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Abstract

Harmonic generation for high-power, deep-UV light source to be used in optical
lithography is described. Quintupling of the Nd:YAG laser frequency to 213 nm is
considered. Nonlinear crystals and other optical components used in the system are
described. The design of the three-stage, colinear harmonic generator is considered
in detail, with emphasis on crystal heating, conversion efficiency, and nonlinear
material properties. The design process presented here is applicable to multi-stage
optical frequency up-conversion in general.
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1.0 Introduction

The size of integrated circuit devices is ultimately limited by the wavelength of light source used
for patterning the circuit features. The shortest wavelengths available for optical lithography are
in the deep-ultraviolet region of the spectrum. Presently, the best-developed light sources in the
deep-UV are the mercury lamp I-line at wavelength of 365 nm and the KrF excimer laser at
248 nm. In recent years, interest in lithography sources with shorter wavelengths has been
focused on the ArF excimer laser at 193 nm and the quintupled Nd:YAG laser at 213 nm. The
213 nm light source is the topic of this report.

The first generation 213-nm source for lithography was demonstrated by Partlo [1] and is cur-
rently in use at UC Berkeley. The 213-nm light source consists of a Nd:YAG laser followed by a
nonlinear frequency quintupler. The Nd:YAG laser produces 4.1 Watts of average power at the
1064-nm wavelength. This flashlamp-pumped laser, which operates at 10-Hz repetition rate, pro-
duces short, high-intensity pulses by Q-switching and is injection-seeded to produce stable optical
frequency, single-mode output with narrow spectral linewidth. The harmonic generator has three
stages of nonlinear crystals capable of optical sum-frequency generation. The first stage is a
KD*P crystal frequency doubler utilizing type II frequency mixing. The second stage, also a
type II frequency mixing KD*P crystal, produces the third harmonic from its first- and second-
harmonic inputs. The third stage, which adds the second and the third harmonics to produce the
fifth harmonic, consists of a BBO crystal oriented for type I frequency mixing. This system pro-
duces at most 0.25 Watts of 213-nm radiation and outputs approximately 0.1 Watts under typical
operating conditions. Features 0.2 um in size have been patterned on silicon with this system.

In the spectral region near the 200 nm, optical lithography becomes limited by absorption of most
materials available for making refractive optics. Among conventional optical materials, only
quartz and synthetic fused silica have sufficient transmission at these wavelengths to be used in
lithography imaging systems. In the deep-UYV, absorption and material damage rates are smaller at
longer wavelengths. Consequently, the life of a 213-nm exposure system is likely to be greater
than that of a 193-nm system. Other advantages of the 213-nm source are its narrow spectral line-
width and its frequency stability, which are well within the requirements imposed by the use of
refractive optics. On the other hand, it is difficult to obtain stable frequency and narrow bandwidth
with the ArF excimer laser. One further advantage of 213-nm system is that it employs mostly
solid state materials. Compared to systems that utilize gases (some toxic), it is relatively safe and
easy to maintain.

The problems with the 213-nm source include crystal heating and possible optical damage. The
heating of the solid-state materials used in the system is caused by absorption and results from the
fact the materials are poor thermal conductors, from which heat is not extracted easily. Optical
damage is also an issue because the light source inherently operates at high peak intensities.

This report concerns the design of the fifth harmonic generator for the second generation 213-nm
light source. The new design is motivated by the desire for higher repetition rate and higher aver-
age output power. A new Nd:YAG system was designed to serve as input to the harmonic genera-
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tor {2]. The Nd:YAG laser will operate at 1-kHz repetition rate. Like the laser in the first
generation system, it will be Q-switched and injection-seeded. The novelty of this laser lies in its
pumping by an array of semiconductor laser diodes and its high repetition rate. The laser pulses
will be compressed in time to increase the peak intensity to levels sufficient for efficient harmonic
conversion. This will be accomplished with stimulated Brillouin scattering before the light enters
the harmonic generator. Some of the harmonic generator issues were discussed previously [3]. In
this report, the analysis is extended and the final design of the harmonic generation optics for the
second generation 213-nm light source is presented. The overview of nonlinear optics issues is
given in section 2. Section 3 describes material issues and configuration of the three-stage har-
monic generator. Thermal management, important at high average power levels, is the topic of
section 4. The issues concerning harmonic conversion efficiency are discussed in section 5.
Finally some experimental results are presented in section 6.

2.0 Nonlinear Optics Background

Nonlinear optics is frequently used to convert light of one frequency to other frequencies in order
to produce light in those spectral regions where conventional light sources are unavailable. The
interactions of light with media make these processes possible. The response of a medium to an
optical beam is given by the polarization P,

P=eg,(xVE+xPE*+y®E*+ ), 1)

where x(“) is the nM-order material susceptibility. The first term corresponds to linear optical
properties including refraction, absorption or gain, and dispersion. The remaining terms account
for the nonlinear response of the medium. For example, the second term, proportional to the
square of the electric field, is responsible for sum- and difference-frequency generation. The third
term involves the intensity-dependent refractive index of the medium and accounts for such pro-
cesses as two-photon absorption. In general, the nonlinear susceptibility is small and decreases
with order. When strong nonlinear material response is desirable, very large electric fields are
required.

The 213-nm light is produced from 1064-nm input with an optical frequency quintupler. Fre-
quency multiplication is accomplished in three consecutive doubling and mixing stages rather
than by direct quintupling. Generally, the strongest nonlinear effect is the second-order material
response while the fifth-order effect is negligible in comparison. As a result, the second-order
mixing can be efficient given sufficient input peak power. On the other hand, efficient direct quin-
tupling would require input peak powers leading to breakdown of most media. Due to symmetry
considerations, only solid state materials that lack inversion symmetry possess a non-zero second-
order nonlinear susceptibility %(®. Thus the harmonic generator for the 213-nm light source con-
sists of nonlinear crystals with appropriate symmetry.

This report concerns the design of an efficient three-stage harmonic generator. The efficiency of
frequency doubling and sum-frequency generation can be found by solving the coupled wave
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equations for the evolution of complex electric fields at the input and output frequencies. Dou-
bling of a monochromatic continuous-wave beam at frequency @ is described by the coupled
wave equations for the slowly varying complex field amplitudes E; and E, of the first and second
harmonic waves. The field evolution in the propagation direction is described by:

2 s 2 iAkz
'a—z +TE2+ TlEzl EZ = lCEle (23)
0E, «, B, .
2 -2 » —iAkz
5; * 3 Eit 5 |EE, = iCE E,e . (2b)

Here the amplitudes are normalized so that the intensities are simply E 12 and 5'22. The wavevector
mismatch is Ak, linear absorption coefficients at frequencies @ and 2 are a; and o, and the two-
photon absorption coefficients are B, and B,. The coupling constant C is given by

5.456d
c=—+—4, ©

2
AJnin,

where dgg is the effective nonlinear coefficient for SHG, and n; and n; are the refractive indices
of the first harmonic wave at frequency ® = 2/A and its second harmonic at frequency 2. The
effective nonlinear coefficient d, g depends on the components of the second-order nonlinear sus-
ceptibility tensor and on the direction of propagation and polarization of the interacting fields.
With this normalization of the fields, the units of E, C, z, g4, @, B, and A, are GW2/cm, GW172,
cm, pm/V, cm’}, cm/GW, and pm, respectively.

Equations describing sum-frequency generation are analogous to those for second harmonic gen-
eration. Here the up-conversion of two input frequencies aw and bw to the output frequency
cw = aw + bw is considered. The complex field equations for E;, E, and E3 are

aE3 o,y B3 s iAk

5 t5Est - |Ey|’E3 = icCE,\Epe™™ (42)
8E2 o, Bz . * . —iAk

3; +7E2+ ?IE2|2EZ = 1bCE1E3e 1akz (4b)
BE o B * -
5= '+ 5 B+ = [Ey|’E, = iaCE3Ese ¥, (dc)

where the field amplitudes are again normalized so that the intensities are given by their squared
magnitudes. In this case, the coupling constant C is

5.456d,,

= 5
A /"1"2"3 ®
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where ny, ny and n3 are the refractive indices of the nonlinear material at frequencies aw, b, and
ca. The other parameters and their units are described above. The solutions to the coupled wave
equations will be discussed in section 5. Presently, it is important to note that the solutions are
oscillatory in the direction of propagation.

The extent to which the input energy is converted to energy at the harmonic frequency depends on
the strength of the nonlinear coupling and on the phase mismatch of the interacting fields. Har-
monic generation can be efficient only when the nonlinear driving term is large. Since strong non-
linear coupling is required for efficient conversion, the nonlinear medium of choice for a given
frequency conversion process is one with large effective nonlinear coefficient dgg for that process.
Large peak input intensities are also needed for high conversion efficiency. In addition to a large
driving term, it is necessary to maintain the interacting beams in phase, which corresponds to
keeping the phase mismatch Ak as small as possible. When the beams are not in phase, energy is
converted to the harmonic frequency, but before it can build up, it is converted back into the fun-
damental beams. This happens periodically along the crystal length. The wavevector mismatch of
second harmonic generation is Ak = 2k,—k,, with k; and k, being the propagation vectors in the
nonlinear medium of the input wave and its second harmonic. For collinear beams the perfect
phase matching condition Ak = 0 occurs when

n—-n,=0, ©6)

where n; and n; are the refractive indices of the nonlinear medium at frequencies © and 2. Sim-
ilarly, the wavevector mismatch of sum-frequency generation is Ak = k; + k; — k3, with propaga-
tion vectors k), ko, and k3, of waves at frequencies aw, b, and co = aw + bw. For sum-frequency
generation the phase matching condition Ak =0 is

an;+bny—cn; = 0. @

The phase-matching requirements would be satisfied in a dispersionless medium but are not met
in real materials, which are dispersive. In practice, phase matching is achieved by using the bire-
fringence of the nonlinear crystals. This method takes advantage of the fact that the refractive
indices of the TE and TM polarizations depend on the direction of beam propagation with respect
to the crystal axes and on temperature. At some fixed crystal temperature, the phase-matching
condition can be satisfied by properly orienting the nonlinear crystal with respect to the input
beams and by choosing suitably polarized input beams. The phase-matching condition can be
achieved in several ways, called type I, type II, and type I, which depend on the polarization of
the input beams. In type I phase-matching, the polarization vectors of the two input beams are
paralle] and the polarization of the output beam is orthogonal to that of the inputs. With type II
and type III phase-matching, the input polarization vectors are orthogonal. The way the polariza-
tion vectors of the two input beams are oriented with respect to the crystal axes distinguishes
between type II and type III phase-matching. The output-beam polarization vector and polariza-
tion vector of the input beam at the lower of the two input frequencies are parallel in type II
phase-matching, while they are orthogonal in type III phase-matching. These types of phase
matching are hig! .y sensitive to the crystal orientation and are thus referred to as critical phase-
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matching. The proper crystal orientation can be found in materials that have enough birefringence
to compensate for the dispersion between the interacting frequencies. The refractive indices
depend not only on crystal orientation but also on temperature. In practice, usually both the crys-
tal orientation and the temperature are controlled simultaneously to obtain stable harmonic con-
version.

Ideally, perfect phase-matching can be achieved by tuning the orientation of the crystal and by
maintaining its temperature. However, this is not the case in a real frequency up-conversion sys-
tem due to diffraction effects, imperfect beam quality, crystal inhomogeneities, and nonuniform
temperature distribution in the crystal. While crystal inhomogeneities and beam quality are diffi-
cult to quantify in efficiency calculations, diffraction effects and temperature nonuniformities can
be accounted for by considering the phase matching condition as a function of crystal orientation
and temperature. The wavevector mismatch Ak is found by Taylor expansion in the angular and
thermal deviations from the phase-matching condition. The expansion is about the crystal temper-
ature 7, and about the phase-matching orientation, described by the polar angle © and azimuthal
angle ¢ measured from specified crystal directions,

Ak = BoAO +B,AQ + B AT. ®)

This expression is correct to first order in the deviations A8, A¢, and AT. Here the quantities By,
By and Py are the first partial derivatives of the phase mismatch Ak with respect to 6, ¢, and T,
respectively, evaluated at the phase-matching condition. The second term in (8) is present in biax-
ial crystals but vanishes in uniaxial crystals because of their azimuthal symmetry about the optic
axis. Since the phase mismatch is also a function of frequency, Eq. (8) can be extended to account
for the finite spectral bandwidth of the interacting beams rather than simply assuming they are
monochromatic. However, this effect will be neglected here because the Nd:YAG pump has very
high spectral purity. It is also important to note that Bg and By are both zero for certain directions
of propagation in birefringent crystals. Provided phase-matching is possible under such condi-
tions, the phase mismatch is determined mainly by the crystal temperature, while the crystal ori-
entation is important only to second order in A® and A¢. As a result, this is known as noncritical
phase-matching. In some materials, this condition is possible for a specific range of input frequen-
cies and particular crystal temperatures.

The diffraction effects can be modeled by assuming that the finite divergence of the interacting
beams results in an effective angular deviation from the phase-matching condition [4]. Similarly
in this model, the crystal temperature nonuniformities are taken to be equivalent to temperature
deviations. These effects will be discussed further in Sections 4 and 5.

The birefringence associated with phase-matching is important in one other respect. Since the
polarizations of the interacting input and output beams are different, the directions of their energy
flow differ inside the nonlinear crystal. Given that the input beams are parallel, overlap spatially,
and enter the crystal at normal incidence, they will be parallel upon exit from the crystal. How-
ever, the spatial overlap of the differently polarized beams will be reduced. This so-called beam
walk-off reduces the exck~nge of energy between the beams inside the nonlinear crystal. In addi-
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tion, it is important when several nonlinear stages follow one another. For instance, if the output
beam of one stage and the remainder of one of its inputs are to be used as inputs to another nonlin-
ear stage, their spatial overlap is critical to the efficiency of the second stage. There exist certain
directions of propagation in birefringent crystals, in which both TE and TM polarizations propa-
gate in the same direction. Under such conditions, the walk-off effect does not occur and higher
conversion efficiencies are possible provided the phase-matching condition can be simultaneously
satisfied. The propagation direction with no walk-off happens be the same as the direction for
noncritical phase-matching.

3.0 Material Issues and Design Overview

Nonlinear material properties are discussed in this section. Crystal geometry and optical compo-
nents of the three-stage fifth harmonic generator are also described.

3.1 Material issues

The design of the optical frequency quintupler is determined by the properties of the available
nonlinear materials. The key properties of interest here include phase-matching properties, non-
linear coupling strength, damage threshold, absorption, and thermal properties. The properties of
nonlinear materials most suitable for quintupling the Nd:YAG are the topic of this section. The
nonlinear material selection for the 213-nm system was considered previously [3]. Of the numer-
ous material possibilities, few nonlinear materials are suitable for the colinear three-stage system,
primarily because only a few are sufficiently transparent over the 1064-213 nm range. In addition,
since high conversion efficiency requires high peak intensities, only materials with high damage
thresholds can be used. The list of suitable materials is reduced to beta barium borate (BBO),
highly deuterated potassium dihydrogen phosphate (KD*P), and lithium borate (LBO).

Tables 1, 2, and 3, summarize the nonlinear optical properties of BBO, KD*P, and LBO, relevant
to frequency up-conversion of the Nd:YAG laser. Phase-matching properties, nonlinear coupling
strengths, walk-off angles, and tuning properties are given for each up-conversion process. The
tables also include the FWHM bandwidths of the angular and thermal tuning curves of crystals of
length L, defined as AQL = 5.56623/Bg, [5], with Q being 6, ¢, or T. The tuning bandwidths repre-
sent the range of angles or temperatures within which the input beams will significantly contribute
to the frequency up-conversion. The angles 8 and ¢ used in the tables are measured from the opti-
cal 2- and x- axes respectively. In Tables 1 and 2, the optical axes are defined so that the refractive
indices satisfy n, = ny=n, > n,=n,, where n, and n, are the ordinary and extraordinary refrac-
tive indices. In Table 3, the optical axes are defined so that the refractive indices satisfy
ny < ny, < n,. The beam polarizations are denoted by s or p, corresponding respectively to the elec-
tric field orthogonal or parallel to the plane containing the propagation direction and the z-axis.

The parameters in the tables were calculated from the refractive index data, thermo-optic data,
and nonlinear coefficients presented in [5-8] (BBO), in [4,9] (KD*P), and in [10-13] (LBO). In
the case of BBO there are discrepancies in the measw .d nonlinear coupling quoted in the litera-
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ture. In the case of LBO, there are discrepancies in the refractive index data and the thermo-optic
data among different authors due to the limited frequency range of their measurements. Data most
consistent with other experiments [14] were used here. The temperature dependence of the non-
critical phase-matching parameters is not fully consistent with that of the critical phase-matching
parameters because the data were taken from different authors [11,13]. The angular tuning param-
eters in Table 3 for noncritical phase-matching are the measured second-order angular band-
widths.

Beta barium borate is a negative uniaxial material suitable for mixing all the Nd:YAG harmonics
in the 213 nm system. Its transmission range is between 196 nm and 2200 nm. It has a relatively
strong second-order nonlinearity, high damage threshold, and large temperature acceptance. On
the other hand, its angular acceptance is quite small and its thermal conductivity is very poor. The
different values of the effective nonlinear coupling degr in Table 1 correspond to data from refer-
ences [6] and [8] respectively. Here data from [6] were used in calculations.

Highly deuterated potassium dihydrogen phosphate, also a negative uniaxial material, is a good
option for the first two stages of the 213-nm system. It is not capable of generating 213-nm radia-
tion in the third stage because of phase-matching considerations. The transmission range of KD*P
is 200 nm to 1500 nm. It has relatively large angular acceptance and reasonably high thermal con-
ductivity. The nonlinear coefficients, damage threshold, and temperature acceptance of KD*P are
smaller than those of BBO.

Finally, lithium borate is a biaxial material with transmission range of 160 nm to 2300 nm. Phase-
matching is possible in this material only in the first two stages of the quintupler. Noncritically
phase-matched doubling of the Nd:YAG frequency is possible with LBO [13]. Although phase
matching is possible for most crystal orientations, Table 3 shows only the orientations that result
in the strongest nonlinear coupling. This is the orientation with angular tuning in the x-y plane for
type I phase-matching and that with angular tuning in the y-z plane for type II phase matching.
The effective nonlinearity of LBO is higher than that of KD*P but lower than that of BBO. LBO
has large damage threshold and large angular bandwidth but relatively small temperature band-
width. Its thermal conductivity has not been measured to date.

Other relevant material properties of BBO, KD*P, and LBO are given in Table 4. Since BBO and
LBO have only been developed recently, some of their properties have not yet been determined
experimentally. The damage threshold data are from [10] and [15]). The damage threshold data are
more complete for BBO and KD*P than for LBO. The reported data include a wide range of dam-
age experiments. The lower limits of the data generally correspond to short wavelengths (ultravi-
olet) and to large number of pulses, while the high values correspond to single pulse
measurements and infrared light. The absorption data are from [9], [16], and [17].
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TABLE 1. Generation of harmonics of 1064 nm radiation in BBO

frequencies, mixing, crystal dgy C - Pe AGL Bl—r ATL walk-off
polarizations orientation pm/V] | [GW*] | [cm™*/mrad] | [mrad cm] | [cm™/°C] | {°C cm) angles
141=2 I | oo-e | 6=22.9° ¢=90° | 1.69/2.11 407 10.9 0.511 0.155 359 - - 319
II | eo-e | 6=32.6° ¢=0° | 1.26/1.80 3.08 7.08 0.786 0.145 384 | 3.76°- 3.95°
142=3 I | oo-e | 6=31.1° ¢=00° | 1.59/1.98 3.79 21.1 0.263 0403 13.8 - - 408°
II | eo-e | 6=38.2° ¢=0° | 1.10/1.37 267 16.0 0.349 0.377 14.8 3.98°- 441°
II | oe-e | 8=59.8° ¢=0° | 0.45/0.56 1.12 6.99 0.797 0.342 164 - 3.55°3.73°
242=4 I | 0o-e | 6=47.6° ¢=90° | 1.29/1.62 3.05 33.0 0.169 1.04 54 - - 477
Il | eo-e | 6=84.7° ¢=0° | 0.030.04 0.07 3.15 1.77 0.856 6.5 0.73°- 0.82°
144=5 I | 0o-e | 6=51.1° ¢=90° | 1.21/1.52 2.76 48.0 0.116 144 39 - - 534°
II | eo-e | 6=57.2° ¢=0° | 0.52/0.65 1.22 31.7 0.148 1.31 42 3.56°- 4.89°
142=3 I | 0o-e | 6=69.5° ¢=90° | 0.74/0.93 1.73 29.9 0.186 1.95 29 - - 342
TABLE 2. Generation of harmonics of 1064 nm radiation in KD*P
frequencies, mixing, crystal deg Cm Pe A6L BlT ATL walk-off
polarizations orientation [pm/V] | [GW*] | [cm™/mrad] | {mradcm] | {cm™/°C] | [°C cm) angles
1+41=2 I | 0o-e | 6=36.6° ¢=45°| 0.215 0.60 447 1.25 0.38 14.7 - - 145°
Il | eo-e | 8=53.7° ¢=0° | 0.344 0.98 241 232 0.34 164 | 1.28°- 142°
142=3 1 | 0o-e | 6=46.8° ¢=45°| 0.263 0.73 7.38 0.755 0.84 6.6 - - 1.59°
II | eo-e | 6=59.5° ¢=0° | 0.315 0.89 458 122 0.77 72 1.17°- 1.38°
242=4 I | 0o-e | 6=86.2° ¢=45°| 0.359 0.99 1.39 3.99 2.02 28 - - 022°
TABLE 3. Generation of harmonics of 1064 nm radiation in LBO
frequencies, mixing, crystal | dg lez B?, Bs ABL, AGL Br ATL walk-off
polarizations orientation [pm/V] | [GW ] | [cm~'/mrad] | [mrad cm] | [cm™/°C] | [°C em] angles
1+1=2 { I xy | pp-s | 6=90° ¢=11.6°| 1.03 2.60 Be=1.34 4.15 0.96 58 - - 040°
Oyz | sp-s | 6=20.5° ¢=90° | 0.84 2.17 Be=0.572 9.73 090 6.2 - 035 -
142=3 | I xy | pp-s | 6=90° ¢=37.1°| 0.84 2.10 By=5.22 1.07 146 38 - - 104°
Oyz | sp-s | 6=41.9° ¢=90°| 0.67 1.71 Be=1.77 3.15 1.50 3.7 - 0.53° -
41=2 | 1 | pp-s|0=90° ¢=0° 1.05 265 | Be=0.123| 450 143 39 - - -
NCPM BeP=0090 | 619
148 °C
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TABLE 4. Properties of BBO, KD*P, and LBO

B-BaB5y0y4 KD,PO4 LiB30s5
crystal symmetry trigonal tetragonal orthorhombic
point group 3m 42m mm?2
damage threshold [GW/cm?) 0.4-50 0.5-10 25
thermal conductivity K K;1=0.0008 K,=0.0186 not available

[w/CmPC] K33=0.0080 K33=0.0209
ﬁ'actior.lal thermal oy 4 249 336
expansion o 4 2.9 -88.0
[107°C] 035 36 4.0 1082
density p [g/em®) 3.849 2.355 2474
specific heat ¢, 25°C [J/g/°C] not available 0.0485 not available
linear absorption o 1064 nm 0.001 0,=0.002, c,=0.0004 not available
[em™) 532nm 0.002 0.5
355nm
266 nm 0.002 0.02-0.064
213 nm
two-photon absorption8 355 nm not available 0.0054 not available
[cm/GW] 266 nm 0.027

3.2 Crystal Geometry Considerations

In most instances of critical phase-matching, the frequency up-conversion process is highly sensi-
tive to angular tuning in one plane only. In uniaxial crystals, this arises from crystal symmetry. In
biaxial crystals, the crystal orientation can usually be chosen so that variations in one of the
angles, 6 or ¢, are important only to second order. This was done for LBO in Table 3. Since dif-
fraction effects are modeled as effective angular deviations from the phase-matching condition,
the harmonic generation process is highly sensitive to the size of the beam in the plane of critical
angular tuning. Thus for a given intensity of the input beam, higher efficiency can be achieved
with an asymmetric beam cross section. Thus rather than using the traditional design with circular
beams and square crystal apertures, elliptical beams and rectangular crystal apertures are consid-
ered in this design. In addition, in the rectangular configuration the beam walk-off effect occurs in
the plane of the larger dimension. Thus upon exit from the crystal, different harmonics overlap
spatially to a larger extent than they would if walk-off occurred in the smaller crystal dimension.
A typical crystal configuration is shown in Figure 1. Polarization information relevant to different
types of nonlinear mixing is included in the figure. The axes in the figure are used in sections 4
and 5 are not to be confused with the crystal directions defined for crystal symmetry.
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FIGURE 1. Nonlinear crystal setup and polarizations
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With the slab crystal geometry of Figure 1, heat-sinking is provided to the crystal by thermal con-
tact of the two large crystal facets (top and bottom in figure) with a temperature controlled oven.
Practical aspects of providing good thermal contact between the crystal and the oven are dis-
cussed in section 6.

3.3 Fifth harmonic generator configuration

In the second generation 213-nm system, the fifth harmonic generator consists of three nonlinear
slab-shaped crystals. Its Nd:YAG laser input is a linearly polarized beam with circular cross sec-
tion. To produce the desired elliptical beam, the incoming beam must be compressed in one
dimension before the nonlinear stages. The compression is accomplished with a series of Brew-
ster angle prisms, which are preferable to telescopes because they maintain high beam quality.
Telescopes can reduce the beam quality through aberrations in the telescope lenses. Since the
input beam is linearly polarized, the prisms are designed to take advantage of no reflection losses
for the TM polarization at Brewster’s angle of incidence. The TM polarized beam enters each
compressing prism at normal incidence and exits at Brewster’s angle. Consequently, anti-reflec-
tion coatings are required only for the input facet of each prism. When the input beam is at normal
incidence, each prism compresses the beam in one dimension by a factor equal to its refractive
index. Several prisms can be used in series to produce the desired compression.
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Once the beam has the desired cross section, it enters the frequency quintupler. The fifth harmonic
can be produced from the pump frequency by two different mixing schemes. Both schemes
involve frequency doubling in the first nonlinear stage. One of the schemes then involves dou-
bling of the second harmonic to produce the fourth harmonic in the second stage. The
fourth harmonic and the first harmonic left over from the first stage are added in the third stage.
As discussed in section 5, this method has lower overall efficiency than the other quintupling
scheme, which involves adding the first and second harmonics in the second stage and adding the
third and second harmonics in the third stage. The second mixing scheme is the method of choice
for the new light source. Each nonlinear crystal of the quintupler requires input beams with spe-
cific polarizations and produces uniquely polarized output. The polarization requirements of the
2 + 3 =5 mixing scheme are shown in Figure 2 for the three nonlinear stages and various types of
nonlinear mixing. The figure would be similar for the 1+ 4 = 5 mixing scheme.

FIGURE 2. Quintupler polarization requirements
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The figure shows that for most types of mixing, the output polarizations of one stage do not corre-
spond to polarizations needed in the next stage. As a result, waveplates are required between the
different stages to properly reorient the polarizations. For example, if type I mixing in the first
nonlinear stage is followed by type II frequency mixer in the second stage, both first and second
harmonics must have their polarizations reoriented by 90° after the first stage. This can be accom-

Material Issues and Design Overview April 14,1994 13



plished with a special multiple-order waveplate. Also when type I mixing crystal is used in the
first stage, a quarter-wave plate must precede the first stage. In addition, since the fundamental
frequency splits into ordinary and extraordinary components in a type II doubler, the crystal bire-
fringence changes the polarization of the fundamental frequency. Since the fundamental fre-
quency is subsequently used in the second stage, it is desirable to know its polarization after the
first stage. However, since nonlinear crystals are strongly birefringent and few centimeters in
length, the polarization rotates through several hundred orders during propagation through the
crystal. The total polarization change is highly sensitive to temperature and to nonuniformities in
the crystal length. As s result, the waveplate needed after the first stage cannot be easily designed
and some unknown fraction of the first harmonic energy cannot be used in subsequent stages.
Consequently in a multi-stage harmonic generator, type I crystal is preferable to type II crystal in
the first stage when the fundamental frequency is used in more than one stage, provided that the
type I and the type II frequency mixers have comparable efficiency. For all other types of mixing,
suitable waveplates required between the nonlinear stages can be designed.

4.0 Crystal Heating

The fifth harmonic generator consists of nonlinear dielectrics, which generally are poor conduc-
tors of heat. Heat supplied to the crystals by absorption cannot be extracted from them very effi-
ciently due to their low thermal conductivity. Since the phase-matching condition is temperature
dependent, nonuniform temperature distribution has adverse effects on harmonic conversion effi-
ciency.

4.1 Description of crystal heating

The temperature distribution inside the nonlinear crystal can be calculated from the heat equation
and the appropriate boundary conditions. Conduction of heat in a homogeneous, anisotropic solid
described by conductivity tensor X ijis described by the equation in time ¢ and position (x, y, z) for
the unknown temperature distribution 7 [18, 19]:

ZKUT PCT = -A (1,)’,2,1), (9)

ij=1

where p is the density, c is the specific heat, and A (x, y, z, 1) is the heat supplied per unit volume.
The subscripts 1, 2, and 3 refer to the directions x, y, and z, respectively.

Although the harmonic generator under consideration operates in pulsed fashion, the crystal heat-
ing can be described quite accurately on time-average basis. This can be justified as follows. The
characteristic time T of heat diffusion over some distance x is given by © =%/ x, where x is the
heat diffusivity. The heat diffusivity is in turn related to thermal conductivity X, to specific heat c,
and to density p by the relation k = K / pc. Using the values of in Table 4, we find that for heat dif-
fusion perpendicular to the optic axis over 0.35 cm in KD*P, the response time is 0.75 seconds.
This simple calculation cannot be done for BBO and LBO since their thermal properties have not
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yet been measured. However, since thermal conductivity of BBO in the direction of heat extrac-
tion is about 20 times smaller than that of KD*P, its response time is expected to be larger. Indeed,
its response time was determined previously [1] to be about 15 seconds under similar conditions,
which is about 20 times greater than in KD*P. The response times of other dielectric materials,
such as LBO, would be expected to have similar order of magnitude. Thus the heat generated in a
nonlinear crystal of typical size by absorption of light diffuses from it in time on the order of sev-
eral seconds. On the other hand, the harmonic generator operates with nanosecond pulses at repe-
tition rate of 1 kHz. Thus the crystal temperature profile is determined by the average absorbed
power. Consequently, in the present case, the time dependence in Eq. (9) can be neglected, result-
ing in the time-averaged heat equation

ZK‘.’E__ =-A (x’ysz)o (10)

where A (x, y, z) now represents the average power absorbed by the crystal per unit volume. Nor-
mal to the propagation direction, the absorbed power is proportional to the transverse beam inten-
sity profile. Along the crystal length the absorbed power varies to some extent because the
intensity decreases as the beam propagates through the crystal and because the different harmonic
frequencies have different absorption coefficients. According to Table 4 and various references
[5,9, 10], linear absorption coefficients are relatively small at the five Nd:YAG harmonics in the
nonlinear materials under consideration. Two-photon absorption in BBO is important at the fourth
and fifth harmonic frequencies [20]). However, in the 213-nm system the intensities at the higher
harmonics are not expected to be high enough to cause significant two-photon absorption. As a
result, the average power absorbed per unit crystal length is taken to be proportional to the inten-
sity. In addition, the energy absorbed per unit length is assumed to be constant, represented by an
effective absorption coefficient, even though absorption at the different harmonics may differ.

To determine the boundary conditions in the present design, the crystal geometry shown in
Figure 2 is considered. Each crystal has rectangular prism shape, with its top and bottom held at
constant temperature T with a temperature-controlled heat sink. The temperature of air in the
vicinity of the crystal is assumed to be T}y as well. The boundary condition at the four crystal sides
surrounded by air is given by the fact that the heat flux across the surface equals to the heat loss by
conduction, radiation, and convection. This can be expressed as

+L

radiation

+L

Q,, = Lcanduction convection?® (11)

where O, is the heat flux normal to the surface (Q; = —K;;0T/0x;). The crystal is surrounded by
relatively still air inside its temperature-controlled heat smk At the crystal-air interfaces, the con-
vection losses are thus negligible and the heat is lost mainly by conduction through the layer of
still air. The heat loss is estimated by assuming a constant temperature gradient across the layer of
air surrounding the crystal. The heat lost is approximately L., .crion = (Kg;p/d) (T=Ty),

where K ;;, = 0.00024 W/cm/°C is the thermal conductivity of air and d is the air layer thickness.
The layer thickness can be taken as part of the distance from the crystal to the edge of the sur-
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rounding heat sink, here d=0.5 cm approximately. In general, thermal loss due to radiation is a
nonlinear function of temperature. For a body at absolute temperature T in surroundings at tem-
perature T, the heat radiated per unit surface area is given by L, 4, .i0n = OE (T* —T3), where
o is the Stefan-Boltzmann constant and E is the surface emissivity. During harmonic generation
the crystal temperature is usually only several degrees higher than temperature of the surrounding
air, while the absolute crystal temperature is near room temperature. Since the difference between
T and Ty is small compared to T or Ty, the radiative heat loss can be approximated by
L, diction = 40ET3 (T-T,), with E=0.75 and To=300K. In the case under consideration
here, the conduction and the radiation losses are comparable in magnitude, while the convection
losses are expected to be negligible in comparison (Lgonyecrion = 0). Equation (11) can now be
rewritten in terms of an effective coefficient of surface heat transfer H,

Q,=H(T-T,), (12)

where the combined effect of the different heat loss mechanisms is 4 = 0.00093 W/cm?. This heat
loss is relatively small compared to the heat extracted from the crystal by the heat sink.

4.2 Calculation results

The temperature distribution in the nonlinear crystals was determined by numerical solution of
the heat equation using the stated assumptions. The partial differential equation was solved by the
alternating-direction implicit finite-difference method (ADI) implemented in MATLAB. The cal-
culation determined the temperature distribution in the crystal of given material, shape, phase-
matching orientation, and specified absorption profile, oriented and heat sunk as shown in
Figure 1. Since the thermal properties of LBO are not known, the calculations could only be done
for KD*P and BBO.

Harmonic generation efficiency depends critically on the amount of heat generated by absorption
and on the crystal shape. Consequently, it is important to understand how the temperature distri-
bution is influenced by the crystal shape and orientation as well as by absorption. According
to (10), for a given crystal and beam shape, the temperature at each point in the crystal increases
linearly with the amount of power absorbed. Thus in our simple model of constant absorption per
unit length, temperature increases in proportion to total average power. It is also evident from (10)
that the temperature remains unchanged when all the crystal and transverse beam dimensions are
changed by a given factor. Consequently, only the relative crystal shape and size with respect to
the beam size determines the temperature distribution.

Although the heat problem is relatively complex due to crystal anisotropy and nonuniform
absorption, some simple facts can be deduced about its solutions. Since the heat is extracted from
the slab-shaped crystal in the x-direction (see Figure 1), the shape of the crystal input aperture and
the transverse beam profile strongly affect the temperature distribution. To utilize the crystal most
efficiently with minimal heating, the beam size should approximately match the input aperture of
the crystal, so that while most of the beam energy enters the crystal, the heat diffuses over shortest
p. ;sible distance. At a given absorption level, heating is smallest for thin crystals. For input aper-
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tures with large aspect ratios, the temperature decreases approximately in proportion to the
inverse aspect ratio X/Y because the heat flow in the y-direction is negligible. When the aspect
ratio is of order unity, the temperature decreases more slowly with increasing aspect ratio. In addi-
tion, the temperature is a relatively weak function of the crystal length because most heat flows in
the x-y plane. When crystal length is comparable to transverse crystal dimensions, less of the gen-
erated heat exits the input and output crystal facets for a longer crystals than for shorter crystals.
Thus temperature slowly increases with length, eventually reaching a constant value for very long
crystals. Finally, the temperature depends on the crystal orientation. In a particular uniaxial mate-
rial, the differently oriented crystals have different thermal conductivities in the y-z plane but
identical conductivities in the x-direction. Thus even though the crystal orientation affects the spa-
tial temperature distribution, the temperature difference between the crystal center and the heat
sink is not strongly dependent on the crystal orientation in BBO and KD*P. This would is not the
case in biaxial crystals, where the different crystal orientations would have different thermal con-
ductivities in the x-direction. The dependence of conversion efficiency on heating is discussed in
section 5.

An example of calculated results is shown in Figure 3. The figure shows the temperature distribu-
tion in a crystal suitable for the first stage of the fifth harmonic generator, BBO type I doubler. The
calculation was done for absorbed power, crystal shape, and input beam profile dimensions indi-
cated in the figure. The figure shows the temperature for three cross sections through the crystal
center, indicated on the schematic, as well as the absorption profile in the x-y plane. The generated
heat A (x, y) was taken to be proportional to the input beam intensity profile, determined by the
characteristics of the Nd:YAG laser pump. The Nd:YAG laser used in the second generation
213-nm light source consists of unstable resonator cavity with output coupling around one the
mirrors. The output coupler is a soft-edged mirror, which produces annular shaped output beam.
Before the beam enters the harmonic generator, it is compressed in one dimension. This results in
the following input beam intensity profile [2]:

2 2.572 2 2.572
I(xy) = Iyexp (-2("—2+2’—2) )(1-0.74exp (—2((1'5:) PR ) )) (13)

Wy Wy Wy wy
It is evident from Figure 3 that the temperature distribution is strongly influenced by the absorp-
tion profile. Like the intensity profile, the temperature distribution has two peaks in the y-direc-
tion, where the heat flow is small. Along x-axis, the direction of heat extraction, the temperature is
maximum at the center. The temperature is nearly uniform in the z-direction, since the absorption
is uniform by assumption. The figure also shows that in y-z plane, the heat flows primarily along
the direction of the optic axis, where the thermal conductivity is the greatest.
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FIGURE 3. Temperature distribution in BBO I crystal for doubling 1064-nm radiation
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5.0 Conversion Efficiency

The main goal of the harmonic generator design is to produce the 213-nm radiation with the high-
est possible conversion efficiency. The conversion efficiency of second harmonic generation
(SHG) and of sum-frequency generation (SFG) in the context of the frequency quintupler is the
topic of this section.

3.1 Derivation of conversion efficiency

Equations that describe frequency doubling (2) and sum-frequency generation (4) can be solved
analytically for the case of lossless media with all absorption coefficients equal to zero [22]. The
solutions involve Jacobian elliptic functions. Solutions shown here are for the case of no input at
the sum frequency, applicable to the 213-nm system.

Considering frequency doubling with input intensity /; at frequency @ and no input at the second
harmonic frequency 2, the intensity of the second harmonic wave after propagation through a
nonlinear crystal of length L is given by

L) = Uf,snz(cwc| 22'3) (14)
U
where Uy and U, are defined by
1 Ak 2 1 Ak 22
V%, Ui= Ii+3 (5R) ;tJ(11+§(2_C-) ) =B, (15)

Conventions of reference [23] for the Jacobian elliptic function sn(ul m) are used. Similarly, the
solution for sum-frequency generation, when no input at the sum-frequency c is present and the
input intensities at frequencies aw and b are I, and I, is

Iy(L) = V2 sn? (./ECLVCI g) (16)

with V}, and V,, defined by

V2 V2o l[cbll cal, {1 Ak 2 Jcbll cal, 1 Ak 22
c -

-
E T+T+§(-2—é) + (-—2—+—2-+§(§E) ) cabIllz]. an

For the analysis of highly efficient frequency up-conversion it is convenient to represent the solu-
tion in terms of dimensionless variables. For the case of second harmonic generation, they are
defined as follows [4]:
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n, = CL%,, (182)

AkL

8= —-. (18b)

The nonlinear drive 1 is a measure of the interaction strength over the crystal length and the
dephasing & indicates the amount of phase mismatch. Using these definitions, the conversion effi-
ciency of second harmonic generation becomes [4)

L(L 2
Ngpe = # = tanhz(%atanh (sn (2,/1-%] 1+ 48—%))) (19)

This analysis is extended here for sum-frequency generation, which is more complicated because
it involves two input beams. The appropriate dimensionless drive variables, proportional to the
input intensities /; and /5, are

n, = cbC?LY,, (202)

n, = caC 2L2]2. (20b)

The definition of the dephasing 8 for sum-frequency generation is the same as Eq. (18b). Conver-
sion efficiency of sum-frequency generation is subsequently obtained with the use of these defini-
tions and of the descending Landen transformation for the Jacobian elliptic functions [23].

I(L /ﬁ
ekl = 1Mz xtanhz(—atanh(sn (24 M, 1+

82 -n)?
o )

a

1

s/ = 13T, =

Sum-frequency conversion efficiency ngrg reduces to the simpler frequency doubling form
TsHG, provided that the condition 1y =m0y, or equivalently I;/a = Io/b, is satisfied. This corre-
sponds to the case when the input number of photons at frequency aw is equal to the input number
of photons at frequency bw. Observation of the form of the SFG efficiency indicates that mis-
match in the input photon numbers is similar to an increase in the dephasing. Physically this
means that the frequency up-conversion cannot continue after one of the input beams is depleted
and the energy is converted back into the fundamental waves instead.

5.2 Beam and crystal geometry

In the case of second harmonic generation, the best efficiencies can be achieved when the dephas-
ing is small (8 << ®/10) and the drive is relatively small but greater than unity (1 <mg<5).
Although the efficiency can be quite large for other drive-dephasing regions (5 = 1.5 + /10,
15 < Mg < 40), operation under those conditions is less advantageous because the efficiency is
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high only for spatially and temporally flat beam profiles and very low for the low-intensity beam
edges [4]. In reality, the beam profile is not exactly constant in time or uniform within the beam
area. Thus for real optical beams, the best efficiency is achieved when the dephasing is small and
the temporal and spatial beam edges experience at least moderate efficiency of frequency up-con-
version. In the case of sum-frequency generation, it is also desirable for the dephasing to be small.
Comparison of (19) and (21) shows that the geometric mean of the two drives 1; and 1, for SFG
is effectively equivalent to the drive ng of SHG. Thus the highest efficiency is possible when

1N, is greater than unity but not too large. However, high conversion efficiency also requires
that both drives 11, and 1, be approximately equal.

Drive and dephasing depend on the beam characteristics as well as on the geometry of the crystal.
The optical beam in the three-stage colinear 213 nm system is nearly diffraction-limited. The
beam is characterized by its peak power and by its transverse profile and dimensions. Assuming
the beam size is wy in the sensitive angular tuning direction and in the other direction it is wy, the
drive parameters in (18) and (20) can be rewritten for both SHG and SFG as

_cL?p, ’s
My = , (22a)

WeW,

caCszP1
n, = W, (22b)

caC2L2P2
n, = __way , (22¢)
where Py, Py, and P, are the peak input powers in each case. According to Eq. (8), the dephasing
parameter depends on diffraction of the beam and on the crystal temperature profile. Diffraction
effects can be modeled by assuming that the finite divergence of the interacting beams results in
an effective angular deviation from the phase-matching condition [4]. Since the crystal is sensi-
tive to angular tuning only in one dimension, only diffraction in that dimension affects phase
matching. The effective phase mismatch is thus proportional to the diffraction limit of beam
divergence, or equivalently to the ratio of wavelength and beam size in the critical tuning direc-
tion. Empirically, the deviations from the diffraction limit may be modeled by introducing so-
called beam quality factor Q. Unity quality factor represents the diffraction limit, while larger fac-
tor indicates deviations from the diffraction limit. The angular dephasing can thus be written as

8arzgular = %B OA'Q"%;' (23)

Similarly, temperature nonuniformities in the crystal are modeled as thermal deviations from the
phase matching condition. The difference in temperature between inside of the crystal and the
heat sink is a measure of the amount of thermal dephasing. Under conditions described in
section 4, when the aspect ratio of the crystal apertw.e is large, the temperature difference AT is
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approximately proportional to the transverse crystal dimensions ratio X/¥, which is equal to Wylw)
when the ratios w,/X and wy/Y are fixed. Also when the crystal length is large in comparison to
transverse dimensions, the temperature difference is approximately independent of length L.
Finally, the temperature difference is proportional to the power absorbed per unit length P;. Thus
thermal dephasing is given by

Wy
5I’hermal = %BTPLF (X,X,Y,L,8,9,A (x,5)) ;;L, (24)

where the factor F depends on the thermal conductivity tensor, on the crystal shape and orienta-
tion, and on the absorption profile. In the limiting case of long crystals and apertures with large
aspect ratios, the factor F is approximately constant for a given crystal shape and orientation and
particular beam profile. Equations (23) and (24) are combined to give the total dephasing:

d=28

thermal + 8arz‘gular‘

@25)

5.3 Optimizing crystal shape

In the harmonic generator design, most parameters are determined by properties of the laser pump
and by nonlinear material characteristics. Only the crystal shape and the beam size are chosen in
the design process. The transverse beam dimensions can be changed with prisms or telescopes, so
the crystal and beam dimensions are chosen to ultimately result in the best possible conversion
efficiency. First transverse beam and crystal dimensions are determined so that diffraction and
heating effects are minimized. Subsequently, the optimum crystal length is found.

Transverse beam and crystal dimensions are chosen to obtain highest efficiency under the con-
straints of the overall three-stage system. To determine the optimum input aperture of the crystal,
let us first consider the effect of input aperture aspect ratio on efficiency. According to Eq. (22),
changing the aspect ratio wy/w, has no effect on the drive, when the beam area is kept constant.
On the other hand, dephasing in Egs. (23) and (24) is profoundly affected by the aspect ratio of
the input beam size. At fixed intensity, both angular and thermal contributions to the dephasing
are minimized when the aspect ratio wy/w, is maximum. Since small dephasing is desirable for
high conversion efficiencies, the maximum possible aspect ratio of the crystal input aperture is the
best choice. Considering the case when beam dimension w, is fixed and wy is varied, one might
think that smaller aspect ratio would produce larger intensity, which would increase the drive and
the efficiency. However, like the drive, the dephasing also increases by the same factor. In addi-
tion the optimum crystal length also changes. Overall, within the operating range of interest here,
a smaller aspect ratio results in decreased efficiency.

The optimum crystal size may be deduced as follows. Let us assume that the beam size can be
changed at will by telescoping and that the crystal size relative to the beam size remains constant.
When all dimensions of a given crystal are increased by some factor m, the drive is unchanged but
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the dephasing changes. While the contribution of diffraction to dephasing stays the same, the con-
tribution of temperature nonuniformities increases in proportion to m. In the second generation
213-nm system with high average power, thermal dephasing is significant. Since large dephasing
is detrimental to the conversion process, use of crystals as small as possible leads to highest con-
version efficiency.

In a multi-stage system with several nonlinear crystals enclosed in heat sinks and with the neces-
sary waveplates, the minimum crystal size is limited by diffraction effects. In order to maintain
high peak powers and good beam quality in the entire system, it is imperative that the beam size
stay nearly constant as the beam passes through the system. In the 213-nm system, the transverse
beam size should be at least 0.2 cm to achieve negligible diffraction over its length of 20-30 cm.
The diffraction effects considered here are those of nearly diffraction-limited input beam at the
1064-nm wavelength. Smaller beam size could be used if refocusing optics were used between the
different nonlinear stages. However, this case will not be considered here.

The larger beam dimension is determined by properties of the beam compression optics preceding
the nonlinear crystals. Each compression prism increases the aspect ratio of the beam by a factor
equal to its refractive index. One, two, three, and four prisms made of BK7 glass increase the
aspect ratio by factors of 1.51, 2.27, 3.42, and 5.15, respectively. Since a large aspect ratio is
advantageous, it is desirable to use four prisms for beam compression, resulting in 1.03-cm beam
size along the larger dimension. Use of even larger aspect ratios requires relatively large crystals,
exceeding commonly available sizes.

The last parameter to be determined is the ratio of beam size to size of the crystal aperture. For the
most efficient use of the nonlinear material with minimal heating, the beam should just fill the
crystal. Thus the crystal aperture should have roughly the same size as the beam. In this design,
the beam size is chosen to fit the clear aperture of the crystal so that the beam is incident only on
the properly polished and anti-reflection coated part of the crystal facet. The clear aperture is typ-
ically 80% of each linear dimension of the crystal facet. With the chosen beam size, the crystal
aperture dimensions are X =0.25 cmand Y= 1.29 cm.

After the transverse size and dimensions are determined, the optimum crystal length is found. The
optimum length depends on peak intensity, diffraction of the beam, and crystal heating. Peak
intensity and diffraction are given by the shape and spatial profile of the beam as well as by the
energy and duration of the laser pulses. On the other hand, the temperature depends on the amount
of absorbed power and on the crystal length. The average power absorbed per unit length may
also depend on conversion efficiency when the different harmonics have different absorption con-
stants. In general, the optimum crystal length must be found in several iterative steps. First, the
amount of temperature dephasing is estimated. Subsequently, the optimum crystal length is found
with use of Egs. (19) or (21). Then the temperature distribution is calculated by solving the heat
equation. The temperature difference within the crystal is then used in the next efficiency calcula-
tion to find the optimum crystal length. The entire process is repeated until the crystal length, the
amount of heating, and the thermal dephasing are all mutually consistent.
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5.4 Results

The conversion efficiency of each stage is a function of many variables, which are determined by
the properties of the laser pump. The properties of the present 213-nm light source and the second
generation design are summarized in Table 5. Compared to the first generation system, the new
source would be more suitable for lithography applications because of its higher repetition rate,
smaller pulse energies, and larger average power output. The highly coherent output of both sys-
tems produces speckle noise. To achieve the required resist exposure uniformity, the speckle con-
trast must be averaged out by using many pulses for exposure, even with the help of speckle
reduction optics [1]. Since the number of pulses required for averaging is fixed, less energy is
used in speckle reduction with low energy pulses than with high energy pulses. In addition, higher
average power produced by the new system allows greater throughput. Since the new system also
has lower peak intensities, it is less likely that its optical components will be damaged. Finally, the
lower peak intensities at the fourth and fifth harmonics result in negligible two-photon absorption.
The drawback of smaller pulse energies is reduced conversion efficiency. As a result, pulse com-
pression with stimulated Brillouin scattering (SBS) is needed to boost the peak powers to main-
tain high conversion efficiency. In the new design, the peak powers are still somewhat smaller
than in the first generation system, leading to smaller overall conversion efficiency.

TABLE 5. 213 nm light source parameters

Present New Design New Design

System before SBS after SBS
repetition rate [Hz] 10 1000 1000
beam diameter {cm) 0.5 045 02x1.03
pulse duration [ns] 8 15 2
pulse energy at 1064 nm [m]] 410 15-50 10-35
total average power at 1064 nm w) 4.1 15-50 10-35
peak intensity at 1064 nm MW/cm?) 260 47-157 31-108
average power at 213 nm w] 0.05-0.25 - 2.1-12

The goal of this design is to find the optimum crystal shapes for the three-stage fifth harmonic
generator. Although most of the important parameters are determined by laser properties and
choice of beam size, it is desirable for the generator to be efficient when some parameters are
unknown or subject to change. For example, one may want to be able to adjust the output power
from the system by changing the laser pulse energy. Also the beam quality may be difficult to
determine. Both changes in pulse energy and beam quality affect the optimum crystal length. Here
the crystal design includes a range of operating conditions. The input at 1064 nm to the harmonic
generator is expected to be 10-35 W of average power, with typical operation in the 10-20 W
range. The beam quality is expected to be nearly diffraction limited, so the beam quality factor
used includes Q = 1-1.5 range. For all nonlinear stages, the wavelength used to determine the dif-
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fraction effects was the pump wavelength because the generated harmonics originate from the
pump beam. Also, beam walkoff was neglected in these calculations. Other parameters used in the
calculations are listed in Table 5.

The effect of crystal heating evaluated in the optimization process depends critically on crystal
absorption coefficients. Table 4 contains currently available absorption data for BBO and KD*P.
From these data, reasonable estimates of absorption at all wavelengths of interest were made. The
absorption at 1064 nm, 532 nm, 355 nm, 266 nm, and 213 nm for BBO was taken to be 0.1 %/cm,
0.2 %/cm, 0.2 %/cm, 0.2 %/cm, and 1 %/cm, respectively. For KD*P, the absorption at the first
four harmonics was assumed to be 0.2 %/cm, 0.5 %/cm, 0.5 %/cm, and 3 %/cm. Two-photon
absorption was neglected because the peak intensities at fourth and fifth harmonics are not large in
this design. Since only a small fraction of the beam energy is absorbed in the crystals, absorption
effects were neglected in the efficiency calculations. The average power absorbed per unit length,
assumed to be uniform, was determined iteratively during the optimization from the efficiency of
each crystal. The beam profile of Eq. (13) was used to determine the heating effects but was not
used in the efficiency calculations. The different intensity levels in the beam require different
crystal lengths for maximum conversion efficiency. In practice, each nonlinear crystal must have a
fixed length. Consequently, calculations were done with a uniform beam profile of elliptical cross
section with dimensions listed in Table 5, so that a single crystal length could be determined. The
optimum length found for the averaged intensity results in high conversion efficiency for most
parts of the beam, though not as high as when the crystal length could fit the beam intensity pro-
file.

FIGURE 4. Efficiency and optimum crystal length of BBO I crystal for doubling 1064 nm
NsHG
0.6

Ppuise=10mJ Q=10

-------------

Ppuise=10mJ Q=15

e carscaneee

Ppuse=20mJ] Q=10

Seosrsercsresensenssesse

Ppuise=20mJ Q=15

wy=020cm
wy = 1.03 cm
. : : : : : : . X=025cm
o 02 04 06 08 1 12 14 18 18 2 Y=129cm

optimum crystal length T

Conversion Efficiency April 14,1994 25



The optimum crystal lengths and conversion efficiencies are listed in Tables 6-10. Results are
shown for different types of nonlinear crystals suitable for the different stages of the harmonic
generator. The efficiencies of the second and third stages were calculated after crystals appropri-
ate for the preceding stages and their efficiencies were determined. The optimum lengths and
maximum efficiencies for the above mentioned range of operating conditions are included. Since
only one crystal is used in practice, the crystal length must be chosen to produce high conversion
efficiency under a variety of operating conditions. The efficiency versus length curves for several
operating conditions are shown in Figure 4. As shown in the figure, the optimum length variations
are not great for operating conditions of interest. The crystal length that produces highest overall
efficiency, is indicated in the figure.

TABLE 6. 2x 1064 nm : optimum crystal lengths and maximum efficiencies
nonlinear input absorbed beam AT optimum maximum
crystal power power quality [°C] length efficiency
PavG W] | P [Wiem™) L[cm] [%)
BBO 1 10 0.0122 1 0.69 1.52 43
10 0.0115 1.5 0.65 1.25 31
20 0.0252 1 143 1.21 52
20 0.0240 1.5 1.36 1.03 40
BBO o 10 0.0124 1 0.70 212 47
10 0.0117 1.5 0.66 177 35
20 0.0255 1 1.44 1.65 55
20 0.0244 1.5 1.37 1.43 4
KD*P I 10 0.0221 1 0.055 5.62 14
10 0.0211 15 0.052 4.08 7.6
20 0.0465 1 0.115 493 22
20 0.0438 1.5 0.108 375 13
KD*P b1 | 10 0.0270 1 0.066 6.60 46
10 0.0250 1.5 0.062 5.46 34
20 0.0565 1 0.139 5.23 55
20 0.0530 15 0.131 448 43
LBO I 10 - 1 0.70-0.055 2.35-3.98 42-81
10 - 15 0.66-0.052 2.31-3.65 41-75
20 - 1 1.44-0.115 1.47-2.88 34-82
20 - 15 1.37-0.108 143-2.71 33-79
LBO b1 | 10 - 1 0.70-0.055 2.79-5.27 42-87
10 - 1.5 0.66-0.052 2.80-4.98 42-84
20 - 1 1.44-0.115 1.70-3.68 32-86
20 - 1.5 1.37-0.108 1.67-3.55 31-84
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TABLE 7.

1064 nm + 532 nm : optimum crystal lengths and maximum efficiencies

nonlinear input absorbed beam AT optimum maximum
crystal power power quality [°C} length efficiency
PG [W] | P [Wiem™] Q L [cm] [%]
BBO I 10 0.0144 1 0.80 0.86 28
10 0.0133 1.5 0.74 0.69 16
20 0.0316 1 1.76 0.70 37
20 0.0283 1.5 1.57 0.57 25
BBO o 10 0.0144 1 0.80 1.16 25
10 0.0133 15 0.73 092 14
20 0.0315 1 1.74 093 33
20 0.0282 15 1.56 0.77 22
KD*P I 10 0.0325 1 0.080 3.17 14
10 0.0295 1.5 0.073 2.36 7.1
20 0.0734 1 0.181 272 22
20 0.0638 15 0.157 2.11 13
KD*P 1 10 0.0333 1 0.082 3.84 30
10 0.0301 15 0.074 3.09 18
20 0.0752 1 0.185 3.13 40
20 0.0652 1.5 0.161 2.57 27
LBO 1 10 - 1 0.80-0.080 1.38-2.07 2246
10 - 15 0.74-0.073 127-1.79 17-32
20 - 1 1.76-0.181 0.95-1.67 17-58
20 - 15 1.57-0.157 0.83-141 16-42
LBO 11 10 - | 0.80-0.080 1.70-2.82 22-54
10 - 1.5 0.74-0.073 1.67-2.53 1941
20 - 1 1.76-0.181 0.95-2.25 15-66
20 - 15 1.57-0.157 0.99-1.92 15-50
TABLES. 2x532nm : optimum crystal lengths and maximum efficiencies
nonlinear input absorbed beam AT optimum maximum
crystal power power quality [°C] length efficiency
Pavg[W] | Py [Wiem™) L[cm) [%]
BBO I 10 0.0139 1 0.75 0.73 25
10 0.0131 15 0.70 0.53 10
20 0.0304 1 1.63 0.59 42
20 0.0275 15 147 046 19
KD*P ¢ 10 0.0430 1 0.105 6.89 23
10 0.0356 15 0.087 6.70 17
20 0.0977 1 0240 4,02 20
20 0.0787 1.5 0.193 4.32 17
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TABLEY. 1064 nm + 266 nm : optimum crystal lengths and maximum efficiencies
nonlinear input absorbed beam AT optimum maximum
crystal power power quality [°C] length efficiency
Py W1 | P [Wiem™) Q L[cm] [%]
BBO I 10 0.0148 1 0.78 0.45 3.1
10 0.0134 1.5 0.70 034 1.1
20 0.0328 1 1.72 0.37 5.1
20 0.0288 15 1.49 0.29 23
BBO o 10 0.0143 1 0.74 0.62 1.1
10 0.0132 1.5 0.68 045 0.39
20 0.0313 1 1.62 0.50 1.8
20 0.0280 1.5 1.44 0.39 0.81
TABLE 10. 5§32 nm + 355 nm : optimum crystal lengths and maximum efficiencies
nonlinear input absorbed beam AT optimum maximum
crystal power power quality [°C] length efficiency
Payg W] [ P [Wiem') Q0 Llcm) [%)
BBO I 10 0.0158 1 0.77 0.65 4.7
10 0.0140 1.5 0.68 0.52 23
20 0.0362 1 177 0.45 59
20 0.0304 1.5 148 0.40 35

The choice of crystal most appropriate for each nonlinear stage is evident from Tables 6-10. For
the first-stage doubler, a type I phase-matching is most suitable because the polarization of the
first harmonic must be known before it is used in subsequent stages. Due to crystal birefringence,
type Il doubling changes the polarization of the first harmonic and heating effects make it difficult
to determine the output polarization. Thus a type I mixing is preferred to a type II mixing in the
first stage, even when its efficiency is somewhat lower. Thus the best option for the first doubling
stage is a BBO crystal, oriented for type I phase-matching. Critically or noncritically phase-
matched type I doubling in an LBO crystal may be even more efficient. However, LBO is not
widely available at present and some of its properties are not well known. Its efficiency and opti-
mum length cannot be found accurately because its absorption and thermal properties are not
known. Since the transmission range of LBO is greater than that of BBO and KD*P, its absorption
is expected to be smaller that of BBO and KD*P. Tables 6 and 7 show the efficiencies of LBO
with the same thermal dephasing as BBO and KD*P. BBO and KD*P were chosen as reasonable
limits of thermal dephasing, since thermal conductivity of KD*P is relatively large and that of
BBO is relatively small.

After the first nonlinear stage, two frequency-mixing options for producing the fifth harmonic
exist. One scheme involves adding the first and second harmonics in the second stage and second
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and third harmonics :n the last stage. With this mixing scheme, KD*P crystal for type II fre-
quency mixing is a good option for the second nonlinear stage. Once again, LBO appears to be a
good option for this mixing stage. In the last stage, only a BBO crystal oriented for type I phase
matching has enough birefringence to be capable of mixing second and third Nd:YAG harmonics.
With the alternative mixing scheme, the second harmonic is doubled in the second stage and the
first and fourth harmonics are added in the third stage. With the low peak intensities present in this
system, the only good option for the second stage is a type I mixing KD*P crystal. Finally, type I
mixing BBO crystal is appropriate for the third stage. Both mixing schemes require waveplates
between the first and the second stages and between the second and the third stages to properly
reorient the polarizations of the interacting waves.

In this 213 nm system, the efficiencies of individual nonlinear stages are relatively low because
peak intensities are not exceptionally high and heating effects are sizable. The heating is not very
large in the first nonlinear stage but significantly decreases efficiencies in the second and third
stages. Heating is smaller in the first stage crystal because the lower harmonic frequencies experi-
ence less absorption and first-stage crystals have larger thermal bandwidths than crystals for sub-
sequent stages. On the other hand, absorption and thermal bandwidths are less favorable for
harmonic conversion in the latter stages. Thermal dephasing is most significant in the third stage,
where it can reduce the efficiency by a large factor, compared to the case when heating is not
present. Due to the high repetition rate and high average power of the system, peak intensities
cannot become large and heating cannot be avoided. The performance could only be enhanced by
decreasing the beam and crystal size in order to increase intensities and improve heat extraction.
Due to diffraction limitations these improvements are possible only with additional optical com-
ponents between the nonlinear stages.

TABLE 11. 2 4+ 3 = 5 mixing scheme: optimum crystal lengths and efficiencies
input beam 1+1 L eff | 1+2 L eff | 243 L eff | overall
power quality | stage | [cm] | [%] | stage | {cm] | [%] | stage | [cm] | [%] | efficiency
Payg W] 0o (%]
10 1 394 272 396 192
10 1.5 BBO | 121 | 306 | KD*P | 306 | 178 | BBO | 048 | 223 | 0.815
20 1 type 1 520 | typell 40.2 | typel 5.87 3.84
20 15 37.6 245 3.16 145
TABLE 12. 1 + 4 =5 mixing scheme: optimum crystal lengths and efficiencies
input beam 1+1 L eff 242 L eff 1+4 L eff | overall
power quality | stage | [cm] | [%] | stage fcm] | [%] | stage | [em] | [%] | efficiency
Pave [W] o (%]
10 1 394 18.1 2.80 1.90
10 15 BBO | 122 | 306 | KD*P | 485 | 139} BBO | 036 | 1.11 0.818
20 1 type I 52.0 | typel 183 | typel 5.06 291
) 20 15 37.6 16.5 1.99 1.37
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The best crystal options and their efficiencies are shown in Tables 11 and 12 for both mixing
schemes. Clearly the scheme of choice for the second generation 213-nm light source for lithogra-
phy is the 2 +3 =5 mixing scheme because it is capable of higher overall efficiency than the
alternative 1 + 4 = 5 mixing scheme. In both mixing schemes, some harmonics are used as inputs
in more than one nonlinear stage. In the 1 + 4 = 5 scheme, the first harmonic is used in the first
and the last stage. In the 2 + 3 = 5 mixing scheme, the first harmonic is used in the first and second
stages and the second harmonic is used in the second and the third stage. It is important to con-
sider that these frequencies might be depleted in one crystal, causing photon mismatch and lower
efficiency in the following crystal. To illustrate this, it is useful to consider full conversion from
the fundamental to the fifth harmonic. In the 2 + 3 = 5 mixing scheme the ideal efficiencies of the
first, second, and third stages, as defined in Egs. (19) and (21), are respectively 80%, 60%, and
100%. Thus the first stage converts most of the power to the second harmonic but enough power
is left over to be used in the second stage. Similarly, the second stage converts all of the first har-
monic and only some of the second harmonic to the third harmonic, producing beams with
matched photon numbers as input for the last stage. With the 1 + 4 = 5 mixing scheme, three non-
linear stages producing full conversion to the fifth harmonic have ideal efficiencies of 80%, 100%,
and 100% respectively. These idealized efficiencies are useful because they indicate that the first
harmonic beam will not be depleted for use in later stages unless the first stage efficiency exceeds
80% for both mixing schemes. In the 2 + 3 =5 mixing scheme, the second harmonic can be
depleted in the second stage. The optimum efficiency for preventing depletion depends on the
efficiency of the first stage. For example, when the first stage is 50% efficient, the efficiency of the
second stage should not exceed 45% to avoid depletion of the second harmonic beam. In the new
213-nm system, the efficiencies are not high enough for depletion effects to be important.

6.0 Experimental Results

To assess the performance of the new crystal geometry, a slab-shaped crystal was tested in the first
generation 213-nm system. The conversion efficiency of the slab geometry crystal was measured
and compared to calculations. In addition, a simple method to determine the crystal temperature
during harmonic conversion was tested.

6.1 Conversion efficiency measurements

A slab-shaped BBO crystal is used as the third nonlinear stage that produces 213-nm radiation
from its 532-nm and 355-nm inputs in our first generation harmonic generator. The setup is shown
in Figure 5. The beam exiting the second stage of the harmonic generator enters either the con-
ventional square-aperture crystal or is redirected with the help of a tumning prism to the slab-
shaped crystal. The slab-shaped crystal is preceded by a cylindrical lens telescope that compresses
the beam in one dimension by a factor of 3.3 to produce an elliptical beam from the incoming
beam with circular cross section. Both the turning prism and the telescope lenses have antireflec-
tion coatings for the second and third Nd:YAG harmonics, so that the measurements on both crys-
tals can be compared without reflection loss adjustments. Both crystals have antireflection
coatings for the two input wa. clengths on their input facets but no coatings on their output facets.
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FIGURE §. Third stage of harmonic generator
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Control of the phase matching conditions for both crystals is provided by crystal ovens mounted
on rotation stages, which enable angle tuning in the critical phase-matching direction. The square-
aperture crystal is inside an aluminum heat sink without temperature control. The slab-shaped
crystal is held in a temperature controlled oven at approximately 35 °C. The two long sides of the
crystal are heat-sunk, while the two small sides are not. Thermal contact is provided by a ther-
mally conductive elastomer sheet placed between the crystal and the oven.

In this conversion efficiency measurement, the generated 213-nm radiation was separated from
the other harmonics with mirror filters oriented at 45° angle to the incident beams. Each mirror
strongly reflects the 213-nm radiation (about 97%), while it transmits most of the power in the
other harmonics (80-95 %). Before the fifth harmonic power was measured, the beam was
reflected from several such mirrors so that no power at the other harmonics entered the detector.
Similarly, the power in the other harmonics was determined by measuring the power in the beam
transmitted by the 213-nm mirror. To separate the first, the second, and the third harmonics
present in this beam, mirrors with high reflectivity at 1064 nm, 532 nm, and 355 nm were used.
The mirror reflectivities needed for calculation of the power entering and exiting the crystal, were
determined with the use of a spectrophotometer or by direct measurement. Comparison of the
measured powers when the crystal generated the most power at 213 nm and when the crystal was
detuned to produce no fifth-harmonic power was used to check the measured values, since it is
known that 2/5 of the fifth harmonic power comes from the second harmonic and 3/5 comes from
the third harmonic. The power was measured with two Scientech laser power meters, which
absorb the laser light and determine the average laser power from the generated heat. The meter
calibrated for detection ~¢ wavelengths in the 190-250 nm range was used to detect the
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213-nm radiation. The other meter, calibrated for 400-1200 nm radiation, was used to detect the
1064-nm, 532-nm, and 355-nm light. Reflections at the detector surface were neglected in the cal-
culations.

The measurements were performed under typical operating conditions of the system. The laser
flashlamp power was relatively low to prevent crystal damage, which may occur when the system
operates at maximum power. Consequently, the average output power at 213 nm was low in com-
parison to previous measurements [1]. The 213-nm average output power was in the
30-mW range when the square-shaped crystal was used as the third stage, and in the 70-mW
range when the slab-shaped crystal was used. The measured conversion efficiency of both crystals
was compared to calculated values. In the conversion efficiency calculations, material parameters
in Table 1 and beam parameters in Table 5 were used. For the slab crystal, the beam size was
adjusted by the compression factor of the lens telescope. In addition, beam quality factor Q of
unity and uniform crystal temperature were used to determine the phase mismatch using Eq. (23).
The calculations were done for both values of the effective nonlinear coupling dggr in Table 1.
Typical results are summarized in Table 13.

TABLE 13. Conversion efficiency of BBO I sum-frequency generator for producing 213 nm

square crystal slab crystal
213 nm average output power [mW] Ps 32 74
355 nm average input power [mW)] P3 192 192
532 nm average input power [mW] Py 221 221
measured efficiency P 1.7 % 17.8 %
calculated efficiency (d,7= 0.93 pm/V) PZT!’P}; 6.5% 164 %
calculated efficiency (g,ﬁo.u pm/V) 44 % 113%

The calculated efficiencies are in good agreement with measurement results. Of the two values of
the calculation parameter dgg, the higher value predicts the measured efficiency within the mea-
surement uncertainty. On the other hand, calculations with the lower dgg value underestimate the
measured conversion efficiency. Assuming that other calculation parameters represent the nonlin-
ear interaction accurately, the nonlinear coupling strength of our BBO crystals seems to agree
with the values obtained in [8].

6.2 Determination of crystal temperature

According to experimental evidence [1, 16] and to our calculations, crystal heating is expected to
significantly influence the performance of the second generation 213-nm light source. Experimen-
tal verification of the predicted heating effects requires a method for measuring the crystal tem-
perature during harmonic generation. Many standard thermomertric techniques, such as the use of
thermistors on the crystal surface or measurement of the changes in emitted blackbody radiation,
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are not appropriate because bulk heating effects are important and resolution of several degrees
Celsius at room temperature is needed. One possibly useful and relatively simple method for mea-
suring the crystal temperature utilizes the pyroelectric effect. Pyroelectricity occurs in materials
that lack inversion symmetry and consequently exists in the second-order nonlinear optical mate-
rials. The pyroelectric property results in a change in electric polarization when the crystal tem-
perature is changed. A pyroelectric crystal with capacitor plates, formed by metal-coating the two
facets normal to the direction of the dipole moment, will develop charge on its plates proportional
to the temperature change [19]. The mean temperature change in the crystal can be measured
using this effect. However, this effect has not yet been investigated in the materials under consid-
eration here, so its sensitivity as a temperature indicator is questionable. Finally, the crystal tem-
perature can be determined with optical interferometry. The most simple interferometric
technique capable of providing information about the crystal temperature profile seems to be the
following. A probe He-Ne laser beam is reflected from the crystal and the fringe pattern formed
by interference of the two crystal facet reflections is observed [16). The fringe pattern is a func-
tion of the optical path-length difference of the two reflected beams and depends on temperature.
With the knowledge of the thermal expansion coefficients and of the refractive index change with
temperature, temperature change can be calculated from changes in the fringe pattern.

The fringe method was tested in the third nonlinear stage of the first generation 213-nm system.
The slab-shaped BBO crystal, cut for frequency up-conversion to 213 nm, was used in this mea-
surement. Since only absorption at 213 nm is likely to be significant in BBO, negligible heating
was expected at the current average power levels. Temperature sensitivity of the method was
obtained by observation of the fringe pattern change with temperature and compared with that
calculated from published data. The probe He-Ne beam entered the usual exit facet of the crystal,
which had no anti-reflection coatings, at nearly normal incidence. The reflection off this facet
interfering with the reflection from the usual input facet was recorded by a CCD camera. The
fringe pattern was recorded at several crystal temperatures. First the crystal was heated with the
oven to approximately 45 °C and then allowed to slowly cool to room temperature, while the
readings were taken. Since the temperature was changing slowly, the crystal temperature was
assumed to be the same as the oven temperature, determined from the resistance of the oven ther-
mistor. The measurements were done when the probe beam was polarized both perpendicular and
parallel to the plane of the optic axis and the beam. In the former case, the refractive index in the
BBO crystal was the ordinary index, while in the latter case it was the extraordinary index at the
angle of propagation with respect to the optic axis. Since the crystal is cut at angle 6 = 69.5°, this
angle with £2° tolerance was used in the calculations. Thermal expansion data [5] were also
needed to determine the optical path-length difference. In addition, the change in the refractive
indices with temperature was assumed to be constant. The measurement results, as well as results
expected from published data [5], are summarized in Table 14. The measurement temperature
sensitivity, represented by the temperature change needed for a given position in the pattern to
change from light to dark, equivalent to half-wavelength optical path-length change, is denoted by
AT p.

The temperature sensitivities calculated from published data are better than those actually
observed. However, the crystal temperature change ¢~ several degrees Celsius can still be deter-
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mined with this method. The discrepancy between the measurement and published data may be
explained by the fact that the published values were comparable to the precision, with which they
were determined [5]. Consequently, the change of refractive indices with temperature measured
here should be closer to the actual values than the published data, provided that they are constant
with temperature in the temperature range of this measurement.

TABLE 14, Temperature sensitivity of measurement

published data measurement
ATy, o-ay [°C) 4.2409 11+1.8
e-ray 29404 47411
dn,/dT [10°7C) -1.66 -2.3+0.3
dn,/dT -0.93 2.5+0.2

Once the measurement method was calibrated, the fringe pattemn was observed during operation
of the system. As expected at the operating power levels and the present measurement sensitivity
levels, no change in the pattern was detected. However, this method may be useful for measuring
the crystal temperature during harmonic conversion in the second generation 213-nm system.

7.0 Conclusion

The design of the optical frequency quintupler necessary to convert the 1064-nm Nd:YAG laser
wavelength to the desired 213-nm wavelength has been considered in detail. At the high average
power of the second generation system, thin-slab crystal geometry is superior to conventional
crystal geometry with square input apertures. Slab geometry allows high efficiencies to be main-
tained even at relatively large average powers, because it improves heat extraction from the non-
linear crystals. This geometry requires an input beam with an elliptical cross section which can be
produced by a series of four compressing prisms from the round-shaped Nd: YAG input beam. The
best nonlinear optics design appears to be one that utilizes a BBO type I doubler as the first non-
linear stage. The choice for the second stage is a KD*P crystal oriented for type II phase matching
that produces the third harmonic from its first and second harmonic inputs. The most efficient
third stage, which adds the second and third harmonic frequencies to produce the fifth harmonic,
is also a BBO crystal for type I mixing. Special waveplates are needed between the nonlinear
stages to properly orient the output polarizations of each stage to the desired input polarizations of
the following stage. This fifth harmonic generator would produce about 1 W of 213-nm radiation
with 20-W input at 1064 nm.

Presently, BBO appears to be the most suitable nonlinear material for the multistage quintupler.
However, LBO may prove to be more efficient than BBO in the 213-nm system, when it becomes 7
more widely available and its thermal properties are determined. LBO is suitable fo- doubling and
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tripling of Nd:YAG radiation and may prove useful for the first two stages of the system. One
advantage of LBO over well developed materials like BBO and KD*P is its small walkoff angle
and relatively short optimal crystal lengths. On the other hand, walkoff effects in BBO and KD*P
are approximately the same. BBO has large walkoff angle but small optimum crystal lengths,
while KD*P has somewhat smaller walkoff angles but requires longer crystal lengths. For both
crystals, this leads to similar reduction in the spatial overlap of differently polarized beams.

The efficiency of the 213-nm system can be improved by correcting the walkoff effect. This is
possible when two crystals are used for each nonlinear stage. For instance in uniaxial crystals, if
one of the crystals is oriented at phase matching angle 6 and the other is oriented at —6 or at 1 — 6,
the walkoff effect in the two crystals can cancel out, provided the crystal lengths are properly cho-
sen. According to Appendix 1, the two differently oriented crystals may be chosen to have nonlin-
ear coupling coefficient dog of same or opposite sign. If the two crystals are chosen to have
nonlinear susceptibility of opposite sign and the length of the first crystal is L = w/Ak, the length at
which the susceptibility changes sign and causes the generated beam to convert back to the input
frequencies, the extraction of energy from the pump beams can continue in the second crystal
[22]. Through this effect and reduction of the walkoff, greater efficiency is possible. Use of two
crystals at each stage would improve the efficiency but also significantly increases the complexity
of the system.

The performance of the system can also be enhanced by decreasing the beam and crystal size in
order to increase intensities and improve heat extraction. Due to diffraction limitations, refocusing
of the beam after each stage would be necessary to maintain small beam size. Refocusing could
prove most effective before the third nonlinear stage, where the heating effects are most detrimen-
tal. Although this approach may be effective in improving efficiency, it may reduce the beam
quality. In addition, the additional optical elements would increase the complexity and the cost of
the system:
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A.0 Appendices

A.1 Effective nonlinear coupling

References [24, 25]

BBO:
type I (0o-€) deff = d,58in0 — d,,cos Osin 3¢ (A1)
type II (eo-e) Aoy = dy,cos20c0s 3¢ (A2)
KD*P:
type I (00-€) deff = -d,,sinOsin2¢ (A3)
type II (eo-e) dogr = dy4sin20cos2¢ (A4)

LBO type I (pp-s):
dyy = dycos?Bsindsin2¢ — cos¢ ( (dy;cos2d + dyysin?¢) cos?0 + d,;sin?6) (A5)
06=90°, x-y tuning deff = —d,;cos ¢ (A6)

LBO type I (ss-p):
deff = d,sc0s6cos Psin 2¢ — cos Bsin ¢ (d,,; sin 2¢ +dy,cos 2(b) (A7)

¢=0°, x-z tuning der =0 (A8)

LBO type II (sp-s):

deﬁ = d,¢cosOsin¢pcos2¢ + cos Ocoszq)sin ¢ (dyy —dy) (A9)
0=90°, x-y tuning deff =0 (Al10)
$=90°, y-z tuning g = —dy6c0s 6 (A11)
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A.2 Refractive indices

Uniaxial crystals:
2 2
1 _cos 9+sm 0 (A12)
n.(0)2 n? n?
Biaxial crystals:
2 2
1 =sm¢+cos¢ (A13)
n (¢)2 n? ng
2 .2 2
1 ;= Osze(cos2¢+S1n2¢)+sm29 (Al4)
n, (6, 0) n ny n;
A.3 Dephasing parameters
2x  Ony, Ony, Onmy,
Be = T (a—aﬁ +b% -C'a—e ) (A].S)

9=9~,¢=¢".T=To

2n anlm a"zm an3m

B¢=T(GT¢ +b§$ -CT¢ ) (A16)

9=e_,¢=¢".T=To

2n  odny, a"zw_

ons,,
ﬁT = —}\.— (a-aT. <+ b-a-T v

37 ) (A17)

C

0=0,,06=0¢,T=T,

A.4 MATLAB solution to heat equation

%% steady state temperature in the region -a<x<a, -b<x<b, -1/2<z<1/2 with
$%% heat generation proportional to the incident intensity
$%% nonzero thermal conductivity tensor elements: kll, k22, k33, k23=k32

FHELULHLTL%%%%%%% thermal conductivities FETFLLLLLILLLTLTIILLBELLLB8984%
cll=kll; % nonlinear crystal
c22=kll*cos (theta)~“2+k33*sin(theta) *2; % k1l and k22 defined elsewhere
¢33=kll*sin(theta) ~2+k33*cos (theta) ~2;

d=(k33-k11) *sin (theta) *cos (theta) ;

h=0.0009; % surface heat transfer W/cm2
to=0; % air temperature
FEIILEILLE93%%%% grid e e T R R T T ST T T T Y

%% crystal dimensions (a, b, 1), beam dimensions (wx, wy), and number of

%% grid points (pts) are defined elsewhere

xpt = pts; % number elements in x (excluding boundaries)
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dx = 2*a/(xpt + 1); % x spacing in cm

ypt = pts; % number elements in y
y2=ypt+2;

dy = 2*b/(ypt + 1); % y spacing in cm

zpt = pts; % number elements in z
dz = 1/(zpt + 1); % z spacing in cm

BHLTH9999%9%%% useful constants BTITHTLILIIILTLIILHLHLELSIBLLLLHB898%
cx=cll/ (dx"2);

cy=c22/ (dy*2) ;

cz=c33/(dz"2);

dyz=d/ (2*dy*dz) ;

xsample floor((xpt+2)/2)+1; % center point at these coordinates
ysample floor((ypt+2)/2)+1;

zsample = floor((zpt+2)/2)+1;

[%,¥] = meshdom(-a:dx:a,-b:dy:b);

$E%34%%%%%  absorption TR LLLILLLDLLRERABHLLTIILHLLLLTLLLLBL9585%%

pin = 50; % incident power; W

plabs = 1; % absorbed power/length; W/cm

n=35; % exponent of supergaussians
integrate2d % find absorption profile normalization
areafactor=4*integral; % effective beam area

c = plabs/areafactor; % absorbed power/volume

[x,y] = meshdom(-a:dx:a,-b:dy:b);
absorb = c*exp(-2* ((x/wx)."2+(y/wy).”2).”~(n/2)).* ... %% absorption profile
(1-0.74%exp (=2* ((1.5*x/wx) .*2+(1.5*y/wy) .~2) .~ (n/2)));

$3333%%%%%  temperature profile calculation $H%3%F322LHLTL2LE38223%%%3%%
[x,y¥,2] = meshgrid(l:1l:xpt+2,1:1:ypt+2,1:1:2pt+2);

temp0=0* (x+y+z) ; % initialize temperature

rhsl=ones (xpt,1); % initialize vectors
rhs2=ones(ypt,1):

rhs3=ones(zpt,1);

x=1:xpt+2;

y=1l:ypt+2;

temp=temp0; % temperature in 3D crystal represented by 2D matrix
prevtemp=temp0; % (dimension ((xpt+2)*(ypt+2)) x (zpt+2))
prevtempO=temp0;

% tridiagonal matrices and their inverses
mal = diag(-2* (cx+cy+cz) .* ones(xpt,1)) ...
+diag(cx*ones (xpt-1,1),1)+diag(cx*ones (xpt-1,1),-1);
ma2 = diag(-2*(cx+cy+cz) .* ones(ypt,1)) ...
+diag(cy*ones (ypt-1,1),1)+diag(cy*ones (ypt-1,1),-1);
ma3 = diag{(-2*(cx+cy+cz) .* ones(zpt,1l)) ...
+diag(cz*ones(zpt-1,1),1)+diag(cz*ones (zpt-1,1),-1);

invl = inv(mal);
inv2 = inv(ma2);
inv3 = inv(ma3);

stop 0:

Appendices April 14, 1994

39



z=0;
while stop == 0
z=z+1; % iteration count

for k=1l:2zpt, % solution along x direction
for j=1l:ypt,
for n=1l:xpt,
rhsl(n) = —-absorb(j+1,n+l) ...
-cy* (prevtemp (j+2+n*y2, k+1) +prevtemp (j+n*y2,k+1)) ...
-cz* (prevtemp (j+1+n*y2, k+2) +prevtemp (j+1+n*y2,k)) ...
-dyz* (prevtemp (j+2+n*y2, k+2) +prevtemp (j+n*y2,k) ...
-prevtemp (j+2+n*y2, k) -prevtemp (j+n*y2,k+2)) ;
end .
rhsl(1)=rhsl (1) ~cx*prevtemp (j+1,k+1) ;
rhsl (xpt)=rhsl (xpt) ~cx*prevtemp (j+1+ (xpt+1) *y2, k+1) ;
newx=ones (xpt+2,1);
newx(1l,1) = temp(j+l,k+1); % constant T at endpoints
newx (2:xpt+1,1) = invl * rhsl; $ newly computed
newx(xpt+2,1) = temp(j+1+(xpt+l)*y2,k+1);
temp (j+1+(x-1) . *y2, k+1) =newx;
end
end
% boundary condition at y=+-b
temp (1+(x=-1) *y2,2:zpt+l)=(h*to+c22/dy*temp (2+ (x-1) *y2,2:2zpt+l)+ ...
d/(2*dz)*(temp(2+(x-1)*y2,3:zpt+2)-temp(2+(x-1)*y2,1:zpt)))/(h+c22/dy);
temp (ypt+2+ (x-1) *y2,2:zpt+l)= ...
(h*to+c22/dy*temp (ypt+1+(x-1) *y2,2:2pt+1)- ...
d/ (2*dz) * (temp (ypt+1+ (x=-1) *y2,3:zpt+2)-...
temp (ypt+1+(x-1)*y2,1:2pt)))/ ...
{h+c22/dy) ;
% boundary condition at z=+-1/2
for g=1:xpt+2,
temp ((2:ypt+1)+(q-1) *y2,1)=(h*to+c33/dz*temp ( (2:ypt+1)+(g-1) *y2,2)+ ...
d/ (2*dy) * (temp ((3:ypt+2) +(q-1) *y2,2)-. ..
temp((l:ypt)+(g-1)*y2,2)))/ (h+c33/dz);
temp ((2:ypt+l)+(gq-1) *y2, zpt+2)= ...
(h*to+c33/dz*temp((2:ypt+1) +(qg-1) *y2,zpt+l)- ...
d/ (2*dy) * (temp ( (3:ypt+2) + (gq-1) *y2, zpt+1)~-. ..
temp ((1:ypt)+(q-1) *y2,zpt+1)))/ ...
(h+c33/dz) ;
end

% boundary conditions at edges y=+-b and z=+-1/2 (average)
temp (1+(x-1) *y2,1)=0.5* ((h*to+c22/dy*temp (2+ (x-1) *y2,1)+ ...
d/ (2*dz) * (temp (2+(x-1) *y2, 3) ~temp (2+ (x~1) *y2,1) ) ) / (h+c22/dy) ) +. ..
0.5* ((h*to+c33/dz*temp (1+(x-1) *y2,2)+ ...
d/ (2*dy) * (temp (3+(x-1) *y2,2) -temp (1+(x-1) *y2,2))) / (h+c33/dz)) ;
temp (ypt+2+(x-1) *y2,1)=0.5* ((h*to+c22/dy*temp (ypt+1+(x-1) *y2,1)- ...
d/ (2*dz) * (temp (ypt+1+ (x-1) *y2,3)-...
temp (ypt+1+4(x-1) *y2,1)))/ (h+c22/dy))+...
0.5* ((h*to+c33/dz*temp (ypt+2+ (x-1) *y2,2)+ ...
d/ (2*dy) * (temp (ypt+2+ (x-1) *y2,2)~-. ..
temp (ypt+(x-1) *y2,2)) )/ (h+c33/dz));
*mp {1+ (x-1) *y2,zpt+2)=0.5* ( (h*to+c22/dy*temp (2+ (x~1) *y2, zpt+2)+ ...
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d/ (2*dz) * (cemp (2+ (x~-1) *y2, zpt+2) -...
temp (2+ (x-1) *y2,zpt))) / (h+c22/dy)) +...
0.5*((h*to+c33/dz*temp (1+ (x-1) *y2,zpt+1)- ...
d/ (2*dy) * (temp (3+ (x-1) *y2,zpt+1)-...
temp (1+(x-1) *y2, zpt+1))) /(h+c33/dz));
temp (ypt+2+ (x-1) *y2, zpt+2)=...
0.5* ((h*to+c22/dy*temp (ypt+1+(x-1) *y2, zpt+2)- ...
d/ (2*dz) * (temp (ypt+1+ (x-1) *y2, zpt+2) ...
temp (ypt+1+(x-1) *y2, zpt)) ) / (h+c22/dy) ) +...
0.5* ((h*to+c33/dz*temp (ypt+2+(x-1) *y2, zpt+1)~ ...
d/ (2*dy) * (temp (ypt+2+ (x-1) *y2, zpt+1)-...
temp (ypt+(x-1) *y2, zpt+1))) / (h+c33/dz));

prevtempO=prevtemp;
prevtemp=temp;

n=l:ypt; % solution along y direction
for i=1l:xpt,
for k=1:zpt,
rhs2 = -absorb(n+l,i+l) ...
-cx* (prevtemp (n+l+ (i+1) *y2,k+1) +prevtemp (n+1+(i-1) *y2,k+1))
-cz* (prevtemp (n+l+i*y2, k+2) +prevtemp (n+l+i*y2,k)) ...
—dyz* (prevtemp (n+2+i*y2, k+2) +prevtemp (n+i*y2,k) ...
-prevtemp (n+2+i*y2,k) ~-prevtemp (n+i*y2,k+2));
rhs2 (1)=rhs2 (1) -cy*prevtemp (1+i*y2,k+1) ;
rhs2 (ypt)=rhs2 (ypt) -cy*prevtemp (ypt+2+i*y2, k+1) ;
newy = ones(1l,ypt+2);
newy(l,1) = prevtemp{l+i*y2,k+1);
newy(l,2:ypt+l) = (inv2 * rhs2)*';
newy(l,ypt+2) = prevtemp (ypt+2+i*y2,k+1);
temp (y+i*y2,k+1)=newy';
end
end
% boundary condition at y=+-b
temp (14 (x-1) *y2,2:zpt+1)=(h*to+c22/dy*temp (2+ (x-1) *y2,2:zpt+1)+ ...
d/ (2*dz) * (temp (2+ (x-1) *y2, 3:zpt+2) ~temp (2+ (x-1) *y2,1:2zpt) ) ) / (h+c22/dy) ;
temp (ypt+2+ (x-1) *y2,2:zpt+l)= ...
(h*to+c22/dy*temp (ypt+1+(x~1) *y2,2:zpt+l)~- ...
d/ (2*dz) * (temp (ypt+1+(x-1) *y2,3:2zpt+2)-...
temp (ypt+1+(x-1)*y2,1:2pt)))/ ...
(h+c22/dy) ;
% boundary condition at z=+-1/2
for g=1:xpt+2,
temp((2:ypt+1) +(qg-1) *y2,1)=(h*to+c33/dz*temp ( (2:ypt+1) +{(g-1) *y2,2)+ ...
d/ (2*dy) * (temp ( (3:ypt+2) +(g-1) *y2,2)-...
temp ((1l:ypt)+(g-1)*y2,2)))/(h+c33/dz);
temp ((2:ypt+1) +(qg-1) *y2,zpt+2)= ...
(h*to+c33/dz*temp ( (2:ypt+1) +(q-1) *y2, zpt+1)~- ...
d/ (2*dy) * (temp ( (3:ypt+2) +(g-1) *y2, zpt+1)-...
temp ((1:ypt)+(q-1) *y2,2zpt+1)))/ ...
(h+c33/dz);
end
% boundary conditions at edges y=+-b and z=+-1/2 (average)
temp (1+(x-1) *y2,1)=0.5*((h*to+c22/dy*temp (2+(x-1) *y2,1)+ ...
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d/ (2*dz) * (temp (2+ (x~1) *y2, 3) -temp (2+ (x-1) *y2,1))) / (h+c22/dy) ) +...
0.5*( (h*to+c33/dz*temp (1+(x-1) *y2,2)+ ...
d/ (2*dy) * (temp (3+ (x-1) *y2,2) ~temp (1+ (x-1) *y2,2))) / (h+c33/dz));
temp (ypt+2+ (x-1) *y2,1)=0.5%( (h*to+c22/dy*temp (ypt+1+(x-1)*y2,1)~- ...
d/ (2*dz) * (temp (ypt+1+ (x~-1) *y2,3)~-...
temp (ypt+1+(x-1) *y2,1)))/(h+c22/dy) ) +...
0.5*%((h*to+c33/dz*temp (ypt+2+ (x-1) *y2,2)+ ...
d/ (2*dy) * (temp (ypt+2+ (x-1) *y2,2) -...
temp (ypt+(x-1) *y2,2)))/ (h+c33/dz));
temp (1+(x-1) *y2, zpt+2)=0.5*% ( (h*to+c22/dy*temp (2+ (x~-1) *y2,zpt+2)+ ...
d/ (2*dz) * (temp (2+ (x~1) *y2, zpt+2)-...
temp (2+ (x~1) *y2, zpt))) / (h+c22/dy) ) +...
0.5*((h*to+c33/dz*temp (1+(x-1) *y2,zpt+l)- ...
d/ (2*dy) * (temp (3+ (x~-1) *y2, zpt+1)~...
- temp(l+(x~-1)*y2,zpt+l)))/ (h+c33/dz));
temp (ypt+2+ (x-1) *y2, zpt+2)=... )
0.5* ((h*to+c22/dy*temp (ypt+1+ (x-1) *y2,2zpt+2)- ...
d/ (2*dz) * (temp (ypt+1+ (x-1) *y2, zpt+2) -, ..
temp (ypt+1+(x-1) *y2,zpt))) / (h+c22/dy) ) +. ..
0.5*( (h*to+c33/dz*temp (ypt+2+(x-1) *y2,zpt+1)- ...
d/(2*dy) * (temp (ypt+2+ (x-1) *y2, zpt+1)~...
temp (ypt+ (x~1) *y2, zpt+1)) )/ (h+c33/dz));

prevtemp=temp;

n=1:2zpt; % solution along z direction
for i=1l:xpt,
for j=l:ypt,
rhs3 = (-1)*absorb(j+1,i+1l) *ones(1,zpt) ...
-cx* (prevtemp (j+1+ (i+l) *y2, n+1) +prevtemp (j+1+(i-1) *y2,n+1)) ...
-cy* (prevtemp (j+2+i*y2, n+l) +prevtemp (j+i*y2,n+l)) ...
-dyz* (prevtemp (j+2+i*y2, n+2) +prevtemp (j+i*y2,n) ...
~prevtemp (j+2+i*y2, n) -prevtemp (j+i*y2,n+2));
rhs3(1)=rhs3 (1) ~cz*prevtemp (j+1+i*y2,1);
rhs3 (zpt)=rhs3(zpt)-cz*prevtemp (j+1+i*y2, zpt+2) ;
newz = ones(l,zpt+2);
newz (1,1) = prevtemp (j+l+i*y2,1);
newz(l,2:zpt+l) = (inv3 * rhs3')?';
newz (1, zpt+2) = prevtemp(j+l+i*y2,2zpt+2);
temp (j+1+i*y2, :) =newz;
end
end
% boundary condition at y=+-b
temp (1+(x-1) *y2,2:2zpt+l)=(h*to+c22/dy*temp (2+(x~-1) *y2,2:zpt+1)+ ...
d/ (2*dz) * (temp (2+ (x~1) *y2,3:2pt+2) ~temp (2+ (x-1) *y2, 1:2pt) ) ) / (h+c22/dy) ;
temp (ypt+2+ (x-1) *y2,2:2pt+l)= ...
(h*to+c22/dy*temp (ypt+1+ (x-1) *y2,2:2pt+1)- ...
d/ (2*dz) * (temp (ypt+1+(x-1) *y2,3:2zpt+2)-...
temp (ypt+1+(x-1)*y2,1:2pt)))/ ...
{(h+c22/dy) :
% boundary condition at z=+-1/2
for g=l:xpt+2,
temp ((2:ypt+1)+(q-1) *y2,1)=(h*to+c33/dz*temp ( (2:ypt+1)+(g-1) *y2,2)+ ...
d/ (2*dy) * (temp ( (" :ypt+2) +(g-1) *y2,2)-...
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temp( (l:ypt)+(q-1) *y2,2)))/(h+c33/dz);
temp ((2:ypt+l) +(g-1) *y2, zpt+2)= ...
(h*to+c33/dz*temp( (2:ypt+1) +(q-1) *y2,zpt+1)- ...
d/ (2*dy) * (temp ((3:ypt+2) +(qg-1) *y2,zpt+1)-...
temp ((1l:ypt)+(q-1) *y2,2zpt+l1)))/ ...
(h+c33/dz);
end
% boundary conditions at edges y=+-b and z=+-1/2 (average)
temp (1+(x-1) *y2,1)=0.5% ( (h*to+c22/dy*temp (2+ (x-1) *y2,1) + ...
d/ (2*dz) * (temp (2+ (x-1) *y2, 3) ~temp (2+ (x-1) *y2,1)) ) / (h+c22/dy) ) +. ..
0.5*( (h*to+c33/dz*temp (1+ (x-1) *y2,2)+ ...
d/ (2*dy) * (temp (3+ (x-1) *y2,2) ~temp (1+ (x-1) *y2,2))) / (h+c33/dz)) ;
temp (ypt+2+ (x-1) *y2,1)=0.5* ( (h*to+c22/dy*temp (ypt+1+ (x-1) *y2,1)- ...
d/ (2*dz) * (temp (ypt+1+ (x-1) *y2,3)-...
T temp(ypt+l+(x-1)*y2,1)))/(h+c22/dy))+...
0.5* ((h*to+c33/dz*temp (ypt+2+ (x-1) *y2,2)+ ...
d/ (2*dy) * (temp (ypt+2+ (x-1) *y2,2)-. ..
temp (ypt+(x-1) *y2,2)))/(h+c33/dz));
temp (1+(x~1) *y2, zpt+2)=0.5* ( (h*to+c22/dy*temp (2+ (x-1) *y2, zpt+2)+ ...
d/ (2*dz) * (temp (2+ (x~1) *y2, zpt+2) -. ..
temp(2+(x-1) *y2,zpt)) )/ (h+c22/dy) ) +...
0.5* ((h*to+c33/dz*temp (1+(x-1) *y2,zpt+l)- ...
d/ (2*dy) * (temp (3+ (x-1) *y2,zpt+1) -, ..
temp (1+(x~1) *y2,zpt+1)))/ (h+c33/dz));
temp (ypt+2+ (x-1) *y2, zpt+2)=.,.
0.5* ((h*to+c22/dy*temp (ypt+1+(x-1) *y2, zpt+2)- ...
d/ (2*dz) * (temp (ypt+1+ (x-1) *y2, zpt+2)-...
temp (ypt+1+ (x-1) *y2, zpt) )} )/ (h+c22/dy) ) +...
0.5*((h*to+c33/dz*temp (ypt+2+ (x-1) *y2,zpt+1)~- ...
d/ (2*dy) * (temp (ypt+2+ (x-1) *y2,2pt+1)-...
temp (ypt+ (x-1) *y2,zpt+1)))/ (h+c33/dz)):

prevtemp=temp;

% relative error between successive iterations

test = (temp(ysample+(xsample-1)*y2, zsample)- ...
prevtemp0 (ysample+ (xsample-1) *y2, zsample)) / ...
temp (ysample+ (xsample=-1) *y2, zsample) ;

if (test >0 & test <= 0.005) | (test<0 & test >= =-0.005),

stop = 1;
end
end

% temperature at crystal cross sections

xyplane=zeros (xpt+2, ypt+2) ; % xy plane sample
for g=1l:xpt+2,

xyplane(q, :)=temp (y+(g-1) *y2, zsample) *;

end

yzplane=temp (y+ (xsample-1) *y2, :); % yz plane sample
xzplane=temp (ysample+ (x~1) *y2, :); % xz plane sample
tmax=max (max(temp)) ; % maximum temperature
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