

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LOGIC OPTIMIZATION OF INTERACTING

COMPONENTS IN SYNCRHONOUS DIGITAL

SYSTEMS

by

Yosinori Watanabe

Memorandum No. UCB/ERL M94/32

29 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Logic Optimization of Interacting Components

in Synchronous Digital Systems

by

Yosinori Watanabe

Doctor of Philosophy in

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K. Brayton, Chair

In optimizing digital systems, manual designs sometimes use information derived from

other components to identify a functional flexibility at a particularcomponent. This thesis addresses

how to identify such a flexibility as well as how to use it in the optimization of synchronous digital

systems.

We first focus on the case where the system realizes a combinational logic behavior, and

propose a procedure for computing a set of permissible functions at each component, i.e. the set

of functions that can be realized there while preserving the behavior of the entire system. The

identified set of functions is represented by a single relation between the inputs and the outputs of

the component. We then address the problem of finding an optimum permissible function. The

problem is reduced to the minimization of relations, and we develop a heuristic procedure for the

problem.

The second half of the thesis performs an analogous investigation for sequential logic

behaviors. We consider a synchronous system in which the behavior ofeach component is modeled

by a finite state machine, and show that the complete set of its permissible sequential behaviors

can be represented by a single non-deterministic finite state machine, which we call the E-machine.

We give a fixed point computation for deriving the E-machine. We then consider the problem of

finding anoptimum sequentialbehavior, which is achieved by minimizing the E-machine. We show

that the E-machine is a special type ofnon-deterministic finite statemachine,anduse this property

effectively in the minimization. We develop bothexact and heuristic procedures for the problem.

Proressor Rofcerv-K. Brayton
Thesis Committee Chairman

HI

Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

1 Introduction 1

1.1 Optimization of Interacting Components 1
1.2 Organization of the Thesis 2

2 Permissible Logic Functions for Multi-Output Components 5
2.1 Introduction 5

2.2 Preliminaries 7

2.3 The Maximum Set of Permissible Functions 9

2.4 Maximally Compatible Sets of Permissible Functions 14
2.4.1 Maximally Compatible Sets and Boolean Relations 14
2.4.2 A Procedure for Computing Maximally Compatible Sets 15
2.4.3 An Example 22
2.4.4 Computing the Maximum Set of Permissible Functions 22

2.5 A Qustered Boolean Network 25

2.5.1 Sharedness 25

2.5.2 A Procedure for Composing a Qustered Boolean Network 26
2.6 Experimental Results 28
2.7 Concluding Remarks 33

3 Minimization of Multiple-Valued Relations 35
3.1 Introduction 35

3.2 Preliminaries 38

3.2.1 Terminology 38
3.2.2 Functions, Mappings, and Relations 41
3.2.3 Applications of Multiple-Valued Relations 42

3.3 Questions on Multiple-Valued Relations 45
3.3.1 Representations of Multiple-Valued Outputs 46
3.3.2 Transformation of Multiple Outputs to a Multiple-Valued Input 47

CONTENTS iv

3.4 Function Minimization and Relation Minimization 50

3.5 Heuristic Minimization of Multiple-Valued Relations 52
3.5.1 Problem Formulation and Overview 52

3.5.2 Initial Representation 53
3.5.3 Computing the Characteristic Function of a Set of Cubes 55
3.5.4 REDUCE 57

3.5.5 EXPAND 61

3.5.6 IRREDUNDANT 67

3.6 Experimental Results 68
3.7 Concluding Remarks 69

4 Permissible Behaviors for Finite State Machines 70

4.1 Introduction 70

4.1.1 Overview 70

4.1.2 Related Problems 72

4.1.3 Related Work 74

4.2 Terminology 75
4.3 The Problem and Assumptions 78
4.4 Prime Machines 80

4.5 The E-machine and its Properties 87
4.5.1 The E-machine 87

4.5.2 Properties of the E-machine 88
4.5.3 A Variation of the E-machine 92

4.5.4 The E-machine in Hierarchical Optimization 94
4.6 The Structure of the E-machine and a Non-Deterministic Construction 94

4.6.1 The NDE-machine 96

4.6.2 A Case where the NDE-machine Equals the E-machine 101
4.7 Implementability of Interacting Machines 102

4.7.1 Implementability 102
4.7.2 Unimplementable Machines in the E-machine 104

4.8 Experimental Results 106
4.9 Concluding Remarks 108

5 Minimization of Pseudo Non-Deterministic FSM's 109

5.1 Introduction 109

5.2 The Problem 110

5.2.1 Minimization of E-machines 110

5.2.2 State Minimization of Pseudo Non-Deterministic Machines 112

5.3 Feasible Machines 115

5.3.1 Feasible Machines 115

5.3.2 Properties of Feasible Machines 116
5.4 Exact Methods 122

5.4.1 Finding an Optimum Contained Behavior 122
5.4.2 Finding an Optimum Permissible Behavior 123
5.4.3 Finding an Optimum Moore Behavior 125

CONTENTS v

5.4.4 A Summary of Exact Methods 126
5.5 Compatible Sets 127

5.5.1 Compatible Sets 127
5.5.2 Computing Compatible Sets 130

5.6 A Heuristic Method 134

5.6.1 Irredundant Compatible Sets 134
5.6.2 Overview 136

5.6.3 REDUCE 137

5.6.4 EXPAND 138

5.6.5 IRREDUNDANT 140

5.7 Experimental Results 141
5.8 Concluding Remarks 145

6 Conclusions 148

6.1 Summary ofThesis 148
6.2 Future Directions 149

Bibliography 152

VI

List of Figures

2.1 Qustered Boolean Network 12

2.2 Computing Maximally Compatible Sets of Permissible Functions 17
2.3 Updating the Cut Line during the Procedure 20
2.4 An Example for Computing Maximally Compatible Sets ofPermissible Functions 23
2.5 Procedure for Composing Qusters 27
2.6 Script used for Table 2.4 31
2.7 Scripts used for Table 2.5 32

3.1 The Minimization ofRelations 43

3.2 Completely Specified Finite State Machine 44
3.3 Structure where Boolean Relation Arises 45

3.4 Procedure for Computing an Initial Representation 54
3.5 EXPAND1 63

4.1 Interaction between Two Machines 72

4.2 Rectification Problem 73

4.3 Supervisory Control Problem 73
4.4 FSM Boolean Division 73

4.5 Procedure to Generate a Prime Machine 83

4.6 Example of M2 and M 86
4.7 PermissibleMachines M\ (u/v) 86
4.8 The E-machine for Example 4.4.1 88
4.9 The Problem where Global Inputs Drive Afi 93
4.10 Hierarchical Optimization of Interacting Finite State Machines 94
4.11 The NDE-machine for Example 4.4.1 96
4.12 Example of M2 and M 100
4.13 The E-machine (left) and the NDE-machine (right) 100
4.14 Modification for Unimplementable Machines 105

5.1 Interaction between Two Machines Ill

5.2 A Non-Deterministic Machine whose Behaviors cannot be Represented by Single
Deterministic Machines 114

5.3 Procedure for Generating a Feasible Machine 118
5.4 A Counterexample ofTheorem 5.3.1 for General Non-Deterministic Machines . . 120

Vll

List of Tables

2.1 The Specification (a) and a Boolean Relation F (b) 12
2.2 The Maximum Set of Permissible Functions for Qusterv 12

2.3 Comparison between Compatible Sets and Maximum Sets 29
2.4 Comparison with full-simplify 31
2.5 Comparison with script.ru.gged 33

3.1 Example of Redundant Representation with Irredundant Cubes 41
3.2 Minimized Representations of the Finite State Machine 44
3.3 The 1-Hot Encoding of a Relation with Multiple-Valued Outputs 47
3.4 The-Log-Based Encoding of a Relation with Multiple-Valued Outputs 47
3.5 Example where a Maximally Reduced Cube is not Unique 59
3.6 Example of Expansion for a Boolean Relation 66
3.7 Experimental Results 69

4.1 Experimental Results 107

5.1 Experimental Results 143
5.2 Comparison between Optimum Moore Behaviors and Optimum Contained Behaviors145

Vlll

Acknowledgments

Many people supported me in various ways during the time I spent at Berkeley. Without

the help and encouragement, my will to graduate might have faded away in an early stage of the

Ph.D. program,andthis thesis would not exist. I sincerely express gratitudeto allof them, especially

to the following people.

My advisor, Robert K. Brayton. I owe to Bob absolutely everything about research.

Professor Brayton provided me all the technical skills that I currently have; how to set up the

research goal, how to formulate and attack a problem, how to write a paper, and how to organize a

technical presentation. Among his outstanding abilities, I was especially impressed with his attitude

ofconducting research with a full of respect toward the truth. With this attitude, Bob demonstrated

that research is an activity of proceeding on a trail of truth, rather than marching down into a

desired direction. I learned that this attitude is the origin of courage, indispensable when stuck at an

unexpected obstacle, to further proceed on the trail even though it leads to an unpleasant outcome.

It was also this attitude that convinced me of the significanceof mathematical rigor and precision

in orderto follow the right path. I admired Professor Braytonso much that I simply mimicked his

style. It was always fun when I felt that my technical abilitiesimproved, andmost pleasant when I

realized that once a researchhas been accomplished, it is often the case that the result can be stated

in a simple statement. This has been a useful check to see whether I have fully reached the end of

the trail,and alsoa greatguidanceto deliver a clearpresentation. I will treasure what I learned from

Professor Brayton for the rest ofmy life.

I am grateful to Alberto L. Sangiovanni-Vincentelli and Shmuel Oren, the second and

the third members of my thesis committee. Professor Sangiovanni provided fruitful comments on

the research, especially for the second half of this thesis. Professor Oren kindly agreed to be a

member of both the qualification and the thesis committees, even though his research interests are

not directly related to the focus of the thesis. I also wish to thank Professor Katherine A. Yelick for

ACKNOWLEDGMENTS ix

her agreeing to be a committee member ofmy qualification examination.

Ernest Kuhhasbeenthoughtful. As a family friend, Professor and Mrs. Kuhoccasionally

invitedme to dinner, even for a private gathering, and extended generous hospitality. He congratu

latedme wheneverI made anachievement, like on my passing the qualification examination, or on

my first presentation ataninternational conference. Professor Kuhsometimes dropped in aseminar

room whileI wasgiving atalk,and gave positive feedback. I gratefully acknowledge hiscontinuous

support and encouragement over the years.

I enjoyed fruitful collaboration in conducting this research. The clustering procedure,

presented in Section 2.5, is the result of collaboration with LisaGuerra. Lisa also implemented a

prototypeof the procedures described in the chapter. I sincerely appreciate her effort. I alsothank

Alexander Saldanha for his interests in theworkgiven in Chapter 4. Alex carefully read my notes,

andimmediatelyprovided adifferentinterpretation ofthe result. This work yieldedthe construction

ofnon-deterministic E-machines, described in Section 4.6.

Significant cooperation wasgivenby several people in order to complete the experiments

presented in this thesis. I thank Abhijit Ghosh for providing the program of his procedure for

minimizing a Boolean relation. I am indebted to Fabio Somenzi for his support on the research

presented in Chapter 3, the minimization of relations. Whenever I sent an e-mail to ask a question

about his exact method of minimizing Boolean relations, he provided a perfect answer promptly,

usually in 30 minutes. Fabio also allowed me to use the program ofhis procedure for experiments.

Timothy Kam and Tiziano Villa let me use their procedure for a covering problem, with which

I was able to conduct additional experiments in Chapter 5. Huey-Yih Wang kindly offered me a

set of examples of interacting finite state machines for the experiments given in the same chapter.

I acknowledge their support. Special thanks are to Thomas Shiple, whom I always consulted on

questions about binary decision diagrams. Tom was eager to understand my problems, and often

came up with excellent solutions.

It was a greatpleasureto be amember of the Berkeley CAD group. I thank every member

of the group, including those who used to be here. I express special gratitude to AlbertWang and

Herv6 Touati. I learned from Albert artof (constructive) proof techniques, and from Herve" elegance

of presentation. My thanks also go to Brad Krebs and Mike Kiernan for excellent support on

facilities, to FloraOviedo, Elise Mills, and Kia Cooper for daily assistance, and to Heather Brown,

Carol Lynn Stewart, and Genevieve Thiebaut for administrative support of the graduate program.

My life at Berkeley would not have been so delightful, if it had not been for the local

Japanese community. I owe the precious memoryand experience to thosewho stayed atBerkeley

ACKNOWLEDGMENTS x

as visitors or students, as well as those who often visited the Bay area. They are, in alphabetical

order, Kozo Bando, Takashi Fujii, Tomoyuki Fujita, Yoshihiro Fujita, Masahiro Fukui, Hiroaki

Furuichi, Naoko Furukawa, Kenji Goto, Toshihiro and Keiko Hattori, Hiroshi Ichiryu, Nagisa

Ishiura, Masamichi and Yoshiko Kawarabayashi, Shigeyoshi Kawarai, Takashi and Mami Komaya,

Yuji Kukimoto, Tadahiro Kuroda, Naotaka Maeda, Yusuke and Taeko Matsunaga, Hitoshi Mat-

suo, Takashi Mitsuhashi, Yasuhiko Nakano, Tsuneo Nakata, Yoshihito Nishizaki, Yasushi Ogawa,

Hidetoshi Onodera, Akira Onozawa, Yasuaki Sakina, Masao Sato, Masatoshi Sekine, Kei and

Rikako Suzuki, Masayoshi Tachibana, Atsushi Takahara, Yoshio Takamine, Tom Toyabe, Atsuhisa

and Chiori Yakawa, and Makiko Yoshida. I am also grateful to Masami and Nobuko Fujimoto for

their support.

Finally, I thank my parents, Hitoshi and Reiko Watanabe. They regularly called me on

weekends, and it was always fun to hear from them what's new there. I also liked telling them about

my recent activities, especially when I had good news, because they always got excited more than I

could.

Now, most emphatically, I thank my wife, Mika. I was not able to find the right word in

my English dictionary to express how much I owe to her. Hontoni doumo arigatou, Mika. I intend

to spend many years proving to her that I am worth the effort.

Chapter 1

Introduction

1.1 Optimization of Interacting Components

A system is a regularly interacting or interdependent group of items forming a unified

whole[36]. It is common that each item, or component, has some flexibility in its function. Namely,

one may alter the function of the component while preserving the behavior of the entire system.

Such flexibility, associated with internal components, is the subject of this thesis. Specifically, the

thesis addresses two issues; how to identify the flexibility, and how to use it.

Suppose one wants to design a system so that it realizes a given behavior. The design task

can be viewed as an iteration ofthe following two major processes. The first process is to determine

or modify the structure of the system, i.e. what kind of components are used and how they interact.

The second is to optimize the behaviors of the components with respect to the structure defined

above. This thesis deals with the second phase; for a given set of interacting components, optimize

behaviors of the components so that the entire system realizes a desired behavior. We consider the

problem in two steps. First, we identify a set of behaviors that can be realized at a component.

Such a set defines the flexibility associated with the component, and we call it a set ofpermissible

behaviors of the component. We then find, in the second step, an optimum behavior in the set

according to a given cost function.

The type of systems we consider in this thesis is digital systems. We follow the conven

tional definition of digital systems [2,4], i.e. one in which each component can be modeled so that

it handles information in a discrete manner. By behavior, we mean logic behavior. Specifically, we

consider two types of behaviors. One is a behavior modeled by a Boolean function, which is also

referred to as a combinational logic behavior. In particular, we focus on a function with multiple

CHAPTER!. INTRODUCTION 2

outputs. Namely, each component of the system has multiple inputs and multiple outputs, and

implements a Boolean function between the inputs and the outputs. The other type of behaviors

is sequential logic behaviors. In this case, each component, with multiple inputs and outputs,

implements a function between the input sequencesand the output sequences.

Amongdigitalsystems, we restrict ourattention only to synchronous systemsin this thesis.

In a synchronous system, the operations of all the components of the system are synchronized by

a global timing controller, or a clock, and each operation requires an integer number of clock

intervals [5,19]. For combinational logicbehaviors, we assume that signals arrive at all the inputs

ofthe systematthe sametime and it takesnotime for eachcomponentto computethe corresponding

outputsignals. For sequential logicbehaviors, we assume thateverycomponentgenerates anoutput

event simultaneously, one at a time for each clock interval. Under these assumptions, we consider,

for each type ofbehaviors, how to compute a set of permissible behaviors, as well as how to find an

optimum behavior.

1.2 Organization of the Thesis

This thesis consists of four mainchapters. Onecandivide them in two ways. Oneway

is based on the types of behaviors. In Chapter 2 and Chapter 3, we deal with combinational logic

behaviors, while sequential logic behaviors are considered in Chapter 4 and Chapter 5. The other

way of dividing the thesis is in terms of the types of problems. In Chapter 2 and Chapter 4, we

consider the problem of identifying a setof permissible behaviors, while Chapter 3 and Chapter 5

are concerned with the problem of finding the bestbehavior. Specifically, eachchapter is organized

as follows.

Chapter 2 deals with the case where each component implements a Boolean function

with multiple inputs and multiple outputs. Although extensive research has been made for the

problem of finding permissible behaviors for combinational logic with a single output [3, 39, 50],

little has been done for the caseof multipleoutputs. In this chapter, we first discuss the problem

of finding the maximum set of permissible behaviors for a given component. Namely, fixing the

behaviors of all the other components of the system, we compute the complete set of behaviors

at a particular component that can be realized there while preserving the behavior of the entire

system. A behaviorhere is a Boolean functionwith multiple outputs. Brayton and Somenzi showed

in [11] that the complete set can be represented by a Boolean relation, a relation between the

Boolean spaces spanned by the inputs and the outputsof the component respectively. Namely, a

CHAPTER J. INTRODUCTION 3

function / is in the set if and onlyif for all elements x of theinput domain, the pair (x, /(x)) is a

member of the relation. A procedure forcomputingsucha set was proposed by Savoj [48]. We first

review the work, and then focus on another kind of permissible behaviors called a compatible set

of permissiblebehaviors [39]. Unlike the maximum set, a compatibleset of permissiblebehaviors

is computed forevery componentof the system, and hasthe property that an arbitrary combination

ofbehaviors of the setsoverthecomponents results in adesired behavioron the entire system. The

property of compatibilityenables oneto process allthecomponents in parallel for finding optimum

behaviors in the succeeding step. We consider the problem of computing maximally compatible

sets ofpermissiblebehaviorsover the components,wherecompatiblesets aremaximal ifthereis no

permissible behaviorthat canbe newly added to anyoneofthe setswithoutdestroying the property

of compatibility. We show thateachof the maximallycompatible sets canbe alsorepresented by a

Boolean relation, and present a procedure forcomputing such sets. We also show that the maximum

set of permissiblebehaviors at a particular componentcan be computed as a special case of this

procedure.

In Chapter 3, we addressthe problemof findinganoptimum combinational logic behavior

for multi-output components. As a cost function, we use the number of product terms required in

a sum-of-products expression representing a function. Therefore, the problem is that for a given

relation representing a set of functions, find a sum-of-products expression with the minimum number

ofproduct terms overall the functions in the set. This problem is called the minimizationofrelations,

and is a generalization ofthe minimizationof functions, which has been fully investigated [8,25,34].

In this chapter, we consider the general case where an input variable of a function may assume

more than two values. We present a heuristic procedure for the problem, which is analogous to

Espresso [8], a well-developed heuristic approach for minimizing functions. We make a contrast

between relations and functions by showing some special properties associated with relationsnot

found in functions. These properties are carefullyaccounted forin the proposedheuristicprocedure

to effectively achieve high qualityresults. The results are compared against the exactmethod given

in [53].

Chapter 4 and Chapter 5 perform an analogous investigation for sequential logic behav

iors. Each component of the system now implements a sequential logic behavior, i.e. a function

between the input sequences andthe outputsequences of the component. Underthe assumption of

synchronous systems, the behavior can be represented by a finite statemachine [35]. Therefore,

the entire system can be regarded as one in which a number of finite state machines are mutually

interacting.

CHAPTER J. INTRODUCTION 4

Chapter4 considers the problem of findingthe maximum set ofpermissible behaviors at a

given component. The definition ofthe set is same asthe combinationalcase, except that abehavior

here is now sequential. Although extensive research has been done for the problem [18,29,43,56],

no method is known on how to capture the complete degree of freedom. We claim that the complete

set of permissible sequential behaviors of a given component can be computed and represented

by a single non-deterministic finite state machine, which we call the E-machine. A procedureto

compute the E-machine is also provided.

In Chapter 5, we minimize the E-machine. The problem is to find an optimum permissible

behavior given in the E-machine, where we use, as a cost function, the number of states required

in a finite state machine to represent the behavior. This is a generalization of the problem known

as the state minimization, or the state reduction, of deterministic finite state machines, for which

the research is well-matured [1,23,24,27,38,40,41,44]. The chapter first presents a theoretical

analysis, where we consider how the conventional concepts developed for deterministic machines

can be generalized. We show that the E-machine is a special type ofnon-deterministicmachine, and

this property can be effectively used for solving the problem. We propose both exact and heuristic

procedures, and conduct experiments to demonstrate the effectiveness of taking into account the

interaction with other components of the system in optimizing systems of finite state machines.

In each chapter, we first clarify the focus of the chapter, and provide a background of

the subject, such as related works in the literature or applications of the problem. Terminology

used in the chapter is then defined so that each chapter is made self-contained. Remarks on the

individual approaches presented in each chapter, such as evaluation of experimental results or

technical limitations of the procedures, are noted at the end of the chapter. The entire thesis is

concluded in Chapter 6.

Chapter 2

Permissible Logic Functions for

Multi-Output Components

2.1 Introduction

We consider the case where each component of a system is combinational logic, i.e.

it implements a Boolean function with multiple inputs and multiple outputs. We assume that

no combinational loop exists in the system; in particular we assume that the connections of the

components do not form a cycle1. Such a system can be represented by a directed acyclic graph,

where a node corresponds to a component and an edge corresponds to a connection between

components. A multi-output Boolean function is associated with each node, which is the one

implemented by the corresponding component. We call the graph a clustered Boolean network.

The problem addressed is to find a set of permissible Boolean functions at each node of

a given clustered Boolean network. The applicationwe consider is the logic optimization ofmulti

level combinational logic circuits. One optimization technique is to optimize a logic representation

of a function that can be realized at a given sub-portion of a circuit. This is generally referred to as

a local optimization or node optimization. It can be achieved by (1) computing a set of functions

allowed to be implemented at the node, and (2) finding one with a least-cost representation. A

clustered Boolean network is a model for a multi-level combinational logic circuit, and the first step

of this optimization scenariois the problem addressed in this chapter. Chapter3 is concerned with

the last step.

1Itcouldhappen that a cycleof components would not have a cyclic dependence, but we rule thisout for easeof
exposition. This can happen even if each component has only one output.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 6

Conventionally, a multi-level combinational logic circuit is abstracted in a more restrictive

way by using amodel calledaBooleannetwork, andthe problem above hasbeen extensively studied

for this model [9]. A Boolean network is also a directed acyclic graph, where the Boolean function

associated with each node must have a single output. This single-output requirement is considered

a limitation, since experience with two-level (PLA) minimization demonstrates that better results

are usually obtained by simultaneously optimizing a set of functions, rather than one at a time. In

this chapter, we remove this restrictionand see how node optimization can be done for the general

case.

We consider two types of sets of permissible functions. One is the maximum set of

permissible functions defined at a given node of a clustered Boolean network. Specifically, fixing

the Boolean functions associated with the rest of the nodes as they are, one wants to compute the

maximum set of Boolean functions that canbe realizedat the node while preservingthe functionality

ofthe entirenetwork. Brayton and Somenzi showed in [11] that incase ofmultiple-output functions,

such a set cannot be represented by a Boolean function with don't cares, and introduced a theory

of Boolean relations. The claim is that the maximum set can be computed and represented by a

Boolean relation, where the relation consistsofallpossible pairs of input andoutput values allowed

to be realized at the node. A procedure to compute such a relation was presented by Savoj in [48].

We first review how a set of functions can be represented by a relation as well as why a relation

is necessary to represent such a set. We then consider another type of set of permissible functions

called compatible sets. For this type, a set of sets of Boolean functions is defined, one set for each

node of a network, and has the propertythat simultaneous replacement of the functions associated

with the nodes by an arbitrary combination of the functions, one from eachof the respective sets,

preserves the functionality of the entirenetwork. The notion of compatiblesets was first introduced

by Muroga et. al [39] for thecase where each nodeofthenetworkimplements asingle-output NOR

gate, along with a procedure to compute such sets. Savoj proposed a method for a more general

case where, instead of a NOR gate, a node may implement an arbitrary single-output Boolean

function [49]. Introduced also in [49] is a notion of maximally compatible sets of permissible

functions, where compatible setsare maximal if there is no function thatcanbe newly added to any

one of the sets without destroying the propertyofcompatibility. However, no method is known for

computing such sets even for the case of single-output Boolean functions.

In this chapter, we consider the problem of computing maximally compatible sets of

permissible functions forthecasewhere anodemayimplementanarbitrary multiple-outputBoolean

function. We first show that eachof such sets can be alsocomputed and represented by a Boolean

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 7

relation. Then we present a procedure to compute such relations. Since wemake no assumption

on thenumber of outputs of a Boolean function associated witheachnode,the proposed method is

valid even for the case of single-output functions.

Thischapteris organized asfollows. Afterdefining terminology inSection 2.2,wereview

how to compute the maximum set of permissible functions for a clustered Boolean network in

Section 2.3. Section 2.4addresses theproblem of finding maximally compatible sets ofpermissible

functions, and presents a procedure to computesuch sets for clustered Boolean networks. We also

show in this section that the maximum set of permissible functions can be obtained as a special

caseof the proposed procedure. In Section 2.5, wepresent a procedure of composing a clustered

Boolean network from a given Boolean network. Such aprocedure is necessary when oneperforms

optimizations based ona conventional Boolean network, and then wants to apply local optimization

based on a clustered Boolean network. A clustered Boolean network is composed by grouping

together a set of nodes of the original Boolean network. The procedures have been implemented

and we presentexperimental results in Section 2.6. Section 2.7concludes the chapter.

2.2 Preliminaries

We firstdefine a Boolean network, the conventional model used for logic optimizationof

multi-level combinational logic circuits.

Definition: Boolean Network

A Boolean network rj = (JV, E) is a directed acyclicgraph. A node with no in-coming

edges is called a primary input node. A Boolean network contains at least one node referred to

as a primary output node. A node that is neither a primary input node nor a primary output node

is called an intermediate node. The set of the primary input nodes, the primary output nodes, and

the intermediate nodes are denoted by X, Z, and Ni, respectively. Given two nodes, s and t, s is a

fanin of tif an edge [s, t] exists in rj. Conversely, t is a fanout of s in this case. Similarly, s is said

to be a transitive fanin of t, if s is a fanin of t or there is a fanout of s that is a transitive fanin of t.

The node t is said to be a transitive fanout of s in this case.

A Boolean variable is associated with each node of rj. For each node s not a primary

input, a single-output Booleanfunction is associated. This is a functionof the variables associated

with the fanins of s.

We make no distinction between a node of a Boolean network and the Boolean variable

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 8

associated with it; the variable of a node s is denoted by s.

For each node of a given Boolean network rj, one can uniquely define a Boolean function

represented in terms of the primary inputs. Such a function is referred to as a globalfunction of

the node. Specifically, the global function of a primary input node x is given by x itself, while

the global function of a node s, not a primary input, is given by substitutingeach variable of the

function defined at s with the global function of the node corresponding to the variable. Consider

a multiple-output Booleanfunctiong such that the functionof the i-th outputof g, gu is the global

function of the i-th primary output node of Z. We call g thefunctionalityof 77.

We assume that for a given Boolean network 77, a Boolean relation M, defined between

the Boolean spaces spanned by the primary inputs and the primary outputs respectively, is given

to specify the allowed functionalities of 77. We represent the relationby its characteristic function,

M : £l*l x BW -* B with B = {0,1}, and call it the specification of 77. Namely, M(x,z) = 1

if and only if (x, z) € M, and we make no distinction between a relation and its characteristic

function in the sequel. The specification M provides all possible combinations of the values of the

primary inputs and the primary outputs that are allowed to be realized on 77, and we say that 77 meets

the specification M if for all minterms x € B\x\ ofthe primary inputs, M(x, </(x)) = 1, where g
is the functionality of 77. We assume, without loss of generality, that the original functionality of 77

meets the specification M.

The model we use in this chapter is a clustered Boolean network, which is similar to a

Boolean network except that the function associated with each node may have more than one output.

We regard a clustered Boolean network as one composed from a Boolean network.

Definition: Clustered Boolean Network

Given a Boolean network 77 = (JV, E), adirected acyclic graph T = (V,K) is a clustered

Boolean network if the following properties hold:

1. Vt> g V : v C JV/ u Z

2. V(u,v)eV xV :u^v^uC\v = <f>

3. |J v = NiUZ
vev

4. V(w, v) e V x V, u / v : [«, v] e K & 3(s, t) Gu x v : [5, t] e E

T is a partitionof thenodesof 77 otherthantheprimaryinputs,where each v eV contains

at leastone nodeof 77. A node v e V is called a cluster; andis distinguished from a nodeof the

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS 9

original Boolean network. An edge [u, v] exists in T from a clusteru to a clusterv if and onlyif

there exists a pair of nodes of 77, (s, t) e u x v, suchthat an edge [5, t] exists in 77. Note that an

edge in K is defined onlyfora pairof distinct clusters, and there isno self-loop fora single cluster.

The definitions of fanins, fanouts, transitive fanins, and transitive fanouts follow those of Boolean

networks.

For each cluster v e V, a variablefor a node s e N is an input variable of v if s is not in

vand there is a node t in v such thatanedge [s, t] exists in 77. Avariable s € JV is anoutputvariable

of the cluster v if s is in v and either s is a primaryoutputnode or there is a node t outside v such

that anedge [s,t] exists in 77. The setof input variables and the output variables of a cluster v are

denoted by Iv and Ov, respectively. Associated withv is a multi-output Boolean function from the

Boolean space spanned by Iv to that by Ov. The function is given by the functions of 77 originally

associated with the nodes of v.

Aswitha Booleannetwork, wecandefine the functionality of aclustered Booleannetwork

asa multi-output Boolean function from theprimary inputs X to theprimary outputs Z thatisgiven

by composing the functions associated with the clusters of the network. We say the clustered

Boolean network meets the specification in the same way as defined for Boolean networks.

2.3 The Maximum Set of Permissible Functions

We consider the problem of finding a set of functions that can be realized at a particular

cluster of a clustered Boolean network so that the resulting functionality of the network meets a

given specification, where the functions of the rest of the clusters are all fixed. We call each such

function apermissiblefunction of the cluster.

Definition: Permissible Function

Given a clustered Boolean network T = (V,K) with a specification M, a function

/ : J?'1"' -»• i?!0"' is said tobe permissible at a cluster v e V, if the functionality ofTgiven by

replacing the function of v with / meets the specification M.

Brayton and Somenzi showed that the maximum set of permissible functions at a given

cluster can be computed and represented by a single Boolean relation [11]. Here, a set T of

Boolean functions, T C {/ | / : Bn -+ Bm}, is said to be represented by a Boolean relation

F : Bn x Bm -> B, if / € T & Vx e Bn : F(x,/(x)) = 1, i.e. T = {/ | Vx € Bn :

F(x,/(x))=l}.

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS10

We first clarify the condition under which a set of functions can be represented by a

relation in the sense above. We start with the definition of the following operation.

Definition: Output Selection

The output selection is a non-deterministic operation defined over a pair of functions

with the same input and output spaces, say / : Bn -»• Bm and # : Bn -* Bm, whichreturnsone of

the functions h: Bn -»• Bm such that for all x G Bn, h(x) is equal to either /(x) or g(x).

Lemma 23,1 Aset of Booleanfunctions, T C {/ | / : Bn -*• Bm}, is represented bya Boolean

relation,ifandonly ifT is closed under theoutput selection operation.

Proof: Supposethat T can be represented by a Boolean relation F : Bn x Bm -> B, i.e. / G T

if and only if F(x, /(x)) = 1 for all x G Bn. We showthat T is closedunder the output selection

operation in this case. Consider a pair of functions (/, g) G T x T, where / and g might be

identical. Let h be a function obtained by output selection over / and g. Then for each x G Bn,

/i(x) is equalto either /(x) or #(x), andthus F(x, /i(x)) = 1 sinceboth / and g aremembers of

T. Hence h is,a member of T, and T is closed under the output selection operation.

Conversely, suppose T is closed under the output selection operation. We show that there

exists a BooleanrelationF : Bn x Bm -> B such that / G T if and only if F(x, /(x)) = 1 for all

x G Bn. Considera relation F such that F(x, y) = 1 if and only if there exists a function / G T

for which y = /(x). Then for an arbitrary function/ GT, the relation F satisfies the propertythat

F(xy /(x)) = 1 for all x G Bn. The proof is complete if we show that for every function / with

the propertythat .F(x, /(x)) = 1 for all x G Bn, f is a memberof T. Wefirstextendthe definition

of the output selection operation so that it can be defined for more than two operands. Namely,

for a givenfinite set of functions {/i,..., fr} which share the same input and outputspaces, the

extended output selection operation returns a function / such that for each input x, there exists

i G {1,..., r} for which /(x) = /;(x). It is easy to see that the closedness of the set T under

the original definition of the output selection operation implies the closedness under the extended

definition. Now, consider a function / with the propertythat F(x, /(x)) = 1 for all x G Bn. We

show that / is a member of the set T. Foran arbitrary input x g Bn, since F(x, /(x)) = 1, the

definition of the relation F implies thatthere exists a function in T whose output for the input x is

equal to /(x). Denoting such afunction by /(x), we see that / can be obtained as aresult ofoutput
selection over a set offunctions {/(x) | x 6 5n}. Since T is closed under this operation, / is a
member of T, which completes the proof. •

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS! 1

It is then claimedthat the maximum set of permissible functions at a givenclustercan be

represented by a Boolean relation.

Theorem 23.1 The maximum set ofpermissiblefunctions defined at a cluster of a given clustered

Boolean network witha specification canbe represented bya Booleanrelation.

Proof: Let T C{/ | / : B^ -»• J?!0"!} be the maximum set ofpermissible functions atacluster
v. We denote the clustered Boolean network by Tand the specification byM : B^ x J?'zl -> B.

By Lemma 2.3.1, the proof is done if we showthat T is closed under output selection. Consider

a pairof functions {f,g)^TxT, where / and g might be identical. Let h be a function given

by output selection over / and g. We show that h is a member of T. Suppose the contrary, i.e.

h £ T. Since T is maximum, it implies that h is not a permissible function for the cluster v.

Then there exists a minterm of the primary inputs, x G£'x', for which the value z obtained at the

primary outputs of the network T by replacing the functionof the cluster v by h does not meet the

specification, i.e. M(x,z) = 0. Let u G£,/v| be the value obtained at the input variables ofthe
cluster v for suchan x. By definition of the output selection, h(u) is equalto either /(u) or g(u).

Suppose, without loss of generality, h(u) = /(u). Then if we replacethe function of the cluster v

by / in the networkT and apply x to the primaryinputs,the value obtainedat the primaryoutputs is

identical with the one obtained when h is realized at v. Since that value z, obtained at the primary

outputs, does not meet the specification M for the input x, / is not a permissible function. This

conflicts with the fact that / is a member of T. Hence, our assumption that h is not a permissible

function is incorrect. Therefore, the set T is closed under the output selection operation, and there

exists a Boolean relation which represents the set. •

We show by an example how the maximum set ofpermissible functions can be represented

by a Boolean relation. Consider a clustered Booleannetwork shown in Figure 2.1 with two primary

inputs and two primary outputs, where a circle represents a cluster in the figure. Suppose we want

to compute the maximum set of permissible functions at the cluster v for the specification shown

in Table 2.1-(a). The cluster v has two inputs x\ and x2, and two outputs vi and V2. The function

associated with each cluster other than v is given in Figure 2.1. For this example, the maximum

set consists of four functions as shown in in Table 2.2, which are denoted by {/i,..., fo}. This

set can be represented by a Boolean relation F given in Table 2.1-(b). The table shows thata pair

(x\xz,vxvi) = (00,10) is a member of F, (00,01) is another member of F, and soon. Namely,

the relation F consists of all possible pairs of input and output values allowed at the cluster v to

satisfy the specification. We first note that this setoffunctions cannot berepresented byaBoolean

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT C0MP0NENTS12

Figure 2.1: Qustered Boolean Network

X\X2 *1*2 X\X2 V\V2

00 11 00 10,01

01 00 01 00

10 00 10 11

11 11 11 10,01

(a) (b)

Table 2.1: The Specification (a) and a Boolean Relation F (b)

/i h h u
X\X2 V\V2 X)\V2 V\V2 VY&l

00 10 10 01 01

01 00 00 00 00

10 11 11 11 11

11 10 01 10 01

Table 2.2: The Maximum Set of Permissible Functions for Cluster v

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT C0MP0NENTS13

function with don't cares. Recall that in general, one can use don't care conditions to represent

a set of functions. Namely, for a given Boolean function which may have multiple outputs, one

specifies a set of input minterms that are treated as don't cares for each output of the function. It

is then interpreted that for each output, the value of the output may be either 0 or 1 for those don't

care inputs, while it must coincide with the value of the originally given function for the rest of

the input minterms. In this way, one can represent a set of functions using don't care conditions.

However, it is not the case for the set of functions shown in Table 2.2. This is because the set of

don't care minterms must be specified for each output separately. Namely, we must say that for the

output v\, the minterms x\X2 = 00 and x\X2 = 11 are don't cares, since the value of v\ may be

either 0 or 1 for these input minterms. Similarly, x\X2 = 00 and x\X2 = 11 are don't cares for the

output V2. Then, since x\ x2 = 00 is a don't care for both outputs, this implies that we can output an

arbitrary minterm at v\ V2 for this input, and thus v\ V2 = 00 or v\ V2 = 11 are also feasible outputs,

which is a wrong conclusion. The point here is that since don't cares are specified for each output,

in case ofmulti-output functions, disallowed output patterns might be included as feasible outputs,

and thus representations using don't cares might be inadequate. Using a Boolean relation, one can

explicitly specify which output pattern should be allowed for each input minterm. Specifically, for

our example, the inclusion of a pairof input and output minterms in the relation is determined by

checking if there is a permissible function that realizesthe pair. However, as seen in the beginning

of this section, not all sets of functions can be represented by using relations. Observe that in

forming a relation for our example, the inclusion of one pair in the relation is independent of the

inclusion of another. Conversely, for a given relation F, one can obtain a permissible function by

choosingone pair for each input minterm, i.e. one outputminterm for each row of Table 2.1-(b),

where the choicemade forone inputmintermis independentofthe choice foranother. This property

allows us to represent a set of functions by a relation. In fact, if we take a subset of the maximum

set of permissible functions, we cannot represent it by a Boolean relation in general. The subset

{/l»fi, h) is one such example. This is because the subset is notclosed under output selection;

U can be obtained as a result of the output selection over h and /3, but is not in the subset. In

somesense, it is the maximality of the setof functions that makes it possible to use a relation for

representing theset. Wewillsee, in the following section, another typeof setof functions that can

also be represented by a relation. They also have a maximality property, in a different sense, and

thus can be represented by a relation.

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS14

2.4 Maximally Compatible Sets of Permissible Functions

2.4.1 Maximally Compatible Sets and Boolean Relations

Wenow consider the problem ofcomputing a set ofpermissible functions for every cluster

of a network. The resulting set of sets ofpermissible functions, one set defined for each cluster, has

the property of compatibility defined as follows:

Definition: Compatible Sets of Permissible Functions

Given a clustered Boolean network T = (V,K) with a specification M, a set of sets

of functions defined over the clusters of the network is said to be a set of compatible sets of

permissible functions, if for an arbitrary selection offunctions, one from each set, the functionality

of T given by simultaneously replacing the function of each cluster with the selected function for

that cluster meets the specification M.

Namely, one can choose an arbitrary function among the set defined for each cluster

independently, and the property of compatibility guarantees that the resulting functionality of the

network meets the specification.

Note that for the maximum set ofpermissible functions defined at a single cluster v, it was

assumed that the functions of the rest of the clusters ofthe network were all fixed. Thus, the degree

offreedom given at one cluster depends upon the others; ifone changes the function associated with

another cluster, the set of permissiblefunctions originallycomputed at v is not necessarily valid,

and one may haveto re-computeit. This is not the case for compatiblesets ofpermissiblefunctions.

Compatible sets ofpermissible functions are said to be maximal ifno new function can be

added to any one of the sets without destroying the property of compatibility. Note that in general

maximally compatible setsarenotunique foragivenclustered Booleannetwork withaspecification;

thesetsaremaximally compatible aslong asstrictly larger compatible setsdonotexist. Maximally

compatible sets are of interest because they can be computed and used independently, possibly

byparallel processing. In this section, we present a procedure for computing a setof maximally
compatible sets of permissible functions.

We first show that for any given setofmaximally compatible sets, thesetofpermissible

functions defined at each clustercan be represented by a Booleanrelation.

Theorem 2.4.1 For a set of maximally compatible sets ofpermissiblefunctions defined over the

clusters ofa given clustered Boolean network with a specification, each setdefined ata single

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT C0MP0NENTS15

cluster can be represented by a Boolean relation.

Proof: Let Tv C {/ | / : B^l -• B\°*\} be the set defined ata cluster v. We denote the network
by Tand the specification by M : B^ xB^ _• b. By Lemma2.3.1, the proofisdone ifwe show
that the set Tv is closedundertheoutputselection operation. Consideran arbitrary pairof functions

(/> 9) € Tv x Tv, where / and g may be identical. Let h be a function given by output selection

over / and g. Weshow that h is a memberof Tv. Suppose for contrarythat h £ Tv. Since Tv is

maximal, by definition ofcompatibility, there exists a combination of functions, where one function

is chosen for each cluster from the corresponding set of the maximallycompatiblesets, such that

if we replace the function of v by h and the function of each of the other clustersby the one in the

combination, then the resultingfunctionality ofTdoesnotmeetthespecification. Specifically, there

exists aminterm ofthe primary inputs x e £'*! such that for the corresponding minterm z e BW
ofthe primary outputs obtained by Tunder this replacement, M(x,z) = 0. Let u € -B'/v' bethe
value obtained at the input variables of the cluster v for this x. By definition of output selection,

h(\i) is equal to either /(u) or g(u). Suppose, without lossof generality, ft(u) = /(u). Thenif,

instead of using h for the functionof the cluster v in the replacementabove,we replace the function

of the cluster v by /, and if we apply x to the primary inputs of the network, then the same value z

is obtained at the primary outputs. Since the value z does not meet the specification M for the input

x, the combination of the functions above, where / is chosen for the cluster v, is not permissible.

This is conflict with the property of compatibility. Therefore h is a member of Tv, and Tv is closed

under output selection. Hence the set can be represented by a Boolean relation. •

2.4.2 A Procedure for Computing Maximally Compatible Sets

We now present a procedure for computing a set of maximally compatible sets of

permissible functions for a given clustered Boolean network T = (V,K) with a specification

M : B^x\ x BW —• B. The proposed procedure sorts the clusters of T first, and processes one

cluster at a time in this order. Therefore, the result of the procedure is order dependent. The order

of the clusters satisfies the property that for all pairs of clusters {u, v}, if u is a fanin of v, i.e.

[u,v] € K, then v precedes u in the order. Therefore, the procedure starts with a cluster with

only primary outputs, and when a cluster is processed, all the fanout clusters have been already

processed.

We denote by a theorderof theclusters employed in the procedure, and assume that the

clusters are processed in the increasing order of a. Thenwhen a cluster v is processed, a cluster

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS16

wwith a{w) < a(v) has been processed, and a set offunctions fw C {/ | /„,: B^ -» B^0^}

has been already computed for w. The procedure computes a set of functions at v, Tv C {/ |

/„ : B\lv I-* B\°v I}, such that Tv satisfies the following property with respect tothe set ofsets of

functions computed for the already processed clusters:

Property 1: forward compatibility property

A function fv : i?'7"' -* JE?'0"! is a member of Tv, if and only if for an arbitrary

combination of functions for the processed clusters, Cv = {fw : 2?'/u,l -»• B^0w^ \ fw € Tw and
a{w) < <r(v)}, the functionality of Tmeetsthespecification by replacing the function of v with fv

and the functionof w with fw € Cvfor each w such that a(w) < a{y), where a function fu at each

cluster u such that a(u) > a(v) is fixed to the one originallyassociatedwith the cluster.

Intuitively, we compute Tv so that the resulting sets of functions associated with all the

already processed clusters are maximally compatible, in the sense that any combination offunctions

for these clusters, together with the original functions for the unprocessed clusters, leads to a

functionality of the entire network which meets the specification, and no new function can be added

to any of these already processed clusters without destroying this property. Then it immediately

follows that at the end of the procedure, when all the clusters have been processed, we obtain

maximally compatible sets of permissible functions.

Theorem 2.4.2 Given a set of setsoffunctions C = {Tv \ v 6 V}, suppose that Tv satisfies the

forward compatibility propertyfor each v e V. Then C is a set ofmaximally compatible sets of

permissiblefunctions.

Proof: By definition, it is easy to see that C is a set of compatible sets of permissible functions.

We show the maximal compatibility of C. We first note that for each cluster v, the function

originally associated with v in T is a member of Tv. This is because when the cluster w which is

immediately before v has beenprocessed, an arbitrary combination of functions for the processed

part, Cv = {fw : ^"l -• B\°»\ \ fw e Tw and a(w) < a(v)}, together with the original
functionality for the rest of theclusters, leads to a functionality of T thatmeets the specification,

andthusby definition of Property 1,the function originally associated with v is a member of Tv.

Now, suppose for contrary that there exists a function /„, at some cluster v, such that

/„ i Tv and the set of sets of functions given by replacing Tv with Tv U{fv} in C is still a set

of compatible sets of permissible functions. We denote the resulting set of sets of functions by
C. Consider anarbitrary combination of functions Cv = {fw : B^ -*• B^°^ \ fw € Fw and

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS!!

cut line

Figure 2.2: Computing Maximally Compatible Sets of PermissibleFunctions

a(w) < o-(v)}. Let U be the set of functions originally associated with the clusters u such that

a(u) > <t(v). Note that fu GTu for each /„ e U, while /„, e Tw for each fw e Cv. Suppose we

realize fw € Cv at eachcluster w suchthat a(w) < cr(v), fv at the cluster v, and fu € U at each

usuch that <j{u) > v(v). Then, since C iscompatible, the resulting functionality of the network T
meets the specification. Since Tv satisfiesthe forward compatibility property, we see that fv must

be a member of Tv, which is a contradiction. Hence, the set C is a set of maximally compatible

sets of permissible functions. •

We present how to compute such a set Tv for each cluster. Suppose a cluster v is being

processed. First, define the cut line on the edges of T to partition the clusters into two classes; one

is the set of clusters already processed, the other consists of all the unprocessed clusters. Such a cut

is uniquely defined for a given cluster v being processed and an order a. Figure 2.2 illustrates the

situation, where the shaded clusters designate those already processed. Note that all the out-going

edges of v crosses the cut. Let T be the set of Boolean variables which cross the cut but arenot the

output variables Ov of v. More specifically, avariable is in T if andonly ifit is anoutput variable of

an unprocessed cluster other than v and either it is a primaryoutput or is an input variableof some

processed cluster. By definition, T andOv do not intersect, andtheirunion gives the completeset

of Boolean variables crossing the cut.

Let gW : £'*' -»• -B'T' be a Boolean function between the primary inputs and the

T variables defined above, which reflects the original functionality of the unprocessed clusters.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS18

Namely, #^(x) provides the value that appears at the T variables in the original network T
for the primary input x; gW is the set of global functions for the T variables. Similarly, let
g(u) . g\x\ _,. g\iv\ De a B00iean function between the primary inputs and the input variables

of the cluster v such that <7^(x) = u if and only if u is given at the input variables of v by the
original functions associated with the unprocessed clusters for the primary input x. Now, in order

to compute Tv, we use aBoolean relation H : j5l°"uTl x B^ -»• B defined between the variables
crossingthe cut line, i.e. Ov UT, and the primaryoutputs Z. It satisfiesthe following property:

Property 2: existential property

#(vt,z) = 1 if and only if there exists a combination of functions for the already

processed clusters, Cv = {fw : B^ -»• B^°^ \ fw e Tw and a{w) < cr(v)}, with which the
value z is obtained at the primaryoutputsby settingthe values of Ov and T to v and t, respectively.

Recall that Tw is a set of functions computed for a cluster w, where such a set exists for

each w with a(w) < a(v). Intuitively, the relation H shows what values can appear at the primary

outputs for a given value at the cut, and #(vt, z) = 1 as long as there exists a combination of

functions for the processed part for which vt is mapped into z. We then compute a Boolean relation

Fv : £|/v| x J5|0v| -» B defined atthe cluster vsuch that Fv(u, v) = 1if and only if

V(x,z) 6 £|x| x J5'zl: u = 5W(x) and fr(V>(x),z) = 1 =» M(x,z) = 1 (2.1)

It is then claimed that the set Tv of functions given by the relation Fv, i.e. Tv =

{fv : B^ -> B^l I Vu : i^(u,/„(u)) = 1}, satisfies the forward compatibility property
(Property 1). Intuitively, we can interpret the computation of Fv above as follows. By the forward

compatibility property, we want to compute a maximal set of functions at the cluster v so that, for an

arbitrarycombination of functionschosen from the sets computed so far, together with the original

functionality for the unprocessed clusters, the resulting functionality of the entire networkalways

meets the specification. Therefore, for a given pair ofminterms (u,v) e I?'7"' x 2?l°"l, we look at

each primary input x e #|x| and each primary output z € B^, and include the pair (u, v)in the
relation Fv if and only if (x, z) meets the specification for any possible primary output z. Avalue

z ispossibleif and only if the u value appears at the inputvariablesof the cluster v for the minterm

x, and the minterm vt can be mapped into z by the already processed clusters, where t = #^(x).
A formal proofof this claim is found in Theorem 2.4.3.

In theactual computation of Fv above, each of the operands is represented by a binary

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS19

decision diagram (BDD) [12], and the operations are performed on BDD's. A BDD is a data

structure to represent a single-output Boolean function, and thus the characteristic function of the

relation H or M can be directly represented by BDD's. For a multi-output function, such as
g(u) : #1*1 _> J3|/«lf this is done by defining a relation G^ : B^x\ x B^ -+ B such that

GM(x, u)= 1ifand only ifu = gM(x). G^ is represented by aBDD.
Once .Ft, is computed, theprocedure moves on to the next cluster according to the order

a. At thispoint, we need to update the cut line, since now the cluster v has been processed. The

new cutlineis shown in Figure 2.3. Since thecutlinehasbeen updated, wealso need toupdate the

relation H. The new relation, say fi, has the input part Iv and T, the output part Z, and satisfies
the existential property (Property 2) where thecluster v is replaced by theonebeing processed in

the statement. Specifically, such arelation H:B^Ix>uT^ x B^ -*• B is defined as if (ut,z) = 1if
and only if

3v 6 B\°«\: Fv(u, v) = 1and #(vt, z) = 1 (2.2)

Hence, the relation H is dynamically updated using therelation Fv just computed for thecluster v

and theoriginalrelationH. In the beginning of the procedure, theoutputvariables Ov of thecluster

v processed first, i.e. the one on the top of the order a, are all primaryoutputs. T variables defined

in the beginning are alsoprimary outputs, andthe union of Ov andT is equalto the set of primary

outputs Z. Hence, boththe inputpartand theoutput partof the relation H given in the beginning

are the primaryoutputs, and we initializeit as H(vt, z) = 1 if and only if vt and z are identical.

The procedure terminates when all the clusters have been processed.

The correctness of the proposed procedure is claimed below.

Theorem 2.43 The set of sets offunctions given at the end of theproposedprocedure over the

clusters ofT is a set ofmaximally compatiblesets ofpermissiblefunctions.

Proof: We show by induction that the forward compatibility property (Property 1)and the existential

property (Property 2) hold for the relations Fv and H, respectively.

For the base case, let v be the cluster on the top of the order a. We first show that the

forward compatibility property holds for the relation Fv computed by the formula (2.1). Since no

cluster has been processed before, the followingstatement is equivalentto the property; a function

/„ is a member of Tv if and only if the functionality of T meets the specification by replacing the

functionof v with fv. Now, recall that the outputvariables Ov of v are all primary outputs, and T

variables are initially defined as the restof theprimary outputs. Since the functionality of Tmeets

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS20

cut line

Figure 2.3: Updating the Cut Line during the Procedure

the specification with a function /„ if and only if for each x e B^x\ the value z obtained at the
primary outputs meets the specification, i.e. M(x,z) = 1, /„ has the property that /y(u) = v if

and only if

Vx e BW :u =^(x) =• M(x,z) = 1,

where z = v#W(x). Since the relation H isinitialized so that #(vt, z) = 1if and only if vt and

z are identical, the formula above is equivalent to the formula (2.1). Therefore, /w(u) = v if and

only if Fv(u, v) = 1. Hence, the functionality of T meets the specification for a function fv if and

only if /„ is a member of Tv, andthe forward compatibility propertyholds.

Supposethatthis Fv and theinitial relation H are usedto update the relation H according

to the formula (2.2). We prove that the resulting relation #(ut, z) satisfies the existential property.

Since v is the onlycluster processed so far, the property in this case is that #(ut, z) = 1 if and

onlyif there exists a function fv e Tv withwhich thevalue z is obtained atthe primary outputs by

setting Iv and T to u and t, respectively. Since Ovand T are the primary outputs, thisis equivalent

to saying that #(ut,z) = 1 if and only if there exists v e B^0v^ such that Fv(u, v) = 1 and
z = vt. Dueto the initialization ofthe relation H, it is equivalent to the formula (2.2), andthusthe

existential property holds.

Now consider the induction step. Let v be thecluster being processed. Suppose that the

relation # :Bl°vUT\ xBW -> Bhas been computed so that it satisfies the existential property. We
first show that the forward compatibility property holds for Fv given by the formula (2.1). Let /„

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS!!

be a function of Tv. We show that for an arbitrary combinationof functions forthe clustersalready

processed, say Cv = {fw : ^|/u'1 -> £|0w| I fw e Tw and a(w) < a(v)}, the functionality ofT
meets the specification by replacing the function of v with /„ and the function of w with fw € Cv

for each w such thato(w) < cr(v). Consider anarbitrary such Cv. For anarbitrary primary input

x e B\xI, let z be the resulting minterm ofthe primary outputs obtained by this Cv and /„. What
we want to show is that this z meets the specification for the minterm x. Let u be die value obtained

at the input variables of the cluster v for this x, i.e. u = g(u\x). Since /„ is amember of Tv,

Fv(u, /v(u)) = 1,and thus the formula (2.1) holds for thisu and v = /v(u). Due to theinduction

hypothesis, the relation .ff satisfies the existential property, and thus H(v#(')(x),z) = 1. Therefore,

the formula (2.1) impliesthat M(x, z) = 1,and thusthe specification is met. Conversely, suppose

that agiven function/,;: B^ -> l?'0"' has aproperty that the network Tmeets the specification for
this fv with an arbitrary Cv = {fw :B^ -• B\°"\ \ fw e Tw and a(w) < <r(v)}. We prove that
fv isamember of Tv. Specifically, we show that for all u € B\lv\ Fv(u, /v(u)) = 1. For agiven

u e #'/v', consider an arbitrary pair of minterms of the primary inputs and the primary outputs,
say (x,z), such that u = </M(x) and H{vg^\x),z) = 1, where v = /v(u). Since the relation

H satisfies the existential property due to the induction hypothesis, there exists a combination of

functions for the clusters already processed, say Cv = {fw : i?'7*"' -*• b\°w\ \ fw e Tw and

a(w) < ct(v)}, with which z is obtained at the primary outputs by setting the values of Ov and T

to v and fl^(x). Since /„ has a property that T meets the specification for an arbitrary such Cv,
M(x.,z) = 1. Hence, the formula (2.1) holds for these (u, v), andthus Fv(u, v) = 1. Therefore

/„ is a memberof Tv. This concludes the proofthat Fv satisfies the forward compatibility property.

What remains is to show that the relation R updated by the formula (2.2) satisfies the

existential property. Recall that the input part of H consists of T and the input variables I„ of

the cluster v, and the existential property for S is that #(ut, z) = 1 if and onlyif there exists a

combination of functions for the processed clusters, Cv = {fw : B^ -+ B^°w^ | fw € Tw and

a{w) < (t(v)}, with which the value z is obtained at the primary outputs by setting the values of

/„ and T to u and t, respectively. Note that Cv contains the cluster v as well. Since the original

relationH satisfiesthe existentialproperty, such Cv aboveexists if andonly ifthereexists a function

fv inTv such that H(/v(u)t, z) = 1. Equivalently, there exists v e £|0w| such that i^u, v) = 1
and ^(vt, z) = 1, whichis identical withthe formula (2.2). Hence the existential property holds

for the updated relation H. •

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS!!

2.4.3 An Example

We illustrate how the proposed procedure works using the example shown in Figure 2.4.

This example was introduced in [15] as a counterexample for which the method of computing

compatible sets of permissible functions proposed in [49] fails to compute maximal sets.

Suppose the clusters have been composed so that every cluster consists of exactly one

gate, i.e. there are three clusters u, v, and w. The order a of the clusters is given as w < v < u.

Suppose also that the specification is given as the functionality realized by the original network, i.e.

M(x\X2,z) = 1 if andonly if z = x\.

First, we initializethe relationH as H(w, z) = 1 if and only if w = z.

1. Clusters

The fanin clusters of w are u and v, and gM = X2 while gM = x\ © X2, where x\ © X2

designates the exclusive OR operation between x\ and X2. Using the formula (2.1), we obtain

the relationFw as Fw(uv,w)= (w = (u(& v)), where f = g designates the exclusive NOR

operation between / and g.

Updatingthe relation H using the formula(2.2), we obtain the new relation H(uv, z) = (z =

(u@v)).

2. Cluster v

The fanin cluster of v is u, and gM = x2. The current cut line is cut 1 shown in the

figure, and thus T variables consist of u as well. Using the formula (2.1), we obtain

Fv(x\u, v) = (v = (u © x\)). Updating H, we obtain H(x\u, z) = (z = zi).

3. Cluster u

The current cut line is cut 2 in the figure, and thus x\ is the unique T variable in this case.

ThusweobtainFu(x2, u) = 1for all (x2,u), i.e. Fu is tautologically one.

Since Fu = 1, we can replace u by an arbitrary function. By replacing u by a constant

value 0, we can delete both v and w to obtain z = x\.

2.4.4 Computing the Maximum Set of Permissible Functions

Thekey ideaof theproposed procedure is thatwhen a cluster v is processed, wecompute

a maximalset of functions that are compatible with thosecomputed so far, as statedin the forward

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS23

I

u f

l
i
i

cut 2 |

\

a^ v_ w I

I
I

cutl I

\

1
cutO \

\

Figure 2.4: An Example for ComputingMaximallyCompatibleSets of Permissible Functions

compatibility property (Property 1). The relation Fv representing sucha set Tv is computed with

the help of the relation H that satisfies the existential property (Property 2).

Now, we notice that when we proved in Theorem 2.4.3 that such a relation H is dynam

icallycomputed using the formula (2.2), we didnot use the fact thatthe relation Fw computed for

a cluster already processed satisfies the forward compatibility property. This implies that we can

interpret the proposed procedure as one that computes, at a give cluster v, a set of functions Tv

that satisfies the forward compatibility property for a given set of sets of functions {Tw} for all

the clusters w such that <j(w) < o(v), where Tw is simplya setof functions withthe input space

Iw and the output space Ow, and may not satisfy the forward compatibility property. Therefore,

when the procedure processes each cluster w suchthat <r{w) < <r{v), ifwe enforcethe procedure to

update the relation H using a set Tw which consists only of the function originally associated with

the cluster w, instead of the one computed by the formula (2.1), then at the cluster v, the procedure

computes the complete set of functions /„ defined at v such that the fimctionality of the network T

given by replacingthe original function of v by fv, together with the original functionality of the

rest of the clusters, meets the specification. Such a set is what we defined as the maximum set of

permissible functions for the cluster v in Section 2.3. Hence, we can use the proposed procedure

for computing the maximum set of permissible functions.

The argument above can be interpreted in a more general way. Suppose that when the

procedure processes a cluster w such that o(w) < cr(v), we first compute a Boolean relation Fw

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS!4

using the formula (2.1), and then replace it by another Boolean relation Pw such that the set of

functions represented by Fw is a non-null subset of the one represented by Fw. In other words, for

the resulting set Tw of functions for the cluster w,^^ <t> and Tw Q Tw. Ifweupdate the relation

Husing this new relation Fw, then when the procedure reaches thecluster v, it computes asetTvof

functions such that /„ € Tv if and only if for an arbitrary combination of functions for the already

processed clusters, Cv = {fw :B^ -»• .B'0"' | fw e Tw and cr(w) < <r(i>)},the functionality of
T meets the specification by replacing the function of v with /„ andthe functionof w with /„, € Cv

for each w such that a(w) < <r(v). Now, observe that when larger subsets Tw are used for the

preceding clusters, then asmaller set Tv isobtained at the cluster v2. This isbecause the procedure

computes Tv so that the functionality of T meets the specification for all possible combinations

of the functions of ^,'s3. Therefore, themaximum degree of freedom can be associated with a

cluster v when the functionality allowed at the rest of the clusters are maximally restricted, e.g. to

the original functionality, while the flexibility for the cluster v tends to be restricted as we allow

additional degree of freedom for the other clusters. Hence, we can use the proposed procedure to

compute various degree of freedom for each cluster by adjusting the size of the Boolean relations

for the preceding clusters.

Also note that in computing the maximum set of permissible functions at a cluster v

using the proposed procedure, we don't need to restrict the functionality of the preceding clusters

to the original one. Instead, we can choose any one of the permissible functions computed for a

preceding cluster w. Specifically, when a cluster w is processed, we firstcompute a set of functions

Tw as described above, and then choose one of them, possibly an optimal function jw € Tw.

We then update the relation H using the selected function Jw. When the cluster v is visited,

the procedure computes the maximum set of permissible functions, Fv, with respect to the set

of functions {Jw \ o{w) < 0{v)}- We then choose a function /„ from the relation Fv, replace

the function originally associated with v by fv, and then proceed to the next cluster. When all

the clusters have been processed, a function of the entire network meets the specification. In this

sense, we see that the only distinction between the maximum set of permissible functions and the

maximally compatible setsofpermissible functions is thatwhether onechooses tousethe flexibility

immediately when a cluster is visited, to replace its function by a simpler one, or to delay the

optimization for later.

^o be precise, the cardinality ofTv never increases ifstrictly larger subsets are used for the preceding clusters.
3Note that although the sets of functions {fw\ with Tv are not maximally compatible, the resulting Tv is made

maximal inthe sense that there isno function newly added to Tv without destroying the compatibility with the sets {Tw}.

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS25

2.5 A Clustered Boolean Network

In this section, we present a method of composing a clustered Boolean network from a

given Booleannetwork. The goal in clustering is to groupnodes of the originalBooleannetwork

into clusters so that the savings of the minimized logic implementations, compared to the ones

originally realized in the clusters, are maximized. It is important to develop effective clustering

techniques that maximize the potential for minimization.

We havedeveloped aheuristic forpartitioning Boolean networknodes tocompose clusters

basedon sharedness. The sharedness of a nodeof a Boolean network withan existing cluster is a

measure of how much a set of nodes share common logic. The nodes are grouped in such a way

that the resultingclustersconsistof functions withmutually high sharedness.

2.5.1 Sharedness

For a given Boolean network r\ = (N, E), the sharedness, W, between two nodes s and

t is the number of common minterms of the functions originally associated with the two nodes,

which are dependent only on the commonvariables of the nodes. Specifically, let / and g be the

functions associated in the originalBoolean network with the nodes s and t respectively. Suppose

/ andg have common inputvariables {c\,..., c*}. Ingeneral, wedenote the set of inputvariables

of the function / by {c\,..., c^,$\,...,sn}. Similarly, let {c\,..., c*,t\,..., tm} be the input

variables of the function g. Consider a Boolean function h ; Bk —> B defined by the common

variables such that h(c) = 1 if and only if for all pairs of minterms of the uncommon variables,

(s,t) € Bn xBm, /(cs) = g(ct) = 1. Thisfunction gives thesetof common minterms dependent

on the common fanin variables of the two nodes. We then define the sharedness between the two

nodes s and t, W(s,t), as the number ofminterms c e Bk such that h(c) = 1. The idea is that a

minterm c such that h(c) = 1 is alwayssitting in the ON-setsof the both functions / and g for all

possible input patterns of the Boolean space spanned by the uncommon variables s and t, and thus

we employ a heuristic that the more sharedness two nodes have, the more common logic might be

used to representboth functions. In the implementation, the function h is represented by a BDD,

and the number of minterms can be counted in time linear in the number of nodes of the BDD.

In a more general case, sharedness is defined between a node s and an existing partially

composed clusterC, where s is not a member of C. Since we wantto see if there is common logic

between s and some of the nodes in C, we define the sharedness W(s, C) between a node s and a

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS26

clusterC as W(s, C) = max W(s, t).

2.5.2 A Procedure for Composing a Clustered Boolean Network

The proposed procedure for clusteringtakes as input a Boolean network 77 = (iV,E) and

returns a set of clusters. A pseudo-code for the clustering procedure is presented in Figure 2.5.

The clusters are formed one by one until all the nodes have been assigned to clusters.

Each cluster is formed by adding one node at a time, starting from a seed node. The seed node

chosen for each new cluster is the one with the maximum number of fanins among the nodes that

have not been included in any cluster, since the node is likely to have high sharedness with other

remaining nodes. This selection is done in Max_Fanin.

To avoid expensive calculations of sharedness for all candidate nodes t, filtering is em

ployed. We use a first approximation to the sharedness for this purpose which is called the usability,

U. The filtering essentially orders the node list by filtering all bad nodes to the end of the list.

The idea behind usability is that groups ofnodes with a high degree ofcommon fanins are

likely to have high sharedness. Although good usability does not necessarily imply good sharedness,

we see that bad usability does imply bad sharedness. Given a node t, the usability is defined against

the seed node s of the cluster and is formally computed as:

Em(r,s,t)
2rrr f\ _ r<Efanin(s)Ufanin(t)

K'} \fanin(s)\Jfanin(t)\ ' Kl'5)
where fanin(s) designates the set of fanin nodes of s, and ra(r, s, t) is 2 if r is a fanin of both s

and t Otherwise, m(r, 5, t) is 1.

Once the nodelist is ordered by usability, we thenstart filling the clusters in decreasing

orderof usability. A nodet is included in cluster C if thesharedness W(t, C) is greater than a user

specified threshold. This process continues until all nodeshave been accepted into a cluster. Note

that it is also possible to have clusters with only one node in them.

Although the optimal sizefora cluster is undetermined, weplace an upper bound on the

size of each cluster. This is a parameterset by the user.

Note thateven ifa node has high sharedness with acluster, we cannot accept it if it creates

acycle inthe clustered network. The acyclic check isdone by IsXegal. For this purpose, we keep

track of the transitive fanin nodes and the transitive fanout nodes ofeach cluster composed so far.
The subprocedure TFO.TH updates the information whenever a new node is added to a cluster.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS!!

function Clustering^ = (N, E))

Node-List <- N;

2<-0;

whi!e(Node_List ^ <f>){

s <- Max_Fanin(NodeXist);

Qustertz] <— s;

Node-List <- NodeXist - {5};

TFO_TFI(i, s);

NodeXist <- Sort(NodeXist, Usability(s));

foreach(t e NodeXist){

if(Cluster|>'] is full) break;

if(Sharedness(i, ClusterO']) > Thresholdand IsXegal(2, Cluster|>'])){

Cluster^] <- Cluster|>'] U{t}\

NodeXist«- NodeXist- {t}\

TFO_TFI(i, t);

}

}

i«- i + 1;

}

return Cluster[0,...,*-!];

Figure 2.5: Procedure for Composing Clusters

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS!*

Specifically, a node t is defined as a transitive fanin of a cluster C if t belongs to a cluster C that

is a transitive fanin cluster of C or there is a fanout node of t that is a transitive fanin node of C,

where € maybeequal to C. Transitive fanout nodes of acluster are similarly defined. Then for a

given cluster C and a node s such that s £ C, the inclusionof s in C creates a cycle if and only

if there exists a fanout (or fanin, respectively) of s, say t, such that t is not in C and is a transitive

fanin (respectively, transitive fanout) of C.

2.6 Experimental Results

The proposed procedure has been implemented in SIS [51], a logic synthesis system for

sequential circuits. The proceduretakes as input a Boolean network, composes a clustered Boolean

network, and computes a set of permissible functions for each cluster. The set of functions is

minimized for each clusterusing aheuristic minimizer for Boolean relations, described in Chapter 3.

The minimizer finds a sum-of-products expression with a minimal number of product terms among

the functions in the set. The expression is transformed into a multi-level form, where the set

of operations used for this transformation can be externally specified. The resulting multi-level

representation is then compared with the original implementation of the cluster, and if the number

of the literals in the factored form for the new representationis less than for the original, the original

is replaced.

Experiments were performed on a number of benchmark examples. Since the proposed

procedure is unlikely to be effective for the circuits with little flexibility, we mainly applied the

procedure to the combinational logic parts of sequential circuits, where the set ofunreachable states

of the corresponding finite state machines were extracted, and were used as don't cares.

We first compared the results between the method of computing compatible sets of

permissible functions and the one for computing maximum sets. As described in Section 2.4.4, the

proposed procedure can be used to compute both types of permissible functions. For the case of

compatible sets, we apply the procedure given in Section 2.4.2 over all the clusters first, so that

maximally compatible sets of permissible functions are obtained. We then minimize each set of

functions forone cluster at a time. This type of computation is referred to astype C hereafter. For

the case of maximum sets, on the otherhand, we apply the same procedure for each cluster, but

immediately perform the minimization before processing the next cluster. When the next cluster is

processed, the functionality ofeach ofthe precedingclustersis fixed to the result ofthe minimization

for the cluster, so that the maximum set of permissible functions is obtained for the cluster being

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS29

Name

Initial

C3 M3 C2 M2 CI MlIn Out Lit.

s27 4 1 12 12 12 12 12 12 12

S298 3 6 244 98 93 111 108 100 100

s344 9 11 269 141 141 147 147 146 146

S349 9 11 273 141 141 147 147 146 146

S382 3 6 306 159 159 160 160 156 156

S526 3 6 445 217 219 214 213 194 191

S820 18 19 757 462 468 462 467 447 423

S832 18 19 769 472 469 468 461 448 427

Table 2.3: Comparison between Compatible Sets and Maximum Sets

processed. We referto this typeof computation as typeM. Asmentioned in Section 2.4.4, the type

M computation has more flexibility in a local sense, since the relationcomputed for a cluster has

only to agree with the current minimized implementation of the preceding clusters, whereas the

relationgivenby the type C computationneedsto agreewithall possiblefunctions that may result in

the final implementation of the preceding clusters. However, local flexibility docs not implyglobal

effectiveness, and thus it is not clear which method leads to better results in total.

Table 2.3 shows results for iscas-89 benchmarks. For each example, we performed

both types of computations and compared the results, where constant nodes and nodes with single

fanouts were removed from the initial Boolean network in advance. In either type of computation,

the threshold in sharedness was set to 1, i.e. two nodes are considered to have good sharedness if

there exists at least one minterm in common in the Boolean space spanned by the common fanins of

the nodes. In Table 2.3, the column Initial shows the size of the initial Boolean network, where the

columns In, Out, and Lit. designate the number ofprimary inputs, primary outputs, and the number

of literal counts in factored form, respectively. The columns C3, C2, and CI show the number

of literal counts of the resulting network obtained by the type C computation, where the attached

number k, k = 1,2,3, is the upper bound on the number of nodes in a single cluster used when

a clustered Boolean network was composed. Similarly, the columns M3, M2, and Ml represent

the results of the type M computation. According to the results, the difference was not significant

betweenthese two types of computations, although the type M was slightlybetter for most of the

examples; the least literal counts were achieved by the type M computation for all the examples

tried. Thecomputational time is notgiven in the table, butthe type M was usually faster by 10to

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS30

20 percent than the type C computationwith the same upper bound on the number of nodes in a

single cluster.

We also conducted another type of experiment, where the effectiveness of the proposed

procedure was examinedin a contextcommonin practicefor optimizingmulti-levelcombinational

logiccircuits,i.e. localoptimizationtechniques, suchastheonediscussed in thischapter, areapplied

in conjunction with globaloptimization techniques such as a factorization or a decomposition [9].

The objective of the experiment is to see the effectiveness of optimizing a set of nodes at a time in

a clustered Boolean network. Therefore, we compared the results with a method implemented in

SIS for computingsets of permissiblefunctions for Booleannetworks,where each node has exacdy

one outputand an optimization is madefor one node at a time. The methodwasproposed in [50],

and is referred to as full-simplify, its command name in SIS. The script of the optimization

procedures applied for each example is shown in Figure 2.6, where resub -a is an algebraic

resubstitution, f x is a procedure [58] for extracting kernels, while sweep and eliminate -1

remove constant nodes and nodes with single fanouts. The command br-simplify is the proposed

procedure, where the option -M specifies the upper bound k on the number of nodes in a single

cluster. The threshold in the sharedness was set to 1, and the type M computation was used for

computing a set of permissible functions. For the first br-simplify in the script, the minimized

sum-of-products expression returned by the relation minimizer for each cluster was transformed

into a multi-level form by applying f x, while it was collapsed into a one level form in the second

br-simplify. We tried the same script by varying the upper bound on the number of nodes in a

cluster from 1 to 3 in the first br.simplify. These results were compared with full-simplify

by replacing both br.simplify commands in the script of Figure 2.6 with f ull.simplify.

Table 2.4 shows the results. The column Initial shows the size of the initial circuit, and

the column full-simplify shows the results using full-simplify in the script. The columns

BR 3, BR 2, and BR 1 show the results of br.simplify, where the attached number indicates

the value of k in the script. The CPU time (seconds) for all the procedures of the script was

measured on a DECstation 5000/240, which includes the time for computing unreachable states of

the corresponding finite state machines.

The results show that marginally better results are obtained than with a procedure of

minimizing one node at a time. During the experiments for BR 3 and BR 2, we frequently

encountered the case where the Boolean relation computed for a cluster cannot be reduced to an

incompletely specified function with don't cares, especially for the clusters close to the primary

inputs. Thus a Boolean relation minimizer is indeed useful.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS31

sweep; eliminate -1

br.simplify -M k

resub -a

eliminate -1; sweep

fx; resub -a; sweep

br-simplify -M 1

sweep; eliminate -1

Figure 2.6: Script used for Table 2.4

Name

Initial full-simplify BR 3 BR 2 BR1

In Out Lit. Lit. Time Lit. Time Lit. Time Lit. Time

S27 4 1 12 12 0.2 12 0.2 12 0.2 12 0.2

S298 3 6 244 91 2.1 78 3.0 90 3.6 89 2.6

S344 9 11 269 142 9.8 140 19.0 142 18.5 142 15.9

S349 9 11 273 142 9.8 140 18.8 142 18.5 142 16.5

s382 3 6 306 127 7.1 126 12.3 133 8.9 135 7.5

S526 3 6 445 144 7.0 133 68.7 142 20.2 124 12.8

S820 18 19 757 335 36.1 309 83.1 289 38.2 319 29.1

S832 18 19 769 340 14.5 314 93.3 309 50.2 300 38.2

Table 2.4: Comparison with full-simplify

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS^

sweep; eliminate-1
simplify
eliminate -1

sweep; eliminate 5
simplify
resub-a

fx; resub -a; sweep

eliminate-1; sweep
full-simplify

script.rugged

sweep; eliminate -1
simplify
eliminate -1

sweep

br_simplify -M k
resub -a; eliminate -1

fx; resub -a; sweep

eliminate-1; sweep
br_simplify -M 1

script.br (k)

Figure 2.7: Scripts used for Table 2.5

We also made a comparison against scriptrugged, a standard script available in SIS

using the state-of-the-art optimization techniques. We used a script similar to script.rugged, but

br_simplify wasused. The scripuruggedand the one we used areshown in Figure 2.7. Thescript

we used does not invoke eliminate 5 after the second sweep. The command eliminate

5 clusters nodes of a network but uses a different criterion from the one described in Section 2.5.

It also restricts itself so that the resulting cluster has a single output. Thus instead of using this

clustering technique, we directiy applied our clustering procedure, given in Section 2.5, which is

implemented in br-simplify.

Table 2.5 summarizes the results. The column SIS 1.1 shows the results obtained by

script.rugged. The rest of the columns show those obtained by script.br (k), where the number

indicates the upper bound on the number of nodes in a cluster. The results derive the same

observationas the previousexperiments that script.br is slightiy better than scripuruggedfor most

of the examples. In fact, s832 wasthe only oneamong allthe examples tried where script.rugged

led to a better result.

CHAPTER 2. PERMISSIBLE LOGIC FUNCTIONS FOR MULTI-OUTPUT COMPONENTS

Name

SIS 1.1 (ragged) script.br (3) script.br (2) script.br (1)
Lit. Time Lit. Time Lit. Time Lit. Time

s27 12 0.1 12 0.2 12 0.2 12 0.2

S298 99 1.8 83 3.9 85 3.3 91 2.9

S344 143 6.2 142 25.2 141 23.7 142 21.6

S349 143 6.2 139 24.0 141 24.4 142 21.6

S382 154 6.9 133 9.1 134 10.4 134 8.2

S526 147 7.1 147 20.4 140 11.8 140 9.7

s820 297 58.7 291 65.6 304 75.8 274 39.5

S832 286 26.4 298 83.1 295 41.6 291 41.6

Table 2.5: Comparison with script.rugged

2.7 Concluding Remarks

In this chapter, we consider the problem of finding a set of permissible functions for a

system of interacting components implementing a combinational logic behavior. We considered

two types of permissible functions; the maximum set of permissible functions defined for a single

component, andmaximally compatible sets ofpermissible functions defined for a set ofcomponents.

We first described how a set of multi-output functions can be represented by using

a relation, and presented a procedure for computing maximally compatible sets of permissible

functions, where a Boolean relation is computed for each cluster of a given clustered Boolean

network. We also showed the relationship between the two types of permissible functions, by

demonstrating how the proposed procedure can be modified so that the maximum set of permissible

functions is computed instead.

The proposed procedure has an application in logic optimization of combinational logic

circuits. It is an extension of a technique called node optimization, in which a set of permissible

functions is computed for each node of a Boolean network, where a node implements a Boolean

function with a single output. Conventionally, it has been considered as a limitation that each node

must implement a function with only one output, since by taking into account multiple outputs

simultaneously,one may be ableto use a common logic to represent multiple functions. Therefore,

we implemented our procedure andcompared with state-of-the-art techniquesdeveloped forsingle-

output case. For this purpose, we also developed and implemented a heuristic for composing a

clustered Boolean network from a given Boolean network. The experimental results demonstrate

CHAPTER 2. PERMISSIBLE LOGICFUNCTIONS FOR MULTI-OUTPUT COMPONENTS34

that the concurrent minimization over multiple outputs can lead marginally better results than those

achieved by conventional node optimization techniques.

There is room for improvements in the clustering algorithms. The algorithm we used

is based on sharedness, a measure of the common logic shared among a set of nodes. However,

the objective in the optimization phase is to find as many functions as possible for a cluster that

can replace the original function associated with it. We observed that sharedness is not always

a sufficiently good criterion for forming clusters with many functions. In fact, since we force an

upper bound on the number ofnodes in a cluster,clusters formed by the algorithm sometimes have

a seriallycascaded set ofnodes, with only one output. Since our objective is to see the effectiveness

ofconcurrently minimizing more than one output, it is not meaningful to group such a set of nodes

together. This problem must be addressed in order to gain the practical effectiveness of node

optimization for multiple outputs.

Chapter 3

Minimization of Multiple-Valued

Relations

35

3.1 Introduction

InChapter2,wedescribed howto find asetof functions that canberealized inacomponent

of a system implementing a combinational logic behavior, and showed that such a set can be

represented by a Boolean relation. In thischapter, we consider the problem of optimizing relations.

Namely, for a given set of functions represented by a relation, we find a least-cost representation

over the functions in the set. This problem is generally referred to as logic minimization.

Researchin logic minimization hasbeen activeover the past40 years. Initialresearch was

directed towards developing techniques to produce an optimum sum-of-products expression of a

Boolean functionunderdon't care conditions[34], andhasevolved toward heuristicapproaches for

designing programmable logic arrays(PLA's) [8,25]. A Boolean function with don't care conditions

is called an incompletely specified Boolean function, and the problem above is sometimes referred

to as the two-level minimization of incompletely specified Boolean functions. More recentiy, as

seen in Chapter 2, it was shown that don't caresof the traditionalkind are inadequate to capturethe

complete freedom for optimizing multiple output functions, and a theory of Boolean relations was

introduced [11].

In parallel with this activity has been the minimization of multiple-valued functions

[31, 47], in which variables can assume more than two discrete values. The significance of this

problem is in its applications in areas such asPLA optimization [45] and stateassignment for finite

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 36

state machines [17].

In this chapter, we assume that a given relation is in general a multiple-valued relation, in

the sense that the input variablescantake multiple (more than two) values. Although we assume that

the output variables are still binary, this is not a restriction since we can encode a multiple-valued

output using binary output variables. This aspect will be detailed later in Section 3.3. Also, a

Boolean relation is a special case of the type of relations considered here, and thus our problem

subsumes the problem ofminimizing Boolean relations.

Multiple-valued relations arisein many contexts [6,11,32], besides the local optimizations

ofmulti-level combinational logic circuits considered in Chapter 2. For example, the behavior of a

completely specifieddeterministicfinite statemachineis givenby a functionF : IxSxSxO -*• B

such that F(i, p, n, o) = 1 if and only if the input i and the present state p causes the machine to

evolve to the next state n and produce the output o. F is amultiple-valued relation with the input set

I x S and the output set S x 0. For a given initial state, a set of equivalent states can be computed

as a function E : S x S -> B such that E(n, ft) = 1 if and only if n and n are equivalent [27,38].

Since a state can be mapped to any of the equivalent states of the next state, we have the possibility

of,implementing a more compact machine using the equivalent states. Namely, our objective is to

find a leastcost machinegivenby the function FiIxSxSxO^B suchthat F(i, p, n, 6) = 1

if and only if either jF(z, p, ra, o) = 1 or there exists a state n for which F(i,p,n,o) = 1 and

E(n,n) = 1. F provides thecomplete family of finite state machines equivalent to the original

machine under the equivalent states.

For the cost function, we use the number of product terms required in a sum-of-products

expression representing a function in the set given by the relation. Conventionally, a function in the

set represented by a given relation is called a compatiblefunction [11]. Then the problem is that

for a given multiple-valued relation, find a sum-of-products expression with the minimum number

of product terms for a function compatible with the relation. Note that in terms of the minimization

problem, a relationcan be deemed as a generalization of an incompletely specified function, and

thus if the set of functions represented by a given relation can be represented by using a function

with don't careconditions, then the minimization problem is reduced to the conventional two-level

minimization of incompletely specified functions.

Somenzi and Brayton proposed and implemented an exact minimization procedure for

Boolean relations, with which an optimumsum-of-products representation is obtained[53]. How

ever, since the method is exact, it is expensive both in CPU time and memory space, so that only
small examples can be handled.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 37

Our focus in this chapter is on heuristic minimizations. Ghosh et al. [22] proposed

and implemented an approach for Boolean relations which makes use of test pattern generation

techniques and heuristically finds a sum-of-productsexpression. The method is similarto two-level

minimizers for Boolean functions (e.g. [8]) in the sense that procedures analogous to expand,

irredundant, and reduce are repeatedly applied as long as the cost decreases. However, unlike the

most effective two-level minimizers that consider multiple variables to be expanded or reduced

simultaneously, the method is greedy and only one variable is examined at a time. Thus the

minimizerof [22] is more likely to getstuck atabad solution. This drawback is fatal for extending

themethod since thesimultaneous expansion of multiplevariables implies theuseof multiple faults,

which couldbe very expensive to detectwith ATPGtechniques. Furthermore, the method is adirect

application of ATPG methodology to this problem and little new theoretical analysis is provided.

For example, the contrast between the properties of relations and those of ordinary functions may

be useful in the minimization process.

We propose a heuristic procedure for the minimizationproblem of multiple-valued rela

tions, based on a paradigm of the more advanced two-level minimizationtechniques for Boolean

functions. We present some special properties associated with relations not found in functions.

These properties must be carefully accounted forwhile implementinga procedure that is effective

in achieving highqualityresults. Thesealgorithms are implemented inaprogram called GYOCRO1,

and provide experimental evidence of their effectiveness.

This chapter is organized as follows. In Section 3.2, terminology is defined and a brief

review of multiple-valuedrelations is provided. Section3.3 addresses some of the questionsposed

formultiple-valued relations, suchashow multi-valuedoutputscanbe handledusing binaryoutputs.

Section 3.4 describes how to identify whether a given relationis an incompletely specified function,

as well as a procedure that extracts the care and don't care sets from the relation if it is a function.

Section 3.5 presents the minimization procedure employed in GYOCRO in which technical details

are described for each sub-procedure along with supporting theoretical analysis. Experimental

results of the proposed method are presented in Section 3.6, where some potential modifications

of the algorithms are also discussed. Section 3.7 summarizes the chapter with some concluding

remarks.

'GYOCROis aJapanese teaand although it isnotstrong likeESPRESSO, it hasgood taste.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 38

3.2 Preliminaries

We describe the relationship among functions and relations, and see when a procedure is

needed for minimizing relations directly.

3.2.1 Terminology

We follow references [8,11,45] for most ofthe terminology used throughout this chapter.

Definition; Multiple-Valued Relation

A multiple-valued relation jRisa subsetof D x Bm. D is called the input set of R and

is the Cartesian product of n sets D\ x •••x Dn, where A = {0,..., P,- - 1} and Pi is a positive

integer. D{ provides the set of values that the i-th variable of D can assume. Bm designates a

Boolean spacespanned by m variables, eachof whichcan assume either0 or 1. Bm is called the

output set of R. If Pi is 2 for all i's, then R is called a Boolean relation. The variables of the

inputset andthe outputset arecalled the input variablesandthe output variablesrespectively. R

is well-defined if for every x e D, there exists y e Bm such that (x, y) e R.

We represent a relation R by its characteristic function R : D x Bm -+ B such that

12(x,y) = 1 if and only if (x, y) € R. In the implementation, we represent a characteristic

function by using an MDD (Multi-valued Decision Diagram) [54]. An MDD is a data structure to

represent a function with multiple-valued input variables and a single binary output, which employs

a BDD [12] as the internal data structure. In the sequel, we make no distinction between a relation

and its characteristic function.

Definition: Incompletely Specified Function

A single-output function / : D -> B is said to be incompletely specified, if there exists a

non-null subset S C D for which the output value of / is not specified. An element of 6 is said to be

an unspecified input minterm, or a don't care minterm. A multiple-output function f : D -*• Bm

is said to be incompletely specified if thereexists at least one outputfor whichthe corresponding

function is incompletely specified.

A function that is not incompletely specified is saidto be completely specified. Clearly, a

completely specified function is a special case of an incompletely specified function. Throughout

thispaper, whenever wedefine a function, weassumethatit iscompletely specified, unlessotherwise

mentioned.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 39

It is interpreted that the output value of an incompletely specified function / : D -»• B

for a don't care minterm x may be either0 or 1. In this sense, we can regard that an incompletely

specified function represents a set of completely specified functions. The set 6 C D of don't care

minterms is called the don't care set for /. The set ofminterms of D that are not don't care minterms

is called the care set. Among the careset, the set of minterms x for which /(x) = 1 is called the

on-setfor /, whilethose with /(x) = 0 is calledthe off-set for /.

An incompletely specified function is a special case of a relation, in the sense that for a

given incompletely specified function / : D -»• Bm, a relation F C D x Bm can be defined so that

(x, y) € jP if and only if for each output j, the value of the j-th output in y is equal to /(j)(x)»

unless x isadon't care minterm for the output, where f^ designates the j-th output function of/.
We may refer to the relation F as the characteristicfunction of /.

Definition: The Image ofa Multiple-Valued Relation

For a given relation R and a subset A C D, the image of A by R is a set of minterms

y € Bm for which thereexists a minterm x e A suchthat (x, y) e R, i.e. {y | 3x € A : (x, y) e

R}. The image is denoted by r(A). r(A) maybeempty.

Definition: Compatibility of a Multiple-Valued Function

For a givenrelation R C DxBm, a multiple-valuedfunction/ : D -> Bm is compatible

with R, denotedby / -< R, if for everymintermxGA /(x) € r(x). Otherwise/ is incompatible

with R. Clearly, / -< R exists if and only if R is well-defined.

Definition: Literal and Product Term

For the *-th variable Xi of D, a literal of xi is the characteristic function of a subset 5, of

Di, and is denoted by xf*. Si may be empty. Aproduct term pdefined inD is aBoolean product
of literals of all the variables of D. Thus p is the characteristic function of a subset of D.

For the j-thoutput function fW of/ : D -*• Bm, asum-of-products expression (or simply
anexpression) of fW is a union ofproduct terms such that the resulting characteristic function is

equivalent to ft\ Asum-of-products expression of / is a set ofsum-of-products expressions for

all the output functions.

Definition: Cube and Representation

For a sum-of-products expression of a function / : D -+ Bm, a cube is a product

CHAPTERS. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 40

term p of the expression specified as a rowvector with two parts, c = [7(c)|0(c)], where 1(c) =

[7(c)i,..., I(c)n] and 0(c) = [0(c)i,..., 0(c)m]. 1(c) and 0(c) are called theinput partand the

output partof c respectively. The i-thcomponent of 1(c) represents a setof values contained inthe

i-th literal of p, and consistsof P,- binary bits. Each bit is called a part. The k-th part of /(c),-,

k 6 {0,..., Pi -1}, is 1if the i-th literal ofpcontains thevalue k. It is 0 otherwise. Fortheoutput

part, 0(c)j = 0ifpis not present in the expression of fo\ Otherwise, 0(c)j = 1. We denote by
M(c) the set of minterms of D contained in c. A set of cubesis called a representation.

For two cubes c and d, c contains d, or c covers d, if c has 1 for every part that d has 1. In

addition,c strictly contains d if they are not equal. For a givenmintermxeAwe say x is covered

by a representation, if x is containedin someof the cubes of the representation.

Throughout the chapter, we show examplesof representations, in which all the inputs are

binary variables. For the sake of simplicity, we represent the input part of a cube c as an n-tuple

[/(c)i,..., I(c)n] suchthat /(c),- takes 0 if the i-thliteralof p takes a value0,1 if the i-thliteralof

p takes 1, and 2 if the literal takes both 0 and 1.

For a given representation T, a function / : D -*• Bm is uniquely defined, where an

expression of / is given by T. Thus we say that a representation T is compatible with a relation

R if the corresponding function / is compatible with R. Similarly, the image of A C D by the

representation T is the image of A by a relation F given by F = {(x, y) e D x Bm \ y = /(x)}.

Definition: Candidate Prime (c-prime)

For a given relation R, a cube c is a candidate prime (or a c-prime) if there exists a

function compatible with R in which c is a prime implicant [8].

Definition: Relatively Prime Cube

For a given relation R and a compatible representation T, a cube c e T is prime relative

to T (or relatively prime in T) if for any cube c which strictly contains c, a replacement of c with

c in T results in an incompatible representation with R. A representationT is relatively prime if

T is compatible with R and every cube of T is relatively prime in T.

Note that if c e T is relatively prime in T then c is a c-prime, but not the other way

around. We distinguish the notion of primality between relations and ordinary functions, since in

relations, the primalityof a cube depends upon the other cubes of the representation in which the

cube is present. This is not the case for functions.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 41

Definition: Redundant Cube

For a given relation R and a compatible representation T, a cube c e T is redundant

in T if removal of c from T maintains the compatibility of the representation T - {c} with R.

Otherwise c is irredundant.

A representation T is said to be irredundant if T is compatible with R and there is no

proper subset ofT which is also compatible. Otherwise, T is redundant. Note that the irredundancy

of a representation T implies the irredundancy of every cube of T, but not the other way around.

The following example illustrates the situation.

Example 3.2.1 Consider a Boolean relation shown in Table 3.1. The relation has two input

variables and two output variables, and the table means that a pair of input and outputminterms

(10,11) a member of the relation, (10,00) is another member of the relation, and so on. The

representation T shown on the left handside of the table is compatible with this relation,since it

maps an input minterm 10 to an outputminterm 11,00 to 11, and the rest ofthe input minterms to

00. Every cube of T is irredundant, since the removal results in an incompatible representation.

However, aproper subset T which consists only ofc^ isalsocompatible, and thus T is redundant.

Representation T Relation R

cube Input Output xeB2 yeB2
ci 10 01 10 11,00

C2 10 10 01 00

C3 00 11 00

11

11

00

Table 3.1: Example of Redundant Representation with Irredundant Cubes

3.2.2 Functions, Mappings, and Relations

Given a multiple-valued relation R C D x Bm, a compatible function exists if and only

if R is well-defined. By definition, R is well-defined if and only if for all x € D, there exists y

such that #(x,y) = 1. The well-definedness can be easily checked by using MDD operations.

Now, with this condition satisfied, R can be representedas a multiple-valuedmapping r : D -+ Bm

given by r(x) = {y e Bm | (x,y) e R}, where we define a mapping as one which defines at

least one minterm of Bm for each minterm of D. In general, the mapping r is a one-to-many

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 42

mapping, and provides the complete family of functions compatible with R. If, in addition, r(x)

can be represented as a singlecube for every x e D, then r can be expressed as an incompletely

specified functionfll]. Thus for each output of r, the set D can be divided into the On-set, the

Off-set, and the Don't-care set. Once these three sets are obtained, the problem is reduced to

the conventional minimization for incompletely specified functions . As we will see later, the

minimization of functions is a simpler problem than the minimization of relations. Furthermore,

a number of methods for function minimization exist (e.g. [10,16, 25, 34,45,47]). Therefore, if

this is the case, we invoke one of the conventional procedures for minimizing functions to obtain

a minimal implementation of the given relation R. If, on the other hand, the mapping r cannot be

expressed as an incompletely specified function, a procedure capable of handling the relation R

direcdy is needed.

In Section 3.4, a procedure is presented that identifies whether r is an incompletely

specified function, and if so extracts the care and don't care sets. In this way, logic minimization

is handled in a uniform fashion; minimization of functions and minimization of true relations are

viewed in parallel as equal sub-procedures in the minimizationofrelations. The entire minimization

procedure of relations is illustrated in Figure 3.1.

3.2.3 Applications of Multiple-Valued Relations

One can easily imagine applications for minimizing relations, by considering those for

minimizing functions. One such example is state assignment. Suppose a completely specified

deterministic finite state machine is given by the characteristic function FiIxSxSxO^B

such that F(i, p, n,o)= 1 if and onlyif thenextstate n and the output o are asserted by the input i

and the current state p. F is the characteristic function of a multiple-valued relation with the input

set S x I and the output set S x 0. The symbolicvariable for S in the output set are encoded in a

way described in Section 3.3. In fact, we know that F can be expressed in a form of an ordinary

function since the given machine is deterministic and is completely specified. However, suppose

we are givena set of equivalent statesby a function E : 5 x S -* B such that E(n, ft) = 1 if and

only if states n and ft are equivalent. Also given is a set of invalid states by a function T : S -*• B

such that T(p) = 1 if and only if p is a state not reachable from some initial set of states. Then a set

of machines equivalent to F under the equivalent states and the invalid states is given by a function

F\IxSxSxO->B such that P(i,p, n,o)=l if and only if F(i,p, n, o) = 1or T(p) = 1,or

thereexists a state ft for whichF(i, p,%6) = 1 and E(n, ft) = 1.

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS

Multi-Valued Relation

No Solution

Function True Relation

ON
Set

OFF
Set

DC
Set

Representation

43

Figure 3.1: The Minimization ofRelations

In order to obtain a least cost implementation of a machine equivalent to the original one,

we first find a least cost machine at the symbolic level. Namely, our objective is to minimize the

multiple-valued relation F. If the number of symbolic product terms is thecost function used, then

the problem is reduced to the relation minimization focused in this chapter. Other applications of

multiple-valued as well as Boolean relations can be found in [11,32].

Example 3.2.2 Thecase wheretheuse ofequivalent states resultsin a representation with less cost

is illustratedin thefollowing example. Supposethata completely specified deterministicfinite state

machine is given as shown in Figure 3.2. Each circle designates a state of the machine and the

label i/o associatedwith eacharc implies that the input i and thestateassociated with the tailof

thearc causes themachine toproduce thestateshown on theheadofthearc and theoutput o. The

minimized representationfor this machine is shown in Table3.2-(a). If, in addition, we know that

the state S3 and 34 are equivalent, then we canfurther minimize the machine and obtain a better

representation shown in Table 3.2-(b).

Other applications, where relations arise, can be illustrated as follows. For the sake of

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS

Figure 3.2: Completely Specified Finite State Machine

/ s 5 0

1 51, 54 53 0

- *2 51 0

1 53 54 0

0 51 51 1

0 ^3,^4 52 1

(a)

51, 53, S4

52

51

53,54

(b)

53

51

51

52

0

Table 3.2: Minimized Representations of the Finite State Machine

44

simplicity, we consider only the binary-valuedcase. Consider the situation illustrated in Figure 3.3.

Let g : Bp -• Bq be a Booleanfunction and h : Bn -»• Bq be aBooleanmapping,wherethe image

ofaminterm x e Bnby h,h(x), mayconsistof multipleminterms. Let Br bethesubspace spanned

by the variables common to both Bn and Bp. Br may be empty. Denote the orthocomplement of

Br in Bp by Bm, where rrt = p - r. Consider the problem of finding a function / : Bn -*• Bm

such that

Vx € Bn : <?(v/(x)) € /*(x), (3.1)

where v is the projection of x from Bn to Br. Our objective is to find an implementation / of

least cost with the property (3.1), if such a function exists. Namely, considering a relation R given

by R = {(x,y) GBn x Bm \ g(vy) e h(x)}, ourproblem is to find a leastcost implementation

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 45

Zl j_Zqa

g(Xl,...,Xr,Yl,...,Ym) h(Xl,...,Xn)

ii ii n

Yl Ym m=p-r

f(Xl,...,Xn)

XI Xr Xr+1 Xn

Figure 3.3: Structure where Boolean Relation Arises

compatible with R. The relation R is computed as follows. Let H : Bn x Bq -»• B be a relation

givenby {(x,.z) | z € Mx)}- Similarly, let G : BpxBq -*• i?be arelation suchthatC?(vy, z) = 1

ifandonlyifflf(vy) = z. Theni^(x,y) = 1ifandonly ifthereexists z € I?9 suchthat.ff(x,z) = 1

and G(vy, z) = 1. The actual computationof R is done on MDD's fairly efficientiy for many

cases.

This problem naturally arises in several applications. One context is the combinational

logic optimizationofmultiple-outputcomponents described in Chapter 2. Anotheris the rectification

problem concerned with "engineering changes", where one has implemented a function g with a

highly optimized layout, only to encounter a specification change such that the correct functionality

must be h. One possibility for rectifying this situation is to build a block of prelogic which sits

between the inputs and the circuit already built. The equation (3.1) gives the condition for the

function / of the attached block so that the resulting circuit is functionally equivalent to h. A

detailed discussion of the rectification problem can be found in [60].

3.3 Questions on Multiple-Valued Relations

A relation considered in this chapter is one with binary output variables. In this section,

we consider the following two questions;

1. whether a relation with multiple-valued outputs can be handled with binary-output relations,

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 46

2. whether the minimization problem for a relation can be transformed into the problem of

minimizing an incompletely specified function with multiple-valued inputs and a single

binary output.

The posing of the second question is motivated by the fact that the answer is yes if the given relation

is in fact an incompletely specified function.

3.3.1 Representations of Multiple-Valued Outputs

There are several contexts where the problem is formulated as the minimization of a

relation with multiple-valuedoutputs. We discuss how such a relation is handled with a multiple-

valued relation defined in this chapter, i.e. one with binary-valued outputs. Specifically, we describe

how to represent a multiple-valued output in terms of binary outputs using three encoding schemes

known as l-hot encoding, 0-hot encoding,and log-based encoding respectively.

Consider a relation T C D x E, where E is the Cartesian product of t sets E\ x • •• x Et

where Ej consists of Lj integers, i.e. Ej = {1,..., Zj}. Anencoding is the process of assigning

a set of binary variables for each multiple-valued variable ctj such that (1) each value of Ej is

associated with a subset of the Boolean space spanned by the binary variables and (2) for each value

the subset definedby the encodingis disjointwith that for any other value of Ej.

The l-hot encoding is an encodingscheme in which each multiple-valuedvariable oj is

represented by Lj binary variables {y\3\..., ui'} such that <tj = ke Ej ifand only ify%' = 1
t

and Vi = 0for i ^ k. This scheme requires ^T Lj variables to represent all the variables ofE.
3=1

The 0-hot encoding is the same as the l-hot encoding in which the meaning of 1 and 0 for each

encoded binary variable is switched.

Example 3.3.1 Suppose that Table 3.3 isa specification ofa relation T C B2 x E with two binary

inputs x\, X2 and two multiple-valued outputs <r\ and <r2, where both o\ and oi can take three

values. Then the transformed relation RC B2 xB6 with the l-hot encoding isshown inTable 3.3.

The log-based encoding represents a multiple-valued variable with Lj values using pj

binary variables, where pj is the smallest integer no less than log2Lj. Each value of Ej is

represented as a product term of the encoding variables such that two product terms corresponding

to two differentvalues are disjoint. The product term for each value may correspond to a set of

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS

r C B2 x E RCB2x Bb

x\x2 (^l,^) X\X2 W^tiWWKW)
11

10

01

00

{(3,2), (2,1)}
{(2,3)}
{(1,2), (1,3)}
{(2, 1)}

11

10

01

00

{(0,0,1,0,1,0), (0,1,0,1,0,0)}
{(0,1,0,0,0,1)}
{(1,0,0,0,1,0), (1,0,0,0,0,1)}
{(0,1,0,1,0,0)}

47

Table3.3: The 1-HotEncoding of a Relation with Multiple-Valued Outputs

mintermsof the encodingvariables, ratherthan a singleminterm. For someapplications, it is useful

to define the encodings so that the Boolean union of the product terms over all the values of Ej

is the universe of the Boolean space spanned by the encoding variables [54]. A minterm a of E

corresponds to the Boolean product of the product terms for the values of the variables of E in a.

Example 3.3.2 Consider the same relation T used in Example 3.3.1. Since both a\ and a2 can

take three values, each variable is represented by two binary variables. Let y[3* and y2 be the
encoding variablesfor oj. Suppose that 1, 2, and 3are represented as U\y2, y\ y2 , and y\
respectively, then the transformed relation R C B2 x BA isobtained as shown inTable 3.4.

TCB2xE R C B2 x B4

X\X2 (<7\,Gl) X\X2 (*llU1\tfUw)
11

10

01

00

{(3,2), (2,1)}
{(2,3)}
{(1,2), (1,3)}
{(2,1)}

11

10

01

00

{(1,1,0,1), (1,0,0,1), (0,1,0,0)}
{(0,1,1,0), (0,1,1,1)}
{(0,0,0,1), (0,0,1,0), (0,0,1,1)}
{(0,1,0,0)}

Table 3.4: The Log-Based Encoding of a Relation with Multiple-Valued Outputs

3.3.2 Transformation of Multiple Outputs to a Multiple-Valued Input

It is shown in [46] that the two-levelminimization problem for an incompletely specified

function with multiple-valued inputs and binary-valued outputs can be equivalentlyhandled as the

problemof minimizingan incompletelyspecified functionwitha singlebinaryoutputby treatingthe

outputpart of the originalfunction as l-hot encoded variables for a singlemultiple-valued variable.

The newlydefinedincompletelyspecified function is conceptually the characteristic functionof the

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 48

set of pairs of mintermsof the inputsand the multiple-valued output (x, a) such that x is mapped

to a by the original function, but the characteristic function explicitly uses don't cares.

We are interested in whether this equivalency holds for multiple-valued relations with

binary outputs. Specifically, the question is whether there exists an encoding scheme with which

the output part of the relation can be treated as a single multiple-valued variable such that there

exists an incompletely specified function with a single binary output with the inputs consisting of the

original inputs and the newly definedmultiple-valued variable for which the two-levelminimization

problem is equivalent to the problem of minimizing the original relation. As with the minimization

of incompletely specified functions, we consider whether the characteristic function can be well

formulated for some encoding schemes. We show that the encoding schemes described in the

previous section, i.e. the l-hot encoding, the 0-hot encoding, and the log-based encoding, do not

fall into this category.

Given a relation II C D x Bm and an encoding scheme, our objective is to prove or

disprove that there is a single output function that has an additional multiple-valued input. The new

variable is defined by regarding that the encoding of the variable with the given encoding scheme

results in the output part of R. Our requirement is, as with ordinary functions, that the two level

minimization of the resulting single function leads to a result that when interpreted correctly is a

minimum of the original minimization problem.

Suppose that we employ the l-hot encoding. Let Y be the multiple-valued variable for

theoutputs. Y can takem values, E = {1,..., to}, andwedenote a value of E simply by j, where

1 < j < to. A minterm of Bm corresponds to a set of values of E, i.e. a literal of Y. Thus the

relation R maps a minterm x e D toa setof literals of Y. Denote thesetof literals by r(x). Recall

that in minimizing 11, wc can choose, foreach x e D, any minterm y € Bm such that (x, y) e R.

Therefore, in terms of Y, we can choose any literal of Y from the set r(x). Now,if Y is treated as an

input variable, then we need an incompletely specified function / : D x E -» B, such that all and

onlythe implementations of / define compatible functions with R,where an implementation of / is

interpreted that it defines a function from D to Bm whichmapsan inputminterm x € D to y € Bm

with the property that ijj = 1 if and only if (x, j) is mapped to 1 by the implementation. Since R

defines a relation between each inputminterm x e D and a set of literals of Y, r(x), the function

/ must reflect this relation as well. On the other hand, the output of / must be defined fora pair of

minterms ofDx E, rather than a pairof minterm of D and a literal of Y. Therefore, the output

value /(x, j) may not be defined for some pair ofminterms (xJ)eDx E. Forexample, if there

exists a pair (x, j) e D x E for which r(x) consists of two literals, y and y, such that j e y,j gy

CHAPTER 3. MINIMIZATIONOFMULTIPLE-VALUED RELATIONS 49

and there exists another value i of E with ilg yand i e &then theoutput /(x, j) cannot bedefined,

since it depends onwhich literal of r(x) will bechosen as the output of a function compatible with

R. More specifically, wecannot setf(xj) = 1since itimplies that every implementationof /must

map (x, j) to 1, although there exists afunction compatible with Rwhose output for x corresponds
to#, and j £ #means that there may exist an implementation of / that maps (x, j) to0. Similarly,

we cannot set f(xj) = 0 since it implies that no implementation of / maps (xj) to 1, although

there exists a function compatible withRwhose output for x corresponds to y,and j € ymeans that

there mayexist an implementation of /that maps (x, j) to 1. Furthermore, (x, j) cannot be setas

adon't care minterm since it implies that for any implementation of /, the output for (x, j) isdon't

care, i.e. maybe either 0 or 1, regardless of the output for (x, i), although an implementation that

maps (x, i) to0defines afunction compatible with Rwhose output for x corresponds toaliteral y,
and thus (x, j) must be mapped to 1. In order to understand this situation, divide the values of E

into three sets; let (p(x) bethe set of values of E contained in all the literals of r(x), p(x)bethe

setof values of E notcontained in any of the literals of r(x), and 6(x) the rest. Then theproblem

above does notarise, i.e. theoutput of /(x, j) can bedefined for all (x, j), if for an arbitrary subset

S C S(x), there exists aliteral 0 e r(x) which contains all and only the values of <p(x) and S. It

is because in this case, we can settheoutput value of / for (x, j) to 1if i e <p(x), 0 if j € p(x),

and unspecified or don't care otherwise. If this condition holds for every (xJ)eDx E, then

the function / is well formulated and the minimized result has a correspondence between each

x e D and exactly oneliteral of r(x). In thiscase, we knowthat by definition the original relation

R C D x Bm is reduced to anincompletely specified function. However, for arelation in general,

the function / cannot be formulated. Therefore we cannot convert R to asingle outputincompletely

specified function with the l-hot encoding scheme. The same statement is claimed for the 0-hot

encoding scheme.

Now consider the log-based encoding scheme. Namely, treat each minterm of Bm as a

single value of a multiple-valued variable Y. Thus Y can take 2m values, denoted as E. In this

case, R maps each minterm x e D to a set of values of E. Denote this set of valuesby r(x). If

Y is treatedas an input variable, then we need an incompletely specified function / : D x E -+ B

such that forevery x€ D, theremust exist exactlyone valuea e r(x) forwhich (x, a) is mapped

to 1 by the implementationobtained by minimizing /. Thus we need to decide, for each x e D,

which value of r(x) must be chosen and once one of the values has been selected, we must not

choose any other value of r(x) with which x is mapped to 1. Inother words, the value of /(x, or)

depends on the value of /(x, a) for another a € r(x), and thus cannot be defined individually.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 50

This constraint cannot be handled in the conventional minimization problem. Therefore, we cannot

transform the minimizationproblem for a relation R to the problem of minimizing an incompletely

specified function with a single output and multiple-valued inputs.

Thus, any of the encoding schemes considered above cannot be used for transforming

multiple binary outputs to a single multiple-valued input. We conjecture that no such encoding

scheme exists.

3.4 Function Minimization and Relation Minimization

As seen in Section 3.2.2, a multiple-valued relation may happen to be an incompletely

specified function. In this case, a procedure developed for minimizing relations should be invoked

since the minimization of incompletely specified functions is a simpler problem for which highly

optimized software exists, and thus is completed more efficiendy with a procedure designed ex

clusively for functions. Therefore, we need a method that identifies whether a given relation is an

incompletely specified function. We present one such method which, as a byproduct, can provide

the on-set, the off-set, and the don't care set if the relation is an incompletely specified function.

An overview of the procedure is as follows. The input is a well-defined multiple-valued

relation R C D x Bm. Hence thereexists an associated mapping r(x). Foran outputvariable yj,

let <&(J) bea set ofminterms x e D such that yj = 1for every minterm y Gr(x). Similarly, let
PW be a set of minterms of x GD such that yj = 0 for every minterm y Gr(x). Let A^) be

the remaining minterms. These sets are computed as follows. Let s[3' be aset of minterms x GD
such that there exists aminterm y Gr(x) in which yj = 0. Let 4 De aset °fminterms x GD
such that there exists aminterm y Gr(x) in which yj = 1. Then &W = -isj ,P^ = _,,4 »an<^
&V) = s[j)s[3\ Note that the formulas for O^ and P(i) are valid ifand only ifRis well-defined.
The proposed procedure computes the three sets &3\ Pti\ and A^ for every output yj in parallel,

m

and then computes T(x, y) = JJ^^i + P^Vj +A(j)). The following theorem identifies ifR

is in fact an incompletelyspecifiedfunctionby comparing R and T.

Theorem 3.4.1 A well-defined relation R(x,y) is the characteristic function of an incompletely
specifiedfunction ifandonly ifR(x, y) = T(x, y).

Proof: Suppose R(x,y) isthecharacteristic function ofanincompletely specified function C: D -+
Bm. Then (is represented interms ofits on-set, off-set, and don't care set functions, <p:D^- Bm,

CHAPTER 3. MINIMIZATIONOFMULTIPLE-VALUED RELATIONS 51

p : D -• Bm, and 6 : D -*• Bm respectively, such that for each output j,

(a) Vx GD:(<p^(x) 0 p^(x))6(j)(x) +(pW(x) ©«W(x))?#>(x) =1,
(6) ^J-.^J1 i^(%)+̂W=l, 0.2)

[0 ifpW(x) +*W(x)=l,

where <^J), /^J'\ and tfk) are the i-th function of y>, />, and 6 respectively. Note that the con
dition (3.2)-(a) ensures the disjointness of y?(j), pl*\ and S^K Thus R(x,y) is represented as

•R(x,y) = n(^(j)^i +^J*?j +^)- Now for marbitrary minterm x g D, if t/j =1in every
i=i

minterm y Gr(x), then <ptf)(x) = 1and p(j\x) = 6^(x) = 0. Similarly, if yj =0 in every
minterm y Gr(x), then /^)(x) = 1and y>k")(x) = <5(i)(x) = 0. If ?/,• = 1in some minterm of
r(x) and yj = 0 inanother minterm of r(x), then <5^(x) = 1and (pW(x) = joW(x) = 0, since
otherwise the property (3.2)-(a) is violated. Therefore, <p(j\ p^3\ and 6^ are the characteristic

functions of®(j\ P(j\ and A<J) respectively. Thus T(x, y) is equivalent to R(x,y).
Conversely, suppose that R(x, y) is equivalent to T(x, y). For an arbitrary minterm

w g D, let Jo(w) be the set of indices j such that w g P(j). Similarly, let Ji(w) and J2(w) be
the set of indices such that w G®W and w g A^ respectively. Let t be aminterm of Bm such

that tj = 1 if i G Ji(w), tj = 0 if j G Jo(w), and tj maybe either 1 or0 if j G J2(w), where
m

tj is the value ofthe i-th variable oft. Since R(x, y)= JJ (<&^yj +P^lfy +A*-7*), we see that
3=1

R(w, t) = 1. Thus the imageof w by the relation R, r(w), canbe represented asa single product

term of the output variables such that the i-th literal containsonly 1 (respectively 0) if j G «A(w)

(respectively j G «/o(w)) andit contains both 1 and 0 otherwise. Since w is arbitrary, the relation

R is the characteristic function of an incompletely specified function. •

Intuitively, T(x, y) is the characteristic function of the relation suchthat foreveryx G D,

the image of x by T is the set ofminterms of the smallest product term defined in Bm that contains

r(x). Hence, the relationR is in factan incompletelyspecified functionif andonly if R is identical

withT.

Therefore, we can identify whether agiven relationR is anincompletely specified function

by checking the equivalency between R(x, y) and T(x, y). Note that the equivalency is trivially

checked using MDD's.

Furthermore, by the proofofTheorem 3.4.1, we seethatif R is anincompletelyspecified

function, then its on-set, off-set and the don't care set are given by the O^'s, P^'s, and A^'s,

respectively. Hence, having checked the well-definedness of a given relation R as described in

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 52

Section 3.2.2, we first employ the procedure described above. If the relation is an incompletely

specified function, we convert the O^'s, P^'s, and A^'s to some required form, e.g. sum-of-
products form, andinvoke a conventional minimizer forordinary logicfunctions, e.g. ESPRESSO-

MV[45]. If it turns out that the relation is not reduced to a function, then we minimize the relation

directlyusing a relationminimizer, GYOCRO, presentedin the following section.

3.5 Heuristic Minimization of Multiple-Valued Relations

3.5.1 Problem Formulation and Overview

We consider the following problem : given a well-defined multiple-valued relation R C

DxBm ,finda representation T with theminimum number ofproduct termsthat is compatiblewith

R. We propose a heuristic procedure for thisproblem, where the inputis given as the characteristic

function of R represented by an MDD.

The procedurestartswithcomputingan initial representationcompatiblewith the relation.

Then three basic procedures,REDUCE, EXPAND, and IRREDUNDANT, are iterativelyappliedas

long as the cost decreases, where the costis the number of the product terms of the representation.

Every procedure takes as input a compatible representation T and the characteristic function R of

the relation.

InREDUCE, eachcubec GT is reduced to a smallestcube t C csuchthat T - {c} U{£}

is compatible with R, where T - S UT designates the replacement of S C T by a set ofcubes T.

It is guaranteed at the end ofREDUCE that every cube c in the resulting representation is minimal,

i.e. any cube c with the condition above is equal to c. EXPAND, in turn, takes each cube c e T

and replaces it with a relatively prime cube containing c so that a maximal number of cubes in T

can be removed. EXPAND guarantees that every cube of the resulting representationis relatively

prime. IRREDUNDANT makes the representation T so that it consists only of irredundant cubes.

Specifically, one cube c G T is processed at a time, and is removed if and only if T - {c} is

compatible. Unlike the irredundantprocedureof Espresso [8], which computes a minimum subset

of the current representation for a Boolean function based on the concept of partially redundant

cubes, ourprocedure is dependent onthe order thatthecubes areprocessed. In fact, theprocedure

is a special case ofREDUCE since a redundant cube is reduced tonothing. However, experimental

resultsshowthat use of IRREDUNDANT improves the computational time.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 53

3.5.2 Initial Representation

This section describes howan initial compatible representation for a given well-defined

relation R(x,y) can becomputed. Ourprocedure takes a representation T, which isinitiallyempty,

and processes each output adding a setof new cubes to T. T becomes compatible withR once all

outputs havebeenprocessed. The overall procedure is outlined in Figure 3.4.

The procedure first duplicates the relation R, and sets it to R. R is modified during the

procedure. For an output variable yj, let &W be asetofminterms x GDsuch that yj = 1for every
minterm y of the image of x by R. Similarly, let P^ be a setof minterms ofxeD such that

yj = 0 for every minterm y with (x,y) GR. Let A^ be the the remaining minterms ofD. These
are the same sets used for identifying if a given relation is an incompletely specified function in

Section 3.4. Once these three setsare obtained, a two level minimizer formultiple-valued functions

is invoked with 0(j), P<J), and A^ as the on-set, the off-set, and the don't care set respectively, so
thata minimal sum-of-products representation Tj with n inputs and a single output is computed.

Then Tj is converted to a representation with n inputs and m outputs such that the input part is

identical withTj andtheoutputparthas1onlyin thei-th component. Theconverted representation

is added to T. Once Tj is computed, the relation R is modified sothat for every pair ofminterms

(x,y) g R, yj appears complemented in y if and only if x is not covered by Tj. Equivalently,
R(x, y) isreplaced by R(x, y)(Fj = yj), where (/ = g)designates the XNOR operation between
/ and g. Fj is the set of minterms of D covered by Tj, which is computed by converting Tj to

an MDD. Once all output variables have been processed, a compatible representation is obtained in

"unwrapped" form, i.e. each cube in the representation has exactly one 1 in its output part.

Theorem 3.5.1 A representation T obtained by theprocedure given in Figure 3.4 is compatible

with the relation R.

Proof: We first assume, without loss of generality, that the procedure processes output variables

in increasing order on j, i.e. from j = 1 to j = m. Let f : D -+ Bm be the function defined by

T. For a given arbitrarymintermx€ D, let y(i) be the minterm f(x) restricted to the variables

{yi 5•••»yj}- Thus, y(m) is equalto f(x), and y(l) is the value of the first outputvariable y\ in

the minterm f(x). We also define y(0) as null. For a giveny G Bm, we say that y satisfies the

partial identity up to j if for all i < j, thevalue of yi in $ is equalto that in y (j).

We prove, byinduction onj, thatthere exists y GBm such that(x, f) GRand y satisfies

the partial identity up to j. Then since y(m) = y and since y(m) = f(x), the proof is done.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS

function INITIAL(.K(x, y))

T<-<f>;

R <— R\

for(each output yj){

0(i) «- {x GD | Vy GBm : £(x,y) = 1 =• Vj = 1};
p(i) ^_ {x € D | vy G£m : £(x,y) = 1 => yj = 0};

A(j') «- (O(i)uPW);

^ 4- minimize^),A^P^);
R(x,y)^R(x,y)(Fj = yj);

T <^ TU convert(Tj);

}
return T;

Figure 3.4: Procedure for Computing an Initial Representation

54

Furthermore, denoting byR(j) the relation Robtained justafter processing yj inthe procedure, we

also show that (x, y) GR(j) if and only if y satisfies the partial identity upto j. For a special case,

wedefine R(0) = R.

For the base case, where j = 0, y (0) is null. Since R is well-defined, there exists y such

that (x, y) GR, and thus the condition holds. Also, the second condition of R(j) is trivially true

for this case.

Suppose that the conditions hold up to j - 1, where j > 1. We first note that the minterm

given as the image of x by the representation obtainedjust after processing yj satisfies the partial

identity up to j. This is because when yj is processed, the procedure adds a set of cubes whose

output part has 1 only at the i-th component, and thus the pattern of the image for the variables

{2/1,..., yj} is identical with that of theimage obtained bythefinal representation, i.e. f(x). Thus

yj isequal to 1iny(i) if and only if x iscovered byTj, where Tj isthesingle-output representation

obtained in the procedure when yj is processed. Since Tj is the resultof minimizing a function

with the on-set and off-set as defined in the procedure, there exists a minterm y G Bm such that

CHAPTERS MINIMIZATION OFMULTIPLE-VALUED RELATIONS 55

(x,y) g R(j - 1) and the value ofyj iny isequal tothat iny(i). Therefore, with the induction
hypothesis, y satisfies thepartial identity up toj. Also, since R(j - 1)isasubset ofR, (x,y) GR.

Now consider the relation R(j). The induction hypothesis implies that (x,y) GR(j- 1)
if and only if y satisfies the partial identity uptoj - 1. Furthermore, (x, y) GR(j) if and only if

(x, y) g R(j - 1) and the value ofyj in y is the same as that in y(j). Itfollows that (x,y) GR(j)
if and only if y satisfiesthe partial identityup to j. Therefore, the two conditionshold for j.

Hence, by induction, (x, /(x)) g R for all x G D, and thus the representation T is

compatible with R. m

3.5.3 Computing the Characteristic Function of a Set of Cubes

REDUCE,EXPAND, andIRREDUNDANT proceduresprocess one cube c G T at a time.

In eachoperation, weneedtocompute thecharacteristic function corresponding to T - {c}, denoted

by ^(x, y). The characteristic function of a function / : D -> Bm is the characteristic function

of therelation F = {(x, y) g D x Bm | y = f(x)}. Throughout the restof this chapter, wecall

Fc thecharacteristic function of T - {c}. Ingeneral, thecharacteristic function ofa representation

T, denoted by F(x,y), can be computed by scanning all the cubes of T to obtain the function
m

fti) :d _*. b for each output yj, followed by setting F(x,y) = Y[(f^(^) - Vi)- ™s wiU to
i=i

referred to later as the "first" method. However, it is time consuming, especially when the size of

T is large. In fact, .Fc(x,y) can be computed much moreeasily by the following method if F is

already available.

Let S be the subsetof T defined asS = {p€T\p^c and M(p) n M(c) ^ </>}, where

we recall that M(p) is a set of mintermsof D covered by the product term corresponding to the

input part of p. Let Fs : D x Bm -»• B be a function such that Fs(x, y) = 1 if and only if

f 1 if0(c)j = 1and 3p GS such that x GM(p) and 0(p)j = 1,
ViG{l,...,m} : yj = <

(0 otherwise,

where yj is the value of the i-th variable in y. Now observe that for a minterm x £ M(c), the

image of x by Fc is identical withthe image of x by F. For a minterm x G M(c), the value of yj

of the image of x by Fc is identical withyjof theimage by F if 0(c)j = 0. If 0(c)j = 1 andthere

existsnop e T-{c} such that x G M(p) and 0(p)j = 1, then yj = 0. Otherwise yj = 1. Thus

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 56

jFc(x, y) = 1 if and only if

j yj if xGM(c) and 0(c),-= 1,
Vj G{l,...,m} : yj= <

[j)j otherwise,

where i/j is the value of the i-th variable in the minterm y such that F$(x, y) = 1 and §j is the

value of the i-th variable in the minterm $ such that F(x, £) = 1. In order to accomplish this

computation, we first introduce additional variables T - \t\,...,tm} and Z = {z\,...,zm} to

represent jF and Fs in terms of (x, t) and (x, z) respectively, and compute acharacteristic function

Y\(y,t, z) such that Yi(y,t,z) = 1if and onlyif for each j G{1,.. .,m},yj = tj if 0(c)j = Oand

yj = z3if 0(c)j = 1. Specifically, Yi(y,t,z)isgivenby JJ (yj = tj) JJ (^ = zj), where
jevi(c) i«vi(c)

Yi(c) = {j G{1,.. .,ro} | 0(c)j = 0}. Then, Fc(x,y) = 1 if and only if either x g M(c) and

F(x, y) = 1, orx GM(c) and there exists (t, z) such that F(x, t) = Fs(x, z) = Yi(y, t, z) = 1.

These computations are performed on MDD's. In this way, Fc is computed from F by scanninga

subset S of T.

According to experiments, the first method is slightly faster for small examples such as

10 variables and 20 cubes. However, the CPU time for the second method is almost invariant in the

size of the representations andis much faster formoderatesized examples. Forone with 33 binary

variables and 553 cubes, the second method was 20 times faster.

The second method uses the characteristic function F of T. The computation of F is

done once at the beginning of the entire procedure using the first method. However, it must be

updated whenever a cube of T is replacedby anothercube either in the REDUCE or the EXPAND

procedure. As a converse of the second method, given T, c G T, and the characteristic function

Fc of T - {c}, F(x, y) canbe computed as follows. For a minterm x g D, the valueof yj of the

image of x by F is identical with yj of the image by Fc if x ^ M(c) or x G M(c) but 0(c)j = 0.

Otherwise y3; = 1. Thus usingnew variables T = {t\,..., tm} to represent Fc in terms of (x, t),

we see that F(x, y) = 1 if andonly if either x £ M(c) and -Fc(x, y) = 1, or there exists t such

that Fc(x, t) = 1and Y2(y, t) = 1,where ^(y, t) = 1if and only if yj = tj for all j GY{(c) and

yj = 1 forall j g Yi(c).

Inthis way,eachoftheREDUCE,EXPAND, andIRREDUNDANT procedures takesasan

additional input the characteristic function FofT, updatesit wheneverT changes,andhandsit to the

succeeding procedure. Note thatit is notnecessary to update F in the IRREDUNDANT procedure

sinceif c is removed, then Fc becomes the characteristic function of the new representation.

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 57

3.5.4 REDUCE

A reduction is an operationwhichtakesa cubecandreturns a cube I C c, where£maybe

empty. A reduction is valid if the replacement of c with thereduced cuberesults in a representation

compatible with R.

Definition: Maximally Reduced Cube

For a given representation T compatible with R and a cube c € T,a cube c~ C c is a

maximally reduced cube for c in .F if T - {c} U{c-} is compatible with jR and there existsno

cube l" c c~ such that T - {c} u {6"} is compatible.

If a maximallyreduced cube for c in T is c itself, we say c is maximally reduced. The

goal of the REDUCE procedure is to compute a compatible representation which consists of only

maximally reduced cubes. It isknown thatif Risinfact anincompletely specified function, i.e. r (x)

can be expressed by a single cube for every x G D, then the maximally reduced cube c~ for c in T is

unique. Also,for anycube csuchthat c~ C c C c,thereplacement of cby cpreserves compatibility.

Thus the maximally reduced cube is easily obtained by lowering, in any order, one part at a time

from 1 to 0 for c, followed by checking the compatibilityof the resulting representation, until no

valid reduction is possible. Note that the compatibilitycheck of a representation T is equivalentto

the containment check between F(x, y) and R(x, y), i.e. F(x, y) C 22(x, y), which can be done

efficiently with MDD's. Therefore, a two level minimizer for ordinary logic functions achieves

the goal mentioned above by taking each cube and replacing it with the unique maximally reduced

cube.

The REDUCE procedure of the proposed method also processes one cube at a time and

replaces it by a maximally reduced cube. However, only a weak form of uniqueness holds.

Theorem 3.5.2 Let T be a representation compatible with a relation R. The inputpart of a

maximallyreducedcubefor ce T is unique.

Proof: Suppose that there are two maximally reduced cubes c^ and c^2\ The objective istoshow
that M(cM) = M(cW). Suppose first that either ofthem, say M(c^), isempty. Then M(c^)
must be empty and thus the proof isdone since otherwise cW isnot a maximally reduced cube by

definition.

Now we assume that neither M(c^) nor M(c^) isempty. We first show that M(c^) n
M(cW) ^ <f>. Suppose the contrary. Let t^ be any cube strictly contained in c^ obtained by

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 58

reducing only the input part of c^\ gM may beanempty cube. Let wbeany minterm included

in M(cM) D->M(tM). Since c^ and c^ are assumed disjoint, u g M(cW). However, since
T - {c} U{c^} iscompatible, the image ofwby T - {c} must be a member of r(w). Thus a
reduction from c^ to c"W is valid, which is a contradiction. Therefore M(cM) and M(c^) are

not disjoint.

Suppose that M(c^) ^ M(c^). Let mbeany minterm included inM(c^)C\-^M(c^).
Let rrij be the value ofthe i-thinput variable inm. Let fiM be the cube which isidentical with cM
except that I(^)j = ->mj ni"(cW)j, where j isan index such that rrij £ I(c^)j. Note that t^ is
not an empty cube since otherwise I(c^)j n I(c^)j = <£, which implies M(c^)n M(c(2)) = (f>.
Since c*1) ismaximally reduced, T - {c}U{c^} isnot compatible. This implies that there exists

aminterm x g M(cW) n ->M(c^) such that the image ofnby F - {c} isnot amember ofr(ir).
However, we know that ttj = raj, and thus n g M(cW). Since T - {c}U{c(2)} iscompatible and
since tt £ M(c<2)), the image ofnbyF - {c} must be amember ofr(ir), which isacontradiction.

Thus the assumption that M(c^) 0 Af(c^) isincorrect. •

Theorem 3.5.3 Given a relation R and a cube c G T, where T is a representation compatible

with R, letcC cbea cube such that 0(Z) = 0(c) andM(c) D M(c~), where c~ is a maximally

reduced cubefor c in T. Then the reductionfrom ctoc is valid.

Proof: For a minterm m G M(c), we have m G M(c). Since 0(Z) = 0(c), the imageof m by

T - {c} U{c}is equal to theimage by T. Fora minterm m GM(c) n ->M(c), m £ M(c~). Thus

the image of m by T - {c} u {c}is equal to theimage by T - {c} U{c~},which is a member of

r(m). Therefore, T - {c} U{c} is a compatible representation. •

Thus by fixing the output part of c, we can lower each part of 1(c) with the value 1 to

0, one at a time, and accept the reduction if the new representation is compatible with R. The

unique input part of a maximally reduced cube is obtained once all the input components have been

processed. Notethat c is redundant in T if thereis a component 1(c)j in which every part is 0.

We can check the compatibility of the new representation as follows, withoutcomputing

itscharacteristic function. Let cbe a cube which is identical with c except thata single partof 1(c)

hasbeen lowered from 1to0. LetQ = M(c)n ->M(c). We see thatT - {c} u {c} is compatible if

and only ifforallminterms m GQ, the image of m byT - {c} isamember ofr(m). Equivalently,

T-{c}U {c}iscompatible with Rifand only iffor all x GQ, there exists y such that R(x, y) = 1
and Fc(x, y) = 1. Thischeckis easilydoneon MDD's.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 59

Thus the reduction of the input part is performed in a straightforward way. However,

unlike the input part, the following example shows that the output part of the maximally reduced

cube is not unique.

Example 3.5.1 Suppose thata representation T shown in Table 3.5 is compatible with R, where

part ofits relations are shown in Table 3.5. Thenc^ = [1021 | 1000] and c[2) = [1021 | 0110] are
both maximally reduced cubesfor c\ in T.

Representation T Relation R

cube Input Output xGB4 yGJ54
ci

c4

1021

1201

2021

2211

1110

0100

0001

0001

1011

1001

1101

1111

1111,0111,1001

1111,0111,1101,1001,0001

0100

0001

Table 3.5: Example where a Maximally Reduced Cube is not Unique

Since we want to reduce c as much as possible, we want to find the smallest maximally

reduced cube c~, i.e. the maximally reduced cube with the minimum numberof 1's in the output part.

One difficulty is that compatibility does not necessarily hold for a cube t such that c~ CcC c For

Example 3.5.1, almough.Fand.F-{ci}u{c(11)} are both compatible with R,forp = [1021 | 1100]
or q = [1021 | 1010], the replacement of cby eitherp or q results in anincompatible representation.

Thus the smallest maximally reduced cube may not be found by greedily reducing the output part

of c.

Now consider a cube c such that its input partis maximally reduced. We define afeasible

cube for c as follows: c* is feasible if T - {c} U {c*} is compatible with R, the input part of c*

is equal to that of c, and c* C c. A feasible cube withthe minimum number of 1's in the output

part is amaximally reduced cube we seek. Our objective is to compute the characteristic function

h of the set of all the feasible cubes for c, and choose one with the minimum number of 1's in the

output part. For a set of components Y* = {j G{1,..., m} \ 0(c)j = 1}, consider aBoolean

space £|yhl defined by the output variables ofYh. For aminterm y G£|yH we define areduced
cube c* for c with respect to y as follows. The input part is equal to that of c, and 0(c*)j = 1if

and only if j GYh and yj = 1. Let h : tf1^1 -> Bbe afunction such that h(y) = 1if and only
if c* is feasible, where c* is a reduced cube for c withrespect to y. By definition, h(y) = 1if and

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 60

only if the following property holds for every minterm x GM(c):

3yeB™: fl(x,y) =l, Vj €{l,...,m} : fe =j fc +tfi *'*/*' (3.3)

where #j is thevalue of the i-th variable of the minterm y € Bm such that Fc(x, y) = 1.

Let H : M(c) x B™ -+ B be a function such that if(x, y) = 1if and only if (3.3)

holds for (x,y). Then by definition, h(y) = 1 if and only if #(x,y) = 1 for all x G M(c).

In order to compute H on MDD's, we first introduce additional variables T = {t\,..., tm} and

Z = {z\,..., zm } to represent 12 and J^ in terms of (x, z) and (x, t), and compute acharacteristic

function *3(y, t, z) such that Y3(y, t, z) = 1if and onlyif for each j G{1,..., m}, zj = tj + yj

if i GYh and zj = tj if j i Yh. Namely, y3(y,t,z) = J[(zj = (tj + Vj)) J] (*j = *,-).

Then if(x, y) = 1 if and onlyif x G M(c) and there exists (t, z) suchthat R(x, z) = Fc(x,t) =

F3(y,t,z)=l.

Note that h(y) is represented by a BDD, since the output variables are all binary. Once

h(y) is computed,amaximallyreduced cubewiththeminimum numberof1's is obtained efficiently.

In fact, the following theorem is analogous to a result of a BDD based approach for a covering

problem [32].

Theorem 3.5.4 A maximally reduced cubefor c in T with the minimum number of l's is given by

a shortestpath connecting a I leaf to therootofa BDDfor thefunctionh(y) defined above, where

the length ofan edge oftheBDD is 1 ifthe edge is a I edge and 0 ifthe edge is a 0 edge.

Proof: For areduced cubec* withrespect to y, 0(c*)j = 1ifand only if yj = 1. Thus amaximally

reduced cube with the minimum number of l's is a reduced cube for y with the minimum number

of 1's such that h(y) = 1. For any path from the root of the BDD for h which ends in the 1 leaf,

onecanobtain aminterm y such thath(y) = 1,by setting yj = 1only if the path contains a 1edge

incidentwith anode for yj. The numberof 1's of the mintermis minimum amongall theminterms

represented by the path. Let y be the minterm with the mimmum number of l's associated with

a shortest path P that ends in the 1 leaf. The proof is done if we show that y has the minimum

numberof 1's amongall the mintermsin the on-setof h. Supposethereis another minterm y' such

that thenumber of the 1's of y; is less than that of y. Then there exists atleast onepath in theBDD

corresponding to y'. Let P' bethe shortest such path. Since thenumber of 1's of y' is atleast the

length of P', P' must be shorter than P, which is a contradiction. •

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 61

Therefore, once the input part of a cube c g T has been maximally reduced, the smallest

maximally reduced cubefor c is obtained bycomputing a function h(y), followed byperforming a

shortest path algorithm, which runs in time linear in the number of the nodes of BDD's.

We have shown how to compute a maximally reduced cube for each cube of T. However,

we want to compute a representation in which every cube is maximally reduced. Due to the nature

ofsum-of-products representations for relations, a property ofa cube like maximal reduction, which

mayholdatsometimeinthereductionprocess, mayceasetoholdwhenothercubesaresubsequently

reduced. We mustdeal with thisdifficulty which does not arise forfunctions. This is illustrated by

the following example.

Example 3.5.2 In Example 3.5.1, suppose c\ has been replaced by amaximally reduced cube c\\
Ifwe have replaced c2 by its maximally reduced cube c^ = [1101 | 0100], then c^can befurther
reduced to [1011 | 1000] while stillkeeping the compatibility of the resulting representation.

One solution is to iterate the entire procedure, until no cube is replaced by a smaller cube.

Then at the end, it is guaranteed that every cube of the final representation is maximally reduced.

As with ordinary logic functions, the result of this procedure depends on the order of the

cubes to be processed. Experiments were performed with several ordering strategies. Although the

results varied slightly with different orderings, none was always better than another. As in the case

of the minimization of functions [45], the final results seemed to be independent of the ordering

strategies in general. Thus we order the cubes with the same strategy employed in Espresso [8], in

which the largest cube is processed first and the rest are sorted in increasing order of the number of

mismatches (distance) of each cube against the largest one.

3.5.5 EXPAND

The objective ofEXPANDis to removeas many cubes as possible from a givencompatible

representation. Furthermore, wewantthefinal representationof theprocedure toconsistof relatively

primecubes. The proposed procedure achieves thisgoalby processing onecube at a time, in which

the cube is expanded so that a maximalnumberof cubes is removed. An expansionis an operation

which takes a cube c and returns a cube tDc. The expansion is valid if the replacement of c with

6 results in a compatiblerepresentation. The resultof the procedureis order dependentand we sort

the cubes, as in ESPRESSO-MV [45], in increasing order of the weights, where the weight of a

cube is defined as the number of parts at which the cube has 1.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 62

The expand procedure for each cube c G T, EXPAND1, is designed as an extension of

the expand procedure of Espresso, and is illustrated in Figure 3.5. EXPAND1 employs a covering

matrixC which wasintroduced in Espresso. C has (t + m) columnsandasmany rowsascubesof

T - {c}, where t is the numberof the parts of 1(c), which is given by the sum of the numberof

values that each input variablecan assume. Eachelement of C, Cij, is defined as follows:

f . _ (1 ifthe i-th part of 1(c) is 0and the i-th part of I(T^) is 1,
Vj€{l,...,0- cij=S

(0 otherwise,

J 1 if0(c)j =0and 0(TW)j =1,
V?G{l,...,m}: Ci{t+j) = i

[0 otherwise,

where T^ is the i-th cube of T - {c}. The covering matrix allows each part of ctobehandled in

a uniform way, without making any distinction among the input or the output variables.

Throughout EXPAND1, we maintaintwo sets of columns of C, H and C, where U is

initially a set of columns at which c has 1, and C is empty. H is called a raisingset and C is called a

lowering set. 11is used to store the columns that have been raised, while C maintains the columns

that have been determined not to be raised.

Among all the operations ofEXPAND1, the maximal-feasible-covering (MFC) operation

is key, in which directions ofexpansion for c aredetermined. Other operations are used to complete

the procedure efficiendy. The objective of MFC is to expand c so that the maximum number of

cubesof T - {c} canbe removed. Overall flow of the operation is as follows. First, foreachcube

pe T - {c} corresponding to each row of thecovering matrix C, compute the smallest cubec*(p)

suchthat T - {c,p} u {c*(p)} is compatible. c*(p) may not exist. We choose the smallest such

cube since we wantto leave freedom ofexpansion foreliminatingothercubes. Note that c*(p)may

not cover p.2 If c*(p) exists, then we compute the maximum subset S(p) of T - {c,p} such that

T - {c, p} - S(p) U{c*(p)} is compatible. Once all thecubes corresponding to therows of C have

been processed, and ifno c*(p) exists, then weexitthe operation. Otherwise, acube c*(q) with the

maximum cardinality of S(q) ischosen. Then the rows of C corresponding tothe cubes of qUS(q)

are removed and the characteristic function of the new representation except c is computed as Fc.

Finally, the operationis exited with the set ofnewly raised columns.

Practically, it is expensive to accomplish theseprocedures completely and thus we intro

duce some restrictions. First, S(p) isrestricted tothose covered by c*(p), and c*(q) ischosen as the

one that covers the largest numberof c* (p) 'sover all the p's. Thus wedo notcompute S(p)at all and

2In fact c*(p) may not even cover c, but we exclude this case in our procedure.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 63

procedure EXPANDl(c, T, R, F)

begin

Fc <- CFc(F, T); /* computethe characteristic fiinction of T - {c} */

C «- COVERINGJvIATRIX(c, T)\

K *- {j | The i-th part of c is 1.};

while(|7e| + \C\ < (t + m) and C £ (f>){

XE <- ESSENTIAL(c, Fc, R, K, C);

C <- C U XE\

C <- ELM1(C, XE)\

J <- MFC(C, c, Fc, R, ll)\

if(|J| =0) J ♦- EG(C);

71 <- ft U J;

C <- ELM2(C, J);

}
if(|ft| + \C\ < (t + m)) {ft, £} «- GREEDY(c, Fc, R, ft, £);

c <- RAISE(c, ft);

if(c has been expanded) F <- CF(-FC, c);

end

Figure 3.5: EXPAND1

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 64

the rowsofC coveredby c*(q) areeliminatedby anotheroperation. Now, we still need to update Fc

onceacubec*(q) is chosen. Furthermore, inorder to compute c*(p) foreach p GT- {c}, we need

to compute the characteristic function of T - {c,p}. These characteristic functions are necessary

so thatwe canevaluate the functionality of T - {c, q} - S(q) U{c*(q)} (and T - {c, p} U{c*(p)})

without computing the real characteristic functions for the representations. However, we can ob

servethatboth of thesetasks are necessary because c*(p) may not coverp. This is because if c*(q)

covers q as well as all the cubes of S(q), then the functionality of T - {c, q} - S(q) U c*(q) is

identical with the functionality of T - {c} U c*(q). Thus aslong as the characteristic function for

T - {c, q} - S(q) is usedto evaluate the functionality oftheentire representation, the characteristic

function forT-{c}, Fc, canbe used asanalternative. Note that Fc doesnot reflectthe functionality

ofT - {c, q} - S(q),butstillthe functionality ofT- {c, q} - S(q)Uc*(q) canbecorrectly evaluated

with the helpof c*(q). The samestatement holds forthecharacteristic function of T - {c, p}. Since

Fc is already available, with the additional restriction that c*(p) D p, the entire procedure of MFC

can be completed without computing characteristic functions. Due to the enormous improvement

in computational time, we employ this restriction.

What remains in MFC is a computationof c*(p), the smallest cube containing both c

and p such that T - {c,p} u {c*(p)} is compatible with R. The smallest cube containing both

c and p, denoted as Z, is obtained by taking the part-wise union between c and p [45]. In other

words, if p corresponds to the i-th row of C, then for j G {1,...,£}, the i-th part of 1(d) is 0 if

and only if dj = 0 and i £ ft, while 0(c)j = 0 if and only if C^t+j) = 0 and (t + j) i ft for

i G {1,..., to}. If R is an incompletely specified function, then c*(p) = c if T - {c, p} U {£} is

compatible, otherwisec*(p)doesnot exist. For relations, however, it is claimed,aswith REDUCE,

that there exist cases where a compatible representation is obtainedby raising the output part of t

even though T - {c, p} u {£} isoriginally incompatible. One sees inthis case that raising theinput

part of c does not help since the image of a minterm for which the incompatibility occurs is not

changed unless either the outputpart of Zor other cubes of T - {c, p} are modified. Considering

that thefunctionality of T - {c,p} U{£} is identical with that ofT - {c} U{£}, wedefine afeasible

cube for t as acube c* such that T - {c} U{c*} iscompatible with R, the input part of c* is equal

to that of d, and c* D d. Then our objective is to find the smallest feasible cube for I.

This is done with asimilar technique usedin REDUCE, i.e. we computethecharacteristic

function / of the set of all the feasible cubes for t, and choose the smallest one if it exists. Let

Yi = {J € {!»• ••>m) I 0(t)j = 0}, and consider acube corresponding to aminterm y G 2?|y'l

suchthatthe input part is identical with thatof c and thei-th outputpart is 0 if and only if j G Yi

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 65

and yj = 0. Let /: £|yil -• B be a function such that /(y) = 1if and only if T - {c} U{c*} is
compatible with R, where c* is the cube correspondingto y. There is a one-to-one correspondence

between a feasible cube and a minterm y such that l(y) = 1, and thus our objective is to find the

minterm y with the minimum numberof 1's in the output part for which l(y) = 1. We see that

l(y) = 1if and only if the following property holds forevery minterm x G M(Z):

3yGB-: #(x,y) =l, Vi€{l,...m}: fc =j fe +W*'*/'' (3.4)
{ 1 ifi 4 Yi,

where fc is the value of the i-th variable of the minterm y such that Fc(x,y) = 1. In order

to compute /, we use a function L : M(Z) x B^ -*• B such that L(x,y) = 1 if and only
if (3.4) holds for (x, y), as with the REDUCE procedure. Specifically, introducing additional

variables T = {t\,...,tm} and Z = {z\,...,zm} to represent R and Fc in terms of (x,z)

and (x,t), we first compute a function Y4(y,t,z) such that *4(y,t,z) = 1 if and only if for

each i G {1,.. .,m}, zj = 1 for all j £ Yi and zj = tj + yj for all j G Yj. Y4 is given by

y4(y,t,z) = JJ (zj = (tj +Vj)) E[zi- Tnen L(*>y) = 1if and only if x GM(t) and there

exists (t,z) suchthat E(x,z) = Fc(x,t) = y4(y,t,z) = 1. Then by definition, l(y) = 1 if and

only if L(x, y) for all x G M(Z). Note that, unlike REDUCE, l(y) may be identically zero. This

is the case where there is no feasible cube for Z.

Now, as a variation of Theorem 3.5.4, it is claimed that if l(y) is not identically zero,

then a minterm y with the minimum numberof 1's such that l(y) = 1 is given by a shortestpath

connecting a 1 leaf to the root of a BDDof l(y). Hence, the smallest cube c*(p) containing both

c and p such that T - {c,p} U {c*(p)} is obtained by computing l(y) for a cube Z, followed by

performing a shortest path algorithm.

The restriction that c*(p) must cover p brings another efficiency; once there is no such

c*(p) for p at some time during the expansion of c, then there is no hope that c*(p) exists in the

future. Thuswemark arow of C corresponding to p if c*(p) does notexist, sothat a function l(y)

for p is never computed for the rest of the procedure. Wenote if c*(p) is notrestricted to cover p,

then this does not hold for relations in general. The following example illustrates the situation.

Example 3.53 A relation R and a representation T, compatible with the relation, are given in

Table 3.6. Suppose cisbeing expanded. There is no cube c*(p) Dcsuch that T - {c, p} U{c*(p)}
is compatible, and thus p cannot be eliminated. On the other hand, qis eliminatedfrom Tifc is
expanded to c*1) = [110 | 101]. Then ifc^ isfurther expanded to c<2) = [112 | 101], {c(2)} is a

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 66

compatible representation and thus p is eliminated. Note that the expansion from c to cW is not
valid ifq is present in T.

Representation T Relation R

cube Input Output xG B'3 yeB'5
c

V

110

121

112

001

101

010

110

101

111

011,101

000,101

111,001,101

Table 3.6: Example of Expansion for a Boolean Relation

We have seenhow to determine the direction ofexpansion for c in MFC. However, c*(p)

mightnot exist for any p G T - {c}. In thiscase, anoperation EG is invoked. If, in addition, C

is empty, then another operation GREEDY is called. Otherwise, as Espresso does, the operation

chooses asinglecolumn not in ft or £ with the maximum column count in C. Then a setofcolumns

obtainedby either MFC or EG are includedto ft. Now C might have the rows that have a zero in

everycolumnnot in ft or C. This meansthatthe cubesof T - {c} corresponding to these rows are

covered by c if all the columns in ft are raised. Thus these rows areeliminated by ELM2.

The operation ESSENTIAL finds essential columns. A column j g {ft U£} is essential

if there is no feasible cube for a cube Zin which all the columns of ft U {j} are raised. This is

checkedby computing l(y) for Z, andseeingif / is identicallyzero. Once a set of essentialcolumns

are obtained, these are included in C. If there is a row in C that has a 1 in one of the columns which

have been included in C, then there is no hope that the cube correspondingto the row is covered by

expanding c. Therefore ELM1 eliminates such rows of C.

In case C becomes empty but some columns arenot in either ft or C, GREEDY is invoked,

where each such column ofthe input partis examined if the column is essential. If the column is not

essential then it is put in ft, otherwise included in C. Then for a cube Zwhich has all the columns

of ft raised, we compute the largest feasible cube for Z, i.e. the feasible cube with the maximum

number of 1*s in the output part. Such a cube is obtained by computing the longest path to the 1

leafof aBDD for l(y) of c. Namely, thei-th column of theoutput part such that j g C is included

in C if there is a0-edge incident withanode of theBDD for yj in thelongest path. The rest of the

columns are put in ft.

Finally all the columns in ft areraised in c by RAISE andthe characteristic function ofthe

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 67

new representation is computed. The followingtheorem guarantees that at the end ofEXPAND1, c

is prime relative to T.

Theorem3.5.5 Suppose EXPAND! expands ctoc+. Then c+ isprime relative toT - {c} u {c+}.

Proof: Suppose the contrary that there exists a cube c++ D c+ for which T - {c} U{c++} is

compatible. Letj be any partatwhich c+islowered and c++ is raised. Then j was added toCeither

by ESSENTIALor GREEDY. If j is in the outputpart, then it was not included by GREEDYsince

GREEDY chooses the largest output part among all the possible feasible cubes. Therefore, j must

be an essential column at the time it was included to C. Let Zbe the cube for which the existence of

feasible cubes was examined for j. Note thatM(c++) 3 M(Z). Fora cube p = [I(Z) \ 0(c++)],

theimage of any minterm x GM(Z) byT- {c} U{p} isequal to that byT - {c} U{c++}. Since

therewasno feasible cube for Zandp 2 Z, thereexistsa minterm x GM(p) such that the imageof

x by T - {c} U{p} is nota member of r(x). Thus T - {c} U{c++} is incompatible, which is a

contradiction. •

As with REDUCE, it is claimed that there is a case where a relatively prime cube in T

may become non-prime by expanding another cube ofT. Therefore, we iterate the entire procedure,

until no cube is further expanded. At the end of EXPAND, we obtain a compatible representation

in which every cube is prime relative to the representation.

3.5.6 IRREDUNDANT

In IRREDUNDANT, we produce a compatible representation in which every cube is

irredundant. Specifically, the procedure takes one cube c at a time and checks if the representation

T - {c} is compatible. If this is the case, c is removed.

The result of the procedure depends on the order of the cubes; the procedure processes

them in decreasing order of size. However, since IRREDUNDANT is always applied as a successor

ofEXPAND which also sorts the cubes in the order ofdecreasing size and since EXPAND is iterated

until no cube changes, the cubes are already sorted when given as input to IRREDUNDANT. Thus

we do not sort them in this routine. IRREDUNDANT is a special case of REDUCE. Thus, as with

Example 3.5.2, an irredundant cube in T may become redundant once another cube is modified.

Thus we iterate this procedure, until no cube is removed. Note that the decreasing order of the cubes

is preserved even if some cubes are removed. Note that the representation still might have a proper

subset that is also compatible, as seen in Example 3.2.1, and thus the procedure does not guarantee

the irredundancy of the resulting representation.

CHAPTER 3. MINIMIZATION OFMULTIPLE-VALUED RELATIONS 68

3.6 Experimental Results

The proposed procedure has been implemented in the program called GYOCRO. The

system computes an initial representation if not given externally. Once the initial representation

is verified to be compatible, the proposed procedure is applied. We use the same data structure

as ESPRESSO-MV [45] to represent sum-of-products expressions. In the EXPAND procedure,

employing the techniques introduced in [45], we have implemented the proposed algorithm by

direcdy using a representation T instead of a coveringmatrix.

For comparison with existing techniques, several examples of Boolean relations were

tried. The results are compared with the other two approaches [22, 53] developed for Boolean

relations, where the programs for both procedures were provided to the authors. Table 3.7 shows

the number of the product terms and CPU time (seconds) measured on a DECstation 5000/240 for

all three methods. Exact is the exact procedure [53], Herb is a heuristic approach proposed in [22].

GYOCRO is the proposed approach. GYOCRO performs quite well both in CPU time and results.

In fact, among the 18 examples for which the exact minimizer worked, the proposed procedure

achieved optimum solutions for 13 examples.

In order to speed up the proposed method, we tried a modification. In the original

procedure, each of the REDUCE, EXPAND, and IRREDUNDANT procedures is iterated until no

cube ofthe representation is changed. This is because we want to guarantee that every cube produced

by these procedures is maximally reduced, relatively prime, and irredundant respectively. We tried

another way where each procedure is exited after a single sweep. In this case, some cubes of the

final representation may not be relatively prime or irredundant. However, every cube is guaranteed

to be a c-prime since the cube was made prime relative to some representation compatible with the

relation.

The results of the modified procedure are shown in the last column (GYOCRO-I) of

Table 3.7. The CPU time was improved roughly by a factor of two and the results were precisely

the same. For medium size problems, where exact results are not known, GYOCRO appears to

be quite effective, overcoming the problem of getting stuck too early that is common with greedy

procedures such as Herb; for example, compare the results for gr or b9. The total time taken for

the largest example completed, int15, has 24 inputs and 14 outputs, taking about 10 minutes. This

is not an unacceptable time for this size of problem. On the other hand, for ib with 48 inputs and

17 outputs, GYOCRO could not complete due to shortage of memory. These two problems give a

good indication of the limitations of GYOCRO in terms of size and speed.

CHAPTER 3. MINIMIZATION OF MULTIPLE-VALUED RELATIONS 69

Name In Out

Exact Herb GYOCRO GYOCRO-I

Terms Time Terms Time Terms Time Terms Time

intl 4 3 5 15.9 8 0.2 5 0.1 5 0.1

int5 4 3 7 0.2 8 0.6 7 0.2 7 0.1

intlO 6 4 25 42446.3 32 3.6 25 1.9 25 1.2

cl7b 5 3 7 18.2 7 0.4 7 0.2 7 0.1

cl7i 5 3 13 0.9 14 1.7 15 0.6 15 0.4

shel 7 3 6 70.3 9 96.5 6 0.7 6 0.4

she2 5 5 time out 14 18.0 10 2.6 10 1.6

she3 7 4 time out 10 358.5 9 2.1 9 1.4

she4 5 6 time out 27 22.4 20 4.6 20 3.2

gr 15 11 * * 126 400.4 53 182.0 53 78.3

b9 16 5 * * 452 1439.3 270 207.1 270 116.1

intl5 24 14 * * 145 421.8 131 526.6 131 273.1

ib 48 17 * * out of memory out of memory out of memory
* : the method has not been applied for the example.

Table 3.7: Experimental Results

3.7 Concluding Remarks

The minimization problem ofmultiple-valued relations naturally arises in many contexts.

We have proposed a heuristic procedure which achieves the minimizations, where a relation is

represented by its characteristic function using an MDD. The procedure is based on a paradigm for

two level minimization of ordinary functions, in which a solution is obtained through an iteration

of expand and reduce procedures. We have described some special properties of relations that do

not hold for functions. These properties are easily handled through MDD manipulations. Unlike

greedily expanding or reducing a cube, reduction and expansion are achieved by computing the set

of cubes that satisfy a property that we want to obtain and by directly choosing the best among

the set. The proposed procedure has been implemented in the program GYOCRO. The results

are encouraging in the sense that, for those examples where we know the minimum solution, our

heuristic minimizer reproduces the result most of the time or comes very close. On largeexamples

where the exact minimizer can not complete, our method outperforms the other heuristic Boolean

relationminimizer. Computing times andthe size ofproblemsthat canbe completed arereasonable.

Chapter 4

Permissible Behaviors for Finite State

Machines

70

4.1 Introduction

4.1.1 Overview

In Chapter2, we consideredthe problemofcomputing a set of permissible combinational

logic behaviors. The model employed there is a system of interacting components, where the

connections of the components are acyclic and each component is combinational; it implements a

Boolean function. The specification for the behavior of the system is provided as a set of Boolean

functions, which is represented by a Boolean relation. It was shown that a set of permissible

functions can be computed and represented by a Boolean relation. We showed how a minimal-cost

representation can be found for a given relation in Chapter 3.

In this and the following chapters,an analogousinvestigation is made for sequential logic

behaviors. We consider a system where each component is a completely specified deterministic

finite state machine. In other words, each component implements a single sequential logic behavior,

in the sense that for a given finite sequence of signals (or events) defined over the inputs of the

component, the finite state machine associated with the component provides exactly one sequence

with the same length defined over the outputs of the component. Note that a component with a

single state is allowed, and thus purely combinational components may be included. We consider

synchronous systems only. Specifically, we assume an existence of global time steps, where each

time step is an instant moment with no interval, and is generated by a global timing controller

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 71

called a clock. A component of a system operates at alland only the time steps. Thus, operations

take place simultaneously over all the components ateachtime step. An operation of a component

consists of two actions; one is that of taking an input event, i.e. a set ofvalues defined for the input

variablesof the component, while the other actionis a generation of an output event. Each output

event is generated as a function of a giveninputeventand internal state of the finite state machine

associated with the component. A component takes these two actions at the same time for each

operation. Therefore, ateach time step, every component simultaneously takesaninputevent, and

immediatelygenerates the corresponding outputevent. The outputeventsare communicated either

to the global outputs of the system or to other connected components.

For a synchronous system, the behaviorof the entire system can be also modeled by a

completely specified deterministic finite state machine. Namely, for each finite sequence defined

for the globalinputsof the system, the system generates exactiyone sequenceof the globaloutputs.

As an analogy to the combinational case, we assumethat more than one output sequencemay be

allowed for a given sequence of the global inputs. In other words, there are in general a set of

sequentialbehaviorsallowedto be implemented for the entire system, andwe say the system meets

the specification if it implements one of those behaviors. Thus, we assume that the specification

for the behavior of the entire system is given by a non-deterministic finite state machine. Non-

determinism allows one to represent a set of behaviors in a single machine. Specifically, for a

given present state and input, anon-deterministic finitestate machine may go to different next states

and/or have different outputs. Therefore, for a given input sequence, the system may allow more

than one output sequence, and we provide a specification so that each of the output sequences is

regarded as a valid one. Of course, the final implementation generates only one output sequence,

but the specification is given as a set ofbehaviors, which provides more flexibility for optimization.

Under these assumptions, we consider the problem of finding the set of permissible

sequential behaviors at a given component of a system. Namely, for a given synchronous system

of interacting finite state machines and for a given specification, we find the complete set of

permissiblebehaviorsat a particular componentof the system. A behavioris said to be permissible

if the resulting behavior of the entire system meets the specification, where we assume that the

behaviors ofthe restof the componentsare fixed. This is ananalogous to the problem of finding the

maximum set of permissible Boolean functions for combinational logic behaviors. The resulting

set of permissiblebehaviors is then used in some optimal search procedure for a best choice. The

optimization problem, where the optimality is defined in terms of the number of states, will be

studied in Chapter 5.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

u V

Ml

M2

M
_ J

72

Figure 4.1: Interaction between Two Machines

The problem of finding permissible behaviors can be viewed as an interaction between two

finitestate machines,shown in Figure4.1, where M\ is the machine associatedwith the component

beingoptimized,Mi represents the behaviorof therestof thesystem,and M givesthe specification.

Our problem is to find the set of behaviors that can be realized at Mi so that the resulting behavior

made of Mi and Mi meets the specification M.

4.1.2 Related Problems

There are several problems/applications that can be viewed as a variation ofthis problem.

One such problem is to find the set ofpermissible behaviors of the outside component M2 when the

internal component Mi and the specification M are given. This problem can be solved in exactiy

the same way as the original problem, since the interaction shown in Figure 4.1 can be redrawn as

shown in Figure 4.2-(a), which yields to the same picture of Figure 4.1 by modifying Mi so that

the global input X and the global output Z pass through M\. This is illustrated in Figure 4.2-(b).

Such a problem arises in rectification problems[20, 60], where the designer wants to change the

functionalityof a design, perhaps because of an engineeringchange, by attaching a small block of

logic (M2) external to the original circuitry.

Another related problem is a supervisorycontrolproblem for discrete event processes[42].

The problemis that for a givengeneratorof discreteevents(Mi) anda specification on the generated

events (M), we observe the events provided by the generator and control them (M2) by feeding

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

m i : m

(a) (b)

Figure 4.2: Rectification Problem

»-z X

»- z

Figure 4.3: Supervisory Control Problem

Figure 4.4: FSM Boolean Division

73

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 74

control events to the generator so that the resulting output events meet the specification. If the

generator and the supervisor are synchronizing, this problem can be deemed as a variation of our

problem, as shown in Figure 4.3, where Mi is the generator, Mi is the supervisor, and V and Z are

identical while Mi may be a non-deterministic machine.

Finally, our core problem includes the "division"problem for finite state machines; given

an initial machineM anda "divisor" Mi, find the quotientQ of the two as givenin Figure4.4. This

is the central problem of factorization and decomposition of finite state machines, and is similar to

the rectification problem above.

4.1.3 Related Work

The problem of finding a set of permissible behaviors for interacting finite state machines

has been studied previously [18, 29, 43, 56, 59]. Most results, following analogies from the

combinational logic case, are based on don't care sequences. For example, input don't care

sequences are sequences of inputs of Mi which never occur. Output don't care sequences are

sequences of outputs of Mi, defined for given sequences of the global inputs, so that the resulting

global outputs meet the specification M. Approaches based on don't care sequences have several

limitations. First, since the inputs of Mi (outputs of M2) may depend on the outputs of Mi, the

sequences that appear at the inputs of Mi can be controlled by changing the functionality of Mi,

which may then define a different set of don't care sequences. Thus the previous work either

makes an assumption on the topology of Mi and Mi, such as cascaded machines where M2 is

independentof Mi, restrictsto computingonly a subset of don't care sequences,or computesinput

don't care sequences and output don't care sequences separately[18,29,43,59]. Furthermore, due

to complexity, often the sequences are only partially considered, up to a certain, typically small,

length. As a result, even though one finds the best implementation among the set of permissible

behaviors computed, there is no guarantee that it is best among all permissible behaviors.

In this chapter, we ask if it is possible to compute and represent easily the complete set

of permissible behaviors at Mi. The answer is yes and it can be represented by a single non-

deterministic finite state machine, which we call the E-machine. The result is obtained by a simple

fixed point computation which provides the transition relation of the E-machine. The procedure

has been implemented and initial results for the E-machines for a small set of artificial examples of

moderate size have been derived.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 75

4.2 Terminology

In this section, we define basic terminology used throughout this and the following

chapters.

Definition; Finite State Machine

A finite state machine is a 5-tuple (J, 0,S,T, r), where / is the set of input variables, 0

isthe set ofoutput variables, S isthe set ofstates, T :S x B^ x #'°l x S -»• B isacharacteristic
function with B = {0,1}, and r is an elementof 5. The machine stays in exactly one state, say

sp, of5 atany given time. The machine takes as input a minterm i € l?'7', by which a transition

is enabled. A transition at a state sp consists of a pair made of a state and an output minterm,

(sn, o) 6 S x BP\ which indicates that the machine moves from state sp tostate sn and outputs
o. It is assumed that a transition takes no time. The function T defines the valid transitions of the

machine, i.e. T(sp, i, o, sn) = 1 if and onlyif the transition (s„, o) can be enabled at the state sp

by the input i. There exists at least one (possiblymore) valid transition for each state sp and input

i. The state r, defined in the 5-tuple, designates the state at which the machine stays initially, and

is called the reset state or the initial state.

The function T : S x B^ x B^ x S -»• B is called the transition relation of the finite

state machine. For a given state sq e S and a sequence <rt- = (io,..., i*_i) of the input minterms,

where ij 6 B^ for each j = 0,..., t - 1and t > 0,1 there always exists atleast one sequence of

output minterms cr0 = (oo,..., o*_i) and a sequence of states crs = (50,..., st) with the property

thatT(sj , ij, oj , sj+i) = 1forall j = 0,..., t-1. Sucha sequence ofoutputminterms (a sequence

of states, respectively) is called an output sequence (state transition) defined at sq by <r,-. We say

that a pair of sequences (or,-, a0) is realized at the state sq in the machine. In particular, if so is set

to the reset state r, we say that the sequence a, leads the machine to the state st with the output

sequence o0> In this case, we alsosay that the pair (a,-, a0) is realized by the machine. The integer

t of the sequence a is called the length of a and is denotedby |cr|.

Definition: Deterministic Finite State Machine

A finite state machine (/, 0,S,T, r) is said to be deterministic if there exists a pair of

functions, A: Sxtfl7' -> {0,l,*}|o|andtf : SxB^ _• s U{*}, referred toas the output function

and the transition function respectively, such that for all (sp, i,o,sn) e S x B^ x 5'°' x S,

^uch a sequence o-« is called aninput sequence. If t = 0, thesequence isnull.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 76

T(sp, i, o, sn) = 1 if andonlyif the following twoconditions hold:

(1) o C A(sp, i) and

(2) 6(spj i) = *or 6(sp, i) = s»,

where for 6 = A($p, i), o C 6 designates that for each output variable j, oj ^ * implies that

Oj = Oj.

A deterministic finite state machine is said to be completely specified if for all (sp, i) e

S x B^, X(spyi) e J3'°l and 6(sp,i) ^ *. Otherwise, the machine is said to be incompletely
specified.

Intuitively, thefunction A(sp, i) represents theoutputvalueof themachine obtained when

it takes i as input at state sp, while 6(sp, i) designates the corresponding next state. Furthermore,

if the valueof A(sp, i) for an outputvariable j is *, which denotes a don't care, then it means that

the machine can outputanyvalue of B, i.e. 0 or 1, at outputj. Similarly, if 6(sp,i) = *, then the

machine can move to anystateof 5 when it takes the input i at the state sp.

By definition,thevalid transitionsof adeterministic finitestatemachinecanbe represented

using the functions Aand S givenabove. Therefore, we may represent the machineby a 6-tuple

(J, 0,5, A, 6,r). Note that at each state, the output sequenceand the state transitiondefined at the

state by a given input sequence are unique for a completely specified deterministic machine.

A deterministic finite statemachine (/, 0, £, A, 6,r) is called a Moore machine[3%] if for

each state sp e S, there exists a unique o e {0,1, *}'°' such that for all i 6 i?'7', A(sp, i) = o.
Otherwise, it is called a Mealy machine[35]. Note that the function Aof a Mooremachinedepends

only onthe states S and not onthe inputs B^.

A finite state machine that is not deterministic is said to be non-deterministic.

Definition: Reachable States

Givena completely specified deterministic finite state machine (/, 0,5, A, 6,r), a state

s 6 S is said to be reachable if there exists an input sequence which leads the machine to s.

A state that is not reachable is said to be unreachable.

Definition: Equivalent States

Givena completely specified deterministic finite statemachine(/, 0,5, A, 6,r), a pairof

states (s,s) e S x S is saidto beequivalentif for all inputsequences, say a, theoutputsequence

defined by a at s is identical with that defined at s.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 77

A set of states of S is said to be equivalent if every pair of states in the set is equivalent.

The set of states 5 of a completely specified deterministic finite state machine can be

uniquely divided into a set of disjoint classes, where each class consists of maximal number of

equivalent states. Each such class is called an equivalence class.

Definition: Equivalent Machines

Two completely specified deterministic machines M = (J,0,5,A,£,r) and M -

(1,0,5,^, S, f) are equivalent if for allinput sequences, say a, the output sequence define at r by

a in M is identical with that defined at f by a in M.

In this chapter, we discuss the behaviors of finite state machines. Intuitively, a behavior

between the input variables J and the output variables 0 is the set of pairs of input and output

sequences realized by a completely specifieddeterministic finite state machine with the input / and

the output 0. In this sense, we say that the machine represents the behavior. Although this intuitive

definition will suffice to understand the chapter, we provide a formal definition of a behavior using

the notion of finite automata.

Definition: Finite Automaton

A deterministic finite automaton is a 5-tuple (X> S, 6, F, r), where X is the set of input

variables, S is the set of states, 6 : S x B\x\ -> S is the transition function, F C S is the set of

final states, and r e S is the reset state.

A finite automaton (X, 5,6, F, r) has a one-to-one correspondence with a completely

specified deterministic finite state machine with a singleoutput o, (X, o, 5, A, <5, r), whichhas the

identical transition function 6, where the output function A(s,x) = 1 if and only if 6(s,x) e F

in the original automaton. Hence, terminology, defined for finite state machines, will be used for

finite automata as well. A sequence on X which leads the automaton to a state in F is said to be

accepted by the automaton. We now define a behavior as follows.

Definition: Behavior

Given a set of input variables I and a set of output variables 0, a behavior between J and

0 is a set of pairsof input and outputsequences, B = {(a^ a0) | |crt-| = |<t0|}, which satisfies the

following conditions:

1. Completeness:

For an arbitrary sequence <r, on /, there exists a unique pair in B whose input sequence is

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 78

equal to a,-.

2. Prefix closed:

For anarbitrary pair p = (<Ti, cr0) 6 B, where U{ = (iq, ..., ijb) and a0 - (oo,..., o*) with

k > 0, let &i = (io,..., ifc-i) and aQ = (o0,..., ojfe_i). Then (&i, cr0) G B.

3. Regularity:

For anarbitrary pair p = (<rt-, a0) e B, where at- = (io,..., i*) and a0 = (oq, ..., ok) with

k > 0, let a(p) be asequence on IU 0 defined as a(p) = (iooo,..., i^o*). Thenthere exists

a deterministic finite automaton with inputsIU 0 which accepts all andonly the sequences

of the set given by {cr(p) \p £ B}.

For eachpair (a,-, cr0) of a behavior, we say that (<rt-, cr0) is realizedby the behavior.

For a non-deterministic finite state machine, there might exist more than one valid tran

sition for some state and an input. In this sense, we can regard that a non-deterministic machine

represents a set of behaviors represented by a set of completely specified deterministic machines.

We call each such behavior a contained behavior.

Definition: Contained Behavior

Given a finite statemachine T = (J, 0,5, T, r), a behaviorbetween / and 0 is saidto

be contained in T if every pairof input andoutput sequencesof the behavioris realized by T.

By definition, if T is a completely specified deterministic machine, there is a unique

behavior contained in it.

4.3 The Problem and Assumptions

Consider the case of two interacting finite state machines shown in Figure4.1. Mi takes

input u and outputs v, and M2 takes input x and v and outputs u and z. M is a finite state machine

with input x and output z. It represents behaviors allowed for the entire system composed of Mi

andM2.

Specifically, let M = (X, Z, S,TM, r) and M2 = (X UV, UUZ, S2, A2, h, ra) be given.

Assume that M is a non-deterministic machine while M2 is a completely specified deterministic

machine. By allowing non-determinism on M, we can specify a set of behaviors, rather than a

single behavior, forthe entiresystem. In the sequel,we often discuss which outputs canbe obtained

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 79

from M at a particular state and a particular input. For this purpose, introduce two functions

A : 2s x £'*l -+ 2B|Z| and A: 2s x B^ x B™ _» 2s defined as follows:

A(s*,x) = {z€ £|z| |](3,fi)6s*x5:TM(5,x,z,s)= 1}

A(s*,x,z) = {seS\3s€s* :TM(s,x,z,s)=l},

where s* isa subset ofstates ofM and 2s isthe power set ofS. Intuitively, A(s*, x) defines the set

of values that can be output by at leastone stateof s* in M under the input x. Similarly, A(s*,x, z)

is the set of next states to which M can move from at least one state of s* under the input x and

output z.

Note that the output of the output function A2 of M2 is a pair of minterms (u,z) e

fi\u\ x £|z| in jhg 5^^ we also represent A2 using two functions A^u) : S2 x l?l-YuVl -* B^
and \2z) : S2 x B*XuV\ - #lzl such that A2(s2,xv) = (A^(52,xv), A2z)(s2,xv)).

We are interested in findinga set of behaviors represented by finite state machines permis

sible at Mi. From these, we can derive circuit implementations, but some might have combinational

loops. A combinational loop is a topological loop made of gates and wires, where no latch or flip-

flop is included. Note that in general, if both Mi and M2 are Mealy machines, since the outputs

depend on the inputs, there might exist a variable of V which depends on a variable of U in Mi,

while the variable of U depends on the variable of V in M2. Although a circuit with a combina

tional loop might be acceptable, it is known that such a circuit could cause an unexpected problem

called race-around condition [37], and thus it is still very rare to find such a circuit in practical

synchronous digital designs. Therefore, we exclude this situation and consider only the machines

that can be implemented at Mi without introducing combinational loops. Specifically, we define

implementable machines as follows.

Definition: Implementable Finite State Machine

Given M2 = (X U V, U U Z, 52, A2, S2, r2), a completelyspecified deterministic finite

state machine (tf, V,5i, Ai,$i,ri) is said to be implementable at Mi if there exists a pair of

circuit implementations of Mi and M2 respectively such that no combinational loop is created by

connecting them together at U and V.

Note that if M2 is a Moore machine, then implementability imposes no restriction, since

every machine defined at Mi is implementable. We discuss implementability in more detail in

Section 4.7 and provide a necessary and sufficientcondition under which Mi is implementable. We

say a behavior between U and V is implementable at Mi if there exists an implementable machine

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 80

at Mi representing the behavior. Note that for an implementable machineMi, and for an arbitrary

sequence ofB^x\, say a = (xo,..., xt), ifwe denote by (si,s2) GSi x 52 the pair ofstates of
Mi and M2 led toby (xo,..., xt-i), then xtdefines aunique pair (u,v) e B^ x J5'v' such that
u = X2u\s21xtv) and v = Ai(«i,u).

Foranimplementablemachine Mi = (U,V,Si, Ai,61, r\), wedefine theproductmachine

of Mi and M2, denoted by Mi x M2, as a completely specified deterministic finite state machine

(X,Z,Sp,\p,6p,rp) such that Sp = Si x 52, rp = (ri,7-2), and for a state (si,s2) 6 Sp and

a minterm x e #'*', Ap(($i,$2),x) = z if and only if there exist u € B^ and v € #'y'
such that Ai(si,u) = v and A2(s2,xv) = (u,z). Similarly, £p((si,s2),x) = (3i,32) if and

only if there exist u € B^ and v e B^ such that Ai(si,u) = v, A^(s2,xv) = u, and
(£i(si,u),£2(s2,xv)) = (5i,S2).

We now define a permissible machine as follows.

Definition: Permissible Finite State Machine

Given M = (X, Z,S, TM, r) and M2 = (X UV, U U Z,52,A2,62, r2), a completely

specified deterministic finite statemachine Mi = (U,V, Si,\i,6\tr\) is said to be permissible if

Mi is implementable and the behavior of Mi x M2 is contained in M.

The behavior represented by a permissible machine is called apermissiblebehavior. Our

objective is to find the complete set ofpermissible behaviors at Mi. Note that we are not interested

in finding the complete set of permissible machines at Mi since for a given behavior, there are

in general an infinite number of machines representing the behavior. Thus we just need enough

machineswhichrepresentthe completesetof permissible behaviors. Weshowthat the completeset

of permissible behaviors can be computed and represented by a single finite state machine, which

we call the E-machine.

4.4 Prime Machines

To show how the complete set of permissiblebehaviors can be computed and represented

by a single finite state machine, the key first step is to represent the behaviorof a machine imple

mentable at Mi using a special deterministicmachinecalled a prime machine. In this section, we

discuss the notion of prime machines.

Given M = (X, Z, 5, T,r) and M2 = (X UV, U UZ,S2, A2,62, r2), consider an imple

mentablemachine Mi = (U, F, Si, Ai,#i, 7*1).

CHAPTER 4.. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 81

Definition: l,(si,t)

Fora state si € Si and an integer t > 0, let Z(si, *) be a subset of £2 x 25 such that

(s2, s*) G52 x 25isinE(si,J) ifand only ifthere exists asequence ax of2?'x' with length t such
that:

1. ax leads Mi x M2 to (si, s2), and

2. a*leads M toall and only the states of s* with the output sequence ofB^ that is realized
in Mi x M2 by applying ax.

As a special case, we define T.(si,-1) = <f> for all si G Si.

Z($i,t) consists of all possible pairs, fa, s*) e 52 x 25, such that M2 and M can beled

to by some global input sequence ox of length t with the same global output sequence oz, while

Mi is led to si. The sequence <rz is the one given in Mi x M2 by applying ax. Note that if there is

no state transition realizedby (<rXJ az) in M, then s* is an empty set. Note also that if there is no

global input sequence of length t which leads Mi to si, then E($i, t) is empty.

Definition: N(si,£,u, si)

Given si e Si, Si e Si, u. e B^, and I C 52 x 25, let JV(Si,I,u,si) be a subset of
52 x 25 given by

c . ^ ivi , -, u = AiuVs2,xv), 6i=^i(3i,u),{(,2,0^2x25|3x€Bl^(S2,^)GZ: 'l ' A\ [«,- ^ >»
«2 = <52(s2, XV), 5* = A(s*, x, X2 \s2,xvj)

where v = Ai($i,u).

Intuitively,iV(3i, X,u, si) defines all possiblepair of "next"states of M2 and M, (s2, s*),

suchthat Mi x M2can movefrom (Si, S2) to (si, s2) andM canmovefrom s* to 5* withtheoutput

A '̂(S2, xv) in asingle transition for some (s2, £*) € Z, where the transition causes Mi to move to
<si under input minterm u.

Definition: Prime Machine

An implementablemachine Mi = (U, V,Si, Ai,Si, ri) is prime, with respectto M2and

M, if for each state si € Si, there exists a subset E($i) C S2 x 25with the following property:

(1) Vt>0:2(8ut)t4>*'H*ut) = H*i)
(2) Vu € BW,si eSi:si= 6i(suu) => N(su^(h)^si) = T.(si)
(3) • (Vt > 0 : Z(5i,0 = <f>) =• Z(3i) = {<£}

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 82

In other words, each state of a prime machine, whenever it is reached, is identified with

exacdy one subset of S2 x 2s. Note that if M isacompletely specified deterministic machine, then

T.(si) is a set of pairs of states of M2 and M, i.e. a subset of S2 x S. We define prime machines

only for implementable machines, inorder to ensure that for an arbitrary sequence ofB'xl, say a,
with length t, the pair ofstates of Mi and M2led to by the prefixsubsequenceof a with length t -1

is uniquely defined and there exists aunique pair (u, v) e B^ x 2?'v' such that u = A^(s2, xtv)
and v = Ai (.si, u), where X* is the last element of a.

Theorem 4.4.1 For each implementable machine M\t there existsan equivalentprimemachine.

Proof: We prove the theorem by presenting a procedure which takes as input an implementable

machine Mi = (U,V,Si, Xi, 8i, n) and returns an equivalent prime machine M{. The procedure

is shown in Figure 4.5.

Theprocedure first duplicates Mi, where S[is set to Si, A7 and8'areidentical withAand

S, respectively. Thetransitions of M[are then modified during theprocedure. Thefunction E(s{),

used in the procedure, is defined for a state si e Si. E(si) designatesthe equivalentclass that si

initially belongs to in Mi. When Mi is copied to M{ at the beginning of theprocedure, we assume

that E(si) is associated witheachstate si of S{. Furthermore, N'(§i, Z, u, si) is given by

{(s2,0€52x2*|3x6B'*lfeS--)6X: -fl*'** r**(!"U);W, , 1.
S2 = Ms2,xv), 5* = A(s*,x, A2 '(32,xv)),

where v = X[($i, u). When a new state «i is created in M{, weset 6[(§i, u) <- #i(si, u) foreach

ii € B\u\ where si isthe next state ofsi inM{ under the input u. Note that itisalways true that the
nextstatesi is a statewhich originally existed in M{ when Mi wasduplicated. Therefore thestate

corresponding to$i also exists in Mi, which wedenote also bysi. Hence, by6[(§i, u) <- #i(si, u),

wemean #j(§i, u) is setto thestate of M[which corresponds to thestate of Mi given by#i(si, G).

In other words, the transitions of a newly created state si are made identical with those defined at

si in Mi.

We first claim thattheprocedure maintains theinvariance thatastate$i of M[isequivalent

toevery state of E(s{)ofM\. Namely, for all sequences a of B\u\, the output sequence defined at

$i by a in M[is identical with thatdefined ata state of E(si) in Mi. Theinvariance is trivially true

in the beginning since the function E is so defined. Suppose that the invarianceholds immediately

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 83

function prime(Mi = (U,V, Si, Ai, 61, ri))

/*letMl = (U,V,S'v\'i,6'vri)*/

M[<- copy(Mi);

for(each si e S{){ £(si)«- undefined; }

2(n)^{(r2,W)};/*ri€S(*/

markri;

start:

while(there exists §i e S[that is marked){

for(each u € B^){

/*let«i =tf}(3i,u)*/

JV <- iV'($i,Z($i),u,si);/* sinceSi is marked, £(si) is defined. */

if(35i € S{ : Z(Ji) = JV and E(§x) = E(sx)) S[(suu) «- Ju

elseif(Z(si) = undefined){ Z(«i) <-iV; marksi; }

else{ /* create a new state Si */

S'i*-S'iV{§i};

for(each u € £|c/|){
8[(suu) «- ^i(5i,u); A}(Si,tk) «- Ai(«i,u);

}
tf{(Si,u)4-|i; IftJ-JV;

E(Ji) <- J57(si); mark Si;

}

}

remove the mark of si;

}

for(each si € S[such that L(si) = undefined){ £(«i)«- {<£}; marksi; }

if(there is a marked state) goto start;

return M{;

Figure 4.5: Procedure to Generate a Prime Machine

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 84

before a state Si is processed. Consider the case where Si is processed for a minterm u e B^UK

Suppose anew state Si is created. Since the transitions defined at §i in M{ are identical with those

of si defined in Mi, Si of M[is equivalent to $i of Mi. Since E($i) is setto E(si), theinvariance

holds for the state Si. Also,if thestate 8[(Si, u) is changed from «i to another already existingstate

Si, then E(§i) = E(si) holdsby construction. Since theoutput values of Si do not change during

the process, Si obtained after the process for u is still equivalentto a state of E(si) of Mi. Thus

the invariance holds. Therefore, M[obtained immediately after processing Si is equivalent to M\.

We next claim that the procedure terminates. This is because every state is processed

exactly once anda new stateis created only if thereis no stateSi equivalent to si with Z(Si) = JV.

Since thenumberof states of Mi and the numberof subsets of S2 x 2s are both finite, theprocedure

must terminate.

It follows that M[obtained attheendof the procedure is equivalent to Mi.

Finally, we claim that M[is a prime machine. The condition (2) shown in the definition

of prime machines holds for M[since all thestates of M{ are processed and the set JV used in the

procedure is as defined by JV(Si,Z(Si), u, si) in the definition, and we always set Z($i) equal to

JV for each next state. For the condition (3), there are two classes of states si for which there is

no t > 0 suchthatZ(si ,t) ^ <f>; oneis those which are not reachable in M[and the otheris those

which are reachable in M{ but not withthe existence of M2. For a state si in the first class, Z(si)

remains undefined until it is explicitlyset to {<£} atthe endof the procedure, andthus the condition

holds. For a state si of the second class, the condition holds if the conditions (1) and (2) hold, since

in this case, the procedure sets JV to {<f>}.

Hence, the proof is done if we prove condition (1), i.e. for each $i 6 S{ and for all

t > 0, if £(si ,t) ^ <f>, then Z(si, t) = Z($i). We claim it by induction on t > 0. Consider the

case where t = 0. The only state si with Z(si,0) ^ <j> is the reset state r\. The procedure sets

^(n) = {(^2-, {?})}> which is equal to Z(ri,0).

In the induction step, let si be a state such that Z(si ,t) ^ <j>, where t > 0. Consideran

arbitrary u e B^ and Si e S[such that si = 6[(Si, u)holds inM[. We claim that ifZ(Si, t -1) is
notempty, thenJV'(Si, Z(Si, t - 1),u, si) = Z($i). Note that thenon-emptiness of Z(si, t) implies

that thereexists at leastone such Si. It follows thatZ(si, t) = Z($i) since Z($i, t) is givenby the

union of iV'(Si, Z(Si, t - 1), u,si)over all u e B^ and all Si e S[with si = 6[(Si, u)and since
ifZ(Si, t - 1) is empty, then JV;(Si, Z(Si, t - 1),u, si) is also empty. By theinduction hypothesis,

Z(Si, / - 1) = Z(Si), and thus JV;(Si, Z(Si, t - 1),u, si) is equal to JV defined in the procedure for

Si and u. Since at the end of the procedure; the existence of the transition si = 6{ (Si, u) implies

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 85

thatZ(si) = JV, JV,(Si,Z(Si,<-l),u,si) = Z($i). Thiscompletes theproof for the condition(1).

Hence M[is a primemachine. •

The procedure shown in Figure 4.5 is only presented for proving the theorem. It is not

used for constructing the E-machine.

The theorem claims that the set of prime machines provides the complete set of imple

mentable behaviors. Hence only prime machines need to be considered in order to be able to

represent all permissible behaviors. Next we present another property that holds for permissible

prime machines, which is used in constructing the E-machine.

Theorem 4.4.2 Suppose a machine Mi, prime with respect to M2 and M, is also permissible.

Consider a state si € Si suchfto Z(si,i) ^ 4>for some t > 0. Then thefollowingproperty holds.

V(52,5*) e Z(*i),Vx €£'*': A2z)(52,xv) €A(a*,x),

where v € B^ isthe output minterm ofMi uniquely definedforthe input x atthe state (si, $2) of
Mi x M2.

Proof: Suppose for contrary that A^(s2, xv) £ A(s*,x). Since Z(si ,t) ^ <j> for some t > 0and
since (s2,s*) e Z(si), there existsa sequence aonl which leads Mi x M2 to (s\, s2) while M

is led to the states of s* with the same output sequence given by Mi x M2 for a. Since Mi is

permissible, s* is not an emptyset. Then at the state (si, s2), the outputof Mi x M2with the input

x is different from any output that can be obtained by M at a state of 5* with the same input x. It

follows that the behavior of Mi x M2 is not contained in M, which conflicts with the fact that Mi

is permissible. This completes the proof. •

Example 4.4.1 ConsiderM2 and M shown inFigure 4.6, where each ofX, V, U, and Z consists

ofa single variable, while a node and an edge represents a state and a transition,respectively. The

label associated with an edge shows the minterms of the inputs and the outputsfor the transition

corresponding to the edge. Thelabel associated witha node is the nameofthe corresponding state.

Theresetstates <?/M2 and M are state 1 andstate A, respectively.

Three permissible machinesfor these M2 and M are shown in Figure 4.7-(a), (b), and

(c). For each machine, the one shown on the right-handside is an equivalentprime machine, where

thelabelassociatedwitheachstate si is Z(«i).

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

xv/uz

-0/00

-II

M2 M

Figure 4.6: Example of M2 and M

(*>

(b)

1/0 M

<foft
(e)

Figure4.7: PermissibleMachines Mi (u/v)

86

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 87

4.5 The E-machine and its Properties

In this section, we show that the complete set of permissible behaviors for Mi can

be represented by a single non-deterministic machine, called the E-machine. The E-machine is

computed by a fixed point iteration. We first present the definition ofthe E-machine, and then claim

associated properties.

4.5.1 The E-machine

Consider the transition relation of a non-deterministic machine given by the following

computation. Let S^ = {(r2, {r})} and compute T<t+1) and <S<'+1) for a given S® CS2x 2s.
Let Zp and Zn be subsets of 52 x 2s, respectively, and u and v minterms of B^ and B\vl
T(*+1)(Zp, u, v, Z„) = 1ifand only if the following three conditions are satisfied:

(1) Zp€S<*>
(2) V(x, 32, £*) £BWxS2x2s : (S2, £*) GZp and u = A2u)(S2,xv)

(a) A22)(S2,xv)GA(ii,x)
(b) (^(»z,xv)JA(i,*,x,A2Jt)(«2,xv)))€ZB

(3) V(s2,s*)eS2x2s : (s2,5*)€Zn

=> 3(x,32, s*) e BW x S2 x 2s :
(a)(S2,5*)<=Zp

(b)u = A^(S2,xv)
(c)s2 = £2(S2,xv)

(d)^=A(i-*,x,A<z)(S2,xv)).

In each computation, S^ is a set of subsets of 52 x 2s. Note that the empty set {<f>} may be in

S®. Given T^t+l\ we compute S^t+^ as follows. <S<t+1>(Zp) = 1ifand only if5^(ZP) = 1or
there exist Zp e S®, u e B\u\ and v £ B^ such that T(t+1)(Zp, u,v,Zp) = 1. Intuitively, we
are computing a transition relation that on each step is being extended to a new set of states, where

each state corresponds toasubset of52 x 2s. These states are added tothe transition relation. This

is continued until nothing new is seen, i.e. a fixed point is reached.

Let Kbethe smallest positive integer such that <S^(ZP) = S(K-1)(ZP). Such Kalways

exists since the number ofthe elements ofthe set S^ isnot decreasing during the computation and

the number of subsets of S2 x 2s is finite. Let S = S^ U{<f>}.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 88

Figure 4.8: The E-machine for Example 4.4.1

Let T : S xB^ x #lvl xS -• Bbe arelation such that T(ZP, u,v,Zn) = 1ifand only
if

(1) Zp = Zn = Wor

(2) rW(Zp,u,v,Zn) = l.

Finally theE-machine isdefined asa5-tupleT= (J7,F,«S,T,Zr), where Zr = {(r2,{r})}.

Recall thateach state of theE-machine represents a subset of 52 x 2s, butnote thatif M is a com

pletely specified deterministic machine, a state of the E-machine is a set ofpairs of states of M2 and

M, i.e. a subsetof S2 x 5, ratherthan 52 x 2s.

Example 4.5.1 For M2 and M in Example 4.4.1, the transition relationoftheE-machine is shown

in Figure 4.8.

4.5.2 Properties of the E-machine

The objective in this section is to show that the E-machine captures the complete set of

permissible behaviors. More specifically, a behavior implementable at Mi is permissible if and

only if the behavior is contained in the E-machine.

Theorem 4.5.1 A behavior implementable at Mi contained in theE-machine is permissible.

Proof: Consider an arbitrary sequence a = (xo,..., xjt) of B^XK Let 0* = (xo,..., xt) be the
prefixsubsequenceof a with the length t +1, where0 < t < k and define o-_i as the null sequence.

Since the behavior is implementable, <rx' uniquely defines the pair of sequences of B^ and B^,

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 89

say (<7« ,a*),as well as the sequence cryofB^, where cry = (uo,..., ut), ay = (vo,..., vf),

and cry = (zo,..., z<), such that (cry, ai*') is realized by the behavior and for each i, 0 < i < t,
u,Zt = A2(4 ,XjVj) and 4 = ^(4 ,x«v0» where 4 = r2- Let us define (<Tu\<Tv1')
as the pair ofnull sequences. Note that M2 is led to 4 DV applying cry. Also, for t > 0, let
s* C S be the set of states to which M is led by ay with the output sequence ay. Similarly, let

i* C 5 be the set of states to which M is led by axl~ with the output sequence a\l~ \ In case
t = 0, we define s* = {r}.

We show by induction on t > 0 that by applying the subsequence cry,

1. X2z)(s2t\xm)eA(s\xt),

2. there exists aunique state z(*+1) € <S towhich the E-machine is led by (cry, cry),

3. s* is not an empty set, and

4. (4t+V) € Z<*+1>.

Denote Z*0) = Zr. Then Z*0) isthe unique state of the E-machine towhich the E-machine

can be led by (ai~l\ ai), where we see (r2, {r}) e ll°\ By the induction hypothesis, there
exists aunique Z^ to which the E-machine can be led by (a%~ ,<ri). Furthermore, s~* is not
empty and (4*\ «*) €Z^. It follows that Z^ ^ {<f>}.

Since (40,**) € !<*> and u, =Aju)(4'),xtvt)f thenT(K)(Z(f),u,v,{<£}) =0. How
ever, since the behavioriscontained inT and since Z^ isthe unique state towhich the E-machine can

be led by (eri'"1*,^"1*), there must exist astate Z(*+1) e S such that r(Z(*),u,v,Z<'+1)) = 1. It
foUowsthatrW(zW,u,v,Z<*+1)) =1. Therefore, by construction, A^i^x^) €A(i**,xt).
Since s* = A(s*,xuzt) and zt = Xy(s2,xtVt), 5* is not empty. Also, since s2t+ ' =
^2(4 »x«v*)» (s2 '5*) € ^i+1^ by construction. It remains to show that such Z^+1^ is unique.
Since we know the uniqueness of Z^, the proof is done if we show that for any Z € S such that

T(lft\ u, v, Z) = 1, Z = Z(*+1). Consider an arbitrary such Z. Bythe argument above, Z ^ {<£},

and thus T^K\Z^\ u,v,Z) = 1. Then by the condition (3) of the construction of T^K> shown

in Section 4.5.1, for an arbitrary pair (s2,s*) € Z, there exist x e B^ and (S2,s*) e Z^
such that u = A^(S2,xv), s2 = #2(S2,xv), and s* = A(i'*,x,A2^(S2,xv)). Then since
T^(zW,u,v,Z(t+1)) = 1, by the condition (2) of the construction of T^), (s2,5*) must be

amember of Z<'+1>. Thus Z C z(f+1). The same argument holds toclaim thatZ(*+1) C Z,and thus

£(*+i) with the property above isunique. This completes the proof for the induction step.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 90

Hence, the sequence of the global output Z, realized for the input sequence a by the

behavior Mi together with M2, is also realized by M. Since a is arbitrary, the behavior is

permissible. •

Wenow claim that all permissiblebehaviorscanbe capturedby theE-machine. Amachine

contained in the E-machine is defined as follows.

Definition: Contained Machine

Given a finite statemachine T = (U,V,<S,T,Zr), a completely specified deterministic

finite state machine Mi = (U,V, Si, Xi, 81, 7*1) iscontained inT if there exists amapping <p: Si ->•

<Ssuchthaty?(n) = 2:randforallsi e Si and u e BW,T(<p(si),u, Ai($i,u),<p(6\(si,u))) = 1.

Lemma 4.5.1 Consider a machine Mi = (U,V, Si, Xi, 61, 7*1) contained in afinite state machine

T = (U,V,S,T,I.r). Then thebehavior of Mi is contained in T.

Proof: We showbyinductionon t > 0 thatforanarbitrary inputsequence on Uwiththelengtht, the

outputsequence of Mi given by the inputsequence canbe realized by T. Theclaimis trivially true

whent = 0. Consider the casewhere t > 0. Let aube an arbitrary sequence on U withthe length

t - 1and let u e B^ be an arbitrary minterm. Let Si be the state ofMi to which au leads Mi.
Let av be the sequence of V givenby Mi for the inputsequence au. By the inductionhypothesis,

(tfu,av) is realized by T. Since Mi is contained in T, T(<p(§i), u, Ai(Si, u), (f(8i(§i, u))) = 1.

Thus thepairof sequences (auu,avX(§i, u)) is realized by T, which completes theprooffor the

induction step. Hence the behavior of Mi is contained in T. •

With this lemma, all we need to show is that for an arbitrary permissible machine Mi,

there exists an equivalent machine contained in the E-machine.

Theorem 4.5.2 Foreachpermissible machine M\t there exists an equivalentmachine contained in

the E-machine.

Proof: By Theorem 4.4.1, there exists a prime machine M{ = (U,V,Si,Xi,8i,ri) which is

equivalent to M\. Let <p : Si -> S be a mapping such thatforeach state si e Si, (p(si) = Z(si).

Notethat </?(n) = Zr. We claim that M(is contained in theE-machine under (p.

Note first that since M[is prime, for a state Si for which there is no t > 0 such

that Z(Si,i) ^ <f>, Z(Si) = {</>}. Then for an arbitrary u e B^u\ and for the next state

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 91

si = #i(3i,u), JV(Si,Z(Si), u,5i) = Z(«i) = {<£}. Thus by the construction of the E-machine,

r(^(Si),u,Ai(Si,u),</)(5i)) = 1 forsuch Si.

We now show by induction on t > 0 that forall states Si € Si such that Z(Si ,t) ^ <f> and

for all uG B^,T^i+l\(p(Si),u,v,(p(si)) = 1, where v = Ai(3i,u)andsi = 8i(si,u). We also

prove that if Z(si,i+1) ^ (f>, then (p(si) e <S(i+1), where <S('+1) isdefined inSection 4.5.1. We
show that each condition for constructing the E-machine, given in Section 4.5.1, is satisfied, where

£p = <P(3i) = Z(3i).

First, since M[is prime, for its reset state n, <p(ri) must be equal to {(r2, {r})}, and

thus <p(ri) G S(°\ In the induction step for a general t, the induction hypothesis implies that

<p(3i) € S{t).
Consider an arbitrary x G#'*' and (S2, s*) g Z(Si) such that u = A2uJ(S2, xv). Ifthere

is no suchx and (S2, i**), thentheconditions (2)and (3)are trivially true withZn = {</>}. Therefore,

T(t+1\<p($i), u,v, {</>}) = 1. Since inthis case JV(3i, Z(Si), u, si) isempty, the primeness of M[
implies that Z($i) = {<£}. Therefore T^t+l\<p(Si), u,v, y?(si)) = 1, and the proof for this case is

done.

Suppose such x and (S2,s~*) exist. Note that in this case, Z(si,tf -f-1) ^ <j>. We first

consider condition (2).

Since M[is permissible, Theorem 4.4.2 implies that Xy (S2, xv) GA(i**, x). Also, since

M[is prime, Z(si) is equal to JV(Si, Z(Si), u, si), whichis denoted by JV hereafter. The definition

of JV implies that (^2(S2,xv),A(i'*,x, A^(S2,xv))) is amember of JV. Therefore, it is also a
member of Z(si). Since Z(^i) = <p(si), condition(2) holds for Zn = <p(si).

By the equalitybetweenZ(si) and JV givenabove, forall (s2, s*) GZ($i), (s2, s*) G JV.

It follows that condition (3) is satisfied for Z„ = (p(si).

Therefore, T^t+1\(p(si),u,v,(p(si)) = 1. It follows that Z($i) GS^t+l\ and thus the

claim aboveholds. Note thatby this induction,we see that foreach si G Si, <p(si) G S. Hence, by

the construction ofT, T(y?(Si), u,v, <p(si)) = 1for all Si GSi and for all u G2?'17'. •

We have now reached the key statement of the E-machine.

Theorem 4.53 Supposea behavior at Mi is implementable. Then the behavioris permissible if

and only if it is contained in the E-machine.

It follows that the set of implementable behaviors given in the E-machine precisely

provides the complete set of permissible behaviors at Mi. By Theorem 4.5.2, we see that the

E-machine contains the permissible behaviors by using their associated contained prime machines.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 92

In this sense, we can say that the E-machine tells not only which behavior is permissible, but also

how the behaviorcan be realizedby at least one finitestate machine, hi other words, the following

claim holds for permissible machines.

Corollary 4.5.1 Suppose afinite statemachine is implementable at M\. Then it is permissible if

and only ifthereexists an equivalentmachine contained in the E-machine.

Proof: If Mi is a permissiblemachine,then by Theorem4.5.2, there exists an equivalentmachine

contained in the E-machine. Conversely, suppose that for an implementable machine Mi, there

exists an equivalent machine contained in the E-machine. Then by Lemma 4.5.1, the behavior of

Mi is contained in the E-machine. Thus, by Theorem4.5.1, Mi is permissible. •

4.5.3 A Variation of the E-machine

Bydefinition, each state ofthe E-machine corresponds toasetofpairs (s2, s*) e S2 x 2s.

In case M is a completely specified deterministic machine, this corresponds to a set of pairs

(s2,s) e S2X S. The reason why a set of pairs is associated with each state is that the global

inputs X do not directiy drive Mi. Specifically, consider the fixed point iteration introduced in

Section 4.5.1 for constructing the E-machine. In condition (2), foreach pair (S2, i*) g Zp, there

might exist more than one x GB^ such that u = a£^(32, xv). Then for each such x GB^x\ we
need to include the pair of next states (£2(32, xv), A(s*, x, A^(S2, xv))) in Z„. Since the pair of
next states may be different for different x, we include in the next state Z„ of the E-machine more

than one pair (£2(S2, xv), A(s*, x,A2Z,(S2, xv))) for each (S2, s*) and (u, v).
However, as shown below, if the global inputs X directiy drives Mi, then each state of

the E-machine corresponds to a single pair (s2, s*) e S2X 2s. hi this case, the only difference

from our originalproblemis that Mi takes as input U and X, as shownin Figure4.9-(a). Namely,

Mi is given by (X UU, V, Si, Xi, 81, n). Note first thatthiscanbereduced to theoriginal problem

by modifying M2 so that the global inputs drive Mi through M2, as shown in Figure 4.9-(b).

Alternatively, we can directly apply the fixed point computation given in Section 4.5.1 to construct

the E-machine for the case of Figure 4.9-(a). The difference is that the E-machine is now defined

with the input X UU, and thus the transition relation T^+1^ has a minterm x g i?'x' as input.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 93

r

Ml
V1h •

—»

M2

M

(a) (b)

Figure 4.9: The Problem where Global Inputs Drive Mi

Specifically, T^+1)(Zp,xu, v,Z„) = 1if and only if the following three conditions are satisfied:

(1) ZpG«SW
(2) V(S2,i'*) GS2x25

(3) V(52,s*)GS2x2'

(S2, s*) GZp and u=A^(S2, xv)
^ (a) 42)(s2,xv)GA(3*,x)

(b) (tf2(S2,xv),A(J%x, A^(S2,xv))) GZn
(52,5*)GZ„

=* 3(S2,s*)G xS2x2s:

(a)(S2,i"*)GZp

(b)u =A2u)(S2,xv)
(C)s2 = ^)2(S2,xv)

(d)^=A(5~*,x,A2z)(S2,xv)).

As mentioned above, if Zp is a singleton, i.e. it consists of a single pair (S2, s*), thenZn

defined by these conditions is also a singleton. Since initially S^ is defined as {(r2, {r})}, each

state of the E-machine corresponds toasingle pair ofelements of S2 x 2s, rather than aset of pairs.

The correctness of the E-machine, i.e. Theorem 4.5.3, can be proved in the exacdy same way as the

original case.

Hence for the case where the global inputs also drive Mi, the number of states of the

E-machine can be significandy smaller than for the original case. Note that the problem of finding

permissible behaviors for the outside component M2, discussed in Section 4.1.2, falls into this

category.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 94

4.5.4 The E-machine in Hierarchical Optimization

As seen so far, the E-machinc is in general a non-deterministic finite state machine, i.e.

for a given state and input, the next state and the corresponding output may not be unique. The

non-determinism makes it possible to represent a set of behaviors in a single machine. Since the

specification M may also be non-deterministic, wecan intuitively say that the flexibility originally

given for the entire system is mappedinto a particularcomponentMi, and the resulting flexibility

is also represented by a non-deterministic machine, i.e. the E-machine.

This observation leads to the use of E-machines in the following optimization scenario in

a framework of hierarchical system designs. Consider a system of interacting components, where

each component correspondsto a completelyspecified deterministic finitestate machine. Suppose

that we have computed the E-machine for a particular component of the system. Suppose also

that the system is described in a hierarchical way, so that each component can also be regarded

as a system of interacting finite state machines at one level below. This situation is illustrated in

Figure 4.10, where Figure 4.10-(b) is one level below that of Figure 4.10-(a), and the entire system

in (b) corresponds to the shaded component given at the original level (a). Then at level (b), the

specificationofthe system is givenby theset of permissiblebehaviors identifiedat the corresponding

component at level (a), which is givenby the E-machinecomputed for the component at the original

level. Then using the E-machine as the specification, we choose a sub-component at level (b), and

compute the E-machine for that component. This procedure can be repeated to compute E-machines

for levels further below. Hence, using E-machines, the flexibility given at a higher level can be

transformed into a lower level in a uniform fashion.

4.6 The Structure of the E-machine and a Non-Deterministic Construc

tion

We have stated that the non-determinism of the E-machine is the means by which a set

of behaviors can be represented by a single machine. However, we note that the E-machine is a

special type of non-deterministicmachine. Namely, for a given state Zp G S and pair of input and

output minterms (u,v) GB^ x B\v\ifthere exists anext state Z„ such that T(ZP, u,v,Zn) = 1,
then such Zn is unique. In other words, if we introduce a set of new symbols which uniquely

represent and replace each pair of input and output minterms of the E-machine, then the result is a

determimstic finiteautomaton. This is true since in the constructionof the E-machine, we uniquely

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 95

Figure 4.10: Hierarchical Optimization of Interacting Finite State Machines

define the next state, if it exists, for a given pair of input and output minterms. We call a finite state

machine with this property a pseudo non-deterministicfinite state machine.

It is informative to ask whether it is possible to construct the E-machine, so that the

automaton corresponding to the machine is non-deterministic and accepts the same language as the

original. In other words, if we perform the subset construction to dcterminize the non-deterministic

automaton, where we assume each pair of input and output minterms is a single symbol, then can we

obtain the deterministic automaton corresponding to the E-machinc? It is interesting to construct and

represent the E-machine this way, since it is known that the subset construction, or determinization,

could introduce an exponentially large number of states in general. Thus we expect that the non-

deterministic automaton has a smaller state space; the complete set of permissible behaviors is then

represented in the more compact way.

In this section, wc consider the structure given in Figure 4.1 but assume that M is a

completely specified deterministic machine. Wc then present a procedure, suggested by Alex

Saldanha, that generates a machine such that by performing an operation similar to the subset

construction we obtain the E-machine as originally defined. Recall that in case M is a deterministic

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 96

machine, a state of the E-machinedefinedin Section4.5.1 corresponds to a set of pairs of states of

M2 and M. A state of the machinewhichwe willconstruct (calledthe NDE-machine) corresponds

to a pair of states of M2and M, rather than a set of pairs.

4.6.1 The NDE-machine

The procedure for constructing the NDE-machine is a fixed point iteration. Denote the

transition relation and the set of states at the tan step by T$' and <S$ respectively, where the
subscript N indicates that the construction leads to a non-deterministic E-machine in the sense

above. Initially, SN> = {(r2,r), <f>, k},where r2 and r are thereset states of M2 and M while <f> and

kare newly introduced states. The initial transition relation T$:sffl xB^ x#'y' xS$ -> B
is defined as TN \<;p, u, v,qn) = 1ifand only ifeither qp = <;n = <f> or cp = cn = «, i.e. we start
with only self-loops on 4> and n. In general for the step (t +1), T$+l\<;p, u, v, cn) is defined when
<rp GSN' - {<j>, k}, i.e. thepresent state ?p is a pairof states of M2 and M,say <rp = (32,3), which

has been introduced as astate in the transition relation T$. Then T$ (cP, u, v,qn) = 1ifand
only if one of the following three conditions hold:

(a) Vx g B\x\ :u / A^fe,xv) and <;n = <j>, or
(b) 3x G5lxl: u= A2u)(S2,xv) and AJ^fe,xv) ^ A(5,x) and cn = K, or
(c) Vx G£'x' : u = A^u)(52,xv) ^> A^(32,xv) = A(3,x) and

3x GBW : u = A^)(32,xv)and?„ = (£2(S2,xv),tf(s,x)),

where X: S x B^x\ -» B^ and 8 : 5 x #lxl -> 5 are the output and the next state functions of

M, which are defined since M is deterministic. Condition (a) says that if there is no x which causes

M2 to output u at the state S2 for the input v, then we cause a transition to <f>. Condition (b) means

that if there exists an x which causes M2to output u at S2 for v but the z output is not allowed, then

we cause a transition to «. Finally (c), if all possible z outputs are allowed and if there is at least

one xthat makes M2 and Mtransit to ?„, then this transition is put in T$+1\
LetTn be thetransition relation ofthefixed pointof thecomputation. Namely, forpositive

integer K, ifS^ = <s|f_1), then TN = T^K Similarly, let SN = sffl. The NDE-machine is
defined as (U,V, Sn, Tn, <rr), where thereset state ?r isgiven by cr = (r2, r). Thetransition relation

of the NDE-machinefor M2 and M used in Example4.4.1 is shownin Figure4.11, where the states

0 and k are denoted respectively by {} and k. Note that unlike the E-machine, the NDE-machine

has a property that for a state ?p and pair of input and outputminterms (u, v), there mightexist

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 97

Figure 4.11: The NDE-machine for Example 4.4.1

morethanone state <;n suchthatTn(sp, u, v, ?„) = 1. In Figure 4.11, the NDE-machine can go to

either 1A or 2B from state 1A under the input 1 and output 0. It is because for different global input

x GB\x\ M2 and M may go todifferent next states with the same (u, v).

Now, for a given NDE-machine (U,V,SN,TN,<;r), consider a finite state machine

(U,V,SD-,TD,^Dr) defined as follows. The state space Sd is the set of subsets of Sn that

contain <j> and not contain k. The reset state Zrjr is the subset {?r><£}- The transition relation

TD:SDx BW x BlvI x SD -+ B is defined as TD(I,Dp, u,v, ZDn) = 1ifand only if

Zd„ = {<rn € SN I3?p GZ£>p :7V(?p,u,v,<rn) = 1}and « i ZDn (4.2)

This construction is the subset construction, or determinization, of a non-deterministic finite au

tomaton [26], where the state k is the unique non-accepting state, meaning that a string which can

lead the automaton to k is not accepted. Only subsets, generated in the subset construction, which

do not contain k are allowed next-state subsets. In this way, we end up with a finite state machine

which contains only permissible behaviors.

Let S'D be the unionof the state {<f>} GSd and the setof states of Td reachable from the

reset state Zpr. Let T'D :S'D x B^ x B^ x S'D -»• B be the transition relation ofTD restricted

to the states SfD. We then claim that the restricted machine T'D = (U,V,S'D,TD,I.Dr) is the

E-machine. Morespecifically, T'D and the E-machine are isomorphic, i.e. there exists aone-to-one

ontomapping / from the state space of the E-machine to thatof T'D suchthatT(ZP, u, v, Zn) = 1

if and only if T^(/(ZP), u, v, /(Zn)) = 1.

Theorem 4.6.1 The machine T'D andthe E-machine are isomorphic.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 98

Proof: Givena subsetZ of pairsof statesof M2 and M, let /(Z) be the subsetgivenby addingthe

state <j> to Z, i.e. /(Z) = Z U {(/>}. Bydefinition, / is a one-to-one mapping andthus the inverse of

/ is also defined. We claim thatT'D and theE-machine are isomorphic under themapping /.

Suppose T(Zp,u,v,Z„) = 1holds intheE-machine. IfZp = {<j>}, thenbythedefinition

of the E-machine, Z„ = {<£}. By construction of the NDE-machine Tn, for the present state

<f> GSn, <f> is theunique statethatsatisfies Tn(<I>, u, v, <£) = 1. Therefore, Tn({<f>}, u, v, {<f>}) = 1.

Since f ({</>}) = {<£}, T£(/(Zp), u, v, /(Zn)) = 1,andtheclaim holds.

Consider the case where Zp ^ {<£}. We show T£>(/(Zp),u, v,/(Zn)) = 1 under the

assumption that /(Zp) G SD. This assumption does not affect the claim, since /(Zr) G S'D for

the reset state Zr = {(r2yr)} and T|>(/(Zp),u,v,/(Zn)) = 1 implies that /(Zn) G S'D. By

construction of theE-machine, the nextstateZ„ from Zp underu/v is given by

2„ ={(*2>*)6S2x5|3x €51*1, (%,*)€ I,: U=A '̂XV)' *=*(%.*»).>.
5 = 8(3,x)

Consider arbitrary x g 2?'x' and (s2, $) g Zp such that u = A^(s2, xv). Ifthere are no such x
and (§2, s), then Z„ =.{<£}. In this case, for an arbitrary pair of statesof M2 and M contained in

/(Zp), only condition(a) holds in the definition of the NDE-machine. Therefore, for all elements

?p G /(Zp), ?„ = <}> is the unique state which satisfies T/v(?p, u,v,?n) = 1. Thus we obtain

/(Zn) = {<„ | 3?p G/(Zp): TN(<;p,vL,v,<;n) = 1}. HenceTjf,(/(Zp),u,v,/(Zn)) = 1.

Suppose there exist such x and (s2,s) GZp with the property that u = A^S^xv).
Thenby thedefinition of theE-machine, X^ (hi xv) = X(s, x). Therefore, in thedefinition of the

NDE-machine, the condition (a) and (b) do not hold and the first half of the condition (c) holds.

Hence, Zn given above can be rewritten as

£„ = {(«2,s) € S2 x S | 3(s2,s) GZp : Tn((s2,s),vl,v,(s2,s)) = 1}.

Thusby definition of TD, T^(/(ZP), u, v, /(Zn)) = 1.

Conversely, suppose r£,(ZDp,u,v,Z£>n) = 1. We will show that the corresponding

transition exists inthe E-machine, i.e. T(/_1 (Zdp), u,v, /-1(Z£>n)) = 1, where f'1 isthe inverse
of/. Note that the function /-1(Z£>p) simply removes the state <j> GSn from the subset Zrj>p,
where incase Zdp = {</>}, /-1(Zdp) = {<£}. We employ the assumption that /-1(Z£>P) GS. The
assumption does not affect theclaim for the same reason above. If Zdp = {<f>}, then Zrjn = {<£}.

Since T({<f>}, u, v, {<£}) = 1, the claimholds.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 99

Consider the case where Zdp ^ {<f>}. Since /-1 (Z£>p) G<S, there exists some t such that

/-1(ZDp) G«S(f), where S® is defined in Section 4.5.1. We will show that conditions (2) and (3) de
fined in the definition ofT<K) in Section 4.5.1 hold, and thus r(t+1)(/-1(ZDp)}u,v,/-1(ZDn)) =
1. Hereafter, let us denote Zp = /_1(Z£>P) and Z„ = f~l(l,Dn). Consider arbitrary x g £|x|
and (h, 3) e S2 x S such that (s2, 3) G Zop and u = Xy(h, xv). If there are no such x and

(h, s), then the condition (2) trivially holds. Also in this case, for each ?p = (32,5) GZdp, only

the condition(a) holds in the construction of the NDE-machine Tn, andthus Zr>n = {<£}. Since

condition (3) trivially holds if Zn = {<£}, we obtain T^+1)(Zp,u,v,Z„) = 1.
Suppose such x and (32,s) exist. Since n £ Zrj>n, condition (b) does not hold for

this pair (S2,S) in the definition of the NDE-machine. Thus the first half of the condition

(c) holds, and A2(s2,xv) = A(s,x). Since (#2(32,xv),£(3,x)) G ZjDn, by definition of To,

(^2(52, xv), 8(3,x)) G Z„, andthe condition (2) holds.

Forcondition (3), consider an arbitrary (s2,s) G Zn. Since (s2,s) G Zrj>n, there exists

(§2,5) G Zdp such that T/v((s2,s),u,v,($2,s)) = 1. Hence, condition (c) in the definition of

the NDE-machine holds, and there exists x g 2?'x' such that u = A^s^xv) and (s2,s) =
(82(32, xv), 8(3, x)). Thus condition (3) holds, and we obtain T^+1)(ZP, u,v, Zn) = 1. •

Thus, the E-machine can be obtained by applying an operation similar to the subset

construction on the NDE-machine Tn. One might wonder why the operation like the subset

construction is necessary, i.e. how is the set of behaviors contained in the E-machine related to

those of the NDE-machine? The answer is that the NDE-machine contains more implementable

behaviors than the E-machine. Specifically, in the NDE-machine, an implementable behavior is not

permissibleif thereexists a pair (au, av) of sequences of U and V in the behaviorwhich can lead

the NDE-machine to k, since it means that the corresponding sequence on the global output Z is

inconsistent withwhat is required by M? Therefore, weneed to remove thesetof pairs that have

a possibility to lead the NDE-machine to k. It is analogous to removing, or complementing the set

of strings that have a possibility to lead a non-deterministic finite automaton to an accepting state,

where k is now treated as the accepting state. Hence, we employ the subset construction to remove

those additional behaviors, and then guarantee that an arbitrary implementable behavior contained

in the resulting machine (E-machine) is permissible. It is illustrated in the following example.

Example 4.6.1 ConsiderM2 and M shown in Figure4.12, which are slightlydifferentfrom those

used in Example 4.4.1. The corresponding E-machine and the NDE-machine are shown in Fig-

zNote that thepair (<ru, av) isnotallowed even if it can also lead theNDE-machine to astate other than k.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

xv/uz

-0/00

Figure4.12: Example of M2 and M

(a) E-maebbtt (b) NDE-Machlne

Figure 4.13: The E-machine (left) and the NDE-machine (right)

100

ure 4.13-(a) and Figure 4.13-(b) respectively.

Consider a behavior at Mi which always outputs 0 for all input sequences. This is

equivalent to setting the variable V to a constant 0, and thus the behavior is implementable.

However, thebehavioris notpermissiblesinceifa sequence ax of theglobal inputX is set to (0,0),

then the corresponding pair of sequences (au, av) on U and V realized by the behavior and M2

is given by au = (1,0) and av = (0,0), and thus the global output sequence az is obtainedas

az = (0,0), while the globalmachine M requires thataz mustbe (0,1). It is easy to see thatthe

pair (au, av) above can lead theNDE-machine to thestate k through the states IA and 2B. Note

that this behavior is not contained in the E-machine.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 101

4.6.2 A Case where the NDE-machine Equals the E-machine

As just illustrated, the NDE-machine can contain behaviors that are implementable but

not permissible. In order to remove such behaviors, we apply an operation similar to the subset

construction to the NDE-machine. However, such an operation is necessary because of the fact that

the NDE-machine is not pseudo non-deterministic, i.e. the automaton corresponding to the NDE-

machine is non-deterministic. If the NDE-machine happens to be pseudo non-deterministic, then

additional behaviors can be removed simply by deleting transitions which cause the NDE-machine

to go to state k, and thus an operation like the subset construction is not necessary. Intuitively,

for a pseudo non-deterministic machine, this corresponds to complementing a deterministic finite

automaton, where k is treated as the accepting state and we want to remove set of strings that lead

the automaton to k.

It is then claimed that the resulting machine, i,e, the NDE-machine where transitions to

k have been removed, is isomorphic to the E-machine. This can be proved as follows. Suppose

that the NDE-machine (U, V,Sn, Tn, ?r) is pseudonon-deterministic. By definitionof the NDE-

machine, for eachstate <rp and pairof input and output minterms (u, v), theNDE-machine always

has at least one next state, i.e. a state «rn such that T/v(?p, u, v, cn) = 1. Therefore, pseudo non-

determinism implies that for eachstate cp andpairof inputandoutputminterms (u, v), thereexists

exactly one state cn such that Tn(sp, u, v, <rn) = 1. We first claim that the machine obtained by

removing transitions to n is isomorphic to the machine T'D defined in the previous section,whose

transitions are defined by Formula(4.2). In Formula (4.2), supposethat Zjj>p consistsof only two

states of the NDE-machine, {<rP,<£}, where one of them is <f>. Then since the NDE-machine is

pseudo non-deterministic, Z£>n defined by the formula for given u and v has exactly two states of

the NDE-machine, where one of them is <j>. Then Z£>n is included in a stateof the machine T'D if

andonlyif it doesnot contain « andis reachable from the reset stateof T'D. Since the reset stateof

T'D is given by Zu>r = {?r, <j>}, the machine T'D is obtained by replacing eachstate?p of the NDE-

machine by a set {?p, 4>}, and by deleting transitions to k. Hence T'D is isomorphic to themachine

obtained by deleting transitions to n in the NDE-machine. ByTheorem 4.6.1, T'D is isomorphic to

the E-machine, and thus it follows that if the NDE-machine is pseudo non-deterministic, then the

E-machine can be obtained simply by deleting transitions to k in the NDE-machine.

The remaining question is when does the NDE-machine become pseudo non-deterministic.

One such case is the context discussed in Section 4.5.3, where the global inputs X directly drive

Mi, as shown in Figure 4.9. If Mi takes as input U and X, then the NDE-machine also has X

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 102

as input. Thus, ifwe apply the fixed point iteration to define T$+1'(?p,xu, v,?„) = 1according
to Equation (4.1), where the three conditions are checked for that particular x g -B'x' given

in T$, then the next state <rn is uniquely defined. Therefore, the NDE-machine is pseudo
non-deterministic. Furthermore, the isomorphism between the NDE-machine and the E-machine

provides another interpretation for the fact that in this case, the E-machine has a property that each

state corresponds to a single pair of states of M2 and M, as shown in Section 4.5.3.

4.7 Implementability of Interacting Machines

4.7.1 Implementability

As we have seen in the previous sections, the permissibility of Mi requires that Mi is

implementable, i.e. there exists a pair of implementations for Mi and M2 where no combinational

loop is created by connecting them together at U and V. Therefore, when a permissible machine is

sought, we need to check whether the machine is implementable or not. In this section, we provide

a condition on the implementability.

Let a completely specified deterministic machine M2 = (X UV,U UZ, 52,A2,82, r2) be

given. Wewantto knowif a completelyspecified deterministicmachineMi = (U, V,Si, Xi,81, r1)

is implementablewith M2. The key idea is to check the implementabilityby analyzingthe depen

dencies.

Definition: Dependencies

For a set of Boolean variables X = {xi,..., xn} consider a function / : Bn -*• B

defined withthe inputX. Given an inputvariable a:,- g X, f is dependent on x{ if f\Xi=o ^ f\Xi=\,

where f\Xi=o designates the cofactor of / with respect to a?t- = 0.

If / is not dependenton x{, we say that / is independentof X{. The dependency of / for

an input x, is related to whether it is possible to implement the function / with no combinational

path from a, to the output, where we define a combinational path as a sequence of gates which does

not contain latches or flip-flops. More specifically, the following lemma is known.

Lemma 4.7.1 Given afunction f : Bn -*• B with the input X = {xi,..., xn}, there exists an

implementationfor f such that there is no combinationalpathfrom X{ to the output, if andonly if

f is notdependent onx{.

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 103

Proof: Suppose there exists an implementation such that there is no combinational path from x{ to

the output. Then for an arbitrary minterm x G Bn, the outputvalue f(x) does not change evenif

we flip the valueof X{ in the minterm x. Thus f\Xi=o = /U=i.

Conversely, suppose that / is not dependent on a;,-. Consider an implementation of /.

If the implementation does not contain a combinational path from X{ to the output, the proof is

done. Suppose there is a combinational path. We claim that the implementation given by setting

xi to a constant value, say 0, still implements /. Let / be the function defined by the resulting

implementation. Note that / does not depend onX{. The proofisdone ifwe show that f(x) = f(x)
for allx GBn. Suppose /(x) ^ /(x). Then the value of Xi in themintenn x must be 1since /

is obtained by setting a:,- = 0 in /. Then /|Xi=o ^ /U=i, which contradictsthe fact that / is not

dependent on xt. •

We now present a condition under which Mi is implementable . Consider a directed

bipartite graph G(U UV, E), where the node set of G is divided into two classes U and V and a

node of U (respectively a node of V) corresponds to a variable of the input variables U (respectively

the output variables V) of Mi. The edges of G are defined as follows:

[ui,Vj]eE <$• Xy3' depends on U{,

[vj, ui\ GE <$ X2Ui' depends onvj,

where wedenote by X\3' thefunction ofthej-thoutput variable vj in Mi. Thegraph G is referred

to as a dependency graph.

Theorem 4.7.1 Mi is implementable ifand only ifG is acyclic.

Proof: SupposeMi is implementable. Thenthereexistsa pair of implementations (Ci, C2)for Mi

and M2 respectively whichdoes not createa combinational loop. Let GC(U UV,Ec)be a directed

bipartite graph with the same node set of G, where the edges are defined as follows:

[u{, vj] g E & thereexists a combinational pathfrom w; to vj in Ci,

[vj,Ui] G E & thereexistsa combinational path from vj to u{ in C2.

(v)Since the implementation does not contain a combinational loop, Gc is acyclic. Now, if Aj •"

depends on «,-, Lemma 4.7.1 implies that Ci has a combinational path from ut- to vj. A similar

argument holds for A^u'\ Thus ECEc. Hence Gis asubgraph of Gc, and Gis acyclic.
Conversely,suppose G is acyclic. Consider an implementation Ci of Mi, where for each

vj, the function X\3' is implemented independently, as described in Lemma 4.7.1, so thatno gate

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 104

of the implementationis used in an implementationof another output of M\t say Vk with j ^ k.

Then Ci has aproperty that there is acombinational path from U{ to vj ifand only ifA[v" depends
on U{. Similarly, let C2be an implementation of Af2 such that there is a combinational path from

vj to Ui if and only if X^' depends on Vj. The proof is done if we show that (Ci, C2) does
not create a combinational loop. Suppose to the contrary that there exists a combinational loop

c= (vio? w«o> •••» %> uik> v3o)- r^lQn for each /, 0< / < k, X2l) depends on Vjr Similarly, AJVj'
depends on «,-,_,, where we define Ui_x —Uik. Thus the cycle c exists in G, which conflicts with

the fact that G is acyclic. •

Since the cyclicity of a directed bipartite graph can be checked in polynomial time in the

size of the graph [55], we can efficiently check the implementability of Mi. Note that if either

Mi or M2 is of Moore type, then G is always acyclic, and Mi is implementable. Note also that

the theorem above is claimed under the assumption that both U and V are Boolean variables. It is

known that for symbolic variables, there exist cases where cyclic dependency observed for symbolic

variables can be broken in an actual implementation by carefully encoding the variables [7].

4.7.2 Unimplementable Machines in the E-machine

In general, not all machines contained in the E-machine are implementable. By definition

of implementable machines, ifa machine Mi contained in the E-machine is not implementable, then

any implementationof M2 will create a combinationalloop for that particular Mi. Thus, for given

M and M2, if the resultingE-machinecontains no implementablemachines, then it is impossible

to realize a behavior of M without combinational loops, as long as the behavior of M2 is used.

We discuss what can be done with unimplementable machines of the E-machine. Specif

ically, we show that for a machine Mi contained in the E-machine but not implementable, if Mi

satisfies a certain condition, then it is possible to realize a behavior of M with no combinational

loops, as long as we are allowed to modify the behavior of M2.

Let Mi = (U,V, Si, Ai, 8i, ri) be a machine contained in the E-machine. Suppose that

Mi is not implementable. Suppose also that Mi satisfies the following stability property:

Property 4.7.1 For allpairs ofstates, (si,S2) GSi x S2, andforallx G2?'*', there exists atleast
one (u,v) GBW xB^ such thatv = Xi(suu)andu = X2u)(s2,xv).

This property can be checked by first computing a function St: Si x 52 -> B such that

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 105

^- z

Figure 4.14: Modification for Unimplementable Machines

St(si, «2) = 1 if and only if

Vx G#1*1 :3(u,v) GBW x £'vl :v =Ai(5l,u)and u=A2u)(s2,xv),

and then checking whether St is tautologically equal to 1.

Consider a pairof implementations Ci and C2 for Mi and M2, respectively. Since Mi is

not implementable, the implementation made of Ci and C2 creates a combinational loop. Assume

that we can scan the latches of Ci, i.e. it is possible to observe externally the state in which Mi

stays. Then we modify C2 so that the resulting implementation has no combinational loop and

realizes a behavior of M.

Consider a function whose inputs are the global inputs X as well as the states of Mi and

M2, and the outputs are U. We denote the function by / : Si x 52 x I?'*' -• 2? '̂. For given

(si, 52) € 5i x 52 and x GB\x\ the output u = f(si, s2, x) isdefined so that there exists v GB^
such that v = Ai(si,u) and u = A^(32,xv). Since Mi satisfies Property 4.7.1, /(-si, s2, x) is
defined for every input. Let C3 be an implementationof /. Note that C3 is a combinational logic

circuit. We break the connection from C2 to Ci at U by eliminating the outputs U from M2, andlet

C3 drive Ci, as shown in Figure4.14. Since all the feedbacks from Ci to C3 and from C2 to C3 are

to see the states of Mi and M2, there is no combinational loop in the resulting implementation.

Let us regard the circuit made ofC2 and C3as animplementationofa single deterministic

finite state machine M2. Note that the state space of M2 is identical to that of M2. By the

construction of the function /, it is guaranteed that for all pairs of states, (si, $2) G Si x S2, and

for all x G I?'*', the pair (u,v) G B^ x B^ realized by Mi and $2 has the property that

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 106

v = Ai(«i, u) and u = X2u\s2, xv). Furthermore, the state transition ofJi?2 does not depend on
the states of Mi. Namely, for agiven state s2 of M2 and input xv g b\XuV\, the next state towhich

iOT2 moves is uniquely defined and is given by #2(s2, xv). Since Mi is contained in theE-machine,

exactly thesame proofof Theorem 4.5.1 holds toclaim that for an arbitrary sequence a of 5'x', the

output sequence realized by Mi x M"2 can be realizedby M, andtherefore the behaviorof Mi x M2

is contained in M. We state this fact as a theorem below.

Theorem 4.7.2 For a machine Mi contained in theE-machine, suppose Mi is not implementable

and satisfies Property4.7.1 above. Thenfor an arbitrary pair of implementations Ci and C2for

Mi and M2, if an additional circuitry C3 given above is attached, the resulting circuitry has no

combinational loop and its behavior is containedin M.

4.8 Experimental Results

The method of computing the transition relation T of the E-machine has been imple

mented, and we conducted some experiments. The current implementation is limited to the case

that the global machine M is deterministic, and thus a state of the E-machine corresponds to a

subsetof pairs of statesof M2 and M. Binarydecisiondiagrams (BDD's) [12] are used to represent

the transition relations of M2 and M, wherea set ofstatesofeachmachine is represented by binary

variables using log-based encodings. All set operations, such as intersection, union, complement,

set comparisons, as well as quantifications, are performed on BDD's. We first compute the relation

T(K) and then T. One straightforward way ofcomputingT^ isto first compute the relation given
by the condition (2) and (3) of the definition ofT^ shown in Section 4.5.1, and then restrict it

to the states that T can beled to by some sequences of B^. However, since the total number of

statesof the finite statemachine given by the conditions(2) and (3) is exponential in |52||5|, the

BDD representing the transition relation of the machine may be too large. Instead, we perform a

fixed point computation as stated in Section 4.5.1, where ateach step t, instead of the setS^\ we

use aset which contains S^ n -»«S^-1^, iscontained inS^\ and isrepresented byaminimal-sized
BDD. Such a set is computed by a BDD operation similar to the one known as generalized cofactor

[13], and a detailed description is found in [52]. Duringthe computation, we need to see if a given

pair of states (52,3) G S2 x S is amember of Zp. For this purpose, we use acharacteristic function

x(S2,3, Sp) whichis equal to 1if and onlyif (32,3) G 5"2 x S is amemberof Zp. However, aBDD

representing the function itself, or a BDD obtained at an intermediate stage of the computations

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES

Mi M2
E-machine Time IterationsIn Out S In Out S

mc9 2 1 4 3 5 4 4 0.1 3

mt52 5 6 22 7 7 4 9 0.4 4

tm02 4 4 20 5 6 20 10 0.9 3

tm32 3 4 19 6 5 3 9 1.7 7

pm11 8 8 26 10 10 24 9 1.9 5

tm01 4 4 20 5 6 20 10 2.9 3

am9 6 6 25 7 8 4 13 3.1 10

pm12 8 8 26 10 10 24 7 4.3 4

e69 2 1 4 5 8 8 8 4.5 3

L4 8 6 20 11 14 14 6 5.0 5

mt51 5 6 22 7 7 4 16 6.9 7

L3 2 3 76 7 3 19 17 8.5 8

e4bp1 5 5 24 6 9 14 11 9.9 10

pm33 6 6 25 7 8 4 21 10.2 It

e6tm 4 4 20 5 6 8 21 10.5 7

pm03 2 4 11 6 4 14 15 14.2 14

tm31 3 4 19 6 5 13 9 14.2 4

pm31 6 .6 25 7 8 4 22 20.6 8

e4at2 5 4 21 6 9 14 14 27.4 13

pm50 2 4 11 6 4 14 22 37.3 17

s3p1 5 5 24 7 7 13 38 43.3 11

pm41 2 4 11 6 4 14 33 132.0 22

Table 4.1: Experimental Results

107

using the function, could be fairly large in practice. Therefore, we represent x by several BDD's

whose union forms x- We modified the formula given in(2) and (3) inthe definition ofT^ sothat

the union of these BDD's are taken as late as possible by applying other commutative operations

earlier. These heuristics seem to be effective in controlling the size of BDD's.

Using the procedure implemented as stated above, we conducted some experiments. The

examples were chosen mainly from mcnc91 benchmark examples. The objective of the experiment

was to determine the size ofmachines that can be handled by the current implementation, as well as

the size of the resultingE-machineT since its state-space size could be exponential in |52| \S\. The

experiments start with choosing two finite state machines, Mi and M2, in the structure shown in

Figure 4.1. Both machines are completely specified determimstic finite machines. We then make an

arbitrary connection between the machines, i.e. a subset of the input variables (the output variables,

CHAPTER 4. PERMISSIBLE BEHAVIORS FOR FINITE STATE MACHINES 108

respectively) of M2is arbitrarilychosento connectwiththe output (the input, respectively) of Mi,

so that Mi is implementablefor M2. Then theE-machine is constructed by the proposedprocedure,

where a preprocessor is first invoked to obtain the product machine M of Mi and M2, so that

Mi x M2 is used as the specification M.

The results on these examples are shown in Table4.1. Each row of the table corresponds

to a single experiment, where In, Out, and S designate the number of input variables, the number

of output variables, and the number of states respectively. Time is the CPU time used for each

experiment in seconds on a DECstation 5000/240. Iterations shows the number of iterations

required inthe fixed point computation ofT^K\ During the experiments, we realized that the size
of the resulting E-machine and the required CPU time vary widely depending upon the connections

chosen between Mi and M2. Thus we cannot make any general statement on the size of the

E-machine that we can handle in practice. Nevertheless, for these experimental results, we see that

the number ofstates ofTisnegligibly smaller than 2^ I5'. This isnot surprising inthe sense that a

state si of the E-machinecorrespondsto a subsetof 5*2 x S withthe property that M2 and M are led

toexactly the states ofthe subset by the input sequences ofJ5'x' and the sequences ofB^ realized
by transitions from the reset state of the E-machineto s\. Thus if there exists a pair of states (s2, s)

not led to by any input sequence, then any of the subsets of S2 x S which contains the pair will not

appear inthe E-machine, where there are 2(I5*"5I~1) such subsets.

4.9 Concluding Remarks

In this chapter, we addressed the problem of computing and representing the complete set

ofpermissible sequential behaviors, where two finitestate machines are interacting with each other

as shown in Figure 4.1. We showed that the complete set can be computed and represented by a

single non-deterministic finite state machine. The machine is called the E-machine and its transition

relation is computed by a fixedpoint computation. Wealso considered the problem ofimplementing

interactingfinitestatemachineswithout introducingcombinationalloops, and provideda necessary

and sufficient condition under which given machines are implementable. The proposed procedure

for computing the E-machine was implemented and experimental results were presented.

In the following chapter, we address the problem of minimizing E-machines, i.e. finding

the best permissible behavior of Mi for given M2 and M.

Chapter 5

Minimization of Pseudo

Non-Deterministic FSM's

109

5.1 Introduction

In the previous chapter, we addressed the problem of optimizing a system of interacting

finite state machines. Specifically, we considered how to find a set of sequential behaviors that

can be realized at a particular component so that the resulting behavior of the entire system meets

the specification. We called each of such behaviors a permissible behavior at the component, and

showed that the complete set of permissible behaviors can be computed and represented by a single

non-deterministic finite state machine, called the E-machine. In this chapter, we consider how to

find an optimum permissible behavior, where we use as the cost function the number of states of a

finite state machine required to represent a given behavior.

The key theorem on the property of the E-machine we derived in the previous chapter

is that the set of implementable behaviors given in the E-machine precisely provides the complete

set of permissible behaviors. Therefore, an optimum permissible behavior is given by finding a

least-cost behavior over all the implementable behaviors contained in the E-machine. This is the

problem we are concerned with in this chapter.

Note the difference of this problem from a problem known as reduction of non-

deterministic finite automata, which finds a minimum-state automaton with the same language

for a given non-deterministic finite automaton [21]. Our problem does not require the behaviors of

the original finite state machine to be preserved during the minimization.

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSMfS 110

The problem is analogous to the state minimizationofdeterministic finite state machines,

which finds a minimum-state deterministic machine whose behavior is contained in a given deter

ministic finite state machine [1,23,24,40,44]. Our problem is more general in that a given machine

is non-deterministic. We also need to take into account the implementability of a behavior.

As shown in Section 4.6, the E-machine has a special type ofnon-deterministic finite state

machine called apseudo non-deterministic machine. Therefore, it is sufficient for our application

to consider the problem only for the case where the given machine is pseudo non-deterministic. We

show that the property of pseudo non-determinism can be effectively used to solve the problem.

In this chapter, we first present a theoretical analysis of the problem, in which we show

how the basic concepts developed for the state minimization of deterministic machines can be

generalized for our problem. The analysis leads to an exact formulation for solving the state

minimization ofa pseudo non-deterministic machine, i.e. find a minimum-state deterministic finite

state machine whose behavior is contained in a given pseudo non-deterministic machine. We then

discuss how to deal with the implementability ofbehaviors, and present an exact method for finding

an optimum permissible behavior in the E-machine.

We also propose a heuristic approach for the,state minimization of pseudo non-

deterministic finite state machines. This procedure has been implemented with a restriction that we

focus only on Moore behaviors [38], behaviors where the outputs depend only on the internal states

ofmachines, and not on the inputs. The restriction was made in order to guarantee that the resulting

behavior is implementable. This procedure has been implemented and experimental results are

presented.

5.2 The Problem

5.2.1 Minimization of E-machines

In the previous chapter, we considered a system of interacting two finite state machines

Mi and M2 as shown in Figure 5.1. The specification, or a set of behaviors allowed to realize at

the entire system, is given by a non-deterministic finite state machine M. The problem is that for

a given M2 and M, find a set of behaviors that can be realized at Mi so that the behavior of the

entire system meets the specification M. Each of such behaviors is called apermissiblebehavior at

Mi. Specifically, a behavior at Mi is said to be permissible if it is implementable, i.e. there exist

implementations for Mi and M2 respectively with which no combinational loop is created in the

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSMfS

r

u V

Ml

M2

M
- J

Figure 5.1: Interaction between Two Machines

111

resulting implementation, and the behavior composed of Mi and M2 is contained in M. Formal

definitions of the terminology used in this chapter are given in Section 4.2 and in Section 4.3.

It was shown that the complete set of behaviors permissible at Mi can be captured by

a single non-deterministic finite state machine, called the E-machine. In this chapter, we find an

optimum permissible behavior for Mi. As the cost function, we use the number of states of a finite

state machine required to represent a given behavior. By Corollary 4.5.3, we see that the set of

implementable behaviors given in the E-machine computed for Mi precisely provides the complete

set of permissible behaviors. Thus, an optimum permissible behavior is given by finding a behavior

that can be represented by a completely specified deterministic machine with the minimum number

of states over all the implementable behaviors contained in the E-machine.

Also shown in the previous chapter is that the E-machine has a special property called the

pseudo non-determinism defined as follows:

Definition: Pseudo Non-Deterministic Finite State Machines

A finite state machine (1,0, S,T, r) is said to be pseudo non-deterministic if for all

(sp, u,v) € S x BW x #l°l, T(sp, u,v, sn) = 1 =* sn isunique.

Note that a pseudo non-deterministic finite state machine is a special type of non-

deterministic machine. Also, a completely specified deterministic machine is trivially pseudo

non-deterministic.

Hence, we consider the problem given by the following general statement: for a given

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 112

pseudo non-deterministic finite statemachine T = (U, V,S, T, r) anda completely specified de

terministicfinite state machine M2 = (X UV,U U Z,52, A2,82, r2),finda behavior represented

by a completely specified deterministicmachine with the minimum numberof states over all the

implementable behaviors contained in T, where theimplementability is defined against M2. In the

rest of the chapter, this problem is referred to as the minimization ofthe E-machine.

5.2.2 State Minimization of Pseudo Non-Deterministic Machines

A problem related to the above is one called the state minimization of pseudo non-

deterministicfinite state machines. The problem is that for a given pseudo non-deterministic finite

state machine T, find a a behavior represented by a completely specified deterministic machine

with the mimmum number of states over all the behaviors contained in T. The difference between

this problem and the original problem is that the implementability must be taken into account in the

original.

The state minimization of pseudo non-deterministic finite state machines is a variation of

the problem generally referred to as the state minimization of finite state machines. Specifically,

it is a subproblem of the case where a given machine is a general non-deterministic machine,

and is a generalization of the case where a given machine is deterministic. The research for the

deterministic case has been done extensively [1, 23, 24,40,44], while little has been done for the

non-deterministic case.

In the following section, we present a theoretical analysis of the state minimization of

pseudo non-deterministic machines, in which we show how the basic concepts developed for the

determimstic case can be generalized for the problem. The theory provides a basis for exact

formulations ofboth this problem and our original problem, i.e. the minimizationofthe E-machine.

Before starting the theoretical analysis, we first argue the theoretical generality of the

state minimization of pseudo non-deterministic machines. In other words, we show that the

state minimization of general non-deterministic finite state machines can be reduced to that of

pseudo non-deterministic machines, and thus the assumption that a given machine is pseudo non-

deterministic does not affect the generality of the problem of the state minimization of finite state

machines. Specifically, we claim that for an arbitrary finite state machine, there exists a pseudo

non-deterministic finite state machine with exacdy the same set of behaviors.

Theorem 5.2.1 For a givenfinite state machine T = (U,V,S, T, r), there exists a pseudo non-

deterministicfinite state machine which represents the same set ofbehaviors ofT.

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSMfS 113

Proof: The basic idea of the proof is to convert a non-deterministic finite state machine to a

non-deterministic finite automaton by combining inputs and outputs. Then determinize the non-

deterministic automaton using the subset construction and map the resulting automaton back to a

finite state machine, observing that the result is pseudo non-deterministic.

Let Zbeaset with the cardinality equal to2|t/|+|v|. Let a : B^ x£|v| -> Zbe aone-to-
one mapping from B\u\ x B\v\ to Z. Namely, for (u,v) € B^ x B^ and (u,v) € £|c/| x B^,
if (u, v) 7^ (u, v), then a(u, v) ^ a(u, v). Note thatthe inverse function a"1 is well-defined and

is also one-to-one.

Consider a finite automaton Ta = (Z, S, Ta, S, r) that has the same state set as T. The

transition relation T° : S x Z x S -»• B has the property that T(S, u, v, s) = 1 if and only if

Ta(3, a(u, v), s) —1. Weassumethat every state of Ta is a final state. Note that T° is in general

a non-deterministic finite automaton. Let TD = (Z, Sd, Tfc, td) be a determimstic automaton with

the same language of T°. Then considera finite state machine Tp - (U, V,So, Td, td) that has

the same state set as Tg. The transition relation Td : Sd x B^ x B^ x Sd -»• B isdefined by
the property that Td(3, u, v, s) = 1 if andonlyif Tg(S, a(u, v), 5) = 1. It is easy to see that Td

is a pseudo non-deterministic finite state machine.

We claim that Try represents the same set of behaviors as T. Namely, a behavior is con

tained in T ifand only ifit is contained in Td. For a behavior B contained in T, consider an arbitrary

pairof sequences (au, ov)ofB, where au = (uo,..., u^) andav = (v0,..., v*). Thensinceallthe

states are final, the automaton T° accepts the sequence of Z given by (a(uo, vo),..., a(\ik, v*)),

and so does TD. Hence (au,av) is realized in Td. Since (au,av) is an arbitrary pair,the behavior

B is contained in Td. A similar argumentholds to claim the converse, which completes the proof.

•

Therefore, in terms of behaviors represented by single machines, we see that pseudo

non-deterministic machines are as expressive as general non-deterministic machines. Note that this

property does not hold for deterministic machines, i.e. there exists in general a non-deterministic

machine whose set of behaviors cannot be represented by any single deterministic machine. This is

illustrated by the following example.

Example 5.2.1 Consider the behavior represented by the non-deterministicfinite state machine T

given in Figure5.2. Supposethatthere existsa deterministic machineM representing thesameset

ofbehaviors. Then at the resetstate, M mustoutput 1for the input 0 and Ofor the input 1. Now,

considerthe nextstate that M movestofor the input 1 when it stays at the resetstate. Since M is

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 114

Non-Deterministic Machine T

Figure 5.2: A Non-Deterministic Machine whose Behaviors cannot be Represented by Single
Deterministic Machines

deterministic, either M can move to any state (in case M is incompletely specified), or it moves to a

single state. If it canmove to any state, then M may stay at the reset statefor the input 1. Itfollows

thatfor the inputsequence 110, M mayfirst output0 staying at the reset state, nextoutput 0 again

still staying at the reset state, and then output 1for the third input 0. However, the resulting output

sequence 001 is not allowed for the input sequence 110 in the original machineT. Therefore, for

the input 1 at the reset state, M must move to a single state, say s. Since M represents the same

set ofbehaviors as T, the outputs ofthe machine M at the state s must coincide with those of the

states B and C in the original machine T. Specifically, the outputs at the state s must be that

either M always outputs Ofor all the inputs, or it always outputs 1 for all the inputs. Therefore,

we must specify more thanonepossible outputfor each input. However, since M is a deterministic

machine, only the case where multiple outputs can be specified for a given input is that the output is

unspecified for the input. Namely, we must specify in such a way that at the state s, M may output

either 0or\ for each input. However, this specification allows the case that M outputs Ofor an

input 0 and outputs 1 for an input 1. We see that this case should not be allowed in order for the

outputsat thestate s to coincide with thoseof thestates B and C in theoriginalmachine T, since

T's outputs at these states are either always equal to 0 or always equal to 1. Hence, there is no way

to correctly specify the outputs ofM at the state s. It follows that there is no single deterministic

machine whose set ofbehaviors is identical with that ofthe original non-deterministic machine T.

Note also that the construction given in the proof of the theorem above uses the subset

construction fordeterminizing a non-deterministic finite automaton. Therefore, even though pseudo

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 115

non-deterministic finite state machines are as expressive as non-deterministic machines, the number

of states of a pseudo non-deterministic machine could be exponentially larger than that of the

corresponding non-deterministic machine.

5.3 Feasible Machines

5.3.1 Feasible Machines

In this section, we consider how to find a set of contained behaviors for a given pseudo

non-deterministic finite state machine T. In other words, we want to establish a correspondence

between the set of contained behaviors and the original machine T, so that we can interpret each of

the contained behaviors in terms of the original machine.

We establish such a correspondence using a set of completely specified deterministic

finite state machines, so that the set of those deterministic machines precisely represents the set of

behaviors contained in T. Such a deterministic machine is called afeasible machine, and is defined

as follows:

Definition: Feasible Machines

A completely specified deterministic finite state machine Mi = (17, V,Si, Xi, 8i, ri) is

said to be feasible if for each state si e Si, there exists a subset Z(«i) C S with the following

property:

(a) r€Z(n),

(b) V($i,u) € Si x BW : Vs 6 Z(3i): 3s 6 Z(^(51)u))s.t. T(3,u,Xi(3un),s) = 1,
(5.1)

Associated with each state ofa feasible machine Mi is a set ofstates ofthe original pseudo

non-deterministic machine T. The condition (a) means that the set of states of T corresponding

to the reset state of Mi must contain the reset state of the original machine. The condition (b)

requires that for each state si ofa feasible machine Mi and for each input minterm u e B\u\ it is

possible to move in the original machine T from any of the states of T associated with si to some

of the states associated with 8i(3i, u), the next state of «i in Mi under the input u, with the same

output Ai(Si, u). This conditionis analogous to the closure constraint defined for the deterministic

case [40].

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 116

5.3.2 Properties of Feasible Machines

The objective in this section is to claim that

1. the complete set of behaviors contained in T is precisely the set of feasible machines, and

2. a minimum state behavior contained in T is given by a feasible machine with the minimum

number of states.

We first prove that the behavior represented by a feasible machine is contained in the

original pseudo non-deterministic machine T.

Lemma 5.3.1 Consider afeasible machine Mi = (U,V,Si, Xi,8i, ri). Fora state si G Si, let

BSl = {(au,av) | (au,av)is realized inMi atsi.}. Then BSl is a behavior between U and V such

thatfor all (au,av) € BSl andfor all s € Z(«i), (au,av) is realized at s in T.

Proof: The proofis doneby induction on k for an arbitrary pair of sequences (au,av) e BSl with

\au\ = k. What we claim is that for an arbitrary state s e Z(«i) ofT, there exists a state sW ofT
such that au can lead T from s tos^ with the output sequence av. Thus (au, av) isrealized by T.
We also show that s^ € Z(s| '), where s[' is the state of Mi led to by au from si.

The statement is true for k = 1,due to the condition (b) offeasible machines. Suppose that

thestatement is truefor k-\, where k > 1. Consider anarbitrary pair (au,av) e BSl withal = k

andan arbitrary state s of T contained in Z(si). Let (au,av) be the prefix pair of (au, av) of length

k - 1. Denote au = auu and av = avXi(s\ ~ \u). By the induction hypothesis, there exists

a state s^k~1^ e Z(sJ ~ ') such that au can lead T from s to s^k~1^ with the output sequence av.
Then by condition (b), there exists sW e I(s[k)) for which T(s^~l\ u, Ai(5[fc_1), u), s^) = 1.
Therefore, au can lead Tfrom s to sW GZ(s[')with the output sequence av. Thus the statement
is true. •

This lemma claims that the behavior of a feasible machine is contained in T, since the

lemma holds at the reset state n of Mi. Conversely, it is claimed that for every behavior contained

in T, there exists a feasible machine with the behavior.

Theorem 53.1 Given a pseudo non-deterministicfinite state machine T, a behavior is contained

in T ifand only if it is representedby afeasible machine.

Proof: It immediately follows by Lemma 5.3.1 that a feasible machine represents a behavior

contained in T. vWe prove the converse. Consider a completely specified deterministic machine

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 117

Mi = (U,V, Si, Ai,^i, r*i) whose behavior is contained in T. Suppose, withoutloss of generality,

that every state of Mi is reachable. We consider a procedure shown in Figure 5.3 which takes Mi

as inputand returns another deterministic machine M(. We claim that M{ is a feasible machine

equivalent to Mi. The procedure first duplicates the machine Mi, and modifies the duplicated

machine M[during the procedure. Specifically, it processes one state Si of M[at a time and

for each input minterm u 6 B'^', associate a subset Z(«i) of the states of T with the next state
5i = 8{(3i,u), where thecorresponding nextstate maybe changed to another possibly newstate if

necessary. Note that when a state Si is processed, a subsetZ(Si) C S has been already defined and

associated with Si. The notation E(si) used in the procedure designates the equivalence class that

a state 5i belongs to. The equivalence classes are originally defined for the machine Mi. When Mi

is duplicated, the equivalence class is associated with each state 5i of the duplicated machine M[.

When a new state §i is created, we define the transitions of the state so that it is equivalent to some

state 5i of the originalmachine Mi, and the equivalence class E(§i) is set to E(si).

The procedure uses two functions C(s*,E(si)) and iv~(Si,u,5i). C(s*,E(si)) is a

characteristic functiondefined for a subset s* of the statesof T and an equivalence class E(si) of

Mi. It is 1 if and only if an arbitrary pairof input and output sequences (au, av) realized at the

equivalence class E(si) of Mi can be realized in T at every state 5 of s*. Thus the function C

indicates if the subset s* can have the same behavior as the equivalence class E($i). The function

N(Si, u,5i) isdefined for astate Si of M[, aminterm u e B\u\ and the next state si of Si inM[
under the input u, i.e. si = 8[(3i, u). It returns a non-empty subset s* of the states of T with

the property that for each 3 e Z(Si), there exists s € s* suchthat T(S, u, Ai(Si, u), 5) = 1 and

C(s*, E(si)) = 1. Note thattheremightexistmorethanone subsets* which satisfies this property.

We only need assume that the function N returnsany one of such subsets. The returnedvalue of N

is thenused as the setZ(5i) and is associated withthenextstate given by 8[(Si, u).

We first claim that when a state Si is processed for a minterm u e B\u\ the machine

M{ is equivalent to Mi and the returned value of the function JV(Si,u,5i) is well-defined, i.e.

there exists a non-empty subset that satisfies the property stated in the definition of the function N.

In the beginning, M[is equivalent to Mi since we simply duplicate it. Also, since the behavior

of Mi is contained in T, there exists a subset s* C S such that res* and C(s*,E(ri)) = 1

for the reset state n of M{, and thus the set Z(ri) is well-defined. In general, when a state Si

is processed for aminterm u e B^, suppose that Z(Si) has been defined and the machine M[
is equivalent to Mi. Note that C(Z(Si), E(3{)) = 1 since Z(Si) is defined as the returned value

of the function N. Now, suppose for the contrary that for any subset s* C S of the states of T

CHAPTERS. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 118

function feasible(Mi = (U,V, Si, Xi, 81, n))

l*\etM[= (U,V,S'i,X'v8[,n)*l

M[<- copy(Mx);

for(each sx e S[){ Z($i) *- <j>; }

Z(ri) <- 5* s.t. res* and C(s*,E(n)) = 1; /* n e S{ */

markn;

while(there exists Si e S[that is marked){

for(each u e B^){
/*Let5i = 8[(Si,u)*/

iV^iV(Si,u,5i);

if(35i e S[: Z($i) = Nand £?(Si) = £(si)) S[(3uu) +- Si;

elseif(Z(5i) = <j>){ Z(«i) <- iv"; marksi; }

else{ /* create anew state Si */

s[^s[u{siy,

for(each u e £|t7|){
8[(§i,vl) <-£{(si,u);

X[(si,u) <- X\(si,u);

}

<5j(Si,u)^Si;

Z(Si)^iV;

E(§i) <- E(si);

mark Si;

}

remove the mark of Si;

}

return M[\

Figure 5.3: Procedure for Generating a Feasible Machine

CHAFTER5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 119

suchthat for all S e Z(Si), there exists s e s* with T(3, u, X[(3i, u), s) = 1, C(s*, E(si)) = 0.

Since T is pseudonon-deterministic and sinceC(Z(Si),£(Si)) = 1, foreachstates e Z(Si), there

exists a unique s e S suchthat T(3, u, Ai(3i, u),s) = 1. Let -A/"(Si) be a subset of S givenby

jV*(Si) = {5 e S I3S e Z(Si): T(S,u, Aj(Si,u),5) = l}. Namely Af(Si) isthesetof unique next

states of the states of Z(Si) under thetransition u/AJ(Si, u). Note that Af(Si) is notempty. Then

Af(Si)satisfies theproperty that for alls e Z(Si), there exists s e s*mthT(S,u,X[(3i,u),s) = 1,

where 5* is set to Af(Si), and also for all s* with this property, s* D Af(Si). Then by assumption,

C(Af(Si), E(si)) = 0, and thus there existsaninput sequence au and a state 5 e M(3i) suchthat

the output sequence av realized at the equivalence class E(si) of Mi for au cannotbe realized in

T at 5. However, since there exists a state 3 e Z(Si) for which s is the unique stateof S such that

T(3, u, Ai(Si, u), 5) = 1, the pair of sequences (uau, X\(Si, u)av), which is realized at E(3i) in

Mi, cannotbe realized in T atS. This conflicts with the fact thatC(Z(Si), E(Si)) = 1. Hence, there

existsa subset s* C S suchthat for all3 e Z(3i), there exists s e s* withT(S, u, X\(3i, u), 5) = 1

and C(s*, E(si)) = 1, andtherefore the returned valueof the function N is well defined. We now

showthatthe process for the state Si with theminterm u preserves the equivalency of M[to Mi.

It is true since if a new state Si is created, the state is set to the new next state of Si for the input u

and the transitions of Si are set identical with those of si, the original next state.

Therefore, attheendof theprocedure, we obtain adeterministic machine M[equivalent

to Mi. Also associated with each state si of M[is a subset Z($i) C S such that any pair of

sequences (au,av) realized at E(si) of Mi canbe realized in T ateverystate 5 e I>(si). Thus M{

satisfies the condition (5.1)-(b) given in the definition of feasible machines. By definition of Z(ri)

givenin the procedure shownin Figure 5.3, the condition (5.1)-(a) also holds. Therefore, M{ is a

feasible machine. •

By this theorem, we see that we can capture the complete set of contained behaviors

by taking into account only feasible machines. However, as shown in the following example, the

theorem does not hold for general non-deterministic machines. More specifically, there may exist

behaviors contained in a non-deterministic machine that cannot be represented by feasible machines

defined above1.

Example 53.1 Considerthenon-deterministicmachine T showninFigure5.4-(a). Thismachine is

notpseudo non-deterministic. Thebehavior ofa deterministic machineMi shownin Figure5.4-(b)

is contained in T. However, there is nofeasible machinewhich represents the behavior.

*In terms of thetrace equivalence, this corresponds tothefact that trace equivalencedoes notcoincide with simulation
equivalence for non^eterministic finite automata [57].

CHAPTERS. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 120

o/i -/o

Sj!Hy^8
(a) T (b) Mi

Figure 5.4: A Counterexample ofTheorem 5.3.1 for General Non-Deterministic Machines

Due to the condition (5.1)-(b), for each state 5i of a feasible machine Mi, the output

function Ai |Sl defined at si in Mi mustbe realized at every state s e Zi(51) in T. This requirement

is not necessary for general non-deterministic machines. For the example above, even though no

output function can be realized both at the states B and C in the machine T, the two states can

be treated as a single state with arbitrary output functions since for any input sequence, if it can

lead T to the state B, then it can also lead Tto the state C with the same output sequence. For

pseudo non-deterministic machines, we will see later that the condition (5.1)-(b) is effectively used

to compute the feasible machines.

We now consider optimum (minimum-state) machines. By Theorem 5.3.1, we know

that every behavior contained in a given pseudo non-deterministic machine T is represented by a

feasible machine. However, the procedure used in the proof of this theorem, i.e. the one shown

in Figure 5.3, may increase the number of states. Thus it is not obvious that there always exists a

feasible machine whose number of states is mimmum over all machines representing the behavior.

In fact, we prove below that this statement is true, i.e. for any behavior contained in T, there exists

a feasible machine that has the least number of states over all machines with the behavior. We use

the following classical theorem to claim this statement.

Lemma 5.3.2 For a completely specifieddeterministicfinite state machine M, suppose that there

is no equivalentpair ofdistinctstates in M. Then the number ofstates ofM is minimum over all

machines representing the behaviorgiven by M.

Proof: See [27], [38], or [30]. •

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 121

Lemma 533 For any behavior B contained in a given pseudo non-deterministicfinite state ma

chine T, there exists a feasible machine whose number ofstates is minimum among all machines

representing B.

Proof: Let Mi = (U, V,Si, Xi,8i,r{) be a feasible machine for the behavior B such that the

number of states of Mi is minimum among all the feasible machines representing the behavior. By

Theorem 5.3.1, such Mi always exists. We claim that the number of states of Mi is minimum over

all the machines representing the behavior B, not just feasible machines. Since Mi is a completely

specified deterministic machine, Lemma 5.3.2 implies that the proof is done if we show that there

is no equivalent pair of distinct states in Mi.

Suppose for the contrary that there exists an equivalence class E in Mi which contains

more than one state. Note first that every state of E is reachable from ri since otherwise we can

find a feasible machinefor the behaviorwith fewer states. Let Z(£) be the union of Z(5i) overall

the states 5i of E. Consider a machine M[given by replacing each equivalence class E of Mi by

a single state and associate Z(£) with it. Specifically, for a pair of equivalence classes (E, E), if

we denote the states of M[corresponding toE and E by 3[and s[respectively, then s[is the next

state of 3\ under an input u if and only iffor each state Si e E ofMi, 8i (Si, u) e E.
Bydefinition ofequivalence class, M{ is equivalent to Mi. Notethatthenumber of states

of M[is stricdyless than thatof Mi, since there exists an equivalence classin Mi which contains

more than one state. We show that M[is also a feasible machine, whichleads to a contradiction

since Mi has the minimum number of states over all the feasible machines for the behavior.

Since Mi is a completely specified deterministic machine, there exists exacdy one state

r[in M{ which corresponds to theequivalence class of the reset state n of Mi. For this stater{,

the resetstateof theoriginal machine T is contained inthesetof states of T associated withrJ, and

thus the condition (5.1)-(a) holds.

Consider an arbitrary state 3[ofM{ and an arbitrary input minterm u e B^UK Let E be
theequivalence class of Mi corresponding to 3\. LetZ(3{) be thesetof states of T associated with

S\. For every state S e Z(3j), there exists a state Si e E of Mi for which Se Z(Si). Let 5i bethe

next state of Si in Mi under u, i.e. 5i = 8i(Si, u). Since Mi is a feasible machine, there exists a

state s of T containedin Z(5i) such that T(S, u, Ai(Si, u), s) = 1. Denotingby E the equivalence

classof Mi which contains si, the states\ of M[corresponding to E is the next stateof 3[under

the input u. The set of statesof T associated withs\ in M[is given by Z(£), andthuswe see that

s e Z(£). Hence the condition (5.1)-(b) holds. Therefore, M[is a feasible machine. •

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 122

By this lemma, it immediately follows that a minimum-state behavior contained in a

pseudo non-deterministic machine T is given by a feasible machine with the minimum number of

states.

Theorem 5.3.2 Forapseudo non-deterministicfinitestatemachineT, let Mi be afeasible machine

with theminimum number ofstates. Then thebehavior of Mi is containedin T and its number of

states is globally minimum overall themachines representing containedbehaviors.

5.4 Exact Methods

In this section, we present how to find exactly an optimum behavior for a given pseudo

non-deterministic finite state machine. We first present in Section 5.4.1 an exact method for the

state minimization of pseudo non-deterministic finite state machines, i.e. find a minimum-state

behavior contained in a pseudo non-deterministic machine. We then discuss in Section 5.4.2 how

the implementabilityofthe resulting behaviorcan be taken into account, and present an exact method

for the minimization of the E-machine, i.e. find a minimum-state permissible behavior. As we will

see, both problems are formulated as a 0-1 integer linear programming problem. Namely, for a

set of Boolean variables given as the input instance, we present a set of linear constraints on those

variables so that a solution is given by an assignment for those Boolean variables with the minimum

numberof 1's whichsatisfiesall the constraints. The solutionspaceofeach problemisdefinedby the

Boolean space spanned by the set of Boolean variables given in the input instance. In Section 5.4.1

and Section 5.4.2, we present how to formulate the constraints for each problem. In Section 5.5,

we show how to reduce the solution space, i.e. the numberof Boolean variables given in the input

instance, without affecting the optimality of the solution. Specifically, we introduce a notion of

compatible sets, and show that optimum solutions are found by restricting the input instance so that

a single Boolean variable is assigned to each compatible set. The notion of compatible sets are

defined for pseudo non-deterministic machines, which is analogous to the notion of compatible sets

introduced for deterministic machines [40].

5.4.1 Finding an Optimum Contained Behavior

The problem we address in this section is the state minimization of a pseudo non-

deterministic machine T, i.e. find a behavior represented by a completely specified deterministic

finite state machine with the mimmum number of states over all the behaviors contained in T.

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 123

Let C = {s*,..., s*} be the set of subsets of states of a given pseudo non-deterministic

machine T. For a moment, let us assume that C is the complete set of subsets of states, and thus

the cardinality ofC is2'5', where S isthe state space ofT. InSection 5.5, we show how toreduce
the cardinality of C without affecting the optimality of the solution.

By Theorem 5.3.2, we see that an optimum contained behavior is given by finding a subset

C of C with the minimum cardinality for which a feasible machine can becomposed sothat each

stateof thefeasible machine corresponds to anelement of C. Bydefinition of feasible machines, a

subset C C C can compose a feasible machine if and only if

(a) 3s* e C : r e s* and

(b) V(*J,u) eCx BW :3(jJ,v) eCx B\v\ s.t. V3 e s*: 35 e s* :T(S,u,v,5) = 1.

By assigning a Boolean variable to each element of C, these conditions can be written in

terms of a set of Boolean formulas. Suppose we associate a Boolean variable ct for each s* e C.

Then the first condition is given by (^2 c*)« motner words, we require that one must include

in C at least one element of C which contains the reset state r of the original machine T. For

the second condition, we introduce, for each s* e C and for each u e B\u\ a Boolean formula

(c{ =>• ^2 cj)> where 71(5*, u) is the set ofelements s* ofCsuch that there exists v e B\v\
s;en(5?,u)

for which for all S e s*, T(3,\x,v,s) = 1 for some s e s*. Then the problem is to find a

minimum-weightassignmentfor the Booleanvariables {ci,..., cr} which satisfiesall the Boolean

formulas, where the weight is equally assigned to every variable. This problem is a 0-1 integer

linear programming problem.

Note the similarities of this formulation with the conventional approaches for the state

minimization of deterministic machines [24]. The second condition above corresponds to the

closure constraint, i.e. if an element ct is chosen, then at least one element implied by c, must also

be chosen for each input u. Implied elements, givenin our case by n(s*, u), are those that can be

treated as the next states of s* in a feasible machine.

5.4.2 Finding an Optimum Permissible Behavior

The problem addressed in this section is the minimization of the E-machine, i.e. find a

behavior represented by a completely specified deterministic finite state machine with the minimum

number of states over all the implementable behaviors contained in a pseudo non-deterministic

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 124

machine T. The implementability is defined against an originally provided completely specified

deterministic machine M2 in Figure 5.1.

The solution ofthis problem is given by solving the stateminimization problem addressed

in the previous section with an additional constraint that the resulting feasible machine is imple

mentable. Recall that a machine Mi is said to be implementable if there exist implementations for

Mi and M2 with which no combinational loop is created in the resulting implementation. As we

showed in Section 4.7, the implementability is determined by checking the dependencies between

the inputs and the outputs of Mi. It follows that once we obtain a feasible machine Mi, we need to

see, foreachstateof Mi, the output function definedatthe stateso thatwe canidentify which output

variables V depend on which input variables U in the output function. This leads to a dependency

graphG definedin Section4.7, andby Theorem4.7.1, we see that the machineis implementableif

and only if G is acyclic.

Therefore, unlike the stateminimization problem where the input instance is given by a

set of subsets of states of T, we associate a function from B^ to i?lvl with each subset of states.

Namely, an element cz- of the input instance is a pair (s*, f), where s* C S is a subset of states

of the original machine T and / : B^•-* B^ is a function. The collection of all such pairs,
C = {ci,..., cr}, is the inputinstance of the problem. The ideais thatone wants to compose a

feasible machineusing the elements of C so thateach state of the feasible machine corresponds to

the subset of states of an element c, e C and the output function defined at the state in the feasible

machine is given by the function given in c,-. Specifically, denoting c\s ' = 5* and cy' = / for
each element ct = (s*,f), we want to find a subset C of C withtheminimum cardinality which

satisfies the following three conditions:

(a) 3c- e € :r e cf] and

(b) V(ct-, u) eCxBM :3Cj eCs.t. VS e c\s*]: 35 e cf] :T(s, u, c\f)(n), s) =1and

(c) thedependency graph defined by thesetof output functions of C is acyclic.

Assigning a Boolean variable ct- for each element C{ of C, we write the conditions above

by Boolean formulas. The conditions (a) and (b) can be handled in the same way as the previous

section. For the condition (c), we specify for each subset d of C which creates a cycle in the

corresponding dependency graph as (^2 ^*)» which means that it is not allowed to choose all the

elements ofC Then the problem isto find aminimum-weightassignment for the Boolean variables

CHAPTERS. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 125

which satisfies all the Boolean formulas, where the weight is equally assigned to every variable.

This problem is again a 0-1 integerlinearprogramming problem.

5.4.3 Finding an Optimum Moore Behavior

hi finding an optimum permissible behavior, we need to take into account the imple

mentability of the resulting behavior. As shown in the previous section, the implementability is

checked using a dependency graph. One compromise to avoid this additional difficulty on the

implementability is to restrict attention to Moorebehaviors only. Recall that for Moorebehaviors,

theoutputs depend onlyon theinternal states and notontheinputs [38]. Therefore, it is possible to

implement a Moore behavior sothat there is nocombinational path from theinputs to the outputs.

It follows that if Mi is aMoore behavior, then there are nocycles in the corresponding dependency

graph, i.e. it is alwaysimplementable no matterhow M2 is implemented. Hence, we don't need to

use dependency graphs in setting constraints.

With this restriction, our problem is to find a behavior represented by a completely

specified deterministic finite state machine with the mimmum number of states over all the Moore

behaviors containedin a givenpseudonon-deterministic finite statemachineT. ByTheorem 5.3.2,

we see that such a behavior is given by finding a feasible machine representing a Moore behavior

with the minimum number of states over all the feasible Moore machines.

For Moore behaviors, an output function defined at each state is simply an output minterm,

since the output pattern is unique for each state, independent of the inputs. Therefore, instead of

output functions, we associate a minterm v of JB'V' with a subset of states of T. Specifically, the

inputinstanceis the set C = {ci,..., cr}, where anelementct- is a pair (s*, v) suchthat s* C S and

v e B\v\. As with the previous section, we may denote cf ' = s* and cjv' = v. Our objectuve is
to find a subset CofC withthemimmum cardinality which satisfies thefollowing twoconditions:

(a) 3c; e C: r e cj*** and

(b) V(ct-, u) e 0 x BW : 3Cj e Cs.t. VS e cP : 35 e c<.° :T(S, u, c\v), s) = 1.

We then assign a Boolean variable ct for each element c,- of C, we write the conditions

aboveby Boolean formulas. The problemis a 0-1 integerlinear programmingproblem.

One might wonder why we need to associate an output minterm v e B\v\ with each
element of the input instance. In fact, it is possible to avoid it, while the linearity of the resulting

problem cannot1bemaintained in this case. Specifically, letC = {s*,..., 5*} be the setofsubsets

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 126

of states of T. Then the solution of the problem is given by finding a subset C of C with the

minimum cardinality which satisfies the following two conditions:

(a) 3s1 eC \r e s* and

(b) Vs* eC:3v e B\y\ :Vu GBW\ : 3s* G0 s.t. Vs Gs| : 3s e a) :T(S,u,v,s) = 1.

Assigning a Boolean variable c; for each element s*, we can write these conditions as

Boolean formulas. The first condition is same as the previous case. For the second condition, we

introduce, for each s* GC, (c(- => JT | j m(5*, u, v)). The notation m(s-, u, v) designates

the following:

m(s*,u,v) =
J2 CJ ifrc'(s-,u,v)^

s*en'(s^,u,v)

0 otherwise,

where n'(s*, u,v) isdefined as the set ofelements s*j ofCsuch that for all s Gs*, T(S, u,v, 5) = 1

for some s GSj. We see that this formula contains ingeneral a product ofdisjunctions of Boolean

literals. Therefore, the formula is non-linear in general, and this formulation results in a 0-1 integer

non-linear programming problem.

Note that the non-linearity arises from the intersection over all the input minterms u G

B™, The intersection is necessary in order to guarantee that the same output minterm v e B\v\
can be used over all the inputs to associate with the subset 5*. It does not arise in our original

formulation since wc explicitly associate an output minterm with each subset of states in the input

instance, so thatwemake a distinction between a pair(5*, v) and a pair (5*, v) fordifferent output

minterms.

5.4.4 A Summary of Exact Methods

We provide a brief summary of the three exact methods. Our original problem was

the minimization of the E-machine computed for Mi in Figure 5.1, i.e. find a behavior with

the minimum number of states over all the implementable behaviors contained in a given pseudo

non-deterministic finite state machine T.

The method given in Section 5.4.1 finds an optimum contained behavior in T. For this

method, the input instance is the set of subsets of states of T, and the constraints are given by

two sets of Boolean formulas. However, the method does not guarantee the implementability of

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 127

the resulting behavior. Therefore, the method can be used for our problem only if it is somehow

guaranteed in advance that every contained behavior is implementable. One such case is when

the machine M2 is a Moore machine, and it is known that no combinational loop is created for an

arbitrary Mi.

If there is no such a guarantee on the implementability, we need to use the method given

in Section 5.4.2, which finds an optimum permissible behavior. For this method, however, we need

to associate an output function with each subset of states of T. Furthermore, we need to take into

account an additional constraint on the implementability using a dependency graph. In order to

avoid the complication of dependency graphs, Section 5.4.3 presented an exact method for finding

an optimum Moore behavior contained in T. Since the behavior is a Moore behavior, it is always

implementable, and thus we don't need to check the implementability using dependency graphs

in setting the constraints. For this method, instead of an output function, we associate an output

mintenn with each subset. For all three cases, the problem can be described as a 0-1 integer linear

programming problem.

5.5 Compatible Sets

5.5.1 Compatible Sets

In the exact methods presented in the previous section, we assume that the input instance

is the set of subsets of states of a given pseudo non-deterministic machine T. For the exact method

of finding an optimum permissible behavior, we further associate an output function for each subset.

Thus, the number of elements given in the input instance is exponential in the number of states of

T. In this section, we consider how to reduce the number of elements of the input instance so that

an optimum solution is still found by using the same constraints given for each ofthe three methods

of Section 5.4 over those reduced elements.

For each exact method, our objective is to find a feasible machine with some property.

Recall that each state of a feasible machine corresponds to a subset of states of T. Therefore, for a

subset 5* ofstatesofT, if there is no feasible machine in which there exists a statecorrespondingto

5*, s* need not to be included as an element of the input instance since the element is never included

tocompose a feasible machine. Similarly, apair (s*,f), where s* C S and / : B^ -> B'yl, need

not be included if there is no feasible machine in which there exists a state corresponding to s*

with the output function /. These elements can then be removed from the input instance without

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 128

affecting the optimality of the solution.

Then the question is whatis the set of pairs (s*, f) that can be used to composefeasible

machines. More specifically, a pair (5*,/) is in the set if and only if there exists a feasiblemachine

in which there exists a state such that the corresponding set of states of T is s* and the output

function defined at the state in the feasible machine is equal to /.

A supersetof the set defined above is the one calledoutput-consistent set. A pair (s*, f)

is said to be output-consistentif the following condition holds:

V(S, u) € s* x BM :3seS: T(S, u,f(u),s)=l,

where S is the set of states of the pseudo non-deterministic machine T. Namely, the condition

requires that it is possible to realize the same output function / at every state of s* in T. If a

pair (s*,f) is not output-consistent, then no feasible machine has a state corresponding to that

pair. This is because the condition (5.1)-(b) requires that the same output function must be realized

at every state of T associated with a single state of a feasible machine. However, note that the

output-consistency is simply a necessary condition, and does not imply the existence of a feasible

machine with a state corresponding to the pair.

We now define the set of compatible sets as follows:

Definition: Compatible Sets

Given a subset s* C S and a function / : B^ -+ B^, (s*, f) is a compatible set if
there exists a behavior B between U and V satisfyingthe followingcondition:

Containedness:

Forall (au,av) e B andforalls e s*,(au,av)canberealized in T atstates andvo = /(uo),

where uo and vo are the first elements of au and av respectively.

The central ideahere is that for a compatibleset (s*, f), there exists a behaviorthat can be

realized at every state of 5* in T with the output function /. More specifically,for each s e s*, there

mustexistan edgelabeled uq/vo foreachpair(au,av)of the behavior B, where uo/vo denotes the

first input/output pair of (au,av) and vq = /(uo). Further, we havethe conditionthat the edge can

be continuedto producethe givensequence (au, av).

It is then claimed that the set of compatible sets is precisely the set of pairs (5*,/) that

can be used to compose a feasible machine.

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 129

Theorem 5.5.1 For a given pseudo non-deterministic finite state machine T, suppose that every

stateofT is reachablefromtheresetstate. Then (s*, f) is a compatible set ifandonlyif there exists

afeasible machine inwhich there exists a statecorresponding to (s*,f).

Proof: Suppose that there exists a feasible machine Mi for T in which there exists a state 5i such

that the correspondingsubset of states of T is s*, i.e. s* = Z(si), and the output function defined

at 5i is /. Let B = {(au,av) \ (au,av) is realized in Mi at 5i.}. Then by Lemma 5.3.1, B is a

behaviorbetween U and V such that for all (au,av) e B and for all 5 € E(5i), (au, av) is realized

at 5 in T. Since the output function defined at 5i in T is /, the containedness condition above holds.

Hence (s*, f) is a compatible set.

Conversely, suppose (s*, f) is a compatible set. We show that there exists a feasible

machine with a state corresponding to (s*,f). Let s e s* be an arbitrary state of 5*. Consider a

pseudo non-deterministicmachine T', identical to T except that s is the reset state of T'. Let B'

be a behavior satisfyingthe containedness conditionfor (5*,/) in the definitionof compatiblesets.

Then B' is contained in T'. Therefore, there exists a feasible machine M{ for T' which represents

B'. Then we can associate s* with the reset state r\ of M[without violating the conditions (5.1)

given in the definition of feasible machines. Since the output function defined at n is /, (s*, f)

corresponds to r[.

Now, since 5 is reachable from the reset state r ofT, there exists a pair of input and output

sequences (oi ,a}?') such that ais' leads T to s with the output sequence aisK Also, there exists
abehavior Bsuch that (1) Bis contained in T, and (2) for all (au, av) e Bsuch that (ai ,ai3')
is a pair of prefix subsequences of (au, av), i.e. there exists a pair of sequences (a'u,a'v) with

(<?u, <?v) = (aua'u,a[s'a'v), the remaining pair ofsequences is amember ofB', i.e. (a'u, a'v) e B'.
Let Mi be a feasible machine for Twhich represents B. Let 51 be the state ofMi such that ai3'
leads Mi to 5i. Let Si be the preceding state of 5i in Mi, i.e. Mi moves from Si to 5i when the last

(s) (a)
element of ai ' is applied. Denote the last element of a^,' by u. Suppose we change the transition

from Si to 5i so that Mi moves from Si to r\, thereset stateof M[, underthe inputu withthesame

output. Since M[is a feasible machine forT' representing thebehavior B'andsinceT' is identical

with T except for the reset state, the resulting machine is a feasible machine for T representing B,

in which the state r[corresponds to (5*, /). Thiscompletes theproof. •

Hence, we see that it is sufficient to use only the compatible sets for the input instance in

the exact method for finding an optimum permissible behavior given in Section 5.4.2. For the exact

method of finding an optimum Moore behavior given in Section 5.4.3, since we restrict attention

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 130

to Moore behaviorsonly, the input instanceis givenby the set of compatible sets (5*,/) such that

/(u) is identical overall inputminterms u. Thuswemaydenote sucha compatible setby (s*,v),

where v e i?'v' is the output value ofthe associated function.

For the exact method of finding an optimum contained behavior given in Section 5.4.1,

we are not concerned with implementability. Thus we don't need to associate an output function

with a subset of states. This was first indicated by Damiani in [14]. In fact, by Theorem 5.3.1,

the set of contained behaviors is precisely given by the set of feasible machines, and therefore it is

sufficient to use as the input instance of this problem the set of subsets of states s* with the property

that there exists a function / : B^ -*• B^ such that (s*, f) isacompatible set.

5.5.2 Computing Compatible Sets

In this section, we showhow to compute the set ofcompatible sets. Consider the following

iterative computation ofa function RW : 2s x T -* B, where 2s designates the power set of S
and T is the set of functions from B^ to i?'vL

RM(3*J) = 1 o V(3,u)es*xBW:3seS:T(3,u,f(u),s)=l,
R(k)(3*, /) = 1 & Vu e BW : 3(5*, /) e2s xT: R(k~x)(s*,f) = 1and

VS e 3* : 3s e s* : T(S, u, /(u), s) = 1

Intuitively, RW isthe characteristic function ofaset ofpairs (3*, /), where 3* isasubset

ofstates ofagiven pseudo non-deterministicmachine Tand /: B^ ->• i?'v' isan output function,
with the property that for any input sequence au with the length no greater than k, there exists an

outputsequence av withthe samelengthsuchthat (au,av) canbe realized in T at everystate3 es*

and v0 = /(u0), where uq and vo are the first elements ofau and av respectively. Note the analogy

between this statement and the containedness condition given in the definition ofcompatible sets in

the previous section. More specifically, if the integer k is infinitelylarge, then the collection of such

pairsof sequences (au, av) leads to a behavior between U and V whichsatisfies the containedness

condition. Note also that for each state 3 e S, there exists a function / such that RW({3}, /) = 1

foralU> 1.

Let R :2s x T -* Bbethe function obtained atthe fixed point ofthe computation above.
Namely, for an integer K > 1such that RW = R(K~l\ we set Requal to R(K\ Note that such

K always exists since for 5* C S and /: B^ -+ B^, ifR(k~l\s*, f) = 0, then RW(s*,f) = 0
for all A; > 1, and thus the number ofelements (s*, f) contained in RW does not increase as k
increases, whilethe total number of such elements is finite.

CHAPTER5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 131

We claim that the function R is the characteristic function of the compatible sets for T.

Theorem 5.5.2 For s* C S and f : flM -• B^, (s*,f) is a compatible set if and only if

R(s*,f) = i.

Proof: First, for the trivial case where s* is empty, the theorem holds since (s*, f) is always a

compatible set and R^k\s*,f) = 1for all k > 1.
Consider the case where 5* is not empty. We show by induction on fc > 1 that

RW(3*,j) - 1 if and only if there exists a set ofpairs, B^ C {(au,av) | \au\ = \av\ < k},
such that (1) BW satisfies the completeness and the prefix conditions, (2) for all (au, av) e B^k\
vo = /(uo), where uo and vo are the first elements of au and av respectively, and (3) for all

(°u, <?v) € BW and for all S e 3*, (au, av) can be realized inT atthe state S. Then the theorem
directly follows. The completeness and the prefix conditions are defined in Section 4.2 where a

definition of a behavior is given.

The statement is true for k = 1 by construction. Suppose it is true for k - 1. Consider

a subset 3* C S and a function / : B^ -+ B^ such that RW(3*J) = 1. We show that

there exists a set of pairs of sequences BW with the property above. Since R^k\s*,J) = 1,

for each u e B^u\ there exists (s*,f) such that R(k~l\s*,f) = 1 and for all S e 3*, there
exists 5 e s* for which T(3,u,J(u),s) = 1. By the induction hypothesis, there exists a set

#(fc-i) c {(au,av) | \au\ —\av\ < k-1} associated with such (s*,f) which satisfies the property

above. Define a function x such that x(u) returns one such set of pairs of sequences B^k~l\
Although there might exist more than one such ($*, f) for a given u g B^ and (S*, /), and for
these, possibly more than one such set B^k~l\ we choose one particular set #(fc_1) as the return

value of x(u). Thus for a given u e B^, x(u) uniquely defines the pair (s*, f) as well as the
associated set B^k~l\ Consider an arbitrary input minterm uo GB^UK Let Z?^""1) = x(uo). For

each (a'u, a'v) e #(&_1), consider the pair of sequences (uocr^, J(uo)a'v), and include this pair in

the setB^k\ Consider the setB^ obtained this way by processing all uo. Also add the pair ofnull

sequences toB^k\ Then by construction, any pair (au, av) e B^ can berealized inT atany state

of3* with vo = /(uo). Also for this B^k\ the completeness condition holds since we processed all
uo and #(fc-1) is complete. Furthermore, B^ satisfies the prefix condition since B^k~1^ satisfies

the prefix condition. Hence for a pair (S*, /) such that RW(3*, /) = 1, there exists a set B^ with

the property above.

Conversely, consider a pair (S*, /) for which there exists a set B^ C {(au, av) \ \au\ =
\av\ < k} with the property above. We show R(k\s*,J) = 1. Let uq GB'17' be an arbitrary input

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 132

minterm. Since T is pseudo non-deterministic, for each S G 3*. there exists a unique s e S such

that T(3, uo, /(uo), 5) = 1. Let s* beasubset of the states of T given by 5* = {5 GS \ 33 e 3* :

T(S, uo, /(uo), 5) = 1}. Namely, s* is the set of unique next states of the states of 3* under the

transition uo//(uo). Note that s* isnotempty. Note also that s* has theproperty that for all S e 3*,

there exists s e s* such that T(3, u0, /(uo), 5) = 1. Let / : B^ -*• B^ bea function such that

/(ui) = vi if and only if (uqui, /(uo)vi) GB^k\ Bythe completeness condition, such vi and

hence / is uniquely defined. We claim that R^k~x\s*, /) = 1. Consider aset B^k~1^ of pairs of

sequences with the length less than k defined as follows. For a given sequence au of B^ with

Wu\ < k-1, let av bethe sequence ofB^ such that (uoau, /(uo)a„) GB^k\ We include the pair
(o"u, av) in#(*-1). For the set /?(*-1) defined inthis way for all sequences au with \au\ < k - \,
since BW satisfies the completeness and the prefix conditions, so does B^k~l\ We claim that for

all (au, av) e B(k~^ and for all s e s*, (au, av) can berealized inT at the state s. Suppose for

the contrary that thereexists a state s e s* atwhich (au,av) cannot be realized in T. By definition

of 5*, there exists 3 e 3* for which s is the unique next state in S such that T(S, u, /(uo), s) = 1.

It follows that thepair of sequences (uo<7u, J(uo)av) cannot be realized in T at S, which conflicts

with the fact that (u0a«, J(uo)av) is in B^k\ Thus the set #(fc_1) satisfies the property. Also by

construction, ifwe denoteby ui andvi the first elementofauandav respectively, thenvi = /(ui).

Therefore, the induction hypothesis implies that R(k~l\s*, f) = 1. Hence, R(k\s*, /) = 1. •

As noted in the previous section, in case our focus is only on Moore behaviors, we need

only to computethe set of compatible sets (s*,f) suchthat the outputvalueof / is invariant with

the input values. The characteristic function ofsuch a set can be given using the computation above,

where a function / is replaced by an output minterm v g B^.

Similarly, if we want to find an optimum behavior contained in T, then it is sufficient to

compute the set of subsets s* C S with the property that there exists a function / such that (5*, /)

is acompatible set. Namely, denoting thecharacteristic function of such asetby Rs: 2s -*• B, we

see that Rs(s*) = 1if and only if there exists / : B^ -• B^ such that R(s*, /) = 1, where R
is the characteristic function of the compatible sets computed above. Therefore, the characteristic

function Rs of the set of subsets used for the input instance of the exact method for finding an

optimum contained behavior can be easily given using the original characteristic function R.

Note that such acharacteristic function Rs canbe computed without using R. Specifically,

as an analogy to the computation of R, Rs is given by the fixed point of the following iterative

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 133

computation:

r{1)(3*) = 1 & Vu e BW :3v GB^ :VS GS*: 35 e S : T(S,u,v,5) = 1,
Rsk)(3*) = l & VueBW:3(s*,v)e2sxB\v\: Risk-1)(s*) = 1and

VS G 3* : 3s e s* : T(S,u,v,5) = 1

Intuitively, Rs '(3*) = 1 if and only if for any input sequence au whose length is no

greaterthan k, there exists an output sequence av suchthat (au,av) can be realized in T at every

state of 3*. Therefore, at the fixed point of the computation above, denotingby Rs the resulting

function, weseethat Rs(3*) = 1 if and only if there exists a behavior B between the inputs U and

the outputs V such that every pair (au, av) e B can be realized in T at everystate of 3*. Hence,

if there exists a function / such that (3*, J) is a compatible set, then Rs(3*) = 1. Conversely,

if RS(S*) = 1, then defining a function / : B^ -* B^ so that (u, /(u)) is a member of the
corresponding behavior B for all u, we see that (3*, /) is a compatible set. Thus the computation

above provides the characteristic function Rs of the set of subsets of states that can be used in a

feasible machine for T.

We.close this section by describing how R can be recovered from Rs, i.e. how one can

compute the characteristic function R of the compatible sets if Rs is given. Specifically,we show

that for agiven 5* C £ and a function / : B^ -»• B^, R(s*, /) = 1if and only if

Vu G5|c/|: 3S* C S : Rs(§*) = 1and
V5 G 5* : 3S G §* : T(s,u,f(u),3) = 1.

Theorem 5S3 For a given s* C S and afunction f : B^ -+ B^, R(s*,f) = 1 ifandonlyif
(s*, f) satisfies thecondition (52).

Proof: It is certainly true that R(s*,f) = 1 implies the condition (5.2), since the condition is

identical with the computation ofthe function RW given inthe beginning ofthis section.
Conversely, suppose that (s*, f) satisfies the condition (5.2). For a given input minterm

u g B\u\ consider s* C S given inthe condition above. We refer tothis S* as the next-state subset

corresponding to u. Since Rs(s*) = 1, by definition, there exists a function / for which (§*, f)
is a compatible set. Let $ bea behavior between U and V satisfying the containedness condition

for this pair (§*, /) as stated inthe definition ofcompatible sets. For each pair ofinput and output

sequences (au, av) e &, consider a pair of sequences (u&u, f(u)av), and include this in a setB.
Repeat this process over all the input minterms u e B^, and consider the resulting set ofpairs of

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 134

sequences B. The set B satisfies the prefix and completeness conditions since we processed all the

input minterms and the set Bdefined for each input minterm u e B^ satisfies both conditions.
Now, foreachpairofinputandoutputsequences(att,au) e B, denoteau = \iauaruXav = f(u)av,

where u is the first element of au. Then for the next-state subset S* corresponding to u, which was

used when the set B was constructed, it is possible to move in the machine T from any of the states

of s* to some of the states of S* under the transitionu//(u). Furthermore, since the pair (au, av)

is a member of a behavior 8 satisfying the containedness condition at s*, (au, av) can berealized

in T at anystateof §*. Therefore (au, av) can be realized in T at any stateof s*. This statement is

true for all the input minterms u, and thus the set B is a behaviorbetween U and V that satisfiesthe

containedness condition for (s*, f). Hence (s*, f) is a compatible set and R(s*,/) = 1. •

5.6 A Heuristic Method

We present a heuristic method for the state minimization problem of pseudo non-

deterministic machines. The problem is to find a behavior with the minimum number of states

over all the behaviors contained in a pseudo non-deterministic machine. In order to apply the

heuristic for the minimization of the E-machine, we need to guarantee the implementability of the

resulting behavior. We make this guarantee by restricting to Moore behaviors. This restriction can

be made by a trivial modification (discussed later) of the algorithms employed in the heuristic. In

this section, we describe technical details of the algorithms used in the heuristic, starting with an

overview.

5.6.1 Irredundant Compatible Sets

Let T = (U, V,S,T, r) be a given pseudo non-deterministic finite state machine. The

proposed procedure keeps track of a set of subsets ofstates of T, and tries to decrease the cardinality

of the set while maintaining the invariance that the set of subsets can compose a feasible machine.

Although a compatible set is definedas a subsetof statesalong with anoutput function, the procedure

keeps only a set of subsets. This is because the cost function is the number of subsets, and we do

not care which output function is associated with each subset, just that one exists.

Definition: Closed Set

A set C = {s*,..., 5*},where 5* C S, is closed if for all s* e C, thereexistsa function

CHAPTER 5. MINIMIZATION OFPSEUDONON-DETERMINISTIC FSM'S 135

/: BW ->Blyl such that

Vu e BM :3s* e C:r(s*, u, /(u), *J) = 1,

where r(s*,\i,f(u),s*) = 1 if and only if for all 5t- g s*, there exists Sj e s* such that
T(5,-,u,/(u),5i) = l.

Intuitively, C is closed if for each element s* e C, there exists an element that can be

treated as the next state of 5* for each input. We say C isfeasible if it is closed and there exists

s* e C that contains the reset state r of T. Namely, C is feasible if a feasible machine can be

composed using the elements ofC. By Theorem 5.5.1, each state ofafeasible machine corresponds

to a compatible set defined in Section 5.5. Specifically, for each element s* of a feasible set C,

(s*, f) is a compatible set, where / is the function given inthe definition ofclosed sets above.

Onemight wonderiftheclosedness canbedefined withoutexplicitly associating afunction
/ as above. Specifically, C is closed if for all s* e C,

Vu GBW :3(5}, v) GC x B^ :t(s*,vl,v,s*) =1.

In fact, this is an equivalent definition. However, we use the former since it makes it easier to restrict

our attention to Moore behaviors, as discussed later.

Among feasible setsC, weare interested in those with theproperty of irredundancy.

Definition: Redundant Sets

Given a feasible set C, an element s* e C is redundant if C - {s*} is also feasible.

Otherwise, s* is irredundant.

We say that a feasible set C is redundant if there exists € C C such that C is also

feasible. OtherwiseC is irredundant. Note that C might be redundant even if everysingle s* eC

is irredundant. Irredundancy of C is a necessarycondition for optimum solutions of the problem.

The proposed heuristic procedure tries to introduce redundancy into a given set C by replacing each

element of C with another, and then make the resulting set irredundant, so that the the cardinality

decreases. The subprocedurewhich makes C irredundant,called IRREDUNDANT, is described in

Section 5.6.5.

To introduce redundancy into C, suppose S*- e C is irredundant, i.e. C - {s*} is not

feasible. One reason for this is that 5} is the unique element of C containing the reset state r. In

case s* is not a unique such element, the reason for the irredundancy is that there exists another

CHAPTERS. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 136

element 5* e C, s* ^ s*, which needs 5}. More specifically, there exists 5* such that for each

function/: ^1-^5^1,either

1. (5*,/) is not a compatible set, or

2. there exists u GB^ forwhich noelement in C - {s*} canbetreated asthenext state of s*,

i.e. V5* GC - {s*} : r(5?,u,/(u),5*) = 0.

Therefore, weneedprocedures which decrease thesepossibilities, in orderto introduce redundancy

into C. Weuse two procedures for this purpose, described in the following section.

5.6.2 Overview

Indesigningaheuristicprocedure, wemadeadecisionthat theprocedurealwaysmaintains

the feasibility of a set C and never increases the cardinality of C. The procedure consists of

three subprocedures. Besides IRREDUNDANT, the other two, called REDUCE and EXPAND

respectively, areusedto introduce redundancy intoC.

REDUCE replaces each element of C by another so as to increase the number of output

functions / that can be associated with it as compatible sets. This procedure is concerned with the

first case of "needs" above. EXPAND replaces each element of C so as to increase the number

of elements s* in C that are not unique next states of any other element of C. This procedure

contributes to the second case. Specifically, REDUCE is based on the observation that if (5*,/)

is a compatible set, then any subset of s* is also compatible with /. We replace a given element

5* by its smallest subset such that the replacement of 5* by the subset maintains the feasibility of

the resulting set. This increases possibly the number of functions that can be associated with this

subset. EXPAND, on the other hand, replaces an element 5* by another element s* so that the

replacementof s* by S* causes a maximalnumberof elementsof C to be redundant. For efficiency,

we restrict S*to contain s*. Since both REDUCE and EXPAND can make C redundant, we invoke

IRREDUNDANT whenever REDUCE or EXPAND is applied.

In summary, REDUCE increases the number of functions associated with each element,

while EXPAND increases the number of possible next states. The proposed procedure takes as

input the transition relation of a pseudo non-deterministic finite state machine T. After a feasible

setC is found asaninitial set, the procedure iteratively applies EXPAND and REDUCE, invoking

IRREDUNDANT after each procedure. The basic paradigm is similar to ESPRESSO [8] except

that IRREDUNDANT is called even after REDUCE. It is also similar to the procedure proposed

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 137

in [1] for the state minimization of incompletely specified deterministic machines, except that the

detailed techniques of the proposed procedures are completely different.

5.6.3 REDUCE

REDUCE takes as input afeasible set C and processes one elementofC atatimereplacing

it by its smallest subset, whilemaintaining feasibility.

Suppose s* e C isbeing processed. Denote the characteristic function ofthesetC- {s*}

by Ci : 2s -*• B. Consider a function L :2s -*• B defined for thesetof subsets of thestates of T

such that L(§*) = 1if and only if S* C 5* and C - {s*}u {§*} isclosed. Specifically, for §* C 5*,

L(§*) = 1if and only if the following formula is satisfied.

V*JCS: Ci(s*) = I ors* = s*

=>3fef: Vu GBW : 3s*k C S : Ci(s*k) = 1or s*k = s*
and

T(s*,U,f(u),S*k)=l

We represent L using a BDD, where a single Boolean variable is assigned for each state of T, i.e.

a minterm of those Boolean variables corresponds to a subset of states and a state is in the subset

if and only if the corresponding variable is 1 in the minterm. Then a smallest subset of s* whose

replacement preserves the closedness ofthe resultingset is given by aminterm S* with the minimum

number of l's such that L(§*) = 1. It is known that such a minterm is given by a shortest path

from the root of the BDD representing L to a terminal node with a label 1 in the BDD [32], where

a weight of 1 (a unit weight) is assigned to every edge with a label 1 while the edges with label 0

have no weight. A shortest path of a BDD can be computed in linear time in the number of nodes

of the BDD.

Therefore, the REDUCE procedure first sorts the elements of C, and for each element

5*, computes the function L. We actually restrict the domain of L to the states that areoriginally

contained in 5* since our interests are in the subsets of s* and the rest ofthe states are never included.

If s* does not contain the reset state r ofT, then it simply computes s* with the minimum cardinality

suchthat L(3*) = 1, and replaces 5* by S*. In case s* contains the reset state r and it is the last

element that can contain r, i.e. all the other elements ofC containing r have been already processed

and noneof theresulting elements contains r, thenwe restrict L sothatallthemembers of Lcontain

r, and then find one with the mimmum cardinality amongthem to replace 5*. It is guaranteed that

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 138

the resulting set is feasible. The ordering of the elements of C currently usedis decreasing orderof

the cardinality, i.e. we reduce the largest element first.

Note that the smallest subset S* for s* is computed with respect to the rest of the elements

available in C at that time. Therefore, if another element of C is also processed, then we may be

able to further replace S* by an even smaller subset. For this reason, REDUCE has an option to

iterate the replacement procedure overall theelements untilno change in C occurs.

5.6.4 EXPAND

EXPAND alsoprocesses oneelement s* eC ata time. It replaces s* by S* D s* so that

a maximal number of elements can be eliminated from C while feasibility is maintained.

Suppose thatforgiven s*,wecompute S* 2 s* suchthat forsome 5* in C with5* ^ s*,

C - {s*, 5*} U{§*} is feasible. Consider how the relationship among theelements of C willbe

influenced if s* is replaced by S*. Recall that s* needs s*k in C if for every function / such that

(s*,f) is acompatible set, there exists u GB^ for which sk is the unique element in Cthat can
be treated as the next state of s*. Then the following might happen if s* is replaced by §*.

(a) There exist s* and sk in C - {s*} such that s* needs sk in C butnotin C - {s*} u {§*}.

(b) There exists sk e C-{5*}suchthat5*doesnotneed5jinCbut3* needs skinC-{s*}u{§*}.

The case (a) happens since §* contains more states than s*, and we might be able to associate a new

output function / with s* for which sk is not the uniquenext state of s*. The case (b) happens since

by expanding s*, it might be no longer possible to associate some of the output functions with s*,

which can be originallyassociated with s*. Furthermore, if we eliminate s* after the replacement,

then the following might happen.

(c) There exist s* and s*k in C - {s*,s*} such that s* does not need s*k in C but it does in

C-{s*,s*}u{§*}.

This happens sinceby removing s*, wemight notbe able to associate someoutputfunctions with

s*, even though they can be originallyassociated.

We regard the case (a) above as a positive influence while (b) and (c) are negative.

However, we see that thecase (c) does not happen if 3* contains s*, since then every function that

can be associated with s* in C canbe associated in C - {s*,s*} u {§*}. Also, if s* contains s*,

then the set of states contained in some elements of C - {s*,s*} u {§*} is identical with those

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 139

covered inC - {s*} u {§* }. Weneed tokeep track of such states during theprocedure, and withthis

assumption, we cansimply add the states of S* to thosecovered in C - {s*} whichare computed

only once at the beginning of the procedure for s*. Due to this efficiency as well as the influence

for the case (c) above, we make the restriction, when S* is computed to eliminate 5* and s*, that

S* also contains s*. Note that this restriction mightincrease the possibility of the case (b), but the

current procedure does not take this into account.

Therefore, for each s* e C - {s*}, wecompute, if it exists, asmallest subset 3*(i) such

that (1) §*(i) contains both s* and s* and (2) C - {s*, s*} U {§*} is closed. We choose a smallest

such subset since we want to allow freedom of the expansionof s* to eliminate other elements of

C. To compute 3*(i), we first compute a function Hi : 2s -• B defined for the set of subsets of

states of T such that H{(3*) = 1if and only if 3* contains both s* and s* and C - {s*,s*} u {3*}

is closed. Specifically, for 3* suchthat 3* D s* and 3* D s*, Hi(5*) = 1if and only if

3feF: VueBW-.3s*kCS: Ci(s*k) = 1ors*k = 3*
and

r(S*,u,/(u),5y = 1,

where Ci is the characteristic function of C - {s*}. Then by an argument similarto REDUCE,

we see that 3*(i) is given by a shortestpathof the BDD for Hi. Note that, unlike REDUCE, the

function Hi may be empty, in which case there is no such §*(i). In the actual computation, we

restrict the domain of Hi to the set of states that are not included in either s* or s* since the rest of

the statesmust be includedin $*(i).

If S*(i) is obtained, we compute a set e,- of elements of C - {s*} that are contained in

s*(i). These are redundant elements, and canbe eliminated. Note that theremight exist elements

in C that can be eliminated even though they are not contained in s*(i), but we ignorethem due to

the computational efficiency. Once s*(i)'s are computed for all s*, we choose §* as the one with

the largest cardinality over et's. Then s* is replaced by S*, andall the elementscontained in s* are

removed. We iterate this procedure, until no elementcanbe removed by further expanding s*.

Suppose the procedure above hasbeen applied and 5* hasbeen replaced by §*. At this

point, although we know that no element of C can be further removed, there stillmight exist a

superset 3* D 3* suchthat the replacement of S* by S* preserves the feasibility of the resulting set.

In thiscase, we compute alargest such 3* and replace s*. By doing this,we hopethatthenext time

REDUCE is invoked, the elementmay be replaced by one different from s*, by whicha different

portion of the solution space may besearched. Such S* isobtained first bycomputing the function

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 140

H with theproperty that H(3*) = 1if and only if 3* D S* and C - {§*} u {S*} is closed, and then

find a longestpathof the BDDfor H. The function H can be computed in a waysimilarto that for

Hi above.

As withREDUCE,it mightbe possible to furtherexpand 5* by processing anotherelement

ofC, and thus EXPAND has anoptionto iteratively applythe procedureaboveoverall the elements,

untilnone canbeexpanded further. Currentiy, EXPAND sorts theelements of C in increasing order

of cardinality, before processing each element.

5.6.5 IRREDUNDANT

Given a feasible set C,the objective ofIRREDUNDANT isto find a subset CofCsuch

that noproper subset ofC is feasible.

One might think that the goal can be achieved by checking the irredundancy for one

element of C at a time and by successively removing redundant ones. Although the method is

not expensive, there is no guarantee thatan irredundant set is obtained at the end, since C might

be redundant even though every single element of C is irredundant. In fact, according to our

experiments, this approach is likely to get stuck at a bad solution at an early stage, unless an

ordering to process the elementsof C is carefully determined, which is very difficultin general.

The method we propose is an iterative computation of a feasible set starting from a

seed set of elements of C. Let C^ be a subset of C. Suppose, without loss of generality, that

CW contains an element of C which contains the reset state r of T. If C^ is closed, then we

terminate the iteration. Otherwise, we compute a new set C^*1) by adding the minimum number

of elements of C to C^ so that for each s* e C(k\ there exists a function / : B^ -+ £|v|

such thatfor all u e B\u\ there exists s* e C(fc+1) thatcanbe treated as thenextstate of s*, i.e.

r«,u,/(u),«J) = l.

Let s* e C^ bean element that does not satisfy the condition above. We introduce two

sets of constraints for each such s*. First, let Ts* be a set of functions / such that for all u, there

exists s* in C that canbe treated as a nextstate,i.e. r(s*, u, /(u), s*) = 1. Associating a Boolean

variable w(s*, f) for each / GTs*, we introduce a constraint (^ w(s*, /)). This constraint

implies that at least one such function / must be chosen to associate with s*. Secondly, for each

function / GFs?, letI(s*,f) bethe setofminterms u e B^ for which the next state of s* does

not exist in C(*) under /. Namely, u e I(s*, f) if and only if there exists no s* e C^ such that
t(s*,u, /(u), s*) = 1. Then for each u e I(s*,f), we compute the set D(s*,f, u) ofelements

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 141

of C that canbe treated as the next states of s* for u and /, i.e. s* e C is in the set if and only

if t(s*, u, /(u), s*) = 1. Then we introduce aconstraint (w(s*,f)=> ^ 7(5j))> where

7(5p isaBoolean variable associated with s*. The constraint means that if wechoose the function

/ to associate with s*, then at least one of the elements of C that can be treated as the next state of

5* for agiven input u must be included to form C^k+l\ Once these constraints are generated over
all 5*, we find a minimum-weight assignment forthe Booleanvariables w and7 which satisfies all

the constraints, where aunit weight isassigned toeach variable 7(5]) while avariable w(s*, f) has

no weight. This problem is known as acovering problem, and ourprocedure finds a solution using

a method proposed in [33].

For the initial set of the computation above, we choose C^0^ C C with the minimum

cardinality such that there exists an element in C^ which contains thereset state r, and for each

s* e Cl°\ if s* needs s* e C, then 5J is in C<°) as well. Note that there is no proper subset ofC<°)
that is irredundant.

Unfortunately, this method doesnot guarantee thatthe resultingset is irredundant because,

even though we add a minimum number of elements at each iteration, there might exist 5* and s*

in CM such that s* needs s* in C^ but not in C^k+l\

5.7 Experimental Results

The heuristic procedure proposed in the previous section has been implemented. As

stated earlier, we use a BDD to represent the transition relation of a given pseudo non-deterministic

machine T, where a single Boolean variable is used for each state. The implementation is restricted

so that it only finds a behavior that can be represented by a Moore machine [38], i.e. the output

function of the machine depends only on the present states of the machine and not on the inputs.

There are two reasons for this restriction. The first is that we need to guarantee that the resulting

behavior is implementable when the heuristic is applied for minimizing E-machines. Since the

behavior is a Moore behavior, it is always possible to implement it so that there is no combinational

loop in the resulting implementation no matter how M2 is implemented. Secondly, with this

restriction, an output function defined at each state simply becomes aminterm of B^, and thus a
compatible set isdefined as asubset ofstates ofT along with aminterm of J5'v'. In other words,
all the functions / used inthe procedure can be represented bysingle minterms of B\VV Hence, the

characteristic functions used in the procedure are all represented by BDD's.

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 142

We conducted experiments using the implementation for optimizing systemsofinteracting

finite state machines. The objective of the experiments was to see the effectiveness of taking into

account information derived from other interacting components. We used the same examples as in

the previous chapter for computing E-machines. Namely, in Figure 5.1, we chose two finite state

machines, one for Mi and the other for M2. These arecompletely specified deterministic machines.

We minimized Mi in the numberofstates using an exact method for deterministic machines, similar

to the one proposed in [44]. Thus, Mi was originally made optimum in terms of the number of

states without taking into account the interaction with M2. Therefore, the number of states of Mi

is the optimum numberof states required to represent the behavior givenby Mi. We then madean

arbitrary connectionbetween Mi and M2, andconfirmed that Mi is implementable for M2. Then

we computed the E-machine T for Mi. Recall that the E-machine is pseudo non-deterministic

with the same inputs and outputs as Mi andcaptures the complete set of permissible behaviors, i.e.

those that can be implemented at the position of Mi while preserving the total product machine

behavior of Mi and M2. Note that the number of states of the E-machine does not reflect any kind

of optimality; it merely provides an upper bound on the minimized machines. Finally we invoked

ourheuristic procedure to find a feasible machine M[. At theendof the procedure, we verified the

correctness of the solution. Notethatdueto ourrestriction of theimplementation stated above, M[

is aMoore machine. We thencompared thenumberof states of Mi and M[. The difference reflects

the effectiveness of taking into account the interaction between Mi and M2 in further optimizing

Mi, since Mi was initially optimum.

In order to see better the effectiveness ofthe proposed method, i.e. the optimizationof Mi

using the E-machine with the proposedheuristic, we computed the numberofstates of Mi reachable

when interacting with M2. Specifically, afterwe minimized the number of statesof Mi by itself,

we computed the set of reachable states of the product machine Mi x M2, where each state of the

productmachine corresponds to a pairof states of Mi and M2. We then computed the setofstatesof

Mi which appear inatleast onereachable state of theproduct machine. This is another technique of

optimizing Mi taking intoaccount some of theinteraction withM2, although it islesspowerful than

the E-machine method. For example, the result depends on the structure of the initially provided

machine Mi whereas the E-machine captures the complete set of permissible behaviors. We also

implemented an exact procedure for finding a minimum-state Moore behavior contained in the E-

machine, whichis described in Section 5.4.3. As stated in Section 5.4.3, the problem is reduced to

aclass of 0-1 integer linear programming problems, and thecurrent implementation solves it using

amethod proposed in [28]. We applied theexact procedure for the same examples and compared

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 143

Mi M2
E-machine M{

Time

(minimization) MirIn Out S In Out S

mc9 2 1 4 3 5 4 4 1 0.2(0.1) 1

tm02 4 4 20 5 6 20 10 1 1.4 (0.5) 2

tm32 3 4 19 6 5 13 9 2 2.2 (0.5) 2

mt52 5 6 22 7 7 4 9 2 2.4(2.0) 3

tm01 4 4 20 5 6 20 10 1 4.6 (1.7) 2

e69 2 1 4 5 8 8 8 1 4.7 (0.2) 1

pm11 8 8 26 10 10 24 9 1 5.0(3.1) 7

pm12 8 8 26 10 10 24 7 3 5.2(0.9) 5

e4bp1 5 5 24 6 9 14 11 1 12.3 (2.4) 7

L4 8 6 20 11 14 14 6 1 12.7 (7.7) 14

mt51 5 6 22 7 7 4 16 4 14.3 (7.4) 6

tm31 3 4 19 6 5 13 9 1 14.6 (0.4) 3

am9 6 6 25 7 8 4 13 5 15.6 (12.5) 9

pm03 2 4 11 6 4 14 15 1 16.3 (2.1) 8

L3 2 3 76 7 3 19 17 2 17.0 (8.5) 9

e4at2 5 4 21 6 9 14 14 4 31.7(4.3) 4

e6tm 4 4 20 5 6 8 21 3 41.3(30.8) 4

pm33 6 6 25 7 8 4 21 5 45.5 (35.3) 11

pm50 2 4 11 6 4 14 22 3 47.0(9.7) 6

s3p1 5 5 24 7 7 13 38 6 140.3 (97.0) 7

pm41 2 4 11 6 4 14 33 5 162.5 (30.5) 8

pm31 6 6 25 7 8 4 22 6 187.0(166.4) 9

Mi M2

E-machine

Heuristic Exact

In Out S In Out S S Time S Time

tm32 3 4 19 6 5 13 9 2 0.5 2 392.1

mt52 5 6 22 7 7 4 9 2 2.0 2 164.9

pm12 8 8 26 10 10 24 7 3 0.9 3 74.1

L3 2 3 76 7 3 19 17 2 8.5 2 18.9

Table 5.1: Experimental Results

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 144

the resulting number of states with the one obtained by the heuristic procedure.

Table 5.1 shows the experimental results. Each row of the table shows the number of

inputs In and the number of outputs Out for Mi and M2, as well as the number of states S of Mi,

M2, theE-machine, andM{, theminimized machine usingtheheuristic. Thenumber of inputs and

outputs of the E-machine and M{ arethesame as Mi. Timeis the CPU timein seconds usedon a

DECstation 5000/240 for the entire optimization in each experiment, including the computation of

the E-machine as well as the minimization, where the number in a parenthesis is the time required

for minimizing the E-machine by the proposed heuristic procedure. The column Mir represents

the number of states of Mi reachable in the interaction with M2, which is computed as described

above. The small table attached at the bottom shows a comparison between the heuristic procedure

and the exact procedure for finding a minimum-state Moore behavior contained in the E-machine.

We applied the exact procedure only if a behavior found by the heuristic procedure had more

than one state, since a behavior with a single state is already known to be optimum. The current

implementationofthe exact procedure was able to complete the computationonly for four examples

as shown in the table. The resulting number of states is shown in the column S, while the CPU time

(seconds) is given in the column Time. The CPU time is the one required for the minimization

only, and does not include the time for computing the corresponding E-machine.

Although the examples are rather small, we see that the number of states ofthe minimized

machine M{ is generally muchsmaller thanthatof theoriginal machine Mi. Thesameobservation

can bemadein the comparison between Mi andMir, whilefurtheroptimization canbe achieved by

using E-machines. For those examples wherethe exact procedurecompleted the computation,the

heuristic always reproducedthe optimumsolutionsin muchless time. Consideringthe fact that Mi

was made optimum by itself in the beginningof the experiments, we see that the results demonstrate

theeffectiveness of accounting forthe interaction between Mi and M2 in further optimizing Mi.

We conducted another type of experiments to see how much we restrict ourselves by

focusing only on Moore behaviors. Recall that a machine Mi does not have to be a Moore

machine aslongas it is possible to implementbothMi andM2 without introducing a combinational

loop. This is always true if M2 is a Moore machine. In this case, any behavior contained in the

corresponding E-machine is implementable, and thus is a permissible behaviorfor Mx. Then the

question is how much we lose by finding only a Moore behavior. To answer this question, we

implemented an exactprocedure for finding a minimum-state behaviorcontained in the E-machine,

which is described in Section 5.4.1. We then applied thisprocedure as well as theexact procedure

for finding a minimum-state Moore behavior contained in the E-machine for examples in which

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S

Mi M2
E-machine Contain MooreIn Out S In Out S

ex1 2 3 20 4 4 20 22 3 3

ax4 5 6 20 8 8 26 11 1 1

ax5 5 6 8 8 8 26 26 2 2

ax6 6 5 13 8 8 26 22 1 1

ax7 3 5 4 6 6 25 20 2 2

ex10 3 4 19 5 6 22 13 1 2

bx7 3 5 4 6 6 25 23 2 2

ex12 3 4 19 6 4 14 13 1 1

145

Table5.2: Comparison betweenOptimum MooreBehaviors and Optimum Contained Behaviors

M2 is a Moore machine. Dueto the computational complexity, there were onlya small number of

examples for whichbothof the exactmethods were ableto complete the computations. The results

are shown in Table 5.2. The column Contain represents the number of states of a minimum-state

behavior contained in the E-machine, while the column Moore shows the number of states of a

minimum-state Moore behavior. The number of states of the E-machine is also shown for each

example, where the number of inputs and outputs are the same as Mi. The minimum number of

states is small for each of these examples, and therefore we cannot make a general statement on

the limitation of finding Moore behaviors. However, as far as these examples are concemed, the

number of states of an optimum Moore behavior is equal to the number of states of an optimum

contained behavior, except for one example.

5.8 Concluding Remarks

We considered the problem of minimizing E-machines. The E-machine is a non-

deterministic finite state machine, computed for a machine Mi in Figure 5.1, with the property

that the set of implementable behaviors in the E-machine is precisely the set of permissible be

haviors for Mi, i.e. those that can be implemented at Mi to meet the specification of the entire

system. Usingthe numberof statesof a finite statemachine as the cost function, we addressed the

problem of finding anoptimum permissible behavior in theE-machine, i.e. a behavior represented

by a completely specified finite state machine with the minimum number of states over all the

implementable behaviors in the E-machine.

CHAPTER 5. MINIMIZATION OF PSEUDO NON-DETERMINISTIC FSM'S 146

This problem is analogous to the state minimization problem of finite state machines.

Furthermore, a result given in the previous chapter shows that the E-machine is a special type of

non-deterministic machine, called a pseudo non-determimstic machine. Hence, we first presented

a theoretical analysis on the state minimization problem of pseudo non-deterministic finite state

machines. We showed that the state minimization problem of general non-deterministic machines

can be reduced to that for pseudo non-deterministic machines. Also, we presented how the basic

concepts developed in the literature for the state minimization of deterministic machines can be

generalized for this problem, in which we showed that the property of pseudo non-determinism

can be effectively used to establish a correspondence between the originalmachine and the set of

contained behaviors.

Based on this analysis, we presentedanexact method for the state minimizationof pseudo

non-deterministic machines. We also presented an exact method for our original problem, i.e. the

minimization of the E-machine. The exact method requires us to check the implementability of

behaviors using dependency graphs introducedin the previous section. To avoid this complication,

we presentedan exact method for finding an optimum Moore behavior given in the E-machine.

We also presented aheuristic procedure for the stateminimization problem ofpseudo non-

deterministic machines. The procedurekeeps track ofa feasible set ofsubsets ofthe states ofa given

pseudo non-deterministic machine, and tries to decrease its cardinality by iteratively introducing or

removing redundancy in the set. The proposed procedure has been implemented with the restriction

that the resulting machine is a Moore machine, and experiments were conducted. The results

demonstrate the effectiveness of taking into account information derived from other components in

optimizing systems of interacting finite state machines.

In the future, we want to remove the restriction of Moore behaviors, so that we can

directly find a permissible behavior, rather than just a Moore behavior. Recall that the set of

permissiblebehaviorsis given by finding implementablebehaviors among the behaviors contained

in the E-machine. Currentiy, we need to explicitly use adependency graphdefined in Section 4.7 for

identifyingimplementability. Sinceadependency graph isdefined with respect to agivenparticular

behavior for Mi, we will need to construct anumber of dependency graphs in order to find a setof

implementable behaviors. If the implementability can be identified without explicitly formulating

dependency graphs, then the proposed heuristic procedure can be extended for finding permissible

behaviors.

Another problem to be addressed in the future is the state encoding of non-deterministic

finite state machines. The proposed heuristic procedure keeps track of a set C of subsets of states

CHAPTER 5. MINIMIZATION OFPSEUDO NON-DETERMINISTIC FSM'S 147

of a given pseudo non-deterministic machine T, and maintains the feasibility of C, i.e. a feasible

machines can be composed using the elements of C. Now, notethatalthough a feasible machine

uniquely defines a behavior contained in T, a feasible machine defined by the set C maynotbe

unique. In other words, it is possible in general todefine asetof feasible machines for agiven set

C, for whichthere is a one-to-one correspondence between anelement of C and a subset of states

ofT associated with each state ofafeasible machine. Therefore the set C obtained bythe heuristic

defines a setof behaviors contained in T. Such a set of behaviors is given by the setof behaviors

contained in a finite state machine Tc such that each state of Tc corresponds to anelement of C and

itstransition relation is given bythe relation r defined inSection 5.6.1. Namely, for apair of states

ofTc corresponding toelements s* and s* of C respectively, Tc has atransition from s* to s* under

an input u and an output v if and only if r(s*, u,v, s*) = 1, i.e. for allSi e s*, there exists Sj e s*
such that T(si, u,v, sj) = 1. The machine Tc isnon-deterministic ingeneral2. Then the question

is which behavior should bechosen, inorder toachieve the best implementation. For this question,

oneneeds to address the encodings of states of Tc, i.e. howto assign abinary representation for

each state sothat aleast-cost implementation of abehavior contained inTc is optimum among all

possible implementations of all the contained behaviors overall theencodings of the states.

2We conjecture thatif C is irredundant, there exists apseudonon-deterministic machine with \C\states whichcontains
the same set of behaviors with Tc.

148

Chapter 6

Conclusions

6.1 Summary of Thesis

This thesis addressed the problem of optimizing a synchronous digital system of inter

acting components. Specifically, we considered how to compute the set of behaviors that can be

realized at a particular component of a system while preservingthe behavior of the entire system.

In addition we addressed how to find an optimum behavior in the set.

In Chapter 2 and Chapter 3, we considered combinational logic behaviors. The problem

addressed in Chapter 2 is how to compute a set of Boolean functions that can be realized at a

given component of the system, where the component may have multiple inputs and outputs. Each

such function is called a permissible Boolean function of the component. We showed a condition

under which a set of Boolean functions defined over the same inputs and outputs can be represented

by a relation between the input and output spaces. We demonstrated that the complete set of

permissible Boolean functions can be represented by a single Boolean relation, first shown by

Brayton and Somenzi in [11]. Also, the problem of finding compatible sets of permissible functions

was addressed. A set ofcompatible sets of permissible functions, one set for each component of the

system, has the property that an arbitrary combination of functions, one from each ofthe compatible

sets, results in an allowed behavior for the entire system. We considered how to compute a set of

maximally compatiblesets ofpermissiblefunctions overthe components,wherecompatible sets are

maximal if there is no permissible function that can be newly addedto any one of the sets without

destroying the property of compatibility. We showed that eachof the maximally compatible sets

canalso be represented by a single relation, and presented aprocedure for computing suchsets.

The problem of finding anoptimumfunction realized atagivencomponentwasaddressed

CHAPTER 6. CONCLUSIONS 149

in Chapter 3. The problem is reduced to theminimization of a Boolean relation, and we proposed

a heuristic for the problem with the cost function being the number of product terms required in a

sum-of-products expression representing a function.

Chapter 4 and Chapter 5 is an analogous investigation for sequential logicbehaviors. We

considered a systemin whichthebehavior ofeach component is modeled by a finite state machine

and all the components are synchronizing. The definition of a permissible sequential behavior

is identical to the combinational case, except that an additional constraint on implementability is

required. A sequential behavior is said to be implementable if it is possible to implement the

behaviorso that no combinational loop is created in the entire system. This additional constraint

wasnecessary because ofourassumption thatcombinational loops, i.e. loopswith no flip-flops or

latches, typically donot appear in circuit implementations of practical synchronous digital systems.

Furthermore, the constraint does not arise for the combinational case since the connections defined

by thecomponents of thesystemdonotintroduce acyclefor combinationalbehaviors. Wepresented,

in Chapter 4, ananalogous conclusion thatthe complete set of permissible sequential behaviors at

a given component can be representedby a single non-determimstic finite state machine, which we

call the E-machine. We proposed a procedure for computing the E-machine. We discussed how to

identify implementable behaviors, and presented a necessaryand sufficient condition under which

a given sequential behavior is implementable.

The minimization of the E-machine was considered in Chapter5, where the cost function

was the number of states of a finite statemachine required to represent a behavior. We showed that

the E-machine is a special type ofnon-deterministic finite statemachine, a pseudo non-deterministic

machine. This property was effectively used for solving the problem. We proposed both exact and

heuristic methods.

6.2 Future Directions

In the future, further investigation will be necessary to see how this work can be made

practical. We describe our view for each type of behavior.

Forcombinational behaviors, intensive researchhas been done on the problem addressed in

Chapter 2 forthecasewhereeachcomponenthasexacdyoneoutput [9]. As mentionedin Chapter 2,

ourexperimental results do not provide significant effectiveness of the method formultipleoutputs

over the existing methods for single outputs. However, we think it is still too early to conclude

that for practical applications, it is sufficient to onlyuse single output methods. The experimental

CHAPTER 6. CONCLUSIONS 150

results depend on how multi-output components are composed. Our experiments started with

a system of single-output components, and clustered those to obtain multi-output components.

Alternatively, one mightuse the proposedoptimization procedure in conjunctionwith a factorization

or adecompositionovermulti-outputcomponents. A factorizationor adecomposition is atechnique

used for modifying the structure of a system by changing its connections or introducing new

components. In state-of-the-art optimizationtechniques developed forsingle-output combinational

logic components, it is common that suchtechniques andoptimizations forindividualcomponents

are iteratively applied. Therefore, to see the effectiveness of optimization techniques for multi-

output components, it will be necessary to considerhow a factorization or a decomposition can be

achieved for such components, and to use a procedure for optimizing individual components, e.g.

the one proposed in Chapter2, together with those global optimization procedures.

For sequentialbehaviors,on the other hand, the decomposition techniques for interacting

finite state machines is still little explored, and such methods are not used in practice. However,

often a hardware system is described as a set of interacting finite state machines, and thus it is

important to identify the flexibility allowed for optimization in such a system by addressing the

problems as done in Chapters 4 and 5. For the procedures discussed in this thesis, we still need

further research to make them practical. One bottleneck for the current procedures is the time to

compute the E-machine. One approach is to investigate a more efficient representationof a finite

state machine. Another way, more directiy related to the procedure of computing the E-machine,

is to approximate the computation, i.e. compute a "subset" of permissible behaviors. An important

question here is what is a good subset of permissible behaviors and how to find it. One way

of computing a subset of permissible behaviors is to perform the same computation proposed in

Chapter 4 for the E-machine, but to cease the iteration as soon as the computational time reaches

a user-specified upper bound. Since the E-machine is constructed gradually starting from its reset

state, all the implementable behaviors contained in the resulting machine are permissible, and thus

the machine provides a subset of permissible behaviors. However, we do not know how good this

subset is.

Alternately, we can abstract awaymany componentsof the surrounding componentsand

then applyour procedures to get aconservative approximation. As ananalogy to the combinational

case, we canalso define compatible setsof permissible sequential behaviors overallthecomponents

of the system. An interesting theoretical question is whether ananalogy to the combinational case

holds, i.e. if amaximally compatible setof permissible sequential behaviors can berepresented by

a single non-deterministic finite state machine. If this is thecase, one could compute such aset for

CHAPTER 6. CONCLUSIONS 151

each component by modeling the rest of the components using a single finite state machine M2. In

this case, unlike the context considered in Chapter4, the machine M2 would be a non-deterministic

finite state machine.

Besides technical improvements on the efficiency ofthe proposed procedures,we alsoneed

to identify how effective it is in practiceto take into accountthe interaction among components in the

optimization. The example set used in our experiments were not obtained during a practical design

process, and thus we have yet to see the practicaleffectiveness. As with the case of combinational

logic behaviors, in order to discuss the practical effectiveness of the proposed procedures, it will be

necessary to address how to perform a factorization or decomposition for a system of finite state

machines, and to optimize the system by iteratively applying such global optimization techniques

together with the proposed procedures for optimizing individual components.

152

Bibliography

[1] M. Avedillo, J. Quintana, and L. Huertas. Efficient State Reduction Methods for PLA-based

Sequential Circuits. IEE Proceedings-E, 139(6):491-499, November 1992.

[2] T. Bartee, I. Lebow, and I. Reed. Theory and Design ofDigital Machines. McGraw-Hill Book

Company, Inc., 1962.

[3] K. Bartiett, R. K. Brayton, G. D. Hachtel, R. Jacoby, C. Morrison, R. Rudell, A. Sangiovanni-

Vincentelli, and A. Wang. Multi-level Logic Minimization using Implicit Don't Cares. IEEE

Transactions on Computer-Aided Design, CAD-7, June 1988.

[4] A. Booth and K. Booth. Automatic Digital Calculators. Butterworth Scientific Publications,

1953.

[5] E. Braun. Digital Computer Design - Logic, Circuitry, and Synthesis. Academic Press Inc.,

1963.

[6] R. K. Brayton. New Directions in Logic Synthesis. In Proceedings of the Synthesis and

SimulationMeeting and InternationalInterchange, Kyoto, Japan, 1990.

[7] R. K. Brayton. private communication, 1994.

[8] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Mini

mization Algorithmsfor VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984.

[9] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincenteili. Multilevel Logic Synthesis.

Proceedings ofthe IEEE,Vol. 78(No. 2), February 1990.

[10] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincenteili, and A. Wang. MIS: Multiple-Level

Logic Optimization System. IEEE Transaction on Computer Aided Design of Integrated

Circuits and Systems, Vol. CAD-6(No. 6):1062- 1081, November 1987.

BIBLIOGRAPHY 153

[11] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic

Networks. In International Conference on Very Large Scale Integration, Munich, August

1989.

[12] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEETransactions

on Computers, Vol. C-35(No. 8):677-691, August 1986.

[13] 0. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on

Symbolic Execution. In Proceedings of the Workshop on AutomaticVerification Methodsfor

Finite State Systems, Grenoble, France, 1989.

[14] M.Damiani. NondeterministicFinite-State Machines andSequentialDon't Cares. InEuropean

Conference on Design Automation, 1994.

[15] M. Damiani and G. De Micheli. Derivation of Don't Care Conditions by Perturbation Anal

ysis of Combinational Multiple-Level Logic Circuits. In International Workshop on Logic

Synthesis, 1991.

[16] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan. Logic Synthesis through Local Trans

formations. IBM J. Res. Develop., pages 272-280, July 1981.

[17] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincenteili. Optimal State Assignment for

Finite State Machines. IEEE Transaction on Computer Aided Design ofIntegrated Circuits

and Systems, CAD-4:269 - 285, July 1985.

[18] S. Devadas. Approaches to Multi-Level Sequential Logic Synthesis. In 26th ACM/IEEE

Design Automation Conference, 1989.

[19] J. Eckert, Jr. Types of Circuits - General. In Theory and Techniques for Design ofElectronic

Computers. Lectures given at the Moore School, 8 July 1946-31 August 1946. University

of Pennsylvania, 1947. Also in The Moore School Lectures, Vol. 9 in the Charles Babbage

Institute Reprint Series for the History of Computing. The MIT Press, 1985.

[20] M. Fujita. Methods for Automatic Design Error Correction in Sequential Circuits. In The

European Conference on Design Automation with The European Event in ASIC Design,

February 1993.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory and

NP-Completeness. W.H. Freeman And Company, 1979.

BIBLIOGRAPHY 154

[22] A. Ghosh, S. Devadas,and A. R. Newton. Heuristic Minimization of Boolean Relations using

Testing Techniques. In IEEE International Conference on Computer Design, Cambridge,

September 1990.

[23] S. Ginsburg. Synthesis ofMinimal-State Machines. IRE Transactions on Electronic Comput

ers, pages 441-419, December 1959.

[24] A. Grasselli and F. Luccio. A Method for Minimizing the Number of Internal States in

Incompletely Specified Sequential Networks. IEEE Transactions on Electronic Computers,

pages 350-359, June 1965.

[25] S. J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A Heuristic Approach for Logic Minimiza

tion. IBM J. Res. Develop., pages 443-458, September 1974.

[26] J. E. Hopcroft and J. D. Ullman. Introduction to AutomataTheory, Languages,and Compu

tation. Addison-Wesley Publishing Company, 1979.

[27] D. Huffman. The Synthesis of Sequential Switching Circuits. Journal ofFranklin Institute,

Vol. 257:161-190,275-303, 1954. Also in E. Moore, editor, Sequential Machines selected

papers. Addison-Wesley Publishing Company, 1964.

[28] T. Kam,T. Villa, R. K. Brayton, and A. Sangiovanni-Vincenteili. A Fully Implicit Algorithm

forExact State Minimization. In 31stACM/IEEE Design Automation Conference, 1994.

[29] J. Kim and M. Newborn. The Simplification of Sequential Machines with Input Restrictions.

IEEETransactions on Computers, C-21:1440-1443, December 1972.

[30] Z. Kohavi. Switching andFinite Automata Theory. McGraw-Hill Book Company, New York,

1970.

[31] L. Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-Ymcentelli. MIS-MV: Optimization

of Multi-level Logic with Multiple-valued Inputs. In IEEE International Conference on

Computer-Aided Design, 1990.

[32] B.Linand F. Somenzi. Minimization ofSymbolic Relations. hilEEEInternational Conference

on Computer-AidedDesign, November 1990.

[33] H. Mathony. Universal Logic Design Algorithm and its Application to the Synthesis of

Two-level Switching Circuits. IEE Proceedings, 136Pt. E(3), May 1989.

BIBLIOGRAPHY 155

[34] E. J. McQuskey Jr. Minimizationof Boolean Functions. BellSystem Technical Journal, Vol.

35:1417-1444, November 1956.

[35] G.Mealy. A Method for Synthesizing Sequential Circuits. Technical Report J. 34,BellSystem

Tech., 1955.

[36] Merrian Webster's Collegiate Dictionary. Merrian-Webster, Inc., tenth edition, 1993.

[37] J. Millman. Microelectronics: Digital andAnalog Circuits andSystems. McGraw-Hill Book

Company, 1979.

[38] E. Moore. Gedanken-experiments on Sequential Machines. In C. Shannon and J. McCarthy,

editors, AutomataStudies. PrincetonUniversity Press, 1956.

[39] S. Muroga, Y. Kambayashi, C. H. Lai,and J. N. Culliney. The Transduction Method - Design

of LogicNetworksbased on Permissible Functions. IEEE Transactions of Computers, 1989.

[40] M. Paull andS. Unger. MinimizingtheNumberofStates in Incompletely Specified Sequential

Switching Functions. IRETransactions onElectronic Computers, pages356-367, September

1959.

[41] R. Puri and J. Gu. An Efficient Algorithm to Search for Minimal Closed Covers in Sequential

Machines. IEEE Transactions on Computer-Aided Design, pages 131-1AS,June 1993.

[42] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes.

SIAM Journal ofControl and Optimization, Vol. 25(No. l):206-230, January 1987.

[43] J. Rho, G. D. Hachtel, and F. Somenzi. Don't Care Sequences and the Optimization of

Interacting Finite State Machines. In International Workshop on LogicSynthesis, 1991.

[44] J. Rho, G. D. Hachtel, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the

Minimization of Incompletely Specified State Machines. In European Conference on Design

Automation, 1991.

[45] R. L. Rudell and A. Sangiovanni-Vincenteili. Multiple-Valued Minimization for PLA Opti

mization. IEEE Transaction on Computer AidedDesign of Integrated Circuits andSystems,

Vol. CAD-6(No. 6):727 - 750, September 1987.

[46] T. Sasao. An Application of Multiple-Valued Logic to a Design of Programmable Logic

Arrays. InInternational Symposium on Multiple Valued Logic, 1978.

BIBLIOGRAPHY 156

[47] T. Sasao. Input Variable Assignment and Output Phase Optimization of PLA's. hi IEEE

Transactionon Computers, October 1984.

[48] H. Savoj. Don't Cares in Multi-Level Network Optimization. PhD thesis, U.C. Berkeley,

March 1992.

[49] H. Savoj and R. K. Brayton. The Use of Observability and External Don't Cares for the

Simplificationof Multi-LevelNetworks. In 27thACM/IEEE DesignAutomation Conference,

1990.

[50] H. Savoj, R. K. Brayton, and H. Touati. ExtractingLocal Don't Cares for Network Optimiza

tion. In IEEEInternational Conference on Computer-Aided Design, 1991.

[51] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. Sangiovanni-

Vincenteili. Sequential Circuit Design Using Synthesis and Optimization. In IEEE Interna

tional Conference on Computer Design, 1992.

[52] T. R. Shiple, R. Hojati, A. Sangiovanni-Vincenteili, and R. K. Brayton. Heuristic Minimization

of BDDs Using Don't Cares. In 31st ACM/IEEEDesign Automation Conference, June 1994.

[53] F. Somenzi and R. K. Brayton. An Exact Minimizer for Boolean Relations. In IEEE Interna

tional Conference on Computer-Aided Design, November 1989.

[54] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function

Manipulation. In IEEE International Conference on Computer-Aided Design, pages 92-95,

November 1990.

[55] R. E. Tarjan. Data Structures andNetwork Algorithm. Society for Industrial and Applied

Mathematics, CBMS-NSF Regional Conference Series in Applied Mathematics, 1983.

[56] S. Unger. Flow Table Simplification - some useful aids. IEEE Transactions on Electronic

Computers, June 1965.

[57] R. van Glabbeek. The Linear Time - Branching Time Spectrum. In Baeten J. and Klop J.,

editors, CONCUR '90, Theories ofConcurrency: Unification and Extension, pages 278-297.

Springer-Verlag, August 1990. Volume 458 of Lecture Notes in Computer Science.

[58] J. Vasudevamurdiy and JRajski. A Method for Concurrent Decomposition and Factorization

ofBoolean Expressions. In IEEE International Conference on Computer-Aided Design, 1990.

BIBLIOGRAPHY 157

[59] H.-Y. Wang and R. K. Brayton. Input Don't Care Sequences in FSM Networks. In IEEE

International Conference on Computer-Aided Design,November 1993.

[60] Y. Watanabe and R. K. Brayton. Incremental Synthesis for Engineering Changes. In IEEE

InternationalConference on ComputerDesign, October 1991.

Index

l-hot encoding, 46

automaton, see finite automaton

BDD, 19

behavior

combinational logic, 1, see also function

ality

contained, 78

optimum, 122

implementable, 79

Moore, 110

optimum, 125

of a finite state machine, 77

permissible, 1,80

optimum, 123

sequential logic, 2,77

binary decision diagram, 19

Boolean network, 7

fanin, 7

fanout, 7

functionality of, 8

specification of, 8

transitive fanin, 7

transitive fanout, 7

Boolean relation,see multiple-valued relation

candidate prime cube, 40

care set, 39

clock, 2,71

closed set of states, 134

cluster, 8

clustered Boolean network, 8

fanin, 9

fanout, 9

functionality of, 9

input variable, 9

output variable, 9

transitive fanin, 9

transitive fanout, 9

combinational loop, 5,79,101

combinational path, 102

compatible

function, 39

maximally, 3,14

representation, 40

set of states, 128

sets of permissible functions, 3,14

component, 1

contain

behavior, 78

cube, 40

contained behavior, 78

optimum, 122

contained machine, 89

158

INDEX

cover, see representation

cube, 39

candidate prime, 40

contain, 40

irredundant, 41

maximally reduced, 57

redundant, 41

relatively prime, 40

dependency, 101

dependency graph, 102,124,146

deterministic finite state machine, 75

completely specified, 76

incompletely specified, 76

minimization of, 112

determinization

of a finite automaton, 97,114

digital system, 1

division

of finite state machines, 74

don't care sequence, 74

don't care set, 39

E-machine, 4,74,87

minimization of, 4,112,123

equivalence class, 77

equivalent

finite state machine, 77

state, 76

existential property, 18

fanin

of a Boolean network, 7

of a clustered Boolean network, 9

fanout

of a Boolean network, 7

of a clustered Boolean network, 9

feasible machine, 115

finite automaton, 77

determinization of, 97,114

reduction of, 109

finite state machine, 75

behavior of, 77

completely specified, 76

contains a behavior, 78

deterministic, 75

division, 74

equivalent, 77

feasible, 115

implementable, 79,102

incompletely specified, 76

isomorphic, 97

Mealy, 76

Moore, 76

non-deterministic, 76

permissible, 80

prime, 81

pseudo non-deterministic, 94, 111

represents a behavior, 77

specification of, 72

forward compatibility property, 16

functionality

of a Boolean network, 8

of a clustered Boolean network, 9

global function, 8

global optimization, 30,150

159

INDEX

GYOCRO, 37

implementable

behavior, 79

finite state machine, 79,102

incompletely specified function, 38,42,50

minimization of, 42

the characteristic function of, 39

initial state, 75

input variable

of a clustered Boolean network, 9

irredundant

cube, 41

representation, 41

set of states, 135

literal, 39

local optimization, 5

log-based encoding, 46

maximally reduced cube, 57

MDD, 38

Mealy machine, 76

minimization

deterministic finite state machines, 112

E-machines, 4,112,123

incompletely specified functions, 42

non-deterministic finite state machines,

112

pseudo non-deterministic finite state ma

chines, 112,122,134

relations, 3,52

Moore behavior, 110

optimum, 125

160

Moore machine, 76

multiple-valued relation, 38

minimization of, 3,52

well-defined, 38

node optimization, 5

non-determimstic finite state machine, 76

minimization of, 112

off-set, 39

on-set, 39

output selection, 10

output variable

of a clustered Boolean network, 9

permissible

behavior, 1,80

optimum, 123

finite state machine, 80

function, 9

primary input, 7

primary output, 7

prime machine, 81

product term, 39

pseudo non-determimstic finite state machine,

94, 111

expressiveness of, 113

minimization of, 112,122,134

reachable state, 76

rectification problem, 45,72

redundant

cube, 41

representation, 41

set of states, 135

INDEX

relation, see multiple-valued relation

relatively prime cube, 40

representation, 40

irredundant, 41

redundant, 41

reset state, 75

sequence, 75

length of, 75

sharedness, 25

specification

of a Boolean network, 8

of a finite state machine, 72

stability property, 104

state minimization, see minimization

subset construction, 97,98,114

sum-of-products expression, 39

supervisory control problem, 72

system, 1

digital, 1

synchronous, 2,70

transition, 75

transitive fanin

of a Boolean network, 7

of a clustered Boolean network, 9

transitive fanout

of a Boolean network, 7

of a clustered Boolean network, 9

unimplementable, 103, see also implementable

unreachable state, 28, 76, see also reachable

state

well-defined

161

multiple-valued relation, 38

	Copyright notice 1994
	ERL-94-32

