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ABSTRACT

This paper explores the use of Runge-Kutta integration methods in the construction of families of

finite dimensional, consistent approximations to non-smooth, control and state constrained optimal con

trol problems. Consistency is defined in terms of epiconvergence of the approximating problems and

hypoconvergence of their optimality functions. A major consequence of this concept of consistency is
that stationary points and global solutions of the approximating discrete time optimal control problems
can onlyconverge to stationary points andglobal solutions of the original optimal control problem. The

construction of consistent approximations required the introduction of appropriate finite dimensional sub-

spaces of thespace of controls and the extension of thestandard Runge-Kutta methods to piecewise con

tinuous functions.

It is shown that unless a non-Euclidean inner product and nonn are used on the control space, in
solving the approximating discrete time optimal control problems, considerable ill-conditioning may
result.

Key words, optimal control, discretization theory, consistent approximations, runge-kutta integration

AMS subject classifications. 49J15,49M25,49J45,65L06

^n»e research rqxnted herein was sp<nsored by the Air Face Office of Sdentific Research contraa F49620-93-1-0165 and the National
ScienceFoundaticm grant ECS-93-02926.



1. INTRODUCTION.

Except for very special cases, optimal controlproblems can only be solvednumerically, using such

discretization techniques as numerical integration (see, e.g. [6,10,11,19]) or collocation (see, e.g.,

[12,21,26,29,32]). Numerical integration is used in two ways: to implement conceptual optimal control

algorithms (see,e.g., [15,30]), andto construct approximating discrete timeoptimal control problems that

can then be solved by any applicable discrete time optimal control or nonlinear programming algorithm.

In this paperwe are concerned with the latter. With a few exceptions, such as [16,31], most authors, for

example [6,10,19,20], dealing with the construction of approximating discrete time optimal control prob

lems, assume that Euler's methodis used for integration.

The central question in discretization theory is whether solutions to the approximating problems
converge to solutions of the original problem. In the context of optimization, the term "solution" is used

ambiguously; it can mean "global solution", "local solution", or "stationary point". Convergence of
global solutions, or in some cases, of stationary points of theapproximating problems to those of theori

ginal problem, was treated in [6,10,11,13,19,20,24]. Rate ofconvergence ofstationary points ofapproxi
mating problems to those of the original problem was explored in [16] for a class ofunconstrained prob
lems. Possibly the most extensive treatment of the the issues of approximation of general, nonsmooth,

constrained optimal control problems by approximating problems obtained by Euler's method, can be

found in [19]. In particular, we find in [19] proofs of the existence of solutions of the approximating
problems and convergence of discrete controls, satisfying an approximate discrete time Maximum Princi

ple, to a control satisfying theMaximum Principle for theoriginal problem.

Darnel [13] presents one of the first attempts to characterize consistency of approximations to an

optimization problem, and establishes conditions for the convergence of approximate global solutions to

approximating problems, obtained by discretization, to global solutions of the original problem. The
more recent and more elegant epiconvergence theory in [2,14], is setwithin the framework of a general
theory of convergence of set valued maps and yields the same results ina simpler, more straightforward
manner. Neither theoryaddresses issuesof computation.

The theory of consistent approximations, presented in [24], is directed towards the construction of

finite dimensional approximating problems that can be used inconjunction with diagonalization strategies
and nonlinear programming algorithms to efficiently obtain an approximate, numerical "solution" to an

original infinite dimensional problem. The theory in [24] considers pairs consisting ofan abstract optimi
zation problem P, defined on a normed space and of an optimalityfunction 6( ), whose zeros are the
stationary points of P. These pairs are approximated by pairs Pff and 0^(0, = 1,2,3,..., that are

defined on nested finite dimensional subspaces of^ with 0/v(*) an optimality function for Pyy (rather
than a discretization of0(-)). Consistency ofapproximation ischaracterized in terms ofepiconvergence
ofthe Pyv toP and (in the simplest case) ofhypoconvergence ofthe 0^(•) to0( ).



Epiconvergence of theapproximating problems ensures convergence ofglobal minimizers (and uni
formly strict local minimizers) of the approximating problems toglobal minimizers (local minimizers) of
the original problem. Hypoconvergence of optimality functions ensures, directly or indirectly, several

desirable properties: (i) stationary points of the approximating problems converge to stationary points of
theoriginal problem; (ii) the mathematical characterization of the constraints of the approximating prob

lems must satisfy certain consistency conditions; and (Hi) derivatives of the cost and constraint functions

of theapproximating problems converge to those of theoriginal problem.

In [24], consistent approximations were constructed for control and state inequality constrained

optimal control problems using Euler's method and control subspaces spaimed by piecewise constant

functions. In this paper we show that a large class of higherorder, explicitRunge-Kutta (RK) methods

can be used to construct consistent approximations for the same problems. Two issues had to be

addressed: the selection of the finite dimensional control subspaces and the isometric transformation of

the resulting approximating optimal control problems into mathematical programming problems. The

selection of the control subspaces for use withRK methods is significantly morecomplex thanfor Euler's

method and affects the precision of integration accuracy as wellas original problem solution approxima

tion. Isometric transformations of the approximating optimal control problems into mathematical prob

lems defined on a Euclidean space preserve problem conditioning. As demonstrated by our computa

tional results in Section 6, a considerable deterioration of conditioning can take when natural, but non-

isometiic transformations are used.

Thispaper is organized as follows. Section 2 summarizes the relevant aspects of the theory of con

sistent approximations. Section 3 introduces the optimal control problem and develops an optimality

function for it. In section 4 the approximating problems are constructed, by defining appropriate finite-

dimensional control spaces and constraint sets, and by defining approximate cost functions using an

extension of RK integration methods. Epiconvergence is proved. In section 5, the optimality functions

for the approximating problemsare derived. Theseare shown to h3q)oconverge to the optimality function

for the original problem. Hence, the approximating problems are shown to be consistent approximations

for the original problem. Section 6 presents some numerical results.

2. CONSISTENT APPROXIMATIONS

In [24] we find a theory of consistent approximations to an abstract optimization problem, defined

on a normed space. The theory uses two concepts: epiconvergence of the epigraphsof of the approximat

ing cost functions on the approximating constraint sets, which results in a type of *'zeroorder" approxi

mation, and the satisfaction of half of the relations that ensure the hypoconvergence of the hypographs of

optimality functions, of the approximating problems, which ensures a type of "first order" approxima

tion. We will brieflyreview those results. Let a normed linear space,with norm B*I, let B ^ 9{ht
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a closed, convex set and consider the problem

P <2.1a)

where is (at least) lower semi-continuous, and H ^ B is the constraint set. Next, let

N = { 1,2,3,...}, let N be an infinite subset of N, and let{en ^ ^ family of finite dimensional

subspaces of i?/'such that -H 'tI9{'v& finite dimensional (R") and ^ for all NiN^ € N

such that N j < N2, otherwise. Now consider the family of approximating problems

Piv min \|/;v(Ti), N€N, (2.1b)
1] e Hat ^ '

where \|/^ ; ^ R is (at least) lower semicontinuous, and ^ tKff.

Definition 2.1. We will saythat theproblems in thefamily {1 yv € n converge epigraphically to P

(Pn P) if

(a) for every n € H, there exists a sequence {il^ }yv ^ n, with % € such that y\N -> A and

liinM'/v(%)^M'(Tl);

(b) for every infinite sequence {Hyv } ^ where K satisfying e for all N e A" and

An "H. we have thatq € H and hm \|/^(q^y) ^ \i;(q). •

Epiconvergence does not require derivative information for its characterization. Hence we view

epiconvergence as "zeroorder"approximation property. In [2,14,24] wefind the following result:

Theorem 2.2. Suppose that P^y —P. (a) If { }iv e n is a sequence of global minimizers of

the Pat, and is any accumulation point of {}a^ e N' is a global minimizer of P. (b) If

{'̂ N }A? 6Nis a sequence of strict local minimizers of the Pa? , whose radii of attraction are bounded

away from zero, and is anyaccumulation point of {^a^ }^y g jy, then is a local minimizer of P. •

Epigraphical convergence does not eliminate the possil^ty ofstationary points of Pa^ , converging
to a non-stationary point of P: a most aimoying result from a numerical optimization point of view. For

example,leti«'=R2withq = (x,y),andlet/(q)=/jy(q) = (j:-2)2,N€ N. Choose

{(a:,y)€ R^ IJf2+y2_2^0}, (2.2a)

Hjy ^ {(x,y)€ R2 I(x-y)2(x2 +y^-2)^0, ^2+1/N }, NelSf. (2.2b)
Then we see that Pat P. Nevertheless, the point (1,1) is feasible and satisfies the F.John optimality

condition for allPj^, but it is not a stationary point for the problem P. The reason for this isanincompa
tibility ofthe constraint sets Ha^ with the constraint set H which shows up only at the level ofoptimality
conditions. To eliminate the possibility of this happening, at least for first order non-stationary points.



optimality functions were introduced in [24] as a tool for ensuring a kind of *'first order'' approximation

result, which, imphcitly, enforces convergence of derivatives, and restricts the forms chosen for the

description of the sets H and .

Definition 2.4. We will say that a function 0; B -> IR is an optimality function forP if (i) 0(*) is (at

least) upper semi-continuous, (ii) 0(Ti) ^0 for all Ti € H, and (Hi) for fj € H, 0(f^) = 0 if is a local

minimizer for P. Similarly, we will say thata function 0/^ IR is an optimalityfunction for P^y if

(i) 0^( ) is (at least) upper semi-continuous, (ii) 0yv(Ti) ^ 0 forall ti € H/y, and(Hi) if fl^y € H^y is a local

minimizerfor P^y then 0^ (fl/y) = 0 •

Definition 2.5. Consider theproblems P, P^, defined in (2.1a,b). Let0(-), 0a^(*). N € N, beoptimality

functions for P, P^y, respectively. We will say that the pairs (P^, 0;y), in the sequence {(Pyy, 0/y)} Jy.i

are consistentapproximations to the pair (P, 0), if (/) P, and (ii) for any sequence {q^y } € x»

K ^ N, with € Ha/for all € ^, such that -»^»fiin0A^(q/y)^0(q). •

Note that the last part of this definition, concerning convergence of the optimality functions, rules

out the possibility of stationary points (points such that 0A/(q/y) = 0) for the approximatingproblems con

verging to non-stationary points of the original problem. In the sequel, we will prove a stronger condi

tion, namely convergence of the hypographs of 0a/(*) to the hypograph of 0(-), than is required by

Definition 2.5 (that is -0jy(') -0(-))-

3. PROBLEM DEFINITION

We will consider optimal control problems with dynamic systems described by ordinary differential

equations,

x(t) = h(xit),u{t)), a.e. for t € [0,1], x(0)=Xo, (3.1)

wherejc(0 e u(t) € R"*, and hence h :JR"' xJR!" R"'.

To establish continuity and differentiability of solutions of (3.1) with respect to controls, one must

assume that the controls are bounded in L" [0> !]• However, our approximating subspaces are dense in

L™ [0,1], but not in LS [0,1]. Sinceit doesnot appearto be possible to establish differentiability of solu

tions of (3.1) with respect to controls in L" [0,1], we will, as in [23], assume that the controls are ele

ments of the pre-Hilbert space

L2,2 [0.1] ^ as [0,1], (• >2, I I2), (3.2a)

which consists of the elements of L2 [0,1]. but is endowed with the L" [0,1] inner product and norm.

NotethatL2,2 [0» 1] is densein L" [0,1].
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Sincewe also varyinitial states, we willworkin thepre-Hilbert space

^IR"" xL2,2[0,1] ^(R"" XLS[0,1], (•w,l l«), (3.2b)

which is a dense subspaceof the Hilbertspace

//2 = IR"^xLJ[0.1]. (3.2c)

The inner product (*, *)h norm I'B//, onH2, and hence also onH„ 2* ^re defined asfoUows. For any

Ti = (?,«)€ //2andTi' = (?',1/) e //2,

(Tl.Ti'W = (?.?')+ («,u')2, (3.2d)

where (?,?') denotes the Euclidean inner product, and the L2 inner product {u,u')2 is defined by

(«»v)2 =j^ {u(i),v(t))clt. Consequently, for any 11 =(§,«)€//2,

iTil^ ^ (Tl.Ti);, = +lul|. (3.2e)

Next, let U (0, pmax) = {« G IR"* I Bw B̂ } bea compact convex set with non-empty inte
rior, where pn^* is sufficiently large to ensure that all the control functions u(•) which we expect to deal
with takevalues in the interiorofB(0,Pmax)- We define

{u € L2,2[0.1] I u(t)e U , yt e [0,1]} (3.3a)

anddenote theset of admissible initial state-control pairs, q = (^,m), by

(3 3b)

The set H is containedin the larger set

B^IR"'x (H eL2,2[0,l] I«(0G B(0,p^), V* € [0.1]) cH„,2- (3-3c)

Finally, we will denote solutions of(3.1) corresponding to aparticular q e H by x^(-). We will con
sider thefollowing canonical minimax optimal control problem:

CP min {(n) IVc (11) ^0}, (3 4a)

where the objective function, :B ->IR, and the state endpoint constraint function, ;H R are

defined by

V„(il)^max/*(T)), Vt(ll)= nia* Al). f3 4M
V € Qo V €

with/^;H -> R defined by

fin) = C(^,x^(l)). (3.4c)

with ;R"' xR"' R, and we have used the notation q^, ^ {1,2,... ,<7o 1. <Ic = {1.2,... }



(with and arbitrary integers). The set +^o = I 1+^o. ••• +^o }• In what foUows, wewiU

let q^q^,u{q^ )• If we define {ii€ HIxi/^ (q) ^0}, we see that CP, with Hreplaced by
H', is of the form of the problemP in (2.1a).

Various optimal control problems, such as non-autonomous, integral cost, and free-time problems,
can be transcribed into this canonical form. Also, the endpoint constraint in (3.4a) can be discarded by
setting \|/^(ti)h-oo, and control unconstrained problems can be included by choosing Pn,ax and U

sufficiently large to ensure that thesolutions «*(•) of CP take values in theinterior ofU.

Properties of the Defining Functions. We will require the following assumptions:

Assumption 3.1.

(a) The function /z(-, ) in (3.1) is continuously differentiable, and there exists a Lipschitz constant

K€ [1, oo) such that for all x' e JRP' , and v',v" GB(0, p^ax) the following relations hold:

Bh(x',v')-h(x",v")I^K[Lc' -jc"i + lv' -v"D], (3.5a)

(x'y)-h^(x",v")B^k[Ix' -x"B + Bv' -v"I], (3.5b)

ihu {xf ,v')-hu (x", v" )l ^ k[Ix' - x" I + Bv' - V B], (3.5c)

(b) The functions •), C§(*»') and f;J'(-, •). with v € q,are Lipschitz continuous on bounded sets. •

The following results can be found in [3]:

Theorem 3.2. If Assumption 3.1 is satisfied then

(/) there exists an k € [0,«») such that for all q', q" € B and for all t € [0,1]

llx '̂(/) - x^"(t )I^ Kflq' - ;

(//) there exists a k G [0,») such that for all q G B and all t G [0,1]

ix^(/)B<:K(l + i^B);

(in) the functions xj/^ ; B —» R and x|/p .• B R are Lipschitzcontinuous on boundedsets;

(iv) the functions /^(O, v Gq, have continuous Gateaux differentials Df^:Bx Hco,2 that have the

formZ)/^(q;6q)= (V/^(q),6q)^;

(v) the gradients V/v(q)= (V^^(q),V„/^(q)) G v Gq, are given by

^(q) = V^C'(^.x'i(l)) +p^'^(0), (3.6a)

V„/''(q)(t) = K(x(t),u{t) , V/ G [0,1], (3.6b)

where ) G R"' is thesolution to theadjoint equation
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p'' =-h,(x.ufp^ , p\\) = V,t:'(lx(l)), (3.6c)

and are Lipschitz continuous on bounded sets in B.

(vi) forany v € q, and any T| 6 B and 6t| e //oo,2. thedirectional derivative exists and is given by

dr(r\;bn) = Dr(j[\;bn)^{Vr(y\),br\)H. (3.6d)

furthermore, it is Lipschitz continuous on bounded sets in botharguments. •

OptimalityConditions. Referring to [9], the foUowing resultholdsbecause of Theorem 3.2:

Theorem 3.3 For any r| € B, let

\|/f(Tl)+^max{0.\|/^(tl)} , (3.7a)

and for any tj.-n' € B and a > 0, let

TiO ^ max {Vo (q) - Vo (tlO - o^c (tlO+, Wc dl) - Wc (tlO+} • (3.7b)

If Assumption 3.1 is satisfied andr| e H is a local minimizer of theproblem CP, then

VqeH. (3.8)
•

Next we define the optimahty function 0: B IR, for CP. For any T], Ti' GH and v € q, we define
the first-order quadratic approximation to/^(-) at rj by

/^ti,tiO =/''(ti)+ (V/^(Ti),ii'-Ti);, + y2lTi'-TiD^ . (3.9a)

Then, the optimalityfunction, with a > 0 as in (3.7b),is defined as

0(T1)^ imn maJ max/''{ii,ii')-v„(ll)-av^(n)+, max • f3 qm
n t n I v€qo ve

Theexistence of theminimum in (3.9b) follows from the convexity oftheconstraint setH and of themax

fimctions in (3.9b) with respect to Ti', and /"(ti.tiO -> «» as Iq'l «> [5, CoroUary ni.20, p.4 6]. Note
thatif/^(n) B-eo forall v € q<. + , so that (Tl) b then (3.9b) reduces to

6(11)=+ (v/"(ii).Ti' - n)« +'/4in' - (11). o

Referring once again to [3], wehave thefollowing result:

Theorem 3.5. Let 0;B ->IR be defined by equation (3.9b). IfAssumption 3.1 holds then, (i) 0( ) is

negative valued and continuous; (ii) the relation (3.8) holds if and only if 0(q) = 0. •



4. APPROXIMATING PROBLEMS

The construction of the approximating problems, required by the theory of consistent approxima

tions described in Section 2, involves the construction of a family of finite-dimensional subspaces,

approximating cost functions, and approximating constraint sets. Our selection is largely determined by

the fact that we propose to use explicit fixed stepsize Runge-Kutta (RK) [7,18] methods for integrating

the dynamic equations (3.1a).

Finite Dimensional Initiai-State-Control Subspaces. In Section 3, our optimal control problem CP

was defined on the normed space //oo,2 • Given N ^ 1,we will define the corresponding approximating

problems, CP^ on finite dimensional subspaces =IR"' >^Lff ^ //oo,2» where the ^ L2,2 [0,1] are
finite-dimensional spaces spanned by piecewise-continuous functions.

Given an explicit, fixed stepsize RK integration method, we will impose, at the outset, two con

straints on the selection of the subspaces :

(/) Forany a bounded subset S ofB, theRK integration method must give at least first order accuracy,

uniformly, in solving thedifferential equation (3.1), forany T| € S nHfj.

(ii) The data used by the RK integration method is an initial state and aset of control samples^. We
will requirethat eachset of control samples corresponds to a uniqueelement u

The first constraint will be needed to prove that ourapproximating problems epiconverge to the ori

ginal problems. For the subspaces Lf^ we present, we will actually be able to provemore than first order

accuracy. The secondconstraint is imposed to facilitate the definition of the approximating problems and

make it possible to define gradients for the approximatingcost and constraint functions.

We will now show how explicit, fixed stepsize RK integration methods affect the selection of the

subspaces L/y. Thegeneric explicit, fixed stepsize, s -stage RKmethod computes an approximate solution

to a differential equation of the form

= , x(0) = ^, /e[0,l], (4.1a)

where h :JRx JR."' IR"' is continuous. It does soby solving the difference equation

**+1 =•** , *0 =-*(0) =?. t e IA£^ )0,1 iV-l ) , (4.1b)
/-I

with A = 1/iV, = ^A, and defined by the recursion

+

' The tenn control samples will be clarifiedshortly.



/-I

^k,i "" ^ jKj^ , / £ S,
J'i

(4.1c)

where, according to ournotation, s= ). Thevariable Xj^ is the computed estimate ofx (tj^).

Theparameters a, j, q and h,-, in (4.1b) and (4.1c) determine the RK method. These parameters are

collected in the Butcher arrayA = [c,<<4, d ]. TheButcher arrayis often displayed in the form:

A =

0

C2 ®2,1 0

Cs ^s.\ as.s-\ 0

bx bs-\ b.

Thefollowing assumption on theButcher array parameters will beassumed to hold throughout this paper:

Assiimptioii 4.1. (a) For all / € s, q e [0,1], (b) for all / € s, > 0 and = 1. •

Remark 4.2. The condition = 1 is satisfied by all convergent RK methods. Otherconditions

must be satisfied to achieve higher order convergence for multi-stage RK methods. The condition b, > 0

will be weakened slightly in the sequel.

Now, in our case, h (t ,x) = fi(x,u(t)), and the elements «(/) of the subspaces Lj^ will be allowed

to be discontinuous from theleftat thepoints t = + c,A. To obtain an accurate integration method for

such functions, the values u(tj^ +c, A) must sometimes be replaced by left limits, as appropriate for the

particular choice of the subspace We will refer to these values as "control samples" and denote

them byu[x^ ^,• ],where, for convenience, we have defined ./ = ^* + q A. Specifically, for x € [0,1],

tt[x] = lim «(r).
/tx (4.2)

Clearly if u(•) is continuous at +qA, then u[t/, + qA] = u(/^ +qA), Equation (4.1c) evaluates h (-, •)

s times for each timestep k €. So, if we collect those s samples into the matrix

<i>k = (w i\" ' ^l^k .s])»we can replace equations (4.1b)and (4.1c)with

where K^ i^Ki (xi^, co^) which is defined by

Xk*i=Xk+AZ^i^k.i > j:o = -*(0) = ^.
/-I

/-I

Ki(x,G>) = h(x Kj(x,(o) ,0)'), / € s.
y-i

where ©' is the i -th column of ©.
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We will define the space ofcontrol samples, Lf^, insuch a way that there isa one-to-one correspon
dence between elements of « € andthesamples of u usedbytheRKmethod. Thedefinition of is

somewhat complicated by the fact that some of the C/ elements ofthe Butcher array may have the same
value. This causes theRK method to usesamples at times t^+qA more than once: a fact that results in a

reduction of the dimension of therequired space of control samples.

Tokeep track of thedistinct values of thec elements of theButcher array, wedefine theordered set

of indices

/ = ,/V }^ € s ICj'̂ Ci, vy € s, y</ },

and let

ijQ {ies\Ci=Cij,ijei] , y € r.

Thus, the total number ofdistinct values taken by the elements q inthe Butcher array is r. For example,
ifc= {0,1/2,1/2,1} then r= 3,7= {/j = l./j = 2,/3 = 4},/i = {l},/2= {2,3}, and/3 = {4}.
If each Cf is distinct then r = s. Otherwise, r <s.

Clearly, the r distinct sampling times in the interval k e aie given by j € r,

ij I. Corresponding to each sampling time there is a control sample u The collection of these

control samples is an element, denoted by u, ofthe space IR^ x R*" x R™, We will partition the vectors
u e R^ XR*" XR"" into N blocks, , consisting ofr vectors i7/, of dimension m, i.e.,

^ —("O'^i' • • • » (4.5a)

where each Ujc,k € turn, is of the form

«*=(«* «*)• (4.5b)

When convenient for the performing linear algebra, we will consider the elements u € R^ x R*" x R*",

as Nrxm matrices. i.e., we will identify R'̂ x R'' xR*" with the space, of Nrxm matrices.
Similarly, we will identify R*" x R" with R'"'*".

Let G be the r Xj matrix definedby

If

If
G =

If

(4.4a)

(4,4b)

(4.5c)

where, for y€ r, if, is arow vector of l/y I ones (l/y Iis the number of elements of Ij). Then the rela
tionship between the components ujt, A: € of a vector w € R^ x R'' x R*", with = u € R"",
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fory € r andij € I, and thevectors co;t used bytheRK method (4.2a,b) is given by co;t =Ui^G.

We are now ready to present two control representations that define subspaces ^ - 1.2,

N € N, such that is dense in LJ [0,1]. Both representations reduceto simplesquarepulses for

Euler's method (rnl). In addition, we will define two finitedimensional spaces of the form

Hjj), i = 1.2. WeN, (4.5d)

consisting of the elements u of IR^ x IR'' x IR",but with inner products and norms chosen soas tocoin
cide with the corresponding operations in the spaces k = 1,2. The spaces Ljy will be needed in

defining gradients for the cost and constraint functions of the approximating problems as well as in set

ting up numericalimplementations of optimalcontrolalgorithms.

Representation (Rl): Piecewiser -th orderpolynomials.

Let the pulse functions be defined by

and let

n;l,t(0=-

1 ifr e i =0,...,N-2,

1 if. e * =W-1,

0 elsewhere ,

N-l

L,}S {HeLj[0,i]i«(o= v.€ [0,1]),

where (t) is the vector polynomial

r-l

y-o

= Pjt/»(/-/*),

where pjt j e IR". Pjt =(P^.o *** isthe mxr matrix with columns pj^^y, and

P(r)^[l .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Proposition 43. Let be defined as in (4.6b) and let ^ x IR'' x IR" be defined by
with ul = , ij € I , y€ r , k e 9^ Suppose Assumption 4.1(a) holds. Then

^A.N is a linear, invertiblemap.

Proof From (4.2), (4.6a,b,c) and Assumption 4.1(a) if follows that

"I=uih +CijA] = (/^ +CfjA) =Pjfc P(CijA), ke 9\CJ ^ r,ij e I , (4.7)
even if C/^ = 1 because u + A] = lim u(t) = Ui^ +A). Thus, for each /: G , we can rewrite (4.7)

t T/t + A

inmatrix form, as i7jt = p)t T~^ (we are thinking of asamatrix), where

-11-



" 1 1 • •• 1 •

'=[/>(<:,,A) /'(c,,A)- -P(c,,A)j = ^ir

cr-1 f,r-\

(4.8)

The matrix T"^ isa Vandermonde matrix and the r values e I, are distinct. Therefore, T~^ isnon-
singular. Hence, for each k e 9Cukit) = Uj^T Pit -tf,). Itfollows that Va.w is linear and invertible. •

Tocomplete the definition, in (4.5d), ofthe spaces we will now define the required inner product

and norm. We define the inner product between two vectors u,v e Ljj, with u = and

V= ^A,V(v). by
N-l A

= (tt,v)2= £f {uit^ +t),vit^+t))dt

k«0

=A£trace(ttjt7' —̂ Pit)P(tfdt T^vf) ,
N-l

*-0

AT-l

1 /

=A£ trace(Mjt Mivf) ,
it-O

where T was defined by (4.8), P (•) was defined in (4.6d) and

A

A'
where

Af i^Tj]^P(t)P(tfdtr^=THilb(r)T^ '

Hilb(r) =

1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

1/r 1/r+l

1/r

1/r+l

l/2r+l r xr

(4.9a)

(4.9b)

(4.9c)

is the Hilbert matrix, whose / ,y-th entry is l//+y-l. Note that both Hilb(r) and T are ill-conditioned

matrices. However, the product in (4.9c) is well-conditioned (theproduct corresponds to switching from

a power-series polynomial representation of the piecewise polynomials to a Lagrange expansion). The

matrix Mj is symmetric, positive definite because Hilb(r) is positive definite andT is non-singular.

Remark 4.4. A special class of functions within representation R1 is the subspace of r-th order, m

dimensional splines. The dimension of the spline subspace is only a fraction of the dimension of Our
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results for R1 are extended to splines in Appendix A2.

Representation (R2): Stepwise constant functions.

Forj € r, Ij defined in (4.4b), let

(4.10a)

dj^AJ^bi . <<0 =0. (4.10b)
1-1

Ifall the c,- elements ofthe Butcher array have distinct values then dj =AJV.jb,. At this point, we can
replace Assumption 4.1(b) with thefollowing weaker assumption:

Assumption 4.1 (b') For all y € r, by>0 and = A. •

Note that Assumption 4.1(b') implies that for all j € r, dj > and that t^+dj e [t^, k e

We introducean additional assumption whichdoesnot rule out any standard RK methods.

Assumption 4.5. Fory € r and ly € /, dy_i ^ q.A ^dj, so that +dj_i,ti^ +dj], •

We now define the pulse functions

ri lfte[t„+dj_i,ti,+dj). keo{,, jer,
niv.*j(0=|o elsewhere.

withn^ closed. Withp^^ ye ^",^1

{u €LJ[0.1] Iw(/) £ p^^y n^.^.y(t). Vr €[0,1]}. (4.11b)
*-oy-i

Proposition 4.6. Let be defined as in (4.1 lb) and let -> IR^ x IR'" xR" be defined by

^A./v(") =w. with ul =u , y€r. iy€/, k^ Suppose Assumptions 4.1(6') and 4.5 hold.
Then V is a linear, invertible map.

Proof. Assumption 4.1(6') implies that any u e is specified by a unique set of coefficients Pjt y.
Assumption 4.5 implies that Wj( = pjt y even if C/^A = d,- since is defined as the left limit of
«(x^/p. Thus, Vx,N is invertible; linearity of isobvious. •

To complete the definition, in (4.5d), ofthe spaces we will now define the required inner product
and norm. We define the inner product between two vectors «,v € lJv, with u and

V = ). by
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where.

N-l r dj

y{tk +t).v(ti^ +t))dt

N-l

= A trace(«jt Af2vj^) ,
t-o

Af,=

bi

0 br

(4.12a)

(4.12b)

Since all hy>0, Af2is diagonal, positive definite. Given u € its norm is lu= {u,u )ii.

Remark 4.7. In place of (4.10b), we could have used the altemate definition dj = and set
=u for all y € s, ^ € 5A£. In this way, samples corresponding to repeated values of Cj in the

Butcher array would betreated as independent values and the space Lff would have tobe correspondingly

enlarged. However, Proposition 6.1 inSection 6 indicates that (4.10b) is the preferable definition.

Definition of Approximating Problems. For € 14, let

(4.13a)

where =Lj} for representation R1 or for representation R2. inherits the inner
product from Hco,2 which, forr\\ r|" € , with Ti' = (?'. u') and = (^",u"). is given by

(4.13b)

and hence for any ti € Hyy, ItiO^ = (ii,11 W. Similarly, we define the spaces by

(4.14a)

where Lf/ =Lj} or L[^ =L^. The inner product on is defined by

(4.14b)

and the norm correspondingly. Let be defined by W^A.Ar(^) = where

•n = (^» w)• Then wesee that is a linear, nonsingular map, and, with ourdefinition of thenorms on
Hff, provides an isometric isomorphism between and //^. Thus, we can use the spaces Hfj andHf^

interchangeably.

We now define control constraint sets for the approximating problems. Let U be the convex.
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compact set used to define U in (3.3a). Then, we define

{ueL^ \uieu\ikeacjer] (4.i5a)

H;, ^ R"' XU„ , (4.15b)

^R"' XVi.V(U;„) <= Hat . (4.15c)

We assume that pmax was chosenlarge enoughin (3.3c)so that ^B.

Next, with "n € //jy and tj = W^a,w(i1)» we will denote the solutions of (4.3a,b) by {xj^} or,

equivalently, {] /lo- The variable xj^ is thus the computed estimate ofx^tj^). Finally, let

/w(T|) = . V€ q , (4.16)

where •) was used todefine/"(Ti) in (3.4c). Then we can state the approximating problems as:

CP/v (Vo.atOI) I Vc,/v(tl)SO), (4 17)

where\|/o,/y(n) ^ max /^^(ti) and\i/c./y(Ti)4 max /^(q).
V € qo V€ q,+qo

Note that for any q € H ^ //^y, where H was defined in (3.3b), Wa,a^(ti) € because u(t)e U
for all / € [0,1] implies that u[T*.y]€ U for aH k e 9C j e s. By (4.15c), this implies that
H n //^ c H/y. Unfortunately, for representation Rl, if r ^ 2 (except for the case r = 2and the Butcher

array elements c = {0,1}), H^y'̂ H because, given u € Lj}, generally IVAjy(u)Doo >li7ioo, [4, p.
25]. Hence, if {% )^ g N c: k, is a sequence ofapproximate solutions to the problems CPyy, it is
possible for any N € N, to violate the control constraints. However, as we will see, the limit points
ofsuch a sequence must satisfy the control constraints. This problem could have been avoided by choos-
ing Hyy =H ^ Hfj (as in [24]) and letting H/y = ;y(Hyy), but the set would be difficult to charac

terize. For representation R2 (or Rl, r = 1, orr = 2and c = {0,1}), u € U^y ) € U.

Nesting. The theory of consistent approximations is stated in terms of nested subspaces This
allows the approximate solution ofan approximating problem CP^/, to be used as a "warm-start" for an
approximating problem CPjy^ with a higher discretization level (N2 >A^i) (see [17,25]).

For representation Rl, so doubling the discretization level nests the subspaces. If
u e Lf/, then v = VA,2iv(«) can be determined from u = Va,a,(m) using (4.6c) and (4.8): for k e and

J ^ T,v{ic =Uj^T P(cj 12N) and =Uf^T P((cj +1)/2N). For representation R2, L^y ^Ljjy where
d is the smallest common denominator for all ofthe by, y € s inthe Butcher array, which isfinite assum
ing, as is typically the case, that all by are rational. Thus, the discretization level must be increased by
factors ofd to achieve nesting. If u e and i7 = Va,a,(w), then v =Vis given, for it €
iJ € r,and / =1,...,d, by =ul for dj_i^Ud <dj, where dj is defined in (4.10b).
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Epiconvergence. We are now ready to establish the epiconvergence ofthe approximating problems.
First we present convergence and continuity properties for the solutions computed by Runge-Kutta
integration on . The proof ofthe following lemma isgiven inAppendix Al.

Lemma 4.8. For representation Rl, suppose that Assumptions B.lfflj, 4.1 hold. For representation R2,
suppose that Assumptions 3,l(a), 4.1, and 4.5 hold.

(i) Convergence. For any bounded subset S there exists k< oo and N* <eo, such that for any
11 € 5 and N "kN*,

•*"('*) . keSiuiN], (4.18a)

Additionally, if the Runge-Kutta method isorder p, (see [7,18]) and h(•. •) isp-1 times Lipschitz continu
ously differentiable, then for representation Rl, there exists k<<» and iV*<oo, such that for any
11 € 5 n//^ andN kN*,

)-•*»""S(4.18b)

The sameresult holdfor representation R2if h(x,u) = h (x)+Bu whereB is an nxm, constant matrix.

(//) Lipschitz Continuity. The solutions {x/'} /Iq are Lipschitz continuous in ii on bounded sets,
uniformly in k. That is, for any Tj,!)' e S with 5 bounded, there exists k<®o, independent of
11, suchthatforri = Wa,a?(ii) andii' = W^.^CilO

* € • (4.180
•

In proving consistency, we will need to add a version of Slater's constraint qualification on the

problem CP.

Assumption 4.9. For every ii € H such that \|/<,(il) ^ 0, there exists a sequence {ii^^ }j?., such that

% € H,\|/c(%)<0,and%asiV->«>. •

Theorem 4.10. (Epiconvergence) Suppose that Assumptions S.lfa), 4,1 and 4.9 (and also 4.5 for

representation R2) hold. Let N = {d" ] where fif = 2 for representation Rl andd is the least com

mon denominator of b j.j e s, for representation R2. Then, theproblems {CP^ 1n e n converge epi-

graphically to the problem CP as iV ->

Proof. Let S be bounded. Then, by Assumption 3.1(b) and Lemma 4.S(i), there exists k', k< «>
such that for any v € q and for any % € S ,

-//?(%)I= IC(«N.J:'̂ (1))-C(€w,%'"')I ^K'lt''«(l)--C;y''.,g|.. (4193)
N
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Now, letv' € besuch that \|/o (%) =/^'(lyv). Then,

Vo(i1n)- Vo,n(%) =/""(%)- Vo,iv(llAr) -//(%) ^ • (4.19b)

By reversing the roles of vj/j, (r|) and we can conclude that

IVo(%)"-Vo.Af(%)l ^^ . (4.20a)
Similarly,

lM'c(%)-Vc.yv(%)l (4.20b)

Now, given r| € H such that ^/^(Ti) ^ 0, there exists, by Assumption 4,9, a sequence S = {% }Jv»i. with

€ H, such that % q asTV ^ (hence S is bounded), and \|/<. (q^v) <0 for all TV. Now, clearly for
each N=d", there exists j„ e K finite, and such that (a) K/y„ ^-y2\|/e(%), (b)

'Hy,' tIat ' ^ 1/TV, since, for both representations R1 and R2, theunion of thesubspaces is dense in

H2 which contains H^ 2and Hn//^ (c) \|/p(iiy/) ^ 1/2x1/^(%) due to Theorem S.lCm), and (d)

Jn<jn+1' It foUows ffom (4.20b) that M'cj,,,(tly/)^M'c(Tl;/) +^/;„ ^ V'2\|/^(%) +ik/y„ ^0 for any
n,k Now consider the sequence S" = {Tijt"}f defined as follows: if k =j„ for some n, then

= for k = j„.j„+lJ„+2 yn+i-1. Then we see that \|/<.,jfc(%")^0 for all k, as
k ^oo (hence 5" is bounded), and by (4.20a) and Theorem 3.2(m) that lim\|/o./v(Ti;v) = Woin)- Thus,

part (a) of Definition 2.1 is satisfied.

Now let 5 = {TV } €jr.^ ^N, be a sequence with and \|/c.A^(qA^) ^0 for
aU TV € A", and suppose that q^v-»*'q =(^.u). For any v € R™, let d(v,f/)4minv'€ ylv-v'B. For
each TV, Va,jv(%)^ so that u/€ (/ for all /: € y € r. Thus, for representation Rl,

II™/ € [0,1],jv € jr^("jv(t). = 0 since % is composed ofpolynomials with bounded coefficients (hence
bounded derivative) defined over progressively smaller intervals. For representation R2, d(Uff(t),U) =0
for ah N e K and r € [0,1] since % is piecewise constant. This implies that me U; hence q € H.
Furthermore, x|/p(q)^0 by (4.20b) and the continuity of x|/c(*). and, again by (4.20a),

II™ Vo ,N ("Hiv) = Vo ("n). Thus, part (b) ofDefinition holds. •

Remark 4.11. The fact that Theorem 4.10 depends on Assumption 4.1 implies that consistency ofthe
RK method is not enough to ensure epiconvergence ofthe approximating problems to the original prob
lem. This explains why, as Hager observed in [16], methods, such as the Improved Euler method of
integration, with bj =0 for some j cannot be used for optimal control problem discretization. But also,
methods with bj <0for some j cannot be used. For example, the third order method with Butcher array
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A = 1/4 1/4

1 -7/5 12/5

-1/6 8/9 5/18

when used to discretize theproblem described in Section 6, results (observed numerically) in cost func
tion approximations that are concave along some directions, while the original cost function is strictly

convex. Hence it cannot leadto epiconvergence of theapproximating problems to theoriginal problem.

Factors in Selecting the Control Representation. The choice of selecting L^v =L;j versus

depends on the relative importance of approximation error versus constraint satisfaction. It follows from

the proof of epiconvergence, that irrespective of which representation is used, if {il/v )^ ^ n is a

sequence such that , and r|^ q, then q € H. Thus r| satisfies the control constraints. How

ever, as mentioned earlier, if representation R1 is used, thenr\f^ maynot satisfythe controlconstraints for

any finite N. Since a numerical solution must be obtained after a finite number of iterations, except for

the case r = 2 and c = {0,1 }, representation R2 must be used if absolute satisfaction of control con

straints is required.

If some violation of control constraints is permissible, then representation R1 is preferable to

representation R2 because a tighterboundfor the errorof the approximate solution can be established for

R1 than for R2. To see this, let rjyv* = »%*). ^ € N, be a local minimizer ofthe finite-dimensional
problem CPyy. This solution is computed by setting Tj^v* = Wa,V(t1a/*). where %* is the result ofa
numerical algorithm implemented on a computer usingthe formulae to be presented in the next section.

The accuracy of the approximate control solutions can be determined as follows. Assume that

%* ^ as iV -> 00 and that u* is a local minimizer of CP (if the solutions are uniformly strict
minimizers then u* must be a local minimizer by Theorem 2.2). Let 5* € x IR*" xR" be such that

=u*(T;t.y)' j € r. Then

lu* - u/lj£l«* - - «/l2 =lu* - Vx|;v(5*)l2 +15* - 5/1^^ . (4.21)

The quantity 15* — is not affected by the choice ofcontrol representations. For smooth, uncon-

strained problems discretized by symmetric RK methods, a bound for Bu* - can be found in [16,

Thm. 3.1] (see Proposition 6.1 in this paper for an improved bound for one particular method). The

quantity i«* - Va.V(w*)B2 is the error between u* and the element of Ljj or that interpolates u*(t) at

^ ^ € lA^andy e r. Thepiecewise polynomials of representation R1 aregenerally better interpo
lators for M*(-), expect near non-smooth points, than the functions ofR2. For «*(•) sufficiently smooth,
I"* - V^a,V(^)'2 is oforder r for representation R1 (see [4]), but only first order for representation R2.
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5. OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to develop optimality functions for our approximating problems we must determine the

gradients of thecost and constraint functions for theapproximating problems.

At each time step, the RK integration formula is a function of the current state estimate and r

control samples u,, ={u^,..., ul). So, let F ;1R"' x(R'' xR") -^R" be defined by
s

F{x.w) =x+AJlbiKi(x,wG), (5.1)
t«i

where w = ...,w'') € R'̂ xR" is being treated as an m xr matrix, © = wG € R^ , with G

defined in (4.5c), and Ki(x,Gi) is defined in (4.3b). Then, referring to (4.2a,b), we see that for any

Ti = (?, u)€ Hff, with defined in (4.14a)

Xkli =F(x„,Ui,), = kevi. (5.2)

The derivative ofF(•, •) with respect to the j -th component ofwis, with Ij defined in (4.4b), given by

F„i(x,w) =A-:^£biKi(x,wG)
aw^ /.I

= A E
leljOG) /-i

=A2:
let, 1-1 p = 1 o©

(5.3)

where »®)-

Theorem 5.1. Let N€ N, ii e and ii = Also, let Myy e R'̂ '' be an N-block diago
nal matrix defined by

M;v ^ diag[AM, AM AM ]. (5.4)

where M=Mj if =L/j and M=M2 if =Lj}. Then, for each v€ q, the gradient of/;v(r|) is

V/^^(T1) = ((^i). VlJ;v(i^(^i) M^i)) (5.5a)

where y(ti)= (7|'('n), y^(ti) ) € //y^ iscomputed according to

Y§(Ti) =V^C(^,*j?) , (5.5b)

Yu(il)/ =F^j (x/^,Ui/pki? , keoi, ye r , (5.5c)
with determined by the adjointequation
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Pk=Px(.Xli>>'ltfPk*l ; PN=&^.XNf , ke^C- (5.5d)

The quantities (•, •) and(•, •) denote the partial derivatives ofF(x,w) with respect tox and the j-th

component of w.

Proof. First, we note that as defined on Ljj is invertible by Proposition 4.3 and asdefined
on Lyv is invertible by Proposition 4.6. Next, referring to [23, p. 68], we see that is the gradient of

/^(Ti) with respect to Similarly, is the gradient of /^(q) with respect to « € IR^ xR'' xR",

endowed with the standard 12inner product. Hence,

=^/yv(n;6^i) = {yu(n),^u)i^

= (7'§(Ti),6?>+ (yu{r\)Mf}\bu)j;^ = (y^(q).6^)+ (VX,V(y^(q)M^^),6M , (5.6)

where 6q = (6^, 6«) €//^ and 6q = (6^,617) = H^^jyCSq). Since by definition of V/y^(q),

AfN(Tl»' 5^) = ((Ti). )fi forall 6q € //yv, thedesired result follows from (5.6). •

Note that for all /: € yi'(q)jt € R''xR'", and that for all Jt e ; € r and /y € /,

•^(V„/;v(11)(Xi,,,) •••V„/;y(1l)(Tt ^))a/ =(Y„"(ii)t' •••tfWt )• (5.7)

Remark 5.2. At this point, we can draw one very important conclusion. For every v € q, the steepest

descent direction, in //^, for the function /^(O, at q, is given by -(y§(q).y^(q)Mj70» and not

~(y§(^)'Yu(i1)) which is the steepest descent direction that one would obtain with the standard inner pro
duct on R^ XR'" XR"*. The naive approach ofsolving the discrete-time optimal control problem CP^,
using the latter steepest descent directions, amounts to a change of variables that can result in severe ill-

conditioning, as we will illustrate in Section 6.

Theorem 53. Suppose that Assumptions 3.1,4.1 (and for representation R24.5) hold and that themap

is defined as in Proposition 4.3 or Proposition 4.6. Then, the gradients V/^( ), v e q are

Upschitz continuous on bounded sets in .

Proof. By Lemma 4.8(i7), the solutions xf^, of (4.2a,b) areUpschitz continuous on bounded sets, with

respect to q, uniformly in ^. A similar argument can be used to showthat the adjoint variables are

Upschitz continuous on bounded sets withrespect to q, uniformly in fc. It foUows from Assumption 3.1,

(5.5b), and (5.5c) that y^( ) is Upschitz continuous on bounded sets. Since Va,V( ) is a finite-
dimensional, linear operator, it is bounded and hence Upschitz continuous. Therefore, it is clear from

relation (5.5a) that V/y^(0 is Upschitz continuous on bounded sets. •

We can now define optimality functions for the approximating problems, using the form of the

optimality function, presented in (3.9c), for the original problem. For CPyy, we define 0/^ R,

with a > 0 and the set Hyy is definedin (4.15c), by
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0A,(n)= min max] max/^(ii,ll')-Vo,«(l)-aVc.Ar(n)+. max /ySdl.lO-Vc.NdlU (sga)
1l'€Hw[v€qo v€ q,4^o I w-oaj

where (ti)+ 4 max {0, Vc ,w(1)). and for ve q,

/A!(l.n') =/N(l1)+(W(il).l'-ll)H„ + ''^lil'-llH„ • (5.8b)

For the purposes of numerical computation [22], wecanexpress (5.8a) in theequivalent form

0^,(11) =_min {'/2lTi'-qB^
q'cHA,'-

+max{ max fN(^)+{G^in),yu(n)MN^),r\'-T\)fj '̂-^^ ,
V E qo

max /w(ii)+<(Y|(ii).Ti!'(n)M/;0.?-n)«„-Vc,w(n)+}} (5.9)
V € qr4^o

whereq = W^a,a? (^1) ihe set Hjv is defined in (4.15b).

It should beobvious that theoptimality function is well defined because of theform of the quadratic

term and the fact that the minimum is taken over a set of finite dimension. The following theorem

confirms that (5.8a) satisfies the definition for anoptimality function. The proof isessentially the same as
the proof in [3, Thms. 3.6,3.7].

Theorem 5.4. (i) For every il € H^, e/y,(q) ^ 0; (ii) 0^(0 is continuous; (Hi) if f] € is a local

minimizer for CPff then0^(fl) = 0. •

Remark 5.5. It can also be shown that 0^(Ti) =0 if and only if ;ti -q) ^ 0 for all
iieH^ where (il,ilO =max (\|r„,ftr(Tl)-V..Af(n')-oVc.w(il')+,Vc.w(»l)-Vc,Af(lO+). Also,

since the matrix is positive definite for any control representation, it can be seen from (5.9) that ifq]

is a stationary point ofCP^ under representation R1 and ^2isa stationary point of under represen

tation R2, then W^jy (q j) = (qj). In particular, the control samples ofthe stationary points ofCP/y
are not affectedby the choice of controlrepresentations.

Consistency of the Approximations. To complete our demonstration ofconsistency ofapproxima
tions we will show that the optimality functions of the approximating problems hypoconverge to the
optimality function of the original problem. Fir^t we will present a simple algebraic condition which
indicates convergence of the gradients. We will need the column vector h € IR^ with components bj
defined in (4.10a), and the values dj defined in(4.10b).
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Theorem 5.6. For representation Rl, suppose that Assumptions 3.1 and 4.1 hold. For representation
R2, suppose that Assumptions 3.1, 4.1, and 4.5 hold. For € N, let be defined as in (4.13a), with

or Lff =L^, and Ittf/f: —> IR, v€ q, be defined by (4.16). Let Af =Af jif -L^ and let
M = a/2 if Let 5 be a bounded subset of B. If

= 1 , (5.10a)

where 1 is a vector of r ones, then there exists a k<«> and an N* <<» such that for all

ti = (?,m)€ 5 r\Hn andiV

IV/^(T|)-V/;0^(T1)I;, ^^ . (5.10b)

Proof. To simplify notation, we replace by xi, and byp/. Let 5 ^ B be bounded and let

T1 = (^,M) € 5. Let u = V(m) and Ti = (^,«). For each y € r and k ^ 9^ F^jOcf^.Ui^) is given by
(5.3). Hence, with .j^j ,©) and ©= G, the exists icj <« such that

^F^j ,Ujf) Ah jAy (x/^, Uj '̂)D

(Xk ,Uk) A A/Ay (yj^./, ttj(|)l + lA ^ bihffiXI ,Uj^) —
I €lj I €lj

^A B ^bjhjf{Yi^ f,Uj^) —j'Kp (Xj(.,©)l +A ^/8Ay(yjt./,u/) —Ay(xjt,M/)i
/€/;/-! /, = 1d©

(5.11b)

where we have used the Lipschitz continuity ofAy (•, •) and the fact that S bounded implies that and «/
are bounded, which implies that for all y e r, BAy (x^, i7/)B and BA, (x^, i7/)i are bounded. Therefore, it fol
lows from (5.5c) that

Yu (r|)/: —(F^i (Xjf, Wjt) Pjt+1 ' ' *̂ w' »^k ) Pjt+1)

=A(AiAj(xt,ttjt^)pjfc^+i •••A,Aj(x]k.i7;)p;;i) +G(A2). (5.11c)

Now, from equation (5.5a), (Vy/^(q)) = Y^(q) Therefore, using (5.7) and(5.1 Ic),weobtain

^A.N (^u//y(ll))jfc = l^w rK(^k> ^kfPk+1 ^• (5.11 d)

At this point we must deal explicitly with our two control representations. For representation Rl,

Uff (•) isapolynomial on each interval [tj^, Thus, since S isbounded, fory,/ € r and ij,ii € I, with
/ defined in (4.4a), there exists K2 < <», such that
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lul - m/I =lu - U[T;t./,]l ^K2lA(C,;^ - C,-)ll ^KjA , (5.12)

where Assumption was used to justify the last inequality. Let

D^(b "b rhlix,,. )m-^ , (5.13a)

and let € r, denote the j -th column ofD, so that

= D> + 0(A), (5.13b)

where V„//y(q)[T^ y] is thesample of V/^(q)(-) computed according to (4.2). It follows from Assump

tions 3.1(fl) and 4.1(b'). equation(5.12)and the fact thatpj^^i is bounded for anyT\e S, that there exists

K3, K4 <00, such that for any y € r and ij E I, and denoting the /J -th entry ofA/"\

ID' -K(Xt.uifPmYP ^ILi((*«('*."*) -
/-I /-I

^£^3817; - ul\ -ji ^K4A , (5.13c)
1-1

Consequently, ifM~^b =1then ^ / =1since Mis symmetric. Hence for any j € r,

ID^ - (x;t. 8^ K4A. (5.13d)

Therefore, from (5.13b),

= KiXkMfPk^i +0(A). (5.13e)

For representation R2, Uf^i;) is not Lipschitz continuous on [/^./jt+i), so (5.12) does nothold. However,

since M = M2 is diagonal, equation (5.13e) is seen to betrue directly from equation (5.1 Id) if M~^b - 1.

Now, since S is bounded, (/) by Lemmas 4.8(/) and A1.3 there exists Kj <<» such that ^ K5A

^Pk+i ^KjA and (ii) p^^^ and hyix'̂ j^]) are bounded. Thus, making use of
Theorem 3.2(v) and equation (5.13e), the fact that both x'̂ (0 and p '̂̂ (*) are Lipschitz continuous, and

" = "L we conclude that there exists <«> such that

IV„/^(q)[Ti.f^] - V„/yOr(q)[Tjt,y^]l = th^ (x\ti,j^), u[Ti./,])> '̂̂ (T^./,) - h^ix^, u )l

(5.14b)

Now, fory € r, /y € /, and k € we have that

IV„/^(T1)(/) - V„/yOr(q)(/)l ^ iV„/v(Ti)(/) - V„/^(q)[x,.y;i +iV„/-(q)[xt.y^] - V„/yOr(q)[x*.y.]l

+ - V„/^(q)(t)|. (5.15)

The second term in (5.15) is order C?(A) by(5.14). We will show that the first and third terms in (5.15)
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are also order 0(A). First consider representation Rl. It follows by inspection of (3.6b) in Theorem

3.2(v; that V„/^(Ti)(-) is Lipschitz continuous ont € [/*,/*+!), k e 9^ because m€ is Lipschitz con

tinuous on these intervals. Since is also Lipschitz continuous on these intervals.

FinaDy, by Assumption 3.1(0), for all Thus, the first and third terms are of order

0(A) for all r € [0,1]. For representation R2, is constant on t € [t,, +</,),
y € r andA: € Since u constant on these intervals, it again follows byinspection of (3.6b) in

Theorem 3.2(v) that V„/^(ti)(-) is Lipschitz continuous on these intervals. Finally, by Assumption 4.5,

Ih ]. for all A: € andj € r. Sincedo = 0 and dj. = A, the first and third terms are

oforder O(A) forall r € [0,1]. Weconclude that there exist K7 < oo such that

BV„/''(Tl)(/)-V„/;y(Tl)(/)UK7A, / G [0.1]. (5.15b)

Next we consider the gradient withrespect to initial conditions From Theorem 3.2(v) and (5.5b),

- 75(11)8 = DV^^(^,x^(l)) - V^^(^,X;v)l + Bp '̂̂ (O) -po B- Thus, since S isbounded, it follows
from Assumption 3.1(b) and Lenunas 4.8and A1.3, that there exists Kg < <» such that

DV^^(il)-Y|'(ll)l^iC8(llx'l(l)-JyvB +Bp'''̂ (0)-p^fl)^K8A. . (5.16)

Combining (5.15b) and(5.16), weseethatthere exists k < «> such thatforany ri e

BV/^(ti) - V/jy(ii)D;, ^^ . (5.17)
•

The following proposition states conditions for (5.10a) to hold.

Propositioii 5.7.

(a) Suppose Af = Mj. Then (5.10a) holds if and only if the coefficients ofthe Butcher array satisfy

= P = 1 (5.18)

(b) Suppose M =M2. Then (5.10a) holds ifand only iffor all y € r, b^>0.

Proof, (a) For M = Af j,it follows from (4.9b) that Af~^b = 1 ifand only if

7-''HUb(i)-"7-'6 = 1. (5.19a)

Now, it can easily be shown that
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' I.jJj '
T-'b = =

Z/-A- 0

ZjJjcr'
• «

1"
1/2

llr

(5.19b)

where the last equality holds if and only if (5.18) holds. Note that is then the first column of

Hilb(r). Consequently,

n fll
Hilb(rr'r-'i =Hilb(rr' 1/2

=

0

Air .6

which leads us to conclude that

M-^b = 7"^

f1

1

.r-h
'ii

,r-l

.r-l

fi] fi1
0 1

^6 i.

(b) Clearly, (5.10a) holds if and onlyif M1 = h . ForM = A/2, if follows from (4.12b) that

Af 1 = = b

br

(5.19d)

(5.19e)

(5.20)

•

Remark 5.8. Theconditions (5.18) on the coefficients of the Butcher array for representation R1 are

necessary conditions for the RK methods to be r-th order accurate [7,18]. The condition with p = 1 in

(5.18) is the same as the second part of Assumption 4.1(h').

Theorem 5.9. Forrepresentation Rl, suppose that Assumptions 3.1 and 4.1 and equation (5.18) hold
and let = 2. For representation R2, suppose that Assumptions 3.1, 4.1, and 4.5 hold and let d be the

least common denominator for the elements bj, y € s ofthe Butcher array. Let N^ {d" } and sup
pose that {}yv g N is such that iiyv € Hyy for all /V € N and r\N as N 00. Then

0a?(t1/v) 6(11) asiV -> 00.

Proof. Let *5 ;H^. x >IR be defined by

^(Ti.TiO^max-^ max/^(ti.TiO-Vo(il)-<yM'f(il)+. max /^(q.TiO-VcCW .
[ V€qo V€qc+qo J

and^yv .• Hyv XHyv IR be defined by
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^A^Cn.TiO^max-^ max/j;;(Ti,TiO-M'o.iv(il)-c^c.iv(n)+. max / ^(Ti.TiO-M'c.w(il)r • (5.21b)
[ V€qo V€qc+qo J

SO that, e(Ti) =min^/e h,*?(ti,tiO, and 0^(ti) =min^/g h^^;v(ii.tiO. Now, suppose that {% }is a
sequence such that, for all iV, % € Hyy and t\n -^il- From the proof of Theorem 4.10, q € H. Let

T] € Hbe such that 0(q) =^(q,ii), and let {ii'y^ } be any sequence such that, for all A^, q'/y, 6 Hyy

andq'yv ->Ti. Then,

^iV (rijv )^ (TIa? .Ti'yv ) ^ ^ (% ,Tt'yv )+

max] max {/n(t1n.TlV)-/"(%.ilw)}-[cni/^,Ar(%)+-cnj/,(qyv)+].
[ V€ Qo

It follows from Theorem 4.11, Theorem 5.6, Proposition 5.7and the fact that {Ttyv } is a bounded set,

that each part of the max term onthe righthand side of (5.22) converges to zero asTV -» «>. The quantity

w) converges to 0(q) since % -^t\, and ^C*, ) is continuous. Thus, taking limits of
bothsides of equation (5.22), we obtain that lim0yy^(qyv) ^ 0(r|) (this proves thatDefinition 2.5 holds for

the optimality functions of the approximating problems). Now, for all N, let Tjyy, € Hyy be such that

(^N)=^N (r|A '̂ "Ha? )• Then, 0(T|yv) ^^ (Ttyy, qyy) and proceeding in asimilar fashion as (5.22) and tak
ing limits, we seethat 0(Ti) <: lim0A^(ilA^). Hence, together with the previous result, wecan conclude that

0iv(%) -> 6(11) asN oo. g

The following results is a direct result ofTheorem 4.10 (epiconvergence) and Theorem 5.9:

Corollary 5.10. (Consistency) For representation Rl, suppose that Assumptions 3.1, 4.1 and 4.9 and
equation (5.18) hold. For representation R2, suppose that Assumptions 3.1, 4.1, 4.5 and 4.9 hold. Let

N= {d" }T-i where =2 for representation Rl and d is the least common denominator of the bj,
j € s, forrepresentation R2. Then, thefamily of approximating pairs (CPyy, 0yv), N € N, constitute con

sistent approximations for the pair (CP, 0). •
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6. NUMERICAL RESULTS

We will now illustrate the usefulness of our analysis with an example. First, recall that by (5.5a),

for r\ = (^,u)e and v € q, V„/;Jf(T|) = where 7^(1]), defined in (5.5c), is thegra

dient of//}(•) with respect to the standard inner product on xIR*" xR'". The gradient of/^(O with

respect to the inner product on isgiven by =^a.n (^ufUKA)) =yM and satisfies

)2 = )/; = (Y«(n).5w )/2 • (6.1)

where T| = Wa,//(T|) and6i7 = Vf^ ff(bu). It is well-known that a change in theinner product on a space

is equivalent to a transformation of coordinates. Since existing optimization software uses the standard

inner-product, it is convenient to define a transformation of coordinates that results in a gradient which

satisfies (6.1) forthestandard 12 inner product onR^ xR'̂ xR".

To accomplish this, letL yy = R" xR*" xR" endowed with the standard (Euclidean) inner product,
and let the transformation Q . Lj^ ->L defined by

w =Q(w) = "M^, (6.2a)

where is defined in (5.4). For each ve q, let/^ ;(R^v xL R be defined by

=/«"((?,«)). (6.2b)

Let Ti = (Ti) = (^, u) and = (^, (2(w)). Then,usingthe chainrule,

^vf n(A) =Q~K -^nW) = (Tl). (6.2c)
du

Thus, with 6i7 =W(6«), (V^/ ^(q),Q(bu))/j = (V„/^(r|),6« )£^ = {V„/j^(ti),6m )2. Implicitly,
the transformation, Q, creates an orthonormal basis for . With this transformation, the approximating

problems can be solved using the standard norm and inner products on Euclidean space for which any of
thestandard nonlinear programming methods apply directly. It is important tonote, however, that control

constraints are also transformed. Thus, the constraint me U becomes u € U. For representation
Rl, is not diagonal (except if r = 1). This means that the transformed control constraints will, for
each k, involve linear combinations ofthecontrol samples m/, y € r.

We will now present a numerical example which shows, in particular, that without using the above
transformation, the approximating problems can be ill-conditioned.
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Example. Consider the following linear-quadratic problem taken from [16]:

min/(«), /(m)^xJ(I),
u e U

where (0 = (Jc i(/),X2{t )f and

X =
O.Sxi +«

0.625x I + 0.5x \U + 0.5m^ . *(0) = te [0,1].

(6.4a)

(6.4b)

The solution to this problem is given by

«*(0 = -(tanh(l-/) + 0.5)cosh(l-0/cosh(l), re [0,1], (6.5)

with optimal cost xj (1) = c^sinh(2) / (1 + s 0.380797.

The approximating cost function is (m ) = (0 1) icJJ where {x^} is the solution oftheapprox

imating problem for a given control u e Lff. We discretized this problem using two common RK

methods whose Butcher arrays are:

A, =

0

= 1/2 1/2

1 -1 2

1/6 2/3 1/6

Ao =

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

The scalingmatrices M/^ used to define the transformation Q in (6.2a) are givenby (5.4)with

M =Mi =
30

4 2-1

2 16 2

-12 4

M =M2 = -7
6

1 0 0

0 4 0

0 0 1

(6.6)

which arethesame forboth RK methods since in A2, C2 = C3 = 1/ 2 imphes r = 3 and b 2= 213.

We solved the approximating problems with theinitial guess m(/) = 0, r € [0,1], stopping when the

stepsize was below machine precision (2.22e-16) or the normof the gradient wassmaller than the square

root of machine precision. Table 1 shows the number of iterations required to solve the approximating

problems for different discretization levels N with and without the transformation (6.2b). We see that

solving the discretized problems without the transformation required about 200% more iterations than

with the transformation. The situation can be much worse for other RK methods. The choice of

representation R1 versusrepresentation R2 had no effecton the numberof iterations required.
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Number of Iterations

N

cs

II

II

m = -Li

10 17 52

20 18 52

40 17 52

80 15 50

Table 1: Conditioning Effectof the Transformation Q on Approximating Problems.

Weusethe second RK method primarily to demonstrate the advantage of treating thesamples aris

ing from repeated c,- values in the Butcher array asthe same sample (see Remark 4.7). Let { ^ gn,

where N N, be solutions of CP^ and suppose »w* where «* is a solution ofCP. In [16, Thm.
3.1], Hager establishes, for symmetric RK methods [1,28], a tight upper bound on the error

oo* of second order in A = 1/ TV for smooth, unconstrained problems. Note

^A.^ ^ and y € r because «*(•) is smooth for smooth problems [26]. Hager
used the problem given in (6.4a) to demonstrate the tightness of this bound. For the particular RK

method described with theButcher array A2, wecanstate thefollowing improved result:

Proposition 6.1. Let CP=min^ gu/(-'f"{l)). " unconstrained, and suppose that /(•) and hi-,-) in
(3.1) are four times continuously differentiable. Suppose the approximating problems CP^ are produced
by discretizing CP with the fourth order RK method with Buthcer array A2: c = {0,1/2,1/2,1 },
b= {1/6,1/3,1/3,1/6} and the non-zero entries of A are ^2,1 = ^3.2 = 1^2 and 043 = 1. Let

{^N* }iv €N' where N^ PJ, be solutions of CPff and suppose %* -> u* where u* is asolution of CP.
Then ^ («*) - Va.n (««*)8» =O(A').

Sketch ofProof In [16], it is shown, using a reasonable non-singularity assumption on the Hessians of

/jv(-). that the accuracy of the solutions of the approximating problems is determined by the size of the
discrete-time gradient of the approximating problem at «* 4 («*). that is, Iy„ («*)I. This, in turn, is a
function ofthe accuracy ofthe state and adjoint approximations. For the RK method under consideration,
Hager shows that the variables u*/, A: € and y =1,3 are third order approximations to M*(/it) and

+ A), respectively. Thus, we need only show that isa third order approximation to«*(r;t +A/2).

Let 1=JCjt +A/2/1 (x^, and T;t,2 =•** +A/2/i (^ +A/2h (J^, U/^), u^) represent the second and
intermediate values used by the RK method at the it-th time-step with i7 = «*. Hager introduces a clever
transformation, specific tosymmetric RK methods, for the adjoint variables sothat they can be viewed as
being calculated with the same RK method used to compute the state variables, but run backwards in
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time. The intermediate adjoint variables of interest here are denoted by q{2,k) and qiX,k). With this

transformation, the discrete-time gradients for the approximating problems has the same form as the

continuous-time gradient for the original problem. Since 02 = 03= 1/2,

= 2A/3[l/2A„(yt,i.«*tV9(l.t)+ W2A„(yj,2,i;*tV9(2.ifc)]. Since
2A/3A„(jr° (ij +A/2),u*(it+A/2))'̂ p° (Jj+A/2) =0, the size of is the maximuni of

+ +A/2)landl(9(2,it) +9(l,t))/2-p"*(ti +A/2)8. First,

Y ^ Y Awik)^ ^ =xi,+—[h(xt,ui^) +h(xi,+ yhu^)]

=x„+Y[h(Xk,Ui,^) +h(xi, +A'/i(X;t,uA"it^)] t (6.7)

where A' = A/ 2. Thus, w(k) is produced by the modified Euler ruleapplied to . Since thelocal trunca

tion error for the modified Euler rule is order O(A^) and X/^ is order OiA\ lM'(A:)-x"Vit +A/2)0 is
order 0(A^). In the same way, it can be shown that iq(2,k) +q(l,k))/2-p"*(tj^ +A/2)B is O(A^).
Thus, we can conclude that 8yu(«*)|B = O(A^) for all k e ^^C. This implies that the solutions of the
approximating problems satisfy B«*;J jt ~ = 0(A^) for all it € !V!and j Gr.

Accuracy of Solutions Number of Iterations

N ER E"NlEh Ei E{)I M = Mi , / = 1,2

II

10

20

40

80

1.48e-4

1.87e-5

2.34e-6

3.07e-7

ISA

7.99

7.62

2.86e-7

1.76e-8

1.09e-9

6.80e-ll

16.22

16.13

16.07

16

15

15

15

20

20

23

27

•

Table 2: Rate of Convergence; Conditioning Effect of the Transformation Q.

Table 2 summarizes our numerical results using the RK method with Butcher array A2. The first

columngives the discretization level. Columns 2 and 3 showthat doubling the discretization results in an

eight-fold reduction in the control error. Thus, as predicted by Proposition 6.1, E/J is O(A^). The next

two columns,agreeingwith Hager's observations that the optimal trajectories of the approximating prob

lem converge to those of the original problem with the same order as the order of the symmetric RK

method, show that Ejf = 1/ (m*) ' •is order O(A^). Finally, we include in the last two columns
the number of iterations required to solve the approximate problem with and without the transformation

Q. The effect of scaling is less spectacular than in the previous method, but still significant. The
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untransformed problem takes 25% to 80% more iterations to solve than the transformed problem.

The last table shows the accuracy of the approximating gradients for the particular control

M(r) = -1 + 2r. The first column shows the discretization level N. The second and third columns

confirm that thegradients for the approximating problems converge to thegradients of the original prob

lem. Note that, based ontheproof of Theorem 5.6, it is enough to show that thegradients converge at the

points ^ ^ r. and ij € I, The fourth column ofTable 1shows that the gradients that would

result if onetreated thediscrete-time optimal control problem directly donotconverge.

N

M

A.N (y/ (" )) - Ju

M =Af2 ^4/
8^A.^(V/(tt))-N7„Boo

10 1.67e-3 6.46e-4 1.48

20 3.77e-4 8.31e-5 1.48

40 9.94e-5 1.05e-5 1.48

80 2.55e-5 1.33e-6 1.48

Table 3: Convergence of Gradients.

7. CONCLUSION

We haveshownthat a largeclassof Runge-Kutta integration methods can be usedto construct con

sistent approximations to continuous time optimal control problems. The construction of consistent

approximations is not unique: it isdetermined by the selection offamilies offinite dimensional subspaces
of the control space. When the elements of these subspaces are discontinuous functions, appropriate
extensions of Runge-Kutta methods must be used. However, in this case, not all Runge-Kutta methods
can be used because some Runge-Kutta methods do not result in consistent approximations. This was

observed bothnumerically and byfailure to prove consistency of approximation with thesemethods. We

have considered two selections ofcontrol subspaces in this paper, one defined by piecewise polynomial
functions and one by piecewise constant functions. Splines can also be used and are treated inAppendix
A2. Each selection has some advantages and some disadvantages. A final selection has to be made on

the basis ofsecondary considerations, such as the importance ofapproximate solutions satisfying the ori
ginal control constraints, the form that the control constraints take in the discrete-time optimal control
problems, or theaccuracy with which thedifferential equation is integrated.

As in our case, the basis functions that are used implicitly to define the finite dimensional control

subspaces may turn out to be non-orthonormal. In this case care must be taken to introduce a non-
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Euclidean inner product and corresponding norm in solving the resulting approximating discrete time

optimal control problems. Neglecting to do so amounts to a change of coordinates that canleadto serious

ill-conditioning. This ill-conditioning is demonstrated in Section 6.

Finally, theuse of the framework of consistent approximations opens upthepossibility of develop

ing optimal discretization strategies, such as those considered for semi-infinite programming in [17].

Such a strategy provides rules for selecting the number of approximating problems to be usedas wellas

the discretization level, theorder of the RK method, andthenumber of iterations of a particular optimiza

tion algorithm to be applied foreach such approximating problem, so as to minimize thecomputing time

needed to reach a specified degree of accuracy in solving an optimal control problem. We hope to

develop such results in the near future.

APPENDIX A1

In this Appendix we will collect a few results used in the analysis of Sections 4 and 5. We will con

tinue to use the notationof Section4: A = \/N, = kA, and +c,-A.

Lemma A1.1. For representation Rl, suppose that Assumptions 3.1(a) and4.1 hold. For representa

tion R2, supposethat Assumptions 3.1(a), 4.1, and 4.5 hold. For any bounded subsetS ^B, there exists a

K<eo such that forany Ti = (§,«)€ S ^ kA^ for all ik € where

6^ + k e 9^. (Al.l)
/-I

is the solutionof the differential equation (3.1)and u [t^ , ] is defined by (4.2).

Proof: Let b j and dj beasdefined in (4.10) and, for j € r, letij € I where I is given by (4.4a). Then,
tk*i

writing x (•) = jr^(-), since the solution of (3.1) satisfies x (/^t+i) =•*('*)h (x(t), u(/)) dt, wesee that

/t*i

bk = AJ^bjh (x(t^),u [Xj,,,• ]) - h (X(t),u (t)) dt

r ti+dj r tkHij

= , (A1.2a)

because dj -dj..i =Abj, u[xi^ i^] = u[xi^ i] for all ielj, dQ^O and, by Assumption 4.1(b'),

=AE/.ib J =A£/.,by = A. Thus,
r n+dj

'S* B̂ (x(fjfc)." [x*./^]) -h(x(t),u (t ))y dt
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r n*dj

^ + . (A1.2b)

where Kj < «> is asin Assumption 3.\(a)and dy - dy_i >0 by Assumption 4.1Cb'). Now, for t

there exists K2 < «> such that

t tM

lx(/^)-x(/)l |̂̂ l/i(x(r),M(0)Ddr ^ K2[Bx(0il+l]d/ (A1.3)

by Assumption S.lCo!) and the fact that S is bounded. Also because S is bounded, if follows from

Theorem 3.2C»V that there exists L <« such that lx(/)i ^K3[B^B + 1]^L. Thus, for / € [/*,/*+!],

('*)"•*(OB K2[L + l]dr = Ak2(L + 1). There also exists K4<'» such that, for any k e 9{, and

y € r, lw[Tjt,/^]-u(0B^K4A for t e [ti^+dj_i,ti^+dj) since (i) for representation R1

[h +^y) by Assumption 4.1Caj, O^dy Afor y = 0 r by Assumption 4A(b') and
u e L]j is a polynomial on ,r^^+i) and hence Lipschitz continuous on each sub-interval
[tk+dj_i,ti^+dj); and (ii) for representation R2, u e is constant on t € [/*+dy_i,f;t+dy) and

ih +^y-i»^it byAssumption 4.5. Therefore,

r fkHlj r h+dj
I6*D ^ Ki(k2(L +1) +K4)Adr =KAJ^j^^^^ dt =kA^ , (ai.4)

where k = Ki(k2(L +1) + 1C4). This completes our proof. •

The next lemma concerns the functions K,c.i of the RK method defined by (4.3a,b).

Theproofof this result is easily obtained from theproofforLemma 222A in [7, p. 131].

Lemma Al,2 SupposeAssumptions 3.1(fl] holds. Let S be bounded. Thenthere existsL <<» and

N* <«> suchthat for allTV ,ti € S '^//^, it € fA6 and / e s,

^k.i -h{xi,,u[Ti,j])i^LA. (A1.5)
•

Next, we present a proof of Lemma 4.8.

Proofof Lemma 4.8.

(/; Convergence Let 11 = (^.u) 6 S n//^ and, for it € iA6 let Then, Bcol = 0 ^ kA
and by adding and subtracting terms,

et+i + j -jcl(ft+,)
1-1

= + x\tt) - +Al,b,h(x\lt). u[Xt,, ])
/-I

+AEb,
1-1

(A1.6)

The norm ofthe second term in this expression isbounded by KjA^ by Lemma A1.1 where Kj <«>. Using
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Lemma A1.2, Assumption 3.1fa), and thefact that I ^ 1 by Assumption A.l(b), weconclude for the

third term that, there exists K2<°° such that

1-1 J

1-1 /-I

^A^Ls +Ak2S Bgjt B. (A1.7)

Thus, for ail A: €

^ (1 + kjAs ) B+ ^3^^ • (A1.8)

where K3 = Kj +Ls. Solving (A1.8), we see that for all A: e le^ I^ (1 + K2A5 f I^qB + k^A ^ kA. This
proves (4.18a).

We prove (4.18b) in two steps. First suppose that Hf^ =H/} = R"' xLj} and let Tij € S Hjj be
given. The expansion based on higher-order derivatives (see [7]) needed to prove (4.18b) requires

smoothness of hix,u) between time steps. By the way we have defined control samples w[xjt,/], the

samples of «1 € Li} used by the RK method correspond to polynomials between time steps, implying that
hix(t),Ui(t)) is smooth between time-steps. Using the same type of reasoning in the proof of Lemma

Al.l, we conclude that there exists k<oo, independent of "q, such that (4.18b) holds for representation

Rl. Next, to prove (4.18b) for representation R2, let Hf^ = JR."' x L^. Let ^2= (?»"2) ^ ^
be given and let q, =(^.«i) =(W|;v)-^(W^,;v(q2)) € Hij so that Vi.^(Mi) =Vlff(u2). Then for any
t e [0,1],

IU: '̂(/) -x'̂ Xt )l =ij^h (x'̂ Xs), ui(j ))-h (x'̂ Xs), U2is ))ds I

^BJJjA (x '̂(j ))-h (x '̂(5)) +B(w lis) - U2(s ))ds fl

^ )ld5 + («j(5) - U2(^ ))dsB, (A1.9a)

by Assumption 3.1(fl). Using the Bellman-Gronwall lemma, we conclude that for any t € [0,1],

ix'̂ Xt) -x'̂ Xt )B K̂^e IB BBJ||(u i{s) - U2(5 ))ds I. (A1.9b)
Now,letiV) =«i(j),^ € [0,l],z^(0) =^andi^(/)Att2(^),/ e [0,1],22(0) =^. Letand2^^ A: €
bethe computed solution ofz\t) and z\t), respectively, using the RK method under consideration. We
note that for all A: € ^^C since VI ff(u j)= Va,w("2)' Then, since (4.18b) holds for representation
Rl, z^ =z \tic)+6^ where i6jt B̂ K2/NP, K2 <», for all 1 Also, from (4.3a,b),
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-2 -2 ^ -2
2k+i =Zk + = ^Jt + Z t - ti2{s)ds = , (A1.9c)

i-l

since Tj^j e (by Assumption 4.5) with tt2(*) constant on these intervals, and = A by

Assumption 4.1(b'), Since we must have

z'(>t)-z2(r») =rt' +6t-2? =6t . Vke^C- (A1.9d)

Hence, we conclude that

"Jo )- "2("y )) '̂S •=Iz \h) - )ll =I6jt I^Kj/NP . (A1.9e)
Therefore,

^^."^ke 9i, (A1.9f)

where we have used (A.19b) and (A.19e), the fact that ILc^^'C/j^)^ kj/NP since (4.18b) holds for

T|i € S by the first part of this discussion and the fact that ic^ '̂ since «i[T;t ,] =

Thus (4.18b) holds for representation R2 under the stated conditions.

(ii) Lipschitz Continuity First observe that the term Yii'i^iKk.i bi equation (4.1a) is Lipschitz continu

ous onbounded sets with respect tox and u, with constant k^, since it is a finite composition ofLipschitz

continuous functions. The constant decreases monotonically to the Lipschitz constant k of hi , ) as

A 0. Thus, there is a single Lipschitz constant iCj forYiU\^i^k, / which is good forany A.

Let "H = (^.") = W^a.wCti) and q' = (^,i70 = W^A,N(tlO. Define 6;^ and 6i7^ = Uk-Uj '̂.
Then, Sq = and

5*+i =5/t. ke9i. (Al.lO)
/•I

Taking normsand using the assumption that Ih, I ^ 1, we obtain

i6^+ii ^16* B-H a£ Ibi IlKk,i - Kk/l
1-1

^B6*B+Aki£[B6*B-1-8817* I]
i-i

^ (1 + Akj^ )B6* B+ AkiS
1/2

£165/1^
y-1

^(1 -I-Akij)B6*B -I-AK25trace((6«*^ •••6m*)M (6m*^ •••6w*)'̂ ) '̂̂ , (ALU)

where M = A/ j for representation R1 and M = M2 for representation R2 and 1C2 = ) <«. Now
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we define Eq = II60O and, for /: €

Ejt+i ^ (1 +AKi5)ejt +AK2Jtrace((6ii]fc^ •••huJ^)M ,

so that I6jt B̂ e;t • Solving (A1.12a), we obtain that

*-1

D6jt 0^ (1 + Akjj K25
N-\

D60II +A£ trace((6M/ •••6m/) M(6m/ •••6m/)^ )

N-\

l§ - +[a£ trace((6i7/ •••617/) A/ (6m/ •••hu^f)
7-0

r « 1/2 _ _=lI i^-^l2 +iM-iZ'B^I =LBn-Tl'B^^ ,

1/2

- (1 +AKi5)*eo +Ak252,'(1 +AKi5ytrace((6«/ •••hu'-)M (6m/ •••
y-o

Therefore, assuming without loss of generality that K2 ^ 1, we have, for all ifc e

(A1.12a)

(A1.12b)

(A1.12C)

where L=(A^ +1) '̂̂ (1 +Aki5)^K25 and we have made use of the fact that if My ^0 for ; € q then

Lemma A1.3. Suppose that Assumptions 3.1,4.1 hold for representation R1 and that Assumptions 3.1,
4.1, and 4.5 hold for representation R2. For any5 bounded, thereexists k<«> andA* < «> such that

for any r| € S //^v and N ^ N*,

K
ke {0 N], (A.13)

where p (•) is the solution to the adjoint differential equation (3.6c) and {pjt } is the solution to the

corresponding adjoint difference equation (5.5d).

Proof. Proceeding as inthe proofofLemma 4.8(i), ifwe define ^ p^^+i -P Cjt+i) we can show that

Be;ti^Lile;t+iB+L2A2. k e 9i, (A1.14)

where L i,L2 < ®®, using (/) the fact that

Pk =PxOCt.Utfpk.H =Pk-H+^Z'>l''x(Xt,U[Tt,l]fpM +0(£?).
/-I

(A1.15)

(ii) Lemma Al.l with ^(x(/;t),M[T;t./]) replaced by -/i;c(x(/t),M[Tjt,,])V(/jn.i) and (Hi) the result of

Lemma 4.8(i7 that ix(rjt)-JtB ^ kA for all /: € fA(;. Now, by Assumption 3.1(b) and Lemma 4.8(/), there

exists Ki < 00 such that
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le^,! = Ipw S 1S K,EEitf -Ar(l)l£ KjA . (A116)

where K2 = kkj. Thus, solving (A1.14) we conclude that for aUit €

letl£(Li)''leA,l+Z,2'A,

which, with (A1.16), proves (A1.13). •

APPENDIX A2

In this appendix, we use splines as the finite dimensional control elements in the construction of

approximating problems, for optimal control problems with enpoint inequality constraints and box-type
control constraints. We show that the resulting approximating problems, along with their optimality
functions, are consistent approximations to the original problem with its optimahty function. In the pro
cess, wewill develop some results for splines thatareinteresting for their own sake.

We will construct our finite dimensional control spaces using spline basis functions, i.e. B-splines
[4]. Thus, for r € N, r ^ 1, let

t \ A A?+r-l{« €Lf[0,l] I «(/)= £ , / € [0,1]) , (A2.1a)
ifcol

(A2.1b)

where ajt e R", <|)jt .• [0,1] IR are the basis function M)-as defined in [4] and r is the

order (one more than the degree) of the polynomials that make up the spline pieces. The subscript t is a
knot sequence which we choose forourpurposes to be t = {k IN ]*'=17+1 (note that, unlike in [4], our

indexing does not start at k=l). With this knot sequence, the B-splines constitute a basis for the space of
r-2 times continuously differentiable splines of order r that have breakpoints at times =k/N,
k = {0,...,Af}. Since splines are just piecewise polynomials between breakpoints with continuity and
smoothness constraints at the breakpoints, and R"' xLyJ, where is defined in
Section 4 for representation R1 with r-th order polynomial pieces. The control samples, u[-Zk j],
k =0,... ,N-U J € r, used by the RK integration method given in (4.3a,b) are related to the spline
coefficients byulzj^j] =

We will use B-splines normalized so that = 1 for all r € [0.1]. These B-splines
canbewritten in terms of thefollowing recursion onthespline order r:

t - /it-r-l fjt"" f
^k,r+i.t(0 = - - ^k.rM +^) +";—;—+^). k = \,... ,N •¥ r , r 'k \, (A2.2a)

'*-1 - h-r-\ h - h-r

where A = UN and
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B

f 1, Sfj
_ J

10, otherwise k = l....,N

For instance,cubic splines (r = 4) have the following basisfunctions [21]:

/*_,<:/s <,.3

j j a'+3A^« - tt.3) +3A(* - f,.3)2 - 3(r - /,.3)3 . <t.3 S»S*t.2
6A' 1 4A' - 6A(r - +3(1 - /t_2)'. *,_2 s s r,_,

A'- 3A2(r - <t.,) +3A(/ - tk-if -(I- r,.,)', r,., s r s r.

(A2.2b)

(A2.2C)

The domain of the B-splines extends outside of the range / € [0,1] for the puipose of construction only.

Thefimctions u (t), given by (A2.1a), are defined only on / € [0,1]. Animportant feature of B-splines is

that the support of each individual basis function is only r intervals [tkJk+i\' This is important for

efficient computation of u (/) from the spline coefficients and of the gradients of the cost and constraint

functions.

We define the control constraint sets for the approximatingproblems as,

{ u € I a, e £/. t = 1.... ,JV +r -1 ) (A2.3a)

HiSr'̂ IR"'xU;Sr'. (A2.3b)

where, for this appendix, we assumethat U, used to define U in (3.3a), is a cartesian productof the form

A "*U^Xlai.bi],
I«1

with Ia,-1 < oo, Ih/1 <00 and a,- < h,-. The approximating problems are thus:

CPn ^Vo.atCti) I M'f.a?(ti)^0}.n e Hit"

(A2.3C)

(A2.3d)

The functions \Ko.iv('n) and are defined as in (4.17). We will keep the definition of the optimality

functions the same as given in Section 5. Note that the decision parameters for these problems tran

scribed into coefficient space, are the coefficients = 1,... ,N+r-l in the expansion of basis

functions rather than theNr control samples «[xjt j], k = 0,... ,iV-l, j = 1,..., r for theapproximat

ing problems defined in Section 4. Thus, the number of decision parameters needed for splines is sub

stantiallyless than the numberneededfor the same ordergeneralpiecewise polynomials.

The next three results state properties of the spline subspaces that are needed to prove epiconver-

gence of the approximating problems to the original problem. Corollary A2.2. is a non-recursive restate

ment of the subdivision result presented in [33, Thm 3.1].
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Proposition A2.1. (Nesting of Basis Functions) Givenan integerp ^ 1, let t = {k IN ] and

t= {kl2N Then.

1 P+1
=^Z '̂p./Sa-p+i-i.p.fC). ' e [0,1], <: =1 N+p-1, (A2.4)

/-I

where o^ i is the /-th coefficient of the polynomial (/+!)'*. We can take p(/(ObO if / < 1- p or
/ > 2N + p -1 since the proposition is stated only on r € [0,1].

Proof, We can prove (A2.4) by induction on p. It is clear from (A2.2b) that (A2.4) holds for p = 1.

Now we will show that if (A2.4) holds for p = r, then it holds for p = r+1. From (A2.2a),

®t,r+i,i(') = —+A)+ +A), i = 1 N+r. (A2.5a)

Substituting (A2.4) into this expression, letting A' = A/2 and noting that + 2A0 = + A') and

h = ''at'gives us

/-'Vjt-r-D 1 ''at-' 1
^A:.r+l.t(') = S<^r,/^2*-r+i-l.r.f(' +2A')+ ,i^2Jt-r+/+l,r .f(' + 2A0

= ^-AO +a,.;' +A')

+ £
y=2

2()t-r-l)

+ ^r.y-r
''at-'

rA'
^at-r+y-l.r.t'(^ +^')

t'lk-i t'n-t 1+ +A0 +a,.,+i-^fi2it+l.r.f(' +A0

+ E
y-2

2(Jt-f-l) ^ "" '̂2(it-r)-l
rA

^at-r-i + <yr,i —^atw +(cyr.i+ €'r,2) ^at-r

2(Jt-l)-r+y(^rj-i + a,j) +(arj 2(k-r~l)^j

rA'
^at-r+/-l

, ^^ at-1 —' „ _ ' —' at-r-i „ ' at —'
+ (c^r,r+Cyr,r+l) ^2*+<^r,r+l ^at+<^r,r+l

where we have abbreviated fijt.r ,t'(' + A') with 5^ and we have used the following facts:
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(i) since r a^. j - a,. 2 = 0,

- '̂2(jt-r-l)) = ('-ar.l-<Jr.2)A' + Cyr.2(^ - ^W-l))

= CTr.lC '̂at-r-l ~ '̂2(*-r)-l) + ^r,2(^ ~''2(*-r-l) ~^0

= ,l(' '2Jt-r-l ~ ^)+ (C^r. 1+ ,2)(^ ~ ' '2(*-r)-l) »

since Or^r - '"^^r.r+l = 0.

<^r.r( '̂2* - 0 = a;.,;.(r'2Jt - 0-(a;.,r -ra;.,,+i)A'

= ^r.r(^'2k -t +t -/'jJt-r-l)

(A2.5b)

= (CTr.r +0,,r+l)(l'2t-I-') + CT,,,+,(r -< a^.,) , (A2.5c)

_ r(r - 1) • • • (r -/ + 2) . ,
= ——TTT""*^ . J = 1,... ,r+l implies thatj (t + V(ill) and since a- ,• = —r-r-^ —

dt'-^ 0-1)! t=0 U -1)!

<^r.j-i(r+2-j)- roj +jOj+i = 0,y«=2,..., r, weseethat

Vrr ^2* - ^ ^-'2(*-r-l)./ +<^r,y+l'
yo2 rA'

'-'V-r-D 1, , «
= -(<yr.Mi'-+2-j)-rGr,j +JOrj+i)

j—2

_^_ t'u-t _ _ r+2-j j
J"Z

' '2(ifc-l)-r+; -t + t -t '2(jt_r-i)+y
rA'

= Et'r.J-l
J-2

'2* ~ ^ r+2-7
rA' r "*''•••'

-^-^rj+i +^r.y+I^

rA'

y-2

t'2(k-l)-r+j
rA

/ J + ,y+l)'
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+ ^r,/
r -r'2(;^-f-i)+y

rA'

2(it-r-l)fy

rA'
(A2.5d)



Now, rearranging terms slightly, we get

t

rA

+ L(^r.j+Or.J+l)

^ 2ifc-r~l

rA'
B 2k-r

f ' V-r-lW „ . ' 'ik-r+j-l- ' „
0 2k-r+j-l + 0 2k-r+j

t 2t-r-l

"••^r.r+l ^7k +^r,
rA'

-Br+l" 2ii:+l| (A2.5e)

Referring to (A2.2a) and noting that €1^,1 = 0^+1,1 = 1, c^r.r+i = ^r+i.r+2 =

^r,j + Off J+I = €yr+i.j+i.y=l. •• • wesce that

r+21
- ~ Il€T;.+i,,B2Jt-f+i-2.f+l,f(0 .

2 /.I

which verifies that (A2.4) holds for p = r+l.

(A2.5f)

•

Corollary A2.2. Let r ^ 1 and Of j be the /-th coefficient of the polynomial (^+1)'". Then, given

u € Lf[^ with coefficients k = . ,N -^r- u is also a member of with coefficients
k = l,...,2N+r-l given,forr odd,by

and, for r even, by

£±1
2

£ €)t(;t+f)/2-j+l €yr,2i-l • ^ odd
1-1

r+l

2

£ a(;t+^+i)/2-/ Or,2i > k even
I-l

r—1' 2 '

£ a(*+r)/2-/+i<7r.2/-i • ^ cven
1-1

L^J
£ 0l(it4r-l)/2-^+l€yr,2i » ^ Odd
1-1

(A2.6a)

(A2.6b)

where[ p] is the smallest integer n such that n and[ p\ isthe largest integer n such that n ^p.

Proof, In thefollowing, setBjt.r.r(0 •OifA:<lorA:> 2N+r-l. From equation (A2.1a) and Proposi

tion A2.1,
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iV+r-1 N+r-l I r+1
"(0= ®*^Ar,r,t(0 = Yt .^-1 Z*^r,/^2*-r+i-l,r,t'(0

*-l *-1 2 /.I

2{N+r-l) j r+l
= S 'ZTZrH^r.i^k'-r+i.r.tiO

k'=l 2 2 ,-i
k' odd

2(/V+r-l)-l 1 r—1' 2 ' L—J

r=i 2
ir odd

E ^r,2;-A'-r+2j-l,r,t'(0+ £ ^r,2J^k'-r+2j,r.A^^
J'l j'l

2(Af+r-l) 1

*'=1 2

r—1' 2 '

E ^k'+\ ,2j-\^k'-r+2i-l.r.AO ^'odd
y-1 2

L^J
L c^r.2;5jt'-r+2;-i.r.t'C) ^' even
y-1 2

1

2r-l

r—12 ' 2W+r-3+2J

£ £ '
j-i k-2j-r

I—jL 2 J 2N+r-3+2J

£ £ '
J-i km2J-r

-+i-y

(A2.7a)

Thus, if r is odd,wecanwrite, abbreviating fijt,r .f(0 with ,

2N+r-l

•» -fc

^k-¥r ,1
0 2/V+r+l

^k-¥r .^r,3
2{N+r-l)

L
km2-r

A

«*+r-l ^r,2 Bk* Z
*-4-r ®it+r-l ^r.A

2

Bk+ ' •+ £
2

^r.r+1
Bk'

2 2

where the top row is for k odd and the bottom row is for k even. If r is even, we can write

«(/) =
ir-l

2^+r-l

z
*-2-r

" *

^k'¥r , 1
r

2A^+r+l
2

Otik+r-1 ^r,2
B*+ £

t-4-r
2

^k-¥r .^r,3
2 "

2

B> +
2(^-w)-l

+ £
;t-i

^r,r+l
2

0
i5*

where, the top row is for k even and the bottom row is for k odd. Now, by collecting the terms for

k e {1,..., 2N+r-l ] and forming the expression
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2/V+r-l

"(0= Z (A2.7b)
kml

we see that the coefficients are as given by (A2.6a,b). •

Lemma A2.3. Let N = {2" } Then, for any Ni,N2GN such that Ni <^2- Further

more,

(a) Given T| = (^.u) € H and TV = 2" <«>, there exists j„ € N, <<» and r|y^ € such that
111 1/TV.

(b) Suppose there is a sequence {% }/v c n such that Uf^ € and % u. Then « e U.

Proof. Thenesting of thesubspaces follows directly from Corollary A2.2.

m

(a) From (A2.3c), U is given by a cartesian product ofthe form X[a,-, b, ], with Ia,-1 <<», I 1< oo
/"I

and a,- <b,-. Since u e [0,1], there exists C"[0,1] such that iu-u'^2^S = 2/(5+m)N, [27,

Theorem 3.14, p. 69], Now, with ' Ug denoting the /-th component ofUg, define the function Ug as fol
lows:

bi-h if 'u'g(0>h/-6,

'ug(f)=' 'Mg(0 if a,-+6^'«'g(r)^b,.-6, /€m, re [0,1], (A2.8a)

Oj+b if a,-+6<'w g(r),

Note that, because a,- ^ 'u (r) ^ bj for all / € m, r e [0,1],

« 1 . - I mlu = SjJ|£(('u(0-'«',(r))^+6^)</» =liu+ (A2.8b)

Thus, lu - uJI2 ^ (1 +m )5. Now, u^(-) is a continuous function on a compact interval, hence uniformly
continuous. This implies that, for each i € m, the modulus of continuity for ' wg,

co('Ug,a)^max{ \ l/j-Zjl ^cr}, goes to zero as a^O. Thus, by [4, Theorem
Xn.l, p. 170], there exists an integer N, = 2"' < «> and such that

6 1lu, - Uf,f2 ^ lu, - Ujv,L ^ - = — +m)W . (A2.8c)

Since isalso unifoimly continuous, there exists n2€N,n,<n2<~. sueh that, with N2 = 2"\

g

iWiVjO 1) - ^ —3Y » Vr € [0,1] such that Iri- ^2' ^ (p - 1) /N2, (A2.8d)

where 1^D;.,co <«> is as given on page 155 of [4]. Now, for it = 1,... ,N2+p, define the intervals

^* = with t^=klN2, and define the quantities =maX( and
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=min,g7./u^,(0. Since for/i./j e T*, U1-/2I ^(p-D/Nj, weseethat
ff

-^mi, = max l'«A,,(ri)-^«yv,(/2)l^7i , for /i.r2e , / em. (A2.8e)
fuh^ Tk ^r,<» ~ *

Thus,

(A2.8f)

Next, since by Corollaiy A2.2, € Lf^^. Hence, there exists {^R" such that

)• Thus, by [4, Corollary XI.2, p. 156],

'M/r+'mi.I'a* ^ * '̂̂ 5+ *, (A2.8g)

where we used (A2.8f) for the second inequality. Therefore, - Vi6 + ^ ^ Vi6 +' A/* • But, from

(A2.8c), we see that ' = max; ^ j(r)^ max, ^ 7/ ue(r) + ^26 = b,- - '/26 and

'ffijt = min, g 7-j '̂ M;V|(r) ^ min, c 7-/ Me(0 - ^-^5 = fl/ + ViS. Thus, Oj bj which implies that

aj^ e U. Finally, by (A2.8b) and (A2.8c),

C 1

In -u^,fl2^iM -wy2 + '"'e-"8l'2 + H«e-«Jv.B2^6 + (l+m)6 + — = — , (A2.8h)

since 6 = 2/ (5+m )N. Thus, the proposition holds with j„ = 2"^ and = (^, %,)€ .

Referring to [4, Corollary XI.1,p. 155], we see that Vj^^ ^ Uand Uisclosed. •

Remark A2.4. We see from Lemma A2.3fb) and the definition of in Section 4 for representation

R1 that ^ c: unH/^ ^ H^y. Hence, control constraint violations are possible for

q e Hyv but not forq € Hj5f\

Theorem A2.5. (Epiconvergence) Suppose that Assumptions S.lCn;, 4.1 and 4.9 hold. Let

N = {2" }~„i. Then, theproblems {CPjy }/v c Nconverge epigraphically to theproblem CP as/V -> «>.

Proof. Given q € H, there exists, by Assumption 4.9, a sequence {such that € H,

q/^ ^ q and \|/<. (q^) <0. By Lemma A2.3^a;, for each N =2", there exists j„ € Nand q^/ € ŝuch
that iq^ -qy/i ^ 1/N. It now follows from the proof in Theorem 4.10 that part (a) of Definition 2.1 is

satisfied. That part (b) of Definition 2.1 is satisfied follows from Lemma A2.3(b) and the proof in

Theorem 4.10. •

To show consistency of approximations, what remains is to compute the gradients of the cost and

constraint functions with respect to elements of L '̂'̂ and show that the optimality functions for the
approximating problems hypoconverge to the optimality function for the original problem. To compute

the gradient V„/;^(q), v € q,we first define the space 4 xR" and the map
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(A2.9)

which takes elements u = cnj^M) and maps them to a = {witha^e JR.'". Wealso

define ^ IR"' xL '̂'\ It is clear that Sff,r is alinear bijection. Proceeding as in Section 4, we define
the inner product on L '̂'̂ in the following way. Given a, P€ let u =Sjv,V(ot) and v= The
inner product must satisfy

(a.P)qo =(u,v =j;|( )dt
N+r-\ AT+r-l i _ _

= Z E (otjt.P/) (/)(!>;(/)fl?r = (aMa,p)/j, (AZlOa)
i-i /-I ^

where the inner product onthe right hand side is the standard inner product on x R" . Thus,

is the(N+r —1) x (N +r —1) matrix whose ^, /-th entry isgiven by

Therefore,

(A2.10b)

An alternate means of determining is to makeuseof the fact that xhis willallowus

to use the results for in Section 5 to show consistency. Let M;^ be as defined in (4.9b) with A/ =Af i,
the quadrature matrix for representation Rl. Recall from Section 4 that, given u € L^},
^A,N(") ="€ Thus, from (A2.1a), the composite map ^A.woSjf/;.(a) =a<I>Xjv where the
(kr+j,/)-th entry of the x(7V+r-1) matrix is (|)/(t^j), it =0.... .A^-l, y = 1,... ,r, and
/ = 1 N+r-l. Thus,

~ ^̂ A.No^A,V« oSf^,.(v))/,

- .r(")^A.N^N '̂ N.r(y)^A.N)l2 (A2.11a)

= ^A.N^N^A,N (A2.11b)

Itis not obvious that (A2.11b) is equivalent to (A2.10b), and hence, independent of the Butcher array A.
To see that this is so, notice that ihthj -th element of asgiven in(A2.1 lb),is

^l^/C'To.l)

- 1^ ^*(''̂ 0,1) *'' jMyy (A2.11C)

This is just the mner-product of ({>)(.(/) and <{>/(/) in L/J. Hence, because of the way A/j was defined in
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Section4, = (<|)ifc(0.<i)/(0W

We are now in a position to compute the gradients of the cost and constraint functions with respect
to elements From Theorem 5.1 wehave, forv € q, ti = (^,«) € andbu e

^^Ar,r(^«/iv(T|))M(x, = ( Ya(«)» , (A2.12a)

where 6a = 5;^,^(6u), a = and

7a(a) =Y« (^) ^k,N . (A2.12b)

with ri =WA,yv(5^,V(a)) and 7u(ti) defined by (5.5c). Thus, for y\ € L '̂'̂ and a =5^,^.(11),

V„/iy(Tl) = (t>) . (A2.13a)

Since 5y7,V(a) is a spline for any ae (A2.13a) shows that V„/y^(Ti), v€ q, is a spline for all
Ti € Hj!f \ Note that, from (A2.1 lb) and (A2.13a) that, since

^A.N (^u/w("n)) =Yu("n)^A,N \.^A,N ^a.nT^^a,n =Yu("H) , (A2.13b)

since ^a,n i^as full rank. Equation(A2.13b) is the expression givenin Theorem 5.1.

To show convergence of the gradients, we note that Therefore, by Theorem 5.6, there

exists K<eo such that IV„/yy(q) - V„/^(ti)I ^k/A^ for all q € Therefore, the optimality

functions hypoconverge by the result of Theorem 5.9. This, along with Theorem A2.5, shows that the

approximating problems CPy^,, with feasible sets and optimality functions 0;v given by (5.8a) using

(A2.13a) as the expression for the gradients, are consistent approximationsto (CP, 0). We state this result

as a theorem:

Theorem A2.6. Suppose that Assumptions 3.1, 4.1 and 4.9 and equation (5.18) hold. Let

N = {2" } Then, with CP^ as defined in (A2.3d) and 0^ as defined in (5.8a), thefamily of approxi
mating pairs(CP;v, 0jv), N e N, constitute consistent approximations for the pair(CP,0). •
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Example (Linear Splines — hat functions)

In this case, r = 2 and the basisfunctions are given by

if/€

if/e [/*.„«»]
(A2.14)

Let «,V€ Lf[^ and a = ) ^nd p= ^.(v). Since these hat functions have a support ofonly two
time intervals (2A), given by equation(A2.10b), is

M„ =-|

2 1

1 4 1

1 4 1

4 1

1 2

(A2.15)

Example (CubicSplines)

In this case, r=4 and the basis functions are given by (A2.2c). Assuming k
1 b

Jq " JL where a =max {0, t,_4} and h =min{.1}since each B-spline has
support ofwidth 4A. In particular, [MJjt,/ =Oif lit-/1 >3. Thus, from (A2.10b),

20 129 60 1

129 1208 1062 120 1

60 1062 2396 1191 120 1

1 120 1191 2416 1191 120 1

1 120 1191 2416 1191 120 1

(A2.16)

Note that, for r^2, is a dense matrix. But, for n = (^,u) £ we can find

d'̂ (Tl) =5^,r(Vu//y(r|)) efficiently by solving

rf''(tl)Mot = Y^(a), (A2.17)

where a = S;v^;.(w). We can efficiently solve (A2.17) using the Cholesky decomposition of which
can be computed off-line.

-47-



REFERENCES

[ 1] U. Ascher and G. Bader, Stability of collocation at gaussian points, SLAM J. Numer. Anal., 23

(1986), pp. 412-422.

[ 2] H.Attouch, Variational Convergencefor Functions and Operators, Pitman, London, 1984.

[ 3] T. E. Baker and E. Polak, On the optimal control of systems described by evolution equations,
SIAMJ. Controland Optimization, 32 (1994), pp. 224-260.

[ 4] Carlde Boor, APracticalGuide toSplines, Springer-Verlag, New York, 1978.

[ 5] Haim Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.

[6] B. M.Budak, E. M.Berkovich andE.N.Solov'eva, Difference approximations in optimal control

problems, SIAM J. Control, 7 (1969), pp. 18-31.

I 7] J. C. Butcher, The Numerical Analysis ofOrdinary Differential Equations, John Wiley and Sons,

England, 1987.

[ 8] P. G. Ciarlet, M.H.Schultz, andR. S. Varga, Numerical methods ofhigh-order accuracyfor non

linear boundary value problems, Numerische Mathematik, 9 (1967) pp. 394-430.

[ 9] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-lnterscience, New York, 1983.

[10] J. Cullum, Discrete approximations to continuous optimal control problems, SIAM J. Control, 7

(1969), pp. 32-49.

[11] J. Cullum, An Explicit procedurefor discretizing continuous, optimal controlproblems. Journal of

Optimization Theory and Applications, 8 (1971) pp. 15-35.

[12] J. E. Cuthrell, L. T. Biegler, On the optimization ofdifferential-algebraic processsystems, AlChE

Journal, 33 (1987), pp. 1257-1270.

[13] James, W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, New Jersey,

1971.

[14] S. Dolecki, G. Salinetti and R.J.-B. Wets, Convergence offunctions: equisemicontinuity. Transac

tions of the American Mathematical Society 276 (1983), 409-429.

[15] J. C. Dunn, Diagonally modified conditional gradient methodsfor input constrained optimal con

trol problems, SIAM J. Control Optim. 24 (1986),pp. 1177-1191.

[16] William W. Hager, Rates of convergence for discrete approximations to unconstrained control

problems, SIAM J. Numer. Anal, 13 (1976), pp. 449-472.

[17] L. He and E. Polak, An Optimal diagonalization strategyfor the solution of a class of optimal

design problems, IEEE, Trans, on Autom. Contr., 35 (1990), pp. 258-267.

•48



[18] J. D. Lambert, Numerical Methodsfor Ordinary Differential Systems, John Wiley and Sons, Eng
land, 1991.

[19] B. Sh. Mordukhovich, On Difference approximations ofoptimal control systems, J. Appl. Math.
Mech, 42 (1978), pp. 452-461.

[20] B. Sh. Mordukhovich, Methods of Approximation in Optimal Control Problems, (in Russian)

Nauka, Moscow, 1988.

[21] C. P. Neuman and A. Sen, ASuboptimal control algorithmfor constrained problems using cubic

splines, Automatica, 9 (1973),pp. 601-613.

[22] E. Polak and L. He, Unified steerable phase I-phase II method offeasible directions for semi-

infinite optimization. Journal of Optimization Theory andApplications, 69(1991), pp.83-107.

[23] E. Polak, Computational Methods in Optimization, AcademicPress, 1971.

[24] E. Polak, Ontheuse ofconsistent approximations in theSolution ofsemi-infinite optimization and

optimalcontrolproblems, Math. Prog.,62 (1993), pp. 385-415.

[25] E. Polak and L. He, Rate-preserving discretization strategies for semi-infinite programming and

optimalcontrol,SIAMJ. Control and Optimization, 30 (1992), pp. 548-572.

[26] 0. W. Reddien, Collocation at gausspoints as a discretization in optimal control, SIAM J. Con

trol and Optimization, 17 (1979), pp. 298-306.

[27] W. Rudin,Real and Complex Analysis, McGraw-Hill, 1987.

[28] R. Schere and H Turke, Reflected andtransposed runge-kutta methods, BIT 23 (1983), pp. 262-

266.

[29] O. Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimization. Annals of

OperationsResearch, 37 (1992), pp. 357-373.

[30] L. J. Williamson and E. Polak, Relaxed controls and the convergence of optimal control algo

rithms, SIAM J. Control, 14 (1976), pp. 737-757.

[31] V. Veliov, Second-order discrete approximations to linear differential inclusions, SIAM J.

Numer. Anal., 29 (1992), pp. 439-451.

[32] J. Vlassenbroeck and R. V. Dooren, AChebyshev techniquefor solving nonlinear optimal control
problems,IEEETrans.Autom. Cntrl.,33 (1988), pp. 333-340.

[33] J. M. Lane and R. F. Riesenfeld, Atheoretical developmentfor the computer generation ofpiece-
wise polynomial sufraces, IEEE Trans. Patem Anal, and Machine Intelligence, 2 (1980), pp. 35-
46.

-49


