Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOGIC OPTIMIZATION OF INTERACTING
COMPONENTS IN SYNCRHONOUS DIGITAL
SYSTEMS

by

Yosinori Watanabe

Memorandum No. UCB/ERL M94/32

29 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Logic Optimization of Interacting Components

in Synchronous Digital Systems

by
Yosinori Watanabe

Doctor of Philosophy in
Electrical Engineering and Computer Sciences
University of California at Berkeley
Professor Robert K. Brayton, Chair

In optimizing digital systems, manual designs sometimes use information derived from
other components to identify a functional flexibility at a particular component. This thesis addresses
how to identify such a flexibility as well as how to use it in the optimization of synchronous digital
systems.

We first focus on the case where the system realizes a combinational logic behavior, and
propose a procedure for computing a set of permissible functions at each component, i.e. the set
of functions that can be realized there while preserving the behavior of the entire system. The
identified set of functions is represented by a single relation between the inputs and the outputs of
the component. We then address the problem of finding an optimum permissible function. The
problem is reduced to the minimization of relations, and we develop a heuristic procedure for the
problem.

The second half of the thesis performs an analogous investigation for sequential logic
behaviors. We consider a synchronous system in which the behavior of each component is modeled
by a finite state machine, and show that the complete set of its permissible sequential behaviors
can be represented by a single non-deterministic finite state machine, which we call the E-machine.
We give a fixed point computation for deriving the E-machine. We then consider the problem of
finding an optimum sequential behavior, which is achieved by minimizing the E-machine. We show
that the E-machine is a special type of non-deterministic finite state machine, and use this property
effectively in the minimization. We develop both exact and heuristic procedures for the problem.

K.

rofessor Robert/R. Brayton
Thesis Committee Chairman

iii

Contents

List of Figures vi
List of Tables vii
Acknowledgments viii
1 Introduction 1
1.1 Optimization of Interacting Components 1

1.2 Organizationofthe Thesis 2

2 Permissible Logic Functions for Multi-Output Components 5
2.1 Imtroduction @ i e e e e e e e 5
22 Preliminarieso e e e e e e e e 7
2.3 The Maximum Set of Permissible Functions 9
2.4 Maximally Compatible Sets of Permissible Functions 14
24.1 Maximally Compatible Sets and Boolean Relations 14

24.2 A Procedure for Computing Maximally Compatible Sets 15

243 AnExample e e 22

244 Computing the Maximum Set of Permissible Functions 22

2.5 AClustered Boolean Network 25
251 Sharedness . - o i i e e e e e e e e e e e e e e e e . 25

2.5.2 A Procedure for Composing a Clustered Boolean Network 26

2.6 ExperimentalResults. e 28
27 ConcludingRemarks e e 33

3 Minimization of Multiple-Valued Relations 35
3.1 Introduction i i e e e e 35

32 Preliminaries e e e e e e e e e e e 38
32,1 Terminology v v v v i e e e e e e e e e e 38

3.2.2 Functions, Mappings,andRelations 41

3.2.3 Applications of Multiple-Valued Relations 42

3.3 Questions on Multiple-ValuedRelations 45
3.3.1 Representations of Multiple-ValuedOQutputs 46

3.3.2 Transformation of Multiple Outputs to a Multiple-ValuedInput 47

CONTENTS iv

3.4 Function Minimization and Relation Minimization 50
3.5 Heuristic Minimization of Multiple-Valued Relations 52
3.5.1 Problem Formulationand Overview 52

352 InitialRepresentation 53

3.5.3 Computing the Characteristic Functionofa Setof Cubes 55

354 REDUCEttt ittt ittt ti et ettt e 57

355 EXPAND ittt ittt e e e e e e e e e 61

356 IRREDUNDANT it ittt ittt e ittt eeenn 67

36 ExperimentalResults. 68
37 ConcludingRemarks 69
4 Permissible Behaviors for Finite State Machines 70
41 Introductionttt e e e e 70
4.1.1 OVeIVIEW o i i e 70
412 RelatedProblemst iieee.. 72

413 RelatedWork e e e e 74

42 TerminolOZY ¢« v v v v it e e e e e e e e e e e e e e e e e 75
43 TheProblemand Assumptions oo i it e 78
44 PrimeMachines e 80
45 TheE-machineanditsProperties 87
451 TheE-machine. ie... 87

45.2 PropertiesoftheE-machine 88

453 A VariationoftheE-machine 92

454 The E-machine in Hierarchical Optimization 94

4.6 The Structure of the E-machine and a Non-Deterministic Construction 94
46.1 TheNDE-machine i enen.. 96

4.6.2 A Case where the NDE-machine Equals the E-machine 101

4.7 Implementability of Interacting Machines 102
47.1 Implementability i e 102

4.7.2 Unimplementable Machines inthe E-machine 104

48 ExperimentalResults. 0. 106
49 ConcludingRemarks i i i e e e 108
5 Minimization of Pseudo Non-Deterministic FSM’s 109
5.1 Introduction i e e e e e e e e e e e e e e e e e e 109
52 TheProblem e e e 110
5.2.1 Minimizationof E-machines 110

5.2.2 State Minimization of Pseudo Non-Deterministic Machines 112

53 FeasibleMachines 115
53.1 FeasibleMachines 115

5.3.2 Properties of Feasible Machines 116

54 ExactMethods i e e e e e e 122
5.4.1 Finding an Optimum Contained Behavior 122

5.4.2 Finding an Optimum Permissible Behavior 123

5.4.3 Finding an Optimum Moore Behavior 125

CONTENTS

544 ASummaryofExactMethods

5.5 Compatible Sets

..................................

551 CompatibleSets e e
5.52 Computing CompatibleSets
56 AHeuristicMethod i,
5.6.1 Irredundant CompatibleSets

5.6.2 Overview
5.6.3 REDUCE
5.64 EXPAND

.................................

.................................

56,5 IRREDUNDANTttt itiit it e,
57 ExperimentalResults.
58 ConcludingRemarks e,

6 Conclusions

6.1 SummaryofThesis e,

6.2 Future Directions

Bibliography

..................................

126
127
127
130
134
134
136
137
138
140
141
145

148
148
149

152

vi

List of Figures

2.1
22
23
24
2.5
2.6
2.7

3.1
32
33
34
3.5

4.1
42
43
44
45
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14

5.1
52

5.3
54

Clustered Boolean Network oo it e e 12
Computing Maximally Compatible Sets of Permissible Functions 17
Updating the Cut Line duringthe Procedure 20
An Example for Computing Maximally Compatible Sets of Permissible Functions 23
Procedure for ComposingClusters, 27
ScriptusedforTable2.4 e 31
Scriptsused forTable 2.5 e 32
The MinimizationofRRelations 43
Completely Specified Finite State Machine 44
Structure where Boolean Relation Arises 45
Procedure for Computing an Initial Representation 54
EXPANDIo e e e e e e e e e e e e 63
Interaction between TwoMachines 72
RectificationProblem 73
Supervisory Control Problem 73
FSMBooleanDivision 73
Procedure to Generate a Prime Machine 83
Exampleof Maand M e e 86
Permissible Machines My (U/v) i i e 86
The E-machine forExample44.1 88
The Problem where Global InputsDrive M; 93
Hierarchical Optimization of Interacting Finite State Machines 94
The NDE-machine forExample4.4.1 96
Exampleof Maand M e 100
The E-machine (left) and the NDE-machine (right) 100
Modification for Unimplementable Machines 105
Interaction betweenTwoMachines 111
A Non-Deterministic Machine whose Behaviors cannot be Represented by Single

DeterministicMachines e e 114
Procedure for Generating a Feasible Machine 118

A Counterexample of Theorem 5.3.1 for General Non-Deterministic Machines . . 120

vii

List of Tables

2.1
22
2.3
24
2.5

3.1
32
33
34
335
3.6
3.7

4.1

5.1
52

The Specification (a) and a BooleanRelation F(b) 12
The Maximum Set of Permissible Functions for Clusterv 12
Comparison between Compatible Sets and Maximum Sets 29
Comparison with full_simplify 31
Comparison with script.rugged 33
Example of Redundant Representation with Irredundant Cubes 41
Minimized Representations of the Finite State Machine 44
The 1-Hot Encoding of a Relation with Multiple-Valued Qutputs 47
The Log-Based Encoding of a Relation with Multiple-Valued Outputs. 47
Example where a Maximally Reduced Cube is not Unique 59
Example of Expansion for a BooleanRelation 66
ExperimentalResultso, 69
Experimental Results i e e e 107
Experimental Results o o i e e 143
Comparison between Optimum Moore Behaviors and Optimum Contained Behaviors145

viii

Acknowledgments

Many people supported me in various ways during the time I spent at Berkeley. Without
the help and encouragement, my will to graduate might have faded away in an early stage of the
Ph.D. program, and this thesis would not exist. Isincerely express gratitude to all of them, especially
to the following people.

My advisor, Robert K. Brayton. I owe to Bob absolutely everything about research.
Professor Brayton provided me all the technical skills that I currently have; how to set up the
research goal, how to formulate and attack a problem, how to write a paper, and how to organize a
technical presentation. -Among his outstanding abilities, I was especially impressed with his attitude
of conducting research with a full of respect toward the truth. With this attitude, Bob demonstrated
that research is an activity of proceeding on a trail of truth, rather than marching down into a
desired direction. I learned that this attitude is the origin of courage, indispensable when stuck at an
unexpected obstacle, to further proceed on the trail even though it leads to an unpleasant outcome,
It was also this attitude that convinced me of the significance of mathematical rigor and precision
in order to follow the right path. I admired Professor Brayton so much that I simply mimicked his
style. It was always fun when I felt that my technical abilities improved, and most pleasant when I
realized that once a research has been accomplished, it is often the case that the result can be stated
in a simple statement. This has been a useful check to see whether I have fully reached the end of
the trail, and also a great guidance to deliver a clear presentation. I will treasure what I learned from
Professor Brayton for the rest of my life.

I am grateful to Alberto L. Sangiovanni-Vincentelli and Shmuel Oren, the second and
the third members of my thesis committee. Professor Sangiovanni provided fruitful comments on
the research, especially for the second half of this thesis. Professor Oren kindly agreed to be a
member of both the qualification and the thesis committees, even though his research interests are
not directly related to the focus of the thesis. I also wish to thank Professor Katherine A. Yelick for

ACKNOWLEDGMENTS ix

her agreeing to be a committee member of my qualification examination.

Ermest Kuh has been thoughtful. As a family friend, Professor and Mrs. Kuh occasionally
invited me to dinner, even for a private gathering, and extended generous hospitality. He congratu-
lated me whenever I made an achievement, like on my passing the qualification examination, or on
my first presentation at an international conference. Professor Kuh sometimes dropped in a seminar
room while I was giving a talk, and gave positive feedback. I gratefully acknowledge his continuous
support and encouragement over the years.

I enjoyed fruitful collaboration in conducting this research. The clustering procedure,
presented in Section 2.5, is the result of collaboration with Lisa Guerra. Lisa also implemented a
prototype of the procedures described in the chapter. I sincerely appreciate her effort. I also thank
Alexander Saldanha for his interests in the work given in Chapter 4. Alex carefully read my notes,
and immediately provided a different interpretation of the result. This work yielded the construction
of non-deterministic E-machines, described in Section 4.6.

Significant cooperation was given by several people in order to complete the experiments
presented in this thesis. I thank Abhijit Ghosh for providing the program of his procedure for
minimizing a-Boolean relation. I am indebted to Fabio Somenzi for his support on the research
presented in Chapter 3, the minimization of relations. Whenever I sent an e-mail to ask a question
about his exact method of minimizing Boolean relations, he provided a perfect answer promptly,
usually in 30 minutes. Fabio also allowed me to use the program of his procedure for experiments.
Timothy Kam and Tiziano Villa let me use their procedure for a covering problem, with which
I was able to conduct additional experiments in Chapter 5. Huey-Yih Wang kindly offered me a
set of examples of interacting finite state machines for the experiments given in the same chapter.
I acknowledge their support. Special thanks are to Thomas Shiple, whom I always consulted on
questions about binary decision diagrams. Tom was eager to understand my problems, and often
came up with excellent solutions.

It was a great pleasure to be a member of the Berkeley CAD group. I thank every member
of the group, including those who used to be here. I express special gratitude to Albert Wang and
Hervé Touati. Ileamned from Albert art of (constructive) proof techniques, and from Hervé elegance
of presentation. My thanks also go to Brad Krebs and Mike Kiernan for excellent support on
facilities, to Flora Oviedo, Elise Mills, and Kia Cooper for daily assistance, and to Heather Brown,
Carol Lynn Stewart, and Genevieve Thiebaut for administrative support of the graduate program.

My life at Berkeley would not have been so delightful, if it had not been for the local
Japanese community. I owe the precious memory and experience to those who stayed at Berkeley

ACKNOWLEDGMENTS X

as visitors or students, as well as those who often visited the Bay area. They are, in alphabetical
order, Kozo Bando, Takashi Fujii, Tomoyuki Fujita, Yoshihiro Fujita, Masahiro Fukui, Hiroaki
Furuichi, Naoko Furukawa, Kenji Goto, Toshihiro and Keiko Hattori, Hiroshi Ichiryu, Nagisa
Ishiura, Masamichi and Yoshiko Kawarabayashi, Shigeyoshi Kawarai, Takashi and Mami Komaya,
Yuji Kukimoto, Tadahiro Kuroda, Naotaka Maeda, Yusuke and Tacko Matsunaga, Hitoshi Mat-
suo, Takashi Mitsuhashi, Yasuhiko Nakano, Tsuneo Nakata, Yoshihito Nishizaki, Yasushi Ogawa,
Hidetoshi Onodera, Akira Onozawa, Yasuaki Sakina, Masao Sato, Masatoshi Sekine, Kei and
Rikako Suzuki, Masayoshi Tachibana, Atsushi Takahara, Yoshio Takamine, Toru Toyabe, Atsuhisa
and Chiori Yakawa, and Makiko Yoshida. I am also grateful to Masami and Nobuko Fujimoto for
their support.

Finally, I thank my parents, Hitoshi and Reiko Watanabe. They regularly called me on
weekends, and it was always fun to hear from them what’s new there. I also liked telling them about
my recent activities, especially when I had good news, because they always got excited more than I
could.

Now, most emphatically, I thank my wife, Mika. I was not able to find the right word in
my English dictionary to express how much I owe to her. Hontoni doumo arigatou, Mika. 1 intend
to spend many years proving to her that I am worth the effort.

Chapter 1

Introduction

1.1 Optimization of Interacting Components

A system is a regularly interacting or intcrdependent group of items forming a unified
whole[36]. It is common that each item, or component, has some flexibility in its function. Namely,
one may alter-the function of the component while preserving:the behavior of the entire system.
Such flexibility, associated with internal components, is the subject of this thesis. Specifically, the
thesis addresses two issues; how to identify the flexibility, and how to use it.

Suppose one wants to design a system so that it realizes a given behavior. The design task
can be viewed as an iteration of the following two major processes. The first process is to determine
or modify the structure of the system, i.e. what kind of components are used and how they interact.
The second is to optimize the behaviors of the components with respect to the structure defined
above. This thesis deals with the second phase; for a given set of interacting components, optimize
behaviors of the components so that the entire system realizes a desired behavior. We consider the
problem in two steps. First, we identify a set of behaviors that can be realized at a component.
Such a set defines the flexibility associated with the component, and we call it a set of permissible
behaviors of the component. We then find, in the second step, an optimum behavior in the set
according to a given cost function.

The type of systems we consider in this thesis is digital systems. We follow the conven-
tional definition of digital systems [2, 4], i.e. one in which each component can be modeled so that
it handles information in a discrete manner. By behavior, we mean logic behavior. Specifically, we
consider two types of behaviors. One is a behavior modeled by a Boolean function, which is also
referred to as a combinational logic behavior. In particular, we focus on a function with multiple

CHAPTER 1. INTRODUCTION 2

outputs. Namely, each component of the system has multiple inputs and multiple outputs, and
implements a Boolean function between the inputs and the outputs. The other type of behaviors
is sequential logic behaviors. In this case, each component, with multiple inputs and outputs,
implements a function between the input sequences and the output sequences.

Among digital systems, we restrict our attention only to synchronous systems in this thesis.
In a synchronous system, the operations of all the components of the system are synchronized by
a global timing controller, or a clock, and each operation requires an integer number of clock
intervals [5, 19]. For combinational logic behaviors, we assume that signals arrive at all the inputs
of the system at the same time and it takes no time for each component to compute the corresponding
output signals. For sequential logic behaviors, we assume that every component generates an output
event simultaneously, one at a time for each clock interval. Under these assumptions, we consider,
for each type of behaviors, how to compute a set of permissible behaviors, as well as how to find an
optimum behavior.

1.2 Organization of the Thesis

This thesis consists of four main chapters. One can divide them in two ways. One way
is based on the types of behaviors. In Chapter 2 and Chapter 3, we deal with combinational logic
behaviors, while sequential logic behaviors are considered in Chapter 4 and Chapter 5. The other
way of dividing the thesis is in terms of the types of problems. In Chapter 2 and Chapter 4, we
consider the problem of identifying a set of permissible behaviors, while Chapter 3 and Chapter 5
are concerned with the problem of finding the best behavior. Specifically, each chapter is organized
as follows.

Chapter 2 deals with the case where each component implements a Boolean function
with multiple inputs and multiple outputs. Although extensive research has been made for the
problem of finding permissible behaviors for combinational logic with a single output [3, 39, 50],
little has been done for the case of multiple outputs. In this chapter, we first discuss the problem
of finding the maximum set of permissible behaviors for a given component. Namely, fixing the
behaviors of all the other components of the system, we compute the complete set of behaviors
at a particular component that can be realized there while preserving the behavior of the entire
system. A behavior here is a Boolean function with multiple outputs. Brayton and Somenzi showed
in [11] that the complete set can be represented by a Boolean relation, a relation between the
Boolean spaces'spanned by the inputs and the outputs of the component respectively. Namely, a

CHAPTER 1. INTRODUCTION 3

function f is in the set if and only if for all elements x of the input domain, the pair (x, f(x))is a
member of the relation. A procedure for computing such a set was proposed by Savoj [48]. We first
review the work, and then focus on another kind of permissible behaviors called a compatible set
of permissible behaviors [39]. Unlike the maximum set, a compatible set of permissible behaviors
is computed for every component of the system, and has the property that an arbitrary combination
of behaviors of the sets over the components results in a desired behavior on the entire system. The
property of compatibility enables one to process all the components in parallel for finding optimum
behaviors in the succeeding step. We consider the problem of computing maximally compatible
sets of permissible behaviors over the components, where compatible sets are maximal if there is no
permissible behavior that can be newly added to any one of the sets without destroying the property
of compatibility. We show that each of the maximally compatible sets can be also represented by a
Boolean relation, and present a procedure for computing such sets. We also show that the maximum
set of permissible behaviors at a particular component can be computed as a special case of this
procedure.

In Chapter 3, we address the problem of finding an optimum combinational logic behavior
for multi-output components. As a cost function, we use the number of product terms required in
a sum-of-products expression representing a function. Therefore, the problem is that for a given
relation representing a set of functions, find a sum-of-products expression with the minimum number
of product terms over all the functions in the set. This problem is called the minimization of relations,
and is a generalization of the minimization of functions, which has been fully investigated [8, 25, 34].
In this chapter, we consider the general case where an input variable of a function may assume
more than two values. We present a heuristic procedure for the problem, which is analogous to
Espresso [8], a well-developed heuristic approach for minimizing functions. We make a contrast
between relations and functions by showing some special properties associated with relations not
found in functions. These properties are carefully accounted for in the proposed heuristic procedure
to effectively achieve high quality results. The results are compared against the exact method given
in [53].

Chapter 4 and Chapter 5 perform an analogous investigation for sequential logic behav-
iors. Each component of the system now implements a sequential logic behavior, i.e. a function
between the input sequences and the output sequences of the component. Under the assumption of
synchronous systems, the behavior can be represented by a finite state machine [35]. Therefore,
the entire system can be regarded as one in which a number of finite state machines are mutually

interacting.

CHAPTER 1. INTRODUCTION 4

Chapter 4 considers the problem of finding the maximum set of permissible behaviors at a
given component. The definition of the set is same as the combinational case, except that a behavior
here is now sequential. Although extensive research has been done for the problem [18, 29, 43, 56],
no method is known on how to capture the complete degree of freedom. We claim that the complete
set of permissible sequential behaviors of a given component can be computed and represented
by a single non-deterministic finite state machine, which we call the E-machine. A procedure to
compute the E-machine is also provided.

In Chapter S, we minimize the E-machine. The problem is to find an optimum permissible
behavior given in the E-machine, where we use, as a cost function, the number of states required
in a finite state machine to represent the behavior. This is a generalization of the problem known
as the state minimization, or the state reduction, of deterministic finite state machines, for which
the research is well-matured [1, 23, 24, 27, 38, 40, 41, 44]. The chapter first presents a theoretical
analysis, where we consider how the conventional concepts developed for deterministic machines
can be generalized. We show that the E-machine is a special type of non-deterministic machine, and
this property can be effectively used for solving the problem. We propose both exact and heuristic
procedures, and conduct experiments to demonstrate the effectiveness of taking into account the
interaction with other components of the system in optimizing systems of finite state machines.

In each chapter, we first clarify the focus of the chapter, and provide a background of
the subject, such as related works in the literature or applications of the problem. Terminology
used in the chapter is then defined so that each chapter is made self-contained. Remarks on the
individual approaches presented in each chapter, such as evaluation of experimental results or
technical limitations of the procedures, are noted at the end of the chapter. The entire thesis is
concluded in Chapter 6.

Chapter 2

Permissible Logic Functions for

Multi-Output Components

2.1 Introduction

We' consider the case where each component of a system is combinational logic, i.e.
it implements a Boolean function with multiple inputs and multiple outputs. We assume that
no combinational loop exists in the system; in particular we assume that the connections of the
components do not form a cycle!. Such a system can be represented by a directed acyclic graph,
where a node corresponds to a component and an edge corresponds to a connection between
components. A multi-output Boolean function is associated with each node, which is the one
implemented by the corresponding component. We call the graph a clustered Boolean network.

The problem addressed is to find a set of permissible Boolean functions at each node of
a given clustered Boolean network. The application we consider is the logic optimization of multi-
level combinational logic circuits. One optimization technique is to optimize a logic representation
of a function that can be realized at a given sub-portion of a circuit. This is generally referred to as
a local optimization or node optimization. It can be achieved by (1) computing a set of functions
allowed to be implemented at the node, and (2) finding one with a least-cost representation. A
clustered Boolean network is a model for a multi-level combinational logic circuit, and the first step
of this optimization scenario is the problem addressed in this chapter. Chapter 3 is concerned with
the last step.

1t could happen that a cycle of components would not have a cyclic dependence, but we rule this out for ease of
exposition. This can happen even if each component has only one output.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 6

Conventionally, a multi-level combinational logic circuit is abstracted in a more restrictive
way by using a model called a Boolean network, and the problem above has been extensively studied
for this model [9]. A Boolean network is also a directed acyclic graph, where the Boolean function
associated with each node must have a single output. This single-output requirement is considered
a limitation, since experience with two-level (PLA) minimization demonstrates that better results
are usually obtained by simultaneously optimizing a set of functions, rather than one at a time. In
this chapter, we remove this restriction and see how node optimization can be done for the general
case.

We consider two types of sets of permissible functions. One is the maximum set of
permissible functions defined at a given node of a clustered Boolean network. Specifically, fixing
the Boolean functions associated with the rest of the nodes as they are, one wants to compute the
maximum set of Boolean functions that can be realized at the node while preserving the functionality
of the entire network. Brayton and Somenzi showed in [11] that in case of multiple-output functions,
such a set cannot be represented by a Boolean function with don’t cares, and introduced a theory
of Boolean relations. The claim is that the maximum set can be computed and represented by a
Boolean relation, where the relation consists of all possible pairs of input and output values allowed
to be realized at the node. A procedure to compute such a relation was presented by Savoj in [48].
We first review how a set of functions can be represented by a relation as well as why a relation
is necessary to represent such a set. We then consider another type of set of permissible functions
called compatible sets. For this type, a set of sets of Boolean functions is defined, one set for each
node of a network, and has the property that simultaneous replacement of the functions associated
with the nodes by an arbitrary combination of the functions, one from each of the respective sets,
preserves the functionality of the entire network. The notion of compatible sets was first introduced
by Muroga et. al [39] for the case where each node of the network implements a single-output NOR
gate, along with a procedure to compute such sets. Savoj proposed a method for a more general
case where, instead of a NOR gate, a node may implement an arbitrary single-output Boolean
function [49]. Introduced also in [49] is a notion of maximally compatible sets of permissible
functions, where compatible sets are maximal if there is no function that can be newly added to any
one of the sets without destroying the property of compatibility. However, no method is known for
computing such sets even for the case of single-output Boolean functions.

In this chapter, we consider the problem of computing maximally compatible sets of
permissible functions for the case where a node may implement an arbitrary multiple-output Boolean
function. We first show that each of such sets can be also computed and represented by a Boolean

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 7

relation. Then we present a procedure to compute such relations. Since we make no assumption
on the number of outputs of a Boolean function associated with each node, the proposed method is
valid even for the case of single-output functions.

This chapter is organized as follows. After defining terminology in Section 2.2, we review
how to compute the maximum set of permissible functions for a clustered Boolean network in
Section 2.3. Section 2.4 addresses the problem of finding maximally compatible sets of permissible
functions, and presents a procedure to compute such sets for clustered Boolean networks. We also
show in this section that the maximum set of permissible functions can be obtained as a special
case of the proposed procedure. In Section 2.5, we present a procedure of composing a clustered
Boolean network from a given Boolean network. Such a procedure is necessary when one performs
optimizations based on a conventional Boolean network, and then wants to apply local optimization
based on a clustered Boolean network. A clustered Boolean network is composed by grouping
together a set of nodes of the original Boolean network. The procedures have been implemented
and we present experimental results in Section 2.6. Section 2.7 concludes the chapter.

2.2 Preliminaries

We first define a Boolean network, the conventional model used for logic optimization of
multi-level combinational logic circuits.

Definition: Boolean Network

A Boolean network 7 = (N, E) is a directed acyclic graph. A node with no in-coming
edges is called a primary input node. A Boolean network contains at least one node referred to
as a primary output node. A node that is neither a primary input node nor a primary output node
is called an intermediate node. The set of the primary input nodes, the primary output nodes, and
the intermediate nodes are denoted by X, Z, and Ny, respectively. Given two nodes, s and ¢, sis a
fanin of ¢ if an edge [s, t] exists in . Conversely, ¢ is a fanout of s in this case. Similarly, s is said
to be a transitive fanin of ¢, if s is a fanin of ¢ or there is a fanout of s that is a transitive fanin of .
The node t is said to be a transitive fanout of s in this case.

A Boolean variable is associated with each node of . For each node s not a primary
input, a single-output Boolean function is associated. This is a function of the variables associated
with the fanins of s.

We make no distinction between a node of a Boolean network and the Boolean variable

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 8

associated with it; the variable of a node s is denoted by s.

For each node of a given Boolean network 7, one can uniquely define a Boolean function
represented in terms of the primary inputs. Such a function is referred to as a global function of
the node. Specifically, the global function of a primary input node x is given by z itself, while
the global function of a node s, not a primary input, is given by substituting each variable of the
function defined at s with the global function of the node corresponding to the variable. Consider
a multiple-output Boolean function g such that the function of the ¢-th output of g, g, is the global
function of the -th primary output node of Z. We call g the functionality of 7.

We assume that for a given Boolean network 7, a Boolean relation M, defined between
the Boolean spaces spanned by the primary inputs and the primary outputs respectively, is given
to specify the allowed functionalities of 7. We represent the relation by its characteristic function,
M : B! x B\Zl . B with B = {0,1}, and call it the specification of n. Namely, M(x,z) = 1
if and only if (x,z) € M, and we make no distinction between a relation and its characteristic
function in the sequel. The specification M provides all possible combinations of the values of the
primary inputs and the primary outputs that are allowed to be realized on 7, and we say that 7 meets
the specification M if for all minterms x € BIX! of the primary inputs, M(x,g(x)) = 1, where g
is the functionality of 7. We assume, without loss of generality, that the original functionality of n
meets the specification M.

The model we use in this chapter is a clustered Boolean network, which is similar to a
Boolean network except that the function associated with each node may have more than one output.

We regard a clustered Boolean network as one composed from a Boolean network.

Definition: Clustered Boolean Network

Given a Boolean network 7 = (N, E), adirected acyclic graphT" = (V, K)is a clustered
Boolean network if the following properties hold:

1. VweV:vCNiUZ
2. V(u,v)eVXxV:iutv=>unNv=2¢

3. Uv=mNuz
veV

4. V(u,v)eVxViu#tv:[uv]€e K& I(s,t)euxv:[s,t]€ E

I"is a partition of the nodes of 7 other than the primary inputs, where each v € V contains
at least one node of 7. A node v € V is called a cluster, and is distinguished from a node of the

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 9

original Boolean network. An edge [u, v] exists in I from a cluster u to a cluster v if and only if
there exists a pair of nodes of 7, (s,t) € u X v, such that an edge [s, t] exists in 7. Note that an
edge in K is defined only for a pair of distinct clusters, and there is no self-loop for a single cluster.
The definitions of fanins , fanouts , transitive fanins , and transitive fanouts follow those of Boolean
networks.

For each cluster v € V, a variable for anode s € N is an input variable of v if s is not in
v and there is a node ¢ in v such that an edge [s,] exists in 77. A variable s € N is an output variable
of the cluster v if s is in v and either s is a primary output node or there is a node ¢ outside v such
that an edge (s, f] exists in 7. The set of input variables and the output variables of a cluster v are
denoted by I, and O,, respectively. Associated with v is a multi-output Boolean function from the
Boolean space spanned by I, to that by O,. The function is given by the functions of 7 originally
associated with the nodes of v.

As with a Boolean network, we can define the functionality of a clustered Boolean network
as a multi-output Boolean function from the primary inputs X to the primary outputs Z that is given
by composing the functions associated with the clusters of the network. We say the clustered
Boolean network meets the specification in the same way as defined for Boolean networks.

2.3 The Maximum Set of Permissible Functions

We consider the problem of finding a set of functions that can be realized at a particular
cluster of a clustered Boolean network so that the resulting functionality of the network meets a
given specification, where the functions of the rest of the clusters are all fixed. We call each such
function a permissible function of the cluster.

Definition: Permissible Function
Given a clustered Boolean network I' = (V, K') with a specification M, a function
f : B\l . BI04l s said to be permissible at a cluster v € V/, if the functionality of " given by
replacing the function of v with f meets the specification M.

Brayton and Somenzi showed that the maximum set of permissible functions at a given
cluster can be computed and represented by a single Boolean relation [11]. Here, a set F of
Boolean functions, ¥ C {f | f : B® — B™}, is said to be represented by a Boolean relation
F:B"xB™ - B,if fe F & Vxe B": F(x,f(x)) = 1,ie. F={f|Vxe B":
F(x, f(x)) = 1}.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS10

We first clarify the condition under which a set of functions can be represented by a
relation in the sense above. We start with the definition of the following operation.

Definition: Output Selection

The output selection is a non-deterministic operation defined over a pair of functions
with the same input and output spaces, say f : B — B™ and g : B* — B™, which returns one of
the functions & : B® — B™ such that for all x € B™, h(x) is equal to either f(x) or g(x).

Lemma 2.3.1 A set of Boolean functions, F C {f | f : B® — B™}, is represented by a Boolean
relation, if and only if F is closed under the output selection operation.

Proof: Suppose that F can be represented by a Boolean relation F' : B® x B™ — B,ie. f€ F
if and only if F(x, f(x)) = 1 for all x € B". We show that F is closed under the output selection
operation in this case. Consider a pair of functions (f,g) € F x F, where f and g might be
identical. Let A be a function obtained by output selection over f and g. Then for each x € B",
h(x) is equal to either f(x) or g(x), and thus F'(x, h(x)) = 1 since both f and g are members of
F. Hence h is a member of F, and F is closed under the output selection operation.

Conversely, suppose F is closed under the output selection operation. We show that there
exists a Boolean relation F' : B x B™ — B suchthat f € F if and only if F(x, f(x)) = 1 for all
x € B™. Consider a relation F such that F(x,y) = 1 if and only if there exists a function f € F
for which y = f(x). Then for an arbitrary function f € F, the relation F satisfies the property that
F(x, f(x)) = 1 for all x € B™. The proof is complete if we show that for every function f with
the property that F(x, f(x)) = 1 forall x € B®, f is amember of . We first extend the definition
of the output selection operation so that it can be defined for more than two operands. Namely,
for a given finite set of functions {f1, ..., f,} which share the same input and output spaces, the
extended output selection operation returns a function f such that for each input x, there exists
i € {1,...,7} for which f(x) = fi(x). It is easy to see that the closedness of the set F under
the original definition of the output selection operation implies the closedness under the extended
definition. Now, consider a function f with the property that F(x, f(x)) = 1 forall x € B*. We
show that f is a member of the set F. For an arbitrary input x € B™, since F(x, f(x)) = 1, the
definition of the relation F' implies that there exists a function in F whose output for the input x is
equal to f(x). Denoting such a function by f(*), we see that f can be obtained as a result of output
selection over a set of functions {f®*) | x € B"}. Since F is closed under this operation, fis a
member of F, which completes the proof. . =

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS11

It is then claimed that the maximum set of permissible functions at a given cluster can be
represented by a Boolean relation.

Theorem 2.3.1 The maximum set of permissible functions defined at a cluster of a given clustered
Boolean network with a specification can be represented by a Boolean relation.

Proof: Let F C {f | f : Bll"| - BIOI} be the maximum set of permissible functions at a cluster
v. We denote the clustered Boolean network by I and the specification by M : BIX| x BIZl —, B,
By Lemma 2.3.1, the proof is done if we show that F is closed under output selection. Consider
a pair of functions (f,g) € F x F, where f and g might be identical. Let k be a function given
by output selection over f and g. We show that / is a member of F. Suppose the contrary, i.e.
h ¢ F. Since F is maximum, it implies that k is not a permissible function for the cluster v.
Then there exists a minterm of the primary inputs, x € BIX|, for which the value z obtained at the
primary outputs of the network I" by replacing the function of the cluster v by /& does not meet the
specification, i.e. M(x,z) = 0. Let u € B!"*| be the value obtained at the input variables of the
cluster v for such an x. By definition of the output selection, ~(u) is equal to either f(u) or g(u).
Suppose, without loss of generality, A(u) = f(u). Then if we replace the function of the cluster v
by f in the network I" and apply x to the primary inputs, the value obtained at the primary outputs is
identical with the one obtained when h is realized at v. Since that value z, obtained at the primary
outputs, does not meet the specification M for the input x, f is not a permissible function. This
conflicts with the fact that f is a member of 7. Hence, our assumption that & is not a permissible
function is incorrect. Therefore, the set F is closed under the output selection operation, and there
exists a Boolean relation which represents the set. =

We show by an example how the maximum set of permissible functions can be represented
by a Boolean relation. Consider a clustered Boolean network shown in Figure 2.1 with two primary
inputs and two primary outputs, where a circle represents a cluster in the figure. Suppose we want
to compute the maximum set of permissible functions at the cluster v for the specification shown
in Table 2.1-(a). The cluster v has two inputs z; and z3, and two outputs v, and v,. The function
associated with each cluster other than v is given in Figure 2.1. For this example, the maximum
set consists of four functions as shown in in Table 2.2, which are denoted by {fi,..., fa}. This
set can be represented by a Boolean relation F* given in Table 2.1-(b). The table shows that a pair
(z122,1122) = (00, 10) is a member of F, (00,01) is another member of F, and so on. Namely,
the relation F consists of all possible pairs of input and output values allowed at the cluster v to

satisfy the specification. We first note that this set of functions cannot be represented by a Boolean

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS12

V1 Z>
X1 =
V2
Figure 2.1: Clustered Boolean Network
122 | 2122 , Z1T2 | 1%
00 11 00 | 10,01
01 00 01 |00
10 | 00 10 [11
11 11 11 | 10,01
@ ()

Table 2.1: The Specification (a) and a Boolean Relation F' (b)

hl Al | fa
122 [V1 | 12 | V1R | VI
00 10 10 01 01
01 00 00 00 00
10 11 11 11 11
11 10 01 10 01

Table 2.2: The Maximum Set of Permissible Functions for Cluster v

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS13

function with don’t cares. Recall that in general, one can use don’t care conditions to represent
a set of functions. Namely, for a given Boolean function which may have multiple outputs, one
specifies a set of input minterms that are treated as don’t cares for each output of the function. It
is then interpreted that for each output, the value of the output may be either 0 or 1 for those don’t
care inputs, while it must coincide with the value of the originally given function for the rest of
the input minterms. In this way, one can represent a set of functions using don’t care conditions.
However, it is not the case for the set of functions shown in Table 2.2. This is because the set of
don’t care minterms must be specified for each output separately. Namely, we must say that for the
output vy, the minterms ;22 = 00 and z,z; = 11 are don’t cares, since the value of v; may be
either O or 1 for these input minterms. Similarly, 12, = 00 and z;2, = 11 are don’t cares for the
output v2. Then, since 12, = 00 is a don’t care for both outputs, this implies that we can output an
arbitrary minterm at v; v, for this input, and thus v v, = 00 or v1v; = 11 are also feasible outputs,
which is a wrong conclusion. The point here is that since don’t cares are specified for each output,
in case of multi-output functions, disallowed output patterns might be included as feasible outputs,
and thus representations using don’t cares might be inadequate. Using a Boolean relation, one can
explicitly specify which output pattern should be allowed for each input minterm. Specifically, for
our example, the inclusion of a pair of input and output minterms in the relation is determined by
checking if there is a permissible function that realizes the pair. However, as seen in the beginning
of this section, not all sets of functions can be represented by using relations. Observe that in
forming a relation for our example, the inclusion of one pair in the relation is independent of the
inclusion of another. Conversely, for a given relation ¥, one can obtain a permissible function by
choosing one pair for each input minterm, i.e. one output minterm for each row of Table 2.1-(b),
where the choice made for one input minterm is independent of the choice for another. This property
allows us to represent a set of functions by a relation. In fact, if we take a subset of the maximum
set of permissible functions, we cannot represent it by a Boolean relation in general. The subset
{f1, f2, f3} is one such example. This is because the subset is not closed under output selection;
f4 can be obtained as a result of the output selection over f, and f3, but is not in the subset. In
some sense, it is the maximality of the set of functions that makes it possible to use a relation for
representing the set. We will see, in the following section, another type of set of functions that can
also be represented by a relation. They also have a maximality property, in a different sense, and
thus can be represented by a relation.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS14

2.4 Maximally Compatible Sets of Permissible Functions

2.4.1 Maximally Compatible Sets and Boolean Relations

We now consider the problem of computing a set of permissible functions for every cluster
of a network. The resulting set of sets of permissible functions, one set defined for each cluster, has
the property of compatibility defined as follows:

Definition: Compatible Sets of Permissible Functions

Given a clustered Boolean network I' = (V, K) with a specification M, a set of sets
of functions defined over the clusters of the network is said to be a set of compatible sets of
permissible functions, if for an arbitrary selection of functions, one from each set, the functionality
of I" given by simultaneously replacing the function of ecach cluster with the selected function for
that cluster meets the specification M.

Namely, one can choose an arbitrary function among the set defined for each cluster
independently, and the property of compatibility guarantees that the resulting functionality of the
network meets the specification.

Note that for the maximum set of permissible functions defined at a single cluster v, it was
assumed that the functions of the rest of the clusters of the network were all fixed. Thus, the degree
of freedom given at one cluster depends upon the others; if one changes the function associated with
another cluster, the set of permissible functions originally computed at v is not necessarily valid,
and one may have to re-compute it. This is not the case for éompatible sets of permissible functions.

Compatible sets of permissible functions are said to be maximal if no new function can be
added to any one of the sets without destroying the property of compatibility. Note that in general
maximally compatible sets are not unique for a given clustered Boolean network with a specification;
the sets are maximally compatible as long as strictly larger compatible sets do not exist. Maximally
compatible sets are of interest because they can be computed and used independently, possibly
by parallel processing. In this section, we present a procedure for computing a set of maximally
compatible sets of permissible functions.

We first show that for any given set of maximally compatible sets, the set of permissible
functions defined at each cluster can be represented by a Boolean relation.

Theorem 2.4.1 For a set of maximally compatible sets of permissible functions defined over the
clusters of a given clustered Boolean network with a specification, each set defined at a single

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS15

cluster can be represented by a Boolean relation.

Proof: Let 7, C {f | f : B/l = BIO+I} be the set defined at a cluster v. We denote the network
by I" and the specification by M : BX| x Bl?l . B, By Lemma2.3.1, the proof is done if we show
that the set F, is closed under the output selection operation. Consider an arbitrary pair of functions
(f,9) € Fy, x F,, where f and g may be identical. Let A be a function given by output selection
over f and g. We show that A is a member of F,. Suppose for contrary that h ¢ F,. Since F, is
maximal, by definition of compatibility, there exists a combination of functions, where one function
is chosen for each cluster from the corresponding set of the maximally compatible sets, such that
if we replace the function of » by % and the function of each of the other clusters by the one in the
combination, then the resulting functionality of T does not meet the specification. Specifically, there
exists a minterm of the primary inputs x € BIX| such that for the corresponding minterm z € BI?!
of the primary outputs obtained by I under this replacement, M (x,z) = 0. Let u € B!l pe the
value obtained at the input variables of the cluster v for this x. By definition of output selection,
h(u) is equal to either f(u) or g(u). Suppose, without loss of generality, h(u) = f(u). Then if,
instead of using % for the function of the cluster v in the replacement above, we replace the function
of the cluster v by f, and if we apply x to the primary inputs of the network, then the same value z
is obtained at the primary outputs. Since the value z does not meet the specification M for the input
x, the combination of the functions above, where f is chosen for the cluster v, is not permissible.
This is conflict with the property of compatibility. Therefore 4 is a member of F,, and F, is closed
under output selection. Hence the set can be represented by a Boolean relation. =

24.2 A Procedure for Computing Maximally Compatible Sets

We now present a procedure for computing a set of maximally compatible sets of
permissible functions for a given clustered Boolean network I' = (V, K') with a specification
M : BX| x BI%l _, B. The proposed procedure sorts the clusters of T first, and processes one
cluster at a time in this order. Therefore, the result of the procedure is order dependent. The order
of the clusters satisfies the property that for all pairs of clusters {u,v}, if u is a fanin of v, i..
[u,v] € K, then v precedes u in the order. Therefore, the procedure starts with a cluster with
only primary outputs, and when a cluster is processed, all the fanout clusters have been already
processed.

We denote by o the order of the clusters employed in the procedure, and assume that the
clusters are processed in the increasing order of o. Then when a cluster v is processed, a cluster

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS16

w with o(w) < o(v) has been processed, and a set of functions F,, C {f | fu : Bllvl — BlO«l}
has been already computed for w. The procedure computes a set of functions at v, 7, C {f |
fo : Bl = BIO«}, such that F, satisfies the following property with respect to the set of sets of
functions computed for the already processed clusters:

Property 1: forward compatibility property

A function f, : B!l — B9l js a member of F,, if and only if for an arbitrary
combination of functions for the processed clusters, C,, = {f, : B\l — Bl%l | f, € 7, and
o(w) < o(v)}, the functionality of I" meets the specification by replacing the function of v with f,
and the function of w with f,, € C,, for each w such that o(w) < o(v), where a function f, at each
cluster » such that o(u) > o(v) is fixed to the one originally associated with the cluster.

Intuitively, we compute F, so that the resulting sets of functions associated with all the
already processed clusters are maximally compatible, in the sense that any combination of functions
for these clusters, together with the original functions for the unprocessed clusters, leads to a
functionality of the entire network which meets the specification, and no new function can be added
to any of these already processed clusters without destroying this property. Then it immediately
follows that at the end of the procedure, when all the clusters have been processed, we obtain

maximally compatible sets of permissible functions.

Theorem 2.4.2 Given a set of sets of functions C = {F, | v € V}, suppose that F, satisfies the
forward compatibility property for each v € V. Then C is a set of maximally compatible sets of

permissible functions.

Proof: By definition, it is easy to see that C is a set of compatible sets of permissible functions.
We show the maximal compatibility of C. We first note that for each cluster v, the function
originally associated with v in I" is a member of F,. This is because when the cluster w which is
immediately before v has been processed, an arbitrary combination of functions for the processed
part, C, = {f, : Bl — B0« | £, € 7, and a(w) < o(v)}, together with the original
functionality for the rest of the clusters, leads to a functionality of I" that meets the specification,
and thus by definition of Property 1, the function originally associated with v is a member of F,,.
Now, suppose for contrary that there exists a function f,, at some cluster v, such that
fo & F, and the set of sets of functions given by replacing F, with F, U {£,} in C is still a set
of compatible sets of permissible functions. We denote the resulting set of sets of functions by
C. Consider an.arbitrary combination of functions C, = {f,, : Bl = BIOul | f, € F, and

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS17

|

L\

cut line

Figure 2.2: Computing Maximally Compatible Sets of Permissible Functions

o(w) < a(v)}. Let U be the set of functions originally associated with the clusters « such that
o(u) > a(v). Note that f, € F, foreach f, € U, while f,, € F, foreach f,, € C,. Suppose we
realize f,, € C, at each cluster w such that o(w) < o(v), f, at the cluster v, and f, € U at each
u such that o(z) > o(v). Then, since € is compatible, the resulting functionality of the network I
meets the specification. Since F, satisfies the forward compatibility property, we see that f, must
be a member of F,, which is a contradiction. Hence, the set C is a set of maximally compatible
sets of permissible functions. =

We present how to compute such a set F, for each cluster. Suppose a cluster v is being
processed. First, define the cut line on the edges of T to partition the clusters into two classes; one
is the set of clusters already processed, the other consists of all the unprocessed clusters. Such a cut
is uniquely defined for a given cluster v being processed and an order o. Figure 2.2 illustrates the
situation, where the shaded clusters designate those already processed. Note that all the out-going
edges of v crosses the cut. Let 1" be the set of Boolean variables which cross the cut but are not the
output variables O, of v. More specifically, a variable is in T" if and only if it is an output variable of
an unprocessed cluster other than v and either it is a primary output or is an input variable of some
processed cluster. By definition, T' and O, do not intersect, and their union gives the complete set
of Boolean variables crossing the cut.

Let ¢® : BXI — BITI pe a Boolean function between the primary inputs and the
T variables defined above, which reflects the original functionality of the unprocessed clusters.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS18

Namely, ¢(*(x) provides the value that appears at the T variables in the original network T'
for the primary input x; g is the set of global functions for the T variables. Similarly, let
g : BXI - Bl pe a Boolean function between the primary inputs and the input variables
of the cluster v such that ¢(®)(x) = u if and only if u is given at the input variables of v by the
original functions associated with the unprocessed clusters for the primary input x. Now, in order
to compute F,, we use a Boolean relation H : BIO*VT| x BIZl . B defined between the variables
crossing the cut line, i.e. O, U T, and the primary outputs Z. It satisfies the following property:

Property 2: existential property

H(vt,z) = 1 if and only if there exists a combination of functions for the already
processed clusters, Cy, = {f,, : Bvl - B0l | f,, € F, and o(w) < a(v)}, with which the
value z is obtained at the primary outputs by setting the values of O, and 7" to v and t, respectively.

Recall that F,, is a set of functions computed for a cluster w, where such a set exists for
each w with o(w) < o(v). Intuitively, the relation H shows what values can appear at the primary
outputs for a given value at the cut, and H(vt,z) = 1 as long as there exists a combination of
functions for the processed part for which vt is mapped into z. We then compute a Boolean relation
F,: B\l x BIO“| _, B defined at the cluster v such that F,(u,v) = 1 if and only if

V(x,2) € BX!I x BIZl ; u = ¢®)(x) and H(vg¥)(x),z) = 1= M(x,2)=1 (2.1)

It is then claimed that the set F, of functions given by the relation F,, ie. F, =
{fs : BBl — BIO | yu : Fy(u, f,(u)) = 1}, satisfies the forward compatibility property
(Property 1). Intuitively, we can interpret the computation of F), above as follows. By the forward
compatibility property, we want to compute a maximal set of functions at the cluster v so that, for an
arbitrary combination of functions chosen from the sets computed so far, together with the original
functionality for the unprocessed clusters, the resulting functionality of the entire network always
meets the specification. Therefore, for a given pair of minterms (u,v) € Bl«| x BIO+l, we look at
each primary input x € B! and each primary output z € Bl?|, and include the pair (u, v) in the
relation F, if and only if (x, z) meets the specification for any possible primary output z. A value
z is possible if and only if the u value appears at the input variables of the cluster v for the minterm
X, and the minterm vt can be mapped into z by the already processed clusters, where t = g()(x).
A formal proof of this claim is found in Theorem 2.4.3.

In the actual computation of F),“above, each of the operands is represented by a binary

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTSI19

decision diagram (BDD) [12], and the operations are performed on BDD’s. A BDD is a data
structure to represent a single-output Boolean function, and thus the characteristic function of the
relation H or M can be directly represented by BDD’s. For a multi-output function, such as
g™ : BIXI BIL this is done by defining a relation G™ : BIX| x BIbl _, B such that
G™)(x,u) = 1 if and only if u = ¢(*)(x). G*) is represented by a BDD.
Once F, is computed, the procedure moves on to the next cluster according to the order
o. At this point, we need to update the cut line, since now the cluster v has been processed. The
new cut line is shown in Figure 2.3. Since the cut line has been updated, we also need to update the
relation H. The new relation, say A, has the input part I, and T, the output part Z, and satisfies
the existential property (Property 2) where the cluster v is replaced by the one being processed in
the statement. Specifically, such a relation & : BI+YTl x BIZ| _, B is defined as H (ut,z) = 1 if
and only if
3v € BlOl : Fy(u,v)=1and H(vt,z) = 1 22)

Hence, the relation H is dynamically updated using the relation F;, just computed for the cluster v
and the original relation H. In the beginning of the procedure, the output variables O,, of the cluster
v processed first, i.e. the one on the top of the order o, are all primary outputs. T variables defined
in the beginning are also primary outputs, and the union of O, and T is equal to the set of primary
outputs Z. Hence, both the input part and the output part of the relation H given in the beginning
are the primary outputs, and we initialize it as H(vt,z) = 1 if and only if vt and z are identical.
The procedure terminates when all the clusters have been processed.
The correctness of the proposed procedure is claimed below.

Theorem 2.4.3 The set of sets of functions given at the end of the proposed procedure over the

clusters of T is a set of maximally compatible sets of permissible functions.

Proof: We show by induction that the forward compatibility property (Property 1) and the existential
property (Property 2) hold for the relations F’, and H, respectively.

For the base case, let v be the cluster on the top of the order o. We first show that the
forward compatibility property holds for the relation F, computed by the formula (2.1). Since no
cluster has been processed before, the following statement is equivalent to the property; a function
f» is a member of F, if and only if the functionality of I" meets the specification by replacing the
function of v with f,. Now, recall that the output variables O,, of v are all primary outputs, and T
~ variables are initially defined as the rest of the primary outputs. Since the functionality of I meets

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS20

|

»
\ S\

Figure 2.3: Updating the Cut Line during the Procedure

the specification with a function f, if and only if for each x € B\X|, the value z obtained at the
primary outputs meets the specification, i.e. M(x,z) = 1, f, has the property that f,(u) = v if
andonly if |

vx € Bl u = ¢®(x) = M(x,2) =1,

where z = vg(!)(x). Since the relation H is initialized so that H(vt,z) = 1 if and only if vt and
z are identical, the formula above is equivalent to the formula (2.1). Therefore, f,(u) = v if and
only if F,,(u,v) = 1. Hence, the functionality of I" meets the specification for a function f, if and
only if f, is a member of 7, and the forward compatibility property holds.

Suppose that this F, and the initial relation H are used to update the relation H according
to the formula (2.2). We prove that the resulting relation # (ut, z) satisfies the existential property.
Since v is the only cluster processed so far, the property in this case is that A (ut,z) = 1 if and
only if there exists a function f, € F, with which the value z is obtained at the primary outputs by
setting I, and 7" to u and t, respectively. Since O, and T are the primary outputs, this is equivalent
to saying that #(ut,z) = 1 if and only if there exists v € BIO*| such that F,(u,v) =1 and
z = vt. Due to the initialization of the relation H, it is equivalent to the formula (2.2), and thus the
existential property holds.

Now consider the induction step. Let v be the cluster being processed. Suppose that the
relation H : BIOYTlx BIZ| — B has been computed so that it satisfies the existential property. We
first show that the forward compatibility property holds for F,, given by the formula (2.1). Let fo

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS21

be a function of F,. We show that for an arbitrary combination of functions for the clusters already
processed, say C, = {fy : BIl*| = BlO«l | £, ¢ F,, and o(w) < o(v)}, the functionality of T
meets the specification by replacing the function of v with f, and the function of w with f,, € C,
for each w such that o(w) < &(v). Consider an arbitrary such C,. For an arbitrary primary input
x € BIX|, let z be the resulting minterm of the primary outputs obtained by this C, and f,. What
we want to show is that this z meets the specification for the minterm x. Let u be the value obtained
at the input variables of the cluster v for this x, i.e. u = ¢®)(x). Since f, is a member of %,
Fy(u, fy(u)) = 1, and thus the formula (2.1) holds for this u and v = f,(u). Due to the induction
hypothesis, the relation H satisfies the existential property, and thus H (vg(*)(x), z) = 1. Therefore,
the formula (2.1) implies that M (x,z) = 1, and thus the specification is met. Conversely, suppose
that a given function f, : B!"| — Bl hasa property that the network I" meets the specification for
this f, with an arbitrary C,, = {f,, : Bl’»| = B! | f, € F,, and o(w) < o(v)}. We prove that
fv is a member of F,. Specifically, we show that for all u € B\»|, F,(u, f,(u)) = 1. For a given
u € BI%|, consider an arbitrary pair of minterms of the primary inputs and the primary outputs,
say (x,2), such that u = g(*)(x) and H(vg®(x),2) = 1, where v = f,(u). Since the relation
H satisfies the existential property due to the induction hypothesis, there exists a combination of
functions for the clusters already processed, say C, = {f, : Bl'»| - BI%«| | f, € F, and
o(w) < o(v)}, with which z is obtained at the primary outputs by setting the values of O, and T
to v and ¢(¥(x). Since £, has a property that " meets the specification for an arbitrary such C.,
M(x,z) = 1. Hence, the formula (2.1) holds for these (u, v), and thus F,(u,v) = 1. Therefore
fv is amember of F,. This concludes the proof that F,, satisfies the forward compatibility property.

What remains is to show that the relation /I updated by the formula (2.2) satisfies the
existential property. Recall that the input part of H consists of 7 and the input variables I, of
the cluster v, and the existential property for f is that f(ut,z) = 1if and only if there exists a
combination of functions for the processed clusters, C,, = {f, : Bl’»| — Bl%l | £, € F, and
o(w) < o(v)}, with which the value z is obtained at the primary outputs by setting the values of
I, and T to u and t, respectively. Note that C, contains the cluster v as well. Since the original
relation H satisfies the existential property, such C,, above exists if and only if there exists a function
fv in F, such that H(f,(u)t,z) = 1. Equivalently, there exists v € Bl9| such that F,(u,v) =1
and H(vt,z) = 1, which is identical with the formula (2.2). Hence the existential property holds
for the updated relation /. =

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS22

2.4.3 An Example

We illustrate how the proposed procedure works using the example shown in Figure 2.4.
This example was introduced in [15] as a counterexample for which the method of computing
compatible sets of permissible functions proposed in [49] fails to compute maximal sets.

Suppose the clusters have been composed so that every cluster consists of exactly one
gate, i.e. there are three clusters u, v, and w. The order ¢ of the clusters is givenas w < v < u.
Suppose also that the specification is given as the functionality realized by the original network, i.e.
M(zyz,,2) = 1if and only if 2 = ;. ’

First, we initialize the relation H as H(w, z) = 1 if and only if w = 2.

1. Cluster w
The fanin clusters of w are « and v, and ¢(*) = z, while ¢(*) = z; @ z,, where z; @ 2
designates the exclusive OR operation between 1 and 3. Using the formula (2.1), we obtain
the relation F,, as Fy,(uv,w) = (w = (u @ v)), where f = g designates the exclusive NOR
operation between f and g.

Updating the relation H using the formula (2.2), we obtain the new relation H (uv,z) = (z =
(u® v)).

2. Cluster v
The fanin cluster of v is u, and ¢®) = z,. The current cut line is cut 1 shown in the
figure, and thus 7' variables consist of u as well. Using the formula (2.1), we obtain
Fy(z1u,v) = (v = (u @ x1)). Updating H, we obtain H(zu, 2) = (2 = 7).

3. Cluster u
The current cut line is cut 2 in the figure, and thus z; is the unique T variable in this case.
Thus we obtain F,(z;,u) = 1 for all (z2,u),i.e. F, is tautologically one.

Since F;, = 1, we can replace « by an arbitrary function. By replacing by a constant
value 0, we can delete both v and w to obtain z = z;.
2.4.4 Computing the Maximum Set of Permissible Functions

The key idea of the proposed procedure is that when a cluster v is processed, we compute
a maximal set of functions that are compatible with those computed so far, as stated in the forward

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS23

Figure 2.4: An Example for Computing Maximally Compatible Sets of Permissible Functions

compatibility property (Property 1). The relation F), representing such a set F, is computed with
the help of the relation H that satisfies the existential property (Property 2).

Now, we notice that when we proved in Theorem 2.4.3 that such a relation H is dynam-
ically computed using the formula (2.2), we did not use the fact that the relation F,, computed for
a cluster already processed satisfies the forward compatibility property. This implies that we can
interpret the proposed procedure as one that computes, at a give cluster », a set of functions F,
that satisfies the forward compatibility property for a given set of sets of functions {F,,} for all
the clusters w such that o(w) < o(v), where F,, is simply a set of functions with the input space
I, and the output space O,,, and may not satisfy the forward compatibility property. Therefore,
when the procedure processes each cluster w such that o(w) < o(v), if we enforce the procedure to
update the relation H using a set F,, which consists only of the function originally associated with
the cluster w, instead of the one computed by the formula (2.1), then at the cluster v, the procedure
computes the complete set of functions f, defined at v such that the functionality of the network I"
given by replacing the original function of v by f,, together with the original functionality of the
rest of the clusters, meets the specification. Such a set is what we defined as the maximum set of
permissible functions for the cluster v in Section 2.3. Hence, we can use the proposed procedure
for computing the maximum set of permissible functions.

The argument above can be interpreted in a more general way. Suppose that when the
procedure processes a cluster w such that o(w) < o(v), we first compute a Boolean relation F3,

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS24

using the formula (2.1), and then replace it by another Boolean relation F,, such that the set of
functions represented by F,, is a non-null subset of the one represented by F,. In other words, for
the resulting set F., of functions for the cluster w, F,, # ¢ and F,, C F.,. If we update the relation
H using this new relation F,,, then when the procedure reaches the cluster v, it computes a set F, of
functions such that f, € F, if and only if for an arbitrary combination of functions for the already
processed clusters, C, = {f., : B! = BlO«l | f,, € F,, and o(w) < o(v)}, the functionality of
T meets the specification by replacing the function of v with £, and the function of w with f,, € C,
for each w such that o(w) < o(v). Now, observe that when larger subsets F,, are used for the
preceding clusters, then a smaller set F,, is obtained at the cluster v2, This is because the procedure
computes F, so that the functionality of I" meets the specification for all possible combinations
of the functions of F,,’s®>. Therefore, the maximum degree of freedom can be associated with a
cluster v when the functionality allowed at the rest of the clusters are maximally restricted, e.g. to
the original functionality, while the flexibility for the cluster v tends to be restricted as we allow
additional degree of freedom for the other clusters. Hence, we can use the proposed procedure to
compute various degree of freedom for each cluster by adjusting the size of the Boolean relations
for the preceding clusters.

Also note that in computing the maximum set of permissible functions at a cluster v
using the proposed procedure, we don’t need to restrict the functionality of the preceding clusters
to the original one. Instead, we can choose any one of the permissible functions computed for a
preceding cluster w. Specifically, when a cluster w is processed, we first compute a set of functions
F,, as described above, and then choose one of them, possibly an optimal function f, € F.
We then update the relation H using the selected function f,. When the cluster v is visited,
the procedure computes the maximum set of permissible functions, F,, with respect to the set
of functions {f,, | o(w) < o(v)}. We then choose a function f, from the relation F,, replace
the function originally associated with v by f,, and then proceed to the next cluster. When all
the clusters have been processed, a function of the entire network meets the specification. In this
sense, we see that the only distinction between the maximum set of permissible functions and the
maximally compatible sets of permissible functions is that whether one chooses to use the flexibility
immediately when a cluster is visited, to replace its function by a simpler one, or to delay the
optimization for later.

To be precise, the cardinality of F, never increases if strictly larger subsets are used for the preceding clusters.
*Note that although the sets of functions {¥.,} with F, are not maximally compatible, the resulting F, is made
maximal in the sense that there is no function newly added to F, without destroying the compatibility with the sets { F,}

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS25

2.5 A Clustered Boolean Network

In this section, we present a method of composing a clustered Boolean network from a
given Boolean network. The goal in clustering is to group nodes of the original Boolean network
into clusters so that the savings of the minimized logic implementations, compared to the ones
originally realized in the clusters, are maximized. It is important to develop effective clustering
techniques that maximize the potential for minimization.

We have developed a heuristic for partitioning Boolean network nodes to compose clusters
based on sharedness. The sharedness of a node of a Boolean network with an existing cluster is a
measure of how much a set of nodes share common logic. The nodes are grouped in such a way
that the resulting clusters consist of functions with mutually high sharedness.

2.5.1 Sharedness

For a given Boolean network 7 = (N, E), the sharedness, W, between two nodes s and
t is the number of common minterms of the functions originally associated with the two nodes,
which are dependent only.on the common variables of the nodes. Specifically, let f and g be the
functions associated in the original Boolean network with the nodes s and ¢ respectively. Suppose
f and g have common input variables {cy, . ..,cx}. In general, we denote the set of input variables
of the function f by {c1,...,¢,$1,...,8,}. Similarly, let {c;,..., ¢k, t1,-..,tm} be the input
variables of the function g. Consider a Boolean function A : B¥ — B defined by the common
variables such that 2(c) = 1 if and only if for all pairs of minterms of the uncommon variables,
(s,t) € B® x B™, f(cs) = g(ct) = 1. This function gives the set of common minterms dependent
on the common fanin variables of the two nodes. We then define the sharedness between the two
nodes s and ¢, W (s, t), as the number of minterms ¢ € B* such that h(c) = 1. The idea is that a
minterm c such that k(c) = 1 is always sitting in the ON-sets of the both functions f and g for all
possible input patterns of the Boolean space spanned by the uncommon variables s and ¢, and thus
we employ a heuristic that the more sharedness two nodes have, the more common logic might be
used to represent both functions. In the implementation, the function A is represented by a BDD,
and the number of minterms can be counted in time linear in the number of nodes of the BDD.

In a more general case, sharedness is defined between a node s and an existing partially
composed cluster C, where s is not a member of C. Since we want to see if there is common logic
between s and some of the nodes in C, we define the sharedness W (s, C') between a node s and a

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-QUTPUT COMPONENTS26
cluster C as W(s,C) = max W(s,t).

2.5.2 A Procedure for Composing a Clustered Boolean Network

The proposed procedure for clustering takes as input a Boolean network = (N, E) and
returns a set of clusters. A pseudo-code for the clustering procedure is presented in Figure 2.5.

The clusters are formed one by one until all the nodes have been assigned to clusters.
Each cluster is formed by adding one node at a time, starting from a seed node. The seed node
chosen for each new cluster is the one with the maximum number of fanins among the nodes that
have not been included in any cluster, since the node is likely to have high sharedness with other
remaining nodes. This selection is done in Max_Fanin.

To avoid expensive calculations of sharedness for all candidate nodes ¢, filtering is em-
ployed. We use a first approximation to the sharedness for this purpose which is called the usability,
U. The filtering essentially orders the node list by filtering all bad nodes to the end of the list.

The idea behind usability is that groups of nodes with a high degree of common fanins are
likely to have high sharedness. Although good usability does not necessarily imply good sharedness,
we see that bad usability does imply bad sharedness. Given a node ¢, the usability is defined against
the seed node s of the cluster and is formally computed as:

Z m('r, 3, t)
r€ fanin(s)U fanin(t) 2
| fanin(s) U fanin(t))
where fanin(s) designates the set of fanin nodes of s, and m(r, s,t) is 2 if r is a fanin of both s

U(s,t) = 23)

and ¢. Otherwise, m(r, s,t)is 1.

Once the node list is ordered by usability, we then start filling the clusters in decreasing
order of usability. A node ¢ is included in cluster C if the sharedness W (¢, C) is greater than a user
specified threshold. This process continues until all nodes have been accepted into a cluster. Note
that it is also possible to have clusters with only one node in them.

Although the optimal size for a cluster is undetermined, we place an upper bound on the
size of each cluster. This is a parameter set by the user.

Note that even if a node has high sharedness with a cluster, we cannot accept it if it creates
a cycle in the clustered network. The acyclic check is done by Is_Legal. For this purpose, we keep
track of the transitive fanin nodes and the transitive fanout nodes of each cluster composed so far.
The subprocedure TFO-TFI updates the information whenever a new node is added to a cluster.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS27

function Clustering(n = (N, E))
Node List — N;
10
while(Node_List # ¢){
8 «— Max Fanin(Node_List);
Cluster[z] < s;
Node_List — Node_List - {s};
TFO_TFI(, s);
Node_List < Sort(Node_List, Usability(s));
foreach(t € Node_List){
if(Cluster{z] is full) break;
if(Sharedness(t, Cluster{:]) > Threshold and Is_Legal(2, Cluster[:])){
Cluster(z] < Cluster{:] U{¢};
Node List — Node List - {t};
TFO_TFI(s, t);

}
t—1+1;
}

return Cluster{0,...,7—1];

Figure 2.5: Procedure for Composing Clusters

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS28

Specifically, a node ¢ is defined as a transitive fanin of a cluster C if ¢ belongs to a cluster C' that
is a transitive fanin cluster of C or there is a fanout node of ¢ that is a transitive fanin node of C,
where C may be equal to C. Transitive fanout nodes of a cluster are similarly defined. Then for a
given cluster C and a node s such that s € C, the inclusion of s in C creates a cycle if and only
if there exists a fanout (or fanin, respectively) of s, say ¢, such that ¢ is not in C and is a transitive
fanin (respectively, transitive fanout) of C.

2.6 Experimental Results

The proposed procedure has been implemented in SIS [51], a logic synthesis system for
sequential circuits. The procedure takes as input a Boolean network, composes a clustered Boolean
network, and computes a set of permissible functions for each cluster. The set of functions is
minimized for each cluster using a heuristic minimizer for Boolean relations, described in Chapter 3.
The minimizer finds a sum-of-products expression with a minimal number of product terms among
the functions in the set. The expression is transformed into a multi-level form, where the set
of operations used for this transformation can be extemally specified. The resulting multi-level
representation is then compared with the original implementation of the cluster, and if the number
of the literals in the factored form for the new representation is less than for the original, the original
is replaced.

Experiments were performed on a number of benchmark examples. Since the proposed
procedure is unlikely to be effective for the circuits with little flexibility, we mainly applied the
procedure to the combinational logic parts of sequential circuits, where the set of unreachable states
of the corresponding finite state machines were extracted, and were used as don’t cares.

We first compared the results between the method of computing compatible sets of
permissible functions and the one for computing maximum sets. As described in Section 2.4.4, the
proposed procedure can be used to compute both types of permissible functions. For the case of
compatible sets, we apply the procedure given in Section 2.4.2 over all the clusters first, so that
maximally compatible sets of permissible functions are obtained. We then minimize each set of
functions for one cluster at a time. This type of computation is referred to as type C hereafter. For
the case of maximum sets, on the other hand, we apply the same procedure for each cluster, but
immediately perform the minimization before processing the next cluster. When the next cluster is
processed, the functionality of each of the preceding clusters is fixed to the result of the minimization

for the cluster, so that the maximum set of permissible functions is obtained for the cluster being

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS29

Initial
Name | Tn [Out [Lit. | €3 |[M3 | C2 [M2 || c1 | M ||
27 || 4] 1| 2| 2] 2| 2| 2 12| 12
S298 || 3| 6244 98| 93| 111|108 | 100 | 100
S344 || 9| 11269 || 141 | 141 || 147 | 147 || 146 | 146
s349 (| 9| 11273 || 141 | 141 || 147 | 147 || 146 | 146 ||
s382 || 3| 6306 159 | 159 || 160 | 160 || 156 | 156
s526 || 3| 6445 || 217 | 219 [[214 | 213 || 194 | 191
820 |18 | 19 | 757 | 462 | 468 || 462 | 467 || 447 | 423 |
s832 || 18 | 19 | 769 || 472 | 469 || 468 | 461 || 448 | 427 |

Table 2.3: Comparison between Compatible Sets and Maximum Sets

processed. We refer to this type of computation as type M. As mentioned in Section 2.4.4, the type
M computation has more flexibility in a local sense, since the relation computed for a cluster has
only to agree with the current minimized implementation of the preceding clusters, whereas the
relation given by the type C computation needs to agree with all possible functions that may result in
the final implementation of the preceding clusters. However, local flexibility docs not imply global
effectiveness, and thus it is not clear which method leads to better results in total.

Table 2.3 shows results for iscas-89 benchmarks. For each example, we performed
both types of computations and compared the results, where constant nodes and nodes with single
fanouts were removed from the initial Boolean network in advance. In either type of computation,
the threshold in sharedness was set to 1, i.e. two nodes are considered to have good sharedness if
there exists at least one minterm in common in the Boolean space spanned by the common fanins of
the nodes. In Table 2.3, the column Initial shows the size of the initial Boolean network, where the
columns In, Out, and Lit. designate the number of primary inputs, primary outputs, and the number
of literal counts in factored form, respectively. The columns C3, C2, and C1 show the number
of literal counts of the resulting network obtained by the type C computation, where the attached
number &, £ = 1,2, 3, is the upper bound on the number of nodes in a single cluster used when
a clustered Boolean network was composed. Similarly, the columns M3, M2, and M1 represent
the results of the type M computation. According to the results, the difference was not significant
between these two types of computations, although the type M was slightly better for most of the
examples; the least literal counts were achieved by the type M computation for all the examples
tried. The computational time is not given in the table, but the type M was usually faster by 10 to

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS30

20 percent than the type C computation with the same upper bound on the number of nodes in a
single cluster.

We also conducted another type of experiment, where the effectiveness of the proposed
procedure was examined in a context common in practice for optimizing multi-level combinational
logic circuits, i.e. local optimization techniques, such as the one discussed in this chapter, are applied
in conjunction with global optimization techniques such as a factorization or a decomposition [9].
The objective of the experiment is to see the effectiveness of optimizing a set of nodes at a time in
a clustered Boolean network. Therefore, we compared the results with a method implemented in
SIS for computing sets of permissible functions for Boolean networks, where each node has exactly
one output and an optimization is made for one node at a time. The method was proposed in [50],
and is referred to as full_simplify, its command name in SIS. The script of the optimization
procedures applied for each example is shown in Figure 2.6, where resub -a is an algebraic
resubstitution, £x is a procedure [S8] for extracting kemnels, while sweep and eliminate -1
remove constant nodes and nodes with single fanouts. The command br_simplify is the proposed
procedure, where the option -M specifies the upper bound & on the number of nodes in a single
cluster. The threshold in the sharedness was set to 1, and the type M computation was used for
computing a set of permissible functions. For the first br.simplify in the script, the minimized
sum-of-products expression returned by the relation minimizer for each cluster was transformed
into a multi-level form by applying £x, while it was collapsed into a one level form in the second
br_simplify. We tried the same script by varying the upper bound on the number of nodes in a
cluster from 1 to 3 inthe first br_simplify. These results were compared with full_simplify
by replacing both br_simplify commands in the script of Figure 2.6 with full_simplify.

Table 2.4 shows the results. The column Initial shows the size of the initial circuit, and
the column full_simplify shows the results using full_simplify in the script. The columns
BR 3, BR 2, and BR 1 show the results of br_simplify, where the attached number indicates
the value of £ in the script. The CPU time (seconds) for all the procedures of the script was
measured on a DECstation 5000/240, which includes the time for computing unreachable states of
the corresponding finite state machines.

The results show that marginally better results are obtained than with a procedure of
minimizing one node at a time. During the experiments for BR 3 and BR 2, we frequently
encountered the case where the Boolean relation computed for a cluster cannot be reduced to an
incompletely specified function with don’t cares, especially for the clusters close to the primary
inputs. Thus a Boolean relation minimizer is indeed useful.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS31

sweep; eliminate -1
br_simplify -M k
resub -a

eliminate -1; sweep

fx; resub -a; sweep
br_.simplify -M 1

sweep; eliminate -1

Figure 2.6: Script used for Table 2.4

Initial full simplify [BR 3 BR 2 BR 1
Name || In | Out | Lit. || Lit. | Time || Lit. | Time || Lit. | Time || Lit. | Time
s27 4l 1| 2] 12 02 12| o2 12| 02 121 02
s298 [3| 6244 91 21 78] 30 90| 36| 8| 26
s344 [9| 11[269 [142 98 (140 | 190 142 | 185 | 142 159
s349 || o 11 {273 | 142 981140 | 188 [142 185 || 142 165
s382 || 3| 6306 | 127 71126 | 123133 89135 75
s626 | 3| 6445 144 70133] 68.7 || 142 202 | 124 | 12.8
s820 |18 19[757[335| 36.1 || 309 | 83.1] 289 | 382 | 319 29.1
s832 [[18| 19(769 || 340 | 145 314] 933309 | 502 [[300 382

Table 2.4: Comparison with full_simplify

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS32

sweep; eliminate -1 sweep; eliminate -1

simplify simplify

eliminate -1 eliminate -1

sweep; eliminate 5 sweep

simplify br_simplify -M &

resub -a resub -a; eliminate -1

fx; resub -a; sweep fx; resub -a; sweep

eliminate -1; sweep eliminate -1; sweep

full_simplify br_simplify -M 1
script.rugged script.br (k)

Figure 2.7: Scripts used for Table 2.5

We also made a comparison against script.rugged, a standard script available in SIS
using the state-of-the-art optimization techniques. We used a script similar to script.rugged, but
br_simplify wasused. Thescript.rugged and the one we used are shownin Figure 2.7. The script
we used does not invoke eliminate 5 after the second sweep. The command eliminate
5 clusters nodes of a network but uses a different criterion from the one described in Section 2.5.
It also restricts itself so that the resulting cluster has a single output. Thus instead of using this
clustering technique, we directly applied our clustering procedure, given in Section 2.5, which is
implemented in br_simplify.

Table 2.5 summarizes the results. The column SIS 1.1 shows the results obtained by
script.rugged. The rest of the columns show those obtained by script.br (k), where the number
indicates the upper bound on the number of nodes in a cluster. The results derive the same
observation as the previous experiments that script.br is slightly better than script.rugged for most

of the examples. In fact, $832 was the only one among all the examples tried where script.rugged
led to a better result.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS33

SIS 1.1 (rugged) [script.br (3) || script.br (2) || script.br (1)
Name || Lit. Time Lit. | Time || Lit. | Time | Lit. | Time
s27 12 01| 12 02| 12 02| 12 0.2
s298 99 1.8 83 39| 85 33 91 29
s344 || 143 62| 142 252 | 141 | 237 142 216
s349 ([143 6.2 || 139 | 24.0 | 141 244 || 142 216
s382 | 154 6.9 || 133 9.1 134 104 || 134 8.2
s526 " 147 7.1 || 147 20.4“ 140 | 11.8 || 140 9.7
s820 || 297 587 (291 656304 758 274] 395
s832 | 286 264 (1298 | 83.1(295] 41.6[291 | 41.6

Table 2.5: Comparison with script.rugged

2.7 Concluding Remarks

In this chapter, we consider the problem of finding a set of permissible functions for a
system of interacting components implementing a combinational logic behavior. We considered
two types of permissible functions; the maximum set of permissible functions defined for a single
component, and maximally compatible sets of permissible functions defined for a set of components.

We first described how a set of multi-output functions can be represented by using
a relation, and presented a procedure for computing maximally compatible sets of permissible
functions, where a Boolean relation is computed for each cluster of a given clustered Boolean
network. We also showed the relationship between the two types of permissible functions, by
demonstrating how the proposed procedure can be modified so that the maximum set of permissible
functions is computed instead.

The proposed procedure has an application in logic optimization of combinational logic
circuits. It is an extension of a technique called node optimization, in which a set of permissible
functions is computed for each node of a Boolean network, where a node implements a Boolean
function with a single output. Conventionally, it has been considered as a limitation that each node
must implement a function with only one output, since by taking into account multiple outputs
simultaneously, one may be able to use a common logic to represent multiple functions. Therefore,
we implemented our procedure and compared with state-of-the-art techniques developed for single-
output case. For this purpose, we also developed and implemented a heuristic for composing a
clustered Boolean network from a given Boolean network. The experimental results demonstrate

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS34

that the concurrent minimization over multiple outputs can lead marginally better results than those
achieved by conventional node optimization techniques.

There is room for improvements in the clustering algorithms. The algorithm we used
is based on sharedness, a measure of the common logic shared among a set of nodes. However,
the objective in the optimization phase is to find as many functions as possible for a cluster that
can replace the original function associated with it. We observed that sharedness is not always
a sufficiently good criterion for forming clusters with many functions. In fact, since we force an
upper bound on the number of nodes in a cluster, clusters formed by the algorithm sometimes have
a serially cascaded set of nodes, with only one output. Since our objective is to see the effectiveness
of concurrently minimizing more than one output, it is not meaningful to group such a set of nodes
together. This problem must be addressed in order to gain the practical effectiveness of node
optimization for multiple outputs.

35

Chapter 3

Minimization of Multiple-Valued

Relations

3.1 Introduction

In Chapter 2, we described how to find a set of functions that can be realized in acomponent
of a system implementing a combinational logic behavior, and showed that such a set can be
represented by a Boolean relation. In this chapter, we consider the problem of optimizing relations.
Namely, for a given set of functions represented by a relation, we find a least-cost representation
over the functions in the set. This problem is generally referred to as logic minimization.

Research in logic minimization has been active over the past 40 years. Initial research was
directed towards developing techniques to produce an optimum sum-of-products expression of a
Boolean function under don’t care conditions[34], and has evolved toward heuristic approaches for
designing programmable logic arrays (PLA’s) [8, 25]. A Boolean function with don’t care conditions
is called an incompletely specified Boolean function, and the problem above is sometimes referred
to as the two-level minimization of incompletely specified Boolean functions. More recently, as
seen in Chapter 2, it was shown that don’t cares of the traditional kind are inadequate to capture the
complete freedom for optimizing multiple output functions, and a theory of Boolean relations was
introduced [11].

In parallel with this activity has been the minimization of multiple-valued functions
[31, 47], in which variables can assume more than two discrete values. The significance of this

problem is in its applications in areas such as PLA optimization [45] and state assignment for finite

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 36

state machines [17].

In this chapter, we assume that a given relation is in general a multiple-valued relation, in
the sense that the input variables can take multiple (more than two) values. Although we assume that
the output variables are still binary, this is not a restriction since we can encode a multiple-valued
output using binary output variables. This aspect will be detailed later in Section 3.3. Also, a
Boolean relation is a special case of the type of relations considered here, and thus our problem
subsumes the problem of minimizing Boolean relations.

Multiple-valued relations arise in many contexts [6, 11, 32], besides the local optimizations
of multi-level combinational logic circuits considered in Chapter 2. For example, the behavior of a
completely specified deterministic finite state machine is given by a function ' : IxSxSx0 — B
such that F(¢,p,n,0) = 1 if and only if the input ¢ and the present state p causes the machine to
evolve to the next state n and produce the output o. F'is a multiple-valued relation with the input set
I x S and the output set .S x O. For a given initial state, a set of equivalent states can be computed
as a function E : § x § — B suchthat E(n,#) = 1if and only if » and # are equivalent [27, 38].
Since a state can be mapped to any of the equivalent states of the next state, we have the possibility
of implementing a more compact machine using the equiyalent states. Namely, our objective is to
find a least cost machine given by the function #': I x § x § x O — B suchthat F'(3,p,n,0) = 1
if and only if either F(i,p,n,0) = 1 or there exists a state % for which F(i,p,#,0) = 1 and
E(n,7) = 1. F provides the complete family of finite state machines equivalent to the original
machine under the equivalent states.

For the cost function, we use the number of product terms required in a sum-of-products
expression representing a function in the set given by the relation. Conventionally, a function in the
set represented by a given relation is called a compatible function [11]. Then the problem is that
for a given multiple-valued relation, find a sum-of-products expression with the minimum number
of product terms for a function compatible with the relation. Note that in terms of the minimization
problem, a relation can be deemed as a generalization of an incompletely specified function, and
thus if the set of functions represented by a given relation can be represented by using a function
with don’t care conditions, then the minimization problem is reduced to the conventional two-level
minimization of incompletely specified functions.

Somenzi and Brayton proposed and implemented an exact minimization procedure for
Boolean relations, with which an optimum sum-of-products representation is obtained[53]. How-
ever, since the method is exact, it is expensive both in CPU time and memory space, so that only
small examples can be handled.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 37

Our focus in this chapter is on heuristic minimizations. Ghosh et al. [22] proposed
and implemented an approach for Boolean relations which makes use of test pattern generation
techniques and heuristically finds a sum-of-products expression. The method is similar to two-level
minimizers for Boolean functions (e.g. [8]) in the sense that procedures analogous to expand,
irredundant, and reduce are repeatedly applied as long as the cost decreases. However, unlike the
most effective two-level minimizers that consider multiple variables to be expanded or reduced
simultaneously, the method is greedy and only one variable is examined at a time. Thus the
minimizer of [22] is more likely to get stuck at a bad solution. This drawback is fatal for extending
the method since the simultaneous expansion of multiple variables implies the use of multiple faults,
which could be very expensive to detect with ATPG techniques. Furthermore, the method is a direct
application of ATPG methodology to this problem and little new theoretical analysis is provided.
For example, the contrast between the properties of relations and those of ordinary functions may
be useful in the minimization process.

We propose a heuristic procedure for the minimization problem of multiple-valued rela-
tions, based on a paradigm of the more advanced two-level minimization techniques for Boolean
functions. We present some special properties associated with relations not found in functions.
These properties must be carefully accounted for while implementing a procedure that is effective
in achieving high quality results. These algorithms are implemented in a program called GYOCRO!,
and provide experimental evidence of their effectiveness.

This chapter is organized as follows. In Section 3.2, terminology is defined and a brief
review of multiple-valued relations is provided. Section 3.3 addresses some of the questions posed
for multiple-valued relations, such as how multi-valued outputs can be handled using binary outputs.
Section 3.4 describes how to identify whether a given relation is an incompletely specified function,
as well as a procedure that extracts the care and don’t care sets from the relation if it is a function.
Section 3.5 presents the minimization procedure employed in GYOCRO in which technical details
are described for each sub-procedure along with supporting theoretical analysis. Experimental
results of the proposed method are presented in Section 3.6, where some potential modifications
of the algorithms are also discussed. Section 3.7 summarizes the chapter with some concluding
remarks.

!GYOCRO is a Japanese tea and although it is not strong like ESPRESSO, it has good taste.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 38

3.2 Preliminaries

We describe the relationship among functions and relations, and see when a procedure is
needed for minimizing relations directly.
3.2.1 Terminology

We follow references [8, 11, 45] for most of the terminology used throughout this chapter.

Definition: Multiple-Valued Relation
A multiple-valued relation R is a subset of D X B™. D is called the input set of R and

is the Cartesian product of n sets D X - - - X Dy, where D; = {0,..., P; — 1} and P; is a positive
integer. D; provides the set of values that the i-th variable of D can assume. B™ designates a
Boolean space spanned by m variables, each of which can assume either 0 or 1. B™ is called the
output set of R. If P; is 2 for all ¢’s, then R is called a Boolean relation. The variables of the
input set and the output set are called the input variables and the output variables respectively. R
is well-defined if for every x € D, there exists y € B™ such that (x,y) € R.

We represent a relation R by its characteristic function R : D x B™ — B such that
R(x,y) = 1if and only if (x,y) € R. In the implementation, we represent a characteristic
function by using an MDD (Multi-valued Decision Diagram) [54]. An MDD is a data structure to
represent a function with multiple-valued input variables and a single binary output, which employs
a BDD [12] as the internal data structure. In the sequel, we make no distinction between a relation
and its characteristic function.

Definition: Incompletely Specified Function

A single-output function f : D — B is said to be incompletely specified, if there exists a
non-null subset § C D for which the output value of f is not specified. An element of § is said to be
an unspecified input minterm, or a don’t care minterm. A multiple-output function f : D — B™
is said to be incompletely specified if there exists at least one output for which the corresponding
function is incompletely specified.

A function that is not incompletely specified is said to be completely specified. Clearly, a
completely specified function is a special case of an incompletely specified function. Throughout
this paper, whenever we define a function, we assume that it is completely specified, unless otherwise
mentioned.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 39

It is interpreted that the output value of an incompletely specified function f : D — B
for a don’t care minterm x may be either O or 1. In this sense, we can regard that an incompletely
specified function represents a set of completely specified functions. The set § C D of don’t care
minterms is called the don’t care set for f. The set of minterms of D that are not don’t care minterms
is called the care set. Among the care set, the set of minterms x for which f(x) = 1 is called the
on-set for f, while those with f(x) = 0 is called the off-set for f.

An incompletely specified function is a special case of a relation, in the sense that for a
given incompletely specified function f : D — B™, arelation F C D x B™ can be defined so that
(x,y) € F if and only if for each output j, the value of the j-th output in y is equal to f()(x),
unless x is a don’t care minterm for the output, where f(%) designates the j-th output function of f.
We may refer to the relation F as the characteristic function of f.

Definition: The Image of a Multiple-Valued Relation

For a given relation R and a subset A C D, the image of A by R is a set of minterms
¥y € B™ for which there exists a minterm x € A suchthat (x,y) € R,ie. {y|3Ix€ A:(x,y) €
R}. The image is denoted by r(A4). r(A) may be empty.

Definition: Compatibility of a Multiple-Valued Function

Foragivenrelation R C D x B™, amultiple-valued function f : D — B™ is compatible
with R, denoted by f < R, if for every minterm x € D, f(x) € r(x). Otherwise f is incompatible
with R. Clearly, f < R exists if and only if R is well-defined.

Definition: Literal and Product Term

For the i-th variable z; of D, a literal of z; is the characteristic function of a subset S; of
D;, and is denoted by a:,s ‘. S; may be empty. A product term p defined in D is a Boolean product
of literals of all the variables of D. Thus p is the characteristic function of a subset of D.

For the j-thoutput function f) of f : D — B™, a sum-of-products expression (or simply
an expression) of fU) is a union of product terms such that the resulting characteristic function is
equivalent to fU). A sum-of-products expression of f is a set of sum-of-products expressions for
all the output functions.

Definition: Cube and Representation
For a sum-of-products expression of a function f : D — B™, a cube is a product

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 40

term p of the expression specified as a row vector with two parts, ¢ = [I(c)|O(c)], where I(c) =
[I(c)1,-..,I(c)a] and O(c) = [O(c)1,- .-, O(e)m]). I(c) and O(c) are called the input part and the
output part of c respectively. The i-th component of I(c) represents a set of values contained in the
i-th literal of p, and consists of P; binary bits. Each bit is called a part. The k-th part of I(c);,
k € {0,..., P, —1},is 1 if the i-th literal of p contains the value . It is 0 otherwise. For the output
part, O(c); = Oif p is not present in the expression of fU9). Otherwise, O(c); = 1. We denote by
M (c) the set of minterms of D contained in c. A set of cubes is called a representation.

For two cubes c and d, ¢ contains d, or ¢ covers d, if c has 1 for every part that d has 1. In
addition, c strictly contains d if they are not equal. For a given minterm x € D, we say X is covered
by a representation, if x is contained in some of the cubes of the representation.

Throughout the chapter, we show examples of representations, in which all the inputs are
binary variables. For the sake of simplicity, we represent the input part of a cube ¢ as an n-tuple
[I(¢)i,- - -, I(c)n) such that I(c); takes O if the i-th literal of p takes a value O, 1 if the ¢-th literal of
ptakes 1, and 2 if the literal takes both O and 1.

For a given representation F, a function f : D — B™ is uniquely defined, where an
expression of f is given by F. Thus we say that a representation F is compatible with a relation
R if the corresponding function f is compatible with R. Similarly, the image of A C D by the
representation F is the image of A by a relation F givenby F = {(x,y) € D x B™ |y = f(x)}.

Definition: Candidate Prime (c-prime)
For a given relation R, a cube c is a candidate prime (or a c-prime) if there exists a

function compatible with R in which c is a prime implicant [8].

Definition: Relatively Prime Cube

For a given relation R and a compatible representation F, a cube ¢ € F is prime relative
to F (or relatively primé in F) if for any cube ¢ which strictly contains c, a replacement of ¢ with
¢ in F results in an incompatible representation with R. A representation F is relatively prime if
F is compatible with R and every cube of F is relatively prime in F.

Note that if ¢ € F is relatively prime in F then c is a c-prime, but not the other way
around. We distinguish the notion of primality between relations and ordinary functions, since in
relations, the primality of a cube depends upon the other cubes of the representation in which the
cube is present. This is not the case for functions.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 41

Definition: Redundant Cube

For a given relation R and a compatible representation F, a cube ¢ € F is redundant
in F if removal of ¢ from F maintains the compatibility of the representation F — {c} with R.
Otherwise c is irredundant.

A representation F is said to be irredundant if F is compatible with R and there is no
proper subset of F which is also compatible. Otherwise, F is redundant. Note that the irredundancy
of a representation F implies the irredundancy of every cube of 7, but not the other way around.

The following example illustrates the situation.

Example 3.2.1 Consider a Boolean relation shown in Table 3.1. The relation has two input
variables and two output variables, and the table means that a pair of input and output minterms
(10,11) a member of the relation, (10,00) is another member of the relation, and so on. The
representation F shown on the left hand side of the table is compatible with this relation, since it
maps an input minterm 10 to an output minterm 11, 00 to 11, and the rest of the input minterms to
00. Every cube of F is irredundant, since the removal results in an incompatible representation.

- However, a proper subset F which consists only of c3 is also compatible, and thus F is redundant.

Representation J Relation R
cube | Input | Output || x € B> | y € B*
¢ 10 01 10 11,00
L) 10 10 01 00
3 00 11 00 11

11 00

Table 3.1: Example of Redundant Representation with Irredundant Cubes

3.2.2 Functions, Mappings, and Relations

Given a multiple-valued relation R C D x B™, a compatible function exists if and only
if R is well-defined. By definition, R is well-defined if and only if for all x € D, there exists y
such that R(x,y) = 1. The well-definedness can be easily checked by using MDD operations.
Now, with this condition satisfied, R can be represented as a multiple-valued mapping r : D — B™
given by r(x) = {y € B™ | (x,y) € R}, where we define a mapping as one which defines at
least one minterm of B™ for each minterm of D. In general, the mapping = is a one-to-many

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 42

mapping, and provides the complete family of functions compatible with R. If, in addition, r(x)
can be represented as a single cube for every x € D, then r can be expressed as an incompletely
specified function[11]. Thus for each output of =, the set D can be divided into the On-set, the
Off-set, and the Don’t-care set. Once these three sets are obtained, the problem is reduced to
the conventional minimization for incompletely specified functions . As we will see later, the
minimization of functions is a simpler problem than the minimization of relations. Furthermore,
a number of methods for function minimization exist (e.g. [10, 16, 25, 34, 45, 47]). Therefore, if
this is the case, we invoke one of the conventional procedures for minimizing functions to obtain
a minimal implementation of the given relation R. If, on the other hand, the mapping r cannot be
expressed as an incompletely specified function, a procedure capable of handling the relation R
directly is needed.

In Section 3.4, a procedure is presented that identifies whether r is an incompletely
specified function, and if so extracts the care and don’t care sets. In this way, logic minimization
is handled in a uniform fashion; minimization of functions and minimization of true relations are
viewed in parallel as equal sub-procedures in the minimization of relations. The entire minimization
procedure of relations is illustrated in Figure 3.1.

3.2.3 Applications of Multiple-Valued Relations

One can easily imagine applications for minimizing relations, by considering those for
minimizing functions. One such example is state assignment. Suppose a completely specified
deterministic finite state machine is given by the characteristic function ¥ : I X $ x S x O — B
such that F'(¢, p, n, 0) = 1 if and only if the next state n and the output o are asserted by the input
and the current state p. F' is the characteristic function of a multiple-valued relation with the input
set S x I and the output set S x O. The symbolic variable for .5 in the output set are encoded in a
way described in Section 3.3. In fact, we know that F' can be expressed in a form of an ordinary
function since the given machine is deterministic and is completely specified. However, suppose
we are given a set of equivalent states by a function E : § X S — B such that E(n,#%) = 1 if and
only if states » and # are equivalent. Also given is a set of invalid states by a function T : § — B
such that T'(p) = 1 if and only if p is a state not reachable from some initial set of states. Then a set
of machines equivalent to F’ under the equivalent states and the invalid states is given by a function
F:Ix8x8x0 — Bsuchthat F'(i,p,n,0) = 1if and only if F(i,p,n,0) = 1lor T(p) = 1,0r
there exists a state # for which F(z,p,#,0) = 1 and E(n,#) = 1.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 43

Multi-Valued Relation

Well-defined? 3

YES g

A

YES NO

No Solution

| Funcion | | True elation

Y

OFF| DC
Set | Set

ON
Set

Function Relation
Minimizer Minimizer

Reprcntat(on

Figure 3.1: The Minimization of Relations

In order to obtain a least cost implementation of a machine equivalent to the original one,
we first find a least cost machine at the symbolic level. Namely, our objective is to minimize the
multiple-valued relation F. If the number of symbolic product terms is the cost function used, then
the problem is reduced to the relation minimization focused in this chapter. Other applications of
multiple-valued as well as Boolean relations can be found in [11, 32].

Example 3.2.2 The case where the use of equivalent states results in a representation with less cost
is illustrated in the following example. Suppose that a completely specified deterministic finite state
machine is given as shown in Figure 3.2. Each circle designates a state of the machine and the
label i/ o associated with each arc implies that the input i and the state associated with the tail of
the arc causes the machine to produce the state shown on the head of the arc and the output o. The
minimized representation for this machine is shown in Table 3.2-(a). If, in addition, we know that
the state s3 and s4 are equivalent, then we can further minimize the machine and obtain a better
representation shown in Table 3.2-(b).

Other-applications, where relations arise, can be illustrated as follows. For the sake of

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 44

Figure 3.2: Completely Specified Finite State Machine

I{ S |S|O S S10
1]51,8%]|s3|0 1]5,83,38 |33]0
- S2 110 - 82 s110
1 S3 s4| 0
0 381 31 1 0 $1 81 1
0|s3,8)(s]|1 0 33, 4 S2

@ ®)

Table 3.2: Minimized Representations of the Finite State Machine

simplicity, we consider only the binary-valued case. Consider the situation illustrated in Figure 3.3.
Let g : B? — B7 be a Boolean function and ~ : B — B? be a Boolean mapping, where the image
of aminterm x € B”" by h, h(x), may consist of multiple minterms. Let B" be the subspace spanned
by the variables common to both B™ and BP. B™ may be empty. Denote the orthocomplement of
B" in B? by B™, where m = p — 7. Consider the problem of finding a function f : B — B™
such that

Vx € B : g(vf(x)) € h(x), 3.1

where v is the projection of x from B™ to B". Our objective is to find an implementation f of
least cost with the property (3.1), if such a function exists. Namely, considering a relation R given
by R = {(x,y).€ B™ x B™ | g(vy) € h(x)}, our problem is to find a least cost implementation

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 45

bz {21

g(Xl,...,Xr,Yl,...,Ym) h(X1,...,Xn)

Y1 Ym | m=p-r

f(X1,...,Xn)

X1 Xr Xr+1 Xn

Figure 3.3: Structure where Boolean Relation Arises

compatible with R. The relation R is computed as follows. Let H : B® x B? — B be a relation
givenby {(x,2) | z € h(x)}. Similarly,let G : B? x B? — B be arelation such that G(vy,z) = 1
ifandonly if g(vy) = z. Then R(x,y) = 1if and only if there exists z € B? suchthat H(x,z) = 1
and G(vy,z) = 1. The actual computation of R is done on MDD’s fairly efficiently for many
cases.

This problem naturally arises in several applications. One context is the combinational
logic optimization of multiple-output components described in Chapter 2. Anotheris the rectification
problem concerned with "engineering changes”, where one has implemented a function g with a
highly optimized layout, only to encounter a specification change such that the correct functionality
must be h. One possibility for rectifying this situation is to build a block of prelogic which sits
between the inputs and the circuit already built. The equation (3.1) gives the condition for the
function f of the attached block so that the resulting circuit is functionally equivalent to h. A
detailed discussion of the rectification problem can be found in [60].

3.3 Questions on Multiple-Valued Relations

A relation considered in this chapter is one with binary output variables. In this section,
we consider the following two questions;

1. whether a relation with multiple-valued outputs can be handled with binary-output relations,

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 46

2. whether the minimization problem for a relation can be transformed into the problem of
minimizing an incompletely specified function with multiple-valued inputs and a single
binary output.

The posing of the second question is motivated by the fact that the answer is yes if the given relation
is in fact an incompletely specified function.

3.3.1 Representations of Multiple-Valued Outputs

There are several contexts where the problem is formulated as the minimization of a
relation with multiple-valued outputs. We discuss how such a relation is handled with a multiple-
valued relation defined in this chapter, i.e. one with binary-valued outputs. Specifically, we describe
how to represent a multiple-valued output in terms of binary outputs using three encoding schemes
known as 1-kot encoding, 0-hot encoding, and log-based encoding respectively.

Consider a relation I" C D x E, where F is the Cartesian product of ¢ sets F X - - - X E;
where E; consists of L; integers, i.e. E; = {1,...,L;}. Anencoding is the process of assigning
a set of binary variables for each multiple-valued variable o; such that (1) each value of E; is
associated with a subset of the Boolean space spanned by the binary variables and (2) for each value
the subset defined by the encoding is disjoint with that for any other value of E;.

The 1-hot encoding is an encoding scheme in which each multiple-valued variable o; is
represented by L; binary variables {yl(j) yoooy g)} such that o; = k € E; if and only if y,(cj) =1
and y,(j)= 0fori # k. This scheme requires i L; variables to represent all the variables of E.
The 0-hot encoding is the same as the 1-hot e;:clxiing in which the meaning of 1 and O for each
encoded binary variable is switched.

Example 3.3.1 Suppose that Table 3.3 is a specification of a relation T C B? x E with two binary
inputs x1, T and two multiple-valued outputs oy and o2, where both oy and o, can take three
values. Then the transformed relation R C B? x B® with the 1-hot encoding is shown in Table 3.3.

The log-based encoding represents a multiple-valued variable with L; values using p;
binary variables, where p; is the smallest integer no less than log, L;. Each value of E; is
represented as a product term of the encoding variables such that two product terms corresponding

to two different.values are disjoint. The product term for each value may correspond to a set of

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 47

TCBxE R C B* x B°

) (01,02) aizy | (0,87, PP,)
11 {32, D} [11 [{©,0,1,0,1,0),(0,1,0,1,0,0)}

10 | {2 3} 10 | {®©,1,0,0,0, 1)}
01 | {(1,2), (1,3} | 01 |{(10,0,0,1,0),(1,0,0,0,0, 1)}
00 | {@, D} 00 |{(0,1,0,1,0, 0}

Table 3.3: The 1-Hot Encoding of a Relation with Multiple-Valued Outputs

minterms of the encoding variables, rather than a single minterm. For some applications, it is useful
to define the encodings so that the Boolean union of the product terms over all the values of E;
is the universe of the Boolean space spanned by the encoding variables [54]. A minterm o of E
corresponds to the Boolean product of the product terms for the values of the variables of F in o.

Example 3.3.2 Consider the same relation T" used in Example 3.3.1. Since both o and o5 can
take three values, each variable is represented by two binary variables. Let yfj) and yéj) be the
encoding variables for o;. Suppose that 1,2, and 3 are represented as y&")ygj), ?gj) yg), and yfj)
respectively, then the transformed relation R C B? x B* is obtained as shown in Table 3 4.

TCB*XE RC B*x B*
122 ((71 3 02) T1T2 (y{1)$ yél)’ y?)’ y§2))
11 | {3,2,2,D} || 11 |{(1,1,0,1),(1,0,0,1),(0,1,0,0)}
10 | {@2,3)} 10 |{{©,1,1,0),(0,1,1,1)}
01 | {(1,2),1,3)} | 01 |{0©,0,0,1)(0,0,1,0),(0,0,1,1)}
00 | {@ 1} 00 | {®©1,0,0)}

Table 3.4: The Log-Based Encoding of a Relation with Multiple-Valued Outputs

3.3.2 Transformation of Multiple Outputs to a Multiple-Valued Input

It is shown in [46] that the two-level minimization problem for an incompletely specified
function with multiple-valued inputs and binary-valued outputs can be equivalently handled as the
problem of minimizing an incompletely specified function with a single binary output by treating the
output part of the original function as 1-hot encoded variables for a single multiple-valued variable.
The newly defined incompletely specified function is conceptually the characteristic function of the

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 48

set of pairs of minterms of the inputs and the multiple-valued output (x, o) such that x is mapped
to ¢ by the original function, but the characteristic function explicitly uses don’t cares.

We are interested in whether this equivalency holds for multiple-valued relations with
binary outputs. Specifically, the question is whether there exists an encoding scheme with which
the output part of the relation can be treated as a single multiple-valued variable such that there
exists an incompletely specified function with a single binary output with the inputs consisting of the
original inputs and the newly defined multiple-valued variable for which the two-level minimization
problem is equivalent to the problem of minimizing the original relation. As with the minimization
of incompletely specified functions, we consider whether the characteristic function can be well
formulated for some encoding schemes. We show that the encoding schemes described in the
previous section, i.e. the 1-hot encoding, the 0-hot encoding, and the log-based encoding, do not
fall into this category.

Given a relation # € D x B™ and an encoding scheme, our objective is to prove or
disprove that there is a single output function that has an additional multiple-valued input. The new
variable is defined by regarding that the encoding of the variable with the given encoding scheme
results in the output part of £. Our requirement is, as with ordinary functions, that the two level
minimization of the resulting single function leads to a result that when interpreted correctly is a
minimum of the original minimization problem.

Suppose that we employ the 1-hot encoding. Let Y be the multiple-valued variable for
the outputs. Y can take m values, £ = {1, ..., m}, and we denote a value of £ simply by j, where
1 <7 < m. A minterm of B™ corresponds to a set of values of F, i.e. a literal of Y. Thus the
relation /2 maps a minterm x € D to a set of literals of Y. Denote the set of literals by r(x). Recall
that in minimizing I, we can choose, for each x € D, any minterm y € B™ such that (x,y) € R.
Therefore, in terms of Y, we can choose any literal of Y from the set »(x). Now, if Y is treated as an
input variable, then we need an incompletely specified function [: D x £ — B, such that all and
only the implementations of f define compatible functions with R, where an implementation of f is
interpreted that it defines a function from D to B™ which maps an inputminterm x € Dtoy € B™
with the property that y; = 1 if and only if (x, 7) is mapped to 1 by the implementation. Since R
defines a relation between each input minterm x € D and a set of literals of Y, 7(x), the function
[must reflect this relation as well. On the other hand, the output of f must be defined for a pair of
minterms of D x [, rather than a pair of minterm of D and a literal of Y. Therefore, the output
value f(x, j) may not be defined for some pair of minterms (x, j) € D x E. For example, if there

exists a pair (x,7) € D x E for which r(x) consists of two literals, y and 7, such that j € v, j € 7

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 49

and there exists another value i of E with¢ ¢ yand ¢ € §, then the output f(x, j) cannot be defined,
since it depends on which literal of r(x) will be chosen as the output of a function compatible with
R. More specifically, we cannot set f(x, j) = 1 since it implies that every implementation of f must
map (X, j)to 1, although there exists a function compatible with R whose output for x corresponds
to §, and j ¢ § means that there may exist an implementation of f that maps (x, j) to 0. Similarly,
we cannot set f(x, j) = 0 since it implies that no implementation of f maps (x, 7) to 1, although
there exists a function compatible with R whose output for x corresponds to y, and j € y means that
there may exist an implementation of f that maps (x, 7) to 1. Furthermore, (x, j) cannot be set as
a don’t care minterm since it implies that for any implementation of f, the output for (x, 7) is don’t
care, i.e. may be either O or 1, regardless of the output for (x, ¢), although an implementation that
maps (x, 2) to 0 defines a function compatible with R whose output for x corresponds to a literal y,
and thus (x, j) must be mapped to 1. In order to understand this situation, divide the values of E
into three sets; let ¢(x) be the set of values of E contained in all the literals of r(x), p(x) be the
set of values of E not contained in any of the literals of 7(x), and (x) the rest. Then the problem
above does not arise, i.e. the output of f(x, j) can be defined for all (x, 5), if for an arbitrary subset
'§ C 4(x), there exists aliteral § € 7(x) which contains all and only the values of p(x) and S. It
is because in this case, we can set the output value of f for (x,) to 1if j € ¢(x), 0if j € p(x),
and unspecified or don’t care otherwise. If this condition holds for every (x,j) € D x E, then
the function f is well formulated and the minimized result has a correspondence between each
x € D and exactly one literal of r(x). In this case, we know that by definition the original relation
R C D x B™ is reduced to an incompletely specified function. However, for a relation in general,
the function f cannot be formulated. Therefore we cannot convert R to a single output incompletely
specified function with the 1-hot encoding scheme. The same statement is claimed for the 0-hot
encoding scheme.

A Now consider the log-based encoding scheme. Namely, treat each minterm of B™ as a
single value of a multiple-valued variable Y. Thus Y can take 2™ values, denoted as £. In this
case, R maps each minterm x € D to a set of values of £. Denote this set of values by r(x). If
Y is treated as an input variable, then we need an incompletely specified function f : D x E — B
such that for every x € D, there must exist exactly one value o € r(x) for which (x, o) is mapped
to 1 by the implementation obtained by minimizing f. Thus we need to decide, for each x € D,
which value of r(x) must be chosen and once one of the values has been selected, we must not
choose any other value of 7(x) with which x is mapped to 1. In other words, the value of f(x,0)
depends on the value of f(x,&) for another & € r(x), and thus cannot be defined individually.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 50

This constraint cannot be handled in the conventional minimization problem. Therefore, we cannot
transform the minimization problem for a relation R to the problem of minimizing an incompletely
specified function with a single output and multiple-valued inputs.

Thus, any of the encoding schemes considered above cannot be used for transforming
multiple binary outputs to a single multiple-valued input. We conjecture that no such encoding

scheme exists.

3.4 Function Minimization and Relation Minimization

As seen in Section 3.2.2, a multiple-valued relation may happen to be an incompletely
specified function. In this case, a procedure developed for minimizing relations should be invoked
since the minimization of incompletely specified functions is a simpler problem for which highly
optimized software exists, and thus is completed more efficiently with a procedure designed ex-
clusively for functions. Therefore, we need a method that identifies whether a given relation is an
incompletely specified function. We present one such method which, as a byproduct, can provide
the on-set, the off-set, and the don’t care set if the relation is an incompletely specified function.

An overview of the procedure is as follows. The input is a well-defined multiple-valued
relation R C D x B™. Hence there exists an associated mapping r(x). For an output variable y;,
let ®U) be a set of minterms x € D such that y; = 1 for every minterm y € r(x). Similarly, let
PU) be a set of minterms of x € D such that y; = 0 for every minterm y € r(x). Let AU) be
the remaining minterms. These sets are computed as follows. Let sg’.) be a set of minterms x € D
such that there exists a minterm y € r(x) in which y; = 0. Let s,(zj) be a set of minterms x € D
such that there exists a minterm y € r(x) in which y; = 1. Then @) = =s{"), P() = —-sg), and
AW = 50l Note that the formulas for ®%) and P() are valid if and only if R is well-defined.
The proposed procedure computes the three sets ®l), P), and AU) for every output y; in parallel,
and then computes T'(x,y) = H(@U Yy; + P(j)ﬂj + AY)), The following theorem identifies if R

J=1
is in fact an incompletely specified function by comparing R and 7.

Theorem 3.4.1 A well-defined relation R(x,y) is the characteristic function of an incompletely
specified function if and only if R(x,y) = T(x,y).

Proof: Suppose R(x, y)is the characteristic function of an incompletely specified function ¢ : D —
B™. Then (is represented in terms of its on-set, off-set, and don’t care set functions, ¢ : D — B™,

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 51

p:D — B™,and é : D — B™ respectively, such that for each output j,

(@) Vx € D: (p0(x)® pi(x))T (x) + (p9)(x) @ 60 (x))pl) (x) = 1,

if () ()(x) =
(b) R(x’y)=1¢>yj= 1 Tf(p:’(x)-l_a:’(x)_l’ (32)
0 if pW(x) +60)(x) = 1,

where oU0), pl9), and §() are the j-th function of ¢, p, and 6 respectively. Note that the con-
dition (3.2)-(a) ensures the disjointness of /), pl%), and 6U). Thus R(x,y) is represented as
m

R(x,y) = H(cp(j)yj + p(f’y,- + 6(9). Now for an arbitrary minterm x € D, if y; = 1 in every
J=1

minterm y € r(x), then p{)(x) = 1 and p)(x) = 60)(x) = 0. Similarly, if y; = 0 in every
minterm y € r(x), then p(¥)(x) = 1 and pl)(x) = §)(x) = 0. If y; = 1 in some minterm of
r(x) and y; = 0 in another minterm of r(x), then §()(x) = 1 and () (x) = pli)(x) = 0, since
otherwise the property (3.2)-(a) is violated. Therefore, ©¥), p(%), and 6() are the characteristic
functions of (), PU), and AY) respectively. Thus T'(x, y) is equivalent to R(x, y).

Conversely, suppose that R(x,y) is equivalent to T'(x,y). For an arbitrary minterm
w € D, let Jo(w) be the set of indices j such that w € PU). Similarly, let J)(w) and Jo(w) be
the set of indices such that w € @/ and w € AU) respectively. Let t be a minterm of B™ such
thatt; = 1if j € Ji(w), t; = 0if j € Jo(w), and ¢; may be either 1 or 0 if j € Jo(w), where

m
t; is the value of the j-th variable of t. Since R(x,y) = [J(@y; + PU)g; + AD), we sec that
j=1
R(w,t) = 1. Thus the image of w by the relation R, r(w), can be represented as a single product

term of the output variables such that the j-th literal contains only 1 (respectively 0) if j € Jy(w)
(respectively 7 € Jo(w)) and it contains both 1 and 0 otherwise. Since w is arbitrary, the relation
R is the characteristic function of an incompletely specified function. =

Intuitively, T'(x, y) is the characteristic function of the relation such that for every x € D,
the image of x by T’ is the set of minterms of the smallest product term defined in B™ that contains
r(x). Hence, the relation R is in fact an incompletely specified function if and only if R is identical
with T'.

Therefore, we can identify whether a given relation R is an incompletely specified function
by checking the equivalency between R(x,y) and T'(x,y). Note that the equivalency is trivially
checked using MDD’s.

Furthermore, by the proof of Theorem 3.4.1, we see that if R is an incompletely specified
function, then its on-set, off-set and the don’t care set are given by the ®()’s, P()’s, and AU,
respectively. Hence, having checked the well-definedness of a given relation R as described in

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 52

Section 3.2.2, we first employ the procedure described above. If the relation is an incompletely
specified function, we convert the ®(/)’s, PU)’s, and AlY)’s to some required form, e.g. sum-of-
products form, and invoke a conventional minimizer for ordinary logic functions, e.g. ESPRESSO-
MV[45]. If it turns out that the relation is not reduced to a function, then we minimize the relation

directly using a relation minimizer, GYOCRO, presented in the following section.

3.5 Heuristic Minimization of Multiple-Valued Relations

3.5.1 Problem Formulation and Overview

We consider the following problem : given a well-defined multiple-valued relation R C
D x B™, find a representation F with the minimum number of product terms that is compatible with
R. We propose a heuristic procedure for this problem, where the input is given as the characteristic
function of R represented by an MDD.

The procedure starts with computing an initial representation compatible with the relation.
Then three basic procedures, REDUCE, EXPAND, and IRREDUNDANT, are iteratively applied as
long as the cost decreases, where the cost is the number of the product terms of the representation.
Every procedure takes as input a compatible representation F and the characteristic function R of
the relation.

In REDUCE, each cube ¢ € F is reduced to a smallest cube & C c¢such that F — {c} U {¢}
is compatible with R, where F — S U T designates the replacement of S C F by a set of cubes 7.
It is guaranteed at the end of REDUCE that every cube c in the resulting representation is minimal,
i.e. any cube & with the condition above is equal to c. EXPAND, in turn, takes each cube ¢ € F
and replaces it with a relatively prime cube containing ¢ so that a maximal number of cubes in F
can be removed. EXPAND guarantees that every cube of the resulting representation is relatively
prime. IRREDUNDANT makes the representation F so that it consists only of irredundant cubes.
Specifically, one cube ¢ € F is processed at a time, and is removed if and only if F — {c} is
compatible. Unlike the irredundant procedure of Espresso [8], which computes a minimum subset
of the current representation for a Boolean function based on the concept of partially redundant
cubes, our procedure is dependent on the order that the cubes are processed. In fact, the procedure
is a special case of REDUCE since a redundant cube is reduced to nothing. However, experimental
results show that use of IRREDUNDANT improves the computational time.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 53

3.5.2 Initial Representation

This section describes how an initial compatible representation for a given well-defined
relation R(x, y)can be computed. Our procedure takes a representation F, which is initially empty,
and processes each output adding a set of new cubes to F. F becomes compatible with R once all
outputs have been processed. The overall procedure is outlined in Figure 3.4.

The procedure first duplicates the relation R, and sets it to B. R is modified during the
procedure. For an output variable y;, let @9 be a set of minterms x € D such that y; = 1forevery
minterm y of the image of x by R. Similarly, let P() be a set of minterms of x € D such that
y; = 0 for every minterm y with (x,y) € R. Let AU be the the remaining minterms of D. These
are the same sets used for identifying if a given relation is an incompletely specified function in
Section 3.4. Once these three sets are obtained, a two level minimizer for multiple-valued functions
is invoked with @(), P(9), and AU} as the on-set, the off-set, and the don’t care set respectively, so
that a minimal sum-of-products representation ; with » inputs and a single output is computed.
Then F; is converted to a representation with n inputs and m outputs such that the input part is
identical with F; and the output part has 1 only in the j-th component. The converted representation
is added to F ;' Once F; is computed, the relation R is modified so that for every pair of minterms
(x,y) € R, y; appears complemented in y if and only if x is not covered by F;. Equivalently,
R(x,y)is replaced by R(x,y)(F; = y;), where (f = g) designates the XNOR operation between
f and g. Fj is the set of minterms of D covered by F;, which is computed by converting F; to
an MDD. Once all output variables have been processed, a compatible representation is obtained in
"unwrapped"” form, i.e. each cube in the representation has exactly one 1 in its output part.

Theorem 3.5.1 A representation F obtained by the procedure given in Figure 3.4 is compatible

with the relation R.

Proof: We first assume, without loss of generality, that the procédure processes output variables
in increasing order on j,i.e. from j = 1to j = m. Let f : D — B™ be the function defined by
F. For a given arbitrary minterm x € D, let y(j) be the minterm f(x) restricted to the variables
{v1,...,y;}. Thus, y(m)is equal to f(x), and y(1) is the value of the first output variable y; in
the minterm f(x). We also define y(0) as null. For a given ¥ € B™, we say that ¥ satisfies the
partial identity up to j if for all ¢ < j, the value of y; in ¥ is equal to that in y (7).

We prove, by induction on j, that there exists ¥ € B™ such that (x,¥) € R and ¥ satisfies
the partial identity up to j. Then since y(m) = ¥ and since y(m) = f(x), the proof is done.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 54

function INITIAL(R(x,y))

F ¢

R — R,

for(each output y;){
ol — {xe D|Vye B™: R(x,y)=1=>y; =1}
PO) — {x€ D|Vy € B™: R(x,y)=1=y; =0}
A — m,
F; — minimize(®),A0), PU));
R(x,y) — R(x,y)(F; = ;)
F « F U convert(F;);

}

return F;

Figure 3.4: Procedure for Computing an Initial Representation

Furthermore, denoting by R(j) the relation R obtained just after processing y; in the procedure, we
also show that (x,y) € R(7)if and only if y satisfies the partial identity up to j. For a special case,
we define R(0) = R.

For the base case, where j = 0, y(0) is null. Since R is well-defined, there exists ¥ such
that (x,¥) € R, and thus the condition holds. Also, the second condition of R(7) is trivially true
for this case.

Suppose that the conditions hold up to j — 1, where § > 1. We first note that the minterm
given as the image of x by the representation obtained just after processing y; satisfies the partial
identity up to j. This is because when y; is processed, the procedure adds a set of cubes whose
output part has 1 only at the j-th component, and thus the pattern of the image for the variables
{91, ...,y;} is identical with that of the image obtained by the final representation, i.e. f(x). Thus
y; isequal to 1in y () if and only if x is covered by F;, where F; is the single-output representation
obtained in the procedure when y; is processed. Since F; is the result of minimizing a function
with the on-set and off-set as defined in the procedure, there exists a minterm § € B™ such that

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 55

(x,¥) € R(j — 1) and the value of y; in ¥ is equal to that in y(5). Therefore, with the induction
hypoihesis, ¥ satisfies the partial identity up to j. Also, since R(j — 1) is a subsetof R, (x,¥) € R.

Now consider the relation £(;). The induction hypothesis implies that (x,y) € R(j — 1)
if and only if y satisfies the partial identity up to j — 1. Furthermore, (x,y) € R(j) if and only if
(x,¥) € R(j — 1) and the value of y; in y is the same as that in y(5). It follows that (x,y) € R(5)
if and only if y satisfies the partial identity up to j. Therefore, the two conditions hold for j.

Hence, by induction, (x, f(x)) € R for all x € D, and thus the representation F is
compatible with . =

3.5.3 Computing the Characteristic Function of a Set of Cubes

REDUCE, EXPAND, and IRREDUNDANT procedures process one cube ¢ € F at atime.
In each operation, we need to compute the characteristic function corresponding to F — {c}, denoted
by F(x,y). The characteristic function of a function f : D — B™ is the characteristic function
of the relation F' = {(x,y) € D x B™ | y = f(x)}. Throughout the rest of this chapter, we call
F the characteristic function of F — {c}. In general, the characteristic function of a representation
F, denoted by F(x,y), can be computed by scanning all the' cubes of F to obtain the function

f9 : D — B for each output y;, followed by setting F(x,y) = ﬁ(f9(x) = y;). This will be
referred to later as the "first" method. However, it is time consum]i:;;, especially when the size of
F is large. In fact, F¢(x,y) can be computed much more easily by the following method if F is
already available.

Let S be the subset of F defined as S = {p € F | p # cand M(p) N M(c) # ¢}, where
we recall that M(p) is a set of minterms of D covered by the product term corresponding to the

input part of p. Let Fs : D X B™ — B be a function such that Fs(x,y) = 1 if and only if

1 ifO(c); =1and Ip € S suchthat x € M(p) and O(p); =1,

0 otherwise,

V]G{l,,m} . yJ={

where y; is the value of the j-th variable in y. Now observe that for a minterm x ¢ M(c), the
image of x by F; is identical with the image of x by F. For a minterm x € M(c), the value of y;
of the image of x by F. is identical with y; of the image by F if O(c); = 0. If O(c); = 1 and there
existsno p € F — {c} such that x € M(p) and O(p); = 1, then y; = 0. Otherwise y; = 1. Thus

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 56

F.(x,y) = 1if and only if

; #; ifx € M(c)and O(c); =1,
VJG{I,...,m} yj—{ 7 (¢) ()J

9; otherwise,

where §; is the value of the j-th variable in the minterm § such that Fs(x,¥) = 1 and §; is the
value of the j-th variable in the minterm § such that F(x,§) = 1. In order to accomplish this
computation, we first introduce additional variables T' = {;1, censtmtand Z = {z,...,2m} tO
represent F and Fs in terms of (x, t) and (x, z) respectively, and compute a characteristic function
Yi(y,t,z)suchthatY;(y,t,z) = lifandonlyif foreach j € {1,...,m},y; = ¢;if O(c); = Oand

y; = z; if O(c); = 1. Specifically, Y;(y, t,z) is given by H (y; =1t5) H (y; = 2;), where
ieYi(c) JEYi(c)
Yi(e) = {j € {1,...,m} | O(c); = 0}. Then, Fe(x,y) = 1 if and only if either x ¢ M(c) and

F(x,y) = 1,0r x € M(c) and there exists (t,z) such that F(x,t) = Fs(x,z) = Y1(y,t,2) = 1.
These computations are performed on MDD’s. In this way, F; is computed from F’ by scanning a
subset S of F.

According to experiments, the first method is slightly faster for small examples such as
10 variables and 20 cubes. However, the CPU time for the second method is almost invariant in the
size of the representations and is much faster for moderate sized examples. For one with 33 binary
variables and 553 cubes, the second method was 20 times faster.

The second method uses the characteristic function F' of F. The computation of F is
done once at the beginning of the entire procedure using the first method. However, it must be
updated whenever a cube of F is replaced by another cube either in the REDUCE or the EXPAND
procedure. As a converse of the second method, given F, ¢ € F, and the characteristic function
F. of F — {c}, F(x,y) can be computed as follows. For a minterm x € D, the value of y; of the
image of x by F'is identical with y; of the image by F. if x ¢ M(c) or x € M(c) but O(c); = 0.
Otherwise y; = 1. Thus using new variables T' = {#;,...,tx} to represent F in terms of (x, t),
we see that F'(x,y) = 1 if and only if either x € M(c) and F.(x,y) = 1, or there exists t such
that F¢(x,t) = 1 and Y5(y, t) = 1, where Y2(y,t) = 1if and only if y; = ¢; forall j € Yi(c) and
y; = 1forall j ¢ Yi(c).

In this way, each of the REDUCE, EXPAND, and IRREDUNDANT procedures takes as an
additional input the characteristic function F'of F, updates it whenever F changes, and hands it to the
succeeding procedure. Note that it is not necessary to update F’ in the RREDUNDANT procedure
since if ¢ is removed, then F,. becomes the characteristic function of the new representation.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 57

354 REDUCE

A reduction is an operation which takes a cube ¢ and returns a cube & C ¢, where & may be
empty. A reduction is valid if the replacement of ¢ with the reduced cube results in a representation
compatible with R.

Definition: Maximally Reduced Cube

For a given representation F compatible with R and acube ¢ € F,acube ¢~ C cisa
maximally reduced cube for c in F if 7 — {¢} U {c¢™} is compatible with R and there exists no
cube &~ C ¢ such that F — {c} U {&"} is compatible.

If a maximally reduced cube for ¢ in F is c itself, we say c is maximally reduced. The
goal of the REDUCE procedure is to compute a compatible representation which consists of only
maximally reduced cubes. Itis known that if R is in fact an incompletely specified function, i.e. 7(x)
can be expressed by a single cube for every x € D, then the maximally reduced cube ¢~ for cin F is
unique. Also, for any cube ésuchthat ¢~ C & C c, the replacement of ¢ by & preserves compatibility.
Thus the maximally reduced cube is easily obtained by lowering, in any order, one part at a time
from 1 to O for ¢, followed by checking the compatibility of the resulting representation, until no
valid reduction is possible. Note that the compatibility check of a representation F is equivalent to
the containment check between F(x,y) and R(x,y),i.e. F(x,y) C R(x,y), which can be done
efficiently with MDD’s. Therefore, a two level minimizer for ordinary logic functions achieves
the goal mentioned above by taking each cube and replacing it with the unique maximally reduced
cube.

The REDUCE procedure of the proposed method also processes one cube at a time and
replaces it by a maximally reduced cube. However, only a weak form of uniqueness holds.

Theorem 3.5.2 Let F be a representation compatible with a relation R. The input part of a

maximally reduced cube for ¢ € F is unique.

Proof: Suppose that there are two maximally reduced cubes ¢ and ¢®). The objective is to show
that M (c()) = M(c®). Suppose first that either of them, say M (c(1)), is empty. Then M(c®)
must be empty and thus the proof is done since otherwise c?) is not a maximally reduced cube by
definition.

Now we assume that neither M (c(1)) nor M(c®) is empty. We first show that M (c(1)) n
M(c@®) # ¢. Suppose the contrary. Let &(!) be any cube strictly contained in c(!) obtained by

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 58

reducing only the input part of ¢(1). &(1) may be an empty cube. Let w be any minterm included
in M(c) n -M(&M). Since () and c?) are assumed disjoint, w ¢ M(c®)). However, since
F — {c} U {c@} is compatible, the image of w by F — {c} must be a member of r(w). Thus a
reduction from ¢(!) to (1) is valid, which is a contradiction. Therefore M(c(!)) and M(c®)) are
not disjoint.

Suppose that M (c(")) # M(c®)). Let mbe any minterm included in M (c())n-M(c®)).
Let m; be the value of the j-th input variable in m. Let &1) be the cube which is identical with c(!)
except that I(¢M); = ~m; N I(c(1));, where j is an index such that m; ¢ I(¢());. Note that &(!) is
not an empty cube since otherwise I(c(1)); N I(c®); = ¢, which implies M (c(V)) n M(c?) = 4.
Since ¢() is maximally reduced, F — {c} U {¢(1)} is not compatible. This implies that there exists
aminterm 7 € M (c() N ~M(2()) such that the image of 7 by F — {c} is not a member of ().
However, we know that 7; = m;, and thus 7 ¢ M(c(®)). Since F — {c} U {¢®} is compatible and
since 7 ¢ M(c®), the image of 7 by F — {c} must be a member of (), which is a contradiction.
Thus the assumption that M (c¢(V) # M(c®))is incorrect. m

Theorem 3.5.3 Given a relation R and a cube ¢ € F, where F is a representation compatible
with R, let € C c be a cube such that O(&) = O(c) and M(€) 2 M(c™), where ¢~ is a maximally

reduced cube for c in F. Then the reduction from c to ¢ is valid.

Proof: For a minterm m € M (&), we have m € M(c). Since O(&) = O(c), the image of m by
F — {c} U {&} is equal to the image by F. For aminterm m € M(c)N-M(¢), m ¢ M(c™). Thus
the image of m by F — {c} U {&} is equal to the image by F — {c} U {c™}, which is a member of
r(m). Therefore, F — {c} U {¢} is a compatible representation.

Thus by fixing the output part of ¢, we can lower each part of I(c) with the value 1 to
0, one at a time, and accept the reduction if the new representation is compatible with R. The
unique input part of a maximally reduced cube is obtained once all the input components have been
processed. Note that c is redundant in 7 if there is a component I(c); in which every part is 0.

We can check the compatibility of the new representation as follows, without computing
its characteristic function. Let ¢ be a cube which is identical with ¢ except that a single part of I(c)
has been lowered from 110 0. Let @ = M(c) N =M (&). We see that F — {c} U {¢} is compatible if
and only if for all minterms m € @), the image of m by 7 — {c} is amember of 7(m). Equivalently,
F —{c}u{e} is compatible with R if and only if for all x € @, there exists y such that R(x, y)=1
and F,(x,y) = 1. This check is easily done on MDD’s.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 59

Thus the reduction of the input part is performed in a straightforward way. However,
unlike the input part, the following example shows that the output part of the maximally reduced
cube is not unique.

Example 3.5.1 Suppose that a representation F shown in Table 3.5 is compatible with R, where
part of its relations are shown in Table 3.5. Then c{") = (1021 | 1000] and ¢? = (1021 | 0110] are
both maximally reduced cubes for ¢y in F.

Representation F Relation R
cube | Input | Output || x € B? y € B*
q 1021 | 1110 1011 | 1111,0111, 1001
173 1201 | 0100 1001 | 1111,0111, 1101, 1001, 0001
c3 2021 | 0001 1101 | 0100
c4 2211 | 0001 1111 | 0001

Table 3.5: Example where a Maximally Reduced Cube is not Unique

Since we want to reduce ¢ as much as possible, we want to find the smallest maximally
reduced cube ¢~ , i.e. the maximally reduced cube with the minimum number of 1’s in the output part.
One difficulty is that compatibility does not necessarily hold for a cube & suchthat ¢™ C € C ¢. For
Example 3.5.1, although F and F — {¢; }U {cgl)} are both compatible with R, for p = [1021 | 1100]
or ¢ = [1021 | 1010], the replacement of ¢ by either p or ¢ results in an incompatible representation.
Thus the smallest maximally reduced cube may not be found by greedily reducing the output part
of c.

Now consider a cube ¢ such that its input part is maximally reduced. We define a feasible
cube for c as follows: c* is feasible if 7 — {c} U {c*} is compatible with R, the input part of c*
is equal to that of ¢, and ¢* C c. A feasible cube with the minimum number of 1’s in the output
part is a maximally reduced cube we seck. Our objective is to compute the characteristic function
h of the set of all the feasible cubes for ¢, and choose one with the minimum number of 1’s in the
output part. For a set of components Y, = {j € {1,...,m} | O(c); = 1}, consider a Boolean
space BIY#| defined by the output variables of Y;. For a minterm y € BIY*l, we define a reduced
cube c* for ¢ with respect to y as follows. The input part is equal to that of ¢, and O(c*); = 1 if
andonlyif j € Yyand y; = 1. Leth : BlY:l — B be a function such that A(y) = 1 if and only
if ¢* is feasible, where c* is a reduced cube for ¢ with respect to y. By definition, ~(y) = 1 if and

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 60

only if the following property holds for every minterm x € M (c¢):

9i+y; ifjels,

(3.3
9 if j & Ya,

3y e B™: R(x,¥)=1, Vie{l,....,m}: @ = {

where §; is the value of the j-th variable of the minterm § € B™ such that F.(x,¥) = 1.
Let H : M(c) x BYsl - B be a function such that H(x,y) = 1 if and only if (3.3)
holds for (x,y). Then by definition, 2(y) = 1 if and only if H(x,y) = 1 for all x € M(c).
In order to compute H on MDD’s, we first introduce additional variables T = {#;,...,tm} and
Z ={21,...,2m} torepresent R and F; in terms of (x, z) and (x, t), and compute a characteristic
function Y3(y, t,2) such that Y3(y, t,2z) = 1if and only if foreach j € {1,...,m}, z; = t; + y;

if j € Yyand z; = ¢ if j ¢ Y. Namely, Ys(y,t,2) = [] (25 = (t; + y,)) H(z, = t;).
JEY}
Then H(x,y) = 1if and only if x € M(c) and there exists (t,z) such that R(x, z) F e(x,t) =

Y3(y,t,z)= 1.

Note that ~(y) is represented by a BDD, since the output variables are all binary. Once
h(y)is computed, a maximally reduced cube with the minimum numberof 1’s is obtained efficiently.
In fact, the following theorem is analogous-to a result of a BDD based approach for a covering
problem [32].

Theorem 3.5.4 A maximally reduced cube for ¢ in F with the minimum number of 1's is given by
a shortest path connecting a 1 leaf to the root of a BDD for the function h(y) defined above, where
the length of an edge of the BDD is 1 if the edge is a I edge and 0 if the edge is a 0 edge.

Proof: For a reduced cube c* withrespect to y, O(c*); = 1if and only if y; = 1. Thus a maximally
reduced cube with the minimum number of 1’s is a reduced cube for y with the minimum number
of 1’s such that 2(y) = 1. For any path from the root of the BDD for k which ends in the 1 leaf,
one can obtain a minterm y such that ~(y) = 1, by setting y; = 1 only if the path contains a 1 edge
incident with a node for ;. The number of 1°s of the minterm is minimum among all the minterms
represented by the path. Let y be the minterm with the minimum number of 1°s associated with
a shortest path P that ends in the 1 leaf. The proof is done if we show that y has the minimum
number of 1°’s among all the minterms in the on-set of /. Suppose there is another minterm y’ such
that the number of the 1’s of y is less than that of y. Then there exists at least one path in the BDD
corresponding to y’. Let P’ be the shortest such path. Since the number of 1’s of y’ is at least the
length of P’, P’ must be shorter than P, which is a contradiction. m

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 61

Therefore, once the input part of a cube ¢ € F has been maximally reduced, the smallest
maximally reduced cube for c is obtained by computing a function A(y), followed by performing a
shortest path algorithm, which runs in time linear in the number of the nodes of BDD’s.

We have shown how to compute a maximally reduced cube for each cube of 7. However,
we want to compute a representation in which every cube is maximally reduced. Due to the nature
of sum-of-products representations for relations, a property of a cube like maximal reduction, which
may hold at some time in the reduction process, may cease to hold when other cubes are subsequently
reduced. We must deal with this difficulty which does not arise for functions. This is illustrated by
the following example.

Example 3.5.2 In Example 3.5.1, suppose c| has been replaced by a maximally reduced cube c§” .
If we have replaced c; by its maximally reduced cube cgl) = (1101 | 0100, then cgl) can be further
reduced to [1011 | 1000] while still keeping the compatibility of the resulting representation.

One solution is to iterate the entire procedure, until no cube is replaced by a smaller cube.
Then at the end, it is guaranteed that every cube of the final representation is maximally reduced.

As with ordinary logic functions, the result of this procedure depends on the order of the
cubes to be processed. Experiments were performed with several ordering strategies. Although the
results varied slightly with different orderings, none was always better than another. As in the case
of the minimization of functions [45], the final results seemed to be independent of the ordering
strategies in general. Thus we order the cubes with the same strategy employed in Espresso [8], in
which the largest cube is processed first and the rest are sorted in increasing order of the number of

mismatches (distance) of each cube against the largest one.

3.55 EXPAND

The objective of EXPAND is to remove as many cubes as possible from a given compatible
representation. Furthermore, we want the final representation of the procedure to consist of relatively
prime cubes. The proposed procedure achieves this goal by processing one cube at a time, in which
the cube is expanded so that a maximal number of cubes is removed. An expansion is an operation
which takes a cube ¢ and returns a cube é D c¢. The expansion is valid if the replacement of ¢ with
¢ results in a compatible representation. The result of the procedure is order dependent and we sort
the cubes, as in ESPRESSO-MYV [45], in increasing order of the weights, where the weight of a
cube is defined as the number of parts at which the cube has 1.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 62

The expand procedure for each cube ¢ € F, EXPANDI, is designed as an extension of
the expand procedure of Espresso, and is illustrated in Figure 3.5. EXPAND1 employs a covering
matrix C which was introduced in Espresso. C has (¢ 4+ m) columns and as many rows as cubes of
F — {c}, where t is the number of the parts of I(c), which is given by the sum of the number of
values that each input variable can assume. Each element of C, C;;, is defined as follows:

Vi ed{l,...,t}:

Coi o 1 if the j-th part of I(c) is 0 and the j-th part of I(F#))is 1,
Y 0 otherwise,
1 ifO(c); = 0and O(FW); = 1,

Vie{l,...,m}: Ciuyj) = { 0 otherwise

where F) is the i-th cube of F — {c}. The covering matrix allows each part of ¢ to be handled in
a uniform way, without making any distinction among the input or the output variables.

Throughout EXPAND1, we maintain two sets of columns of C, R and £, where R is
initially a set of columns at which c has 1, and £ is empty. R is called a raising set and L is called a
lowering set. R is used to store the columns that have been raised, while £ maintains the columns
that have been determined not to be raised.

Among all the operations of EXPAND1, the maximal-feasible-covering (MFC) operation
is key, in which directions of expansion for ¢ are determined. Other operations are used to complete
the procedure efficiently. The objective of MFC is to expand ¢ so that the maximum number of
cubes of F — {c} can be removed. Overall flow of the operation is as follows. First, for each cube
p € F — {c} corresponding to each row of the covering matrix C,, compute the smallest cube c*(p)
such that F — {c,p} U {¢*(p)} is compatible. c*(p) may not exist. We choose the smallest such
cube since we want to leave freedom of expansion for eliminating other cubes. Note that ¢*(p) may
not cover p.2 If ¢*(p) exists, then we compute the maximum subset S(p) of F — {c, p} such that
F —{c,p} — S(p)U{c*(p)} is compatible. Once all the cubes corresponding to the rows of C have
been processed, and if no c*(p) exists, then we exit the operation. Otherwise, a cube c*(g) with the
maximum cardinality of S(g) is chosen. Then the rows of C' corresponding to the cubes of ¢ U S(q)
are removed and the characteristic function of the new representation except ¢ is computed as F..
Finally, the operation is exited with the set of newly raised columns.

Practically, it is expensive to accomplish these procedures completely and thus we intro-
duce some restrictions. First, §(p) is restricted to those covered by c*(p), and ¢*(g) is chosen as the
one that covers the largest number of ¢*(p)’s over all the p’s. Thus we do not compute S(p) at all and

?In fact ¢*(p) may not even cover c, but we exclude this case in our procedure.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS

end

procedure EXPANDI1(c, F, R, F)
begin

F, — CFc(F, F); [*compute the characteristic function of F — {c} */
C — COVERING_MATRIX(c, F);
R « {j | The j-th partof cis 1.};
L—¢
while(|R| + |£| < (t + m) and C # ¢){
Xg — ESSENTIAL(c, F,, R, R, L);
L—LUXg;
C «— ELMI(C, Xg);
J « MFC(C, ¢, F;, R, R);
if(J| =0) J —EG(C);
R—RUJ;
C « ELM2(C, J);
}
if((R|+ |£] < (t+m)) {R,L} — GREEDY(c, F., R, R, L);
¢ — RAISE(c, R);
if(c has been expanded) F — CF(F, ¢);

Figure 3.5: EXPANDI1

63

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 64

the rows of C covered by c*(¢) are eliminated by another operation. Now, we still need to update F;
once a cube ¢*(g) is chosen. Furthermore, in order to compute c*(p) for each p € F — {c}, we need
to compute the characteristic function of F — {c, p}. These characteristic functions are necessary
so that we can evaluate the functionality of F — {c, ¢} — S(q) U {c*(¢)} (and F — {¢,p} U {c*(p)})
without computing the real characteristic functions for the representations. However, we can ob-
serve that both of these tasks are necessary because ¢*(p) may not cover p. This is because if ¢*(g)
covers ¢ as well as all the cubes of S(g), then the functionality of F — {c,q} — S(q) U ¢*(q) is
identical with the functionality of F — {c} U ¢*(g). Thus as long as the characteristic function for
F —{c, g} — 5(q) is used to evaluate the functionality of the entire representation, the characteristic
function for F — {c}, F;, can be used as an alternative. Note that F;. does not reflect the functionality
of F —{c, ¢} — S(gq), but still the functionality of F — {c, ¢} — S(g)Uc*(g) can be correctly evaluated
with the help of ¢*(¢). The same statement holds for the characteristic function of F — {c, p}. Since
F, is already available, with the additional restriction that c¢*(p) 2 p, the entire procedure of MFC
can be completed without computing characteristic functions. Due to the enormous improvement
in computational time, we employ this restriction.

What remains in MFC is a computation of ¢*(p), the smallest cube containing both ¢
and p such that F — {¢,p} U {c*(p)} is compatible with R. The smallest cube containing both
c and p, denoted as ¢é, is obtained by taking the part-wise union between ¢ and p [45]. In other
words, if p corresponds to the i-th row of C, then for j € {1,...,t}, the j-th part of I(&) is O if
and only if C;; = 0 and j ¢ R, while O(¢); = 0 if and only if C;(;+j) = 0 and (¢ + j) € R for
7 € {1,...,m}. If Ris an incompletely specified function, then c*(p) = &if F — {c,p} U {é} is
compatible, otherwise c*(p) does not exist. For relations, however, it is claimed, as with REDUCE,
that there exist cases where a compatible representation is obtained by raising the output part of ¢
even though F — {¢, p} U {2} is originally incompatible. One sees in this case that raising the input
part of ¢ does not help since the image of a minterm for which the incompatibility occurs is not
changed unless either the output part of & or other cubes of F — {¢, p} are modified. Considering
that the functionality of 7 — {¢, p} U {¢} is identical with that of F — {c} U {¢}, we define a feasible
cube for ¢ as a cube ¢* such that F — {c} U {c*} is compatible with R, the input part of c* is equal
to that of ¢, and ¢* 2 ¢. Then our objective is to find the smallest feasible cube for &.

This is done with a similar technique used in REDUCE, i.e. we compute the characteristic
function { of the set of all the feasible cubes for &, and choose the smallest one if it exists. Let
Y = {j € {1,...,m} | O(&); = 0}, and consider a cube corresponding to a minterm y € BI"l
such that the input part is identical with that of & and the j-th output part is 0 if and only if j € V;

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 65

and y; = 0. Let : B!l — B be a function such that {(y) = 1 if and only if F — {c} U {c*} is
compatible with R, where c* is the cube corresponding to y. There is a one-to-one correspondence
between a feasible cube and a minterm y such that I(y) = 1, and thus our objective is to find the
minterm y with the minimum number of 1’s in the output part for which /(y) = 1. We see that
{(y) = 1if and only if the following property holds for every minterm x € M(é):

WeB™: Rx,§)=1, Vie{l,...m}: g ={ bty Hjex, (3.4)

1 ifj ¢y,

where §); is the value of the j-th variable of the minterm § such that F;(x,¥) = 1. In order
to compute I, we use a function L : M(&) x BM| — B such that L(x,y) = 1 if and only
if (3.4) holds for (x,y), as with the REDUCE procedure. Specifically, introducing additional
variables T = {t1,...,tn} and Z = {21,...,2n} to represent R and F. in terms of (x,z)
and (x,t), we first compute a function Y4(y,t,2z) such that Y4(y,t,z) = 1 if and only if for
eachje€ {l,....m},z; =1forallj € Vyand z; = t; + y; forall j € ¥;. Yy is given by

Ya(y,t,2z) = [(2i = (t; + 4;)) [] 2. Then L(x,y) = 1if and only if x € M(&) and there
JeN &N
exists (t,z) such that R(x,z) = Fy(x,t) = Ya(y,t,2z) = 1. Then by definition, /(y) = 1 if and

only if L(x,y) for all x € M(é). Note that, unlike REDUCE, /(y) may be identically zero. This
is the case where there is no feasible cube for é.

Now, as a variation of Theorem 3.5.4, it is claimed that if {(y) is not identically zero,
then a minterm y with the minimum number of 1’s such that /(y) = 1 is given by a shortest path
connecting a 1 leaf to the root of a BDD of /(y). Hence, the smallest cube c*(p) containing both
c and p such that F — {c,p} U {c*(p)} is obtained by computing /(y) for a cube ¢, followed by
performing a shortest path algorithm.

The restriction that c*(p) must cover p brings another efficiency; once there is no such
¢*(p) for p at some time during the expansion of ¢, then there is no hope that c*(p) exists in the
future. Thus we mark a row of C corresponding to p if ¢*(p) does not exist, so that a function /()
for p is never computed for the rest of the procedure. We note if ¢*(p) is not restricted to cover p,
then this does not hold for relations in general. The following example illustrates the situation.

Example 3.5.3 A relation R and a representation F, compatible with the relation, are given in
Table 3.6. Suppose c is being expanded. There is no cube c*(p) 2 c such that F — {c,p}U {c*(p)}
is compatible, and thus p cannot be eliminated. On the other hand, q is eliminated from F if c is
expanded to ¢ = [110 | 101). Then if ¢ is further expanded to ¢ = [112 | 101}, {c®} isa

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 66

compatible representation and thus p is eliminated. Note that the expansion from c to ¢?) is not

valid if q is present in F.

Representation JF Relation R
cube | Input | Output || x € B* y € B°
110 001 110 | 011,101
121 101 101 | 000, 101
112 010 111 111, 001, 101

ST~ T)

Table 3.6: Example of Expansion for a Boolean Relation

We have seen how to determine the direction of expansion for ¢ in MFC. However, ¢*(p)
might not exist for any p € F — {c}. In this case, an operation EG is invoked. If, in addition, C
is empty, then another operation GREEDY is called. Otherwise, as Espresso does, the operation
chooses a single column not in R or £ with the maximum column count in C. Then a set of columns
obtained by either MFC or EG are included to R. Now C might have the rows that have a zero in
every column not in R or £. This means that the cubes of F — {c} corresponding to these rows are
covered by c if all the columns in R are raised. Thus these rows are eliminated by ELM2.

The operation ESSENTIAL finds essential columns. A column j ¢ {R U L} is essential
if there is no feasible cube for a cube & in which all the columns of R U {j} are raised. This is
checked by computing !(y) for &, and seeing if ! is identically zero. Once a set of essential columns
are obtained, these are included in L. If there is a row in C' that has a 1 in one of the columns which
have been included in £, then there is no hope that the cube corresponding to the row is covered by
expanding c. Therefore ELM1 eliminates such rows of C.

In case C becomes empty but some columns are not in either R or £, GREEDY is invoked,
where each such column of the input part is examined if the column is essential. If the column is not
essential then it is put in R, otherwise included in £. Then for a cube & which has all the columns
of R raised, we compute the largest feasible cube for &, i.e. the feasible cube with the maximum
number of 1’s in the output part. Such a cube is obtained by computing the longest path to the 1
leaf of a BDD for {(y) of & Namely, the j-th column of the output part such that j ¢ £ is included
in £ if there is a 0-edge incident with a node of the BDD for y; in the longest path. The rest of the
columns are putin R.

Finally all the columns in R are raised in ¢ by RAISE and the characteristic function of the

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 67

new representation is computed. The following theorem guarantees that at the end of EXPANDI, ¢
is prime relative to F.

Theorem 3.5.5 Suppose EXPANDI expands c to c*. Then c* is prime relative to F — {c} U {c*}.

Proof: Suppose the contrary that there exists a cube ¢t D ¢t for which F — {c} U {c**} is
compatible. Let j be any part at which ¢t islowered and ¢* is raised. Then j was added to £ either
by ESSENTIAL or GREEDY. If j is in the output part, then it was not included by GREEDY since
GREEDY chooses the largest output part among all the possible feasible cubes. Therefore, 7 must
be an essential column at the time it was included to £. Let & be the cube for which the existence of
feasible cubes was examined for 7. Note that M (ct*) D M(&). For a cube p = [I(&) | O(ct™)],
the image of any minterm x € M (&) by F — {c} U {p} is equal to that by F — {c} U {c**}. Since
there was no feasible cube for & and p D ¢, there exists a minterm x € M (p) such that the image of
x by F — {c} U {p} is not a member of r(x). Thus F — {c} U {¢**} is incompatible, which is a
contradiction. =

As with REDUCE, it is claimed that there is a case where a relatively prime cube in F
may become non-prime by expanding another cube of F. Therefore, we iterate the entire procedure,
until no cube is further expanded. At the end of EXPAND, we obtain a compatible representation

in which every cube is prime relative to the representation.

3.5.6 IRREDUNDANT

In IRREDUNDANT, we produce a compatible representation in which every cube is
irredundant. Specifically, the procedure takes one cube c at a time and checks if the representation
F — {c} is compatible. If this is the case, ¢ is removed.

The result of the procedure depends on the order of the cubes; the procedure processes
them in decreasing order of size. However, since IRREDUNDANT is always applied as a successor
of EXPAND which also sorts the cubes in the order of decreasing size and since EXPAND is iterated
until no cube changes, the cubes are already sorted when given as input to IRREDUNDANT. Thus
we do not sort them in this routine. IRREDUNDANT is a special case of REDUCE. Thus, as with
Example 3.5.2, an irredundant cube in 7 may become redundant once another cube is modified.
Thus we iterate this procedure, until no cube is removed. Note that the decreasing order of the cubes
is preserved even if some cubes are removed. Note that the representation still might have a proper
subset that is also compatible, as seen in Example 3.2.1, and thus the procedure does not guarantee
the irredundancy of the resulting representation.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 68

3.6 Experimental Results

The proposed procedure has been implemented in the program called GYOCRO. The
system computes an initial representation if not given externally. Once the initial representation
is verified to be compatible, the proposed procedure is applied. We use the same data structure
as ESPRESSO-MYV [45] to represent sum-of-products expressions. In the EXPAND procedure,
employing the techniques introduced in [45], we have implemented the proposed algorithm by
directly using a representation F instead of a covering matrix.

For comparison with existing techniques, several examples of Boolean relations were
tried. The results are compared with the other two approaches [22, 53] developed for Boolean
relations, where the programs for both procedures were provided to the authors. Table 3.7 shows
the number of the product terms and CPU time (seconds) measured on a DECstation 5000/240 for
all three methods. Exact is the exact procedure [53], Herb is a heuristic approach proposed in [22].
GYOCRO is the proposed approach. GYOCRO performs quite well both in CPU time and results.
In fact, among the 18 examples for which the exact minimizer worked, the proposed procedure
achieved optimum solutions for 13 examples.

In order to speed up the proposed method, we tried a modification. In the original
procedure, each of the REDUCE, EXPAND, and IRREDUNDANT procedures is iterated until no
cube of the representation is changed. This is because we want to guarantee that every cube produced
by these procedures is maximally reduced, relatively prime, and irredundant respectively. We tried
another way where each procedure is exited after a single sweep. In this case, some cubes of the
final representation may not be relatively prime or irredundant. However, every cube is guaranteed
to be a c-prime since the cube was made prime relative to some representation compatible with the
relation.)

The results of the modified procedure are shown in the last column (GYOCRO-I) of
Table 3.7. The CPU time was improved roughly by a factor of two and the results were precisely
the same. For medium size problems, where exact results are not known, GYOCRO appears to
be quite effective, overcoming the problem of getting stuck too early that is common with greedy
procedures such as Herb; for example, compare the results for gr or b9. The total time taken for
the largest example combleted, int15, has 24 inputs and 14 outputs, taking about 10 minutes. This
is not an unacceptable time for this size of problem. On the other hand, for ib with 48 inputs and
17 outputs, GYOCRO could not complete due to shortage of memory. These two problems give a
good indication of the limitations of GYOCRO in terms of size and speed.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 69

Exact Herb GYOCRO GYOCRO-I
Name | In | Out | Terms | Time [Terms | Time || Terms | Time || Terms | Time
intl 4 3 5 159 8 0.2 5 0.1 5 0.1
int5 4 3 7 0.2 8 0.6 7 0.2 7 0.1
int10 6 4 25 | 42446.3 32 3.6 25 19 25 1.2
cl7b 5 3 7 18.2 7 04 7 0.2 7 0.1
cl7i 5 3 13 09 14 1.7 15 0.6 15 04
shel 7 3 6 70.3 9 96.5 6 0.7 6 04
she2 5 5 time out H 14 18.0 10 2.6 10 1.6
she3 7 4 time out 10| 3585 9 2.1 9 14
shed 5 6 I time out 27 224 20 4.6 20 3.2
N gr 15 11 * * 126 | 4004 53| 1820 53| 783
b9 16 5 * * 452 | 1439.3 270 | 207.1 270 | 116.1
[int15 {24 | 14 * * 145 | 421.8 131 | 526.6 131 | 273.1
ib 48 | 17 * * out of memory || out of memory || out of memory

*

the method has not been applied for the example.

Table 3.7: Experimental Results

3.7 Concluding Remarks

The minimization problem of multiple-valued relations naturally arises in many contexts.
We have proposed a heuristic procedure which achieves the minimizations, where a relation is
represented by its characteristic function using an MDD. The procedure is based on a paradigm for
two level minimization of ordinary functions, in which a solution i$ obtained through an iteration
of expand and reduce procedures. We have described some special properties of relations that do
not hold for functions. These properties are easily handled through MDD manipulations. Unlike
greedily expanding or reducing a cube, reduction and expansion are achieved by computing the set
of cubes that satisfy a property that we want to obtain and by directly choosing the best among
the set. The proposed procedure has been implemented in the program GYOCRO. The results
are encouraging in the sense that, for those examples where we know the minimum solution, our
heuristic minimizer reproduces the result most of the time or comes very close. On large examples
where the exact minimizer can not complete, our method outperforms the other heuristic Boolean

relation minimizer. Computing times and the size of problems that can be completed are reasonable.

70

Chapter 4

Permissible Behaviors for Finite State

Machines

4.1 Introduction

4.1.1 Overview

In Chapter 2, we considered the problem of computing a set of permissible combinational
logic behaviors. The model employed there is a system of interacting components, where the
connections of the components are acyclic and each component is combinational; it implements a
Boolean function. The specification for the behavior of the system is provided as a set of Boolean
functions, which is represented by a Boolean relation. It was shown that a set of permissible
functions can be computed and represented by a Boolean relation. We showed how a minimal-cost
representation can be found for a given relation in Chapter 3.

In this and the following chapters, an analogous investigation is made for sequential logic
behaviors. We consider a system where each component is a completely specified deterministic
finite state machine. In other words, each component implements a single sequential logic behavior,
in the sense that for a given finite sequence of signals (or events) defined over the inputs of the
component, the finite state machine associated with the component provides exactly one sequence
with the same length defined over the outputs of the component. Note that a component with a
single state is allowed, and thus purely combinational components may be included. We consider
synchronous systems only. Specifically, we assume an existence of global time steps, where each

time step is an instant moment with no interval, and is generated by a global timing controller

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 71

called a clock. A component of a system operates at all and only the time steps. Thus, operations
take place simultaneously over all the components at each time step. An operation of a component
consists of two actions; one is that of taking an input event, i.e. a set of values defined for the input
variables of the component, while the other action is a generation of an output event. Each output
event is generated as a function of a given input event and internal state of the finite state machine
associated with the component. A component takes these two actions at the same time for each
operation. Therefore, at each time step, every component simultaneously takes an input event, and
immediately generates the corresponding output event. The output events are communicated either
to the global outputs of the system or to other connected components.

For a synchronous system, the behavior of the entire system can be also modeled by a
completely specified deterministic finite state machine. Namely, for each finite sequence defined
for the global inputs of the system, the system generates exactly one sequence of the global outputs.
As an analogy to the combinational case, we assume that more than one output sequence may be
allowed for a given sequence of the global inputs. In other words, there are in general a set of
sequential behaviors allowed to be implemented for the entire system, and we say the system meets
the specification if it implements one of those behaviors. Thus, we assume that the specification
for the behavior of the entire system is given by a non-deterministic finite state machine. Non-
determinism allows one to represent a set of behaviors in a single machine. Specifically, for a
given present state and input, a non-deterministic finite state machine may go to different next states
and/or have different outputs. Therefore, for a given input sequence, the system may allow more
than one output sequence, and we provide a specification so that each of the output sequences is
regarded as a valid one. Of course, the final implementation generates only one output sequence,
but the specification is given as a set of behaviors, which provides more flexibility for optimization.

Under these assumptions, we consider the problem of finding the set of permissible
sequential behaviors at a given component of a system. Namely, for a given synchronous system
of interacting finite state machines and for a given specification, we find the complete set of
permissible behaviors at a particular component of the system. A behavior is said to be permissible
if the resulting behavior of the entire system meets the specification, where we assume that the
behaviors of the rest of the components are fixed. This is an analogous to the problem of finding the
maximum set of permissible Boolean functions for combinational logic behaviors. The resulting
set of permissible behaviors is then used in some optimal search procedure for a best choice. The

optimization problem, where the optimality is defined in terms of the number of states, will be
studied in Chapter 5.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 72

Figure 4.1: Interaction between Two Machines

The problem of finding permissible behaviors can be viewed as an interaction between two
finite state machines, shown in Figure 4.1, where M is the machine associated with the component
being optimized, M, represents the behavior of the rest of the system, and M gives the specification.
Our problem is to find the set of behaviors that can be realized at M so that the resulting behavior
made of M, and M, meets the specification M.

4.1.2 Related Problems

There are several problems/applications that can be viewed as a variation of this problem.
One such problem is to find the set of permissible behaviors of the outside component M, when the
internal component M; and the specification M are given. This problem can be solved in exactly
the same way as the original problem, since the interaction shown in Figure 4.1 can be redrawn as
shown in Figure 4.2-(a), which yields to the same picture of Figure 4.1 by modifying M, so that
the global input X and the global output Z pass through M;. This is illustrated in Figure 4.2-(b).
Such a problem arises in rectification problems[20, 60], where the designer wants to change the
functionality of a design, perhaps because of an engineering change, by attaching a small block of
logic (M>) external to the original circuitry.

Another related problem is a supervisory control problem for discrete event processes[42].
The problem is that for a given generator of discrete events (M) and a specification on the generated
events (M), we observe the events provided by the generator and control them (M3) by feeding

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

————— — — S — ——— — — — — —

M1

M1

(b)

Figure 4.3: Supervisory Control Problem

M1

—— i oy e . g s e

Figure 4.4. FSM Boolean Division

73

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 74

control events to the generator so that the resulting output events meet the specification. If the
generator and the supervisor are synchronizing, this problem can be deemed as a variation of our
problem, as shown in Figure 4.3, where M is the generator, M, is the supervisor, and V and Z are
identical while M; may be a non-deterministic machine.

Finally, our core problem includes the "division" problem for finite state machines ; given
an initial machine M and a "divisor" M, find the quotient of the two as given in Figure 4.4. This
is the central problem of factorization and decomposition of finite state machines, and is similar to
the rectification problem above.

4.1.3 Related Work

The problem of finding a set of permissible behaviors for interacting finite state machines
has been studied previously [18, 29, 43, 56, 59]. Most results, following analogies from the
combinational logic case, are based on don’t care sequences. For example, input don’t care
sequences are sequences of inputs of M; which never occur. Output don’t care sequences are
sequences of outputs of M, defined for given sequences of the global inputs, so that the resulting
global outputs meet the specification M. Approaches based on don’t care sequences have several
limitations. First, since the inputs of M; (outputs of M;) may depend on the outputs of M, the
sequences that appear at the inputs of M; can be controlled by changing the functionality of M,
which may then define a different set of don’t care sequences. Thus the previous work either
makes an assumption on the topology of M; and M,, such as cascaded machines where M, is
independent of M, restricts to computing only a subset of don’t care sequences, or computes input
don’t care sequences and output don’t care sequences separately[18, 29, 43, 59]. Furthermore, due
to complexity, often the sequences are only partially considered, up to a certain, typically small,
length. As a result, even though one finds the best implementation among the set of permissible
behaviors computed, there is no guarantee that it is best among all permissible behaviors.

In this chapter, we ask if it is possible to compute and represent easily the complete set
of permissible behaviors at M;. The answer is yes and it can be represented by a single non-
deterministic finite state machine, which we call the E-machine. The result is obtained by a simple
fixed point computation which provides the transition relation of the E-machine. The procedure
has been implemented and initial results for the E-machines for a small set of artificial examples of
moderate size have been derived.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 75

4.2 Terminology

In this section, we define basic terminology used throughout this and the following
chapters.

Definition: Finite State Machine

A finite state machine is a 5-tuple (1,0, S, T, r), where I is the set of input variables, O
is the set of output variables, § is the set of states, T : S x Bl x BI°l x § — B is a characteristic
function with B = {0, 1}, and r is an element of S. The machine stays in exactly one state, say
sp, of S at any given time. The machine takes as input a minterm i € Bl’!, by which a transition
is enabled. A transition at a state s, consists of a pair made of a state and an output minterm,
(s,0) € § x BIOl, which indicates that the machine moves from state s, to state s, and outputs
o. It is assumed that a transition takes no time. The function T’ defines the valid transitions of the
machine, i.e. T(sp,1,0,3,) = 1if and only if the transition (s, 0) can be enabled at the state s,
by the input i. There exists at least one (possibly more) valid transition for each state s, and input
i. The state r, defined in the 5-tuple, designates the state at which the machine stays initially, and
_is called the reset state or the initial state.

The function T : § x B! x BI9l x § — B is called the transition relation of the finite
state machine. For a given state sp € S and a sequence o; = (ip, . . ., i;—) of the input minterms,
where i; € B!l foreach j = 0,...,£ — 1 and ¢ > 0,! there always exists at least one sequence of
output minterms o, = (0y, .. .,0:—1) and a sequence of states g, = (sp, . . ., 3¢} with the property
that T(s;, 1;,0;,8;41) = 1forall j = 0,...,t—1. Such a sequence of output minterms (a sequence
of states, respectively) is called an output sequence (state transition) defined at so by o;. We say
that a pair of sequences (o3, 0,) is realized at the state s in the machine. In particular, if s is set
to the reset state r, we say that the sequence o; leads the machine to the state s; with the output
sequence o,. In this case, we also say that the pair (o3, 0,) is realized by the machine. The integer
t of the sequence o is called the length of o and is denoted by |o|.

Definition: Deterministic Finite State Machine
A finite state machine (I, 0, S,T,r) s said to be deterministic if there exists a pair of
functions, A : §x B!l — {0,1,%}!%and é : §x Bl - SU{x}, referred to as the output function
and the transition function respectively, such that for all (s,,i,0,s,) € § x BlIl x BI°l x §,

!Such a sequence a; is called an input sequence. If ¢ = 0, the sequence is null.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 76

T(sp, 1,0, 8,) = 1if and only if the following two conditions hold:

(1) o C A(sp,1) and
(2) 6(sp,i) = *or 8(sp,1) = sy,

where for & = A(s;,1), o C & designates that for each output variable j, 3; # * implies that
0; = 0.

A deterministic finite state machine is said to be completely specified if for all (s,,1) €
§ x BUl, \(sp,i) € BlOl and 6(sp,i) # *. Otherwise, the machine is said to be incompletely
specified.

Intuitively, the function A(s,, i) represents the output value of the machine obtained when
it takes i as input at state s,, while 4(s,, i) designates the corresponding next state. Furthermore,
if the value of A(s,, 1) for an output variable j is *, which denotes a don’t care, then it means that
the machine can output any value of B, i.e. 0 or 1, at output j. Similarly, if 6(s,,1) = *, then the
machine can move to any state of S when it takes the input i at the state s,.

By definition, the valid transitions of a deterministic finite state machine can be represented
using the functions A and § given above. Therefore, we may represent the machine by a6-tuple
(1,0,S, A, é,r). Note that at each state, the output sequence and the state transition defined at the
state by a given input sequence are unique for a completely specified deterministic machine.

A deterministic finite state machine (1,0, S, A, §, r) is called a Moore machine[38] if for
each state s, € 5, there exists a unique o € {0, 1, +}!°! such that for all i € Bl!l, A(s,,1) = o.
Otherwise, it is called a Mealy machine[35]. Note that the function A of a Moore machine depends
only on the states S and not on the inputs B!/,

A finite state machine that is not deterministic is said to be non-deterministic .

Definition: Reachable States
Given a completely specified deterministic finite state machine (7,0, S, A, §,7), a state
s € S is said to be reachable if there exists an input sequence which leads the machine to s.

A state that is not reachable is said to be unreachable.

Definition: Equivalent States
Given a completely specified deterministic finite state machine (I, 0, S, A, §,), a pair of

states (s,8) € § x § is said to be equivalent if for all input sequences, say o, the output sequence
defined by o at s is identical with that defined at 3.

k]

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 71

A set of states of S is said to be equivalent if every pair of states in the set is equivalent.

The set of states S of a completely specified deterministic finite state machine can be
uniquely divided into a set of disjoint classes, where each class consists of maximal number of
equivalent states. Each such class is called an equivalence class.

Definition: Equivalent Machines

Two completely specified deterministic machines M = (/,0,5,A,6,r) and M =
(1,0,8, 2,38, 7) are equivalent if for all input sequences, say o, the output sequence define at r by

- o in M is identical with that defined at # by o in M.

In this chapter, we discuss the behaviors of finite state machines . Intuitively, a behavior
between the input variables I and the output variables O is the set of pairs of input and output
sequences realized by a completely specified deterministic finite state machine with the input I and
the output O. In this sense, we say that the machine represents the behavior. Although this intuitive
definition will suffice to understand the chapter , we provide a formal definition of a behavior using
the notion of finite automata.

Definition: Finite Automaton

A deterministic finite automaton is a 5-tuple (X, S, é, F, r), where X is the set of input
variables, S is the set of states, 6 : S x BIX| — § is the transition function, F C § is the set of
final states, and » € .S is the reset state.

A finite automaton (X, 5,6, F,7) has a one-to-one correspondence with a completely
specified deterministic finite state machine with a single output o, (X, 0, 5, A, é, r), which has the
identical transition function §, where the output function A(s,x) = 1 if and only if 6(s,x) € F
in the original automaton. Hence, terminology, defined for finite state machines, will be used for
finite automata as well. A sequence on X which leads the automaton to a state in [’ is said to be
accepted by the automaton. We now define a behavior as follows.

Definition: Behavior

Given a set of input variables I and a set of output variables O, a behavior between I and
O is a set of pairs of input and output sequences, B = {(01,0,) | |oi| = ||}, which satisfies the
following conditions:

1. Completeness:

For an arbitrary sequence o; on I, there exists a unique pair in B whose input sequence is

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 78

equal to o;.

2. Prefix closed:
For an arbitrary pair p = (0i,0,) € B, where o; = (ip, .. .,ix) and o, = (0p,...,0) with
k > 0,let &; = (g, ...,1k~1) and &, = (0g, . . .,0k—1). Then (5;,5,) € B.

3. Regularity:
For an arbitrary pair p = (0;,0,) € B, where g; = (i, .. .,ix) and 0, = (0p, . ..,0x) with
k > 0, let o(p) be a sequence on I U O defined as o(p) = (ip0o, . . - , 10). Then there exists
a deterministic finite automaton with inputs 7 U O which accepts all an& only the sequences
of the set given by {o(p) | p € B}.

For each pair (03, 0,) of a behavior, we say that (o}, 0,) is realized by the behavior.

For a non-deterministic finite state machine, there might exist more than one valid tran-
sition for some state and an input. In this sense, we can regard that a non-deterministic machine
represents a set of behaviors represented by a set of completely specified deterministic machines.
We call each such behavior a contained behavior.

Definition: Contained Behavior
Given a finite state machine T = (I, 0, S, T, r), a behavior between I and O is said to

be contained in 7' if every pair of input and output sequences of the behavior is realized by 7.

By definition, if T' is a completely specified deterministic machine, there is a unique
behavior contained in it.

4.3 The Problem and Assumptions

Consider the case of two interacting finite state machines shown in Figure 4.1. M, takes
input u and outputs v, and M, takes input x and v and outputs u and z. M is a finite state machine
with input x and output z. It represents behaviors allowed for the entire system composed of M;
and Mz.

Specifically, let M = (X, Z, 5, Ty, r)and My = (X UV,UU Z,5,, Ay, 82, 72) be given.
Assume that M is a non-deterministic machine while M; is a completely specified deterministic
machine. By allowing non-determinism on M, we can specify a set of behaviors, rather than a
single behavior, ,for the entire system. In the sequel, we often discuss which outputs can be obtained

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 79

from M at a particular state and a particular input. For this purpose, introduce two functions
A:25 x BIX| - 2B and A+ 25 x BIXI x BIZl — 25 defined as follows:

A(s*,x) = {z€B?l|3(3,s)€s*xS:Tnu(sx,2,8)=1}
A(s*,x,2) = {s€ S§|3s€s*:Ty(3x,z,3)=1},

where s* is a subset of states of M and 27 is the power set of S. Intuitively, A(s*,x) defines the set
of values that can be output by at least one state of s* in M under the input x. Similarly, A(s*, x, z)
is the set of next states to which M can move from at least one state of s* under the input x and
output z.

Note that the output of the output function A of M, is a pair of minterms (u,z) €
BIUl x BIZ. In the sequel, we also represent A, using two functions S : S, x BIXVVI — BlU|
and M9 : §, x BXUVI . BIZ| guch that My(s3,%xv) = (A (52, xv), A (5, xv)).

We are interested in finding a set of behaviors represented by finite state machines permis-
sible at M;. From these, we can derive circuit implementations, but some might have combinational
loops. A combinational loop is a topological loop made of gates and wires, where no latch or flip-
flop is included. Note that in general, if both M; and M, are Mealy machines, since the outputs
depend on the inputs, there might exist a variable of V' which depends on a variable of U in M,
while the variable of U depends on the variable of V' in M,. Although a circuit with a combina-
tional loop might be acceptable, it is known that such a circuit could cause an unexpected problem
called race-around condition [37], and thus it is still very rare to find such a circuit in practical
synchronous digital designs. Therefore, we exclude this situation and consider only the machines
that can bc implemented at M; without introducing combinational loops. Specifically, we define
implementable machines as follows.

Definition: Implementable Finite State Machine
Given M, = (X UV, U U Z, 5, A3, 82, 72), a completely specified deterministic finite
state machine (U, V, S1, A1, 61,71) is said to be implementable at M, if there exists a pair of

circuit implementations of M; and M; respectively such that no combinational loop is created by
connecting them togetherat U and V.

Note that if M> is a Moore machine, then implementability imposes no restriction, since
every machine defined at M; is implementable. We discuss implementability in more detail in
Section 4.7 and provide a necessary and sufficient condition under which M, is implementable. We
say a behavior between U and V is implementable at M if there exists an implementable machine

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 80

at M, representing the behavior. Note that for an implementable machine M, and for an arbitrary
sequence of BIX|, say ¢ = (xq,...,x;), if we denote by (s;, ;) € Sy X S, the pair of states of
M, and M, led to by (o, - - -, X¢—1), then x; defines a unique pair (u,v) € BlUl x BIV| such that
u= Agu)(sz,xtv) and v = A (81, u).

For an implementable machine M, = (U, V, Sy, A, 6, 1), we define the product machine
of M) and M;, denoted by M| X M,, as a completely specified deterministic finite state machine
(X, Z, Sp, Mp, 6y, 7p) such that S, = §y X Sz, 1 = (r1,72), and for a state (s1,8;) € S, and
a minterm x € B!, A,((s1,82),x) = z if and only if there exist u € B!Vl and v € BV
such that A;(s1,u) = v and Ay(sz,xv) = (u,z). Similarly, 6,((s1,82),x) = (31,3,) if and
only if there exist u € BVl and v € B! such that Ay(s;,u) = v, A" (s2,xv) = u, and
(61(s1, 1), 62(82,%xV)) = (31, 32).

We now define a permissible machine as follows.

Definition: Permissible Finite State Machine
Given M = (X, Z,5,Ty,7)and My = (X UV,U U Z, 55, \2,8,,72), a completely
specified deterministic finite state machine M, = (U, V, Sy, A1, 61, 1) is said to be permissible if
M, is implementable and the behavior of M x M, is contained in M.

The behavior represented by a permissible machine is called a permissible behavior. Our
objective is to find the complete set of permissible behaviors at M;. Note that we are not interested
in finding the complete set of permissible machines at M; since for a given behavior, there are
in general an infinite number of machines representing the behavior. Thus we just need enough
machines which represent the complete set of permissible behaviors. We show that the complete set
of permissible behaviors can be computed and represented by a single finite state machine, which

we call the E-machine.

4.4 Prime Machines

To show how the complete set of permissible behaviors can be computed and represented
by a single finite state machine, the key first step is to represent the behavior of a machine imple-
mentable at M; using a special deterministic machine called a prime machine. In this section, we
discuss the notion of prime machines.

Given M = (X, Z,5,T,r)and M = (X UV,U U Z, 53, Mz, 62,72), consider an imple-
mentable machine M; = (U, V, Sy, Ay, 61,71).

CHAPTER 4.. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 81

Definition: X(s;,t)
For a state s; € S and an integer ¢ > 0, let Z(s;,t) be a subset of S x 25 such that

(82,8*) € S5 x 25 isin X(sy,) if and only if there exists a sequence o of BIX| with length ¢ such
that:

1. o leads M} x M;to (sq,52), and

2. 0, leads M to all and only the states of s* with the output sequence of B!Z! that is realized
in M X M, by applying 0.

As a special case, we define X(s;,—1) = ¢ forall s; € 5.

X(sy,1) consists of all possible pairs, (s2, s*) € S5 x 25, such that M, and M can be led
to by some global input sequence o, of length ¢ with the same global output sequence o, while
M, is led to s;. The sequence o, is the one givenin M; x M, by applying o.. Note that if there is
no state transition realized by (o, ;) in M, then s* is an empty set. Note also that if there is no
global input sequence of length ¢ which leads M, to s, then X(s;,t) is empty.

Definition: N(3;,X,u,s;)

Givens; € 1, 5 € 1, u € BVl and X C S5 x 25, let N(3,Z,u, s) be a subset of
S, x 25 given by

~ = AM¥(3,, xv), = 6,(3,u),
{(82’8*) € S2X25 I Ix e BIXI’(§2,5*) €EX: u 2 (32 XV) 81 l(~l u) (2) y
8 = 6(3,xv), 8" = A(s*,%,2;,7(82,%xV))

where v = A;(3, u).

Intuitively, N (31, Z, u, s1) defines all possible pair of "next" states of M; and M, (s;, s*),
such that M; X M5 can move from (31, 32) to (1, s2) and M can move from s* to s* with the output

,\gz)((s’g, xv) in a single transition for some (32, $*) € X, where the transition causes M; to move to
81 under input minterm u.

Definition: Prime Machine
An implementable machine M, = (U, V, Sy, A1, é;1, 1) is prime, with respect to M5 and
M, if for each state s; € S, there exists a subset £(s;) C S, x 25 with the following property:

) VtZOIZ(Sl,t)75¢=>Z(61,t)=2(31)
) Vue BIU|,§1 €S51:8 = 51(51,11) = N(§1,2(§1),u, 31) = 2(81)
3 (V22 0:Z(s1,1) = ¢) = X(s1) = {6}

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 82

In other words, each state of a prime machine, whenever it is reached, is identified with
exactly one subset of S x 25. Note thatif M is a completely specified deterministic machine, then
X(s1) is a set of pairs of states of M> and M, i.e. asubset of Sz x S. We define prime machines
only for implementable machines, in order to ensure that for an arbitrary sequence of BlX|, say o,
with length £, the pair of states of M; and M led to by the prefix subsequence of ¢ with length ¢ — 1
is uniquely defined and there exists a unique pair (u,v) € BVl x BIV such that u = A\ (s, x,v)

and v =)\(s1, u), where x; is the last element of o.
Theorem 4.4.1 For each implementable machine M, there exists an equivalent prime machine.

Proof: We prove the theorem by presenting a procedure which takes as input an implementable
machine M, = (U, V, 51, A1, 81,71) and returns an equivalent prime machine M. The procedure
is shown in Figure 4.5.

The procedure first duplicates M, where 5] is setto S, A’ and &’ are identical with A and
4, respectively. The transitions of M are then modified during the procedure. The function E(s),
used in the procedure, is defined for a state s; € 5. E(s;) designates the equivalent class that s
initially belongs to in M;. When M is copied to M at the beginning of the procedure, we assume

that E(s;) is associated with cach state s; of S]. Furthermore, N'(3),Z, u, s;) is given by

u= /\gu)(fép_,xv), 81 = 6{(51‘)“),

82,8%) € $Hx25 EleBle, 5,8*)€X: . ,
(o2, %) | () 8 = 86(3y,xv), s*= A(s*,x,)‘éz)(.%,xv)),

where v = A{(31, u). When a new state 3, is created in M{, we set §;(8;, @) — 6;(s;, &) for each
ieB |U|, where s is the next state of 3; in M, 1’ under the input u. Note that it is always true that the
next state s; is a state which originally existed in M| when M; was duplicated. Therefore the state
corresponding to s; also exists in M, which we denote also by s;. Hence, by 61(31,) « 8§;(s1,),
we mean 6} (31,) is set to the state of M| which corresponds to the state of M, given by 6 (s,).
In other words, the transitions of a newly created state 3; are made identical with those defined at
81 in M;.

We first claim that the procedure maintains the invariance that a state s; of M] is equivalent
to every state of E(s;) of M;. Namely, for all sequences o of BIUl, the output sequence defined at
s1 by o in M is identical with that defined at a state of E(s;) in M. The invariance is trivially true
in the beginning since the function F is so defined. Suppose that the invariance holds immediately

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

83

function prime(M; = (U,V, 51, A1, 61,71))
*let M! = (U,V, 5}, M, 6,11) %
M] — copy(My);
for(each s; € S)){ Z(s1) < undefined;, }
E(r1) « {(r2, {rDh* i€ ST ¥
mark ry;
start:
while(there exists 3; € 5] that is marked){
for(each u € BIU){
[*let sy = 61(31,u)*/
N « N'(31,Z(51), u, 81); /* since 3 is marked, X(3) is defined. */
if(38, € S :Z(8) = N and E(3;) = E(8)) 8,(51,m) « &;
else if(Z(s1) = undefined){ Z(s;) — N; mark s;; }
else{ /* create a new state 3; */
Si < S1u{ak
for(each i € BIU1){
81(31,0) « &1(s1,0); A(31,1) — M(sy,);
}
61(31,u) « 8;; XZ(4) < N;
E(3)) « E(s1); mark 3;

}

remove the mark of 5;;
}
for(each s; € S such that X(s;) = undefined){ X(s1) — {¢}; mark s;; }
if(there is a marked state) goto start;
return Mj;

Figure 4.5: Procedure to Generate a Prime Machine

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 84

before a state 3 is processed. Consider the case where 3; is processed for a minterm u € BIUI,
Suppose a new state 3; is created. Since the transitions defined at 8; in M are identical with those
of s defined in M, §; of M| is equivalent to sy of M. Since E(3;) is set to E(s;), the invariance
holds for the state 3;. Also, if the state 6] (3, u) is changed from s, to another already existing state
81, then E(8;) = E(s;) holds by construction. Since the output values of 3; do not change during
the process, 3; obtained after the process for u is still equivalent to a state of E(3;) of M;. Thus
the invariance holds. Therefore, M| obtained immediately after processing 3; is equivalent to M.

We next claim that the procedure terminates. This is because every state is processed
exactly once and a new state is created only if there is no state 3; equivalent to s; with X(3,) = N,
Since the number of states of M; and the number of subsets of S x 2° are both finite, the procedure
must terminate.

It follows that M obtained at the end of the procedure is equivalent to M.

Finally, we claim that M| is a prime machine. The condition (2) shown in the definition
of prime machines holds for M| since all the states of M| are processed and the set N used in the
procedure is as defined by N (3;,Z(31), u, s1) in the definition, and we always set Z(s;) equal to
N for each next state. For the condition (3), there are two classes of states s; for which there is
no t > O such that X(s;,t) # ¢; one is those which are not reachable in M{ and the other is those
which are reachable in M] but not with the existence of M. For a state s; in the first class, (s;)
remains undefined until it is explicitly set to {¢} at the end of the procedure, and thus the condition
holds. For a state s; of the second class, the condition holds if the conditions (1) and (2) hold, since
in this case, the procedure sets N to {¢}.

Hence, the proof is done if we prove condition (1), i.e. for each s; € S} and for all
t > 0,if X(s1,t) # ¢, then Z(s1,t) = X(s;). We claim it by induction on ¢ > 0. Consider the
case where ¢ = 0. The only state s; with Z(s;,0) # ¢ is the reset state r;. The procedure sets
Z(r1) = {(r2, {r})}, which is equal to Z(ry,0).

In the induction step, let s; be a state such that X(sy,t) # ¢, where ¢ > 0. Consider an
arbitrary u € BVl and 3, € S! suchthat s; = §{(3;, u) holdsin M]. We claim that if £(3;,¢—1) s
not empty, then N'(31,Z(31,¢t— 1), u, s1) = Z(s;). Note that the non-emptiness of (s;,¢) implies
that there exists at least one such ;. It follows that X(s;,t) = Z(s;) since Z(s;,) is given by the
union of N'(31,%(31,t — 1), u, 1) overall u € BlVl and all 5; € S] with s; = 6/(3, u) and since
if Z(3,t — 1) is empty, then N'(3;,Z(51,¢ — 1), u, 1) is also empty. By the induction hypothesis,
Z(31,t — 1) = Z(31), and thus N'(3;,Z(3;,t — 1), u, 8) isequal to N defined in the procedure for
51 and u. Since at the end of the procedure, the existence of the transition s; = §](3;, u) implies

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 85

thatZ(s;) = N, N'(31,%(31,t — 1), u, 81) = Z(s1). This completes the proof for the condition (1).
Hence Mj is a prime machine. =

The procedure shown in Figure 4.5 is only presented for proving the theorem. It is not
used for constructing the E-machine.

The theorem claims that the set of prime machines provides the complete set of imple-
mentable behaviors. Hence only prime machines need to be considered in order to be able to
represent all permissible behaviors. Next we present another property that holds for permissible

prime machines, which is used in constructing the E-machine.

Theorem 4.4.2 Suppose a machine M, prime with respect to M, and M, is also permissible.
Consider a state s € Sy such that X(sy,t) # ¢ for some t > 0. Then the following property holds.

V(sz,5*) € 2(s1),Vx € BXI Agz)(sz,xv) € A(s*,x),

where v € BVl is the output minterm of My uniquely defined for the input x at the state (s, s3) of
M 1 X Mz.

Proof: Suppose for cdntrafy that)\gz)(sz, xv) € A(s*,x). Since I(sy,t) # ¢ for some ¢ > 0 and
since (s, 8*) € X(s1), there exists a sequence ¢ on X which leads M; X M to (s1,32) while M
is led to the states of s* with the same output sequence given by M; x M, for 0. Since M is
permissible, s* is not an empty set. Then at the state (s;, s2), the output of M; x M with the input
x is different from any output that can be obtained by M at a state of s* with the same input x. It
follows that the behavior of M; X M, is not contained in M, which conflicts with the fact that M,
is permissible. This completes the proof. =

Example 4.4.1 Consider M> and M shown in Figure 4.6, where each of X,V , U, and Z consists
of a single variable, while a node and an edge represents a state and a transition, respectively. The
label associated with an edge shows the minterms of the inputs and the outputs for the transition
corresponding to the edge. The label associated with a node is the name of the corresponding state.
The reset states of My and M are state 1 and state A, respectively.

Three permissible machines for these M, and M are shown in Figure 4.7-(a), (b), and
(c). For each machine, the one shown on the right-hand side is an equivalent prime machine, where

the label associated with each state s is Z(sy).

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

M
Figure 4.6: Example of M, and M
o
Ow é
o0
® o‘ -0

o1
® o. B

©

Figure 4.7: Permissible Machines M; (u/v)

86

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 87

4.5 The E-machine and its Properties

In this section, we show that the complete set of permissible behaviors for M; can
be represented by a single non-deterministic machine, called the E-machine. The E-machine is
computed by a fixed point iteration. We first present the definition of the E-machine, and then claim
associated properties.

4.5.1 The E-machine

Consider the transition relation of a non-deterministic machine given by the following
computation. Let S©) = {(r3, {r})} and compute T*+1) and S+ for a given S®) C §; x 25.
Let T, and X, be subsets of S, x 25, respectively, and u and v minterms of B!Vl and B!V,
T@#+1)(3,, u,v,Z,) = 1 if and only if the following three conditions are satisfied:

1) ,es®
@) V(x,3,5) € BXI x $x25 : (5,5*) € I, and u = AV(5,xv)
N (a) Agz)(.'s‘z,xv) € A(s*,x)
® (62(52,%v),A(5% %, A (52, xv))) € T
(3) Y(s2,8*) € 8, x25 : (82,8*) €2y
= I(x,3,5) e BXIx 5 x25:

(a) (5,8*) € %,

®) u = X" (5, %v)

(€) 82 = 82(32,xV)

(d) s* = A(s*,x, /\gz)(S’z,xv)).

In each computation, S() is a set of subsets of S x 25. Note that the empty set {¢} may be in
8. Given T(*+1), we compute S*1) as follows. S(t+1)(Z,) = 1 if and only if S®(Z,) = 1 or
there exist £, € S®, u € BIYl, and v € BV such that T¢+1)(E,, u,v,Z,) = 1. Intuitively, we
are computing a transition relation that on each step is being extended to a new set of states, where
each state corresponds to a subset of S x 25. These states are added to the transition relation. This
is continued until nothing new is seen, i.e. a fixed point is reached.

Let K be the smallest positive integer such that S(¥)(Z,) = S(K-1)(Z,). Such K always
exists since the number of the elements of the set S*) is not decreasing during the computation and
the number of subsets of S5 x 2% is finite. Let S = SUO) U {4}.

CHAPTER 4. . PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 88

Figure 4.8: The E-machine for Example 4.4.1

Let T : S x BV x BIVI x § — B be arelation such that T(Z,, u, v, %,) = 1if and only
if
(1) Z,=Z,={¢}or
@) TH)(Z,,u,v,%,) = 1.
Finally the E-machineis defined asa’5-tuple T = (U, V, S, T, %,), where £, = {(r2; {r})}.
Recall that each state of the E-machine represents a subset of 53 X 25, but note that if M is a com-
pletely specified deterministic machine, a state of the E-machine is a set of pairs of states of M> and
M, i.e. asubsetof S, x S, rather than S, x 25,

Example 4.5.1 For M; and M in Example 44.1, the transition relation of the E-machine is shown
in Figure 4.8.

4.5.2 Properties of the E-machine

The objective in this section is to show that the E-machine captures the complete set of
permissible behaviors. More specifically, a behavior implementable at M is permissible if and
only if the behavior is contained in the E-machine.

Theorem 4.5.1 A behavior implementable at My contained in the E-machine is permissible.

Proof: Consider an arbitrary sequence o = (Xo, - .., xx) of BIX!. Let o) = (x0, - - -, X¢) be the
prefix subsequence of o with the length ¢+ 1, where 0 < ¢ < k and define o_; as the null sequence.
Since the behavior is implementable, o) uniquely defines the pair of sequences of B!Vl and B!V,

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 89
say (o, o\, as well as the sequence ot of BIZ|, where o) = (uo,...,w;), 0 = (vo,...,v2),
and o = (zo, . .»2¢), such that (a&t), s)) is realized by the behavior and foreach 7,0 < ¢ < ¢,
u;z; = A2(32 ,X;v;) and s(i+l) = 62(3 ,XiV;), where sg) = 2. Let us define (a(1), Oy 1))
as the pair of null sequences. Note that M, is led to sg“) by applying a() Also, fort > 0, let
8™ C S be the set of states to which M is led by oz o) with the output sequence o), Similarly, let
s* C S be the set of states to which M is led by a£ 1) with the output sequence O'zt_l). In case
t = 0, we define s* = {r}.

We show by induction on ¢ > 0 that by applying the subsequence a(t),
(z)(s ,xtvt) (S A(-;*, Xt),
2. there exists a unique state Z(*+1) € S to which the E-machine is led by (o), o{"),

3. s* is not an empty set, and
4, (sgﬂ),s"‘) € s(t+1),

Denote =(® = Z.. Then Z(© is the unique state of the E-machine to which the E-machine
can be led by (o(D) of 1)) ‘where we sce (2, {r}) € Z(©). By the induction hypothesis, there
exists a unique =) to which the E-machine can be led by (o™, o' V). Furthermore, s* is not
empty and (s3), $) € 0. It follows that £ # {¢}.

Since (s, $*) € =® and u, = A (s{, %,v,), then TE)(Z®, u, v, {¢}) = 0. How-
ever, since the behavioris contained in T and since Z(*) is the unique state to which the E-machine can
be led by (o ™1, o{t™1), there must exist a state Z(t+1) € S such that T(Z®, u, v, =) = 1. It
follows that TU)(Z(®), u, v, £(+1)) = 1. Therefore, by construction, M7 (s$?, x,v¢) € A(s*,x,).
Since s* = A(s*,%e,2:) and z, = A (s, %ev,), s* is not empty. Also, since s{*! =
82(s, xeve), (1Y, s*) € Z(t+1) by construction. It remains to show that such E(*+1) is unique.
Since we know the uniqueness of Z(*), the proof is done if we show that for any £ € S such that
T(Z®,u,v,Z) = 1, X = ¢+, Consider an arbitrary such X. By the argument above, = # {¢},
and thus T¥)(£(® u,v,X) = 1. Then by the condition (3) of the construction of 7(X) shown
in Section 4.5.1, for an arbitrary pair (s;,s*) € Z, there exist x € BXI and (8,8%) € =
such that u = A;")(.’s‘g,xv), sy = 0p(3,xv), and s* = A(s*,x, /\éz)(gg, xv)). Then since
TE)(E® u,v,=(t+1)) = 1, by the condition (2) of the construction of T5), (s;, s*) must be
a member of Z(*+1). Thus £ C Z(+1), The same argument holds to claim that =(*+1) C ¥, and thus
2(t+1) with the property above is unique. This completes the proof for the induction step.

CHAPTER 4. .PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 90

Hence, the sequence of the global output Z, realized for the input sequence o by the
behavior M; together with M, is also realized by M. Since o is arbitrary, the behavior is
permissible. m

We now claim that all permissible behaviors can be captured by the E-machine. A machine
contained in the E-machine is defined as follows.

Definition: Contained Machine

Given a finite state machine T' = (U, V, S, T,X,), a completely specified deterministic
finite state machine M; = (U, V, 51, Ay, 61, 1) is contained in 7' if there exists amapping ¢ : §; —
S such that ¢(r1) = Z, and forall s; € Sy and u € BIYl, T(¢(s1), u, Ai(s1, u), 9(81(s1,n))) = 1.

Lemma 4.5.1 Consider a machine My = (U,V, Sy, M1, é1,71) contained in a finite state machine
T =(U,V,S,T,Z,). Then the behavior of M is contained in T.

Proof: We show by inductionon ¢ > O that for an arbitrary input sequence on U with the length ¢, the
output sequence of M, given by the input sequence can be realized by T". The claim is trivially true
when ¢ = 0. Consider the case where ¢ > 0. Let o, be an arbitrary sequence on U with the length
t — 1 and let u € BVl be an arbitrary minterm. Let 3, be the state of M to which o, leads M;.
Let o, be the sequence of V given by M, for the input sequence o,,. By the induction hypothesis,
(ou,0y) is realized by T'. Since M, is contained in T', T(¢(31), u, \i(31, u), ¢(61(31,n))) = 1.
Thus the pair of sequences (o.,u, 0,A(3;, u)) is realized by T, which completes the proof for the
induction step. Hence the behavior of M is containedin7. =

With this lemma, all we need to show is that for an arbitrary permissible machine M,
there exists an equivalent machine contained in the E-machine.

Theorem 4.5.2 For each permissible machine M\, there exists an equivalent machine contained in
the E-machine.

Proof: By Theorem 4.4.1, there exists a prime machine M| = (U,V, Sy, A1, 61,71) which is
equivalent to M;. Let ¢ : §; — S be a mapping such that for each state sy € i, ¢(s1) = Z(s1).
Note that ¢(r1) = Z,. We claim that M is contained in the E-machine under ¢.

Note first that since M; is prime, for a state 3; for which there is no ¢ > 0 such
that £(31,¢) # ¢, Z(81) = {¢}. Then for an arbitrary u € BIY!, and for the next state

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 91

sy = 61(31,u), N(531,2(31),u,8) = Z(s1) = {¢}. Thus by the construction of the E-machine,
T(¢(31),u, A\i1(31, u),¢(s1)) = 1 for such 3.

We now show by induction on ¢ > 0 that for all states 3; € S such that £(3y,t) # ¢ and
forall u € BIVI, T¢+1)((3;), u, v, ¢(s1)) = 1, where v = (31, u) and s; = 61(31, u). We also
prove that if £(s;,2 + 1) # &, then ¢(s;) € S, where S¢+1) is defined in Section 4.5.1. We
show that each condition for constructing the E-machine, given in Section 4.5.1, is satisfied, where
Z, = ¢(31) = Z(51).

First, since M/ is prime, for its reset state 7, (1) must be equal to {(r2, {r})}, and
thus ¢(r) € S ©), In the induction step for a general ¢, the induction hypothesis implies that
¢(51) € SO,

Consider an arbitrary x € B! and (5,, %) € X(3,) such that u = A{* (5, xv). If there
is no such x and (3;, $*), then the conditions (2) and (3) are trivially true with £,, = {¢}. Therefore,
TE+)(p(5,), u,v, {¢}) = 1. Since in this case N (3;,X(51), u, s1) is empty, the primeness of M
implies that £(s,) = {¢}. Therefore T+ (¢(3)),u,v,(s1)) = 1, and the proof for this case is
done.

Suppose such x and (3;, $*) exist. Note that in this case, Z(s;,t + 1) # ¢. We first
consider condition (2).

Since Mj is permissible, Theorem 4.4.2 implies that Agz) (32,xv) € A(s*,x). Also, since
M is prime, 2(s,) is equal to N (31,2(31), u, s1), which is denoted by IV hereafter. The definition
of N implies that (62(32,xv),A(s*,x, /\g”)(§2,xv))) is a member of N. Therefore, it is also a
member of Z(s;). Since Z(31) = (1), condition (2) holds for Z, = ¢(sy).

By the equality between X(s;) and N given above, for all (s3, s*) € Z(s1), (s2,8*) € N.
It follows that condition (3) is satisfied for Z,, = ¢(sy).

Therefore, T (p(31),u, v, ¢(s1)) = 1. It follows that (s;) € S¢+1), and thus the
claim above holds. Note that by this induction, we see that for each s; € Si, ¢(s1) € S. Hence, by
the construction of T, T((51), u, v, (s1)) = 1 forall 3, € §) and forallu € BVl =

We have now reached the key statement of the E-machine.

Theorem 4.5.3 Suppose a behavior at M, is implementable. Then the behavior is permissible if

and only if it is contained in the E-machine.

It follows that the set of implementable behaviors given in the E-machine precisely
provides the complete set of permissible behaviors at M;. By Theorem 4.5.2, we see that the

E-machine contains the permissible behaviors by using their associated contained prime machines.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 92

In this sense, we can say that the E-machine tells not only which behavior is permissible, but also
how the behavior can be realized by at least one finite state machine. In other words, the following
claim holds for permissible machines.

Corollary 4.5.1 Suppose a finite state machine is implementable at M,. Then it is permissible if

and only if there exists an equivalent machine contained in the E-machine.

Proof: If M, is a permissible machine, then by Theorem 4.5.2, there exists an equivalent machine
contained in the E-machine. Conversely, suppose that for an implementable machine M, there
exists an equivalent machine contained in the E-machine. Then by Lemma 4.5.1, the behavior of
M, is contained in the E-machine. Thus, by Theorem 4.5.1, M is permissible. =

4.5.3 A Variation of the E-machine

By definition, each state of the E-machine corresponds to a set of pairs (s3, s*) € 55 x25.
In case M is a completely specified deterministic machine, this corresponds to a set of pairs
(s2,8) € 82 x S. The reason why a set of pairs is associated with each state is that the global
inputs X do not directly drive M;. Specifically, consider the fixed point iteration introduced in
Section 4.5.1 for constructing the E-machine. In condition (2), for each pair (3, s*) € Z,, there
might exist more than one x € BX! such that u = A%")(.‘siz, xv). Then for each such x € BIX|, we
need to include the pair of next states (6,(32, xv), A($*, x, ,\g")(sg, xv))) in Z,,. Since the pair of
next states may be different for different x, we include in the next state X, of the E-machine more
than one pair (6,(3;, xv),A(s*, %, A;z)(gz, xv))) for each (32, $*) and (u, v).

However, as shown below, if the global inputs X directly drives M;, then each state of
the E-machine corresponds to a single pair (s3,s*) € S, x 25, In this case, the only difference
from our original problem is that M takes as input U and X, as shown in Figure 4.9-(a). Namely,
M is given by (X U U, V, 51, A1, 61, 71). Note first that this can be reduced to the original problem
by modifying M, so that the global inputs drive M; through M,, as shown in Figure 4.9-(b).
Alternatively, we can directly apply the fixed point computation given in Section 4.5.1 to construct
the E-machine for the case of Figure 4.9-(a). The difference is that the E-machine is now defined
with the input X U U, and thus the transition relation 7**+!) has a minterm x € B\X! as input.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 93

[T § [e 7
| |
X—I—r" —I-»z X —{-’-z

= T Est M1 P I T w1 |
| |
| | i
| ' '
[M2 M2 {
|

oM | M !

e s e et e e e ———————————.—,

Figure 4.9: The Problem where Global Inputs Drive M,

Specifically, T(**1)(Z,, xu, v, X,) = 1 if and only if the following three conditions are satisfied:

(1) Z,e80
@) V(53,8 €5 x25 : (5,8) €Z,and u=AY(5,xv)
@ M(8,%v) € A, x)
®) (82(52,%xv),A(5*, %, (55, xv))) € =,
(3) VY(s2,8*) € 52 x25 : (s2,8")€Z,
= 3(5,5) € x5, x25:

(@) (3, 3~*) €y

b u= z\é")(.’s'g,xv)

(©) 2 = 62(33,xv)

@ s* = A(s*,x, M52, xv)).

As mentioned above, if I, is a singleton, i.e. it consists of a single pair (32, $*), then X,
defined by these conditions is also a singleton. Since initially S(© is defined as {(r2, {r})}, each
state of the E-machine corresponds to a single pair of elements of S, x 25, rather than a set of pairs.
The correctness of the E-machine, i.e. Theorem 4.5.3, can be proved in the exactly same way as the
original case.

Hence for the case where the global inputs also drive M, the number of states of the
E-machine can be significantly smaller than for the original case. Note that the problem of finding
permissible behaviors for the outside component M>, discussed in Section 4.1.2, falls into this
category.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 94

4.5.4 The E-machine in Hierarchical Optimization

As seen so far, the E-machinc is in general a non-deterministic finite state machine, i.e.
for a given state and input, the next state and the corresponding output may not be unique. The
non-determinism makes it possible to represent a set of behaviors in a single machine. Since the
specification M may also be non-deterministic, we can intuitively say that the flexibility originally
given for the entire system is mapped into a particular component M}, and the resulting flexibility
is also represented by a non-deterministic machine, i.e. the E-machine.

This observation leads to the use of E-machines in the following optimization scenario in
a framework of hierarchical system designs. Consider a system of interacting components, where
each component corresponds to a completely specified deterministic finite state machine. Suppose
that we have computed the E-machine for a particular component of the system. Suppose also
that the system is described in a hierarchical way, so that each component can also be regarded
as a system of interacting finite state machines at one level below. This situation is illustrated in
Figure 4.10, where Figure 4.10-(b) is one level below that of Figure 4.10-(a), and the entire system
in (b) corresponds to the shaded component given at the original level (a). Then at level (b), the
specification of the system is given by the set of permissible behaviors identified at the corresponding
component at level (a), which is given by the E-machine computed for the component at the original
level. Then using the E-machine as the specification, we choose a sub-component at level (b), and
compute the E-machine for that component. This procedure can be repeated to compute E-machines
for levels further below. Hence, using E-machines, the flexibility given at a higher level can be
transformed into a lower level in a uniform fashion.

4.6 The Structure of the E-machine and a Non-Deterministic Construc-

tion

We have stated that the non-determinism of the E-machine is the means by which a set
of behaviors can be represented by a single machine. However, we note that the E-machine is a
special type of non-deterministic machine. Namely, for a given state £, € S and pair of input and
output minterms (u, v) € Bl x BIV1, if there exists a next state =, such that T'(Z,, u, v, Z,) = 1,
then such X, is unique. In other words, if we introduce a set of new symbols which uniquely
represent and replace each pair of input and output minterms of the E-machine, then the result is a

deterministic finite automaton. This is true sinpe in the construction of the E-machine, we uniquely

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 95

(b)

Figure 4.10: Hierarchical Optimization of Interacting Finite State Machines

define the next state, if it exists, for a given pair of input and output minterms. We call a finite state
machine with this property a pseudo non-deterministic finite state machine.

It is informative to ask whether it is possible to construct the E-machine, so that the
automaton corresponding to the machine is non-deterministic and accepts the same language as the
original. In other words, if we perform the subset construction to determinize the non-deterministic
automaton, where we assume each pair of input and output minterms is a single symbol, then can we
obtain the deterministic automaton corresponding to the E-machine? It is interesting to construct and
represent the E-machine this way, since it is known that the subset construction, or determinization,
could introduce an exponentially large number of states in general. Thus we expect that the non-
deterministic automaton has a smaller state space; the complete sct of permissible behaviors is then
represented in the more compact way.

In this section, we consider the structure given in Figure 4.1 but assume that M is a
completely specified deterministic machine. We then present a procedure, suggested by Alex
Saldanha, that generates a machine such that by performing an operation similar to the subset

construction we obtain the E-machine as originally defined. Recall that in case M is a deterministic

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 96

machine, a state of the E-machine defined in Section 4.5.1 corresponds to a set of pairs of states of
M, and M. A state of the machine which we will construct (called the NDE-machine) corresponds
to a pair of states of M, and M, rather than a set of pairs.

4.6.1 The NDE-machine

The procedure for constructing the NDE-machine is a fixed point iteration. Denote the
transition relation and the set of states at the i-th step by T,(Vt) and S](\;) respectively, where the
subscript NV indicates that the construction leads to a non-deterministic E-machine in the sense
above. Initially, S 0 _ {(r2,7), ¢, k}, where r, and r are the reset states of M, and M while ¢ and
 are newly introduced states. The initial transition relation T : S x BVl x BVI x s© - B
is defined as T,(\?)(c,,, u,v,s,) = 1if and only if either ¢, = ¢, = dor ¢, = ¢, = K, i.e. we start
with only self-loops on ¢ and «. In general for the step (¢ + 1), T,(\f"'])(c,,, u, v, ¢,) is defined when
S € S%) — {¢,k},i.e. the present state g, is a pair of states of M, and M, say s, = (32, 3), which
has been introduced as a state in the transition relation T,(\;). Then T,(J"'l)(c,,, u,v,s,) = 1ifand
only if one of the following three conditions hold:

@ Vxe BXl:u#MY(5,xv)and ¢, = ¢, or
® 3x e BX!:u=x"(5,xv)and ,\gz)(sz,xv) # A(8,x)and ¢, = &, or
© VxeBXl:u= Ag")(.‘s‘g,xv) = Agz)(é‘z,xv) = A(3,x) and

3x € B! : u = A" (5,,xv) and ¢, = (62(82,%v), 6(3, x)),

@“4.1)

where) : S x BXI — BIZl and 6§ : § x BX| - § are the output and the next state functions of
M, which are defined since M is deterministic. Condition (a) says that if there is no x which causes
M3 to output u at the state 3, for the input v, then we cause a transition to ¢. Condition (b) means
that if there exists an x which causes M3 to output u at 3, for v but the z output is not allowed, then
we cause a transition to . Finally (c), if all possible 2 outputs are allowed and if there is at least
one x that makes M> and M transit to ¢, then this transition is put in T,(Vt'H).

Let T'v be the transition relation of the fixed point of the computation. Namely, for positive
integer K, if S](VK) = SI(\,K =1, then Ty = TI(VK) Similarly, let Sy = SI(VK) . The NDE-machine is
defined as (U, V, Sn, T, s+), where the reset state ¢; is givenby ¢, = (72, 7). The transition relation
of the NDE-machine for M; and M used in Example 4.4.1 is shown in Figure 4.11, where the states
¢ and « are denoted respectively by {} and k. Note that unlike the E-machine, the NDE-machine

has a property that for a state ¢, and pair of input and output minterms (u, v), there might exist

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 97

Figure 4.11: The NDE-machine for Example 4.4.1

more than one state ,, such that Tn(sp, u, v,s,) = 1. In Figure 4.11, the NDE-machine can go to
either 1A or 2B from state 1A under the input 1 and output 0. It is because for different global input
x € BIX|, M, and M may go to different next states with the same (u, v).

Now, for a given NDE-machine (U,V,Sn,Tn,s;), consider a finite state machine
(U,V,8p,Tp,Zp,) defined as follows. The state space Sp is the set of subsets of Sy that
contain ¢ and not contain x. The reset state Tp, is the subset {s,,#}. The transition relation
Tp: Sp x BVl x BVl x Sp — B is defined as Tp(Zp,, u,v,Zp,) = 1 if and only if

an = {cﬂ- € SN | qu € sz . TN(CIN u,v, (;n) = l} and K ¢ an (402)

This construction is the subset construction, or determinization, of a non-deterministic finite au-
tomaton [26], where the state « is the unique non-accepting state, meaning that a string which can
lead the automaton to « is not accepted. Only subsets, generated in the subset construction, which
do not contain « are allowed next-state subsets. In this way, we end up with a finite state machine
which contains only permissible behaviors.

Let S}, be the union of the state {¢} € Sp and the set of states of Tp reachable from the
reset state Zp,. Let Th : Sp, x BlUl x BVl x S}, — B be the transition relation of T)p restricted
to the states S;,. We then claim that the restricted machine T, = (U,V, 85, Tp,Zp,) is the
E-machine. More specifically, T, and the E-machine are isomorphic, i.e. there exists a one-to-one
onto mapping f from the state space of the E-machine to that of T, such that T'(%,, u, v, X,) = 1
if and only if Th(f(Z,), u, v, f(Zn)) = 1.

Theorem 4.6.1 "The machine T}, and the E-machine are isomorphic.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 98

Proof: Given a subset Z of pairs of states of M and M, let f(Z) be the subset given by adding the
state ¢ to I, i.e. f(Z) = ZU {¢}. By definition, f is a one-to-one mapping and thus the inverse of
[is also defined. We claim that T, and the E-machine are isomorphic under the mapping f.

Suppose T'(Zp, u, v, X;) = 1 holds in the E-machine. If £, = {¢}, then by the definition
of the E-machine, £, = {¢}. By construction of the NDE-machine T, for the present state
¢ € S, ¢ is the unique state that satisfies Tn(¢, u, v, ¢) = 1. Therefore, Tp({¢}, u, v, {¢}) = 1.
Since f({#}) = {6}, TH(F(Zp), u, v, f(Za)) = 1, and the claim holds.

Consider the case where X, # {¢}. We show Tp(f(Zp),u,V, f(Z.)) = 1 under the
assumption that f(Z,) € Sp. This assumption does not affect the claim, since f(Z,) € S}, for
the reset state Z, = {(r2,7)} and Tp(f(Zp), u,v, f(Z,)) = 1 implies that f(Z.) € Sp. By
construction of the E-machine, the next state 2, from X, under u/v is given by

u=)\%")(é‘g,xv), 8 = 6(3,xv),

T, ={(s2,8) € S5 x § | Ix € B (3,,3) e 5, :
s = 8(3,%)

}.
Consider arbitrary x € B! and (32, 3) € Z, such that u = A{*)(5,,xv). If there are no such x
and (3, 3), then X, =.{¢}. In this case, for an arbitrary pair of states of M and M contained in
f(Zp), only condition (a) holds in the definition of the NDE-machine. Therefore, for all elements
$p € f(Zp), sn = ¢ is the unique state which satisfies Tn(sp, u,v,s,) = 1. Thus we obtain
F(Zn) = {sn | 35 € f(Zp) : Tn(sp,u,V,6,) = 1}. Hence Tp(f(Zp), u, v, f(Zn)) = 1.

Suppose there exist such x and (3;,3) € Z, with the property that u = /\é“)(gg,xv).
Then by the definition of the E-machine, A{” (5, xv) = A(3, x). Therefore, in the definition of the
NDE-machine, the condition (a) and (b) do not hold and the first half of the condition (c) holds.
Hence, Z,, given above can be rewritten as

T = {(52,8) € S2 X S | 3(%2,3) € T, : Tw((32,3), u,v, (s, 8)) = 1}

Thus by definition of Tp, TH(f(Zp), u, v, f(Z,)) = 1.

Conversely, suppose Tp(Zp,,u,v,Zp,) = 1. We will show that the corresponding
transition exists in the E-machine, i.e. T(f~1(Zp,), u, v, f}(Zp,)) = 1, where f~! is the inverse
of f. Note that the function f~!(Zp,) simply removes the state ¢ € Sy from the subset ZD,»
where in case Zp, = {#}, f~!(Zp,) = {¢}. We employ the assumption that f~!(Zp,) € S. The
assumption does not affect the claim for the same reason above. If Zp, = {¢}, then Zp, = {¢}.
Since T({#}, u, v, {¢}) = 1, the claim holds.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 99

Consider the case where Zp, # {¢}. Since f~1(Zp,) € S, there exists some ¢ such that
f~Y(Zp,) € 8, where S®) is defined in Section4.5.1. We will show that conditions (2) and (3) de-
fined in the definition of T¢) in Section 4.5.1 hold, and thus T¢+1)(f~1(Zp,), u, v, f~(Zp,)) =
1. Hereafter, let us denote X, = f~!(Zp,) and =, = f~}(Zp,). Consider arbitrary x € BIXI
and (%,3) € §2 x § such that (3;,3) € Zp, and u = /\g‘)(:s'z,xv). If there are no such x and
(32, 3), then the condition (2) trivially holds. Also in this case, for each ¢, = (32,3) € Zp,, only
the condition (a) holds in the construction of the NDE-machine Ty, and thus £p, = {¢}. Since
condition (3) trivially holds if £, = {¢}, we obtain T(t+1)(Z, u,v,Z,) = 1.

Suppose such x and (3, 3) exist. Since £ ¢ Zp,, condition (b) does not hold for
this pair (3;,3) in the definition of the NDE-machine. Thus the first half of the condition
(c) holds, and A2(33,xv) = A(3,x). Since (62(32,xv),8(3,x)) € Zp,, by definition of Tp,
(62(32,%v), 8(3,%)) € X,, and the condition (2) holds.

For condition (3), consider an arbitrary (s3,s) € X,. Since (sz,s) € Zp,, there exists
(32,3) € Zp, such that Tn((32,3),u,V,(s2,8)) = 1. Hence, condition (c) in the definition of
the NDE-machine holds, and there exists x € BIX! such that u = A(5;,xv) and (s,) =
(62(32,xv), 6(3,x)). Thus condition (3) holds, and we obtain T¢+1)(Z,, u,v,Z,)=1. =

Thus, the E-machine can be obtained by applying an operation similar to the subset
construction on the NDE-machine 7. One might wonder why the operation like the subset
construction is necessary, i.e. how is the set of behaviors contained in the E-machine related to
those of the NDE-machine? The answer is that the NDE-machine contains more implementable
behaviors than the E-machine. Specifically, in the NDE-machine, an implementable behavior is not
permissible if there exists a pair (o4, 0,) of sequences of U and V' in the behavior which can lead
the NDE-machine to «, since it means that the corresponding sequence on the global output Z is
inconsistent with what is required by M.2 Therefore, we need to remove the set of pairs that have
a possibility to lead the NDE-machine to . It is analogous to removing, or complementing the set
of strings that have a possibility to lead a non-deterministic finite automaton to an accepting state,
where « is now treated as the accepting state. Hence, we employ the subset construction to remove
those additional behaviors, and then guarantee that an arbitrary implementable behavior contained
in the resulting machine (E-machine) is permissible. It is illustrated in the following example.

Example 4.6.1 Consider My and M shown in Figure 4.12, which are slightly different from those
used in Example 44.1. The corresponding E-machine and the NDE-machine are shown in Fig-

ZNote that the pair (o'u, 0’) is not allowed even if it can also lead the NDE-machine to a state other than .

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 100

(2) E-machine (b) NDE-Machine

Figure 4.13: The E-machine (left) and the NDE-machine (right)

ure 4.13-(a) and Figure 4.13-(b) respectively.

Consider a behavior at My which always outputs O for all input sequences. This is
equivalent to setting the variable V to a constant 0, and thus the behavior is implementable.
However, the behavior is not permissible since if a sequence o of the global input X is set to (0,0),
then the corresponding pair of sequences (04,0,) on U and V realized by the behavior and M,
is given by o, = (1,0) and o, = (0,0), and thus the global output sequence o, is obtained as
o, = (0,0), while the global machine M requires that o, must be (0, 1). It is easy to see that the
pair (04, 0,) above can lead the NDE-machine to the state through the states 1A and 2B. Note
that this behavior is not contained in the E-machine.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 101

4.6.2 A Case where the NDE-machine Equals the E-machine

As just illustrated, the NDE-machine can contain behaviors that are implementable but
not permissible. In order to remove such behaviors, we apply an operation similar to the subset
construction to the NDE-machine. However, such an operation is necessary because of the fact that
the NDE-machine is not pseudo non-deterministic, i.e. the automaton corresponding to the NDE-
machine is non-deterministic. If the NDE-machine happens to be pseudo non-deterministic, then
additional behaviors can be removed simply by deleting transitions which cause the NDE-machine
to go to state «, and thus an operation like the subset construction is not necessary. Intuitively,
for a pseudo non-deterministic machine, this corresponds to complementing a deterministic finite
automaton, where « is treated as the accepting state and we want to remove set of strings that lead
the automaton to .

It is then claimed that the resulting machine, i,e, the NDE-machine where transitions to
« have been removed, is isomorphic to the E-machine. This can be proved as follows. Suppose
that the NDE-machine (U, V, Sy, Tn, ;) is pseudo non-deterministic. By definition of the NDE-
machine, for each state ¢, and pair of input and output minterms (u, v), the NDE-machine always
has at least one next state, i.e. a state s, such that Tn(sp, u, v,¢,) = 1. Therefore, pseudo non-
determinism implies that for each state , and pair of input and output minterms (u, v), there exists
exactly one state ¢, such that Tn(sp, u,v,s,) = 1. We first claim that the machine obtained by
removing transitions to « is isomorphic to the machine 7', defined in the previous section, whose
transitions are defined by Formula (4.2). In Formula (4.2), suppose that Zp, consists of only two
states of the NDE-machine, {sp, ¢}, where one of them is ¢. Then since the NDE-machine is
pseudo non-deterministic, Zp,, defined by the formula for given u and v has exactly two states of
the NDE-machine, where one of them is ¢. Then Xp, is included in a state of the machine T}, if
and only if it does not contain « and is reachable from the reset state of T7,. Since the reset state of
T}, is givenby Zp, = {sr, #}, the machine T’ is obtained by replacing each state s, of the NDE-
machine by a set {<,, ¢}, and by deleting transitions to . Hence T}, is isomorphic to the machine
obtained by deleting transitions to « in the NDE-machine. By Theorem 4.6.1, T, is isomorphic to
the E-machine, and thus it follows that if the NDE-machine is pseudo non-deterministic, then the
E-machine can be obtained simply by deleting transitions to « in the NDE-machine.

The remaining question is when does the NDE-machine become pseudo non-deterministic.
One such case is the context discussed in Section 4.5.3, where the global inputs X directly drive
M;, as shown in Figure 4.9. If M takes as input U and X, then the NDE-machine also has X

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 102

as input. Thus, if we apply the fixed point iteration to define T,(J“)(cp, xu,V,s,) = 1 according
to Equation (4.1), where the three conditions are checked for that particular x € B/X! given
in T, then the next state <, is uniquely defined. Therefore, the NDE-machine is pseudo
non-deterministic. Furthermore, the isomorphism between the NDE-machine and the E-machine
provides another interpretation for the fact that in this case, the E-machine has a property that each
state corresponds to a single pair of states of M> and M, as shown in Section 4.5.3.

4.7 Implementability of Interacting Machines

4.7.1 Implementability

As we have seen in the previous sections, the permissibility of M) requires that M, is
implementable, i.e. there exists a pair of implementations for M; and M where no combinational
loop is created by connecting them together at U and V. Therefore, when a permissible machine is
sought, we need to check whether the machine is implementable or not. In this section, we provide
a condition on the implementability.

Let a completely specified deterministic machine Mz = (X UV,U U Z, 53, Ay, 62,m) be
given. We want to know if a completely specified deterministicmachine M; = (U, V, S, A1, 8, 71)
is implementable with M. The key idea is to check the implementability by analyzing the depen-
dencies.

Definition: Dependencies

For a set of Boolean variables X = {z,...,2,} consider a function f : B® — B
defined with the input X. Given an input variable z; € X, f is dependent on z; if f|z;=0 # flz;=1,
where f|;;=o designates the cofactor of f with respect to z; = 0.

If f is not dependent on z;, we say that f is independent of ;. The dependency of f for
an input z; is related to whether it is possible to implement the function f with no combinational
path from z; to the output, where we define a combinational path as a sequence of gates which does
not contain latches or flip-flops. More specifically, the following lemma is known.

Lemma 4.7.1 Given a function f : B — B with the input X = {zy,...,2,}, there exists an
implementation for f such that there is no combinational path from x; to the output, if and only if

f is not dependent on z;.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 103

Proof: Suppose there exists an implementation such that there is no combinational path from z; to
the output. Then for an arbitrary minterm x € B™, the output value f(x) does not change even if
we flip the value of z; in the minterm x. Thus f|z;=0 = f|z;=1.

Conversely, suppose that f is not dependent on ;. Consider an implementation of f.
If the implementation does not contain a combinational path from z; to the output, the proof is
done. Suppose there is a combinational path. We claim that the implementation given by setting
z; to a constant value, say 0, still implements f. Let f be the function defined by the resulting
implementation. Note that f does not depend on ;. The proofis done if we show that f(x) = f(x)
for all x € B™. Suppose f(x) # f(x). Then the value of z; in the minterm x must be 1 since f
is obtained by setting ; = 0in f. Then f|z,=0 # f|z;=1, which contradicts the fact that f is not
dependentonz;, m

We now present a condition under which M, is implementable . Consider a directed
bipartite graph G(U U V, E), where the node set of G is divided into two classes U and V and a
node of U (respectively a node of V) corresponds to a variable of the input variables U (respectively
the output variables V) of M;. The edges of G are defined as follows:

© [ui,v] € E & Aﬁ""’ depends on u;,
[vj,u] € E & Ag"‘) depends on v;,

where we denote by ,\ﬁ"f) the function of the Jj-th output variable v; in M;. The graph G is referred
to as a dependency graph.

Theorem 4.7.1 M, is implementable if and only if G is acyclic.

Proof: Suppose M is implementable. Then there exists a pair of implementations (C, C>) for M;
and M, respectively which does not create a combinational loop. Let G.(U U V, E,) be a directed
bipartite graph with the same node set of G, where the edges are defined as follows:

[ui,v;]€ E & there exists a combinational path from u; to v; in C1,
[vj,u;] € E & there exists a combinational path from v; to %; in C».

Since the implementation does not contain a combinational loop, G, is acyclic. Now, if ,\2"’)
depends on u;, Lemma 4.7.1 implies that C) has a combinational path from #; to v;. A similar
argument holds for)\g“"). Thus £ C E.. Hence G is a subgraph of G, and G is acyclic.
Conversely, suppose G is acyclic. Consider an implementation C of M}, where for each
v;, the function ,\ﬁ"i)is implemented independently, as described in Lemma 4.7.1, so that no gate

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 104

of the implementation is used in an implementation of another output of M, say vx with j # k.
Then C has a property that there is a combinational path from w; to v; if and only if ,\ﬁ”f) depends
on u;. Similarly, let C; be an implementation of M such that there is a combinational path from
v; to u; if and only if ,\g"" depends on v;. The proof is done if we show that (C;,C3) does
not create a combinational loop. Suppose to the contrary that there exists a combinational loop
¢ = (Vjg, Uig, - - » Vi Uiy » Vjp). Then foreach 1,0 < I < k, A depends on v;,. Similarly, A
depends on u;,_,, where we define u;_, = u;,. Thus the cycle c exists in G, which conflicts with
the fact that G is acyclic. m

Since the cyclicity of a directed bipartite graph can be checked in polynomial time in the
size of the graph [55], we can efficiently check the implementability of M;. Note that if either
M, or M, is of Moore type, then G is always acyclic, and M; is implementable. Note also that
the theorem above is claimed under the assumption that both U and V' are Boolean variables. It is
known that for symbolic variables, there exist cases where cyclic dependency observed for symbolic

variables can be broken in an actual implementation by carefully encoding the variables [7].

4.7.2 Unimplementable Machines in the E-machine

In general, not all machines contained in the E-machine are implementable. By definition
of implementable machines, if a machine M, contained in the E-machine is not implementable, then
any implementation of M will create a combinational loop for that particular M;. Thus, for given
M and M,, if the resulting E-machine contains no implementable machines, then it is impossible
to realize a behavior of M without combinational loops, as long as the behavior of M, is used.

We discuss what can be done with unimplementable machines of the E-machine. Specif-
ically, we show that for a machine M; contained in the E-machine but not implementable, if M,
satisfies a certain condition, then it is possible to realize a behavior of M with no combinational
loops, as long as we are allowed to modify the behavior of M,.

Let My = (U,V, 81, A1, 61,71) be a machine contained in the E-machine. Suppose that
M; is not implementable. Suppose also that M satisfies the following stability property:

Property 4.7.1 For all pairs of states, (s, %) € S1 X Sa, andfor allx € BX\, there exists at least
one (u,v) € Bl x B! such thatv = A (s1,u) andu =)\g“)(sz,xv).

This property can be checked by first computing a function St : 5; X S — B such that

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 105

—|v

Figure 4.14: Modification for Unimplementable Machines

St(s1,82) = 1if and only if
Vx € BIXl: 3(u,v) € BVl x BVl : v = Ay(s;,u) and u = A (s, xv),

and then checking whether St is tautologically equal to 1.

Consider a pair of implementations C) and C; for M; and M>, respectively. Since M is
not implementable, the implementation made of C} and C; creates a combinational loop. Assume
that we can scan the latches of C}, i.e. it is possible to observe externally the state in which M,
stays. Then we modify C5 so that the resulting implementation has no combinational loop and
realizes a behavior of M.

Consider a function whose inputs are the global inputs X as well as the states of M) and
M,, and the outputs are U. We denote the function by f : $; x 3 x BIX - BIVl. For given
(81,82) € 81 x Sp and x € BIX|, the output u = f(s1, 53, x) is defined so that there exists v € BIV|
such that v = Ay(sy,u) and u = A" (s,,xv). Since M; satisfies Property 4.7.1, f(s1, 52, %) i
defined for every input. Let C3 be an implementation of f. Note that C3 is a combinational logic
circuit. We break the connection from C; to C at U by eliminating the outputs U from M;, and let
C3 drive Cy, as shown in Figure 4.14. Since all the feedbacks from C to C3 and from C5 to C3 are
to see the states of M) and M, there is no combinational loop in the resulting implementation.

Let us regard the circuit made of C; and C3 as an implementation of a single deterministic
finite state machine M,. Note that the state space of M, is identical to that of M,. By the
construction of the function f, it is guaranteed that for all pairs of states, (s, sz) € S1 X S2, and
for all x € BX!, the pair (u,v) € BIYI x B! realized by M; and M, has the property that

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 106

v = Ay(sj,u)and u = Ag")(sz, xv). Furthermore, the state transition of M, does not depend on
the states of M. Namely, for a given state s, of M, and input xv € BXYY|, the next state to which
M, moves is uniquely defined and is given by 82(s2,xv). Since M is contained in the E-machine,
exactly the same proof of Theorem 4.5.1 holds to claim that for an arbitrary sequence o of B!X|, the
output sequence realized by M; x M, can be realized by M, and therefore the behavior of M; x M,
is contained in M. We state this fact as a theorem below.

Theorem 4.7.2 For a machine M\ contained in the E-machine, suppose M is not implementable
and satisfies Property 4.7.1 above. Then for an arbitrary pair of implementations Cy and C5 for
M, and M3, if an additional circuitry Cs given above is attached, the resulting circuitry has no

combinational loop and its behavior is contained in M.

4.8 Experimental Results

The method of computing the transition relation T of the E-machine has been imple-
mented, and we conducted some experiments. The current implementation is limited to the case
that the global machine M is deterministic, and thus a state of the E-machine corresponds to a
subset of pairs of states of M, and M. Binary decision diagrams (BDD’s) [12] are used to represent
the transition relations of M, and M, where a set of states of each machine is represented by binary
variables using log-based encodings. All set operations, such as intersection, union, complement,
set comparisons, as well as quantifications, are performed on BDD’s. We first compute the relation
T¥) and then T. One straightforward way of computing 7¥) is to first compute the relation given
by the condition (2) and (3) of the definition of T) shown in Section 4.5.1, and then restrict it
to the states that T can be led to by some sequences of BIU!. However, since the total number of
states of the finite state machine given by the conditions (2) and (3) is exponential in |.93|| 5|, the
BDD representing the transition relation of the machine may be too large. Instead, we perform a
fixed point computation as stated in Section 4.5.1, where at each step t, instead of the set S), we
use a set which contains S N =S(-1), is contained in S®, and is represented by a minimal-sized
BDD. Such a set is computed by a BDD operation similar to the one known as generalized cofactor
[13], and a detailed description is found in [52]. During the computation, we need to see if a given
pair of states (3;,3) € 52 x 5 is amember of X,. For this purpose, we use a characteristic function
x(32,3,%,) which is equal to 1 if and only if (32, 3) € S x S is a member of X,. However, a BDD
representing the function itself, or a BDD obtained at an intermediate stage of the computations

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

'1 M, M,
In|{Out| S || In | Out | S || E-machine || Time || Iterations
mc9 2 1] 4 3 5| 4 4 0.1 3
mt52 5 6|22(7 71 4 9 04 4
tm02 4 41201 S 6|20 10 09 3
tm32 3 4119 6 51 3 9 1.7 7
pmi1 8 826|110 10|24 9 19 5
tmO1 4 42014 5 6|20 10 29 3
am9 6 6|25 7 8| 4 13 3.1 10
pm12 8 8(26| 10| 10|24 7 43 J 4
€69 2 ‘11 4 5 8| 8 8 45 3
| L4 8 612011 14{14 | 6 5.0 5
mt51 5 6 (22| 7 71 4 16 6.9 7
L3 2 3(76 || 7 3(19 17 8.5 8
edbpt || 5 5|24l 6 9|14 11 9.9 10
pm33 || 6| 6[25 7| 8] 4 21 [102 11
ebtm 4 41201 5 6 8 21 10.5 7
pmO3 2 4|11 6 4114 15 14.2 14
tm31 3 4119 6 5|13 91 142 4
. pm31 6 625 7| 8| 4 22 || 20.6 8
edat2 5 4121 6 91|14 14| 274 13
pm50 2 4111 6 4114 22 || 373 17
s3p1 5 5|24l 7 7113 38 || 43.3 11
pmdai || 2] 4|11 6] 4]14] 33 || 132.0 | 22

Table 4.1: Experimental Results

107

using the function, could be fairly large in practicec. Therefore, we represent x by scveral BDD’s

whose union forms x. We modified the formula given in (2) and (3) in the definition of T(¥) so that

the union of these BDD’s are taken as late as possible by applying other commutative operations

earlier. These heuristics seem to be effective in controlling the size of BDD’s.

Using the procedure implemented as stated above, we conducted some experiments. The

examples were chosen mainly from mcnc91 benchmark examples. The objective of the experiment

was to determine the size of machines that can be handled by the current implementation, as well as

the size of the resulting E-machine T" since its state-space size could be exponential in | S3||S|. The

experiments start with choosing two finite state machines, M; and M,, in the structure shown in

Figure 4.1. Both machines are completely specified deterministic finite machines. We then make an

arbitrary connection between the machines, i.e. a subset of the input variables (the output variables,

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 108

respectively) of M, is arbitrarily chosen to connect with the output (the input, respectively) of M,
so that M, is implementable for M,. Then the E-machine is constructed by the proposed procedure,
where a preprocessor is first invoked to obtain the product machine M of M; and M,, so that
M, x M; is used as the specification M.

The results on these examples are shown in Table 4.1. Each row of the table corresponds
to a single experiment, where In, Out, and S designate the number of input variables, the number
of output variables, and the number of states respectively. Time is the CPU time used for each
experiment in seconds on a DECstation 5000/240. Iterations shows the number of iterations
required in the fixed point computation of TX), During the experiments, we realized that the size
of the resulting E-machine and the required CPU time vary widely depending upon the connections
chosen between M; and M;. Thus we cannot make any general statement on the size of the
E-machine that we can handle in practice. Nevertheless, for these experimental results, we see that
the numbser of states of 7' is negligibly smaller than 2!5211S|, This is not surprising in the sense that a
state s; of the E-machine corresponds to a subset of S X .S with the property that M5 and M are led
to exactly the states of the subset by the input sequences of B!X| and the sequences of BI!V! realized
by transitions from the reset state of the E-machine to s;.Thus if there exists a pair of states (sz, s)
not led to by any input sequence, then any of the subsets of 52 x S which contains the pair will not
appear in the E-machine, where there are 2(1%21151-1) guch subsets.

4.9 Concluding Remarks

In this chapter, we addressed the problem of computing and representing the complete set
of permissible sequential behaviors, where two finite state machines are interacting with each other
as shown in Figure 4.1. We showed that the complete set can be computed and represented by a
single non-deterministic finite state machine. The machine is called the E-machine and its transition
relation is computed by a fixed point computation. We also considered the problem of implementing
interacting finite state machines without introducing combinational loops, and provided a necessary
and sufficient condition under which given machines are implementable. The proposed procedure
for computing the E-machine was implemented and experimental results were presented.

In the following chapter, we address the problem of minimizing E-machines, i.e. finding
the best permissible behavior of M, for given M, and M.

109

Chapter 5

Minimization of Pseudo

Non-Deterministic FSM’s

5.1 Introduction

" In the previous chapter, we-addressed the problem of optimizing a system of interacting
finite state machines. Specifically, we considered how to find a set of sequential behaviors that
can be realized at a particular component so that the resulting behavior of the entire system meets
the specification. We called each of such behaviors a permissible behavior at the component, and
showed that the complete set of permissible behaviors can be computed and represented by a single
non-deterministic finite state machine, called the E-machine. In this chapter, we consider how to
find an optimum permissible behavior, where we use as the cost function the number of states of a
finite state machine required to represent a given behavior.

The key theorem on the property of the E-machine we derived in the previous chapter
is that the set of implementable behaviors given in the E-machine precisely provides the complete
set of permissible behaviors. Therefore, an optimum permissible behavior is given by finding a
least-cost behavior over all the implementable behaviors contained in the E-machine. This is the
problem we are concemed with in this chapter.

Note the difference of this problem from a problem known as reduction of non-
deterministic finite automata, which finds a minimum-state automaton with the same language
for a given non-deterministic finite automaton [21]. Our problem does not require the behaviors of

the original finite state machine to be preserved during the minimization.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 110

The problem is analogous to the state minimization of deterministic finite state machines,
which finds a minimum-state deterministic machine whose behavior is contained in a given deter-
ministic finite state machine [1, 23, 24, 40, 44]. Our problem is more general in that a given machine
is non-deterministic. We also need to take into account the implementability of a behavior.

As shown in Section 4.6, the E-machine has a special type of non-deterministic finite state
machine called a pseudo non-deterministic machine. Therefore, it is sufficient for our application
to consider the problem only for the case where the given machine is pseudo non-deterministic. We
show that the property of pseudo non-determinism can be effectively used to solve the problem.

In this chapter, we first present a theoretical analysis of the problem, in which we show
how the basic concepts developed for the state minimization of deterministic machines can be
generalized for our problem. The analysis leads to an exact formulation for solving the state
minimization of a pseudo non-deterministic machine, i.c. find a minimum-state deterministic finite
state machine whose behavior is contained in a given pseudo non-deterministic machine. We then
discuss how to deal with thc implementability of behaviors, and present an exact method for finding
an optimum permissible behavior in the E-machine.

We also propose a heuristic. approach for the.state minimization of pseudo non-
deterministic finite state machines. This procedure has been implemented with a restriction that we
focus only on Moore behaviors [38], behaviors where the outputs depend only on the internal states
of machines, and not on the inputs. The restriction was made in order to guarantee that the resulting
behavior is implementable. This procedure has been implemented and experimental results are
presented.

5.2 The Problem

5.2.1 Minimization of E-machines

In the previous chapter, we considered a system of interacting two finite state machines
M, and M, as shown in Figure 5.1. The specification, or a set of behaviors allowed to realize at
the entire system, is given by a non-deterministic finite state machine M. The problem is that for
a given M, and M, find a set of behaviors that can be realized at M so that the behavior of the
entire system meets the specification M. Each of such behaviors is called a permissible behavior at
M. Specifically, a behavior at M is said to be permissible if it is implementable, i.c. there exist
implementations for M; and M, respectively with which no combinational loop is created in the

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 111

I I
I [
I |
| u v |
X —J——DI 1 > M1 o —l——->| z
I |
| [
: |
i M2 :
| 1
1] M J

Figure 5.1: Interaction between Two Machines

resulting implementation, and the behavior composed of M; and M, is contained in M. Formal
definitions of the terminology used in this chapter are given in Section 4.2 and in Section 4.3.

It was shown that the complete set of behaviors permissible at M; can be captured by
a single non-deterministic finite state machine, called the E-machine. In this chapter, we find an
optimum permissible behavior for M;. As the cost function, we use the number of states of a finite
state machine required to represent a given behavior. By Corollary 4.5.3, we see that the set of
implementable behaviors given in the E-machine computed for M precisely provides the complete
set of permissible behaviors. Thus, an optimum permissible behavior is given by finding a behavior
that can be represented by a completely specified deterministic machine with the minimum number
of states over all the implementable behaviors contained in the E-machine.

Also shown in the previous chapter is that the E-machine has a special property called the
pseudo non-determinism defined as follows :

Definition: Pseudo Non-Deterministic Finite State Machines
A finite state machine (1,0, S,T,) is said to be pseudo non-deterministic if for all
(sp,u,v) € § x Bl x BIO| T(s,,u,v,s,) = 1= s, is unique.

Note that a pseudo non-deterministic finite state machine is a special type of non-
deterministic machine. Also, a completely specified deterministic machine is trivially pseudo
non-deterministic.

Hence, we consider the problem given by the following:general statement: for a given

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 112

pseudo non-deterministic finite state machine T = (U,V,S,T,r) and a completely specified de-
terministic finite state machine M, = (X UV,U U Z, 3, A3, 83,13), find a behavior represented
by a completely specified deterministic machine with the minimum number of states over all the
implementable behaviors contained in T, where the implementability is defined against M,. In the
rest of the chapter, this problem is referred to as the minimization of the E-machine .

5.2.2 State Minimization of Pseudo Non-Deterministic Machines

A problem related to the.above is one called the state minimization of pseudo non-
deterministic finite state machines. The problem is that for a given pseudo non-deterministic finite
state machine T, find a a behavior represented by a completely specified deterministic machine
with the minimum number of states over all the behaviors contained in 7'. The difference between
this problem and the original problem is that the implementability must be taken into account in the
original.

The state minimization of pseudo non-deterministic finite state machines is a variation of
the problem generally referred to as the state minimization of finite state machines. Specifically,
it is a subproblem of the case where a given machine is a general non-deterministic machine,
and is a generalization of the case where a given machine is deterministic. The research for the
deterministic case has been done extensively [1, 23, 24, 40, 44], while little has been done for the
non-deterministic case.

In the following section, we present a theoretical analysis of the state minimization of
pseudo non-deterministic machines, in which we show how the basic concepts developed for the
deterministic case can be generalized for the problem. The theory provides a basis for exact
formulations of both this problem and our original problem, i.e. the minimization of the E-machine.

Before starting the theoretical analysis, we first argue the theoretical generality of the
state minimization of pseudo non-deterministic machines. In other words, we show that the
state minimization of general non-deterministic finite state machines can be reduced to that of
pseudo non-deterministic machines, and thus the assumption that a given machine is pseudo non-
deterministic does not affect the generality of the problem of the state minimization of finite state
machines. Specifically, we claim that for an arbitrary finite state machine, there exists a pseudo

non-deterministic finite state machine with exactly the same set of behaviors.

Theorem 5.2.1 For a given finite state machine T = (U,V,S,T,r), there exists a pseudo non-

deterministic finite state machine which represents the same set of behaviors of T .

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 113

Proof: The basic idea of the proof is to convert a non-deterministic finite state machine to a
non-deterministic finite automaton by combining inputs and outputs. Then determinize the non-
deterministic automaton using the subset construction and map the resulting automaton back to a
finite state machine, observing that the result is pseudo non-deterministic.

Let T be a set with the cardinality equal to 2IVI*1V1, Let o : BIVI x BIV| — ¥ be a one-to-
one mapping from BVl x BV to =. Namely, for (u,v) € BIYI x BVl and (&, %) € BVl x B!V,
if (u,v) # (i1, V), then a(u, v) # a(ii, ¥). Note that the inverse function a~! is well-defined and
is also one-to-one.

Consider a finite automaton 7* = (X, S, 7%, S, r) that has the same state set as 7. The

transition relation 7% : § x £ X § — B has the property that T(3,u,v,s) = 1 if and only if
T%(3,a(u,v),s) = 1. We assume that every state of T is a final state. Note that 7 is in general
a non-deterministic finite automaton. Let T = (Z, Sp, T, rp) be a deterministic automaton with
the same language of 7. Then consider a finite state machine Tp = (U,V, Sp, Tp, rp) that has
the same state set as 73. The transition relation Tp : Sp x BVl x BIVl x Sp — B is defined by
the property that Tp(3, u, v, s) = 1if and only if T3(3, a(u, v),s) = 1. It is easy to see that Tp
is a pseudo non-deterministic finite state. machine.

We claim that Tp represents the same set of behaviors as 7. Namely, a behavior is con-
tained in 7' if and only if it is contained in Tp. For a behavior B contained in T, consider an arbitrary
pair of sequences (04, o,) of B, where o, = (uy, ..., ux)and o, = (v, ..., V). Thensince all the
states are final, the automaton T accepts the sequence of X given by (a(ug, vo), . . ., @(ug, Vk)),
and so does T'f. Hence (04, 05) is realized in Tp. Since (04,0y) is an arbitrary pair, the behavior
B is contained in Tp. A similar argument holds to claim the converse, which completes the proof.
]

Therefore, in terms of behaviors represented by single machines, we see that pseudo
non-deterministic machines are as expressive as general non-deterministic machines. Note that this
property does not hold for deterministic machines, i.e. there exists in general a non-deterministic
machine whose set of behaviors cannot be represented by any single deterministic machine. This is
illustrated by the following example.

Example 5.2.1 Consider the behavior represented by the non-deterministic finite state machine T
given in Figure 5.2. Suppose that there exists a deterministic machine M representing the same set
of behaviors. Then at the reset state, M must output 1 for the input O and O for the input 1. Now,
. consider the next state that M moves to for the input 1 when it stays.at the reset state. Since M is

CHAPTER 5. . MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 114

Non-Deterministic Machine T

Figure 5.2: A Non-Deterministic Machine whose Behaviors cannot be Represented by Single
Deterministic Machines

deterministic, either M can move to any state (in case M is incompletely specified), or it moves to a
single state. If it can move to any state, then M may stay at the reset state for the input 1. It follows
that for the input sequence 110, M may first output O staying at the reset state, next output O again
still staying at the reset state, and then output 1 for the third input 0. However, the resulting output
sequence 001 is not allowed for the input sequence 110 in the original machine T'. Therefore, for
the input 1 at the reset state, M must move to a single state, say s. Since M represents the same
set of behaviors as T, the outputs of the machine M at the state s must coincide with those of the
states B and C' in the original machine T. Specifically, the outputs at the state s must be that
either M always outputs 0 for all the inputs, or it always outputs 1 for all the inputs. Therefore,
we must specify more than one possible output for each input. However, since M is a deterministic
machine, only the case where multiple outputs can be specified for a given input is that the output is
unspecified for the input. Namely, we must specify in such a way that at the state s, M may output
either 0 or 1 for each input. However, this specification allows the case that M outputs 0 for an
input O and outputs 1 for an input 1. We see that this case should not be allowed in order for the
outputs at the state s to coincide with those of the states B and C in the original machine T, since
T"’s outputs at these states are either always equal to 0 or always equal to 1. Hence, there is no way
to correctly specify the outputs of M at the state s. It follows that there is no single deterministic
machine whose set of behaviors is identical with that of the original non-deterministic machine T'.

Note also that the construction given in the proof of the theorem above uses the subset

construction fordeterminizing a non-deterministic finite automaton. Therefore, even though pseudo

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 115

non-deterministic finite state machines are as expressive as non-deterministic machines, the number
of states of a pseudo non-deterministic machine could be exponentially larger than that of the
corresponding non-deterministic machine.

5.3 Feasible Machines

5.3.1 Feasible Machines

In this section, we consider how to find a set of contained behaviors for a given pseudo
non-deterministic finite state machine 7'. In other words, we want to establish a correspondence
between the set of contained behaviors and the original machine 7', so that we can interpret each of
the contained behaviors in terms of the original machine.

We establish such a correspondence using a set of completely specified deterministic
finite state machines, so that the set of those deterministic machines precisely represents the set of
behaviors contained in 7°. Such a deterministic machine is called a feasible machine, and is defined
as follows:

Definition: Feasible Machines

A completely specified deterministic finite state machine My = (U, V, Sy, Ay, 61, 71) is
said to be feasible if for each state s; € S, there exists a subset (s;) C S with the following
property:

@@ reZ(n),
() Y(31,u) € 81 x BIUl: vz € 3(3) : 35 € Z(6,(31,u)) s.t. T(5,u, A (31,u),s) =1,
$.1)

Associated with each state of a feasible machine M; is a set of states of the original pseudo
non-deterministic machine T'. The condition (a) means that the set of states of 7' corresponding
to the reset state of M; must contain the reset state of the original machine. The condition (b)
requires that for each state s, of a feasible machine M, and for each input minterm u € BV, jt is
possible to move in the original machine 7' from any of the states of 7" associated with s; to some
of the states associated with é; (31, u), the next state of s; in M; under the input u, with the same
output A1(3, u). This condition is analogous to the closure constraint defined for the deterministic
~ case [40].

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 116

5.3.2 Properties of Feasible Machines
The objective in this section is to claim that
1. the complete set of behaviors contained in T is precisely the set of feasible machines, and

2. a minimum state behavior contained in 7' is given by a feasible machine with the minimum
number of states.

We first prove that the behavior represented by a feasible machine is contained in the
original pseudo non-deterministic machine T'.

Lemma 5.3.1 Consider a feasible machine My = (U,V, Sy, \1,61,71). For a state s, € Sy, let
Bs, = {(04,0y) | (0u,0y) is realized in My at s1.}. Then B, is a behavior between U and V such
that for all (0, 0,) € B, andfor all s € 2(3,), (04, 0y) is realizedat s inT.

Proof: The proof is done by induction on & for an arbitrary pair of sequences (0, 0,) € Bs, with
|ow| = k. What we claim is that for an arbitrary state s € £(s;) of T, there exists a state s(*) of T
such that o, can lead T from s to s(*) with the output sequence ;. Thus (0, 0,) is realized by T
We also show that s*) € Z(sgk)), where sgk) is the state of M led to by o, from s;.

The statement is true for &£ = 1, due to the condition (b) of feasible machines. Suppose that
the statement is true for k£ — 1, where k£ > 1. Consider an arbitrary pair (0, 0,) € B,, with |o| = &
and an arbitrary state s of T’ contained in (s). Let (&, &,,) be the prefix pair of (o, o) of length
k — 1. Denote 0, = Fyu and o, = c”r,,)\l(sgk'l), u). By the induction hypothesis, there exists
a state s~ € £(s{*V) such that #, can lead T from s to s(*~1) with the output sequence .
Then by condition (b), there exists s*) € Z(s{*)) for which T(s*=1, u, (s ™V u), s = 1.
Therefore, o, can lead T from s to s(*) € >:(s§’°’) with the output sequence o,,. Thus the statement
istrue. = ‘

This lemma claims that the behavior of a feasible machine is contained in 7', since the
lemma holds at the reset state 71 of M;. Conversely, it is claimed that for every behavior contained

in T, there exists a feasible machine with the behavior.

Theorem 5.3.1 Given a pseudo non-deterministic finite state machine T, a behavior is contained

in T if and only if it is represented by a feasible machine.

Proof. It immediately follows by Lemma 5.3.1 that a feasible machine represents a behavior

contained in T.>-We prove the converse. Consider a completely specified deterministic machine

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 117

M, = (U,V, S1, M\, 61, 71) whose behavior is contained in T'. Suppose, without loss of generality,
that every state of M is reachable. We consider a procedure shown in Figure 5.3 which takes M;
as input and returns another deterministic machine Mj. We claim that Mj is a feasible machine
equivalent to M;. The procedure first duplicates the machine M, and modifies the duplicated
machine M| during the procedure. Specifically, it processes one state 3; of M| at a time and
for each input minterm u € B!V, associate a subset X(s;) of the states of T with the next state
81 = 61(31, u), where the corresponding next state may be changed to another possibly new state if
necessary. Note that when a state 3; is processed, a subset £(3;) C S has been already defined and
associated with 3;. The notation E(s;) used in the procedure designates the equivalence class that
a state s; belongs to. The equivalence classes are originally defined for the machine M;. When M,
is duplicated, the equivalence class is associated with each state s; of the duplicated machine M.
When a new state 3; is created, we define the transitions of the state so that it is equivalent to some
state s; of the original machine M, and the equivalence class E(3;) is set to E(s;).

The procedure uses two functions C(s*, E(s1)) and N(31,u,8;). C(s*,E(s1)) is a
characteristic function defined for a subset s* of the states of 7" and an equivalence class E(s;) of
M,. Ttis 1 if and only if an arbitrary pair of input and output sequences (o, 0,,) realized at the
equivalence class E(s)) of M can be realized in T at every state s of s*. Thus the function C
indicates if the subset s* can have the same behavior as the equivalence class E(s;). The function
N(31,u,s;) is defined for a state 3; of M}, aminterm u € BVl and the next state s; of 3 in M
under the input u, i.e. 8; = 6{(3;,u). It returns a non-empty subset s* of the states of T' with
the property that for each 3 € Z(3;), there exists s € s* such that T'(3, u, A{(31,u),s) = 1 and
C(s*, E(s1)) = 1. Note that there might exist more than one subset s* which satisfies this property.
We only need assume that the function NV returns any one of such subsets. The returned value of N
is then used as the set Z(s) and is associated with the next state given by 6{(3;, u).

We first claim that when a state 3; is processed for a minterm u € B!V, the machine
M is equivalent to M; and the returned value of the function N(3;,u,s;) is well-defined, i.e.
there exists a non-empty subset that satisfies the property stated in the definition of the function V.
In the beginning, M| is equivalent to M; since we simply duplicate it. Also, since the behavior
of M, is contained in T, there exists a subset s* C .5 such that » € s* and C(s*, E(ry)) = 1
for the reset state 7 of M], and thus the set Z(ry) is well-defined. In general, when a state 3
is processed for a minterm u € BIUl, suppose that £(3;) has been defined and the machine M
is equivalent to M;. Note that C(Z(31), E(3,)) = 1 since Z(3;) is defined as the returned value
of the function -N. Now, suppose for the contrary that for any subset s* C S of the states of T

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 118

function feasible(M, = (U, V, Sy, A1, 61,71))
/*let M{ = (U,V, 81, A}, 61,71) */
M] «— copy(M);
for(each s; € S){ Z(s1) — & }
I(r) —s*st.res*and C(s* E(r)) =1, [*r eS| *
mark 7;;
while(there exists 3; € 5] that is marked){
for(each u € BIUl{
/¥ Let 51 = 8 (51, u) ¥/
N « N(3,u,8);
if(35, € S : Z(8)) = Nand E(8;) = E(s1)) 6(31,u) — 3y;
elseif(Z(s1) = #){ Z(s1) — N; marks;; }
else{ /*create a new state 3, */
51— S1u{ak
for(each @ € B|U|){
8 (8, 8) — 68l(sy, B);

A1 (81, 1) — A{(s1,0);

}
i(gla u) - 31;
2(31) — N;
E(3) « E(s1);
mark 8;;
}
}
remove the mark of 3;;
}
return M;;

Figure 5.3: Procedure for Generating a Feasible Machine

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 119

such that for all 3 € X(3;), there exists s € s* with T'(3, u, A{(31,u),s) = 1, C(s*, E(s1)) = 0.
Since T is pseudo non-deterministic and since C(Z(3;), E(31)) = 1, for each state 3 € Z(3;), there
exists a unique s € S such that T'(3, u, A{(31,u),s) = 1. Let N(3;) be a subset of S given by
N(3)={s€ 5|35 €Z(5): T(3,u,A(31,u),s) = 1}. Namely N'(3,) is the set of unique next
states of the states of (3) under the transition u/){(3;, u). Note that A(3;) is not empty. Then
N (3,) satisfies the property that forall 3 € Z(3;), there exists s € s* with T'(3, u, A{(31,u),s) = 1,
where s* is set to A(3), and also for all s* with this property, s* 2 AN(3;). Then by assumption,
C(N(51), E(s1)) = 0, and thus there exists an input sequence o, and a state s € N(5;) such that
the output sequence o, realized at the equivalence class E(s;) of M; for o, cannot be realized in
T at s. However, since there exists a state 3 € X(3;) for which s is the unique state of S such that
T(3,u, A{(31,u),s) = 1, the pair of sequences (uoy, A{(31, u)o,), which is realized at £(3;) in
M;, cannot be realized in 7" at 3. This conflicts with the fact that C(Z(3;), £(3;)) = 1. Hence, there
exists a subset s* C S such that for all 3 € X(3;), there exists s € s* with T(3, u, A{(3;,u),s) =1
and C(s*, E(s;)) = 1, and therefore the returned value of the function N is well defined. We now
show that the process for the state 3; with the minterm u preserves the equivalency of M| to M;.
It is true since if a new state 8; is created, the state is set to the new next state of 3; for the input u
and the transitions of 8, are set identical with those of sj, the original next state.

Therefore, at the end of the procedure, we obtain a deterministic machine M{ equivalent
to M;. Also associated with each state s; of M is a subset £(s;) C S such that any pair of
sequences (o, 0,) realized at E(s;) of M can be realized in T at every state s € Z(s;). Thus M,
satisfies the condition (5.1)-(b) given in the definition of feasible machines. By definition of Z(;)
given in the procedure shown in Figure 5.3, the condition (5.1)-(a) also holds. Therefore, Mj is a
feasible machine. =

By this theorem, we see that we can capture the complete set of contained behaviors
by taking into account only feasible machines. However, as shown in the following example, the
theorem does not hold for general non-deterministic machines. More specifically, there may exist
behaviors contained in a non-deterministic machine that cannot be represented by feasible machines
defined above!.

Example 5.3.1 Consider the non-deterministic machine T shown in Figure5.4-(a). This machine is
not pseudo non-deterministic. The behavior of a deterministic machine My shown in Figure 5.4-(b)

is contained in T. However, there is no feasible machine which represents the behavior.

!In terms of the trace equivalence, this corresponds to the fact that trace equivalence does not coincide with simulation
equivalence for non-deterministic finite automata [57].

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 120

on -0

1/0 0/0
11

® M,

Figure 5.4: A Counterexample of Theorem 5.3.1 for General Non-Deterministic Machines

Due to the condition (5.1)-(b), for each state s; of a feasible machine M, the output
function) |5, defined at s; in M) must be realized at every state s € Z;(s;) in T'. This requirement
is not necessary for general non-deterministic machines. For the example above, even though no
output function can be realized both at the states B and C in the machine 7', the two states can
be treated as a single state with arbitrary output functions since for any input sequence, if it can
lead T to the state B, then it can also lead T .to the state C with the same output sequence. For
pseudo non-deterministic machines, we will see later that the condition (5.1)-(b) is effectively used
to compute the feasible machines.

We now consider optimum (minimum-state) machines. By Theorem 5.3.1, we know
that every behavior contained in a given pseudo non-deterministic machine 7 is represented by a
feasible machine. However, the procedure used in the proof of this theorem, i.e. the one shown
in Figure 5.3, may increase the number of states. Thus it is not obvious that there always exists a
feasible machine whose number of states is minimum over all machines representing the behavior.
In fact, we prove below that this statement is true, i.e. for any behavior contained in 7', there exists
a feasible machine that has the least number of states over all machines with the behavior. We use
the following classical theorem to claim this statement.

Lemma 5.3.2 For a completely specified deterministic finite state machine M, suppose that there
is no equivalent pair of distinct states in M. Then the number of states of M is minimum over all

machines representing the behavior given by M.

Proof: See [27],[38],0r[30]. =

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 121

Lemma 5.3.3 For any behavior B contained in a given pseudo non-deterministic finite state ma-
chine T', there exists a feasible machine whose number of states is minimum among all machines
representing B.

Proof: Let My = (U,V, Sy, A1, 6,71) be a feasible machine for the behavior B such that the
number of states of M is minimum among all the feasible machines representing the behavior. By
Theorem 5.3.1, such M; always exists. We claim that the number of states of M) is minimum over
all the machines representing the behavior B, not just feasible machines. Since M, is a completely
specified deterministic machine, Lemma 5.3.2 implies that the proof is done if we show that there
is no equivalent pair of distinct states in M.

Suppose for the contrary that there exists an equivalence class E in M; which contains
more than one state. Note first that every state of F is reachable from 7 since otherwise we can
find a feasible machine for the behavior with fewer states. Let Z(E) be the union of X(s;) over all
the states s; of £. Consider a machine M| given by replacing each equivalence class E of M; by
a single state and associate Z(E) with it. Specifically, for a pair of equivalence classes (£, E), if
we denote the states of M corresponding to £ and E by 3] and s} respectively, then s{ is the next

‘state of 3] under an input u if and only if for each state 3; € E of My, &;(3;,u) € E.

By definition of equivalence class, M| is equivalent to M;. Note that the number of states
of Mj is strictly less than that of M, since there exists an equivalence class in M; which contains
more than one state. We show that Mj is also a feasible machine, which leads to a contradiction
since M, has the minimum number of states over all the feasible machines for the behavior.

Since M, is a completely specified deterministic machine, there exists exactly one state
r1 in M| which corresponds to the equivalence class of the reset state 7y of M. For this state 7{,
the reset state of the original machine 7 is contained in the set of states of T associated with 7{, and
thus the condition (5.1)-(a) holds.

Consider an arbitrary state 3| of M/ and an arbitrary input minterm u € BIV!, Let E be
the equivalence class of M; corresponding to 3]. Let X(3]) be the set of states of T associated with
3). For every state § € X(3]), there exists a state §; € £ of M, for which § € X(3;). Let s be the
next state of 3; in M; under u, i.e. s; = 6;(3;,u). Since M is a feasible machine, there exists a
state s of T contained in X(s;) such that T'(3, u, A1(3;, u), s) = 1. Denoting by E the equivalence
class of M; which contains s, the state s} of M| corresponding to F is the next state of 3] under
the input u. The set of states of T" associated with s} in M| is given by X(E), and thus we see that

. 8 € Z(E). Hence the condition (5.1)-(b) holds. Therefore, M| is a feasible machine. =

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 122

By this lemma, it immediately follows that a minimum-state behavior contained in a
pseudo non-deterministic machine 7' is given by a feasible machine with the minimum number of
states.

Theorem 5.3.2 For a pseudo non-deterministic finite state machine T', let M, be afeasible machine
with the minimum number of states. Then the behavior of M, is contained in T and its number of

states is globally minimum over all the machines representing contained behaviors.

5.4 Exact Methods

In this section, we present how to find exactly an optimum behavior for a given pseudo
non-deterministic finite state machine. We first present in Section 5.4.1 an exact method for the
state minimization of pseudo non-deterministic finite state machines, i.e. find a minimum-state
behavior contained in a pseudo non-deterministic machine. We then discuss in Section 5.4.2 how
the implementability of the resulting behavior can be taken into account, and present an exact method
for the minimization of the E-machine, i.e. find a minimum-state permissible behavior. As we will
see, both problems are formulated as a 0-1 integer linear programming problem. Namely, for a
set of Boolean variables given as the input instance, we.present a set of linear constraints on those
variables so that a solution is given by an assignment for those Boolean variables with the minimum
numberof 1’s which satisfies all the constraints. The solution space of each problem is defined by the
Boolean space spanned by the set of Boolean variables given in the input instance. In Section 5.4.1
and Section 5.4.2, we present how to formulate the constraints for each problem. In Section 5.5,
we show how to reduce the solution space, i.e. the number of Boolean variables given in the input
instance, witt}out affecting the optimality of the solution. Specifically, we introduce a notion of
compatible sets, and show that optimum solutions are found by restricting the input instance so that
a single Boolean variable is assigned to each compatible set. The notion of compatible sets are
defined for pseudo non-deterministic machines, which is analogous to the notion of compatible sets
introduced for deterministic machines [40].

5.4.1 Finding an Optimum Contained Behavior

The problem we address in this section is the state minimization of a pseudo non-
deterministic machine T, i.e. find a behavior represented by a completely specified deterministic

finite state mach_@ne with the minimum number of states over all the behaviors contained in 7T'.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 123

Let C = {s},...,s;} be the set of subsets of states of a given pseudo non-deterministic
machine 7. For a moment, let us assume that C is the complete set of subsets of states, and thus
the cardinality of C is 2!, where § is the state space of T'. In Section 5.5, we show how to reduce
the cardinality of C' without affecting the optimality of the solution.

By Theorem 5.3.2, we see that an optimum contained behavior is given by finding a subset
C of C with the minimum cardinality for which a feasible machine can be composed so that each
state of the feasible machine corresponds to an element of C. By definition of feasible machines, a
subset C' C C can compose a feasible machine if and only if

(@ 3sfeC:restand
) Y(s},u)e & x BV :3(s5,v)e C x BVlst. V3 e s : 3s € 83 : T(5,u,v,8) = .

By assigning a Boolean variable to each element of C, these conditions can be written in
terms of a set of Boolean formulas. Suppose we associate a Boolean variable ¢; for each s} € C.
Then the first condition is given by (Z ¢;). In other words, we require that one must include

-, *
siires!

in C at least one element of C which contains the reset state r of the original machine 7. For
the second condition, we introduce, for each s} € C and for each u € BIUl, a Boolean formula

(ei=> Y c;), where n(s},u)is the set of elements s} of C such that there exists v € BIV
s;en(a;,u)
for which for all 3 € s}, T(3,u,v,s) = 1 for some s € s}. Then the problem is to find a

minimum-weight assignment for the Boolean variables {ci, . . ., ¢,} which satisfies all the Boolean
formulas, where the weight is equally assigned to every variable. This problem is a 0-1 integer
linear programming problem.

Note the similarities of this formulation with the conventional approaches for the state
minimization of deterministic machines [24]. The second condition above corresponds to the
closure constraint, i.c. if an element ¢; is chosen, then at least one element implied by c¢; must also
be chosen for each input u. Implied elements, given in our case by n(s}, u), are those that can be
treated as the next states of s in a feasible machine.

5.4.2 Finding an Optimum Permissible Behavior

The problem addressed in this section is the minimization of the E-machine, i.e. find a
behavior represented by a completely specified deterministic finite state machine with the minimum

number of states over all the implementable behaviors contained in a pseudo non-deterministic

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 124

machine T. The implementability is defined against an originally provided completely specified
deterministic machine M> in Figure 5.1.

The solution of this problem is given by solving the state minimization problem addressed
in the previous section with an additional constraint that the resulting feasible machine is imple-
mentable. Recall that a machine M is said to be implementable if there exist implementations for
M; and M, with which no combinational loop is created in the resulting implementation. As we
showed in Section 4.7, the implementability is determined by checking the dependencies between
the inputs and the outputs of M. It follows that once we obtain a feasible machine M;, we need to
see, for each state of M, the output function defined at the state so that we can identify which output
variables V' depend on which input variables U in the output function. This leads to a dependency
graph G defined in Section 4.7, and by Theorem 4.7.1, we see that the machine is implementable if
and only if G is acyclic.

Therefore, unlike the state minimization problem where the input instance is given by a
set of subsets of states of T, we associate a function from B!Vl to BIV! with each subset of states.
Namely, an element ¢; of the input instance is a pair (s*, f), where s* C S is a subset of states
of the original machine T and f : BIUl — BIV! is a function. The collection of all such pairs,
C = {c,...,¢}, is the input instance of the problem. The idea is that one wants to compose a
feasible machine using the elements of C so that each state of the feasible machine corresponds to
the subset of states of an element ¢; € C and the output function defined at the state in the feasible
machine is given by the function given in ¢;. Specifically, denoting c¢°” = s* and) = f for
each element ¢; = (s*, f), we want to find a subset C' of C with the minimum cardinality which
satisfies the following three conditions:

@ 3;eC:re c,(‘q‘) and
®) Y(ci,u)€C x BV :3c; e Cst. Ve :3s ¢ cg-s‘) - T(3,u,cP(u),5) = 1 and
(c) the dependency graph defined by the set of output functions of is acyclic.

Assigning a Boolean variable c; for each element ¢; of C, we write the conditions above
by Boolean formulas. The conditions (a) and (b) can be handled in the same way as the previous
section. For the condition (c), we specify for each subset ¢’ of C which creates a cycle in the

corresponding dependency graph as (Z T;), which means that it is not allowed to choose all the
c,'GC'
clements of C'. Then the problem is to find a minimum-weight assignment for the Boolean variables

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 125

which satisfies all the Boolean formulas, where the weight is equally assigned to every variable.
This problem is again a 0-1 integer linear programming problem.

5.4.3 Finding an Optimum Moore Behavior

In finding an optimum permissible behavior, we need to take into account the imple-
mentability of the resulting behavior. As shown in the previous section, the implementability is
checked using a dependency graph. One compromise to avoid this additional difficulty on the
implementability is to restrict attention to Moore behaviors only. Recall that for Moore behaviors,
the outputs depend only on the internal states and not on the inputs [38]. Therefore, it is possible to
implement a Moore behavior so that there is no combinational path from the inputs to the outputs.
It follows that if M is a Moore behavior, then there are no cycles in the corresponding dependency
graph, i.e. it is always implementable no matter how M, is implemented. Hence, we don’t need to
use dependency graphs in setting constraints.

With this restriction, our problem is to find a behavior represented by a completely
specified deterministic finite state machine with the minimum number of states over all the Moore
behaviors contained in a given pseudo non-deterministic finite state machine 7'. By Theorem 5.3.2,
we see that such a behavior is given by finding a feasible machine representing a Moore behavior
with the minimum number of states over all the feasible Moore machines.

For Moore behaviors, an output function defined at each state is simply an output minterm,
since the output pattern is unique for each state, independent of the inputs. Therefore, instead of
output functions, we associate a minterm v of B!V! with a subset of states of T. Specifically, the
input instance is the set C' = {¢y, ..., ¢, }, where an element c; is a pair (s*, v) such that s* C S and
v € BV, As with the previous section, we may denote c?" = s* and cE") = v. Our objectuve is

to find a subset €' of C' with the minimum cardinality which satisfies the following two conditions:
@ 3¢;el:re cfs‘) and
®) V(c;,u)e C x BlUl:3¢c; € Cst. Vs € i3 e cgst) :T(5,u,e"),) = 1.

We then assign a Boolean variable c; for each element c; of C, we write the conditions
above by Boolean formulas. The problem is a 0-1 integer linear programming problem.

One might wonder why we need to associate an output minterm v € B!V with each
element of the input instance. In fact, it is possible to avoid it, while the linearity of the resulting
problem cannot be maintained in this case. Specifically, let C' = {s},..., s} } be the set of subsets

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 126

of states of 7. Then the solution of the problem is given by finding a subset C' of C' with the

minimum cardinality which satisfies the following two conditions:
(@ 3IsfeC:restand

(b) Vst € C:3v e BVl :vue BVl IsteCstV¥sesr:Is€ st T(3,u,v,8)=1.

Assigning a Boolean variable ¢; for each element s, we can write these conditions as
Boolean formulas. The first condition is same as the previous case. For the second condition, we

introduce, foreach s7 € C, (¢; = Y. [[m(s},u,v)). The notation (s}, u, v) designates

veBlVl ueBlUl
the following:

Z ¢; ifn'(sf,u,v)#£¢
u, v) = sten’(sf,u,v)

0 otherwise,

where n'(s¥, u, v)is defined as the set of elements s7 of C' such that for all 3 € s, T(Eva=1
for some s € sj. We see that this formula contains in general a product of disjunctions of Boolean
literals. Therefore, the formula is non-linear in general, and this formulation results in a 0-1 integer
non-linear programming problem.

Note that the non-linearity arises from the intersection over all the input minterms u €
BIYl. The intersection is necessary in order to guarantee that the same output minterm v € BVl
can be used over all the inputs to associate with the subset s7. It does not arise in our original
formulation since we explicitly associate an output minterm with each subset of states in the input
instance, so that we make a distinction between a pair (s7, v) and a pair (s}, ¥) for different output

minterms.

5.4.4 A Summary of Exact Methods

We provide a brief summary of the three exact methods. Our original problem was
the minimization of the E-machine computed for M; in Figure 5.1, i.e. find a behavior with
the minimum number of states over all the implementable behaviors contained in a given pseudo
non-deterministic finite state machine 7.

The method given in Section 5.4.1 finds an optimum contained behavior in 7. For this
method, the input instance is the set of subsets of states of 7', and the constraints are given by

two sets of Boolean formulas. However, the method does not guarantee the implementability of

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 127

the resulting behavior. Therefore, the method can be used for our problem only if it is somehow
guaranteed in advance that every contained behavior is implementable. One such case is when
the machine M; is a Moore machine, and it is known that no combinational loop is created for an
arbitrary M.

If there is no such a guarantee on the implementability, we need to use the method given
in Section 5.4.2, which finds an optimum permissible behavior. For this method, however, we need
to associate an output function with each subset of states of T". Furthermore, we need to take into
account an additional constraint on the implementability using a dependency graph. In order to
avoid the complication of dependency graphs, Section 5.4.3 presented an exact method for finding
an optimum Moore behavior contained in T'. Since the behavior is a Moore behavior, it is always
implementable, and thus we don’t need to check the implementability using dependency graphs
in setting the constraints. For this method, instead of an output function, we associate an output
minterm with each subset. For all three cases, the problem can be described as a 0-1 integer linear
programming problem.

5.5 Compatible Sets

5.5.1 Compatible Sets

In the exact methods presented in the previous section, we assume that the input instance
is the set of subsets of states of a given pseudo non-deterministic machine 7'. For the exact method
of finding an optimum permissible behavior, we further associate an output function for each subset.
Thus, the number of elements given in the input instance is exponential in the number of states of
T. In this section, we consider how to reduce the number of elements of the input instance so that
an optimum solution is still found by using the same constraints given for each of the three methods
of Section 5.4 over those reduced elements.

For each exact method, our objective is to find a feasible machine with some property.
Recall that each state of a feasible machine corresponds to a subset of states of T". Therefore, for a
subset s* of states of T, if there is no feasible machine in which there exists a state corresponding to
s*, s* need not to be included as an element of the input instance since the element is never included
to compose a feasible machine. Similarly, a pair (s*, f), where s* C S and f : BIYl - BIV| peed
not be included if there is no feasible machine in which there exists a state corresponding to s*
with the output function f. These elements can then be removed from the input instance without

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 128

affecting the optimality of the solution.

- Then the question is what is the set of pairs (s*, f) that can be used to compose feasible
machines. More specifically, a pair (s*, f) is in the set if and only if there exists a feasible machine
in which there exists a state such that the corresponding set of states of T" is s* and the output
function defined at the state in the feasible machine is equal to f.

A superset of the set defined above is the one called output-consistent set. A pair (s*, f)
is said to be output-consistent if the following condition holds:

V(3,u) € s* x BVl : 35 € §: T(3,u, f(u),s) = 1,

where S is the set of states of the pseudo non-deterministic machine 7. Namely, the condition
requires that it is possible to realize the same output function f at every state of s* in 7. If a
pair (s*, f) is not output-consistent, then no feasible machine has a state corresponding to that
pair. This is because the condition (5.1)-(b) requires that the same output function must be realized
at every state of 7' associated with a single state of a feasible machine. However, note that the
output-consistency is simply a necessary condition, and does not imply the existence of a feasible
machine with a state corresponding to the pair.

We now define the set of compatible sets as follows:

Definition: Compatible Sets
Given a subset s* C S and a function f : BVl - BIVI, (s*, f) is a compatible set if
there exists a behavior B between U and V satisfying the following condition:

Containedness:
Forall (0u,0,) € Bandforall s € s*,(0oy,0y)canberealized in T at state s and vo = f(up),

where ug and vy are the first elements of o,, and o, respectively.

The central idea here is that for a compatible set (s*, f), there exists a behavior that can be
realized at every state of s* in T’ with the output function f. More specifically, for each s € s*, there
must exist an edge labeled ug /vy for each pair (o, 0,) of the behavior B, where ug/vg denotes the
first input/output pair of (o, 0,,) and vo = f(ug). Further, we have the condition that the edge can
be continued to produce the given sequence (o, 7).

It is then claimed that the set of compatible sets is precisely the set of pairs (s*, f) that
can be used to compose a feasible machine.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 129

Theorem 5.5.1 For a given pseudo non-deterministic finite state machine T, suppose that every
state of T is reachable from the reset state. Then (s*, f) is a compatible set if and only if there exists

a feasible machine in which there exists a state corresponding to (s*, f).

Proof: Suppose that there exists a feasible machine M for T in which there exists a state s; such
that the corresponding subset of states of T is s*, i.e. s* = Z(s;), and the output function defined
at sy is f. Let B = {(0u,0y) | (0u,0,) is realized in M) at s;.}. Then by Lemma 5.3.1, Bis a
behavior between U and V' such that for all (g, 0,,) € B and for all s € X(s,), (04, 0y) is realized
at sin T'. Since the output function defined at s, in T' is f, the containedness condition above holds.
Hence (s*, f) is a compatible set.

Conversely, suppose (s*, f) is a compatible set. We show that there exists a feasible
machine with a state corresponding to (s*, f). Let s € s* be an arbitrary state of s*. Consider a
pseudo non-deterministic machine 7", identical to T except that s is the reset state of 7/. Let B’
be a behavior satisfying the containedness condition for (s*, f) in the definition of compatible sets.
Then B’ is contained in 7”. Therefore, there exists a feasible machine M| for T' which represents
B'. Then we can associate s* with the reset state r] of M| without violating the conditions (5.1)
given in the definition of feasible machines. Since the output function defined at r; is f, (s*, f)
corresponds to r}.

Now, since s is reachable from the reset state 7 of T', there exists a pair of input and output
sequences (a,(;"), a,(,")) such that 0" leads T to s with the output sequence o). Also, there exists
a behavior B such that (1) B is contained in 7', and (2) for all (¢4, 0,) € B such that (a,(f), 0'1(13))
is a pair of prefix subsequences of (0., 0y), i.e. there exists a pair of sequences (o, 0,,) with
(Ou,00) = (a,(f’)a,", af,s)a{,), the remaining pair of sequences is a member of B/, i.e. (d2,,0") € B'.
Let M, be a feasible machine for 7" which represents B. Let s; be the state of M; such that az(f)
leads M, to s;. Let §; be the preceding state of s; in M), i.e. M) moves from 3, to s; when the last
element of a,(f) is applied. Denote the last element of cr,(f) by u. Suppose we change the transition
from 3; to s; so that M; moves from 3 to r{, the reset state of M, under the input u with the same
output. Since Mj is a feasible machine for 7" representing the behavior B’ and since T” is identical
with T except for the reset state, the resulting machine is a feasible machine for T representing 53,
in which the state 7| corresponds to (s*, f). This completes the proof. =

Hence, we see that it is sufficient to use only the compatible sets for the input instance in
the exact method for finding an optimum permissible behavior given in Section 5.4.2. For the exact

method of finding an optimum Moore behavior given in Section 5.4.3, since we restrict attention

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 130

to Moore behaviors only, the input instance is given by the set of compatible sets (s*, f) such that
f(u) is identical over all input minterms u. Thus we may denote such a compatible set by (s*,v),
where v € B!Vl s the output value of the associated function.

For the exact method of finding an optimum contained behavior given in Section 5.4.1,
we are not concerned with implementability. Thus we don’t need to associate an output function
with a subset of states. This was first indicated by Damiani in [14]. In fact, by Theorem 5.3.1,
the set of contained behaviors is precisely given by the set of feasible machines, and therefore it is
sufficient to use as the input instance of this problem the set of subsets of states s* with the property
that there exists a function f : BIVl - BV such that (s*, f) is a compatible set.

5.5.2 Computing Compatible Sets

In this section, we show how to compute the set of compatible sets. Consider the following
iterative computation of a function R*) : 25 x F — B, where 2° designates the power set of S
and F is the set of functions from B!Vl to BV,

R, fy=1 & V(3,u)es xBll:3s¢€ 5:T(5,u, f(u),s) =1,
R¥)(3 fy=1 & VueBWUI:3(s* f)e2’ x F: R*F-1(s*, f) = 1and
Vi€ 3 :3s€s*:T(5u, f(u),s)=1

Intuitively, R(¥) is the characteristic function of a set of pairs (3*, f), where 3* is a subset
of states of a given pseudo non-deterministic machine T and f : BVl — BI"!is an output function,
with the property that for any input sequence o, with the length no greater than k, there exists an
output sequence o, with the same length such that (o, 0,) can be realized in T at every state § € 3*
and vo = f(ug), where ug and vy are the first elements of o, and o, respectively. Note the analogy
between this statement and the containedness condition given in the definition of compatible sets in
the previous section. More specifically, if the integer k is infinitely large, then the collection of such
pairs of sequences (o, 0,) leads to a behavior between U and V' which satisfies the containedness
condition. Note also that for each state § € S, there exists a function f such that R*®)({3}, f) = 1
forallk > 1.

Let R : 25 x F — B be the function obtained at the fixed point of the computation above.
Namely, for an integer K > 1 such that R(K) = R(K-1) we set R equal to R(X). Note that such
K always exists since for s* C S and f : BVl - BV, if R*=1)(s*, f) =0, then R*)(s*, f) =0
for all £ > 1, and thus the number of elements (s*, f) contained in R®) does not increase as k
increases, while-the total number of such elements is finite.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 131

We claim that the function R is the characteristic function of the compatible sets for 7.

Theorem 5.5.2 For s* C S and f : BVl — BWVI (s*, f) is a compatible set if and only if
R(s*, f)=1.

Proof: First, for the trivial case where s* is empty, the theorem holds since (s*, f) is always a
compatible set and R(¥)(s*, f) = 1forall & > 1.

Consider the case where s* is not empty. We show by induction on £ > 1 that
R™)(3*, J) = 1if and only if there exists a set of pairs, B*¥) C {(0y,0,) | |ou] = |o] < K},
such that (1) B(*) satisfies the completeness and the prefix conditions, (2) for all (o,,0,) € B*),
vo = f(ug), where ug and vy are the first elements of o, and o, respectively, and (3) for all
(0w, 0y) € B and for all 3 € 8, (dy,,0,) can be realized in T at the state 3. Then the theorem
directly follows. The completeness and the prefix conditions are defined in Section 4.2 where a
definition of a behavior is given.

The statement is true for ¥ = 1 by construction. Suppose it is true for £ — 1. Consider
a subset 3 C S and a function f : BVl — BIVl such that R(¥)(3*, /) = 1. We show that
there exists a set of pairs of sequences B(*) with the property above. Since R¥)(3*, f) = 1,
for each u € BV, there exists (s*, f) such that R*~1(s*, f) = 1 and for all 3 € 3*, there
exists s € s* for which T(3,u, f(u),s) = 1. By the induction hypothesis, there exists a set
B*-1) C {(04,00) | |ou| = |ow| < k—1} associated with such (s*, f) which satisfies the property
above. Define a function x such that x(u) returns one such set of pairs of sequences B(*~1),
Although there might exist more than one such (s*, f) for a given u € B!Vl and (3*, f), and for
these, possibly more than one such set B(*-1), we choose one particular set B(%-1) as the return
value of x(u). Thus for a given u € B!V, y(u) uniquely defines the pair (s*, f) as well as the
associated set B(*=1), Consider an arbitrary input minterm ug € BIVl, Let B¢-1) = x(uy). For
each (o!,0") € B(:-1), consider the pair of sequences (uga’,, f(ug)c’), and include this pair in
the set B(¥). Consider the set B*) obtained this way by processing all ug. Also add the pair of null
sequences to B(). Then by construction, any pair (¢, ,) € B*) can be realized in T at any state
of 3* with vo = f(up). Also for this B(%), the completeness condition holds since we processed all
ug and B*~1) is complete. Furthermore, B¥) satisfies the prefix condition since B(*~1) satisfies
the prefix condition. Hence for a pair (3*, f) such that R(¥)(3*, f) = 1, there exists a set B(*) with
the property above.

Conversely, consider a pair (3*, f) for which there exists a set B%*) C {(0y,0,) | |ow] =
loy| < k} with the property above. We show R(¥)(3*, f) = 1. Let ug € B!Vl be an arbitrary input

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 132

minterm. Since T’ is pseudo non-deterministic, for each 3 € 3*, there exists a unique s € 5 such
that T'(3, ug, f(uo), s) = 1. Let s* be a subset of the states of T givenby s* = {s € § |35 € 5" :
T(3, g, f(up),s) = 1}. Namely, s* is the set of unique next states of the states of 3* under the
transition ug/ f(ug). Note that s* is not empty. Note also that s* has the property that forall 3 € 3*,
there exists s € s* such that T'(3, ug, f(ug),s) = 1. Let f : BIVl » B!V| be a function such that
f(uy) = vy if and only if (upuy, f(ug)v;) € B*). By the completeness condition, such v; and
hence f is uniquely defined. We claim that R**~1(s*, f) = 1. Consider a set B*~1) of pairs of
sequences with the length less than k defined as follows. For a given sequence o, of BVl with
|ou] < k—1,1let o, be the sequence of B!V such that (ugo,, f(up)o,) € B*). We include the pair
(04,0y) in B*=1), For the set B*~1) defined in this way for all sequences o, with |o,| < k — 1,
since B¥) satisfies the completeness and the prefix conditions, so does B*-1), We claim that for
all (oy,0,) € B¥ =1 and for all s € s*, (04,0,) can be realized in T at the state s. Suppose for
the contrary that there exists a state s € s* at which (o, 0,) cannot be realized in T'. By definition
of s*, there exists 3 € 3* for which s is the unique next state in S such that T(3, u, f(ug), s) = 1.
It follows that the pair of sequences (ugo., f(ug)o,) cannot be realized in T at 3, which conflicts
with the fact that (g0, f(ug)oy) is.in B¥), Thus the set B(:~1) satisfies the property. Also by
construction, if we denote by u; and v; the first element of ¢, and o, respectively, then vy = f(u,).
Therefore, the induction hypothesis implies that R*~1(s*, f) = 1. Hence, R¥)(3*,f) =1. =

As noted in the previous section, in case our focus is only on Moore behaviors, we need
only to compute the set of compatible sets (s*, f) such that the output value of f is invariant with
the input values. The characteristic function of such a set can be given using the computation above,
where a function f is replaced by an output minterm v € BIV1.

Similarly, if we want to find an optimum behavior contained in 7', then it is sufficient to
compute the set of subsets s* C S with the property that there exists a function f such that (s*, f)
is a compatible set. Namely, denoting the characteristic function of such asetby R, : 25 — B, we
see that R,(s*) = 1if and only if there exists f : BVl — BIVIsuch that R(s*, f) = 1, where R
is the characteristic function of the compatible sets computed above. Therefore, the characteristic
function R, of the set of subsets used for the input instance of the exact method for finding an
optimum contained behavior can be easily given using the original characteristic function R.

Note that such a characteristic function R, can be computed withoutusing R. Specifically,
as an analogy to the computation of R, R; is given by the fixed point of the following iterative

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 133

computation:

B(#)=1 & VueBV:IveBV:vscs:3s€5:T(3,u,v,9)=1,
RPGE) =1 & vue BV :3(s*,v)e25x BVl: R¥*D(s*)=1and
Vi€ 3 :3Is€s*:T(3,u,v,8)=1

Intuitively, ng)(.'s"“) = 1 if and only if for any input sequence o, whose length is no
greater than &, there exists an output sequence o, such that (¢4,) can be realized in T' at every
state of 3*. Therefore, at the fixed point of the computation above, denoting by R, the resulting
function, we see that R,(3*) = 1 if and only if there exists a behavior B between the inputs U and
the outputs V' such that every pair (0, 0,) € B can be realized in T at every state of 3*. Hence,
if there exists a function f such that (3*, f) is a compatible set, then R,(3*) = 1. Conversely,
if R4(3*) = 1, then defining a function f : BVl — BIVl 5o that (u, f(u)) is a member of the
corresponding behavior B for all u, we see that (3*, f) is a compatible set. Thus the computation
above provides the characteristic function R, of the set of subsets of states that can be used in a
feasible machine for T'.

We close this section by describing how R can be recovered from R,, i.e. how one can
compute the characteristic function R of the compatible sets if R is given. Specifically, we show
that for a given s* C S and a function f : BIYl - BIVl, R(s*,) = 1if and only if

Vue BIUl:35*C S: R,(3*)=1and

(5.2)
Vs € s*:33€ 8 :T(syu, f(u),3)=1.

Theorem 5.5.3 For a given s* C S and a function f : BV — BV, R(s*, f) = 1 if and only if
(s*, f) satisfies the condition (5.2).

Proof: It is certainly true that R(s*, f) = 1 implies the condition (5.2), since the condition is
identical with the computation of the function R®) given in the beginning of this section.
Conversely, suppose that (s*, f) satisfies the condition (5.2). For a given input minterm
u € BVl consider 8* C S given in the condition above. We refer to this 8* as the next-state subset
corresponding to u. Since R,(3*) = 1, by definition, there exists a function f for which (3*, f)
is a compatible set. Let B be a behavior between U and V satisfying the containedness condition
for this pair (3*, f) as stated in the definition of compatible sets. For each pair of input and output
sequences (8y,d,) € B, consider a pair of sequences (ud, f(u)d,), and include this in a set B.
Repeat this process over all the input minterms u € BIU!, and consider the resulting set of pairs of

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 134

sequences B. The set B satisfies the prefix and completeness conditions since we processed all the
input minterms and the set 8 defined for each input minterm u € B!Vl satisfies both conditions.
Now, for each pair of input and output sequences (g, 0,) € B, denote o, = ud, and o, = f(u)é,,
where u is the first element of o,,. Then for the next-state subset §* corresponding to u, which was
used when the set B was constructed, it is possible to move in the machine T' from any of the states
of s* to some of the states of 3* under the transition u/ f(u). Furthermore, since the pair (8, &,)
is a member of a behavior B satisfying the containedness condition at §*, (8, 5,) can be realized
in T at any state of §*, Therefore (0o, 0,) can be realized in T at any state of s*. This statement is
true for all the input minterms u, and thus the set B is a behavior between U and V that satisfies the
containedness condition for (s*, f). Hence (s*, f) is a compatible set and R(s*,f)=1. =

5.6 A Heuristic Method

We present a heuristic method for the state minimization problem of pseudo non-
deterministic machines. The problem is to find a behavior with the minimum number of states
over all the behaviors contained in a pseudo non-deterministic machine. In order to apply the
heuristic for the minimization of the E-machine, we need to guarantee the implementability of the
resulting behavior. We make this guarantee by restricting to Moore behaviors. This restriction can
be made by a trivial modification (discussed later) of the algorithms employed in the heuristic. In
this section, we describe technical details of the algorithms used in the heuristic, starting with an
overview.

5.6.1 Irredundant Compatible Sets

Let T = (U,V,S,T,r) be a given pseudo non-deterministic finite state machine. The
proposed procedure keeps track of a set of subsets of states of T', and tries to decrease the cardinality
of the set while maintaining the invariance that the set of subsets can compose a feasible machine.
Althougha compatible set is defined as a subset of states along with an output function, the procedure
keeps only a set of subsets. This is because the cost function is the number of subsets, and we do
not care which output function is associated with each subset, just that one exists.

Definition: Closed Set
AsetC = {sf,...,s,}, where sf C 5, isclosed if for all s} € C, there exists.a function

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 135

f: Bl = BVl such that
Yu € BlUI : 38; eC; 1'(8:, u,f(u),s;-‘) =1,

where 7(s},u, f(u),s}) = 1 if and only if for all s; € s, there exists s; € s} such that
T(si,u, f(u),s;)=1.

Intuitively, C is closed if for each element s} € C, there exists an element that can be
treated as the next state of s} for each input. We say C is feasible if it is closed and there exists
s; € C that contains the reset state » of 7. Namely, C is feasible if a feasible machine can be
composed using the elements of C. By Theorem 5.5.1, each state of a feasible machine corresponds
to a compatible set defined in Section 5.5. Specifically, for each element s! of a feasible set C,
(¥, f) is a compatible set, where f is the function given in the definition of closed sets above.

One might wonder if the closedness can be defined without explicitly associating a function
f as above. Specifically, C is closed if for all s? € C,

Vaue BUl: 3(s3,v) e C x BV r(s},u,v,8) = 1.

In fact, this is an equivalent definition. However, we use the former since it makes it easier to restrict
our attention to Moore behaviors, as discussed later.
Among feasible sets C, we are interested in those with the property of irredundancy.

Definition: Redundant Sets
Given a feasible set C, an element s* € C is redundant if C — {s*} is also feasible.
Otherwise, s* is irredundant.

We say that a feasible set C is redundant if there exists ¢ C C such that & is also
feasible. Otherwise C is irredundant. Note that C might be redundant even if every single s* € C
is irredundant. Irredundancy of C is a necessary condition for optimum solutions of the problem.
The proposed heuristic procedure tries to introduce redundancy into a given set C by replacing each
element of C' with another, and then make the resulting set irredundant, so that the the cardinality
decreases. The subprocedure which makes C' irredundant, called IRREDUNDANT, is described in
Section 5.6.5.

To introduce redundancy into C, suppose s} € C is irredundant, i.e. C — {s}} is not
feasible. One reason for this is that s} is the unique element of C containing the reset state r. In
- case 87 is not a unique such element, the reason for the irredundancy is that there exists another

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 136

element s} € C, s} # s}, which needs sj. More specifically, there exists s such that for each
function f : BIUl - BIV| either

1. (s, f)is not a compatible set, or

2. there exists u € B!Vl for which no element in C — {s}} can be treated as the next state of s,
ie. Vs* € C — {s}}:7(s},u, f(u),s*) =0.

Therefore, we need procedures which decrease these possibilities, in order to introduce redundancy
into C. We use two procedures for this purpose, described in the following section.

5.6.2 Overview

Indesigning a heuristic procedure, we made a decision that the procedure always maintains
the feasibility of a set C' and never increases the cardinality of C. The procedure consists of
three subprocedures. Besides IRREDUNDANT, the other two, called REDUCE and EXPAND
respectively, are used to introduce redundancy into C.

REDUCE replaces each element of C by another so as to increase the number of output
functions f that can be associated with it as compatible sets. This procedure is concerned with the
first case of "needs" above. EXPAND replaces each element of C so as to increase the number
of elements s} in C that are not unique next states of any other element of C. This procedure
contributes to the second case. Specifically, REDUCE is based on the observation that if (s*, f)
is a compatible set, then any subset of s* is also compatible with f. We replace a given element
s* by its smallest subset such that the replacement of s* by the subset maintains the feasibility of
the resulting set. This increases possibly the number of functions that can be associated with this
subset. EXPAND, on the other hand, replaces an element s* by another element 8* so that the
replacement of s* by 8* causes a maximal number of elements of C' to be redundant. For efficiency,
we restrict 8* to contain s*. Since both REDUCE and EXPAND can make C' redundant, we invoke
IRREDUNDANT whenever REDUCE or EXPAND is applied.

In summary, REDUCE increases the number of functions associated with each element,
while EXPAND increases the number of possible next states. The proposed procedure takes as
input the transition relation of a pseudo non-deterministic finite state machine T'. After a feasible
set C' is found as an initial set, the procedure iteratively applies EXPAND and REDUCE, invoking
IRREDUNDANT after each procedure. The basic paradigm is similar to ESPRESSO [8] except
that IRREDUNDANT is called even after REDUCE. It is also similar to the procedure proposed

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 137

in [1] for the state minimization of incompletely specified deterministic machines, except that the
detailed techniques of the proposed procedures are completely different.

5.6.3 REDUCE

REDUCE takes as input a feasible set C and processes one element of C at a time replacing
it by its smallest subset, while maintaining feasibility.

Suppose s* € C is being processed. Denote the characteristic function of the set C — {s*}
by C1 : 25 — B. Consider a function L : 25 — B defined for the set of subsets of the states of T
such that L(8") = 1ifand only if 8 C s* and C — {s*} U {§*} is closed. Specifically, for §* C s*,
L(8*) = 1if and only if the following formula is satisfied.

Vs; CS: Ci(s])=1lors} =8
=>3feF: VueBV:33C8: Ci(sf)=10rs = 3*
and

‘r(s;f,u, f(u),s3)=1

We represent L using a BDD, where a single Boolean variable is assigned for each state of T, i.e.
a minterm of those Boolean variables corresponds to a subset of states and a state is in the subset
if and only if the corresponding variable is 1 in the minterm. Then a smallest subset of s* whose
replacement preserves the closedness of the resulting set is given by a minterm 3* with the minimum
number of 1’s such that L(8*) = 1. It is known that such a minterm is given by a shortest path
from the root of the BDD representing L to a terminal node with a label 1 in the BDD [32], where
a weight of 1 (a unit weight) is assigned to every edge with a label 1 while the edges with label 0
have no weight. A shortest path of a BDD can be computed in linear time in the number of nodes
of the BDD.

Therefore, the REDUCE procedure first sorts the elements of C, and for each element
s*, computes the function L. We actually restrict the domain of L to the states that are originally
contained in s* since our interests are in the subsets of s* and the rest of the states are never included.
If s* does not contain the reset state r of 7', then it simply computes 3* with the minimum cardinality
such that L(8*) = 1, and replaces s* by 8*. In case s* contains the reset state = and it is the last
element that can contain r, i.e. all the other elements of C containing r have been already processed
and none of the resulting elements contains r, then we restrict L so that all the members of L contain
7, and then find one with the minimum cardinality among them to replace s*. It is guaranteed that

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 138

the resulting set is feasible. The ordering of the elements of C currently used is decreasing order of
the cardinality, i.e. we reduce the largest element first.

Note that the smallest subset 8* for s* is computed with respect to the rest of the elements
available in C at that time. Therefore, if another element of C is also processed, then we may be
able to further replace 3* by an even smaller subset. For this reason, REDUCE has an option to
iterate the replacement procedure over all the elements until no change in C occurs.

5.64 EXPAND

EXPAND also processes one element s* € C at a time. It replaces s* by 8* 2 s* so that
a maximal number of elements can be eliminated from C while feasibility is maintained.

Suppose that for given s*, we compute 8* 2 s* such that for some s} in C with s* # s,
C — {s*,s'} U {8} is feasible. Consider how the relationship among the elements of C' will be
influenced if s* is replaced by 8*. Recall that s} needs s} in C if for every function f such that
(%, f) is a compatible set, there exists u € BIUl for which s is the unique element in C that can

be treated as the next state of s7. Then the following might happen if s* is replaced by 8*.
(a) There exist s and s} in C — {s*} such that s} needs s} in C but notin C ~ {s*} U {8*}.
(b) There exists s; € C —{s*} suchthat s* does notneed s}, in C but 8* needs s} in C' — {s*}U{5*}.

The case (a) happens since 8* contains more states than s*, and we might be able to associate a new
output function f with s} for which sj, is not the unique next state of s;. The case (b) happens since
by expanding s*, it might be no longer possible to associate some of the output functions with 3*,
which can be originally associated with s*. Furthermore, if we eliminate s} after the replacement,
then the following might happen.

(c) There exist s; and s} in C — {s",s]} such that s} does not need s} in C but it does in
C - {s*,st}u{s}.

This happens since by removing s}, we might not be able to associate some output functions with
s}, even though they can be originally associated.

We regard the case (a) above as a positive influence while (b) and (c) are negative.
However, we see that the case (c) does not happen if 3* contains s}, since then every function that
can be associated with s} in C can be associated in C' — {s*,sf} U {§*}. Also, if $* contains s,

then the set of states contained in some elements of C' — {s*, s?} U {8*} is identical with those

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 139

covered in C' — {s*} U {3*}. We need to keep track of such states during the procedure, and with this
assumption, we can simply add the states of 3* to those covered in C — {s*} which are computed
only once at the beginning of the procedure for s*. Due to this efficiency as well as the influence
for the case (c) above, we make the restriction, when 8* is computed to eliminate s* and s}, that
8* also contains s}. Note that this restriction might increase the possibility of the case (b), but the
current procedure does not take this into account.

Therefore, for each s} € C — {s*}, we compute, if it exists, a smallest subset 8*(3) such
that (1) 8*(¢) contains both s* and s} and (2) C — {s*, s} U {8*} is closed. We choose a smallest
such subset since we want to allow freedom of the expansion of s* to eliminate other elements of
C. To compute 3*(¢), we first compute a function H; : 25 — B defined for the set of subsets of
states of 7" such that H;(5*) = 1 if and only if 3* contains both s* and s} and C — {s*, s’} U {3*}
is closed. Specifically, for 3* such that 3* 2 s* and 3* D s}, H;(3*) = 1if and only if

AfeF: VueBUl 31 CS: Ci(sf)=1lors) =3
and
(8", u, f(u),sp) =1,

where C is the characteristic function of C' — {s*}. Then by an argument similar to REDUCE,
we see that 8*(2) is given by a shortest path of the BDD for H;. Note that, unlike REDUCE, the
function H; may be empty, in which case there is no such §*(¢). In the actual computation, we
restrict the domain of H; to the set of states that are not included in either s* or s} since the rest of
the states must be included in §*(z).

If $*(7) is obtained, we compute a set e; of elements of C — {s*} that are contained in
8*(¢). These are redundant elements, and can be eliminated. Note that there might exist elements
in C that can be eliminated even though they are not contained in §*(¢), but we ignore them due to
the computational efficiency. Once 8*(z)’s are computed for all s}, we choose 3" as the one with
the largest cardinality over e;’s. Then s* is replaced by 8”, and all the elements contained in 8" are
removed. We iterate this procedure, until no element can be removed by further expanding s*.

Suppose the procedure above has been applied and s* has been replaced by 8*. At this
point, although we know that no element of C can be further removed, there still might exist a
superset §* D $* such that the replacement of 3* by §* preserves the feasibility of the resulting set.
In this case, we compute a largest such 3* and replace 8*. By doing this, we hope that the next time
REDUCE is invoked, the element may be replaced by one different from s*, by which a different
~ portion of the solution space may be searched. Such 3* is obtained first by computing the function

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 140

H with the property that H(3*) = 1if and only if 3 D 3* and C — {8*} U {3*} is closed, and then
find a longest path of the BDD for H. The function H can be computed in a way similar to that for
H; above.

As with REDUCE, it might be possible to further expand s* by processing another element
of C, and thus EXPAND has an option to iteratively apply the procedure above over all the elements,
until none can be expanded further. Currently, EXPAND sorts the elements of C in increasing order
of cardinality, before processing each element.

5.6.5 IRREDUNDANT

Given a feasible set C, the objective of RREDUNDANT is to find a subset C' of C such
that no proper subset of C is feasible.

One might think that the goal can be achieved by checking the irredundancy for one
element of C at a time and by successively removing redundant ones. Although the method is
not expensive, there is no guarantee that an irredundant set is obtained at the end, since C' might
be redundant even though every single element of C is irredundant. In fact, according to our
experiments, this-approach is likely to get stuck at a bad solution at an early stage, unless an
ordering to process the elements of C is carefully determined, which is very difficult in general.

The method we propose is an iterative computation of a feasible set starting from a
seed set of elements of C. Let C*) be a subset of C. Suppose, without loss of generality, that
C'(*) contains an element of C which contains the reset state 7 of T. If C(¥) is closed, then we
terminate the iteration. Otherwise, we compute a new set C (k+1) by adding the minimum number
of elements of C to C*) so that for each s} € C(¥), there exists a function f : BVl — BIVI
such that for all u € BIVl, there exists 57 € C(*+1) that can be treated as the next state of s, i..
(s}, u, f(u),s}) = 1. '

Let s? € C(¥) be an element that does not satisfy the condition above. We introduce two
sets of constraints for each such s;. First, let 7, be a set of functions f such that for all u, there
exists s} in C that can be treated as a next state, i.e. 7(s}, u, f(u), s}) = 1. Associating a Boolean

variable w(s}, f) for each f € F;, we introduce a constraint (Z w(s;, f)). This constraint
FEF,»
implies that at least one such function f must be chosen to associate with s?. Secondly, for each

function f € F, let I(s}, f) be the set of minterms u € B!V for which the next state of st does
not exist in C(¥) under f. Namely, u € I(s?,) if and only if there exists no 85 € C®) such that
7(s},u, f(u), s7) = 1. Then for each u € I(s}, f), we compute the set D(s?, f, u) of elements

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 141

of C that can be treated as the next states of s} for u and f, i.e. s} € C is in the set if and only

if 7(s}, u, f(u), s}) = 1. Then we introduce a constraint (w(s}, f) = Y. (s})), where
s3€D(s},f,1)
7(s}) is a Boolean variable associated with s}. The constraint means that if we choose the function

[to associate with s, then at least one of the elements of C' that can be treated as the next state of
s} for a given input u must be included to form C**+1). Once these constraints are generated over
all s7, we find a minimum-weight assignment for the Boolean variables w and v which satisfies all
the constraints, where a unit weight is assigned to each variable (s}) while a variable w(s}, f) has
no weight. This problem is known as a covering problem, and our procedure finds a solution using
a method proposed in [33].

For the initial set of the computation above, we choose C®) C C with the minimum
cardinality such that there exists an element in C®) which contains the reset state =, and for each
st € C0),if s} needs s} € C, then s% is in C(©) as well. Note that there is no proper subset of C(©)
that is irredundant.

Unfortunately, this method does not guarantee that the resulting set is irredundant because,
even though we add a minimum number of elements at each iteration, there might exist s} and s}
in C®) such that s} needs s} in C™*) but not in C(¥+1),

5.7 Experimental Results

The heuristic procedure proposed in the previous section has been implemented. As
stated earlier, we use a BDD to represent the transition relation of a given pseudo non-deterministic
machine 7", where a single Boolean variable is used for each state. The implementation is restricted
so that it only finds a behavior that can be represented by a Moore machine [38], i.e. the output
function of the machine depends only on the present states of the machine and not on the inputs.
There are two reasons for this restriction. The first is that we need to guarantee that the resulting
behavior is implementable when the heuristic is applied for minimizing E-machines. Since the
behavior is a Moore behavior, it is always possible to implement it so that there is no combinational
loop in the resulting implementation no matter how M, is implemented. Secondly, with this
restriction, an output function defined at each state simply becomes a minterm of B!, and thus a
compatible set is defined as a subset of states of T' along with a minterm of B!V!. In other words,
all the functions f used in the procedure can be represented by single minterms of BIVI, Hence, the
characteristic functions used in the procedure are all represented by BDD’s. |

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 142

We conducted experiments using the implementation for optimizing systems of interacting
finite state machines. The objective of the experiments was to see the effectiveness of taking into
account information derived from other interacting components. We used the same examples as in
the previous chapter for computing E-machines. Namely, in Figure 5.1, we chose two finite state
machines, one for M; and the other for M5. These are completely specified deterministic machines.
We minimized M, in the number of states using an exact method for deterministic machines, similar
to the one proposed in [44]. Thus, M; was originally made optimum in terms of the number of
states without taking into account the interaction with M5. Therefore, the number of states of M,
is the optimum number of states required to represent the behavior given by M;. We then made an
arbitrary connection between M) and M, and confirmed that M is implementable for M,. Then
we computed the E-machine T for M;. Recall that the E-machine is pseudo non-deterministic
with the same inputs and outputs as M and captures the complete set of permissible behaviors, i.e.
those that can be implemented at the position of M; while preserving the total product machine
behavior of M) and M;. Note that the number of states of the E-machine does not reflect any kind
of optimality; it merely provides an upper bound on the minimized machines. Finally we invoked
our heuristic procedure to find a feasible machine M. At the end of the procedure, we verified the
correctness of the solution. Note that due to our restriction of the implementation stated above, M|
is a Moore machine. We then compared the number of states of M; and M]. The difference reflects
the effectiveness of taking into account the interaction between M; and M; in further optimizing
M, since M, was initially optimum.

In order to see better the effectiveness of the proposed method, i.e. the optimization of M,
using the E-machine with the proposed heuristic, we computed the number of states of M reachable
when interacting with Mj. Specifically, after we minimized the number of states of M, by itself,
we computed the set of reachable states of the product machine M; x Mj;, where each state of the
_product machine corresponds to a pair of states of M; and M,. We then computed the set of states of
M, which appear in at least one reachable state of the product machine. This is another technique of
optimizing M taking into account some of the interaction with M, although it is less powerful than
the E-machine method. For example, the result depends on the structure of the initially provided
machine M; whereas the E-machine captures the complete set of permissible behaviors. We also
implemented an exact procedure for finding a minimum-state Moore behavior contained in the E-
machine, which is described in Section 5.4.3. As stated in Section 5.4.3, the problem is reduced to
a class of 0-1 integer linear programming problems, and the current implementation solves it using
a method proposed in [28]. We applied the exact procedure for the same examples and compared

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 143

M, M, Time

In|Out| S ||[In|Out| S || E-machine | M{ || (minimization) || M,
mc9 2 1| 4 3] 5| 4 4] 1 0.2 (0.1) 1
tm02 4] 420 5] 620 10 1 1.4 (0.5) 2 |
tm32 31 4f{19f 6] s5[13 9ff 2 2.2 (0.5) 2 ||
mt52 5 6|22 71 77 4 of 2 2.4 (2.0 3|
tmO1 41 420 5] 620 10 1 46(1.7) 2 ||
"e69 2 11 4 5 8| 8 8] 1 470.2) 1
| pmit1 | 8 8|26[10] 1024 of 1 50(3.1) 7
[pmi2 || 8 8|26 10| 1024 71 3 5.2(0.9) 5
edbpl || 5 5124 6] 914 11 1 123 (2.4) 7
L4 8 6|20 11] 14114 6 1 12707 | 14
mt51 5 6(22] 7 71 4 16 4 143 (74) 6 |
tm31 3] a4]19]] 6] 513 9l 1 14604) || 3
am9 6 6|25 7 8| 4 13 5 15.6 (12.5) 9
pmo3 || 2| 4|11 6] 414 15 1 163 (2.1) 8
L3 2 376 71 3119 17 2 17.0 8.5) 9
edat2 || 5 421 6] 914 14 4 31.7(4.3) 4
ebtm 41 4af20] 5 6] 8 21| 3 41.3 (30.8) 4
pm33 || 6 6|25 7| 8| 4 21ﬁ 5 455(35.3) [11
pms50 || 2] 4]11] 6| 414 2 3 47.0(9.7) 6
s3p1 5 s(24 7] 7]13 38 6 140.3 (97.0) 7
pmdl || 2| 4|11l 6] 414 33 5 162.5 (30.5) 8
[pm31 | 6 6|25 7 8| 4 22| 6| 187.0(166.4) 9

M, M, Heuristic Exact

In|{Out{ S || In|Out| S || E-machine || S | Time || S | Time

tm32 || 3 a9 6] 513 921 os]2]3921

m52 || 5 622 71 71| 4 9ff2] 201 2] 1649

pmi2 || 8 8|26 10] 1024 713 093] 741

L3 2 3176 71 3[19 1712 85 2] 189

Table 5.1: Experimental Results

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'’S 144

the resulting number of states with the one obtained by the heuristic procedure.

Table 5.1 shows the experimental results. Each row of the table shows the number of
inputs In and the number of outputs Out for M; and M, as well as the number of states S of M,
M, the E-machine, and M/, the minimized machine using the heuristic. The number of inputs and
outputs of the E-machine and Mj are the same as M. Time is the CPU time in seconds used on a
DECstation 5000/240 for the entire optimization in each experiment, including the computation of
the E-machine as well as the minimization, where the number in a parenthesis is the time required
for minimizing the E-machine by the proposed heuristic procedure. The column Mj, represents
the number of states of M) reachable in the interaction with M, which is computed as described
above. The small table attached at the bottom shows a comparison between the heuristic procedure
and the exact procedure for finding a minimum-state Moore behavior contained in the E-machine.
We applied the exact procedure only if a behavior found by the heuristic procedure had more
than one state, since a behavior with a single state is already known to be optimum. The current
implementation of the exact procedure was able to complete the computation only for four examples
as shown in the table. The resulting number of states is shown in the column S, while the CPU time
(seconds) is given in the column Time. The CPU time is the one required for the minimization
only, and does not include the time for cbmputing the corresponding E-machine.

Although the examples are rather small, we see that the number of states of the minimized
machine M| is generally much smaller than that of the original machine M. The same observation
can be made in the comparison between M) and M;, while further optimization can be achieved by
using E-machines. For those examples where the exact procedure completed the computation, the
heuristic always reproduced the optimum solutions in much less time. Considering the fact that M,
was made optimum by itself in the beginning of the experiments, we see that the results demonstrate
the effectiveness of accounting for the interaction between M and M, in further optimizing M;.

We conducted another type of experiments to see how much we restrict ourselves by
focusing only on Moore behaviors. Recall that a machine M; does not have to be a Moore
machine as long as it is possible to implement both M; and M, without introducing a combinational
loop. This is always true if M is a Moore machine. In this case, any behavior contained in the
corresponding E-machine is implementable, and thus is a permissible behavior for M. Then the
question is how much we lose by finding only a Moore behavior. To answer this question, we
implemented an exact procedure for finding a minimum-state behavior contained in the E-machine,
which is described in Section 5.4.1. We then applied this procedure as well as the exact procedure
for finding a2 minimum-state Moore behavior contained in the E-machine for examples in which

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 145

M, M,

In | Out | S |[In | Out | S || E-machine || Contain Moorel
ex1 2| 320 4] 4720 22 3“ 3 |
ax4 [S| 6[20] 8| 8|26 11 1 « 1|
ax5 || 5] 6] 8] 8] 8]26 26 2 2
ax6 | 6] S5[{13] 8] 8[26 22 1| 1 H
ax7 || 3] 5] 4] 6] 625 20 2 2 |
fext0]] 3] 419 5] 622 13 1" 2]|
[bx7 [| 3] 5] 4] 6] 6]2s 23 2 2
lex12]| 3] 4f19] 6] 414 13 1“ 1

Table 5.2: Comparison between Optimum Moore Behaviors and Optimum Contained Behaviors

M, is a Moore machine. Due to the computational complexity, there were only a small number of
examples for which both of the exact methods were able to complete the computations. The results
are shown in Table 5.2. The column Contain represents the number of states of a minimum-state
behavior contained in the E-machine, while the column Moore shows the number of states of a
mihimum-stafe Moore behavior. The number of states of the E-machine is also shown for each
example, where the number of inputs and outputs are the same as M;. The minimum number of
states is small for each of these examples, and therefore we cannot make a general statement on
the limitation of finding Moore behaviors. However, as far as these examples are concemned, the
number of states of an optimum Moore behavior is equal to the number of states of an optimum

contained behavior, except for one example.

5.8 Concluding Remarks

We considered thé problem of minimizing E-machines. The E-machine is a non-
deterministic finite state machine, computed for a machine M, in Figure 5.1, with the property
that the set of implementable behaviors in the E-machine is precisely the set of permissible be-
haviors for My, i.e. those that can be implemented at M; to meet the specification of the entire
system. Using the number of states of a finite state machine as the cost function, we addressed the
problem of finding an optimum permissible behavior in the E-machine, i.e. a behavior represented
by a completely specified finite state machine with the minimum number of states over all the

implementable behaviors in the E-machine.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 146

This problem is analogous to the state minimization problem of finite state machines.
Furthermore, a result given in the previous chapter shows that the E-machine is a special type of
non-deterministic machine, called a pseudo non-deterministic machine. Hence, we first presented
a theoretical analysis on the state minimization problem of pseudo non-deterministic finite state
machines. We showed that the state minimization problem of general non-deterministic machines
can be reduced to that for pseudo non-deterministic machines. Also, we presented how the basic
concepts developed in the literature for the state minimization of deterministic machines can be
generalized for this problem, in which we showed that the property of pseudo non-determinism
can be effectively used to establish a correspondence between the original machine and the set of
contained behaviors.

Based on this analysis, we presented an exact method for the state minimization of pseudo
non-deterministic machines. We also presented an exact method for our original problem, i.e. the
minimization of the E-machine. The exact method requires us to check the implementability of
behaviors using dependency graphs introduced in the previous section. To avoid this complication,
we presented an exact method for finding an optimum Moore behavior given in the E-machine.

We also presented a heuristic procedure for the state minimization problem of pseudo non-
deterministic machines. The procedure keeps track of a feasible set of subsets of the states of a given
pseudo non-deterministic machine, and tries to decrease its cardinality by iteratively introducing or
removing redundancy in the set. The proposed procedure has been implemented with the restriction
that the resulting machine is a Moore machine, and experiments were conducted. The results
demonstrate the effectiveness of taking into account information derived from other components in
optimizing systems of interacting finite state machines.

In the future, we want to remove the restriction of Moore behaviors, so that we can
directly find a permissible behavior, rather than just a Moore behavior. Recall that the set of
permissible behaviors is given by finding implementable behaviors among the behaviors contained
inthe E-machine. Currently, we need to explicitly use a dependency graph defined in Section 4.7 for
identifying implementability. Since a dependency graph is defined with respect to a given particular
behavior for M;, we will need to construct a number of dependency graphs in order to find a set of
implementable behaviors. If the implementability can be identified without explicitly formulating
dependency graphs, then the proposed heuristic procedure can be extended for finding permissible
behaviors.

Another problem to be addressed in the future is the state encoding of non-deterministic
finite state machines. The proposed heuristic procedure keeps track of a set C of subsets of states

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM’S 147

of a given pseudo non-deterministic machine T', and maintains the feasibility of C, i.e. a feasible
machines can be composed using the elements of C. Now, note that although a feasible machine
uniquely defines a behavior contained in T, a feasible machine defined by the set C may not be
unique. In other words, it is possible in general to define a set of feasible machines for a given set
C, for which there is a one-to-one correspondence between an element of C' and a subset of states
of T associated with each state of a feasible machine. Therefore the set C obtained by the heuristic
defines a set of behaviors contained in 7. Such a set of behaviors is given by the set of behaviors
contained in a finite state machine T¢ such that each state of T corresponds to an element of C and
its transition relation is given by the relation 7 defined in Section 5.6.1. Namely, for a pair of states
of T¢ corresponding to elements s} and 87 of C respectively, T¢ has a transition from s} to $; under
an input u and an output v if and only if 7(s}, u, v, s7) = 1,ie. forall s; € s}, there exists s; € s;
such that T'(s;, u, v, s;) = 1. The machine T¢ is non-deterministic in general2. Then the question
is which behavior should be chosen, in order to achieve the best implementation. For this question,
one needs to address the encodings of states of T¢, i.e. how to assign a binary representation for
each state so that a least-cost implementation of a behavior contained in T¢ is optimum among all
possible implementations of all the contained behaviors over all the encodings of the states.

2We conjecture that if C is irredundant, there exists a pseudo non-deterministic machine with |C| states which contains
the same set of behaviors with Tc.’ ’

148

Chapter 6

Conclusions

6.1 Summary of Thesis

This thesis addressed the problem of optimizing a synchronous digital system of inter-
acting components. Specifically, we considered how to compute the set of behaviors that can be
realized at a particular component of a system while preserving the behavior of the entire system.
In addition we addregéed ﬁow to find an optimum behavior in the set.

In Chapter 2 and Chapter 3, we considered combinational logic behaviors. The problem
addressed in Chapter 2 is how to compute a set of Boolean functions that can be realized at a
given component of the system, where the component may have multiple inputs and outputs. Each
such function is called a permissible Boolean function of the component. We showed a condition
under which a set of Boolean functions defined over the same inputs and outputs can be represented
by a relation between the input and output spaces. We demonstrated that the complete set of
permissible Boolean functions can be represented by a single Boolean relation, first shown by
Brayton and Somenzi in [11]. Also, the problem of finding compatible sets of permissible functions
was addressed. A set of compatible sets of permissible functions, one set for each component of the
system, has the property that an arbitrary combination of functions, one from each of the compatible
sets, results in an allowed behavior for the entire system. We considered how to compute a set of
maximally compatible sets of permissible functions over the components, where compatible sets are
maximal if there is no permissible function that can be newly added to any one of the sets without
destroying the property of compatibility. We showed that each of the maximally compatible sets
can also be represented by a single relation, and presented a procedure for computing such sets.

The problem of finding an optimum function realized at a given component was addressed

CHAPTER 6. CONCLUSIONS 149

in Chapter 3. The problem is reduced to the minimization of a Boolean relation, and we proposed
a heuristic for the problem with the cost function being the number of product terms required in a
sum-of-products expression representing a function.

Chapter 4 and Chapter 5 is an analogous investigation for sequential logic behaviors. We
considered a system in which the behavior of each component is modeled by a finite state machine
and all the components are synchronizing. The definition of a permissible sequential behavior
is identical to the combinational case, except that an additional constraint on implementability is
required. A sequential behavior is said to be implementable if it is possible to implement the
behavior so that no combinational loop is created in the entire system. This additional constraint
was necessary because of our assumption that combinational loops, i.e. loops with no flip-flops or
latches, typically do not appear in circuit implementations of practical synchronous digital systems.
Furthermore, the constraint does not arise for the combinational case since the connections defined
by the components of the system do not introduce a cycle for combinational behaviors. We presented,
in Chapter 4, an analogous conclusion that the complete set of permissible sequential behaviors at
a given component can be represented by a single non-deterministic finite state machine, which we
call the E-machine. We proposed a procedure for computing the E-machine. We discussed how to
identify implementable behaviors, and presented a necessary and sufficient condition under which
a given sequential behavior is implementable.

The minimization of the E-machine was considered in Chapter 5, where the cost function
was the number of states of a finite state machine required to represent a behavior. We showed that
the E-machineisa special type of non-deterministic finite state machine, a pseudo non-deterministic
machine. This property was effectively used for solving the problem. We proposed both exact and
heuristic methods.

6.2 Future Directions

In the future, further investigation will be necessary to see how this work can be made
practical. We describe our view for each type of behavior.

For combinational behaviors, intensive research has been done on the problem addressed in
Chapter 2 for the case where each component has exactly one output [9]. As mentioned in Chapter 2,
our experimental results do not provide significant effectiveness of the method for multiple outputs
over the existing methods for single outputs. However, we think it is still too early to conclude
that for practical applications, it is sufficient to only use single output methods. The experimental

CHAPTER 6. CONCLUSIONS 150

results depend on how multi-output components are composed. Our experiments started with
a system of single-output components, and clustered those to obtain multi-output components.
Alternatively, one mightuse the proposed optimization procedure in conjunction with a factorization
or a decomposition over multi-output components. A factorization or a decompositionis a technique
used for modifying the structure of a system by changing its connections or introducing new
components. In state-of-the-art optimization techniques developed for single-output combinational
logic components, it is common that such techniques and optimizations for individual components
are iteratively applied. Therefore, to see the effectiveness of optimization techniques for multi-
output components, it will be necessary to consider how a factorization or a decomposition can be
achieved for such components, and to use a procedure for optimizing individual components, €.g.
the one proposed in Chapter 2, together with those global optimization procedures.

For sequential behaviors, on the other hand, the decomposition techniques for interacting
finite state machines is still little explored, and such methods are not used in practice. However,
often a hardware system is described as a set of interacting finite state machines, and thus it is
important to identify the flexibility allowed for optimization in such a system by addressing the |
problems as done in Chapters 4 and S. For the procedures discussed in this thesis, we still need
further research to make them practical. One bottleneck for the current procedures is the time to
compute the E-machine. One approach is to investigate a more efficient representation of a finite
state machine. Another way, more directly related to the procedure of computing the E-machine,
is to approximate the computation, i.e. compute a "subset" of permissible behaviors. An important
question here is what is a good subset of permissible behaviors and how to find it. One way
of computing a subset of permissible behaviors is to perform the same computation proposed in
Chapter 4 for the E-machine, but to cease the iteration as soon as the computational time reaches
a user-specified upper bound. Since the E-machine is constructed gradually starting from its reset
state, all the implementable behaviors contained in the resulting machine are permissible, and thus
the machine provides a subset of permissible behaviors. However, we do not know how good this
subset is.

Altemnately, we can abstract away many components of the surrounding components and
then apply our procedures to get a conservative approximation. As an analogy to the combinational
case, we can also define compatible sets of permissible sequential behaviors over all the components
of the system. An interesting theoretical question is whether an analogy to the combinational case
holds, i.e. if a maximally compatible set of permissible sequential behaviors can be represented by
a single non-deterministic finite state machine. If this is the case, one could compute such a set for

CHAPTER 6. CONCLUSIONS 151

each component by modeling the rest of the components using a single finite state machine M,. In
this case, unlike the context considered in Chapter 4, the machine M, would be a non-deterministic
finite state machine.

Besides technical improvements on the efficiency of the proposed procedures, we also need
to identify how effective it is in practice to take into account the interaction among components in the
optimization. The example set used in our experiments were not obtained during a practical design
process, and thus we have yet to see the practical effectiveness. As with the case of combinational
logic behaviors, in order to discuss the practical effectiveness of the proposed procedures, it will be
necessary to address how to perform a factorization or decomposition for a system of finite state
machines, and to optimize the system by iteratively applying such global optimization techniques
together with the proposed procedures for optimizing individual components.

152

Bibliography

[1] M. Avedillo, J. Quintana, and L. Huertas. Efficient State Reduction Methods for PLA-based
Sequential Circuits. /EE Proceedings-E, 139(6):491-499, November 1992,

[2] T. Bartee, I. Lebow, and I. Reed. Theory and Design of Digital Machines. McGraw-Hill Book
Company, Inc., 1962.

[3] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. Jacoby, C. Morrison, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang. Multi-level Logic Minimization using Implicit Don’t Cares. IEEE
Transactions on Computer-Aided Design, CAD-7, June 1988.

[4] A. Booth and K. Booth. Automatic Digital Calculators. Butterworth Scientific Publications,
1953.

[5] E. Braun. Digital Computer Design - Logic, Circuitry, and Synthesis. Academic Press Inc.,
1963.

[6] R. K. Brayton. New Directions in Logic Synthesis. In Proceedings of the Synthesis and
Simulation Meeting and International Interchange, Kyoto, Japan, 1990.

[7]1 R. K. Brayton. private communication, 1994.

[8] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Mini-
mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984,

[9] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli. Multilevel Logic Synthesis.
Proceedings of the IEEE, Vol. 78(No. 2), February 1990.

[10] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: Multiple-Level
Logic Optimization System. IEEE Transaction on Computer Aided Design of Integrated
Circuits and Systems, Vol. CAD-6(No. 6):1062 — 1081, November 1987.

BIBLIOGRAPHY 153

[11] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic

Networks. In International Conference on Very Large Scale Integration, Munich, August
1989.

[12] R.E.Bryant. Graph Based Algorithms for Boolean Function Manipulation. /EEE Transactions
on Computers, Vol. C-35(No. 8):677-691, August 1986.

(13] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on
Symbolic Execution. In Proceedings of the Workshop on Automatic Verification Methods for
Finite State Systems, Grenoble, France, 1989.

[14] M. Damiani. Nondeterministic Finite-State Machines and Sequential Don’t Cares. In European
Conference on Design Automation, 1994.

[15] M. Damiani and G. De Micheli. Derivation of Don’t Care Conditions by Perturbation Anal-
ysis of Combinational Multiple-Level Logic Circuits. In International Workshop on Logic
Synthesis, 1991.

[16] J. Darringer, W. Joyner, L..Berman, and L. Trevillyan. Logic Synthesis through Local Trans-
formations. /BM J. Res. Develop., pages 272280, July 1981.

[17] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal State Assignment for
Finite State Machines. IEEE Transaction on Computer Aided Design of Integrated Circuits
and Systems, CAD-4:269 — 285, July 1985.

[18] S. Devadas. Approaches to Multi-Level Sequential Logic Synthesis. In 26th ACM/IEEE
Design Automation Conference, 1989.

[19] IJ. Eckert, Jr. Types of Circuits - General. In Theory and Techniques for Design of Electronic
Computers. Lectures given at the Moore School, 8 July 1946-31 August 1946. University
of Pennsylvania, 1947. Also in The Moore School Lectures, Vol. 9 in the Charles Babbage
Institute Reprint Series for the History of Computing. The MIT Press, 1985.

[20] M. Fuyjita. Methods for Automatic Design Error Correction in Sequential Circuits. In The
European Conference on Design Automation with The European Event in ASIC Design,
February 1993.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory and
NP-Completeness. W.H. Freeman And Company, 1979.

BIBLIOGRAPHY 154

[22] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic Minimization of Boolean Relations using
Testing Techniques. In IEEE International Conference on Computer Design, Cambridge,
September 1990.

[23] S. Ginsburg. Synthesis of Minimal-State Machines. /RE Transactions on Electronic Comput-
ers, pages 441-419, December 1959.

[24] A. Grasselli and F Luccio. A Method for Minimizing the Number of Internal States in
Incompletely Specified Sequential Networks. /EEE Transactions on Electronic Computers,
pages 350-359, June 1965.

[25] S.J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A Heuristic Approach for Logic Minimiza-
tion. IBM J. Res. Develop., pages 443-458, September 1974,

[26] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Company, 1979.

[27] D. Huffman. The Synthesis of Sequential Switching Circuits. Journal of Franklin Institute,
Vol. 257:161-190, 275-303, 1954.- Also in E. Moore, editor, Sequential Machines selected
papers. Addison-Wesley Publishing Company, 1964.

[28] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Fully Implicit Algorithm
for Exact State Minimization. In 31st ACM/IEEE Design Automation Conference, 1994.

[29] J. Kim and M. Newbom. The Simplification of Sequential Machines with Input Restrictions.
IEEE Transactions on Computers, C-21:1440-1443, December 1972,

[30] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York,
1970.

[31] L.Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization
of Multi-level Logic with Multiple-valued Inputs. In /EEE International Conference on
Computer-Aided Design, 1990.

[32] B.LinandF Somenzi. Minimization of Symbolic Relations. In /EEE International Conference
on Computer-Aided Design, November 1990,

[33] H. Mathony. Universal Logic Design Algorithm and its Application to the Synthesis of
Two-level Switching Circuits. IEE Proceedings, 136 Pt. E(3), May 1989.

BIBLIOGRAPHY 155

[34] E. J. McCluskey Jr. Minimization of Boolean Functions. Bell System Technical Journal, Vol.
35:1417-1444, November 1956.

[35] G.Mealy. A Method for Synthesizing Sequential Circuits. Technical Report J. 34, Bell System
Tech., 1955.

[36] Merrian Webster’s Collegiate Dictionary. Merrian-Webster, Inc., tenth edition, 1993.

[37] J. Millman. Microelectronics: Digital and Analog Circuits and Systems. McGraw-Hill Book
Company, 1979.

[38] E. Moore. Gedanken-experiments on Sequential Machines. In C. Shannon and J. McCarthy,
editors, Automata Studies. Princeton University Press, 1956.

[39] S. Muroga, Y. Kambayashi, C. H. Lai, and J. N. Culliney. The Transduction Method - Design
of Logic Networks based on Permissible Functions. /EEE Transactions of Computers, 1989.

[40] M. Paull and S. Unger. Minimizing the Number of States in Incompletely Specified Sequential
Switching Functions. IRE Transactions on Electronic Computers, pages 356-367, September
1959. |

[41] R.Puri and J. Gu. An Efficient Algorithm to Search for Minimal Closed Covers in Sequential
Machines. /EEE Transactions on Computer-Aided Design, pages 737-745, June 1993.

[42] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes.
SIAM Journal of Control and Optimization, Vol. 25(No. 1):206-230, January 1987.

[43] J. Rho, G. D. Hachtel, and F. Somenzi. Don’t Care Sequences and the Optimization of
Interacting Finite State Machines. In International Workshop on Logic Synthesis, 1991.

[44] J. Rho, G. D. Hachtel, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the
Minimization of Incompletely Specified State Machines. In European Conference on Design
Automation, 1991,

[45] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for PLA Opti-
mization. /EEE Transaction on Computer Aided Design of Integrated Circuits and Systems,
Vol. CAD-6(No. 6):727 — 750, September 1987.

[46] T. Sasao. An Application of Multiple-Valued Logic to a Design of Programmable Logic
Arrays. In International Symposium on Multiple Valued Logic, 1978.

BIBLIOGRAPHY 156

[47] T. Sasao. Input Variable Assignment and Output Phase Optimization of PLA’s. In IEEE

Transaction on Computers, October 1984.

[48] H. Savoj. Don’t Cares in Multi-Level Network Optimization. PhD thesis, U.C. Berkeley,
March 1992,

[49] H. Savoj and R. K. Brayton. The Use of Observability and External Don’t Cares for the
Simplification of Multi-Level Networks. In 27th ACM/IEEE Design Automation Conference,
1990.

[50] H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don’t Cares for Network Optimiza-
tion. In JIEEE International Conference on Computer-Aided Design, 1991.

[51] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Sequential Circuit Design Using Synthesis and Optimization. In /EEE Interna-

tional Conference on Computer Design, 1992.

[52] T.R. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. K. Brayton. Heuristic Minimization
of BDDs Using Don'’t Cares. In 3/st ACM/IEEE Design Automation Conference, June 1994,

[53] E Somenzi and R. K. Brayton. An Exact Minimizer for Boolean Relations. In /EEE Interna-
tional Conference on Computer-Aided Design, November 1989.

[54] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function
Manipulation. In IEEE International Conference on Computer-Aided Design, pages 92-95,
November 1990.

[55] R. E. Tarjan. Data Structures and Network Algorithm. Society for Industrial and Applied
Mathematics, CBMS-NSF Regional Conference Scries in Applied Mathematics, 1983.

[56] S. Unger. Flow Table Simplification - some useful aids. IEEE Transactions on Electronic
Computers, June 1965.

[57] R. van Glabbeek. The Linear Time - Branching Time Spectrum. In Baeten J. and Klop J.,
editors, CONCUR ’90, Theories of Concurrency: Unification and Extension, pages 278-297.
Springer-Verlag, August 1990. Volume 458 of Lecture Notes in Computer Science.

[58] J. Vasudevamurthy and J Rajski. A Method for Concurrent Decomposition and Factorization
of Boolean Expressions. In /IEEE International Conference on Computer-Aided Design, 1990.

BIBLIOGRAPHY 157
[59] H.-Y. Wang and R. K. Brayton. Input Don’t Care Sequences in FSM Networks. In /EEE
International Conference on Computer-Aided Design, November 1993,

[60] Y. Watanabe and R. K. Brayton. Incremental Synthesis for Engineering Changes. In /EEE

International Conference on Computer Design, October 1991.

158

Index

1-hot encoding, 46 care set, 39
clock, 2, 71

automaton, see finite automaton
closed set of states, 134

BDD, 19 cluster, 8
behavior clustered Boolean network, 8
combinational logic, 1, see also function- fanin, 9
ality fanout, 9
contained, 78 functionality of, 9
optimum, 122 input variable, 9
implementable, 79 output variable, 9
Moore, 110 transitive fanin, 9
optimum, 125 transitive fanout, 9
of a finite state machine, 77 combinational loop, 5, 79, 101
permissible, 1, 80 combinational path, 102
optimum, 123 compatible
sequential logic, 2, 77 function, 39
binary decision diagram, 19 maximally, 3, 14
Boolean network, 7 representation, 40
fanin, 7 set of states, 128
fanout, 7 sets of permissible functions, 3, 14
functionality of, 8 component, 1
specification of, 8 contain
transitive fanin, 7 behavior, 78
transitive fanout, 7 cube, 40
Boolean relation, see multiple-valued relation contained behavior, 78
optimum, 122

candidate prime cube, 40 .
contained machine, 89

INDEX

cover, see representation

cube, 39
candidate prime, 40
contain, 40
irredundant, 41
maximally reduced, 57
redundant, 41
relatively prime, 40

dependency, 101
dependency graph, 102, 124, 146
deterministic finite state machine, 75
completely specified, 76
incompletely specified, 76
minimization of, 112
determinization
of a finite automaton, 97, 114
digital system, 1
division
of finite state machines, 74
don’t care sequence, 74
don’t care set, 39

E-machine, 4, 74, 87
minimization of, 4, 112, 123

equivalence class, 77

equivalent
finite state machine, 77
state, 76

existential property, 18

fanin
of a Boolean network, 7

of a clustered Boolean network, 9

159

fanout
of a Boolean network, 7
of a clustered Boolean network, 9
feasible machine, 115
finite automaton, 77
determinization of, 97, 114
reduction of, 109
finite state machine, 75
behavior of, 77
completely specified, 76
contains a behavior, 78
deterministic, 75
division, 74
equivalent, 77
feasible, 115
implementable, 79, 102
incompletely specified, 76
isomorphic, 97
Mealy, 76
Moore, 76
non-deterministic, 76
permissible, 80
prime, 81
pseudo non-deterministic, 94, 111
represents a behavior, 77
specification of, 72
forward compatibility property, 16
functionality
of a Boolean network, 8
of a clustered Boolean network, 9

global function, 8
global optimization, 30, 150

INDEX

GYOCRO, 37

implementable

behavior, 79

finite state machine, 79, 102
incompletely specified function, 38, 42, 50

minimization of, 42

the characteristic function of, 39
initial state, 75
input variable

of a clustered Boolean network, 9
irredundant

cube, 41

representation, 41

set of states, 135

literal, 39
local optimization, 5

log-based encoding, 46

maximally reduced cube, 57
MDD, 38
Mealy machine, 76
minimization
deterministic finite state machines, 112
E-machines, 4, 112,123
incompletely specified functions, 42
non-deterministic finite state machines,
112
pseudo non-deterministic finite state ma-
chines, 112, 122, 134
relations, 3, 52
Moore behavior, 110
optimum, 125

160

Moore machine, 76

multiple-valued relation, 38
minimization of, 3, 52
well-defined, 38

node optimization, 5
non-deterministic finite state machine, 76
minimization of, 112

off-set, 39
on-set, 39
output selection, 10
output variable
of a clustered Boolean network, 9

permissible
behavior, 1, 80
optimum, 123
finite state machine, 80
function, 9
primary input, 7
primary output, 7
prime machine, 81
product term, 39
pseudo non-deterministic finite state machine,
94,111
expressiveness of, 113
minimization of, 112, 122, 134

reachable state, 76
rectification problem, 45, 72
redundant

cube, 41

representation, 41

set of states, 135

INDEX

relation, see multiple-valued relation
relatively prime cube, 40
representation, 40

irredundant, 41

redundant, 41
reset state, 75

sequence, 75

length of, 75
sharedness, 25
specification

of a Boolean network, 8

of a finite state machine, 72
stability property, 104
state minimization, see minimization
subset construction, 97, 98, 114
sum-of-products expression, 39
supervisory control problem, 72
system, 1

digital, 1

synchronous, 2, 70
transition, 75
transitive fanin

of a Boolean network, 7

of a clustered Boolean network, 9
transitive fanout

of a Boolean network, 7

of a clustered Boolean network, 9

unimplementable, 103, see also implementable
unreachable state, 28, 76, see also reachable
state

well-defined

multiple-valued relation, 38

161

	Copyright notice 1994
	ERL-94-32

