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Abstract. In this paper, we consider indirect adaptive pole-placement control
(APPC) of linear multivariable stochastic systems. We propose a nonminimal but other
wise uniquely identifiable overlapping parameterization instead of the minimal representa
tion used in current literature. Requiring less restrictive prior information than observabil
ity (and controllabiHty) indices, this parameterization is more appropriate for multivariable
ARMAX model representations. We will show that by using the Stochastic Gradient (SG)
identification method, and with sufficient external excitation, the parameter estimates are
strongly consistent for all initial conditions. Moreover, under more restrictive assumptions
and minor modification, the MIMO adaptive pole-placement controller is globally asymp
totically self-tuning even in the absence of external excitation. These represent the most
complete study of stochastic multivariable APPC systems so far.

1. Introduction

Multivariable (MIMO) adaptive control systems have been the subject of study for over a
decade, where the focus has been primarily on adaptive model reference and pole-placement
control of deterministic systems.

The parameterization issue is a highly nontrivial problem for MIMO systems, contrary to
the case of SISO systems. This issue was addressed in many early works, for example see [5]
and [7]. In [6], an algorithm for direct adaptive pole-placement control of linear MIMO sys
tems, using a nonminimal representation of the plant model, was proposed. This algorithm



was further modified in [18] in order to guarantee uniqueness, and hence identifiability, of
the nonminimal presentation. The algorithm presented in [l] also proposes a similar iden
tifiable nonminimal representation appropriate for direct adaptive pole-placement control.
In all these cases, priorknowledge ofthe observability and controllability indices is required
in order to establish stability and parameter convergence.
However, since for most physical systems, these indices are not directly related to any
physical property of the plant, this assumption is unlikely to be satisfied in most practical
situations. The observability and controllabiHty indices are uniquely determined for each
linear modeland as pointed out in [2], if the control designer's estimates of the observability
indices are even slightly off their true values, the parameter estimates can be inconsistent
even in open-loop condition.

In contrast, we propose, after [9], to use a nonminimal overlapping, but otherwise globally
identifiable, parameterization of the model. As shown in [9], although this parameteriza
tion requires prior knowledge of a certain multiindex too, its advantage over the canonical
parameterizations is that the corresponding multiindex is not uniquely determined for each
plant model. In fact, any such arbitrarily chosen multiindex corresponds to a parameter
ization of the plant model, for almost every model of the compatible order. Therefore,
by knowing only the minimal order (McMillan degree) of the plant, we may choose any
compatible multiindex and be certain that the corresponding parameterization holds for
at least an arbitrarily close approximation of the true plant model. This naturally requires
far less information about the dynamics of the plant in practice.

In addition, the suggested parameterization is compatible with the ARMAX representation
of the plant and can be written in the predictor-equation form, and thus, is more appro
priate for indirect adaptive control applications. One may compare this to the complexity
of parameterizations in [6,7].

Regarding the issues of stability and parameter convergence, almost all of the available
results deal with the deterministic case: By using a hybrid control1 approach, [4] for the
SISO case, and [18] for the MIMO case, show that with sufficient persistency of excitation,
the proposed direct APPC algorithms are stable and that the parameter estimates are
convergent.

In [1], bypassing the issue of global stability, the authors concentrate on the necessary and
sufficient frequency domain conditions for persistency of excitation of the regression vector
for the direct APPC algorithm. They show that in the MIMO case, the necessary and the
sufficient number of frequency components in the spectrum of the reference signal are in
general different.

All these results require sufficiently persistent external excitation to prove stability of the
system. Only in [10], where a complex modification of the direct APPC algorithm is used,

The controller parameters are updated at T intervals for the continuous-time case, and with a slower rate for

the discrete-time case



global stability can be guaranteed without conditions on the reference signal.

As to indirect APPC algorithms, it has been known for a long time that under certain
estimation methods, the indirect APPC algorithm, deterministic or stochastic, is globally
stable for every reference signal if no pole-zero cancellation occurs in the estimated model.
However, the only result, which considers asymptotic self-tuning of the indirect APPC
algorithm in the absence of external excitation in the stochastic case, is that of [16] for the
SISO case.

In this paper, we extend those results to the MIMO case, using the overlapping parame
terization that we explained before. The prior information that we require is the minimal
order of the plant, and knowledge of a convex compact set in the parameter space, to
which the true parameter matrix belongs and every point of which corresponds to a min
imal input-output transfer function. We then introduce an indirect APPC scheme, based
on the Stochastic Gradient (SG) algorithm with parameter projections, and prove that
the corresponding adaptive control system is globally stable and that with sufficiently
persistent external excitation, the parameter estimates are consistent.

Next, we increase the amount of required information by assuming prior knowledge of a
convex compact set in the parameter space, to which the true parameter matrix belongs
and for every point of which the corresponding pole-placement control design is uniquely
determined. Then, by a slight modification of the original pole-placement control design,
we can show that the resulting SG-based indirect APPC algorithm is globally stable and
asymptotically self-tuning even in the absence of external excitation. By asymptotically
self-tuning, we mean that the control input u converges to the desired control u *, the control
input that one would obtain if the true parameters were known, in the mean-square sense.
In other words,

1 Nlim —2_\ Hu* ~" u*k\\ =0 almost surely.
~*°° Jfc=0

In fact, we prove a stronger result in this case; that the controller transfer function indeed
converges to its desired value even in the absence of external excitation.

To decrease the restrictive amount of necessary priorinformation, we suggest applying the
switching scheme of [13]. We conjecture that the stochastic adaptive system is still glob
ally stable under a variation of this scheme, provided that sufficiently persistent external
excitation exists.

The organizationof the paperis as follows: In the next section, the problemsetup and the
pole-placement controller designs are discussed. In section 3, the indirect adaptive control
equations are given and the overlapping parameterizations are presented. In section 4,



we present the stability and self-tuning property results concerning the proposed indirect
APPC algorithms.

Notations: We shall use the following notations in the remainder of this paper:
• We define the vector space M2, as the space of 7£p-valued sequences {hk} for which

limsup^oojfj^k^o\\hk\\2 < 00. and let the subspace M\p C M\ be the set of
7£p-valued sequences {hk} such that lim/v_00 jr Y^k=o \\hk\\2 = 0.
It is clear that M2 and Ml are vector spaces, i.e. hk + gu is in M2 (or Ml) if hk
and gk are in M2 (or M2).

• For any given left Matrix Fraction Description (MFD) of a transfer function matrix
such as H = A~1B1 we denote the corresponding right MFD by H = BRA~l
Similarly, for any given right MFD such as T = CD~\ we denote the corresponding
left MFD by T = D~lCL.
When there is no confusion, we write the polynomial matrix A{q~l) simply as A.

• Let ll-4llF := (TraceATA)? = \J2i,j Alj) ' denote the Frobenius norm for any matrix
A. Similarly, for a polynomial matrix A(z) = A° + Axzx +... + Anzn, we define the
norm ||A|£ := (||A°||* +... +\\A%).

• For any polynomial a(z), d a denotes the degree of a, while for the polynomial matrix
A(z), dA is the maximum degree of elements of A. dnA and dc.A denote the
maximum degree of the i-th row and the i-th column of A, respectively.

• Estimate of every quantity will be specified by adding a "hat" to its notation, while
addition of a "bar" denotes a (potential) limit point of the estimate sequence, e.g.
Ak is the estimate of the polynomial matrix A at step k and A is a (potential) limit
point of Ak-

2. The Problem Setup

2.1 The Plant

Let the plant subject to control be modeled by the following equation:

yk = K(q)uk -r G{q)wk, for k > 0, (1)

where q is the forward shift operator. We assume that the output y and noise w are
p-dimensional, while the control input u is of dimension m, and that all the processes
are adapted to the increasing family of cr-fields Tk in the underlying probability space

For a physical system, H is strictly proper, i.e. limg_00H(g) = 0, while with little loss
of generality, we can take G to be a proper transfer function such that limg_oo G(^) =
Ipxp- By considering the composite transfer function [H(g) ; G(q)] , we find the following



irreducible left MFD of [H G]:

[H(g) G(q)) = D-1[N N'],

With no loss of generality, we can also assume that D is row-reduced (see [11]). Further
more, driN < driD and dr.N' < dr{D. Hence, there exist polynomial matrices A, B, C
in term of q~l, the backward shift operator,, such that

Aiq-^Vk = B(q~1)uk + Ciq-^wt, (2)

where

A = I + Alq~l + ... + Avq~\ B = Blq'd + ... + Bvq~\
C = J+C1g-1+--- + C"V and u = maxdriD.

i

We make the following assumptions on the above system:

Al) Wk is a H1*-valued {Fk}-martingale difference process satisfying for all k > 0 and
some <t > 2,

E[wkwl | Tk-i] = E^Ej > 0, sup £[|K|r I*i-il < oo. (3)
k

The Anite-moment assumption ensures that wk is ergodic up to the second order, cf.

[14], i.e. lim;v^oo 2*=o w* = °> KniN^oo J2k=o wk^l-j = 8j Eu,E£ almost surely.
Note that knowledge of E^, is not assumed throughout this paper.
Moreover, we let the sequence {xq, wo, w\, ...} have a probability measure abso
lutely continuous with respect to the Lebesgue measure, where xq is the initial state
of(l).

A2) C(q~1) is a stable polynomial matrix, i.e. det C(z) ^ 0 for all \z\ < 1. Furthermore,
C{q~l) is Strictly Positive Real (SPR), i.e. C(e^) + CT{e~^) > 0 for allu e 11.

A3) H(q) and [H(g) ; G(o)] have identical McMillan degrees. Thus, since D'1^; N'],
and consequently A~l[B ; C], are irreducible MFDs, A and B are left coprime.

2.2. The Pole-Placement Controller

The controller is given by the following equation:

u=Siq-^Riq-'y'y +Tiqfc (4a)
or equivalently,

RAq'1)^ = -5L(g-1)y* + T'(q)yk (46)

where the polynomials R, S and transfer function T, or the polynomials RL, SL and
transfer function T', are determined by a pole-placement control design and RL~XSL =
SR-1.



y is the ^-valued "deterministic" reference input satisfying the following assumption:

A4) y is either deterministic (To-measurable) or independent of w. Furthermore, it is
uniformly bounded and second-order ergodic,

i.e. 1/JV EtetrVk and V* Ew,"Wj-.r have k„-independent limits as
N —> oo for every finite m.

For the above controller and system description (2), it is easy to find that the closed-loop
system satisfies the following equations:

y = BR(RLAR+SLBR)-1T(q)y + RiAR + BS^Cw,

u = AR(RLAR+SLBR)-1T(q)y-S(AR + BS)-1Cw,

where BR AR~l = A~lB is the right MFD of H. Without loss of generality, we can assume
that AR is also monic and has the same invariant polynomial as A.

Equations (5) determine what the pole-ploacement control design should be. Typically,
the pole-placement control objective is to have B(RLAR + SLBR)~1T(q) = BM'1, where
M(q~l) is a prescribed monic stable polynomial matrix. One can achieve this by letting
RlAr + SLBR= M and T = J, and therefore, computing (RL, SL), in termof the right
MFD of the system.

However, to identify the system, it is the representation (2), corresponding to the left MFD
of the plant transfer functions, that can readily be transformed into a predictor equation
and hence, be written as a linearregression model suitable for identification. This suggests
that we solve the Diophantine equation AR + B S = M instead to find R and S in terms

of A and B polynomial matrices.

But the proof of the following lemma indicates that for a general polynomial matrix M,
AR + BS = M does not necessarily mean that RLAR + SLBR = M for some left MFD
of SR-1.

(5)

Lemma 1. Let A 1B = BRAR l be irreducible MFDs. Then, there exist solutions
(R, S) and (RL,SL) to the following Diophantine equations:

AR + BS = M, RLAR + SLBR = M, (6)

such that SLR = RLS.

Proof. Since (A, B) and (AH, BR) are left and right coprime pairs, the Bezout identity
holds, i.e. there exist polynomial matrices XL, YL, XR and YR such that (cf. [11])

XLAR + YLBR=I

AXR+BYR=I
and

-B

x L

A lBr

-Y,

X

<v
=

I
0

o"

R . ^

(7)



Using the above equations, one can show that the classes of solutions of Diophantine
equations (6) are the following sets for any XL, YL, XR, YR satisfying (7):

{(R = XR M + BR Q, S = YR M - AR Q), VQ poly, matrix}
{(RL =MXL+QB, SL=MYL-QA), VQ poly, matrix} (8)

Let Qand Q' be matrices for which MQ = Q'M and pick the solution pairs (R, S) and
(RltSl) corresponding to the Qand Q' matrices, respectively. Then, for these solutions,
we have

SLR-RLS=[M Q'}

= [M Q']

XL YL
B -A

0 /
-I 0

R '^R
XR BR

M

Q

M

Q
= MQ- Q'M = 0.

In particular one may choose, Q = Q' = 0 or Q = Q' = cl.

On the other hand, for an arbitrary polynomial matrix Q and general M, there may not
exist any polynomial matrix Q' such that MQ = Q'M. This means that for the solution
pair (R, S) corresponding to Q, there may not exist any left MFD such that (6) is satisfied.

•

Remarks.

•2.1. If M = a I for some polynomial a(g_1), then every Q commutes with M. Hence,
corresponding to each solution (R,S) of AR + BS = otl, there exists a solution
(RL,SL) of RLAR + SLBR =al such that SLR = RLS.
We also note that in most applications, one is only concerned with the poles of M-1,
or more precisely, the monic invariant polynomial of M, AAf(g~1). Thus, in such
cases one may take M to be of the simple form a I.

•2.2. Similar to the scalar case, one can choose the degrees of the polynomial matrix S
(SL), or R (RL), such that the solution is unique. (8) shows that S is the remainder
of the right division of YRM by AR, while SL is the remainder of the left division of
MYL by A. Thus, there exists a unique solution (jR, 5) of AR-\-B S = M such that
AR~lS is strictly proper. Similarly, the solution of RLAR + SLBR = M is unique
if we require SLA~1 to be strictly proper. In particular, if AR (A) is row (column)-
reduced, the solutions are uniquely determined provided that we have driS < driAR
(dCiSL<dCiA),ci. [11].
Note that in general, these unique solutions ofequations (6) donot satisfy RL~1SL =
SR~*. However, as mentioned before, the M = a I case is an exception.

By considering the above arguments, we propose the following pole-placement control de
signs, which assign a unique pair of controllerpolynomials (R, S) to every set of polynomial
matrices A, B, C such that A and B are left coprime:



u*k := -SCk + XA.(q l)zk, where i?C* = 3te (9)

and the controller polynomials R and 5 and the process z axe given by the following
mappings:

PP1: (R,S) = )CPPI(A,B) and A*zk = a{q~l)yk (10)

where

£PPl^,B) = axgmin{\\R\\2 + \\S\\2 | AR + BS = (aXA.)I, dS <v}

or

PP2: (R,S) = KPP2{A,B,C) and A*zk = yk (11)

where

JCPP2(A,B,C) = (R,S) ^ AR + BS = XA.C and driS < dnAR,

for some irreducible right MFD BRAR~1 = A~lB such that AR is row-reduced.
Here, A*(q~1) is the prescribedstable monicpolynomial matrix, XA. denotes the invariant
polynomial of A* and a is a stable monic observer polynomial chosen by the control
designer. Note that R is always monic.

By remark 2.2, we know that the mapping /CPP2 is well-defined (solution of the Diophan
tine equation is unique). On the other hand, note that the set {(R,S) \ AR + BS =
(aXA.)I, dS < v} is nonempty and hence, the mapping fCppl is also well-defined. In
particular, KPP2(A,B,ctXAm I) belongs to the above-mentioned set.

It is easy to verify that the closed-loop system descriptions for the above controller designs
are given respectively by

y = RBA*~1y + (aX^^RCw, for PPl
(12)

y = RC-1BA*-1y + X^Rw, for PP2.

As weshall explain in the next section, the PPl design requires less prior information, but
does not necessarily result in asymptotic self-tuning. On the other hand, the PP2 design,
requiring additional information about the plant, induces an asymptotically self-tuning
APPC.

3. The Indirect APPC Algorithms

3.1. The Overlapping Parameterization and Indirect APPC Algorithms
In this paper, we use the overlapping parameterization introduced in [9] to design the
indirect APPC algorithm. We formally define this parameterization by using the following
result:



Theorem A. Left & right MFD overlapping parameterizations: (After [9])
Consider a p x m MIMO linear time-invariant system ofMcMillan degree n. Then, there
exist nonunique multiindices {vu ... ,up} and {^j,...,^m} and unique irreducible left
and right MFDs A~lB - BRAR~l, describing the system, such that

^>0, m>0, ^V, =n, ^^=n, (13a)
t i

dCiA<Vi, dB<maxi/i and dr{AR < m, dBR<maxfn. (136)

We call these parameterizations left and right MFD overlapping parameterizations and the
corresponding multiindices the left and right MFD overlapping multiindices, respectively.

Moreover, if Cn is the (p + m)n manifold ofpxm MIMO linear time-invariant systems
of McMillan degree n, and

£n]vl,...,up\plt...,iim Is the submanifold of n-th order systems with left and right MFD
overlapping multiindices {vi} and {/it} respectively, then

^n,ux,...tup;iiu...,liTn is dense in Cn.
U

Thus, for every multivariable LTI system of McMillan degree n, we may choosemultiindices
{u{} and {m} arbitrarily as long as (13a) is satisfied. Then, these multiindices are at least
the left and right MFD overlapping multiindices of an arbitrarily close approximation of
the plant. This means that the left and right overlapping multiindices can be guessed as
long as an accurate estimate of n, the McMillan degree of the system, exists.

Therefore, we have the following assumption regarding the required prior information:

PI) n : the Smith-McMillan degree of the transfer function H(q) (or equivalently
[H(g) ; G(g)]) is known. Without loss of generality, we also assume that one left
MFD overlapping multiindexof [H{q); G(q)] and one right MFD overlapping mul
tiindex of H(g), denoted respectively by {v\,..., i/p} and {pi,..., fim } and satisfying
(13a-b), are known a priori.

Using the above parameterization, we can write (2) in the following regression model:

yk=9*T<f>X + Wk, (14)
where

0* = [-A(i)T--->-A({)T-->-A(p)i'-">-A(pyB ,...,B ,C ,...,C ]px(n+„(m+p)),

v —maxt-Pt! X(i) is the i-th column of X and X{k the z'-th element of xk. As explained
before, this parameterization is unique and furthermore, A and B are left coprime by A3.



Henceforth, we use the notation 9* for both the parameter matrix and the corresponding
set of polynomial matrices (A, B, C).

Remark *3.1.

Note that the above parameterization is overparameterized, because it is a well-known

fact that the set of pf xm' linear time-invariant systems of McMillan degree n forms
a (p' + m')n manifold and hence, can be parameterized by a minimum of (p' + m')n
parameters, cf. [3]. For system (1), this gives a minimum number of n(2p + m)
parameters. On the other hand, since v > jj, the number of parameters used here
p(n + v(m + p)) > n(2p 4- m) and is equal only if v = J.
An implication of this fact is that except when v,• = ^ for all i, every neighborhood
of 6* in 7£(n+l/(m+p))xp includes systems with McMillan degrees greater than n.

The indirect, or certainty-equivalence, adaptive pole-placement controller is then given by

uI := -SkCk + XA. (q~ )zk, where Rk(k=Vk, (15a)

where by using (10) or (11),

(Rk,Sk)=KPPl{Ak,Bk) or (Rk,Sk) = KPP2(Ak,Bk,Ck) (156)

and z is given by the pole-placement control design laws (10) or (11). 9k is of course
the estimate of the parameter matrix 9*, which we shall identify with the corresponding
set of time-dependent polynomial matrices (Ak,Bk,Ck). We also note that the absolute
continuity assumption in Al ensures that at every finite k > 0, (Ak, Bk) is a left coprime
pair with probability 1 and Rk and Sk are well-defined. See [12].

Remark *3.2

Solving the Diophantine equations AR + B S = aXAmI or AR + T}!> = X C for
R and S is equivalent to solving the following set of linear equations:

where H is the generalized Sylvester's matrix depending on the coefficients of A and
B, Z is the unknown vector of coefficients of R and 5 and 5(0) is the vector of
coefficients of the RHS of the Diophantine equation, in a certainorder. Furthermore,
with the parameterization (14), the dimension of H is

(p2max{77,i/ + n-l}) x (p2max{rj,u + n - 1} + (m - l)pn) for PPl,

(p2max{?7,i/ + ^-l}) x (p2 max{rj,u + p - 1}) for PP2.
(166)

10



where jjl = max,- m and rj, degree of the RHS of the Diophantine equation, is equal
to da + dXAm for the PPl, and dXA. + v for the PP2 design.
Here, we have assumed that driAR = m for all i, in the definition of K,PP2 mapping.
This is true if and only if d det A = d det AR = n or in other words, the transfer
function [H G] has no polesat zero. This, for example,is alwaystrue if the discrete-
time system is the discretization of a physical continuous-time plant. In that case, A
and AR have to be column and row-reduced respectively and dCiAR = V{ for all i,
as well. By using this assumption in the PP2 case, the following claim holds:

Lemma 2. There exists a bounded open neighborhood of 9*, 0° C ft<»+»(m+p))xpj
such that infacao det(H H:L_ ) > 0, where 9 corresponds to the set of polyno-

mial matrices (A,B,C).
Hence, the mapping /CPP1, or JCPP2, is uniformly continuous over0°.

Proof. A and B being left coprime means that U(A B) isoffull row rankfor the PPl case.
For the PP2 design, the assumption made in remark 3.2 implies that H {A B) is nonsingular.
Therefore, there exists a bounded neighborhood of 9*, 0°, where U __ H'L_ is nonsin-
gular on the closure. Noting that

Z =HT (n tfL.^E for PPl and(A.fl) (A.B) \ (A,B) (A,B)J (I6c)
Z =n-1_S(0) forPP2,

where H and H(#) are continuous functions of 9, it is clear that /CPP1, or /CPP2, are
\A ,B)

uniformly continuous over 0°. •

3.2 The SG Identification Algorithm and Potential Self-Tuning

In this paper, we consider the Stochastic Gradient (SG) algorithm for estimation of the
plant parameter matrix 9*. The SG estimate-update equation with a posteriori prediction
error, corresponding to the linear regression equation (14), is then given by

h = h-i + r^MVk ~ 4>k0k-i), (17)

where 7** := r + £2»=o tiTfa ^or some ^ > 0 and

<t>k '•=<!>% - i wk = yk- 9l</>k.
wk—>wk

Notation:

Let u(9) and y(9) be the input and output of the plant under certainty-equivalence
(indirect) adaptive control if the parameter estimates are constant or "frozen" at 9.
Thus by (9), we must have

uk(9) = -D(k(9) + AA. zk, RCk(9) = yk{9), (18)

11



where (R, S) are controller polynomial matrices computed from 9 and z is obtained
from y by (10), or (11). Clearly, u* := u(9*) and y* := y(9*) are the "desired"
input and output whichone wouldobtain if the parameter estimates were fixed at 9*
the true parameter matrix.

Then, it is well-known that if the adaptive system is stable and 9= (A,B,C) is a limit
point of the SG estimate 9ki 9 satisfies the following

AVk(B) - Buk(9) - Cwk(9) = 0 a.s. (19)

Let Hc(q, 9*, 9) be the transfer function matrix for the closed-loop system consisting ofthe

plant and the time-invariant controller given by (18), i.e.

Hc(q,0*,9) z

w
= Hc(g,M)

z

w

Then, (18) and (19) and definition of u(9) and y(8) imply that

= HC(S)^,§) z

w

(20)

Al and A4, that is independence of y, and hence z, from wand infinite order ofpersistency
of excitation of w, then imply that

H£,(<7,9*, 9) = H5„(g, 9,9) a.s. for every process z (or y).

By using (2), (5), (18) and (19) and the fact that R is monic, it is easy to verify that the
above identity is equivalent to

(AR +BSf1C =(AR-rBS)~lC (21)

for all external excitations. For the PPl control design, we only get

(AC-AC)R + (BC-BC)S = 0,

while for the PP2 design, (21) gives

(AR-{-BS)=XAmC = AR-rBS => R = R, S = S.

This is of course due to the fact that the PP2 design sets the degrees of the S polynomial
matrix such that AR-\- BS = M has a unique solution for all M. But, this is not true
in general for the PPl design.

We conclude from the above discussion that if the adaptive system is stable and the
parameter estimates converge, then the PP2 controller polynomials always converge to
their desired values. In particular, u and y converge to u* and y*. We call an adaptive
control algorithm with such a property, potentially self-tuning.

12



This is equivalent to saying that PP2 is potentially self-tuning regardless of the external
excitation, while PPl is not in general.

Subsequently, we prove that with appropriate projection of the SG estimates, only PP2
is asymptotically self-tuning regardless of the external excitation. Nonetheless we should
add that with sufficiently persistent external excitation, the SG estimates are strongly
consistent for both control designs, which also implies asymptotical self-tuning.

4. The Stability and Asymptotic Self-Tuning Results

It is known, see [17], that the SG-based adaptive control algorithm under either of PPl
or PP2 designs is stable if the parameter estimates are restricted to a bounded subset of
the parameter space 0°, where the corresponding controller mapping is uniformly contin
uous over the closure of 0°, and det(AR + 5 5)(g-1), the characteristic polynomial of
Hc(q,9,9), is uniformly stable over ©°.2

If such a set exists, we can then modify the SG algorithm (17) so that the estimates are
projected into this set. But we also want to have finite number of projections so that the
asymptotic properties of the SG algorithm remain unaffected by the projections. We can
achieve this property if there exists a priorly known compact convex set 0 C 0 ° such that
9* £ 0. Lemma 2 implies that such a set exists. Therefore, the following assumptions are
feasible:

P2) For the PPl design:
There exists a priorly known compact convex set 0 C Tl(n+t'(m+P))xP such that

9* e 0 and for every 9 G 0, A and B are left coprime.

By lemma 2, /CPPI is uniformlycontinuous overthis set. Furthermore, AR+ B S = aAA.I
is constant over 0.

The above assumption can be very restrictive: The set of points for which A and B are not
left coprime divides the parameter space into disconnected regions. Therefore, the above
assumption means that one should know to which region 9* belongs and have a good initial
estimate of 9*.

The next assumption is stronger:

P3) For the PP2 design: [H(g) G(q)] has no poles at zero, and
there exists a priorly known compact convex set 0 C 7£(n+,'(m+P))xJ, such that
9* e 0 and for every 9 € 0, inf§6© det(H ) > 0, where II is introduced

in (16a-b), and C(z) ^ 0 for all \z\ < 1 + r and some r > 0.

We say a polynomial X(q~l,8) is uniformly stable over ©, if for every 0€©, X(r,0)#O for all |«|<l+r

for some r>0.
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Lemma 2 implies that KPP2 is uniformly continuous over 0, as well. Furthermore, AR +
BS = A..C is uniformly continuous over 0.

Assuming that the compact convex set 0 is given, one can always find an open neigh
borhood of 0, namely 0°, where the same properties are satisfied. We then propose the
following scheme where the SG algorithm has been modified by projecting the estimates
into the set 0 whenever they exit the set 0°:

0k:=ih-i + r^MVk ~• %-i</>k) and

h = < argmin||0-?*||,
if?*G0°
if?*£0°,

(22)

where wk = yk —9k<f>k. Clearly, 9k given by the above modified algorithm will always
belong to 0°. We have the following result regarding the number of projections:

jOk+i

Fig. 1: The Projection Scheme (22)

Lemma 3. Let 6 > 0 be the minimum distance between dQ°, the boundary of 0°,
and 0. Then, if assumptions Al and A2 are satisfied, there exists an integer-valued finite

random variable ko > 0 such that 9k = 9k for all k > ko, i.e. there exist only a finite
number of projections almost surely.

In particular, all the asymptotic properties of the SG algorithm hold for the modified
algorithm too.
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Proof. See the appendix. rj

This means that we can ignore the projections in our asymptotic analysis of APPC algo
rithms. Thus, we have the following propositions:

Proposition 1. Consider the discrete-time stochastic MIMO plant model (1) with
description (2). Let assumptions A1-A4 and P1-P2 be satisfied and apply the indirect
APPC algorithm (15a) based on the controller mapping KPP1 (10), parameterization (14)
and the modified SG algorithm (22) projecting the parameter estimates into an appropriate
set 0° .

Then, the following statements are true:
i) Stability: the adaptive system is stable in the mean-square sense, i.e. u6 M2m and

y GMp almost surely, or

'suPF££L0llrf <°° a-s-
sup fa Ef=o \\uk\\2 <oo a.s. ( a'

N

iU]
N

ii) Convergence of the prediction error in the mean-square sense:

N

iJSJo jj E H» "0kM\2 =||EW||J a.s. (236)
Moreover, ify is of sufBciently high order of excitation, in particular, if y is a martingale
difference process independent ofw and satisfying similar properties as in Al, we have

Hi) Strong Consistency: Ak -* A, Bk -*• B, Ck -»- C as k -* oo, almost surely.
In particular, the adaptive controller is asymptotically self-tuning, i.e. u —u* €
Mom and y —y* € M\ almost surely.

Proof. See the appendix. •

Remark 4.1. The strong consistency also holds if y is of finite but sufficient order
of excitation. However, in this case y must be persistently exciting in the strong sense,
i.e. there exist an integer N > 0 and a real number /? > 0 such that

k0+N _
Y, YkYkT >fil V*0 >0, where YkT =[yTk,..., yL.+il (24)
k=ko

and a is the order of excitation.

Proposition 2. Consider the adaptive control system of proposition 1, where the
APPC algorithm is now based on the controller mapping KPP2 (11), and assumption P3,
instead of P2, is satisfied.
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Then in addition to i) and ii) of proposition 1, the following result is obtained, where y is
any process satisfying A4 regardless of its order of persistency of excitation:

Hi) Self-tuning: \\R-Rk\\F £ M20, ||5-5jfc||F <E M\, yk - y*k € M20p and
uk—u\ G Mo , where (R, S) = KPP2{A, B, C) are the ideal controller polynomial
matrices.

AJso, 9k —* £1 almost surely as k -^ oo, where for every 9 = (A,B,C) € ft,
KPP2(A,B,C) = KPP2(A,B,C).

Switching Approach: As mentioned before, assumptions P2 and P3 are in general
restrictive. One approach to weaken these assumptions is the hysteresis switching technique
introduced in [13] for deterministic systems. By using this approach, less prior information
will be required:

Suppose there exists priorly known constants M > 0 and 8 > 0 such that ||0*|| < M

and det(H(A fl)n^ B)) > 8. (H(A B) was introduced in §3.1, (16a).)
Then, there exists a finite number, say /, compact convex sets 0i,..., 0/ such that

<M k{'i det(E H^l_ )| >6) CLIU ©« and
V (A.B) {A,B)'\ ~ J ^«—1

U!=10ic{§| |det(n^__)|>f}.

Clearly, 9* € Ui=i ®»- Without loss of generality, let 9* £ 0i. Moreover, there exist open

neighborhoods of {0J, namely {0?}, such that (j!=i ©? C{det (UT__ ) > £}.
(A ,B)

Then, the switching technique of [13] suggests running / modified SG algorithms such as
(22), for each 0j. Let {9k} denote the resulting / SG estimates. Then, at each step k, we
let

(Rk,Sk) = ICppl(Aikk,Bkk),

where (^,§£,5*) = ^ and
ik = argmin/(£*,&)

for some cost function /(•,•)• F°r instance, we suggest

/(^*) =;rX>*-**-irfciia-
» *=o

Note that since n > 1, <fi = [yk.u...]. Therefore, rN > ^=0 ||yib_i||2, where
Hminfiv^oo jr E*Lo \M\2 > l|Eu,||* • In other words, rN -• oo as N -• oo.
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Then, comparing f(9\N) and f(9\N), and using Al, uniform boundedness of the esti
mates and certain martingale convergence results mentioned in the appendix, we get

hmsupt/^SJV)-/^1,^)) >
N-+oo

H^sup (7- E n»* - **T^ - w*n2 - r- E n» - hlT<t>k - wk\N^oo \rN k=Q rN k=Q

c- a (25)Since 0* € 0i, the number of projections on this set is almost surely finite and thus, the
asymptotic properties of the SG algorithm hold for 91. This means that the second term
in the RHS of (25) goes to zero as N -> 00. On the other hand, if the external excitation
is sufficiently persistent, and 9* does not belong to the closure of 0?, i.e. 9* has a strictly
positive distance from the set 0?, we conjecture that

^Y,\\yk-ekTik-wkf

is greater than some positive constant infinitely often for almost every sample path.
If this claim is true, then for almost each sample path, there exists a finite time k such
that after k, the adaptive control algorithm switches forever to & estimates for a j such
that 9* 6 0,. In other words, (Rk,Sk) = ICPPl(A{,BJk) for all k > k. Now, on 0;, the
asymptotic properties of the SG algorithm hold and thus, the same results as in proposition
1 and 2 are obtained. Identical arguments can also be used for K PP2.

5. Conclusions

In this paper, we proposed an indirect APPC algorithm for discrete-time MIMO linear
stochastic systemsbased on overlapping parameterizations. This parameterization is glob
ally identifiable, requires less prior information, and is more appropriate for ARMAX
representations, than that of the existing pole-placement algorithms.
Assuming that the parameter estimates are projected into a desirable set, we proved stabil
ity of the SG-based APPC algorithm and showed that with sufficient amount of persistent
external excitation, the parameter estimates are strongly consistent. We also showed that
a slightly modified APPC algorithm is asymptotically self-tuning even in the absence of
external excitation.

To weaken the projection assumption, we suggested a switching technique. Although we
did not present a formal proof, we conjecture that the APPC algorithm will be stable
under the proposed switching scheme. The drawback of this method is that it requires
parallel estimation. It would be desirable to find more practical alternatives that can be
used in stochastic adaptive control.
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Appendix:

The Asymptotic Properties of The SG Algorithm:

The foUowing asymptotic properties hold for the SG algorithm. For a complete account
see [15].

Theorem B. Consider the regression model yk = 9*T<f>k + wk and assume that
Al and A2 are satisfied. 9k, the SG estimate of 9* given by (17), satisfies the following
properties, where we have defined 9k := 9* —9k:

SGI) ||0fc|| converges as k -> oo, hence, supk \\9k\\ < oo almost surely.
SG2) ^Zfcio H^* ~ 0Jfc-m|| < oo, for every finite m almost surely.
SG3) Z)jt=o Wwk ~ ™k\\2 = °(rjv) + 0(1) almost surely.

\ Zk=o Wl-mM? =o(r„) + 0(1) for all finite m,
SG4) \ Ek=o ll^-m^ll2 =o(rN) +0(1) for all finite m, and

{Eto l|3£*ill2 =o(rN) + 0(1) almost surely.

Analysis Tools:

In the subsequent proofs, we frequently use the foUowing tools in addition to the properties
of the SG algorithm. The reader can easily verify Tl, T2 and (CI). For a proof of T3,
(C2) and T4, see for example [14]. T5 was shown in [8].

Facts. Let nk be any sequence of TV*-valued vectors andXk{q~l) and Yj^g-1) be any
time-dependent polynomial matrices such that
supfc(||Xfc||F + \\Yk\\p) < oo Xk- Xk-i -+ 0 as k -• oo. Then,

N / N

ti) £p^n2=o mwi2 ,
Jk=0 \fc=0 /

N N / N \

T2) e n**(y***)ii2 =E ii(*J0***na + ° E n^ii2 + °o) *°*
Jfc=0 k=0 \k=0

N N / N

£ ||Xfc7T*||2 =E H^-mTTitll2 +O(E 11**11* ) +°W V™ **te, (CI)
fc=0 Jt=0 \k=0

19



where (XY)k is the product of X and Y treated as time-invariant polynomial matrices.
In particular, if nk e Ml (jM§p), then Xkirk € M\ (M\p).

Next, let {irk} be an W-valued {Fie}-martingale difference sequence satisfying condition
similar to Al and {hk} be an IV-valued {Fk-i}-adapted random process (or a process
independent of the process {71^}).

Then, 7Tfc € M\ and T,¥=ohk*k =°(EJLo HMI2) +°W ahnost sure^
Therefore,

N N

T3) El|fcft+irft||a=(l+o(l))EllMa + O(N) a.s.
k=0 k=0

Furthermore, if supfc \\hk\\ < 00 almost surely,

hfaeMl <=• hkeM20p (C2)

(C2) and T3 imply the following, where we let X^q'1) and Yjfc(g_1) be ^Fk-measurable
time-dependent polynomial matrices such that
sup,(||XJt||F + ||n||F)<oo and \\Xk - Xk-t\\F + ||n - Yk^\\F - 0 as k - 00 a.s.:

If {hk} is an Tk-n*-adapted process with n* > dYk (or a process independent of {irk})
such that hk G M2 almost surely, we have
T4)

(XkhkeMlp,
Xkhk + Ykirk e Ml «=> < a.s.\Yk*keMlp, ^ \\Yk\\F€Ml
In particular, if Yk = Y for all k, Yirk G Mq almost surely implies Y = 0.

(To prove T4, we use (Cl) to approximate Xk and Yk with Xk-n* and Yk-n», with the
errorbeing in Mq. Then, by using Tl, T3 to show that the cross terms are in M § almost
surely and (C2), the statement is proved.)

And finally, we have the foUowing assertion:

T5) Any time-varying finite-dimensional system {xk+i = $kxk + Wkuk, yk =
Hk%k}, that satisfies the following 3 conditions, is C2-stable, i.e.

EitLo Hrf =° (EfcLo IKII2) for any sequence {uk} €M2:
1. Supk(\\$k\\ + \\Wk\\ + \\Hk\\)<oo.
2. sup*(11^* - **-i|| + ||W* - Wjfc-iH + ||jyfc - J5T*-i||) -• 0 as * - 00.
3. $k is uniformly stable with respect to k, which is equivalent to saying that every

eigenvalue of $k, for all k, is inside a disk of radius X* for some X* < 1 .

a
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Proof of Lemma 3:

Let 9k = 9* —9k. To prove the lemma, it is sufficient to establish the foUowing claim:

Claim. Let 9 € 0OC, the complement of@°, and 9 := arg min ||0 -?||. Then,

\\9-9*\\2<\\d-9*\\2-8,
where 8 is the minimum distance of the boundary ofQ° and 0.

Proof. With no loss of generality we assume 9* = 0. Since 9 £ 0° and 0 C 0°, we

have ||?- §|| > 8. Also by definition of 9, \\9-9\\ < \\9\\. This imphes that

A=M>i and 1_A =1_M =ii4i><i.
12-2 \\s\\2 ||0||2 " 2

We claim that 1 - A < 0. Suppose not, then 0 < A < 1 and X9 + (1 - X)9* = X9 G 0,

because 0 is convex. But (9 —X9, 9) = 0. Thus by the orthogonality principle,

||A0-?||<||0-?||.

Since 9 has the minimum distance to 9 in 0, one must have A = 1. Hence, A > 1. Now,

III2 = W + II? - H2 +2(?-1 6) = \\6tf + ||? - 0\\* +2(1 - A)||$||2 < ll^f +S
as intended. •

Thus, ||0fc||2 < ||̂ fc||2 —1 ~ ^ 8 for aU k, where 1q is the indicator function for the set

Q. Then, it is easy to see that

£ ii^kii*+jv*« <£
Jfc=0 fc=0

where Nk is the number of projections up to time k. Substituting for 9k from (22) and
applying the same arguments which are used to prove the SG algorithm properties (see
[15] for details), in particular SGI, one can show that there exists a finite random variable
M > 0 such that ||0*|| < M and Nk < M for aU k. This completes our proof. •

Proof of Proposition 1:

First, note that by lemma 3, we may ignore the effect of projections in our asymptotic
analysis except that we have 9k £ 0° for all k.
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0° is chosen such that KPPI is uniformly continuous over its closure. Thus by SGI and
SG2, we know that every estimated or controUer parameter xk, satisfies the foUowing:

sup|a:jfc| < oo
k

and \xk —xk-\\ —> 0 as k —> oo.

This means that we may now apply the T1-T5 tools.

To show i), it suffices to show that limsup ^- < oo. This is triviaUy true if sup rN < oo,
N-+00

therefore, with no loss of generality, we assume Hm rN = oo. Thus from SG 4, we get
N—>-oo

N
% > I •**• .»">. -«"N *

2^ \\Akyk - Bkuk - Ckwk =o(rN) a.s.
Jt=o

Substituting yk and uk with uk = -SjfcOfc + zk and yk = Rk(k, where A*zk = (aXA. )yk
by (15a) and (10), and using T2 gives us

N II 2 / N \J2\\(AR +BS)ktk - Bkzk - Ckwk =o(rN) +ol £ ||C*||2
aA A*

a.s. (C3)

Since aAA. and A* are stable and u?, y and hence, 2 are in M2 almost surely, SGI implies

N / N \

EH^I|2 =0(ElKaAA-)&l|2 )=o(rN) +0(N) a.s.
k=0 \k=0 I

Considering that the coefficients of Rk and Sk are almost surely uniformly bounded with

respect to *, we also have Ef=o IKIl' =° (iXo \\Ck\\2) +0(N) and Zk=o llrf =
0 (EfcLo HCfcll2) • But rN <r-rK^2k=Q\\[ylulwl]\\2 for some positive integer, where
EfcLo ll^fcll2 = °(N) hy SG3 Therefore,

rN=o(rN) + 0(N) f =0(1) a.s.

Of immediate impHcations of this result are that £, y and u are aU in M 2 almost surely,
hence i) is proved. Considering that yk —9l<j>k = 9\4>k 4- 0jk(0jb —</>*) —w*, where the first
two terms are Tk-\-measurable and in M\ by SGI, SG3 and SG4, we are also able to
infer ii) from T4.
Next, let ybea martingale difference sequence satisfying conditions similar to Al. SG3
and the fact that -j-f- = O (1) almost surely imply that

N N

En*** =^\\ANyk-BNuk--CNWk =o(N) a.s.
k=0 *=o
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On the other hand, consider the plant model (2). It is clear that (2) is equivalent to

det ARyk = BRAdi(AR)uk + CRAdi(AR)wk + ek, (C4)

where Adj(X) = det X X~l for any matrix X and e here represents the effect of initial
conditions. Since the system is stable in the sense ofstatement i), we deduce that ekGMl
almost surely. Thus, multiplying 9^(/>k by det AR and substituting for y from (C4) gives

N

E I(XB« - §"A*) Adj(ARH +(2NCR - CNAR) A4i(A>4 +e'k =o(N) (C5)
Ar=0

almost surely, where e'k is due to initial conditions and is in Ml almost surely. But
"it = —SjfeOfc+2*, where (c*AA. )£* —Bkzk —Ckwk G.M2, almost surely by (C3). Multiplying
the argument of square-sum in (C5) by aXAm and using these equaUties to substitute for
(otXA. )uk, we arrive at

N

E|| {ANBR - BNAR) Adi(AR)(aXA. I- SkBk) zk+

[aXA. (2NCR - CNAR) Adj(AR) - (2NBR - BNAR) Adi(AR)SkCk]wk +e'k' = o(N)

almost surely, where e" is due to initial conditions and is in Ml almost surely. By inde
pendence of e", y, and hence, z from w, and T4', an extension of T4 mentioned foUowing
this proof, the above is equivalent to

£|| (2NBR - BNAR)Adj(AR)(a\A. I- SkBk) zJ =o(N)
k=0

N

Y\\"K. (anCr - CKAR)Adj(AR) - (2NBR - B„AR)Ad)(AR)SkCk
k=0

(C6)

= o(N)

almost surely. Note that A*zk = (aXAm)yk indicates that det A* zk = (aXAm)Adi(A*)yk.
Therefore, if we multiply the argument of square-sum in the first equality of (C6) by
det A*, substitute for det A* zk and use T4', with the martingale difference process in
this case being y, we get

N 2Y^\\(ANBR-BNAR) Adi(AR)(aXA.I -SkBk)\\ =o(N) a.s. (C7)
Jfc=0

Since Adj(AR)(aXAmI —SkBk) is a monic polynomial matrix, one can easily show that
(C7) impUesthat ]imN^oo(ANBR-BNAR) = 0 or umw—ooA"1!^ = BRAR~l = A~lB.
Now, as mentioned in §3.1, the parameterization (14) is globaUy identifiable at 9*, thus
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lim^/^oo AN = A and limAr^oo BN = B. Applying this result to the second equality of
(C6) would result in lim;v-*oo CN = AC^A^-1 = C.
Because 9N —>• 9*, self-tuning is triviaUy achieved, that is

(Rk,Sk)=KPPl(Ak,Bk) —> JCPPI(A,B) = {R,S) as k -> oo a.s..

Using the above and stabiHty of AR-\- B S = ctXA., we also get u —u* G Mq and
y —y* € Mq almost surely. •

In the above proof, we used the foUowing extension of T4:

Let {irk} and {hk} be the same processes defined for T4 and Xl, X\, Yk and Yk2 be
time-dependent polynomial matrices satisfying similar conditions. Then,
T4')

A 2 f Zk-o\\^NX2khk\\2 = o(N)

lE*LoW*?**|| =o(N)
N N

where Ell1*1?**!!* =o(N) *=• £ ||lftYj?||* =o(JV) a.s.
Jfc=0 Jfc=0

To estabUsh this fact, we use a combination of proof of (C2) and the foUowing lemma:

Lemma 4. Let {nk} be an 1ZP-valued {Tk}-martingale difference sequence satisfying
condition similar to Al and {xN} be an TZp-valued {T^-adapted random process such
that xN is uniformly bounded almost surely. Then,

1 N
Hm -T7/(x^TTk)2=0 <*=> lim xN =0 a.s.

N^oo N ^ N N—oo N

\

Proof. Suppose xN •/* 0 as iV —> oo with probabiUty p > 0. Then, there exists e > 0
such that for all JV, there exists N' > N such that ||a? || > e.

On the other hand, limiv—oo # Ejb=o ^k^ = EttEJ > 0 almost surely, meaning that
there exists Nq > 0 such that for aU N > iV0

/ 1 \ 1 NxT (S^ - -Amin(S;rSj)/j x<xT(jm - J2 wtyx, to GTV
almost surely, where Amin(i2) denotes the minimum eigenvalue of matrix R. Combining
the above two statements implies that for aU N > Nq, there exists N* > N such that

N' ., N'

^ B*»* ="s**- II2 +*l(f E"^ - S^H-
ft=0 Jk=0

>Anta(ElrSj)||«J,/||* - \\minV«Xl)\\x„,\\2 >\\mi«(Z*Xl)e2 >0
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with probability p. This means that -fa EfcLo^w71"*)2 ~h ° as N -• oo with at least
probability p > 0, clearly a contradiction. •

Proof of Proposition 2:

Proofs of statements i) and ii) are similarto those stated for proposition1. Again, ignoring
the projections in our asymptotic analysis and by using the fact that KPP2 is uniformly
continuous over the closure of 0°, SGI and SG2, we conclude that Ck is uniformly stable
with respect to k and

sup|a;jb|<oo and \xk—xk-i\^>0 as k —• oo
it

for every estimated or controUer parameter x k. Therefore, T1-T5 are again appUcable.
A similar procedure as in the proof of proposition 1 then gives us

N II 2 / N \
ElpfcSfc +BkSk)Ck - Bkzk - Ckwk =o(r„) +o Ell&H2 a-s-» (CS)
Jb=0 * *Z ' \k=0 J

where A*zk = XAmyk and by stability of A* and A4, zk GM2.

Hence, £Ho \A.CkQk =o(rJ+O(£?=J0fc||2)+OW by Tl and Al.
Considering that Ck is uniformly stable with respect to k, \\Ck —Cfc_i|| —• 0 as k —> oo
by SG2 and sup* ||C*|| < oo by SGI, we may use T5 to conclude that ^2k=0 \\Ck\\2 =
o(rN) 4- O(N). Then, using arguments identical to those used in the proof of proposition
1, we find that ^f- = O(1) and that (, y and uare aU in M2 almost surely. Therefore, the
system is mean-square stable and i) is true, ii) is proved in the same way as in proposition
1.

Regarding iii), we note that (C8) now becomes XA.Ck(k —Bkuk —Ckwk G Mq almost
surely. Multiplying this by Adj(Cfc) and using SGI, Tl, T2 and the fact that f, w and z
are in M2 almost surely, we obtain

AA. det CkCk - Adi(Ck)Bkzk - det Ckwk GMl a.s. (C9)

On the other hand, we have Ayk —Buk —Cwk = 0. By using the controUer equation (15a)
to substitute for yk and uk, this equation becomes

(ARk + BSk)(k - Buk - Cwk = 0. (CIO)

Multiplying (C9) by ARk + BSk and (CIO) by —XAm det Ck and adding the two, using
Tl, T2 and the fact £, w and z are in M2 to simplify the result, we find

[(A R+BS)Adj(g)g-AA. det Cb] SAkzk +
k

(AR + 5 5) det C- XA. det CC wk GMl a.s.
J k
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Then, by independence of w and y, hence w and z, and using T4, we can conclude that
(ARk + BSk —XA,C)det Ck G Mq almost surely. Since det Ck is monic, this is equivalent
to

A(Rk-R) + B(Bk-B) €M] a.s. (Cll)

Note that ||-X"jfc||F € Mq for a time-dependent polynomial matrix Xk, if and only if
Frobenius norms of all the coefficients of Xk are in Mq almost surely. Clearly, one can
write A(Rk —R)-\-B(Bk —B) = [lg_1 .. .]B.{A B)Zk where elements ofthe matrix II are the
elements of coefficients of A and B polynomial matrices, while Zk is a vector of elements
of coefficients Rk —R and Sk —S. Thus, (Cll) is equivalent to saying that TLZk G Mq.

But on 0°, IIM B) is nonsingular. Therefore, Zk < L nzk

consequently, Zk G M2, i.e. R-Rk G Mq and

Now, let C* be the process satisfying yk = RQ and uk = —SCk + zk, where y* and u
satisfy Ayk —Buk —Cwk = 0. Thus, we have

s-sk

for some L > 0 and

GMq almost surely.

XA.CQ-Bzk-Cwk = 0.

Subtracting (CIO) from the above equation yields

(A(R - Rk) +B(S - Sk)) Ck +(AR +BS)(C*k - Ck) =0.

Since AR + BS = A^. C is stable, the above equality impUes

E hc* - cm*=° EI (A(R - **)+s<s - §*)) &|| J=°w
Jt=0 \fc=0 /

=° (EI (A^ - s*)+5(5 -§*))A^det e*<* J
\Jb=0 /

(C12)

a.s.,

where we have used T5 and the fact that det Ck is uniformly stable. By using (C9), the
above equation can be written as

N N

E IK* " <**H2 =°(J1^A(R ~S*> +B(-S ~Sk))Ad)(Ck)Bkzkf) +
k=0 k=0

N

0(^2\\(A(R-Rk)-rB(S-Sk)) det Ckwk\\2) +o(N) a.s.,

which by T4 and the fact that y and hence, z are uniformly bounded, means that Ck —Ck ^
Ml almost surely. Now, yk-y*k = Rk(Ck -Ck) + (Rk ~R)Ck and uk -u% = Sk(d - Ck) +
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(S —Sk)Ck, where the parameters are almost surely uniformly bounded by SGI. Since

XA. det Cis stable, Zk=o |(S* - R)C*kf =°(Zk=o ||(£* - R)K- det C7<*||2), where
(Rk - R)XAm det CQ = (Rk - R)Ad)(C)Bzk + (Rk - R) det Cwk GMlp a.s.

by (C7), T4 and the fact that z is uniformly bounded. The conclusion is that yk—yk € M2
almost surely. Similarly, uk —uk € Mom almost surely.
Using these estimates and the fact that by SG4,

N N

E \ffitt =Yl\\ANyk-BNuk-CNwk =o(rN) +0(l) =o(N) a.s.,
k=0

we arrive at

N

k=0

Y,\\ANyk-BNu*k-CNwk\\ <3(E|2„(^-2/*)|| +E||^W-"Jt)
k=0 k=0

N .,9

+ 2^ \\ANyk - BNuk - CNwk\\ J = o(N)

which is equivalent to saying that

N

EK« =»w
k=0

fc=o

i N
^ jvE««r^=0 a-s-

Jfc=0

a.s.,

Now, since y* and u* correspond to a stable linear time-invariant closed-loop system driven

bysecond-order ergodic inputs y and w, -^ J2k=o ^ib^jb7^ converges to afinite limit Talmost
surely. Hence, the above equality suggests that 9N converges to fi' = Af(T) almost surely
as N —> oo. Let 9 = 9* —9 be an arbitrary point in ft'. Then, T9 = 0 or equivalently,
9T<f>k = Ayk —Buk —Cwk GMq , which after substituting for yk and uk becomes

(AR + BS)Ck - Bzk - Cwk GMl a.s.. (C13)

Multiplying (C13) by AA. det C and (C12) by -(AR + BS)Adj(C) and adding the two
results in

[(AR +BS)Adi(C)B - XA. det CB zk + [(AR +BS)- XA.g] det Cwk GM

almost surely. T4 then imphes that AR + BS = XA„C. Since 9 G 0° due to projections,
this Diophantine equation has a unique solution, i.e.

R = R and S = S =* KPP2(A,B,C) = KPP2(A,B,C).

•
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