,j+1 rAt
r tiy —t t=t9k-ry 1
=)0, im0 +0, jy—— 00— =—(0, j_(r+2—j)-ro, ; +jo, ;
jz-‘a r,j=1 rAN r,j+l rA’ r( r,j l( J) r,j J r,J+I)
4 1 —1 t =1k r-1) r+2-j yi
=Yo, ;. ;———+6, jyy—————— =0, ;_ -c
j% r,j=1 rA r.j+l rA r,j-1 r f,j+1'.
Uokatyraj =1 +1 =191y
+O'r'j I'A,
r o =t r42-j P ol=tyrsj =1 U =19k r 1)
=Yoo, i j——— =0, ;_ -0, ;}—m———— 40, | ————————
jz-:z r,j-1 rA r,j-1 r r,J ri’ r.j rA’
t =124
+°r,j+l—r A 0r,j+1f
tok-1yr+j = = 2kmr-1tj

t t
+(0,,; +0, j41) (A2.5d)

r
= Z(or,j—l +°r,j)

j=2 A ry



Now, rearranging terms slightly, we get

1 -1)
By ra1,it) = '2—,{or,1_—rz,—_82k-r-l 01— o Bau

r t -t '2(,‘_,_1)4.] 2k—r+j-1 !
+ +0 B - By
j);,l(cr.j r.j+1) A 2Uke—r4j-1 A 2Ue-r+j
=124 vy =t
+0, 141 _;A/_BZk +OCr r41 rA Boarf - (A2.5¢)

Referring to (A2.2a) and noting that o, ,=0,41=1, G, ,41=0C41,+2=1  and
Cr,j + O j41 = Oray,ja1- j=1, . . ., r+1, we see that

1 r+2
By ra 1) = > Y. Ors1,iBokrsi-2,r41,¢(t) (A2.5f)

im]

which verifies that (A2.4) holds for p = r+1. 0

Corollary A2.2. Letr 21 and o, ; be the i-th coefficient of the polynomial (¢+1)". Then, given
u € L") with coefficients o4, k = 1,...,N +r -1, u is also a member of L{}) with coefficients B,
k=1,...,2N +r -1 given, for r odd, by

r+l
2

_E Ok 4r)i2-i+10r,2i-1 » k odd
1 " (A2.6a)

<
r-1| I+l ’
2 2

Y Ok4rs1y2-i Or,2i  » keven
iml

and, for r even, by
( r+l
=
Y O44r)y2-i+10r,2i-1 » k even

1] = (A2.6b)

PR '
Y, Og4r-1y2-i+10r,2i » k odd

im]

.

where[ p] is the smallest integer n such thatn 2 p and| p| is the largest integer n suchthatn <p.

Proof. In the following, set B, , ((t)mQif k <1 ork > 2N+r-1. From equation (A2.1a) and Proposi-
tion A2.1,
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Na4r=1 N4r=1 r+l

u)= Y B, ()= Y %cmr.isz-m-l,r.t'(')
iw]

kw1 k=1
2(N+r-1) 1
= Y Oy 7 X0 iBrorai,r,elt)
FRRAE
r+l +l
2AN+r=1)-1 1 r=1 L5
= Y Opa +1 Py Y, ©r,2j-1Br'razjor,r (t) + 2 Or,2iBr'ers2j,r (1)
Fal a
|- r+l
Z G 41 Or,2j-1Br'crazj1,r v(t) k' o0dd
2AN4r-1) g j=l 2
= <
= - r+l
pog 2771 L=
2 Ok O 2jBrorinjy r plt) k' even
j=1 2
( [ L*L r+1
2N +r=3+42j
z Ot“., ‘e or.ZJ-IBk',r,t’(') k+r even
1 jel  kw2jer S :
= 2r-l < |_.’_"'l._] (A278)
2 ° 2N4r-342j
Y Y Ogarsr jor,ZjBk',r,t'(t) k+r odd
J=1 k=2j—r T 2
Thus, if r is odd, we can write, abbreviating By , () with B,
Qg4r O o c Ot41 O
| 2wa| RE 2N§+1 B o3 WV r-n| L
ll(t)= < Bk"' Bk+"'+ Z Bk ,
- LS °‘k+;-1 r,2 ol au;-n 4O i 0‘% Or,r+1
where the top row is for ¥ odd and the bottom row is for k even. If r is even, we can write
Ot4r O a o, o O
War-| ELTT Warst| B3 avar| 5
u(t)= By + B+ - + B¢,
2 ! kw2-r ak""_z"l_ r,2 g kmd—r ak""T'l_l Cr.4 * kgl 0 *

where, the top row is for £ even and the bottom row is for ¥ odd. Now, by collecting the terms for

ke (1,...

,2N+r-1} and forming the expression
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2N +r-1

u@)= Y, BeBy,,¢t), (A2.7b)
k=]
we see that the coefficients f; are as given by (A2.6a,b). O

Lemma A23. LetN= {2"}.%,. Then,L{ SLJ for any Ni,N, € N such that N; <N,. Further-
more,

(a) Given = (§,u) € H and N = 2" <o, there exists j, € N, j, < and n;, € H}.') such that
n-n,iI<1/N.

(b) Suppose there is a sequence { uy } v ¢ N such that uy € U{)and uy — u. Thenu € U.

Proof.  The nesting of the subspaces follows directly from Corollary A2.2.

m
(a) From (A2.3c), U is given by a cartesian product of the form in la;,b;], with lg; | <o, |b; ] <0

and a; <b;. Since u € L7'[0, 1), there exists u’¢ € C™[0, 1] such that lu —u’}, <5 = 2/(5+m)N, [27,
Theorem 3.14, p. 69]. Now, with ‘u, denoting the i-th component of u, define the function u, as fol-
lows:
b; =5 if ‘u'(t)>b; -5,
fut)y=< 'u’(t) if a;+5<s'u’t)<b; -5, i€m, te€[01], (A2.8a)
a;+d if a;+d<iu’(t),
Note that, because a; < ‘u(t) <b, foralli € m, s € [0,1],
i1m . Im .
bu —udf = [ TCu@)="ue)dr < [ F(Cu@)=w' )P +8)dt =lu ~u' B +m&. (A28b)
iml is]
Thus, lu —ul, < (14+m)d. Now, u(") is a continuous function on a compact interval, hence uniformly
continuous. This implies that, for each i€ m, the modulus of continuity for ' ug,

o ug,0) B max { Vug(t)) - uytx)l | 11;=1,1 S}, goes to zero as 6 — 0. Thus, by [4, Theorem
X111, p. 170], there exists an integer N, = 2" < e and uy, € L,&.” such that

bueg—uylp<lug-uyle < % = (iS +m)N . (A2.8¢c)

Since uy, is also uniformly continuous, there exists n, € N, n; < n, < ©0, such that, with N ,=2"

buy,(t)) = uy (t )0 < V1 € [0,1] suchthat It;~t51 <(p=1)/N,,  (A2.8d)

5
D, -1

where 1<D, < is as given on page 155 of [4]. Now, fork =1,... Ny+p, define the intervals
T¢Blpter) With 4, =k/N, and define the quantiies M, = max, r uy (1), and
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'my =min,e,-"'uNI(t). Since for 1,2, € T, It; — 1,1 S(p-1)/N,, we see that

My -'m, = max Vuy(t)-"uy @)l
k k 11,1,€ET) Ny l) Nl(z) Dr m-l

, for 1,1, €T, , i€m. (A2.8¢)

Thus,

)

D oS ——
’ i i
Mk_ my

+1, Viem. (A2.8f)

Next, since Ly, < Ly, by Corollary A2.2, uy, € Ly,. Hence, there exists { oy ),f'.’l“’ < R™ such that
uy,(t) = Z,ﬂvfl“’ak ¢x(t). Thus, by [4, Corollary X1.2, p. 156],
ka +imk iMk —im

iMy-'m
5| $Dy e S¥b+ — (A2.8g)

Iiak -
where we used (A2.8f) for the second inequality. Therefore, — Y28+ 'm; <'a; < %5+ 'M,. But, from
(A28c), we see that ‘M, 8max,¢r uy(f)<Smax, e ut)+ 0 =b;-%5  and
'me Bmin, ¢ 7, uy (1) 2min, ¢ 1, u (1)~ 2d=a; + 5. Thus, a; <oy <b; which implies that

o, € U. Finally, by (A2.8b) and (A2.8c),

Bt =y by S0t — gl + 0ty — gy + lutg =ty S B+ (1 4+ )5+ % = % . (A2:8h)
since & = 2/(5+m)N . Thus, the proposition holds with j, = 2" and i} j, =& uy)€EH j,(.") .
(b)  Referring to [4, Corollary XI.1, p. 155), we see that U < U and U s closed. O

Remark A24. We see from Lemma A2.3(b) and the definition of Hy in Section 4 for representation
R1 that HY) € HNH\) € HNHy, < Hy. Hence, control constraint violations are possible for
n € Hy but not forn € HY).

Theorem A2.S. (Epiconvergence) Suppose that Assumptions 3.1(a), 4.1 and 4.9 hold. Let
N = {2" },.;. Then, the problems { CPy } y ¢ N cOnverge epigraphically to the problem CP as N — o,

Proof. Given n € H, there exists, by Assumption 4.9, a sequence {7y }y.; such that ny € H,
Ty — 1M and y, (My) <0. By Lemma A2.3(a), for each N = 2", there exists j, € Nand 1;,’ € H{") such
that Iny —m;, 1< 1/N. It now follows from the proof in Theorem 4.10 that part (a) of Definition 2.1 is
satisfied. That part (b) of Definition 2.1 is satisfied follows from Lemma A2.3(b) and the proof in
Theorem 4.10. a

To show consistency of approximations, what remains is to compute the gradients of the cost and
constraint functions with respect to elements of Ly~ and show that the optimality functions for the
approximating problems hypoconverge to the optimality function for the original problem. To compute
the gradient V,, (1)), v € q, we first define the space L") & R¥*+"~1 x R™ and the map
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Sn.r L > LY, (A2.9)

which takes elements u = ¥"¥% ! o, & () and maps them to & = { o } ¥, with o, € R™. We also

define H\ 8 R™ x L{"). It is clear that Sy , is a linear bijection. Proceeding as in Section 4, we define
the inner product on Ly’ in the following way. Given a,B € Ly, letu = Sy’ (@)andv =Sy ! (B). The
inner product must satisfy

- 1
(o, Bl = (u,v ), =, ! tor Loy 0 (1), S NI18,0,(1) Vat

N+4r=1 Nar-1 1 - -
= Y L {oB) [ ()t = (aMq,B),, (A2.10a)
k=] I=]

where the inner product on the right hand side is the standard inner product on RV*"~! x R™. Thus, M,
is the (V +r —1) x (N +r —1) matrix whose k, / -th entry is given by

1

Mode,i = [, 0 @) (t) dr . (A2.10b)

An alternate means of determining M,, is to make use of the fact that L{")  L,}. This will allow us

to use the results for L, in Section 5 to show consistency. Let My be as defined in (4.9b) with M = M,
the quadrature matrix for representation R1. Recall from Section 4 that, given u € Ly,
Vanw)=u € L_:,J. Thus, from (A2.1a), the composite map VA'NoSN‘,I,(a) = acb}[,,v where the

(kr+j,1)-th entry of the Nr x(N +r —1) matrix Dav is §(t,;) k=0,...,N-1,j=1,...,r,and
!=1,...,N+r -1, Thus,

(u’v )Lz= (SN,r(u)MavSN,r(v))lz = (‘IA‘[q](u)LiN,‘/A'N(V))I2
={Van °Sh;.,]r°SN.r(u)MN'VA.N°Sls7,lr°SN,r(V))13

= Sy, @) DL N My, Sy, (V) D] ), . (A2.11a)
Therefore,
M, = D] y\MyD, v . (A2.11b)

It is not obvious that (A2.11b) is equivalent to (A2.10b), and hence, independent of the Butcher array A.
To see that this is so, notice that the &, j-th element of M, as given in (A2.11b), is

[ 0t0,0) |

M), = [ 9% (0,10 e (T, ) e (Ty—y, 1) "¢k(‘5~-1,r)] M, : . (A2.11¢)

¢ (ty-y,r)

This is just the inner-product of ¢ () and ¢;(¢) in Ly. Hence, because of the way M, was defined in
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Section 4, [My);,; = (& (1), 9;(1)),.

We are now in a position to compute the gradients of the cost and constraint functions with respect
to elements of Ly/). From Theorem 5.1 we have, for v € q,n = (§,«) € Hy"), and u € H,",

(Sn,r (Vuf NOIMg, Sy, (Bu))y, = { Y@, Sau)y, , (A2.12a)
where 8a = Sy , (5u), & = Sy, (1) and
1@ =1 M) Ds y » (A2.12b)
with 1} = W, »(Sy’,(00)) and yY(n)) defined by (5.5¢). Thus, forn € Ly and & = Sy , (),

V. =Sy (M) . (A2.13a)

Since Sy’ ,(&) is a spline for any a€ l?,\(,'), (A2.13a) shows that V,fy(n), v € q, is a spline for all
1 € Hf). Note that, from (A2.11b) and (A2.13a) that, since V , y oSy, (@) = a D,y

Van (VufNO) = M@ v [OLx My @ v 1@l y =WEOMF',  (A213b)
since ®, y has full rank. Equation (A2.13b) is the expressfon given in Theorem 5.1.

To show convergence of the gradients, we note that L§") < L,. Therefore, by Theorem 5.6, there
exists k <o such that IV, fy(M) -V, fY@I <N for all § € HY’<H,. Therefore, the optimality
functions hypoconverge by the result of Theorem 5.9. This, along with Theorem A2.5, shows that the
approximating problems CPy, with feasible sets H{) and optimality functions 6y given by (5.8a) using
(A2.13a) as the expression for the gradients, are consistent approximations to (CP, 8). We state this result
as a theorem:

Theorem A2.6. Suppose that Assumptions 3.1, 4.1 and 4.9 and equation (5.18) hold. Let
N = {27} ;u;. Then, with CPy, as defined in (A2.3d) and Oy as defined in (5.8a), the family of approxi-
mating pairs (CPy,6y), N € N, constitute consistent approximations for the pair (CP, 6) . 0
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Example (Linear Splines --- hat functions)

In this case, r = 2 and the basis functions are given by

(t "tk,z)/A ift € [tk-Z'tk-l]
o (1)

WG =t)A ift € [t 1, 4] (A2.14)

Letu,v € L,s’ )and a. = Sy,r(u) and B =Sy, (v). Since these hat functions have a support of only two
time intervals (2A), M, given by equation (A2.10b), is

21 ]
141
M =2 L4 g , (A2.15)
6 .
41
12|

Example (Cubic Splines)

In this case, r=4 and the basis functions are given by (A2.2c). Assuming k </,
j‘°¢k(t)¢,(t)dt —L¢k(t)¢,(t)dt where @ =max {0,4_4} and b =min { 1,1} since each B-spline has
support of width 4A. In particular, [M,]; ; = 0if 1k | > 3. Thus, from (A2.10b),

F20 129 60 1
129 1208 1062 120 1

A | 60 1062 2396 1191 120 1
Ma:ﬁ 1 120 1191 2416 1191 120 1

1 120 1191 2416 1191 120 1

(A2.16)

Note that, for r 22, M;' is a dense matrix. But, for 1 = (& u)€ Hf), we can find
d'‘m)asy  (VufN(M)) efficiently by solving

d* MM, =7(@), (A2.17)

where o = Sn,r(u). We can efficiently solve (A2.17) using the Cholesky decomposition of M, which
can be computed off-line.
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