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For high-level verification, the design implementation can be changed if the functional
behavior is preserved. This paper discusses techniques for re-structuring circuits at the logic level to
increase simulation performance on massively parallel SIMD computers. This approach is different
from previous work, which has attempted to improve parallel simulation performance by writing
faster simulators. We have written a simulator for the MasPar MP-1 to measure speed-up. While
some of the logic synthesis techniques are MP-1 specific, most are sufficiently general that they can
be applied to other massively parallel architectures.
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Chapter 1

Introduction

Simulation is one of the most important VLSI CAD tools. Chip designers rely on
simulation to avoid fabricating expensive prototypes. Simulation is also very extremely expensive.
Today’s big designs require weeks of simulation. A large amount of research has looked at ways of
reducing the cost of simulation. The two main areas that have been explored are specialized hard-
ware for simulation and behavioral simulation.

One example of specialized hardware is the Field Programmable Gate Array
(FPGA). An FPGA can be programmed with a user-defined logic function with several hundred
FPGA's stored in a single chip. While FPGA’s have extremely good simulation performance, syn-
thesizing a circuit for FPGA’s and wiring the chips takes a lot of time. So, FPGA’s are mostly used
to verify a design only when it has neared completion.

Other hardware platforms that have been explored include parallel computers.
Regardless of the parallel computer architecture (shared memory, massively parallel SIMD, etc.)
the major hurdle for parallel simulation has been the large amount of interprocessor communica-
tion. Many real-world circuits have insufficient parallelism to overcome the communication over-
head. Modest performance improvements have been reported with parallel simulation, but not
enough to make it cost-effective.

Given the cost of specialized hardware, behavioral simulation has become
increasingly popular. With this methodology, the circuit is specified at a high level. Logic synthesis
uses the high level description to synthesize a gate-level design with a given area/speed criterion.
Simulating the design at the behavioral level can be considerably faster than gate-level simulation.

The high-level description also helps designers conceptualize the circuit.



Behavioral simulation is excellent for applications that are not time-critical (like
ASIC’s). For time-critical applications (especially microprocessor data paths) the design has few
high-level abstractions. In some cases, logic synthesis does not produce the optimum result, so the
design is done at the gate-level. In neither case is behavioral simulation very useful.

This paper describes an alternate simulation methodology for these situations.
Logic synthesis can be used to synthesize a circuit not for a chip or FPGA implementation, but for
simulation on massively parallel computers. This paper describes a logic synthesis tool that
optimizes a circuit for parallel simulation by synthesizing parallelism and grouping logic functions
in a way that reduces interprocessor communication. To test various synthesis algorithms, a
parallel simulator was written for the MasPar MP-1, a massively parallel SLMD computer. On
gate-level designs, this methodology outperformed Verilog-XL[TM91] running on a SparcStation-
2 by more than a factor of 20. Without synthesis, the MP-1 simulator showed little improvement
over Verilog-XL.

The synthesis tool runs under the Sequential Interactive Synthesis System
(SIS)[BR+87]. SIS represents the circuit as a multilevel set of logic equations. Various subroutines
are provided for manipulating the design. Logic minimization, technology mapping, and
decomposition tools are also included.

Although SIS supports sequential circuits, only combinational ones were
simulated. In some cases, sequential circuits were made combinational by loop breaking.
Currently, SIS supports only single-output logic functions. Because better simulation results can
be obtained with multiple-output functions, changes were made to SIS to provide this capability.

The report is organized as follows: Chapter 2 gives some background on circuit
simulation. Chapter 3 describes previous efforts in parallel simulation. Chapter 4 is an overview of
the MasPar MP-1 computer. In Chapter S, the simulator written for the MP-1 is discussed.
Synthesis techniques for e;ploiting some features of the simulator are presented in Chapter 6.

Chapter 7 lists the experimental results. These results will show that logic synthesis greatly



improves parallel simulation performance. Chapter 8 goes into greater detail of the simulation
code. Parallel simulation on the Connection Machine-5, conclusions, and future work are

presented in Chapters 9 and 10.



Chapter 2

Circuit Simulation Background

Digital systems can be modeled at four different levels: circuit, switch, gate, and
behavioral. Different levels trade-off accuracy for simulation speed. Mixed-mode simulators com-
bine different levels of simulation into a single program.

Circuit-level simulation is the most accurate and the most expensive. It models
circuits at the transistor, resistor, and capacitor level. Because it is so slow, circuit-level simulation
is only possible on designs with fewer than 10,000 transistors. This limit is much smaller than
today’s designs, which have more than a million transistors. Examples of circuit-level simulators
are SPICE[Nag75} and CAzM[Erd89].

Switch-level simulation models transistors as simple switches. Examples of
switch-level simulators are ESIM[Ter83] and MOSSIM[Bry84]. COSMOS|Bry87) preprocesses
transistor networks into a set of boolean equations which are then simulated. Chapter 3 will dis-
cuss a parallel version of COSMOS.

Gate-level simulation represents the circuit with boolean logic equations (or
gates). Timing information can be assigned to gates. Fixed delay simulation is also possible, which
allows faster simulation when timing information is unimportant. Examples of gate-level simula-
tors are HILO[Gen85] and THOR[SB87].

While gate-level simulation has been a very popular way of modelling circuits, its
performance has not kept pace with larger designs. As a result, RTL and behavioral-level simula-
tion are becoming more popular.

At the RTL and behavioral-level, high-level constructs, like looping and arith-
metic operations, can be incorporated in a circuit description. These high-level abstractions allow

much faster simulation. Behavioral descriptions are described with high level languages (like



VHDL), which can be compiled and executed like any other computer language. Once the
designer is satisfied with the design, logic synthesis can produce a gate-level circuit from the
behavioral description.

For switch-level and higher levels of abstraction, there are generally two simula-
tion approaches: oblivious and discrete-event simulation. For each time step, oblivious simulators
evaluate every gate. Experiments have shown, however, that for each new input vector, only a very
small percentage of gates have a change in output. Discrete-event simulation exploits this behavior
by using a queue to schedule simulation only on gates whose input has changed. When a gate is
simulated, it calculates the new output, and if the output is different, all the gates on the fanout net
are added to the scheduling queue. When there are no more events in the queue, the primary out-
puts are shipped out and the next input vector is processed.

Another simulation classification is whether the simulator is “interpretive” or
“compiled”. An interpretive simulator represents the circuit with a data structure containing the
circuit elements and their interconnections. For each evaluation on a circuit element, the simulator
must read this data structure. On uniprocessors, compiled simulators are much faster because they
eliminate the data structure altogether. Instead, the data structure is incorporated in a computer-
generated program. Compiled simulation is not possible on data parallel machines like the MP-1

because each processor must execute the same program.



Chapter 3

Previous Work in Parallel Simulation

Because simulation is such an important part of VLSI design, there has been much
simulation research. This chapter summarizes previous efforts in parallel simulation at the switch

and logic levels.

3.1 Measuring Parallelism in Circuits

Several papers have reported calculations to determine whether there is sufficient
parallelism in real circuits to make parallel simulation worthwhile.

Bailey and Snyder [BS85] measured the amount of parallelism in circuits using a
switch-level simulator. Parallelism was defined as the average number of events executed in a
timestep. An event occurs for transitions from 0 to 1, 1 to 0, and to an indeterminate state (“X").

This metric was applied to two large circuits. One was a RISC microprocessor and
the second was an IIR digital filter. The filter incorporated a 16 x 16 multiplier, 32-bit ripple adder,
9-bit ripple counter, a 17 stage, 16-bit shift register, four 3 stage, 16-bit shift registers, and a PLA.
The remaining circuits were computer generated: two multipliers, a shift register, and a 4-to-16
decoder.

For each circuit, the average parallelism, the maximum parallelism, and the per-
centage of parallelism was measured. The percentage of parallelism is the percentage of nodes that
are changing in a time step (or the average parallelism divided by the number of nodes in the cir-
cuit). These results are given in Table 3.1.

The effect of circuit size on parallelism was determined by generating larger

instances of the computer generated circuits. The results are summarized in Tables 3.2-3.4. The



amount of parallelism did increase in larger circuits, but the percentage of parallelism decreased.

Other authors have measured the amount of parallelism in small circuits to extrapolate the amount

of parallelism in large circuits [WF87). Because the percentage of parallelism decreases, such pre-

dictions may be incorrect.
Circuit Transistors | Nodes P:rea';f:;':;m P:r:le;eal?sem x::il?]?:n
IIR Digital Filter 27,360 14,399 | 0.04% 6.4 280
8x8 Baugh-Wooley 2,162 1,083 | 0.26% 28 22
Multiplier
8x8 Booth Multiplier | 2,013 1,088 |031% 34 41
8-stage, 16-bit Shift 1,536 1,048 |24% 25 69
Register
4-t0-16 Decoder 208 110 2.9% 32 11
Table 3.1: Circuit Parallelism [BS88)
Size (n x n) Transistors Pal::llrc:;i]:m
[4xa |59 |osew |

8x8 2,162 0.26%

16x 16 8,178 0.18%

24x24 18,034 0.16%

32x32 31,730 0.15%

Table 3.2: Baugh-Wooley Multiplier with Random Inputs [BS88]




Size(nxn) | Transistors Pal:;:‘l::lli';m
16 x 16 6,867 021%
24x24 14,665 0.19%
32x32 25,407 0.17%

Table 3.3: Booth Multiplier with Random Inputs [BS88)

Bits Stages Transistors P::;:fee;i‘;m
s |8 |68 |25%
16 4 768 2.4%
16 8 1,536 24%
16 16 3,072 2.4%
32 8 3,072 2.4%

Table 3.4: Shift Register with Random Inputs [BS88]

One concem with these measurement is the 0.1 ns timestep. A larger timestep
yields greater parallelism, but may affect simulation accuracy. By using a unit-delay model, the
amount of parallelism is up to an order of magnitude greater than the values obtained from the 0.1
ns timestep.

Kravitz et al [KBR89] also measured parallelism with a switch-level simulator,
called CM_COSMOS. They determined the effective parallelism to be from 100 to 3000.

CM_COSMOS is the parallel version of the COSMOS switch-level simulator.
COSMOS preprocesses MOS circuits into equivalent boolean formulas. Because the preprocessor
and simulator work at the boolean level, their work is applicable to logic simulation.

CM_COSMOS runs on the Connection Machine-2 (CM2). Like the MasPar MP-1, the CM2 is a



massively parallel SIMD architecture, but has only 1-bit processors[Hil86].

CM_COSMOS supports 3-valued logic -- 1, 0, and X. The preprocessor partitions
the circuit into channel-connected subnetworks. Subnetworks are a function of the inputs and the
previous output. They are repeatedly evaluated until a steady state is reached. Each subnetwork is
compiled into an equivalent boolean model of AND and OR operators. Operators are mapped to
processors. Each processor has two phases of operation — a compute step where the result of the
operator is found and a communication step where the node output is sent across the network to the
next operator. On a SIMD machine, the time required to send outputs over the network is propor-
tional to the largest fanout. For this reason, CM_COSMOS reduces large fanout operators with
fanout trees. Operaturs were limited to two fanouts.

Parallelism was defined as the average number of boolean operators that are eval-
uated concurrently. Two circuits were measured. One was an industrial bus controller and the other
was a full custom data path circuit. Depending on the number of processors used, the effective par-

allelism ranged from 100 to 3000. Over 2 million boolean functions were evaluated per second.

3.2 Parallel Logic Simulators

Several approaches have been proposed for parallel simulation. The simplest is a
parallel version of a unit-delay compiled mode simulator. This type of simulation uses no event
queue; rather, every element is evaluated at each time step. [SB88) found the speed-up over the
uniprocessor version to be 6-13 on a 16 processor machine. However, this method is generally not
as effective as parallel event-driven simulation because most real circuits have very low activity
rates.

Central Concurrency Control [PS88] is one type of parallel event-driven simula-
tion. It manages the event queue from a central control processor. This method suffers significant
communication bottlenecks because all the other processors must simultaneously interact with the

control processor to send and receive events. When implemented on a general-purpose shared-
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memory computer, [SB88] only achieved a maximum speedup of 2 using eight processors.

The Chandry-Misra algorithm[CM81] avoids the central event queue altogether. It
partitions circuit elements into Logical Processes (LP’s) that have their own event queues. LP’s
read time-stamped event messages on their inputs. When all the inputs on a circuit element are
available, the output can be calculated. If the output has changed, a time-stamped message is sent.
Each LP has its own local clock. The local clock is advanced when an output is calculable.

The algorithm has two phases of operation: the compute phase (as described
above) and deadlock resolution. Deadlock occurs when every element is waiting for at least one
input. Elements do not evaluate their output when at least one input is not known at the current
local time. Deadlock is a direct result of the event-driven nature of the algorithm because outputs
are not propagated when they do not change. Deadlock is resolved by finding the unprocessed
event with the minimum time-stamp and updating the valid time of all inputs with no events to that
time. Deadlock resolution is a major bottleneck. [SG89] found that 19-58% of the simulation time
was spent resolving deadlocks in their benchmark circuits.

[SG89] measured the average concurrency in real circuits usipg the Chandry-
Misra algorithm. Concurrency is defined as the number of elements evaluated in one cycle. All ele-
ments are evaluated in the same amount of time. Element evaluation can activate a whole new set
of elements, which are evaluated in the following cycle. This metric assumes an infinite number of
processors and ignores deadlock and communication costs. The results are summarized in Table
3.5. Ardent-1 is the vector control unit for the Ardent Titan supercomputer, H_FRISC is a RISC
generated by the HERCULES high-level synthesis system, Multiplier is a 16x16 bit integer multi-

plier, and 8080 is a TTL board implementation of the 8080 microprocessor.

11



Circuit Representation Element Count C oﬁ::-g; cy
Ardent-1 gate/RTL 13,349 107
H_FRISC gate 8,076 111
Mult-16 gate 4,990 45
8080 RTL 281 10

Like the Chandry-Misra algorithm, the Time-Warp algorithm[JD85] also main-
tains a separate event queue and simulation clock at each circuit element. The clock is allowed to
advance independently at each element. Time-Waip differs from Chandry-Misra in that if an input
at a circuit element does not have a time stamp as recent as the local clock, the circuit element will

be evaluated anyway without waiting for a new input to arrive. While this avoids the deadlock

problem, it is possible that event precedence becomes lost.

When an element receives an event with a time stamp before the current local
time, the element backtracks to a state before events were processed out of order and sends “Anti-

events” to cancel spurious events. [A86) implemented a switch-level simulator using Time-Warp

Table 3.5: Average Concurrency in Real Circuits [SG89)

and obtained a speed-up of 4 over the uniprocessor version on a 6 processor computer.

Finally, Encore Computer Company implemented an event-driven functional sim-

ulator for the Multimax computer[W86]. They reported a speed-up of 3 on a 5 processor system.

Adding more processors did not improve performance.

12




Chapter 4

Design of the MP-1 Parallel Simulator

This chapter describes the MP-1 architecture and ways of implementing logic

simulation on the MP-1.

4.1 Overview of the MasPar MP-1

The MP-1 is relatively slow compared to new.r machines. Nonetheless, it is a
good platform for testing synthesis strategies.

The MP-1 consists of a two dimensional array of processing elements (PE’s). The
system can accommodate from 1024 to 16384 PE’s. The Array Control Unit (ACU) controls the
PE’s, sending instructions to each PE and handling serial operations. The PE array and ACU are

collectively referred to as the Data Processing Unit (DPU).

4.1.1 The Processing Element

Each PE has a 1.8 MIPS processor, forty 32-bit registers, and 64 KBytes of RAM.
Each PE is connected to its eight nearest neighbors and to a global router which allows a PE to
communicate with any PE in the system. The processor has a 4-bit integer ALU and accesses local

memory through a 4-bit bus.

4.1.2 The Array Control Unit
The ACU is a 14 MIPS processor with thirty-two 32-bit registers and 128 KBytes

of data memory. The ACU broadcasts instructions to PE’s. All PE’s execute the same instruction

13



stream, but have independent storage through their local memory. The ACU also computes
addresses and scalar data values, issues control signals to the PE array, and performs diagnostics

on the system.

4.1.3 The Data Network

PE’s have two methods of communication: the X-net and the global router. The X-
net connects each PE to its eight nearest neighbors in the directions north, south, east, west, north-
east, northwest, southeast, and southwes;. The system has toroidal wrapping, so PE’s on the edge
of the physical array still have eight neighbors.

The global router is more flexible because it allows a PE to communicate with any
PE in the system. Sometimes the global router is slower than the X-net.

PE’s are organized into 4x4 clusters. While the global router can communicate
with all clusters simultaneously, only one PE per cluster can be accessed at a time. One outgoing
and one incoming message per cluster is permitted simultaneously. A message within a cluster
consumes both the incoming and outgoing channels. When more than one message in a cluster

attempts to use a channel, the messages are serialized.

4.1.4 Programming the MP-1

MasPar provides a parallel versions of Fortran and C. Both include new data types
and control structures for parallel operations on data. The extensions to C will be discussed in
Chapter 8. A function library is included for transferring data between the DPU and the UNIX
front-end. The DPU and the front-end may communicate asynchronously. Each can perform other

tasks while the other transfers data.
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4.2 Simulation Strategies for SIMD Machines

An effective synthesis algorithm derives from the design of a fast simulator,
Clearly, the synthesis algorithm must partition the gates in the circuit among the processor nodes
in a way that minimizes communication between partitions. Furthermore, each processor must

evaluate its set of gates in an efficient manner.

4.2.1 SIMD Simulation
For compiled simulation, a technology mapper can map logic functions to logic
opcodes supported by the computer running the simulation. Unfortunately, compiled simulation is
not possible on a SIMD computer like the MP-1 because all processing elements share the same
instruction stream. Instead, each processor must store its set of logic functions in its private data
memory. The simulation code consists of a small simulation loop that reads the logic function from
memory each time an output needs to be calculated.
One way to represent logic functions is by encoding gate types. The simulation
loop “switches” on the gate type as follows:
switch (node.type) {
case AND:
node.output = node.input0 & node.inputl ;
break,
case OR:
node.output = node.input0 [ node.inputl ;
break,

etc.

}

While this method is memory efficient, it runs slowly on a SIMD computer. Since
there is a single instruction stream, case blocks execute serially. It is better to represent the logic
function as a truth table. Calculating an output is a simple matter of accessing an element in an
array:

node.output = node.table[node_inputy OR node_input; OR ... node_input,];

15



For this method to work, the gate input bits must be arranged to not overlap when OR 'ed together.
Each processor must evaluate a set of gates. The fastest possible calculation is by
collapsing the subnetwork into a single combinational logic block (CLB). The entire subnetwork
can be calculated by a single table look-up. Given that a processing node can address k bits of local
memory, the synthesis algorithm must partition the gates such that each CLB has fewer than k

inputs.

4.2.2 The MP-1 Simulator

Our MP-1 simulator is interpretive, event-driven, and handles only combinational
circuits. Each processor performs the following steps per CLB:
Foreach input vector {
OR together the CLB inputs to form the table index
Foreach CLB Fanout {
Look-up the output from the table belonging to the fanout

If the output has changed, send it to the appropriate CLB

}
}

The simulator allows multiple-output CLB’s with multiple fanouts. Each fanout
sends one or more bits, which must be ordered properly so that they are OR 'ed correctly with other
fanouts in the correct sequence. Since bit extraction and re-ordering is too slow, fanouts have sep-
arate look-up tables. Each fanout may use only a portion of the output variables. As such, the sim-
ulator checks for a change in output for each fanout.

The MP-1 has three kinds of parallelism. First, it provides bitwise parallelism at
the processor level by evaluating a set of gates through a table look-up. The second type is level-
ized parallelism. CLB’s are evaluated in topological order from the inputs to the outputs. For a
given input vector, all CLB's at a level are evaluated simultaneously. Third, the simulator pipelines
the input vectors. While processors at level /, simulate input vector i,,, processors at level /,_; sim-

ulate input vector iy, ;.
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Because the synthesis algorithm changes the circuit, timing analysis cannot be
performed. No timing information is associated with CLB’s. Although simulation accuracy is
reduced, it allows us to avoid the event precedence problem tackled by the Time Warp and
Chandry-Misra algorithms.

17



Chapter 5

Synthesis Algorithms

This chapter gives two synthesis algorithms for improving parallel simulation.
Both are divided into the following steps:

1. Gates with more than k fanins are split using AND-OR decomposition.

2. The resulting network is grouped into multiple-output CLB’s.

3. CLB’s with a disproportionate number of fanouts are duplicated.

4. A placement algorithm assigns CLB'’s to processors in a way that exploits the
communication network of the target machine.

The difference in the two algorithms comes in step 2 -- the grouping step. The first approach uses a
bin packing algorithm derived from FPGA synthesis. The second preserves spatial locality when

combining gates into CLB’s.

5.1 Decomposition of Infeasible Nodes

If the maximum size of a CLB is k inputs, then nodes with more than k inputs
must be split in order to fit in a CLB. There are a variety of decomposition methods. AND-OR
decomposition was used for both synthesis algorithms.

Infeasible nodes can be split using any partition of the inputs. Infeasible nodes are
represented as a sub-graph of AND and OR nodes, which are recursively decomposed. For
example, a 3-input function z = ab + ac + bc can be decomposed into 2-input functions v=ab,

w=ac, x=bc, y=v+w, and z = y+x.
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5.2 Algorithm 1 -- Bin Packing Approach

The MP-1 simulator is an implementation of a table look-up (TLU) architecture.
Much work has already been done on logic synthesis for TLU in the area of Field Programmable
Gate Arrays (FPGA’s). An FPGA is a programmable chip that implements a user-specified logic
function of & inputs. The Xilinx(3000) is a typical FPGA, with k=5[Xil).

The goal of FPGA synthesis is to find the minimum number of CLB’s to represent
a circuit. A popular FPGA synthesis algorithm was modified to solve the grouping problem in step
2. One major change is that the MP-1 allows CLB’s to have up to 16 outputs. FPGA's are limited
to one or two outputs.

The bin packing algorithm[GJ79] is very effective at solving the FPGA synthesis
problem. The goal of bin packing is to find the minimum number of fixed width bins into which a
set of variable-sized boxes can be packed. The bins represent CLB's and the boxes are logic func-
tions.

There are several algorithms for solving the bin packing problem. The First Fit
Decreasing (FFD) algorithm starts with an empty list of bins and orders boxes in decreasing order
of their size. As each box is visited, it places the box in the first bin in which it fits. If the box does
not fit in any of the bins, a new bin is created containing only that box. This bin is added to the end
of the list of bins. The Best Fit Decreasing (BFD) also visits boxes in decreasing order, but tries to
place a box in the bin that leaves the most inputs unused.

The first synthesis algorithm used a modified version of the BFD algorithm. It
tried packing each gate into the bin that added the fewest number of inputs to the bin. For instance,
if a bin already uses signals A, B, C, then adding the gate B AND D would only add one input (D).
A gate was not added to a CLB if it caused the resulting circuit to become acyclic. The gates were
visited not in decreasing order, but in breadth-first order, starting from the primary inputs and
working toward the primary outputs. Experiments showed this ordering gave better results than

visiting gates by size.
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The problem with the FPGA approach is that it is optimized for reducing the total
number of CLB’s before fanout optimization. In step 3, CLB’s with a large number of fanouts are
duplicated. Because functions were added to CLB’s without regard to communication costs, fanout
optimization caused an explosion in circuit size. The second algorithm combines gates that are
physically close together in the circuit. As a result, the circuit does not grow as large during fanout

optimization.

5.3 Algorithm 2 -- Grouping with Spatial Locality

The second algorithm is a greedy heuristic that merges functions into larger,
multiple-output CLB’s until the number of inputs to the CLB reaches a user-specified limit k
(usually determined by the memory capacity of the simulator and the maximum number of
fanouts). The algorithm proceeds as follows. The nodes are visited in topological order, from the
second level to the outputs. For each node v, all possible pairs of nodes (“input nodes™) fanning out
to v are examined. If v and any pair of input nodes has a total unique number of inputs less than k,
the group of nodes are merged into a “super-node” provided the network remains acyclic. If v
cannot be merged with any pair of nodes, it is combined with the input node that produces the
fewest number of inputs while keeping the network acyclic. Failing this, v is not combined with
any nodes.

The following example demonstrates the algorithm when k=3. Given the sample
network in Figure 5.1, we begin at the second level with node 3. The input nodes are 1 and 2. The
number of inputs to nodes 1, 2, and 3 is less than &, so they are combined. Node § is also at the
second level and it is combined with node 4, its only fanin node. Figure 5.2 shows the results after
the second level pass.

Visiting node 6 next, we cannot combine its two input gates because that would

result in 4 inputs, which is too many. However, node 6 can be combined with either {1,2,3} or
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{4.5) -- we arbitrarily pick the former. Node 8 is merged into {4,5}.

All that is left is node 7. While merging node 7 into {4,5,8} would not exceed £, it
would create a loop. Placing node 7 into {1,2,3,6) would exceed , so node 7 is not merged. Figure
5.3 shows resulting circuit.

Figure 5.4 gives pseudocode for the grouping algorithm. In the step following
grouping (duplication), nodes with too many fanouts are split. One variation on this grouping algo-
rithm is to limit the number of output variables a CLB may accumulate before the duplication step.
For some circuits, this reduced the overall number of CLB’s. Another variation is to limit the num-
ber of messages a CLB may receive from fanin CLB’s. This can improve load balancing by ensur-

ing that no processing element has to OR together an excessive number of input vectors.

Stescsssssyesefeccncncaccaanst

Figure 5.1: Sample Circuit
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Figure 5.3: Grouped Circuit
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for(level=1; level<num_levels; level++) {
foreach(v, nodes at level) {
for(i=0; i<num_fanin(v); i++) {
current = fanin(v, 1);
for(j=i+1; j<num_fanin(v); j++) {
add = fanin(v, j)
if (num_fanin(current, add, v) <= k &&
dag(current, add, v)) {
merge_nodes(current, add, v);
Mark v as assigned

}
}
}
foreach(v, unassigned nodes at “level”) {
If possible, merge v into a fanin node of v that produces the fewest
inputs (less than k) while keeping the circuit acyclic
)
}
Figure 5.4: Grouping Algorithm Pseudocode. The function num_fanin returns the total
unique number of signals coming into its list of gates and merge_nodes combines a list of

gates into a single logic function. The {’th fanin of v is returned by fanin(v, {. The depth of
the network is num_levels and k is the fanin limit of a gate.

5.4 Function Duplication

Step 3, function duplication, moves from the outputs to the inputs, duplicating
CLB’s that have too many fanouts. Figure 5.5 shows the sample network after duplication. With-
out this step, the computational load is not well distributed as some processors must send a sub-
stantially large share of the fanouts. To maximize parallelism, each CLB should have a single
fanout. This is impractical for most circuits because the number of CLB’s would be too large.
Instead, there is a tunable parameter, R, for selecting the maximum number of fanouts, which
ranged from 2 to 4 in our benchmarks. Table 5.1 gives the number of CLB’s for different values of
R for circuits taken from the ISCAS benchmark suit. The circuit 538417 was originally sequential,
but only the combinational portion was used. “NA” indicates there was insufficient memory to

expand the circuit. All circuits in the benchmark suit are gate-level descriptions.
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Figure 5.5: Sample Circuit After Duplication
N R=1 R=2 R=3 R=4
Circuit Gates k=14 k=13 k=13 k=14
c432 160 9459 315 104 64
c499 202 1753 215 147 94
c1908 880 5388 426 189 135
2670 1161 2190 303 289 239
c3540 1667 NA 1766 604 431
c5315 2290 13033 1473 962 720
c6288 2416 NA 1126 443 313
c7552 3466 1 16216 1539 803 589
s38417 22397 NA 10679 5779 2960

Table 5.1: CLB Count
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Table 5.2 compares the CLB count of the two synthesis algorithms. All circuits
used k=13, R=2 except for s38417, which used k=12, R=4. These were the parameters used for
the actual simulation. The data show that bin packing performs very well on small circuits whereas
the second algorithm generally performs better on the larger ones. The second algorithm also has

considerably shorter runtime.

Circuit Gates Algorithm 1 | Algorithm 2
c499 202 76 215
c1908 880 403 426
€2670 1161 647 393
c3540 1667 2759 1766
c5315 2290 2047 1473
c6288 2416 3742 1126
c7552 3466 2946 1539
s38417 22397 2867 2960

Table 5.2: Comparison of CLB Counts

5.5 Placement

The MasPar MP-1 has both a global and local communication network. The local
network (X-net) connects each PE to its eight nearest neighbors in the directions north, south, east,
west, northeast, northwest, southeast, and southwest.

The global network allows a PE to communicate with any other PE in the system.
PE’s are organized into 4x4 clusters. While the system can communicate with all clusters simulta-

neously, only one PE per cluster can be accessed at a time. One outgoing and one incoming mes-
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sage per cluster is permitted simultancously. A message between two PE’s within a cluster
consumes both the outgoing and incoming channel.

Despite several attempts to utilize the X-net, relying exclusively on the global net-
work gave better results. The problem with the X-net is that all processors must communicate in
the same direction simultaneously. One processor cannot transmit north while another transmits
south. It is also difficult to position CLB’s so that they border all their fanin and fanout CLB’s.

Figure 5.6 gives the placement algorithm that was used. It attempts to assign
CLB’s to processors in a way that evenly distributes the communication load among PE clusters.
When more than one PE in a cluster attempts to send or receive data, the messages are serialized. If
the number of inputs to a cluster it 7 and the number of outputs is O, MAX(/, O) is the number of
pending messages. The algorithm greedily picks clusters with the fewest pending messages.

The placement algorithm assumes CLB's have roughly equivalent activity rates. If
some CLB'’s have significantly higher activity rates, communication is not evenly distributed. It is

possible to record activity rates at run-time, but the data can be input dependent.

Initialize C.inputs = C.ouptuts = O for all clusters C
foreach CLB F {
C = cluster where MAX(C.inputs, C.outputs) is the minimum
Place Fin C
C.inputs = C.inputs + F.fanins
C.outputs = C.outputs + F.fanouts
}

Figure 5.6: Placement Algorithm
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Chapter 6

Experimental Results

To simulate a circuit using our technique, the following steps occur: 1. The circuit
is compiled, 2. The compiled circuit is uploaded to the processing elements of the MP-1, and 3.
The simulation is executed on a file of input vectors. The next two tables summarize the perfor-

mance of step 3, the actual simulation,

6.1 Simulation Performance

Table 6.1 compares the simulation speed of the original and re-synthesized cir-
cuits. The figures were obtained by measuring the simulation time of 5,000 random vectors on a
MasPar MP-1 with 8192 processing elements. The time required to display outputs was excluded.
The circuit s38417 was originally a sequential circuit, but only the combinational portion was sim-
ulated. All synthesized circuits used R=2, k=13, except for 38417 which used R=4, k=12. All cir-
cuits were originally gate-level representations.

Table 6.2 compares the performance of our parallel simulator (with re-synthesized
circuits) against Verilog-XL, a popular commercial simulator[TM91). Verilog ran on a
SparcStation 2 with 32 MBytes of physical RAM and a local disk. Table 6.3 summarizes the
compilation and data upload times (steps 1 and 2). Both sets of figures were obtained on a

DecStation 5000.
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Circuit Gates Unmodified | Re-synthesized | Speedup
(patt/sec) (patt/sec)
c499 202 298.7 8274 27
c1908 880 2084 863.7 4.1
€2670 1161 270.2 836.6 3.1
c3540 1667 2223 537.6 24
c5315 2290 213.1 669.1 3.1
c6288 2416 242.1 736.9 3.0
c7552 3466 2335 698.3 3.0
s38417 22397 322 3975 12.3
Table 6.1: Performance Results
Circuit Gates Verilog-XL | MasPar Speedup
(patt/sec) (patt/sec)

c499 202 526.3 8274 1.6

¢1908 880 2564 863.7 34

€2670 1161 1529 836.6 55

c3540 1667 170.7 537.6 3.1

c5315 2290 86.2 669.1 7.8

c6288 2416 5.1 736.9 144.5

c7552 3466 549 698.3 12.7

$38417 22397 15.5 397.5 25.6
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6.2 Performance Characterization
The main simulation loop comprises a series of steps: 1. Reading the input vectors
from disk, 2. Calculating CLB outputs, and 3. Transmitting outputs over the communication net-

work. Table 6.3 summarizes the amount of time spent in each step.

Circuit Gates Reading Inputs | Computation | Communication

T [0 228 less [osen |

c499 202 1.5% 70.5% 27.9%

c1908 880 1.9% 69.1% 28.9%

c2670 1161 6.3% 66.1% 27.0% )

¢3540 1667 2.7% 47.3% 49.9%

c5315 2290 4.8% 59.2% 36.3%

c6288 2416 2.1% 64.9% 33.1%

c7552 3466 6.0% 61% 33.0%

s38417 22397 2.5% 86.5% 10.7%

Table 6.3: Performance Analysis

For smaller circuits, roughly one third of the simulation time was spent in the
communication step. Previous studies in parallel simulation have concluded that the communica-
tion step is the major performance bottleneck for simulation. When using synthesis with simula-
tion, there is no single bottleneck. There are a number of competing factors that affect simulation
performance. The job of the circuit compiler is to choose a good balance between trade-offs for
optimal simulation performance.

One important trade-off is parallelism vs. communication costs. An improvement
in parallelism can reduce the amount of computation, but increase the amount of communication.

The amount of parallelism is set by the number of inputs and outputs to the CLB. Each CLB has a
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loop for OR'ing together its inputs and another loop for sending its outputs. Reducing these loops
improves computation time, but also increases the size of the circuit, leading to more communica-
tion.

Another factor to consider is the CLB table size. Larger CLB’s tend to produce
smaller circuits, but can increase the activity level. With a greater number of inputs to the CLB, the
likelihood of a change in the outputs is greater, leading to more events and higher communication
rates. It is difficult for the compiler to adjust for activity rates because runtime data is required,
which can be very dependent on the input vectors.

The. settings that provided the best results on an 8k-processor MP-1 kept the num-
ber of CLB’s fewer than 2048. The MP-1 global router is capable of communicating with each PE
cluster simultaneously. On an MP-1 with 8k PE’s, there are 512 clusters (each cluster has 16 PE’s).
Keeping the number of CLB’s fewer than 2048 placed at most 4 CLB’s in each cluster. The activ-
ity rates of the benchmark circuits were such that 4 CLB's sharing a single communication channel

did not overwhelm the global router.

6.3 Effective Simulation Performance

Table 6.4 summarizes the MP-1 “overhead” -- the amount of time to compile a cir-
cuit and to upload the circuit information to the processing elements of the MP-1. The figures were
obtained on a DecStation 5000.

The overhead costs are very important in the early part of the design cycle when
many iterations are needed to debug a circuit. Prohibitive overhead can negate any increased per-
formance from parallel simulation. A graph like the one shown in Figure 6.1 can be constructed
from the data of Tables 6.2 and 6.3. With the higher overhead, parallel simulation becomes worth-

while for the circuit 38417 only when more than 100,000 vectors are simulated.
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Circuit Gates Compilation Upload Total
(sec) (sec) (sec)
e ——— |
c432 160 15 44 59
c499 202 16 33 49
c1908 880 38 124 162
¢2670 1161 52 78 130
¢3540 1667 100 177 277
c5315 2290 282 216 498
c6288 2416 254 222 477
c7552 3466 358 180 539
s38417 22397 5939 607 6546
Table 6.4: Compilation and Upload Times
Time (sec)
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Figure 6.1: Overall Simulation Performance of 538417
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Chapter 7

Simulator Internals

In this chapter, the code for the simulator is examined. The full program listing is given in
Appendix A. The code performs the following steps:

1. Reads the synthesized circuit and checks for errors

2. Uploads circuit information to the parallel processors

3. Simulates the circuit

A MasPar program has two portions: front-end code and DPU (Data Parallel Unit) code.
The front-end code, which runs on the UNIX front end, exchanges data with the DPU and instructs the
DPU to execute parallel routines. The parallel (DPU) code is written in MPL, a dialect of C that provides
parallel extensions. For the steps listed above, step 1 is performed on the front-end. In step 2, the front-end

uploads the data to the DPU. Step 3 is an MPL routine that executes on the DPU. This chapter covers step
3.

7.1 Programming in C on the MasPar

As described earlier, the DPU consists of a 2-dimensional array of processing elements
(PE’s) which are controlled by the Array Control Unit (ACU). The PE’s and the ACU have independent
address spaces. MPL adds a new type qualifier, plural, to differentiate between the two address spaces. The
plural qualifier allocates storage in PE memory. Variables defined without the plural qualifier are

“singular” and reside in ACU memory. All PE’s store plural variables at the same address.
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7.1.1 Pointers

Although the DPU has two address spaces, pointers may refer to either space. The follow-
ing pointer combinations are possible:

o Singular pointer to singular data

e Singular pointer to plural data

¢ Plural pointer to plural data

¢ Plural pointer to singular data

A plural pointer to plural data only allows a PE to point to its own local memory. Access-

ing the memory of another PE is only possible through a communication function.

7.1.2 Control Statements

MPL has all the statements of traditional C. However, the plural form of these statements
affect which PE'’s are active. Branching and control statements become plural when they refer to a plural
expression.

The following if block is a plural control statement. The plural variable iproc is a special
variable that stores a PE’s processor number. Hence, iproc’s value on processor 0 is 0, its value on proces-
sor 1 is 1, etc. This if block will increment plural variables x and y only on processors 0 through 9. The

other processors remain idle for the duration of the block.

extern plural int iproc;
plural int x, y;

if (iproc < 10) {
X++;
y++:
)
Plural if statements with an else clause will make the active set of the else block the group

of PE’s that evaluate the control exﬁression to false. The if block and the else block do not execute concur-
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rently.
7.1.3 Looping Statements

Looping statements work similarly to if statements. Only PE's that evaluate the controlling
expression to true are active. The loop will iterate until there are no more active PE’s. The following code

block demonstrates a parallel for loop.

plural int i;

for(i=0; i<iproc; i++) {
/* code */
)

The variable “iproc” is defined as before -- it is a processor’s unique identification number.
On processor 0, the loop will not execute. Processor 1 performs the loop once, processor 2 performs it
twice, and so on. It is important that loops are evenly distributed among processors to exploit parallelism.
This loop is not well distributed because a machine with 16k processors will loop 16k times on the last pro-

cessor. Meanwhile, low-numbered processors are idle.

7.2 Simulation Code
The main simulation loop will now be examined. The name of the function is
perform_simulation, which is called from the front-end after the circuit has been uploaded to the PE array.

Figure 7.1 gives the variables used.
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short num_po;

int d;

plural unsigned short
input_buffer{16][LEVELS];

plural short
prev_output0, prev_outputl, ...,
prev_outputn;

plural unsigned short
prev_inputs[16];

plural unsigned char
input_vecs[PI_BYTES][VECS];

plural struct node_struct {
short num_vectors;
short level;
Send
senderfMAX_FANOUTS];
unsigned short
table[FANOUTS][TABLE_SIZE];
char inputs;
}

plural short vectors;

A function argument containing the number of primary
outputs.

A function argument specifying a file pointer to the input
vector file.

Queues the inputs to a CLB. The first range (0..15) is for
specifying the network connection to the output of a pre-
ceding CLB. Each of these connections can have multiple
bits. Clearly, the definition assumes no CLB has more
than 16 inputs, which is not possible given the memory
capacity of the PE’s. The second range (0.LEVELS)
stores inputs in a circular queue until they can be pro-
cessed. LEVELS must be greater than the number of lev-
els in the circuit, or data could be overwritten.

Stores the previously calculated output for a CLB. There
is a separate variable for each output at the CLB. An out-
put is only sent if it differs from the previous output.

Stores the last inputs processed at a CLB.

Input vectors are read in blocks and stored in this array.
VECS is the number of vectors in a block. Input vector
bits are packed into bytes. PI_BYTES is the maximum
number of bytes a CLB needs for its primary inputs.

This data structure contains the lookup tables and netlist
information. The field num_vectors is the number of
input pattems to be simulated, Jevel is the CLB’s level in
the circuit, sender contains netlist information, and table
is the CLB’s lookup table. The field inputs does not rep-
resent the number of bits in the truth table but rather the
number of other CLB’s that fan-in to the CLB.

The number of input vectors that have been computed.

Figure 7.1: Variables used in Main Simulation Loop
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7.2.1 Initialization

The initialization portion of the simulation loop sets the number of calculated vectors to

zero and clears the input buffer.

vectors = 0;
for(i=0; i<16; i++) {
for(j=0; j<LEVELS: §++) input_bufferlil(j] = empty:

The identifier empty is a constant indicating no valid signal has been received by the input
buffer. It means the current signal value does not differ from the previous value. The initialization phase
also invalidates prev_output0, prev_outputl, ..., prev_outputn to ensure the first calculated output will gen-

erate an event.

prev_outputO = prev_outputl ... = prev_outputn = empty;

7.2.2 Reading the Input Vectors

Following the initialization, the input vectors are read from disk. The input vector file is
packed into bytes. The reasons for this are twofold: the IO performance is improved and the inputs must be
packed anyway to perform the table lookup. During synthesis, the compiler ensures that no CLB’s primary
inputs are in more than PI_BYTES bytes. For the benchmark circuits, PI_BYTES had a value of 4. The fol-
lowing data structure contains information for using the input vectors:

struct pi_struct {

char num_pi_bytes;

unsigned short pi_mapping[PI_BYTES][256];
off_t offset{PI_BYTES);

The field pi_bytes is the number of bytes containing primary inputs for the CLB and offset

points to the file location where each block of vectors resides. The pi_mapping field is a lookup table for
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re-ordering the byte. When OR’ing together the input vector bytes, some of the bits may overlap. Re-map-
ping ensures each bit has a unique location.
The code for reading the input vectors is as follows:
for(1=0; I<PI_BYTES; l++) {
if (1 < pi_info.num_pi_bytes) {

pp_lseek(d, pi_info.offset(l], L_SET);
pp_read(d, input_vecs|l], VECS);

The functions pp_Iseek and pp_read are parallel versions of the UNIX system calls seek
and read. In the code above, each processor reads VECS n imber of bytes from the file given by descriptor

d into the buffer input_vecs(l]. Each PE can read from different file positions, set by pp_Iseek.

7.2.3 Main Simulation Loop

The input vector code reads VECS vectors at a time. The main simulation loop is invoked
for each such block of vectors. For each iteration of the loop, the inputs to the CLB are OR’ed together

using the variable vector:

vector = 0;
for (i=0; i<m_inputs; i++) {
j = input_buffer(i]fvec_count];
if (j==empty)
j = prev_inputslil;
else
prev_inputsl[i] = j;
input_buffer{i]lvec_count] = empty:
vector = vector | j;

}

When a CLB'’s output is unchanged, it is not propagated. This leaves the corresponding
entry in the input buffer of the succeeding CLB empty. The loop above checks for empty entries. When it
finds one, the previous input is used. When the entry in the input buffer is not empty, prev_inputs is

updated.



The following loop OR’s together vector with any required primary inputs:

for(j=0; j<PI_BYTES; j++) {
vector = vector | pi_info.pi_mapping]jl{input_vecs|jl[vectors]];
}

Once vector is calculated, it can be used to lookup the output values:
output = m_proc_info.table[0][vector];
If the output has changed and it is not a primary output, the value is propagated:

if (output != prev_output0) {
pp_rsend(dest, &output, send_adr, sizeof{short));
prev_outputO = output;

The function pp_rsend copies a block of memory from the local PE to the dest PE. In this
case, it places the output value into the input buffer of the succeeding CLB. The code for handling outputs
is duplicated for each fanout of the CLB. When an output is a primary output, the value is stored. Primary

outputs are written out later as a block when the main simulation loop finishes.
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Chapter 8

Overview of the Connection Machine-5

With its limited memory and slow speed, the MasPar MP-1 is obsolete compared
to newer machines. The Connection Machine-S (CM-5), one of the latest to be commercially
available, offers much greater computational power. This chapter summarizes the architectural

features of the CM-5 and discusses ways of adapting the work done on the MP-1 to the CM-5.

8.1 Processing Elements on the CM-5

Like the MP-1, the CM-5 provides a collection of processors, each with their own
local memory. The current CM-5 implementation uses the SPARC microprocessor as the
processing element with 8-32 MBytes of local memory. This configuration is considerably more
powerful than the 1.8 MIPS, 64 KByte processing element used by the MP-1.

The processing elements in the CM-5 may also be equipped with a vector co-
processor. In this configuration, memory is organized into four 8 Mbyte banks. Each vector unit
has a peak performance of 32 Mops on 64-bit integer operands. The vector units receive
- instructions from the SPARC, either individually or broadcasted to all four units. The SPARC can
perform other tasks while the vector units execute instructions.

Each vector unit has 64 64-bit registers, which can also be used as 128 32-bit
registers. A vector mask register allows certain vector elements to be “masked out” for conditional
vector processing. Besides addition and multiplication operations, there is support for vectored

bitwise logical shift, AND, NAND, OR, NOR, XOR, and NOT.
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8.2 The CM-5 Networks

The CM-5 has three separate, scalable networks: the Control Network, the Data
Network, and the Diagnostic Network. The diagnostic network, used for detecting faulty
processors, is not visible to the programmer and will not be discussed here.

The Control Network provides broadcasting, synchronization, and reduction.
Reduction combines values from multiple processors to form a single result. The possible
reduction operations are: summation, finding the maximum or minimum value, logical OR,
exclusive OR, and logical AND.

The Data Network provides simultaneous point-to-point transmission of
messages. Unlike the MP-1, the CM-5 Data Network is hierarchical, emphasizing data locality.
Processing elements are grouped into four’s. Maximum bandwidth between elements within a
group of four is 20 Mbytes/sec, 10 Mbytes/sec between groups of 16, and 5 Mbytes/sec for all

other messages.

8.3 Programming the CM-5§

The CM-5 supports both SIMD and MIMD computing. SIMD programming on
the CM-5 is very similar to that on the MP-1. Loops and branching constructs restrict which
processors are active, implicitly handling synchronization. When multiple execution paths are
possible (such as with if-else statements), each block is executed serially, reducing parallelism.
Fortunately, such conditions were largely avoided by the MP-1 parallel simulator,

MIMD computing is provided through the control network. The following “two-
phase barrier” synchronization method is used: A processor notifies the Control Network that it is
ready to enter a barrier. When all other processors have reached the barrier, the network notifies all
the processors. While waiting for notification, processors may perform other tasks with their
individual instruction streams.

The CM-5 has system calls for switching between SIMD and MIMD processing.



In SIMD mode, the Control Processor broadcasts blocks of instructions to the processing nodes. In
MIMD mode, processors independently fetch instructions as needed and synchronization becomes
the responsibility of the programmer.

SIMD programs run between two phases: local computation and global
communication. By handling communication all at once, synchronization overhead is reduced. It
is also easier for compilers to detect common communication patterns. For these reasons, the CM-

5 Technical Summary [CM91] recommends using SIMD processing.

8.4 Parallel Simulation on the CM-5

The CM-5 has all the architectural features of the MP-1, so the simulation
methods for the MP-1 are adaptable to the CM-5. However, it is unclear whether the two machines
have comparable “grain™ sizes. The synthesis algorithm was tuned for an optimal ratio of
compuation and communication on the MP-1. Experimentation is needed to find optimal settings
for the CM-5. This is especially true when the CM-5 is equipped with vector hardware. In this
configuration, each processing element is a small supercomputer.

Parallel simulation can exploit a number of architectural features of the CM-S not
found on the MP-1 -- a larger address space, vector processing, MIMD processing, and a data
network emphasizing data locality.

If the same table lookup methodology were used, the CM-5's address space would
allow much larger CLB sizes. When equipped with 8 MBytes of memory, each CLB could have up
to 22 inputs. However, experiments performed on the benchmark circuits found that increasing the
CLB size beyond 13 did not produce a fewer number of CLB’s.

The extra memory in the CM-5 would be useful for handling multiple CLB’s at
each processing element (“CLB-folding”). Given the cost of a CM-5 processing element, even a
machine with several hundred processors is quite expensive. With fewer processors, each node

must simulate multiple CLB’s.
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The processing elements in the CM-5 are fast enough that it might be
advantageous to use CLB-folding to save on communication costs, especially on machines with
vector units. The computation step of the MP-1 simulator performs two steps: 1. OR the inputs to
the CLB together to form a table index and 2. Look up the output values from the tables. Step 1
(the OR loop) can be vectorized to handle multiple CLB’s simultaneously. So, CLB-folding does
not incur a large parallelism penalty on a CM-5 with vector units.

Unlike the MP-1, the CM-5 provides MIMD computing, allowing each processor
to execute an independent instruction and data stream. The current version of the simulator would
not benefit greatly from this capability. MIMD processing would be useful for mixed-mode
simulation, which would allow simultaneous simulation at the transistor, RTL, ur behavioral level.

The CM-5 data network, which is quite different than that in the MP-1, is more
amenable to parallel simulation. The MP-1 placement algorithm would do poorly on the CM-5

because it assumes a flat network hierarchy. Instead, the following algorithm is proposed:

1. Assign primary output CLB’s to processors such that they are evenly spaced
apart.

2. Visit CLB'’s topologically from the primary outputs to the inputs. Try to place

each CLB as close to its fanout CLB’s as possible If CLB folding is used, try to

place the CLB on the same processor as its fanout. If it does not fit on the same
processor, put it in the fanout’s group of 4. If it does not fit in the same group of

16, place the CLB in the cluster with the fewest occupied processors.

The major difficulty in step 2 occurs when a CLB belongs to the support of more
than one primary output. In this case, it may be impossible to place the CLB near all its fanouts. It
is likely that duplicating these CLB"s would cause the circuit size to explode. A partial solution is
to only duplicate pathologic cases, such as CLB'’s that cannot be placed in the same group of 16 as
one of it’s fanouts. This might also require combining the duplication and placement steps of the

compiler.



Chapter 9

Conclusions and Future Work

A parallel functional simulator was developed for the MasPar MP-1, a massively
parallel, SIMD computer. This simulator was used to test optimizations for improving parallel sim-
ulation performance.

The results demonstrate the importance of optimizing the circuit. Parallel simula-
tion of the unmodified circuits was only slightly faster than a SparcStation-2 running Verilog-XL.
Logic synthesis increased parallel simulation performance by more than an order of magnitude for
large circuits.

The data show that the MP-1 is more scalable to larger circuits than a workstation.
The circuit 38417, with over 100 times more gates than ¢432, simulated 47 times slower than
432 under Verilog, but only 2 times slower on the MP-1. Parallel computers have the extra benefit
that they can be easily scaled to simulate larger circuits by adding more processors. It is more dif-
ficult to scale a workstation without using hardware acceleraters. Even increasing the instruction
and data cache sizes has limited effect because the simulation code is so large that cache misses are
frequent.

It is significant that the MP-1 outperforms the SparcStation-2. The processing
element used by the MP-1 is more than ten times slower than the SPARC, yet the MP-1 can
outperform the SparcStation-2 by more than a factor of 10. The synthesis algorithm is clearly
exploiting parallelism in the circuit. On the MP-1, roughly two-thirds of the simulation time was
spent on compuation. On the CM-5 (which uses the SPARC as its processing element), this portion
of the simulation would run 10 times faster. Thus, it is likely that the CM-5 could simulate two

orders of magnitude faster than a uniprocessor.
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Appendix

Simulation Code

This appendix gives the MPL simulation code. It is divided into three files:
main.c, upload.c, and sim.c. The file upload.c contains code for reading the circuit file. Afier veri-

fying it has no errors, it is uploaded to the DPU. The the actual simulation is handled in sim.c.
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psim.h psim.h

#include <sys /file.h>

#define FANOUTS 4
#define TABLE_SIZE 4096
#define MAX_FANOUTS 32
#define VECS 2500

#define PI_BYTES 8

typedef struct send_struct {
short destination;
char trans;
short offset;
short num;
short vector[32];
short order{32];

} Send;

typedef struct node_struct {
short num_vectors;

short Jevel;

Send sender[MAX_FANOUTS];

unsigned short ts.lelFANOUTS][TABLE_SIZE]; /* look-up table */
char inputs; 1% messages expected */

} Node;

typedef struct pi_struct {
char num_pi_bytes;
unsigned short pi_mapping[PI_BYTES][256];
off_t offset{PI_BYTES]);

} P

short get_num_input_vectors(), read_primary_inputs(), atob();
short re_order();
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main.c main.c

#include <stdio.h>
#include <sys/time.h>
#include "psim.h”

Send Supload_tables();
extern vold m_simulate(), m_init();

main(arge, argv) main
int argc;
char **argv;
{
short pats, num_pi, num_po, num_clumps, pi_clumps;
if (arge 1= 2) {
printf("Usage: %s network—file\n®, argv0]);
exiy(1);
}
ini();
pats = VECS;

/* load tables into PE and grab primary input map */
upload_tables(argv[1],pats, &num_pi, &num_po, &num_clumps, &pi_clumps);

callRequest(m_simulate, 2 * sizeof(short), pats, num _po);
)

short get num_input_vectors(fname)
char *fname;

{

FILE *p;

short num;

if ( (fp = fopen(fname, "1")) == NULL) {
fprintf(stderr,"Error: Could not open %s for reading\n”, fname);
exit(1);

}

fscanf(fp, "%d\n", &num);

fclose(fp);

return(num);

char *strsav(s)
char *s;

{
char *copy;

copy = (char *) malloc(strlen(s)+1 * sizeof(char));
if (tcopy) {
perror("strsav");
exiy(1);
}
strepy(copy, s);
return(copy);
}

enumerate(line, out, table) enumerate

char *line;
short out;
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unsigned short *table;
{

char *copyl, *copy2;
short value, i=0;
short 3

while(line[i]) {
It Qine[i] == -9 {

copyl = strsav(line);
copylli] = 0%
enumerate(copyl, out, table);
free(copy1);
copy2 = strsav(line);
copy2(i] = 1%
enumerate{copy2, out, table);

free(copy2);
return;

}

i+

value = atob(line);
table[value] = table[value] | out;

}
short atob(s)
char *s;
{
short i=0, order = strlen(s)-1, sum=0;
while(s[i]) {
sum += (s[i] - ‘0°) << order;
i++; order—;
return(sum);
}
init()
{
callRequest(m_init, 0);
}
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upload.c upload.c

#include <stdioh>
#include "psim.h"

extern vold m_init_table(), m_init_messagesQ, m_init_sender();

extern void init_input_buffer(), m_read_primary_nputs(), m_init_num_vectors();
extern void m_set_clump_pindex(), m_set_input_sends(), m_set_proc_nfo();
extern void m_set_pi_src(), m_get_pi_info(, m_get levels();

Send *upload_tables(fname, vector_count, num_pi, num_po, mum_clumps, pi_clumps)
char *fname;

short vector_count;

short *num_po, *num_pi, *num_clumps;

short *pi_clumps;

{

Pi *fe_pi_info;

char m_byte[32], b, off;

FILE *fp;

char line[8192], pattern(32], 5_value[32];

short clump, count, order, messages, foo, bar;
short i, j, inputs, outputs, sop, value, outs, sends, pi_indicies;
short line_ct=0;

short P, rec, clump_levels;

unsigned short table[TABLE_SIZE};

char primary_output_buffer=0;

Send sender[MAX_FANOUTS], *primary_inputs;
Node Pproc;

int PI_index([8192);

int real_inputs;

char input_ordering[32], index[32};

if ( (fp = fopen(fname, "r")) = NULL) {
fprintf(stderr, "Error: Could not open “%s’ for reading \n",

fname);
exit(1);
fgets(line, 8192, fp); 1* skip Global: */
fgets(line, 8192, fp); I* skip .clumps: */

fscanf(fp, “.clump_levels: %hd\w", &clump_levels);
send_clump_levels(clump_levels);

fscanf(fp, ".pi %hd\n", num_pi);
fscanf(fp, ".po %hd\n", num_po);

line_ct+=3;
fgets(line, 8192, fp); /% skip pi: */
fgets(line, 8192, fp); 1* skip po: */

for(i=0; i<8192; i++) PI_index{i] = -1;

fscanf(fp, ".pi_index %hd:\n", &pi_indicies);
line_ct+=3;
for(i=0; i<pi_indicies; i++) {
fscanf(fp, "%hd: %hd\n", &p, &rec);
PI_index[p] = rec;
line_ct++;
}

fscanf(fp, “.records %hd\n", pi_clumps);
line_ct++;

primary_inputs = (Send *) calloc((*pi_clumps) + 1, sizeof(Send));
if (lprimary_inputs) Quit("upload_tables()");

fe_pi_info = (Pi *) calloc{(*pi_clumps) + 1, sizeof(Pi));
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if (Mfe_pi_info) Quit("upload_tables()");

for(i=0; i < *pi_clumps; i++) {
fscanf(fp, “record %hd\n", &foo);
fscanf(fp, “.send %hd\n", &sends);
line_ct++;
primary_inputs[i]l.num = sends;

for(j=0; j<sends; j++) {
fscanf(fp, "%hd", &foo);
) primary_inputs[i].vector{j) = foo;

fscanf(fp, "n");
line_ct++;
for(i=0; j<sends; j++) {
fscanf(fp, "%hd", &foo);

primary_inputs[i].order{j] = foo;

}

fscanf(fp, "\n");

line _Cl-+

build_pi_info(&(primery _inputsfi]), &(fe_pi_infoli)), i);

}
fgets(line, 8192, fp);
line_ct++;
if (stremp(line, ".end global\n™))
quit(line_ct, "Error in map file — no “.end global™);

send_pi_info(PI_index, fe_pi_info);

1* read in local processor information */
*num_clumps = 0;
while(1) {
fscanf(fp. "Clump: %hd(%hd)(%hd)\n", &clump, &foo, &bar);
if (feof(fp)) break;
proc.num_vectors = vector_count;
fscanf(fp, "%hd, %hd\n", &foo, &bar);
fscanf(fp, ".level %hdwn", &(proc.level));
(*num_clumps)H+;
fscanf(fp, “.outs %hd\n", &outs);
line_ct+=3;
it (outs > MAX_FANOUTS) quit(line_ct, *Too many .outs");
for(i=0; i<outs; i++) {
fscanf(fp, "send %hd\n", &sends);
line_ct++;
proc.sender{ilnum = sends;
fscanf(fp, "%hd(%hd), %hd: ",
&(proc.senderfi].destination),
&(proc.sender]i].trans),
&(proc.mnder[x].oﬂ'set)),
for(j=0; j<sends; j++) {
fscanf(fp. "%hd", &foo);
proc.sender(i].vector{j] = foo;

}

fscanf(fp, "\n");

line_ct++;

for(j=0; j<sends; j++) {
fscanf(fp, "%hd", &foo);
proc.sender(i].order(j] = foo,

}
fscanf(fp, "n");
line_ct++;
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upload.c

proc.sender[i].destination = -1; /* -1 designates PO */

fscanf(fp, "PO %hd\n", &sends);
if (sends && outs)
quit(line_ct, "Error: Clump has both po and clump out");

if ((sends + outs) > MAX FANOUTS)
quit(line_ct, "Too many .outs");

line ct++;

proc.sender{ilnum = sends;

for(j=0; j<sends; j++) {
fscanf(fp, "%hd", &foo);
proc.sender{i].vector(j] = foo;

}

fscanf(fp, ™n");

line_ct++;

for(i=0; j<sends; j++) {
fscanf(fp, "%hd", &foo);
proc.senderfi].order{j] = foo;

}

if (sends) proc.senderfi].offset=primary_output_buffer++;
proc.sender[++i}.num = 0;

fscanf(fp, "\");

line_ct++;

fscanf(fp, ".ci %hd\n", &(proc.inputs));

fscanf(fp, i %hd\n", &inputs);

fscanf(fp, "0 %hd\n", &outputs);

if (outputs > 8 * sizeof(unsigned short))
quit(line_ct, "Table output size too large");

fgets(line, 8192, fp); 1% skip input labels */
fgets(line, 8192, fp); /* skip output labels */
fscanf(fp, "p %hdwn", &sop);

line_ct+=6;

for(i=0; i<FANOUTS; i++) {
for(j=0; j<TABLE_SIZE; j++) proc.tablefi](j] = 0;
}

for(i=0; i<sop; i++) {
fscanf(fp, "%s %s\n", pattern, s_value);
line_ct++;
value = atob(s_value);
enumerate{pattern, value, proc.table{0]);
enumerate{pattern, value, proc.table[1]);

}

if (outs) Order(&proc);

fgets(line, 8192, fp);

line_ct++;

ff (strcmp(line, ".e\n"))
quit(line_ct, “Error: No .e found in table");

send_proc_info{clump, proc);

}
fclose(fp);
return(primary_inputs);

build_pi_info(primary_inputs, fe_pi_info, rec)
Send *primary_inputs;

Pi *fe_pi_info;

short rec;

{

int b, i;
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...build_pi_info
int vec, order;
int off, byte_offset;
char m_byte[256]);
for(b=0; b<32; b++) m_byte[b) = 0;
for(b=0; b<primary_inputs->num; b++) {
vec = primary_inputs->vector[b);
m_byte[vec/8] = 1;
}
off = 0;
for(b=0; b<32; b++) {
if (m_byte[b)) {
fe_pi_info->offsetfoff] = (off_t) b * VECS;
m_byte[b] = off++;
if (off >= PI_BYTES) {
fprintf(stderr, "Too many PI in rec %d\n", rec);
return;
}
) }
fe_pi_info—>num_pi_bytes = off;
for(i=0; i<PI_BYTES; i++) init_pi_table(fe_pi_info->pi_mapping[i]);
for(b=0; b<primary_inputs~>num; b++) {
vec = primary_inputs—>vector[b};
order = primary_inputs—>order{b};
byte_offset = m_byte[vec/8];
mod_table(fe_pi_info->pi_mapping[byte_offset], vec, order);
}
}
mod_table(table, pos, order) mod._table
unsigned short *able; -
int pos, order;
{
int vector;
onsigned short val, mask;
pos = pos % 8;
for(vector = 0; vector < 256; vector++) {
mask = 1 << pos;
table[vector] = table[vector] |
(((vector & mask) = 0) << order);
}
}
send_clump_levels(clump_levels) send clump levels
short clump_levels; - -
{
callRequest(m_get_levels, sizeof(short *), &clump_levels);
}
init_pi_table(table) init_pi_table
unsigned short *table; -
{
int i; )
for(i=0; i<256; i++) table[i] = 0;
}
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send_pi_info(P1_index, fe_pi_info) send_pi_info
int *PI_index; -

Pi *fe_pi_info;

{

short i p

for(i=0; i<8192; i++) {
if (PI_index[i] != -1) {
p = PI_index[i];
callRequest(m_get_pi_info, 2*sizeof(short)+sizeof(Pi *),
&(fe_pi_info(p]), i, p)

}

}
)
Order(proc) Order
Node *proc;
{
short i £
short j, output;
ounsigned short vector;
Send *send;

for(f = 0; f < FANOUTS; f++) {
for(i=0; i < TABLE_SIZE; i++) {
if (proc—>table[f][i}) {
send = &(proc—>sender|f]);
output = proc->table|f][i);
vector = 0
for(j=0; j<send->num; j++) {
vector = vector | (((output & (1 <<
send->vector(j])) I= 0) <<

send->order[j]);
}
proc—>table{f](i] = vector;
}
}
}
}
send_proc_info(clump, proc) send _proc info
short clump; -
Node proc;
{
callRequest(m_set_proc_info,
sizeof(short) + sizeof(Node *), clump, &proc);
}
quit(line, ) quit
short line;
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char *s;
{
fprintf(stderr, "Line %d: %s\n", line, s);
exit(1);
}
Quit(s)
char *s;
{
perror(s);
exit(1);
}

short re_order(buffer, p)
char *buffer;

Send *p;
{
short i, r=0;
for(i=0; i<p—>num; i++)
r = r | (buffer[p->vector[i]] << p->order]i]);
return(r);
}
Dec 2 01:07 1993
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slim.m

#include <stdio.h>
#include <sys /time.h>
#include <mpl.h>
#include “psim.h"

#define empty 10000
#define send_adr &(input_buffer{m_sender->offset][vec :_count])
#define LEVELS 32

plural Pi pi_info;

plural short global m_num_vectors;
plural unsigned short ** plural m _table;
plural char global_m_inputs;

plural Send * plural m_sender;

plural Node m_proc_info;

plural unsigned short mput _buffer{ 16)[LEVELS];
plural unsigned char input_vecs[PI_BYTES)[VECS];
short network_levels;

vold perform_simulation(), m_n.ap();

visible void m_set_proc_info(clump, info)
short clump;

Node *info;

{

short nx, ny;

m_map{clump, &nx, &ny);
blockIn(info, &m_proc_info, nx, ny, 1, 1, sizeof(Node));

visible void m_get_pi_info(fe_pi_info, clump, record)
Pi *fe_pi_info;
short clump, record;

short nx, ny;

m_map(clump, &nx, &ny);
blockIn(fe_pi_info, &pi_info, nx, ny, 1, 1, sizeof(pi_info));

visible vold m_ger levels(fe_levels)
short *fe_levels;
{

}

copyln(fe_levels, &network_levels, sizeof(short));

vold m_map(clump, x, y)
short clump, *x, *y;

*y = clump / nxproc;
*x = clump % nxproc;
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visible void m_init()

{
short ij
plural short x, y;

global_m_inputs = -1;

global m_inputs = 0;

global_m_num_vectors = 0;

for(x = 0; x<PI_BYTES; x++) {

) for(y=0; y<256; y++) pi_info.pi_mapping(x]ly] = 0;
[aeass

Jor(y=0; y<16; y++) {

Jor(x=0; x<LEVELS; x++) input_buffer(y}{x] = 0;

sax88

pi_infonum_pi_bytes = 0;
}
quit(s) quit
char *s;
{

perror(s);

exit(1);
}

void kludge()
{

global_m_num_vectors = m_proc_info.num_vectors;
m_table = m_proc_info.table;
global_m_inputs = m_proc_info.inputs;
m_sender = &(m_proc_info.sender{0));
}

visible vold m_simulate(pats, num_po)
short pats, num_po;

{

short i

int d;

double itime;

struct timeval btime, etime;

1* __routerCount = 0; */
gettimeofday(&btime, 0);
kludge();

d = open("/mp/inputs”, O_RDONLY);
if (d < 0) qui("open”);
perform_simulation(num_po, d);

gettimeofday(&etime, 0);
itime = (etime.tv_sec + 1.0e—6%etime.tv_usec) —
(btime.tv_sec + 1.0e—6*btime.tv_usec);
fprintf(stderr, “Time: %e\n", itime);
printf(“routerCount = %d\n", __routerCount);
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vold perform_simulation(num_po, d)
short num_po, d;
{

plural register unsigned short i, j;

plural register unsigned short prev_output0, prev_outputl;
plural register short m_num_vectors = global m_num_vectors;
plural register char m_mputs = global_m _inputs;

plural register unsigned short vector;

plural register short vectors=0;

plural register short vec_count=0;

plural register short output;

plural register short sender mum = m _sender->num;
plural register char level;

plural short dest = m_gender->destination;

plural unsigned short outbuf;

plural short po_index = m_sender—~>order{0};

plural unsigned short prev_inputs[16);

char final_out[LEVELS]}[256];

char |;

int k, out_count = 0;

for(i=0; i<16; i++) {
for(j=0; j<LEVELS; j++)
) input_buffer(i](j] = empty;
prev_output0 = prev_outputl = empty;
for(1=0; l<Pl_BYTES; ++) {
if (I < pi_infonum_pi_| bytes) {

PP_ Iseek(d, pi_info.offset(l), L_SET);
pp_read(d, input_vecs{l], VECS);

)
level = m_proc_info.leve};

while(vectors < m_num_vectors) {

it (evel) {
level—;
continue;
}
vector = 0;

for(i=0; i<m_inputs; i++) {
j = input_bufferfi){vec_count];

if G==empty) {
; j = prev_inputs[i);
else

prev_inputs[i] = j;

input_bufferfi][vec_count] = empty;
vector = vector | j;

)

r* Pl evaluation */
for(j=0; j<PI BYTES; j++) {
vector = vector |
pi_info.pi_mapping(j)(input_vecs[j]{vectors]];
}

outpm = m_proc_info.table[0]){vector];
i (dest = -1) {
m_proc_info.tablef2][vectors] = m_proc_info.table[0]{vector]);
m_proc_info.table[3][vectors] = m_proc_info.table[1][vector];
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else {
outhuf = output;
if (outbuf = prev_output0) {
pp_rsend(dest,&outbuf, send_adr, sizeof(short));
prev_outputd = outhuf;
}

m_sender = &(m_proc_info.sender[1]);
it (m_sender->num) {
dest = m_sender—>destination;
outbuf = m_proc_info.table{1][vector];
i (outbuf |= prev_outputl) {
pp_rsend(dest, &outbuf,
send_adr sizeof(short));
prev_outputl = outbuf;
}

m_sender = &(m_proc_info.sender{2]);
if (m_sender->num) {
dest = m_sender—>dest 1ation;
outbuf = m_proc_info.table[2][vector];
if (outbuf = prev_output2) {
pp_rsend(dest, &outbuf,
send_edr, sizeof(short));
prev_outpui2 = outbuf;

m_sender = &(m_proc_info.sender{3});
if (m_sender—>num) {
dest = m_sender—>destination;
outbuf = m_proc_info.table[3][vector];
if (outhuf != prev_output3) {
pp_rsend(dest, &outbuf,
send_adr, sizeof(short));
prev_output3 = outbuf;

LA 4

}
m_sender = &(m_proc_info.sender[0]);
dest = m_sender—>destination;

}

+t+veclors;
vec_count = ++vec_count % LEVELS;

if (network_levels = 0) {
out_count = ++out_count % LEVELS;

else network_levels—;
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