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Abstract

This paper presents an algorithm for H°° SISO system identification using a sto
chastic noise model and a constrained model set. The objective is to estimate a model
within a fixed model set closest in the H°° norm to the unknownplant. Since the plant
is unknown, the optimal H°° approximation cannot be exactly determined. Instead, we
propose to select the model that minimizes the supremum norm of a non-parametric
estimate of the plant to model error. It is shown by analysis and simulation that
this strategy can produce model estimates closer in the H°° norm to the plant than
either a simple least square identification scheme or a two-stage procedure where a
non-parametric estimate is first formed, and then H°° model reduction is subsequently
employed to satisfy the model constraints.

Moreover, by establishing a connection betweena minimaxproblem and a sequence
of weighted least square problems, it is shown that the proposed estimate can be ob
tained via a computationally attractive and conceptually simple iteratively weighted
least square (IWLS) procedure. The IWLS algorithm is based on a sequence of clas
sical parametric weighted least square output error identification problems, where the
weighting filter is updated to asymptotically achieve the H°° criteria. Thelocal (global)
convergence of the method can be guaranteed whenever the least square output error
minimizations converge locally (globally). When the model set is linearlyparametrized,
the IWLS procedure can be implemented in a recursive, online manner.

Under standard mild assumptions on the plant, bounds on the true plant to model
error, which are probabilistic with respect to the noise and worst-case with respect
to the plant, are derived. These H°° plant-to-model error is shown to converge to its
minimum in mean square.



1 Introduction

System identification from random noise-corrupted time-domain data is central to control

and signal processing. However, while identification within the stochastic framework has

been extensively studied with least-square (H2) criteria, the demands of robust control have

recently generated an interest in identification with H°° objectives. The traditional least

square criteria is well-suited to model estimation in the presence of random noise since

the noise can be "correlated out" and the resulting optimization problems are amenable

to numerical computation. However, since robust control design is more closely related to

the H°° norm, identification within the H°° framework is better suited to control-oriented

system identification and has recently been receiving much attention [l]-[7], [11], [14].

A deterministic worst-case H°° identification problem was formulated and examined in

[4]-[6] and further analyzed in [1], [2] and [11]. In this formulation, the identification is

to be done from frequency response measurements at a finite number of frequencies with

known, bounded errors with the object of obtaining an identification algorithm satisfying

a certain asymptotic requirement on the worst-case H°° plant to model error. A robustly

convergent untuned non-linear algorithm and a tuned linear algorithm were developed using

polynomial interpolation. The disadvantages with this approach is that hard tight bounds

on the frequency response data are difficult to obtain, and that the order of the models can

be very high.

Another line of research [3, 7, 14] has focused on analyzing the performance of classical

least square output error methods and estimating a frequencydomain confidence band on the

estimated transfer function. In [14] and [7], hard bounds are obtained assuming bounded

deterministic noise. In [3], the noise model and the unmodeled dynamics are considered

stochastic, and a probabilistic confidence band on the estimate is established. Moreover, a

method for estimating the unmodeled dynamic statistics is also produced, and based on these

statistics a model order can be determined. However, although frequency-domain confidence

bounds can be established, simple least square methods produce estimates that are close in

the H2, and not necessarily in the H°° sense. Moreover, the least-square analysis has been



concerned with estimating error bounds but not minimizing them.

To attempt to overcome some of the difficulties with both these methods, weconsider in

this paper the system identification problem witha H°°-typecriteria,but with a constrained

model set and a stochastic,as opposed to deterministic, noise model. The problem considered

is: given a set of possible plant models and a finite input-output data record corrupted by

random noise, to estimate the model within the model set closest to the plant in the H°°

sense. If the plant were known, then the problem reduces to finding the member of the model

set closest in the H°° norm to a known plant, which is precisely a problem of deterministic

H°° model reduction. However, since the plant is unknown, only some estimateof the closest

model within the model set can be made. The quality of such an estimate is to be evaluated

on its statistical performance with respect to the noise and worst-case performance with

respect to the plant.

This problem formulation differs in two important respects with the previous formula

tions. Firstly, the model set in fixed. Themotivation for fixing the model set is that, at least

in the deterministic algorithms, to obtain robust convergence themodel order tends to grow

rapidly. For example, in the algorithm in [6], the model order must grow at a rate greater

than the square of the number of data points. It is argued in [4] that this is too large for

practical purposes and a method for model reduction is proposed. This results in a two-stage

procedure ofhigh-order identification followed by model reduction (note that here, the term

two-stage does not denote two stages in the sense of L°° interpolation, followed by a Nehari

problem). Similarly in the stochastic setting, a natural H°° identification procedure, which

we refer to as empirical H°° identification (EHI), consists of first obtaining a high-order or

non-parametric estimate, and subsequently conducting H00 model reduction to satisfy the

model constraints. We show in this paper, that this scheme is in fact statistically inefficient,

since large a bias in the high-order identification stage and eliminated during model reduc

tion. Thus, placing constraints on the model order from the beginning can provide definite

statistical advantages.

The second main feature of the proposed problem formulation is the noise model is



stochastic as opposed to deterministic, whichcan potentially result in a less conservative esti

mate of the plant to modelerror. Of course, in the presenceof unbounded noise, hard bounds

on the plant to model estimatecannot be obtained. However, under mildassumptions on the

plant, similar to those made in the deterministic case, we can provide a frequency-domain

confidence band for the estimate and establish a stochastic robust convergence property

where H°° plant-to-model error converges to its minimum.

To estimate the closet model in the H°° normto the plant, wepropose that the model be

chosen to minimize the supremum of the plant to model error as estimated by an empirical

transfer function estimate (ETFE) [10]. The ETFE is a classical, non-parametric model

estimate given by the quotient of the input-output cross-spectrum and the input spectrum,

which is then smoothed to reduce the effects of noise. We show that this identification

scheme provides a better estimate in the H°° sense oftheoptimal model thaneither a simple

least square approach or empirical H°° identification strategy. Moreover, by establishing a

connection between a minimax problem and sequence of weighted least square problems, it

is shown that the estimate can be computed via an iterative sequence of classical weighted

least square identification problems.

In the iteratively weighted least square scheme (IWLS), the estimate is formed by a se

quence ofweighted least square output error estimates, where the weighting filter is updated

by a simple multiplicative rule to asymptotically achieve the H°° criteria. The IWLS pro

cedure is shown to converge to a local (global) minimum of the desired objective when the

individual least square output error minimization converges to a local (global) minimum. In

the special case where the plant model is linearly parametrized, the algorithm may be im

plemented online and recursively, either by repeated complex minimum deviation problems

or through an IWLS scheme.

The outline of this paper is as follows. In section 2, we precisely state the problem

formulation as the minimization of the smoothed ETFE errors. In section 3, probabilistic

bounds on the ETFE and true plant to model errors are given. In section 4, the proposed

problem is compared analytically against the LS and EHI procedures. A general IWLS



procedure for minimax problems is introduced in section 5. The procedure is implemented

in section 6 to achieve the identification algorithm. The special case where the model set

is linearly parametrized is considered in section 7. In section 8, a numerical simulation is

given. Proofs of the results are given in the Appendix.

2 Problem Formulation

Let G be the unknown plant, which is known a priori to belong to a given set V C H°°,

where H00 denotes the set of causal, stable, discrete-time linear systems. Suppose that u is

the input, v is a wide-sense stationary zero mean output noise process with known statistics

and y is the noise-corrupted output

y = Gu + v. (1)

We observe L input-output data values

uL = (uo,...,ul-i)T (2)

yL = (z/o,...,3/L-i)r. (3)

Let M C H°° be the set of possible models. Typically, V will be a largeset, while M will

be a small subset ofplants with a simple structure. Let Wu £ H°° be an uncertainty weight,

where Wu is larger at frequencies where greater accuracy is required. Ideally we would like

to find

6^ = arg nun ^(G-fT)||oo (4)

Of course, Gopt cannot be computed since G is unknown. We thus consider an approx

imate objective as follows. The approximate objective will be based on M frequency

points uniformly spaced on the unit circle. Define the sampled weight W** € CM ( CM

and RM will denote the complex and real M-dimensional vector spaces respectively), by

WM(k) = Wu(2tJc/M) for k = 0,...,M - 1. Our objective is to find a model, G € M,

which minimizes the weighted supremum norm of a smoothed empirical transfer function



estimate (ETFE) of the residuals

G= arg min \\W^ •ETFE(/ - HuL, uL, W, M)|U (5)
H£M

where W € L°° (L°° denotes the space of measurable, essentially bounded functions on

the unit circle) is a given smoothing window function, ETFE(t/L - HuL,uL,W,M) is the

smoothed M point ETFE, and the dot (•) denotes componentwise multiplication. The precise

definition of the ETFE is given in [10] and will be repeated in the next section since our

notation is slightly different. The objective criteria (5) is an approximation of the desired

objective (4). The closeness of this approximation will be discussed below, but to the extent

that the two objectives agree, solving problem (5) approximates finding &G € M closest to

G in the H°° sense. It is in this sense, that we regard the problem as having an H°°-type

criteria.

3 ETFE Minimization as an Objective Criteria

We briefly repeat the definition of the ETFE here, both for completeness and to introduce

our notation. For any time sequence x, let

xL = (z0,' *•>zl)T (6)

and let XL denotes its DFT

L-l

XL{k) =^=Y<xte-™kt *=0,...,Z,-1 (7)

where u>0 = 2n/L. Also, if Y € L°°, let YL € CL be the sampled function

YL(k) = Y(ej"°k) fc = 0,...,L-l (8)

For any XL, YL G CL, their convolution product will be denoted by XL • yL, and the

pointwise product by XL •YL. Decimation by n will be denoted by the map Dn : CLn—>CL

Dn(XLn)(k) = XLn(kn) * =0,...,L-1 (9)



Now suppose H 6 H°° and

z = Hx + w (10)

for some input x and noise process w. Given zL and xL, a positivewindow function W € L°°

and a number of frequency points M, such that L = nM for some n > 0, the smoothed

ETFE of H is

ETFE(A^,M) =Dn{^jg'.g}} (")
where XL* is the conjugate of XL. The ETFE is a smoothed quotient of the input-output

cross spectrum and the input spectrum, where the smoothing has been done to reduce the

effects of the noise. The amount of smoothing, determined by the window, is based on a

variance versus bias trade-off and is discussed in [10].

For C > 0 and 0 < p < 1, define the subset of H°°

H°°(C,/>) = {H € H°° | H is analytic in Dp and \H{z)\ < C, \fz € Dp] (12)

where Dp = {z € C | \z\ > p}. For establishing error bounds on the ETFE, we will make only

the assumptions that the plant G € H°°(C,/o) for some C > 0 and p with 0 < p < 1. This is

the identical assumption as made in the deterministic literature [4]-[7], and does not require

any elaborate structural knowledge ofG. Under this assumption, the following theorem uses

bounds given in [10] to estimate the accuracy of the ETFE and establishes a stochastic-type

robust convergence of the identification strategy of using ETFE minimization. The proof is

given in the Appendix.

Theorem 1 LetC > 0, 0< p< I, G<E H00(C,/£)) be the unknown plant and M CH°°(C,p)
be the model set. Denote the input, output and noise by u, y and v respectively as related by

(1). Assume that u and v are quasi-stationary, uncorrected and have continuous spectrums
$u and $„.

Fix an uncertainty weight Wu € H°°, with Wu(ejw) continuously differentiable in u. For

each data length L, pick a number offrequency points Ml and a smoothing window WL € L°°

assumed to be positive, even about to = 0 and normalized

jT WL{en<k> =1. (13)



Define the estimate sequence

dl =arg g&i WW«L 'ETFE(yL ~Hul,ul,Wl,Ml)\U (14)
Then

(a) For any L > 0, there is a CMl-valued zero mean random vector, Xl, such that for

any H € H°°,

ETFE(HuL, uL, WLi ML) = HM*< +pL(H) + XL (15)

where HMl is the true sampled transfer function (8), Pl(H) € CMl is the ETFE bias,

which is deterministic and given by

pL{H,k) = SLR(H,Lok) +0{PL) +0(1/VT) (16)

where k € {0,..., ML - 1}, uk = 2irk/ML and

SL = r u2WL(ej»)du (17)
j—it

Pl = J* \p\3WL(e>u)dw (18)

R(H,u>) = itf'V") +H'(en^\, (19)
* *«(W)

and Xl is ETFE variance, with

E(|^)P) =i^M+„(FL/iV). (20)

Here E(-) denotes expectation and

Wl =2tt T Wl{ej")duj. (21)

The prime (') notation denotes differentiation with respect to u.

(b) The plant to model error, G -Gl, at the frequencies LOk can be estimated by

\G(e^)-GL(ej»k)\ < I^TF^^ - Gz,^,^, H^,, Afz,)(A:)| +2^(^)1 4- |^£,(A:)| (22)

where

pL(k) = SLR(^) + 0(PL) + 0(1/VI) (23)

*u) ~ (lTri? +«.(uO(l-,)- (24)



(c) The effect of using finite frequencies in the objective criteria can be bounded by

\\WU(G - #)||oo < ||W* •(GMi - ff"*)||„ + P/ML (25)

where H € H°°(C,p) and

0 = 2C(|TOU + P\\WU\U(1 - p)). (26)

(d) Suppose that the input, u, is sufficiently exciting so that

r|w"(f;'^<oo. (27)

//, as L—>oo, Ml—*oo, and the windows Wl are selected so that MlWl/L, Sl and Pl

—»0 then

WU{G - Gx)||oo-> min \\WU(G - H)]^ in mean square. (28)

Moreover, the number offrequency points, Ml, and the ETFE smoothing windows, Wl,

can be selected, independent of any of the given data, so that Sl, Pl and WlMl/L

—»0 and Ml—»oo.

4 Comparison with LS and Empirical H00 Identifica

tion Procedures

In this section, we evaluate two alternative strategies to the proposed ETFE minimization

criteria for estimating the closest model in the H°° norm to the unknown plant. The first

is to minimize a standard LS output error criteria, and the second is to use an empirical

H°° identification procedure. We will show that ETFE minimization criteria has certain

advantages over both these procedures.

Suppose we are given a model set M and input-output data uL and yL. The least square

(LS) output error method selects the model based on the criteria

L-\

Gls = arg min £ (yt _ Hut)2 (29)



If the output y is given by (1), and u and v have spectrums $u and $„, then, as shown in

[10],

GLS *arg min £ |G(e-) - tf(e-)|>§^, (30)
Thus, as the data length increases, and the above approximation becomes tighter, the LS

estimate, Gls, will converge to the closest model in the H2 norm to the plant, instead of

the H°° norm as required. We will show in simulations below that this deviation can be

substantial, and hence a simple LS output errorcriteria fails to solve the given H°° problem.

Asecond approach, which we will refer to as empirical H°° identification (EHI), is to first

determinea high-order or non-parametric estimate,and then employ deterministicH°° model

reduction to satisfy the model constraints. We will show here that this two-stage strategy,

while a natural solution to the problem, is in fact statistically inefficient in comparison with

the proposed direct criteria (5).

To analytically compare the EHI and the direct criteria, consider an EHI scheme where

we obtain an M-point non-parametric ETFE estimate, FM, and then use model reduction to

obtain the final estimate Gehi- That is, ifM is the model set, uL and yL the input-output

data, W € L°° the ETFE smoothing window and Wu € H°° the uncertainty weight, then

FM = ETFE(yL,uL,WyM) (31)

Gehi = arg nun \\W™ . (HM - F")^. (32)

Now consider an estimate, Gdw based on directly minimizing the criteria (5)

Gdir = arg min ||W»•ETFE(yL - HuL,uL, W, M)^. (33)

Using the notation in Theorem 1(a)

Gehi = arg min \\W" •(HM -GM +p(G) + XL)\\<X> (34)

Giir = arg vfdn\\W^-(HM-GM +fi(G-H) +XL)\\00 (35)

where G is the true plant. Since the desired objective criteria is

min \\WU(G - ff)|U * min \\W?(GM - tfM)|U, (36)

10



the size of the bias terms, p.(G) and p{G —H), and the variance, Xl, in (34) and (35) reflect

the quality of the estimate. The EHI and direct estimates have the same variance. However,

since Gdw is an estimate of G, G - Gdir will be small in comparison to G. By (16), p(X)

is proportional to A", and therefore the EHI bias p(G) will in general be much larger than

the direct method bias p(G - H) for H = Gdir- Using different windowing, the EHI bias

can be decreased, but only at the expense of a higher variance. Such conclusions will be

demonstrated in simulations below.

5 General IWLS Minimization

Before considering solving the minimization problem (5), we consider in this section a more

general supremum norm problem and show that it can be solved as a sequence of weighted

least square problems. It should be stressed that these algorithms are not intended as a

computationally efficient way of solving the minimax problem, but rather a method for

posing the minimax problem as a iteratively WLS problem, which is what is required in the

following section.

Let / : Rm—>CM be an arbitrary function, for which the solution to thesupremum norm

problem

0* = arg mm ||/(tf)||oo (37)

is required. We will show that this supremum norm problem is equivalent to an iterative

sequence ofweighted least square (WLS) problems. A WLS least square problem is, given a

positive weight, q € RM, minimize

0z,s(<?) = arg mm \\q-f{B)\\l (38)

Suppose that this WLS problem can be solved for every q. Our intent is to show that we

can construct a sequence ofpositive weights, qk such that $Ls(qk)->0* where 0* solves (37).

That is, asymptotically the WLS problems converge to the supremum norm problem.

To construct such a weight sequence, a natural recursive rule to update theweights would

11



be

«2+i = «*-((i-«)+'i/(^)n (39)

qk+1 = &+1/II&+1II2 (40)

where 0k = 0ls(<7jO> *€ (0,1] is a step size, a is some positive constant, and the powers are

to be done componentwise. The second step is simply for normalization. The rationale for

this update is that, by multiplying by (1 - t) -f- *|/(0*)|o the weights are increased at the

places where the f(Bk) is large with the hope of obtaining a minimum uniform norm.

The convergence of such a procedure will be analyzed later, but first we state the algo

rithm more precisely.

Algorithm 2 (General IWLS) Let f : Rm->CM, and 6LS : RM->Rm be the LS mini

mizes Fix a step size t € (0,1], and weighting exponent a > 0.

1. Initialize counter and weight: k = I, q± = (1,..., l)T/\/M € RM.

2. Perform WLS minimization: 9k = 0Ls(Qk)

3. Update the weights by (39) and (40).

4. k = k + 1. Goto step 2

This procedure uses a fixed step-size i, although in practice an adaptive step-size rou

tine, such as the Arrnijo descent routine [12] would be used. For simplicity, we omit the

implementation of this feature.

We may now state the convergence of the algorithm which is our main result on the

equivalence between the IWLS and the supremum norm problems.

Theorem 3 Let } : Rm->CM and $Ls : RM->Rm be a local minimization of the WLS

problem for f. That is, for every positive q € RM, there exists a Uq, an open neighborhood

ofQisiq), such that

0LS(<?) = arg min||9./(0)||2 (41)

Let a > 0.

12



(a) If |/|2 and $ls are continuously differentiable, then for sufficiently small t > 0, &

and 9k as produced by Algorithm 2 will converge. If we define the Lagrangian

M M

JiM) = E«?l/«WI7E«? (42)

then Li(qk,9k) increases monotonically.

fl>) U l/l is componentwise convex, and 9ls is continuous, then qk and 0k from Algo

rithm 2 will converge with a = 1 and the step size parameter 4= 1. If we define the

Lagrangian
M M

£2(?,0) = £<Z,?l/.(0)l/£?? (43)
»=1 i=l

then L2(qkl9k) increases monotonically.

(c) In either case (a) or (b), if qk->q* and 9k->9m, then 9" is a local minimum of the

supremum norm problem

°~ =arg ^ H/Wlloo (44)
In particular, if 9Ls is a global minimizer ofthe WLS problem, then 0* solves (37).

In case (a) or (b), if 9 GUq. then,

Li(qk,0k) < mm\\f(9)\\l<\\f(9k)\\l case (a) (45)

L2(qk,9k) < mm ||/W||oo < ||/(^ib)||oo case (b). (46)

These bounds become tighter as k^oo, and therefore, 11/(^)11^ -Li(qky9k) < e or

||/(^)||oo -L2(qk,0k) < e for an e > 0 can be used as a stopping criteria for the
algorithm.

The IWLS procedure is in fact a typeof Lagrangian method where the problem is solved

indirectly by updating Lagrange parameters (in this case qk) to solve a dual maximization

problem.

13



6 IWLS System Identification

Consider the identification problem (5), and suppose the model set can be parametrized by

a map G : Rm->.M, 9 *-* G{9). Let

f(9) = W? •ETFE(yL - G(9)uL, uL, W, M) (47)

so that our objective is to minimize

9" = arg mm M(*)U (48)

which is an estimate of the desired objective (4) since

\\m\U*\\Wu{G-G{9))\\<x> (49)

The problem is now in the form (37) and can be posed as a sequence of WLS problems

(38) as in the previous section. The rationale to convert the problem to an IWLS form,

is that each WLS minimization can be approximately implemented as a classical weighted

output error minimization problem, and the weighting filter can be updated in frequency

domain with a simple multiplicative rule.

To implement the IWLS procedure in this manner, first consider the WLS minimization

in step 2 of Algorithm 2 and let e denote the output errors

e(9) = y- G(9)u (50)

Suppose qk is the weight at the kth iteration of the IWLS algorithm, and Hk GH°° is any

filter such that

\H,W"')\2 = bWWr.(e^)|a»;1(«-«) (51)

where w/ = 2irl/M, I = 0,..., M —1 and $u is the power spectrum of the input u, which we

assume to be quasi-stationary in the sense of [10]. Then the model estimate 0* is given by

9k = arg nun lift-/(0)||!

= arg min \\qk •W? •ETFE(j/L - G(9)uL,uL, W, M)\\\
0GRm

14



M-l

« arg miii £ \qk,iWu(e^)(G(e^) - G(9,e^))\2
6€Rm /=0

M-l

= arg min £ |JSr*(e*«)(G(e*"«) -6(0,e**))|a*.(wi) + |fft(e>'"")|2*vM (52)

« «g igg.jEl^W^WI8 (53)

This is a precisely a weighted output error minimization criteria, which is classical and

extensively studied. Note that in (52) the second term could be added since it does not

depend on 9.

To implement the weight update in step 3 in Algorithm 2, it is not necessary to compute

the weights, qk, and then compute the filter Hk from equation (51). Combining (39), (40)

and (51) we see that it suffices to find a filter Hk € H°° such that \HkM\ = hk where the

sequence hk € HM is updated by

H+i = **•((!-*) + *£?) (54)

h+i = hk+1/\\hk+l\\2 (55)

where

Ek = \W" •ETFE(yL - G(9k)uL,uL,W,M)\ (56)

We thus have the following approximate implementation ofan IWLS identification algo

rithm.

Algorithm 4 (Offline IWLS system identification) Let uL and yL be the given input-

output data, Wu € H°° be an uncertainty weight, W e L°° be the smoothing window and

G : Hm—>M be the model set parametrization. Let M>0,0<t<l and a = 1 or 2.

1. Initialize counter and weight: k = 1, hi = (1,..., l)T/y/M 6 RM.

2. Construct weighting filter: Find a Hk € H00 with

\Hk(e'^'M)\ = hi t = 0,...,M-l (57)

15



3. Minimize the WLS output errors:

1 L~1
9k = arg min - £ \H(z)(yt - G(9)ut)\2 (58)

L *=o

4. Compute error estimate, Ek by (56).

5. Update weight by equations (54) and (55).

6. k = k + 1. Go to step 2

The output error minimization in (58) is a classicalproblem in system identification and

adaptive control, and discussed in detail in [9].

7 Online, Recursive ETFE Minimization for Linearly

Parametrized Model Sets

In the case where the model set is parametrized linearly we can implement the IWLS pro

cedure in a recursive online, algorithm. Suppose

m

G{&) = Y,0iGi (59)
t=i

where G, € H°° are basis functions of the model set. In the case of an FIR model set

Gi(z) = z-*1

For an online implementation of the IWLS procedure, suppose that wereceive the input-

output data in L length data blocks, and after each block we are to update the model

estimate based on all the blocks currently received. Denote the data record at the kth time

instant by

UJ; = (Wfc)o,...,Mjk,L-l)T (60)

Vk = (Vkfi,- ••,Vk,L-i)T (61)
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It is known that averaging of ETFE estimates from separate data blocks asymptotically

eliminates the effects of noise, and thus a natural identification criteria in the online case is

9k = arg min ||A(0)||oo (62)
0€R.m

where
it

fk(9) =WWu' ETFE(yf - G(9)uf, u\, W, M)
K /=i

To evaluate fk recursively, we note that due to the linearity of the ETFE

m

ETFE(y£ - G(9)uLk,uLk, W,M) = G0)* - £Gt,*0,- = G0,k - Ak9 (64)
t=i

where

(63)

G0tk = ETFE(yZ,ulW,M) Gitk = ETFE(Gt^,^,I^,M) (65)

Ak = (Gijc I ••• IGm,k) (66)

Therefore fk is linear and given by

fk(9) = WM-(Go,k-Ak0) (67)

where

— 1 * — 1 k
°o,k = t £ Co,/ 4 = 7^A, (68)

K /=i * i=i

Consequently, the online problem (62) is a linear minimum deviation problem which can be

solved with convex programming. Moreover, the parameters of the problem, Go,* and Ak

can be computed recursively

Go,* = Go,fc-i + ^(Go,* - G0,*-i) Ak = Ak.x +-(A* - 34fc_i) (69)

Thus, to recursively compute the estimate 9k, after each data block, the parameters can be

updated by equation (69) and the new estimateobtained by solving the minimum deviation

problem (62).

However, such a method requires solving a convex programming problem at each step,

and can be avoided by a recursive, online IWLS method. The online procedure is simply
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done as in the offline case except that the parameters are updated with new data as the

optimization is performed. Let n/ denote the number of WLS iterations to be performed

between receiving each data block. Then we have the following recursive IWLS algorithm.

Algorithm 5 (Online recursive IWLS) Let the model set be parametrized by (59), and

let uk, y% denote the data block sequence as given in (60). Fix the number offrequency points

M, the uncertainty weight Wu 6 H°° and the ETFE window W £ L°°. Let n/ > 0 denote

the number of WLS iterations to be performed per data block.

1. Initialize parameters: k= 1, <7U = (1,..., l)/y/M GRM, G0,o = 0, Ao = 0.

2. Obtain next data block u%, y%.

3. Compute the parameters Go,* and Ak from equations (65), (66) and (69).

4- Generate the estimate 9k via an IWLS scheme.

for / = 1 tO 72/

9kJ = arg min^€Ri. \\qkj •fk(9)\\l

ikjt+i = qk,r \fk(9k,i)\^2

qk,i+i = 9k,i+i/Mk,i+ih

end

Qk+1,1 = <7*,nj+l? 9k = 0k)ni

5. k = k + 1. Go to step 2

To track time-varying plants, one can use an exponential forgetting factor in (69).

8 Simulation Example

For simulation, we considered a lightly-damped plant as typical in H°° applications. We

used a sixth order IIR plant

G(z) = 1/A(z) (70)
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where A(z) is monic with zeros at

{0.85e±O35,ri, 0.7, -0.5, -0.3, 0.2} (71)

The model set, M, was chosen as ninth order FIR filters, and we took Af = 128, Z = 512,

Wu = 1 and WM to be a 2L/M length Hamming window.

Theoptimal filter Gopt given in (4) was computed using the deterministic IWLS algorithm,

Algorithm 2, and found to be

Gopt(z) = 0.9995 - 0.1283*"1 - 0.48242"2 - 0.6090*-3 - 0.0544;T4

+ 0.29222"5 + 0.2400*-6 + 0.03352"7 - 0.4813z"8 - 0.1560z"9 (72)

with \\Gopt - G\\oo = 0.3405. The plant and optimal FIR model are shown in figure 1. Shown

in figure 2 is the plant-model error and the final weight q*. It can be seen that weight

has been adjusted so that the final error is flattened, and in this case, the minimal error is

all-pass.

To implement the identification algorithm, Algorithm 4, a 64-tap FIR filter was used to

do the weighting. Random Gaussian white noise was used to generate both the input u and

theoutput noise v. Three noise levels, as measured by the signal-to-noise ratio (SNR), were

used: SNR = 18, 24 and 30 dB. In the case where the input and noise are white noise, the

SNR can be calculated by

SNR = 20\og{\\G\\2o-ul<Tv) (73)

where au and av are the input and noise standard deviations. The convergence ofthe IWLS

identification algorithm is shown in figure 3 whereit can be seen that the final value is almost

attained after fifty iterations, and a satisfactory estimate after ten to fifteen.

Finally, wecompared the IWLS identification procedure against LS and EHIidentification

methods. The LS estimate was obtained by minimizing the output error criteria (29). The

EHI model was determined by computing the ETFE estimate oftheplant, and then finding

the model that best fits the ETFE.

The result of the comparison is shown in table 1. For accuracy, at each noise level, the

experiment was repeated fifty times and the values shown in the table are theaverage values.
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Table 1: IWLS and MR estimation comparison.

SNR

(dB)

Optimal

error

eopt

Avg. H°° estimate error

IWLS

CIWLS

EHI

tEHI

LS

CLS

EHI-IWLS ratio

tEHl/eiWLS

LS-IWLS ratio

tJLs/tlWLS

30 0.341 0.397 0.597 0.562 1.50 1.41

24 0.341 0.433 0.618 0.623 1.42 1.43

18 0.341 0.598 0.635 0.742 1.06 1.24

The optimal error is the minimum H°° plant to model error over the FIR model set. All

errors quoted are in the H°° norm. For example,

topt —\\Gopt —G\\oo (74)

It can be seen that IWLS algorithm performed better than both the simple LS and EHI

schemes. As expected, the improvement in the performance of the IWLS over the EHI

is larger at lower noise levels where the bias component dominates the error. A typical

plant-model error spectra for the IWLS and EHI estimates is shown in figure 4.

Conclusions

We have proposed a new strategy for H°° identification with a stochastic noise model and

a fixed model set, where the model is chosen to minimize the supremum norm of a non-

parametric estimate of the plant to model error. Probabilistic bounds are established on

the true plant to model error. It is shown by analysis and simulation that minimizing such

an objective is preferable both to an empirical H°° identification strategy or to a simple

least-square procedure.

By establishing an equivalence of a minimax problem with a sequence of iteratively

weighted LS problems, we have shown that the proposed H°° identification estimate can be

computed by a sequence of classical weighted least square output error problems, resulting

in an conceptually simple and computationally attractive iteratively weighted least square
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(IWLS) algorithm. Our simulation experience shows that the IWLS procedure generally

converges rapidly, usually in about 10-15 iterations. Moreover, in the case when the model

set can be linearly parametrized, the IWLS procedure may be implemented in a recursive,

online manner.

Because ofthe mild assumptions on the noise and plant, a natural and conceptually simple

problem formulation and computational attractiveness, we believe that IWLS identification

algorithm has much to offer to meet the demands of practical robust control design.

Further work howeveris necessary. The current bounds on the bias error and the uniform

norm ofthe variance arequite conservative and it would bedesirable to find tighter estimates.

A more general problem is how soft error bounds that result from stochastic identification

are to beincorporated inrobust control. Also useful would be exploring tuning thealgorithm

to use a priori information on the plant and extensions to the MIMO case.
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Appendix: Proofs

Proof of Theorem 1.

(a) These bounds are given in [10, pg.156] with a slight change in notation. It is also shown

there that the variance, Xl, depends only on the noise, input and windowing and not H.

(b) From [5, Fact5.3], for alla? € R and any Y € H°°(C, />), the derivatives ofY are bounded

by

\YW(en\<Ck\pk/(l -p)k. (75)

Thus, for any H € H°°(C,p), we see \R{H)\ < R and \p(H)\ < -p. Also, from (16),
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\t*{G ~ Gl)\ < \v{G)\ + \p(GL)\ < 2p. Since y - GLu = (G - GL)u + v, we can substitute

H = G-GL'm (15) to obtain (22).

(c) Suppose M > 0, uk = 2irk/M, and 7 € L°° is continuously differentiable. By approxi

mating any w with some uk and using Taylor's theorem, we have

iriloo-i|yMiicoi<5iiriioo. (76)

For any L > 0 and H e M, taking F = WU(G - H) in (76), using the product rule to

evaluate the derivative and employing the bound (75), one obtains

\\\WU(G - fOlU - \\W* •(GM* - #Mi)|W =< beta/ML (77)

where fi is defined in (26). Taking H = GL gives (25).

(d) Now suppose the limits in statement (b) are satisfied, and define

EL(H) = ETFE(yL - HuL, uL, WL, ML) H € M. (78)

Taking Gopi as defined in (4) and using (14), (15), (77) and the fact that \fi(G - H)\ < 2/7

for all # eH°°(C,/>)

\\WU(G - Go^U > W^G^-G^U-P/Ml

> W^ . EL{Gopt)\U - 2||^|U7IL - WW"* •Xl\\oo - 0/ML

> \\W* •EL(GL)|U - 211^11^ - \\W* •Xl\\oo - PIML

> \\WU{G - GL)\\oo - 4||Wu||oo^x, - 2\\W* . Xl\\oo - 20/ML. (79)

Since Sl and Pl-+0, and ML->oo, pL and p/ML->0. Therefore, it suffices to show

EIIW^-^lIIL^O (80)

in order to show \\WU{G - GL)\\oo -+miH€M \\WU(G - H)]^ in mean square.

Since Wl/L->0, we will ignore the o(WL/L) term in (20) since it is dominated by the

Wl$v(u)/L$u(ll>) term.

ML-1

nwuM^xL\\i < E\\w*>xL\\i= Enw?Lw-XL(k)\2
k=o
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Mp' WL\W»(e™)\*$v(uk)

2xWLML r* \Wu(e^)\^v(u)f ^'J^^O (81)
J-* $Jv)Le2 J-it ^u(^)

since WlMl/L—*0 and the integral is finite. This establishes the convergence in mean

square.

To obtain the limits, take, for example Ml = log(Z/), It is shown in [10] that if Wl is a

Hamming window whose time domain impulse response has length 2^l + 1? then

12
Sl«-t Wl«0.757l lim PL = 0 (82)

Choosing ^L = £1/2, SL->0, WLML/L-+0, PL^0 and Ml-•oo as required. •

Proof of Theorem 3. Since the weight update, Lagrangians, WLS optimization and the

supremum norm ||/(0)||oo depend only on |/(0)|, we can replace / with |/| and assume f is

componentwise non-negative.

(a) Denote the state space by

Q= {qeRM |ft>0fori=l,...,M, and ||9||2 = 1} (83)

and for t € (0,1), define the maps on Q

Ut(q) = q- [(1 -t) + tf(9LS(q)r]1/2 (84)

S,(q) = U,q/\\Utqh- (85)

Thus, if t is the step-size, then St is the transition map (ie. Stqk = tyt+i). Let V\(q) =

Li(q,0Ls{q)), and note that Vi(Stq) = V\{Utq) for any t G (0,1) and q € Q since Stq

is a constant multiple of Utq and therefore 9Ls(Utq) = 9Ls{Stq) and Li(Utq,9Ls(Utq)) =

Li(Stq, 9Ls(Stq)). We will show that for sufficiently small t, Vi(qk) is an increasing Lyapanov

function.

Fix a q € <3, and let

A=^^=?2 •(/(#«(«))» - 1)) (86)
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Since 9ls(q) is a local minimum of Li(q,9) with respect to 9, we have

cUiM)
89

= 0.

8=hs(<i)

Writing /,- for fi(9Ls(q)), we have

19115
4 ^(Stf)

a*
t=0

=|,K ^
t=0

_ 11,1.4 dL^^LsW))
cty

9'=9

= EiWifKf? -i)-y?(/?-i>)

Define h(q) by

%) =
OV^Stq) M

ii £ ih){tf - ffrUT - ff)dt «=o 2||,IB5i

Now, for any 5 > 0, the map a; »-> zs is strictly increasing for x > 0. Thus, for any

x,y > 0, x2-y2 and xQ-yQ are either both non-positive orboth non-negative, and therefore

(x2 - y2){x° - y°) > 0. Thus, (ff - fj)(f? - ff) > 0, and consequently h(q) > 0.

Moreover, h(q) = 0 implies that /,- = ft for all i and j with q{ and # ^ 0. In such a case,

Utq is a constant multiple of q and therefore Stq = q.

Now fix a 0 £ (0,1) and define the function T : Q->[0,1] by

T(q) = sup{* € (0,1) IVi{S.q) > V^q) +0h(q)s, Vs, 0 < s < t}.

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

If h(q) > 0, then, since h(q) is the derivative of V1(Stq) at *= 0 and 0 < 1, T(g) > 0. If

M?) = °> tnen &(?) = 9 and therefore, T(q) = 1 > 0. Since 9Ls and / are continuous, so

is T. Thus, since Q is compact, there exists a t0 e (0,1) such that T(g) > *0 for all q e Q.

Taking to as the stepsize we have, for all q € Q

V1(Stoq)>Vl(q)-rptoh(q). (95)
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Therefore, V\(q) monotonically increases; and, since Q is compact, V\ is bounded above. By

LaSalle's principle, qk—>E where

£ = {<?€ 0 | ViiS^q) = V,(«)} = {q € <? | %) = 0}. (96)

But h(q) = 0 implies Stoq = g, and thus E is a set of fixed points. We have shown qk

converges to the set of fixed points, E. We must now show it converges to a particular fixed

point within E.

For q € E, h(q) = 0 implies there is an m(q) > 0 such that for every i = 1,...,M,

either ft = 0 or fi{9Ls(q)) = ™i(g). We will show m(q) is locally constant. Let q € E, and

/ = {i I ft1 ^ 0}. Let V be an open neighborhood of q such that, for all q1 6 V, ft- 7^ 0

for i € /, and ^5(9') € 27,. Let g' € £ n V. Then ft = q\ = 0 for t € 7C, and for i e /,

/,(^L5(9)) = m{q) and /t(0Ls(<?')) = mfa'). Using (41), and ||g||2 = 1,

m{q'f = £ 9t2/(^5(9/))2 = £ tiWlsW))2 > £ 9?/(M9))2 = m(9)2 (97)

Similarly, 771(9') < m(q) and therefore m(g) is locally constant. Therefore, wecan partition

E into subsets on which m(q) is constant, such that the subsets are separable by disjoint

neighborhoods. Since qk converges to a set offixed points, qk+i —qk—>0, and thus qk converges

to some subset E\ C E, where m(q) = m for all q € E\ and some m > 0.

For i = 1,..., M, define the closed sets

Fi = {9 € E1 I ft = 0} G,- = {q e Ex I /i(0ls(9)) = ™} (98)

so that Ex = FiUGi. Since Vi(qk) converges and ||ftt||2 = 1, let qk,ifi(9k)-+gi for i = 1,..., M.

If ft > 0, then, since f(9Ls{q)) is bounded above, liminfftt > 0. Therefore, qk-+Gi, which

implies fi(9k)-^m and qk,i—>gi/m. Now suppose ft = 0 and e > 0. Find a <5 > 0, such that

6 < e(m —e) and an N > 0, such that k > N implies qk,ifi{9k) < 6 and either ftk,t- < e or

\fi{9k) - m\ < e. For k> N,ii qkii > £, then |/,-(0fc) - m| < e and

<* > qk,ifi(9k) >e(m-e)>6 (99)

which is impossible. Thus, qkii <eioik>N, and consequently qkii->0. Therefore, if either

ft = 0 or ft > 0, ftt)t converges and thus so does qk.
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(b) In this case, the update is

9*+i=9fc-/(^)1/2/ll9^/W1/2||2 (100)

Fix some q € RM with positive components and use primed (') coordinates to denote the

values after one update. Then

HqJ)-T^F-T^J- (101)
Defining M"1 = 2(E,- ??/<)(£,- 9?) we have

L2(q', 6') - L2(q, 0) = 2M £ qfq](fifi - /,/;) (102)

By the convexity of f(9) in 9, if D denotes any subgradient with respect to 9

UtiUn > E<iU? + (o'-e)TE<i2fi»fi (103)

=EqUf +l^-efD^qffA (io4)
= £??/? (105)

where the last equality holds since £« qfff(9) is minimized in 9 and thus, there is a subgra

dient for which this is zero.

Substituting this in (102) gives

W,V) - L2(q,0) > 2M £qhlUifi - Mi) = M-£qhjifi - fi? (106)

and now the proof follows similar to part (a).

(c) Suppose qk^q*. By continuity of 9Ls and /, 9k and f(9k) converge, so let 9k-^9" and

/W = /(*')• Define

I = {i\fi=\\r\U l<i<M] (107)

Take any i € / and j € 7C, and let at,k = ((1 -1) + tfi(9k)a). Since ft(9k)^fj < H/^ and

/t(^Ar)—>||/*||co, we have ajik/aifk^Q. Thus,

2 2
9i'Jb 9«lfli.l fli'Jt-1-^ = ^•—•••^^-^0 (108)
qf,k 9.2,ia«M ««•,*-!
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as k—•oo. Since ft,* is bounded, gj = 0. Consequently, ft = ||/*||oo for all i with ft* ^ 0.

Since 9* is a local minima of the least-square function

r = arg nun \\q' • f(0)\\\, (109)

for all 6 € U„.

Eiffm = £«?/?(*) = EtfW) = £«?/?(**) (no)

Thus, for at least some i € /, /,(0) > /,(0*) = Wf^. Therefore ||/(0)||oo > ||/(0")||co and

(41) is shown.

For the inequality (45), the right hand inequality is clear. Since the Lyapanov function

in (42) are increasing,

L^ek) <w,n =̂ ff. =Eif^;f =iiniL (in)
Lj 9j 2^i€/ 9j

where the second last equality holds since qj = 0 for all j 6 Ic. Also,

Km !,(»,«*) = W.O = \\m = Km ||/(<fc)lll (112)

so ll/(9Jfe)ll2» —Li(qk,9k)->0 The inequality (46) is proved similarly. D
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Rant and optimal FIR model
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Figure 1: Plant and optimal FIR model approximation magnitude spectra
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IWLS and EHI estimate comparison
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Figure 4: Typical plant-model error magnitude for IWLS and MrTestimates. SNR= 22 dB
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