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For high-level verification, the design implementation can be changed if the functional

behavior ispreserved. This paper discusses techniques for re-structuring circuits at the logic level to

increase simulation performance onmassively parallel SIMD computers. This approach isdifferent

from previous work, which has attempted to improve parallel simulation perfonnance by writing
faster simulators. We have written asimulator for theMasPar MP-1 to measure speed-up. While

some of the logic synthesis techniques are MP-1 specific, most are sufficiently general that they can
be appliedto other massively parallel architectures.
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Chapter 1

Introduction

Simulation isone of the most important VLSI CAD tools. Chip designers rely on

simulation toavoid fabricating expensive prototypes. Simulation isalso very extremely expensive.

Today's big designs require weeks ofsimulation. Alarge amount of research has looked at ways of

reducing the cost of simulation. The two main areas that have been explored are specialized hard

ware for simulation and behavioral simulation.

One example of specialized hardware is the Field Programmable Gate Array

(FPGA). An FPGA can be programmed with a user-defined logic function with several hundred

FPGA's stored inasingle chip. While FPGA's have extremely good simulation performance, syn

thesizing acircuit for FPGA's and wiring the chips takes alot of time. So, FPGA's are mostly used

to verify a design only when it hasneared completion.

Other hardware platforms that have been explored include parallel computers.

Regardless of the parallel computer architecture (shared memory, massively parallel SIMD, etc.)

the major hurdle for parallel simulation has been the large amount of interprocessor communica

tion. Many real-world circuits have insufficient parallelism to overcomethe communication over

head. Modest performance improvements have been reported with parallel simulation, but not

enough to make it cost-effective.

Given the cost of specialized hardware, behavioral simulation has become

increasingly popular. With mis methodology, the circuit isspecified at ahigh level. Logic synthesis

uses the high level description to synthesize agate-level design with agiven area/speed criterion.

Simulating thedesign atthebehavioral level can beconsiderably faster than gate-level simulation.

The high-level description also helpsdesigners conceptualize the circuit



Behavioral simulation is excellent for applications that are not time-critical (like

ASIC's). For time-critical applications (especially microprocessor data paths) thedesign has few

high-level abstractions. In some cases, logic synthesis does notproduce theoptimum result, sothe

design is done atthegate-level. Inneither case is behavioral simulation veryuseful.

This paper describes an alternate simulation methodology for these situations.

Logic synthesis can beused to synthesize acircuit not for achip orFPGA implementation, but for

simulation on massively parallel computers. This paper describes a logic synthesis tool that

optimizes acircuit for parallel simulation by synthesizing parallelism and grouping logic functions

in a way that reduces interprocessor communication. To test various synthesis algorithms, a

parallel simulator was written for the MasPar MP-1, a massively parallel SLvff) computer. On

gate-level designs, this methodology outperformed Verilog-XL[TM91] running onaSparcStation-

2 by more than a factor of 20. Without synthesis, the MP-1 simulator showed little improvement

over Verilog-XL.

The synthesis tool runs under the Sequential Interactive Synthesis System

(SIS)[BR+87J. SIS represents thecircuit asamultilevel setoflogic equations, \fcrious subroutines

are provided for manipulating the design. Logic minimization, technology mapping, and

decomposition tools are also included.

Although SIS supports sequential circuits, only combinational ones were

simulated. In some cases, sequential circuits were made combinational by loop breaking.

Currently, SIS supports only single-output logic functions. Because better simulation results can

beobtained with multiple-output functions, changes were made to SISto provide this capability.

The report is organized as follows: Chapter 2 gives somebackground on circuit

simulation. Chapter 3 describes previous efforts in parallel simulation. Chapter 4 is anoverview of

the MasPar MP-1 computer. In Chapter 5, the simulator written for the MP-1 is discussed.

Synthesis techniques for exploiting some features of the simulator are presented in Chapter 6.

Chapter 7 lists the experimental results. These results will show that logic synthesis greatly



improves parallel simulation performance. Chapter 8 goes into greater detail of the simulation

code. Parallel simulation on the Connection Machine-5, conclusions, and future work are

presented in Chapters 9 and 10.



Chapter 2

Circuit Simulation Background

Digital systems canbe modeled at four different levels: circuit, switch, gate, and

behavioral. Different levels trade-off accuracy for simulation speed. Mixed-mode simulators com

binedifferent levelsof simulation intoa single program.

Circuit-level simulation is the most accurate and the most expensive. It models

circuits at the transistor, resistor, andcapacitor level. Because it is so slow, circuit-level simulation

is only possible on designs with fewer than 10,000 transistors. This limit is much smaller than

today's designs, which have more than a million transistors. Examples of circuit-level simulators

are S/YC£[Nag75] and CAzM[Erd89].

Switch-level simulation models transistors as simple switches. Examples of

switch-level simulators are ESIM[Ter83] and MOSSIM[Bry84]. COSMOS[Bry87] preprocesses

transistor networks into a set of boolean equations which are then simulated. Chapter 3 will dis

cuss a parallel version of COSMOS.

Gate-level simulation represents the circuit with boolean logic equations (or

gates). Timing information can be assigned to gates. Fixed delay simulation is also possible, which

allows faster simulation when timing information is unimportant. Examples of gate-level simula

tors are HILO[Gen85] and THOR[SB87].

While gate-level simulation hasbeenavery popular wayofmodelling circuits, its

performance has not kept pace with largerdesigns. As a result, RTL and behavioral-level simula

tion are becoming more popular.

At the RTL and behavioral-level, high-level constructs, like looping and arith

metic operations, can be incorporated in a circuitdescription. These high-level abstractions allow

much faster simulation. Behavioral descriptions are described with high level languages (like



VHDL), which can be compiled and executed like any other computer language. Once the

designer is satisfied with the design, logic synthesis can produce a gate-level circuit from the

behavioral description.

For switch-level and higher levels of abstraction, there are generally two simula

tion approaches: oblivious and discrete-event simulation. For each timestep, oblivious simulators

evaluate every gate. Experiments have shown, however, that for each new input vector, only avery

small percentage of gates have achange inoutput. Discrete-event simulation exploits thisbehavior

by using a queue to schedule simulation only ongates whose input has changed. When a gate is

simulated, it calculates thenewoutput, and if theoutput is different, all thegates on the fanout net

are added to the scheduling queue. When there are nomore events in the queue, the primary out

puts areshipped out and the next input vector is processed.

Another simulation classification is whether the simulator is "interpretive" or

"compiled". An interpretive simulator represents the circuit with a data structure containing the

circuitelements and theirinterconnections. Foreachevaluation on a circuitelement, the simulator

must read this data structure. Onuniprocessors, compiled simulators are much faster because they

eliminate the data structure altogether. Instead, the data structure is incorporated in a computer-

generated program. Compiled simulation is not possible on data parallel machines like the MP-1

because each processormust execute the same program.



Chapter 3

Previous Work in Parallel Simulation

Because simulation is suchanimportant part ofVLSI design, therehasbeenmuch

simulation research. This chapter summarizes previous efforts in parallel simulation atthe switch

and logic levels.

3.1 Measuring Parallelism in Circuits

Several papershave reported calculations to determine whether there is sufficient

parallelismin realcircuits to make parallel simulationworthwhile.

Bailey and Snyder [BS85] measured the amount of parallelism in circuits using a

switch-level simulator. Parallelism was defined as the average number of events executed in a

timestep. An eventoccurs for transitions from 0 to 1,1 to 0, and to anindeterminate state ("X").

This metric was applied totwolarge circuits. One wasaRISC microprocessor and

the second wasanIIR digital filter. The filter incorporated a 16x 16multiplier, 32-bit ripple adder,

9-bit ripple counter, a 17stage, 16-bit shift register, four 3 stage, 16-bit shift registers, and a PLA.

The remaining circuits were computergenerated: two multipliers, a shift register, and a 4-to-16

decoder.

For each circuit, the average parallelism, the maximum parallelism, and the per

centage of parallelism wasmeasured. The percentage of parallelism is the percentage ofnodes that

arechangingin a time step (or the average parallelism divided by the number of nodes in the cir

cuit). These results are given in Table 3.1.

The effect of circuit size on parallelism was determined by generating larger

instances of the computer generated circuits. The results are summarized in Tables 3.2-3.4. The



amount of parallelism did increase in larger circuits, but thepercentage of parallelism decreased.

Other authors have measured theamount ofparallelism insmall circuits to extrapolate theamount

ofparallelism inlarge circuits [WF87]. Because the percentage ofparallelism decreases, such pre

dictions may be incorrect.

Circuit Transistors Nodes
Percent

Parallelism

Average
Parallelism

Maximum

Parallelism

32-bit RISC 24,068 10,500 0.06% 6.3 140

IIR Digital Filter 27,360 14,399 0.04% 6.4 280

8x8 Baugh-Wooley
Multiplier

2,162 1,083 0.26% 2.8 22

8x8 Booth Multiplier 2,013 1,088 0.31% 3.4 41

8-stage, 16-bit Shift
Register

1,536 1,048 2.4% 25 69

4-to-16 Decoder 208 110 2.9% 3.2 11

Table 3.1: Circuit Parallelism [BS88]

Size (n x n) Transistors
Percent

Parallelism

4x4 594 0.54%

8x8 2,162 0.26%

16x16 8,178 0.18%

24x24 18,034 0.16%

32x32 31,730 0.15%

Table 3.2:Baugh-Wooley Multiplier withRandom Inputs [BS88]



Size (n x n) Transistors
Percent

Parallelism

8x8 2,013 0.31%

16x16 6,867 0.21%

24x24 14,665 0.19%

32x32 25,407 0.17%

Table 33: Booth Multiplier with Random Inputs [BS88]

Bits Stages Transistors
Percent

Parallelism

8 8 768 2.5%

16 4 768 2.4%

16 8 1,536 2.4%

16 16 3,072 2.4%

32 8 3,072 2.4%

Table 3.4: Shift Register with Random Inputs [BS88]

One concern with these measurement is the 0.1 ns timestep. A larger timestep

yields greater parallelism, but may affect simulation accuracy. By using a unit-delay model, the

amount of parallelism is up to anorder ofmagnitude greater than thevalues obtained from the0.1

ns timestep.

Kravitz et al [KBR89] also measured parallelism with a switch-level simulator,

called CM_COSMOS. They determined theeffective parallelism to be from 100 to 3000.

CM.COSMOS is the parallel version of the COSMOS switch-level simulator.

COSMOS preprocesses MOS circuits into equivalent boolean formulas. Because the preprocessor

and simulator work at the boolean level, their work is applicable to logic simulation.

CM.COSMOS runs on the Connection Machine-2 (CM2). Like the MasPar MP-1, the CM2 isa
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massively parallel SIMD architecture, but has only 1-bit processors[Hil86].

CM_COSMOS supports 3-valued logic - 1,0,and X. The preprocessor partitions

the circuit into channel-connected subnetworks. Subnetworks are a function of the inputs and the

previous output They are repeatedly evaluated until asteady state is reached. Each subnetwork is

compiled into an equivalent boolean model of AND and OR operators. Operators are mapped to

processors. Each processor has two phases of operation - a compute step where theresult of the

operator is found and acommunication step where thenode output is sent across thenetwork tothe

next operator. On aSIMD machine, the time required to send outputs over the network ispropor

tional to the largest fanout. For this reason, CM.COSMOS reduces large fanout operators with

fanout trees. Operators were limited to two fanouts.

Parallelism was defined as theaverage number of boolean operators that are eval

uated concurrently. Two circuits weremeasured. Onewasanindustrial bus controller and theother

was afull custom data path circuit Depending on the number ofprocessors used, the effective par

allelism ranged from 100 to 3000. Over 2million boolean functions were evaluated per second.

3.2 Parallel Logic Simulators

Several approaches have been proposed for parallel simulation. The simplest isa

parallel version of a unit-delay compiled mode simulator. This type of simulation uses no event

queue; rather, every element is evaluated at each time step. [SB88] found the speed-up over the

uniprocessor version tobe 6-13 on a16 processor machine. However, this method isgenerally not

as effective as parallel event-driven simulation because most real circuits have very low activity

rates.

Central Concurrency Control [PS88] is one type of parallel event-driven simula

tion. Itmanages the event queue from acentral control processor. This method suffers significant

communication botdenecks because all the other processors must simultaneously interact with the

control processor to send and receive events. When implemented on a general-purpose shared-

10



memorycomputer, [SB88] only achieved amaximum speedup of 2 using eightprocessors.

The Chandry-Misra algorithm[CM81] avoids thecentral eventqueue altogether. It

partitions circuit elements intoLogical Processes (LP's) that have theirown event queues. LP's

read time-stamped event messages on their inputs. When all the inputs on a circuit element are

available, theoutput can becalculated. If theoutput has changed, atime-stamped message is sent.

Each LPhas itsownlocal clock. Thelocal clock is advanced when an output is calculable.

The algorithm has two phases of operation: the compute phase (as described

above) and deadlock resolution. Deadlock occurs when every element is waiting for atleast one

input. Elements do not evaluate their output when at least one input is not known at the current

local time. Deadlock is adirect result of the event-driven nature of thealgorithm because outputs

are not propagated when they do not change. Deadlock is resolved by finding the unprocessed

eventwiththeminimum time-stamp and updating thevalid timeof all inputs withnoevents to that

time. Deadlock resolution is a major bottleneck. [SG89] found that 19-58% of the simulation time

was spent resolving deadlocks in their benchmark circuits.

[SG89] measured the average concurrency in real circuits using the Chandry-

Misra algorithm. Concurrency isdenned as thenumber of elements evaluated inonecycle. Allele

ments are evaluated in the same amount of time. Element evaluation can activate a whole new set

ofelements, which are evaluated in the following cycle.This metric assumesan infinitenumberof

processors and ignores deadlock and communication costs. The results are summarized in Table

3.5. Ardent-1 is the vectorcontrol unit for the Ardent Titan supercomputer, H_FRISC is a RISC

generated by theHERCULES high-level synthesis system, Multiplier is a 16x16 bitinteger multi

plier, and 8080is aTTL board implementation of the 8080microprocessor.

11



Circuit Representation Element Count
Average

Concurrency

Ardent-1 gate/RTL 13,349 107

HJFRISC gate 8,076 111

Mult-16 gate 4,990 45

8080 RTL 281 10

Table3.5:Average Concurrency in RealCircuits [SG89]

Like the Chandry-Misra algorithm, the Time-Warp algorithm[JD85] also main

tains a separate event queue and simulation clockat each circuit element. The clock is allowed to

advance independently ateach element. Time-Waip differs from Chandry-Misra inthat ifan input

at a circuit element doesnot havea timestamp as recent as the localclock,the circuitelement will

be evaluated anyway without waiting for a new input to arrive. While this avoids the deadlock

problem, it is possible that event precedencebecomeslost.

When an element receives an event with a time stamp before the current local

time, theelement backtracks to a state before events were processed out of orderandsends "Anti-

events" tocancel spurious events. [A86] implemented a switch-level simulator using Time-Warp

and obtained aspeed-up of4 over the uniprocessor version ona 6processor computet

Finally, Encore ComputerCompany implemented an event-drivenfunctional sim

ulator for the Multimax computer[W86]. They reported a speed-up of 3 ona 5 processor system.

Addingmore processors did not improveperformance.

12



Chapter 4

Design of the MP-1 Parallel Simulator

This chapter describes the MP-1 architecture and ways of implementing logic

simulation on the MP-1.

4.1 Overview of the MasPar MP-1

The MP-1 is relatively slow compared to newer machines. Nonetheless, it is a

good platform for testing synthesis strategies.

The MP-1 consistsof a two dimensional array of processingelements(PE's). The

system can accommodate from 1024 to 16384 PE's. The Array Control Unit (ACU) controls the

PE's, sending instructions to eachPE and handling serial operations. The PE array and ACU are

collectively referred to as the Data Processing Unit (DPU).

4.1.1 The Processing Element

EachPE has a 1.8MIPS processor, forty 32-bit registers, and64 KBytes ofRAM.

Each PE is connected to its eight nearest neighbors and to a global router which allows a PE to

communicate withanyPE in the system. Theprocessor hasa 4-bit integerALUand accesses local

memory through a 4-bit bus.

4.1.2 The Array Control Unit

The ACU is a 14MIPS processor with thirty-two 32-bit registers and 128 KBytes

of data memory. The ACU broadcasts instructions to PE's. All PE's execute the same instruction

13



stream, but have independent storage through their local memory. The ACU also computes

addresses and scalar data values, issues control signals to the PE array, and performs diagnostics

on the system.

4.1.3 The Data Network

PE's have two methods ofcommunication: the X-net andthe globalrouter. The X-

net connects each PE to its eight nearestneighborsin the directionsnorth, south, east, west, north

east, northwest, southeast, and southwest. The system has toroidal wrapping, so PE's on the edge

of the physical array still have eight neighbors.

The global router ismore flexible because it allows aPE to communicate withany

PE in the system. Sometimes the global routeris slower than the X-net

PE's are organized into 4x4 clusters. While the global router can communicate

with all clusters simultaneously, onlyone PE per cluster can be accessed at a time. One outgoing

and one incoming message per cluster is permitted simultaneously. A message within a cluster

consumes both the incoming and outgoing channels. When more than one message in a cluster

attempts to use a channel, the messages areserialized.

4.1.4 Programming the MP-1

MasPar provides aparallel versions of Fortran and C. Bothinclude new data types

and control structures for parallel operations on data. The extensions to C will be discussed in

Chapter 8. A function library is included for transferring data between the DPU and the UNIX

front-end. The DPU and the front-end maycommunicate asynchronously. Each canperform other

tasks while the other transfers data.

14



4.2 Simulation Strategies for SIMD Machines

An effective synthesis algorithm derives from the design of a fast simulator.

Clearly, the synthesis algorithm must partition the gates inthe circuit among the processor nodes

in a way that minimizes communication between partitions. Furthermore, each processor must

evaluateits set of gates in anefficient manner.

4.2.1 SIMD Simulation

For compiled simulation, a technology mapper can map logic functions to logic

opcodes supported by the computer running the simulation. Unfortunately, compiled simulation is

not possible on a SIMD computer like the MP-1 because all processing elements share the same

instruction stream. Instead, each processor must store its set of logic functions in its private data

memory. Thesimulation code consists ofasmall simulation loop that reads the logic function from

memory each time an output needs to be calculated.

One way to represent logic functions is by encoding gate types. The simulation

loop "switches" on the gate type as follows:

switch (node.type) {
case AND:

node.output = node.inputO & node.inputl;
break;

case OR:

node.output = node.inputO / node.inputl;
break;

etc.

}

While this method ismemory efficient, it runs slowly onaSIMD computer. Since

there is asingle instruction stream, case blocks execute serially. It isbetter torepresent the logic

function as a truth table. Calculating an output is a simple matter of accessing an element in an

array:

node.output =node.table[nodejnput0 OR nodejnputj OR... nodejnputj;

15



For thismethod to work, thegate input bitsmustbe arranged to notoverlap whenOR'ed together.

Each processor mustevaluate a setof gates. The fastest possible calculation is by

collapsing the subnetwork into a single combinational logic block (CLB). The entire subnetwork

canbe calculated by asingletable look-up. Giventhata processing nodecanaddress kbitsoflocal

memory, the synthesis algorithm must partition the gates such that each CLB has fewer than k

inputs.

4.2.2 The MP-1 Simulator

OurMP-1 simulator is interpretive, event-driven, andhandles only combinational

circuits. Each processor performs the following steps perCLB:

Foreach input vector {
OR together the CLB inputs toform the table index
Foreach CLB Fanout {

Look-up theoutputfrom the table belonging to thefanout
If theoutput haschanged, sendit to theappropriate CLB

}
}

The simulator allows multiple-output CLB's with multiple fanouts. Each fanout

sends oneormorebits,whichmustbeordered properly sothatthey are OR'ed correctly withother

fanouts in the correct sequence. Since bitextraction and re-ordering is too slow, fanouts have sep

arate look-up tables. Each fanout may useonly a portion of the outputvariables. As such,the sim

ulator checks for a change in output for each fanout.

The MP-1 hasthree kinds of parallelism. First, it provides bitwise parallelism at

the processor level by evaluating a setof gates through atable look-up. The second type is level-

ized parallelism. CLB's are evaluated in topological order from the inputs to the outputs. For a

giveninputvector, allCLB'satalevelare evaluated simultaneously. Third, thesimulator pipelines

theinput vectors. While processors atlevel /„ simulate input vector im, processors atlevel/„.; sim

ulate input vector im+j.

16



Because the synthesis algorithm changes the circuit, timing analysis cannot be

performed. No timing information is associated with CLB's. Although simulation accuracy is

reduced, it allows us to avoid the event precedence problem tackled by the Time Warp and

Chandry-Misraalgorithms.

17



Chapter 5

Synthesis Algorithms

This chapter gives two synthesis algorithms for improving parallel simulation.

Both are divided intothe following steps:

1.Gates withmore than k fanins are splitusingAND-ORdecomposition.

2. The resulting network is grouped intomultiple-output CLB's.

3. CLB's with adisproportionate number of fanouts are duplicated.

4. A placement algorithm assigns CLB's to processors in a way that exploits the
communication network of the targetmachine.

The difference in thetwoalgorithms comes in step 2 - thegrouping step. The first approach uses a

bin packing algorithm derived from FPGA synthesis. The second preserves spatial locality when

combining gates into CLB's.

5.1 Decomposition of Infeasible Nodes

If the maximum size of a CLB is k inputs, then nodes with more than k inputs

must be split in order to fit in a CLB. There are a variety of decomposition methods. AND-OR

decomposition was used forboth synthesis algorithms.

Infeasible nodes canbe split using anypartition of the inputs. Infeasible nodes are

represented as a sub-graph of AND and OR nodes, which are recursively decomposed. For

example, a 3-input function z = ab + ac + be can be decomposed into 2-input functions v=ab,

w=ac, x=bc, y=v+w, and z = y+x.
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5.2 Algorithm 1 - Bin Packing Approach

The MP-1 simulator is an implementation of a table look-up (TLU) architecture.

Much work has already been done on logic synthesis for TLU in the area ofField Programmable

Gate Arrays (FPGA's). An FPGA is aprogrammable chip that implements auser-specified logic

function of kinputs. The Xilinx(3000) isatypical FPGA, with Jfc=5[Xil].

The goal ofFPGA synthesis is to find the minimum numberofCLB *s to represent

acircuit. Apopular FPGA synthesis algorithm was modified to solve the grouping problem in step

2. One major change is that the MP-1 allows CLB's to have up to 16 outputs. FPGA's are limited

to one or two outputs.

The bin packing algorithm[GJ79] is very effective at solving the FPGA synthesis

problem. The goal of bin packing isto find the minimum number of fixed width bins into which a

set ofvariable-sized boxes can be packed. The bins represent CLB *s and the boxes are logic func

tions.

There are several algorithms for solving the bin packing problem. The First Fit

Decreasing (FFD) algorithm starts with an empty list ofbins and orders boxes in decreasing order

of their size. As each box isvisited, it places the box inthe first bin inwhich it fits. If the boxdoes

not fit inany of the bins, anew bin iscreated containing only that box. This bin isadded tothe end

ofthe list ofbins. The Best Fit Decreasing (BFD) also visits boxes in decreasing order, but tries to

place a box in the bin that leaves themostinputs unused.

The first synthesis algorithm used a modified version of the BFD algorithm. It

tried packing each gate into the bin that added the fewest numberofinputs to the bin. For instance,

ifabin already uses signals A, B, C, then adding the gate BAND Dwould only add one input (D).

A gate was not added to aCLB if itcaused the resulting circuit to become acyclic. The gates were

visited not in decreasing order, but in breadth-first order, starting from the primary inputs and

working toward the primary outputs. Experiments showed this ordering gave better results than

visiting gates by size.
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Theproblem with the FPGA approach is that it isoptimized for reducing the total

number of CLB'sbefore fanout optimization. Instep 3,CLB's withalarge number of fanouts are

duplicated. Because functions were added toCLB's without regard tocommunication costs, fanout

optimization caused an explosion in circuit size. The second algorithm combines gates that are

physically close together inthe circuit. Asaresult, the circuit does not grow as large during fanout

optimization.

5.3 Algorithm 2 - Grouping with Spatial Locality

The second algorithm is a greedy heuristic that merges functions into larger,

multiple-output CLB's until the number of inputs to the CLB reaches a user-specified limit k

(usually determined by the memory capacity of the simulator and the maximum number of

fanouts). The algorithm proceeds as follows. The nodes are visited in topological order, from the

second level to the outputs. For each node v, all possible pairs ofnodes ("input nodes") fanning out

to v are examined. If v and any pair of input nodes has atotal unique number of inputs less than k,

the group of nodes are merged into a "super-node" provided the network remains acyclic. If v

cannot be merged with any pair of nodes, it is combined with the input node that produces the

fewest number of inputs while keeping the network acyclic. Failing this, v is not combined with

any nodes.

The following example demonstrates the algorithm when k=3. Given the sample

network in Figure 5.1, we begin atthesecond level with node 3.The input nodes are 1and 2.The

number of inputs to nodes 1,2, and 3 is less thank, so they arecombined. Node 5 is also at the

second leveland it is combined withnode 4, its only fanin node. Figure 5.2shows the results after

the second level pass.

Visiting node 6 next, we cannot combine its two input gates because that would

result in 4 inputs, which is too many. However, node 6 can be combined with either {1,2,3} or
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{4,5} - wearbitrarily pick the former. Node 8 ismerged into {4,5}.

All that is left isnode 7.While merging node 7 into {4,5,8} would notexceed kt it

would create aloop. Placing node 7 into {1,2,3,6} would exceed k, so node 7 isnot merged. Rgure

5.3 shows resulting circuit.

Figure 5.4 gives pseudocode for the grouping algorithm. In the step following

grouping (duplication), nodes with too many fanouts are split. One variation on this grouping algo

rithm istolimit the number ofoutput variables aCLB may accumulate before the duplication step.

Forsome circuits, this reduced the overall numberofCLB*s. Anothervariation is to limit the num

ber ofmessages aCLB may receive from fanin CLB's. This can improve load balancing byensur

ing that noprocessing element has to OR together an excessive number of input vectors.

'&*-

-©-•*

Figure 5.1:SampleCircuit
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Figure 5.2: SampleCircuitAfter Second Level Pass

Figure 53: GroupedCircuit
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for(level=l; level<num_levels; level++) {
foreach(v, nodes at teueQ {

for(i=0; i<num_fanin(v); i++) {
current = fanin(v, i);
for(J=i+1; j<numjanin(v); j++) {

add = fanln(v, j)
If (num_fanln(current, add. v) <= k &&

dag(current, add, v)) {
merge_nodes(current, add, v);
Mark v as assigned

}
)

}
}
foreach(v, unassigned nodes at "level") {

If possible, merge v into a fanln node ofv that produces the fewest
inputs (less than kj while keeping the circuit acyclic

}

Figure 5.4: Grouping Algorithm Pseudocode. The function numjanin returns the total
unique number of signals coming into its list of gates and mergejnodes combines a list of
gates into a singlelogic function. The Vth fanlnof v Is returned by fanutfv, i). The depth of
the network Is numjevels and k Is the fanln limit of a gate.

5.4 Function Duplication

Step 3, function duplication, moves from the outputs to the inputs, duplicating

CLB's that have too many fanouts. Figure 5.5 shows the sample network after duplication. With

out this step, the computational load is not well distributed as some processors must send a sub

stantially large share of the fanouts. To maximize parallelism, each CLB should have a single

fanout. This is impractical for most circuits because the number of CLB's would be too large.

Instead, there is a tunable parameter, R, for selecting the maximum numberof fanouts, which

ranged from 2 to 4 in our benchmarks. Table 5.1 gives the number of CLB's for different values of

R for circuits taken from the ISCAS benchmark suitThe circuit s38417 was originally sequential,

but only the combinational portion was used. "NA" indicates there was insufficient memory to

expand the circuit All circuits in thebenchmark suitare gate-level descriptions.
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Figure 5.5: Sample Circuit After Duplication

Circuit Gates
R=l

k=14

R=2

k=13

R=3

k=13

R=4

k=14

c432 160 9459 315 104 64

c499 202 1753 215 147 94

C1908 880 5388 426 189 135

C2670 1161 2190 393 289 239

C3540 1667 NA 1766 604 431

C5315 2290 13033 1473 962 720

C6288 2416 NA 1126 443 313

C7552 3466 16216 1539 803 589

S38417 22397 NA 10679 5779 2960

Table 5.1: CLB Count
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Table 5.2 compares the CLB countof the two synthesis algorithms. All circuits

used k=13, R=2 except for s38417, which used k=12, R=4.These were the parameters used for

the actual simulation. The data show that binpacking performs verywellon small circuits whereas

the second algorithm generally performs better on the larger ones. The second algorithm also has

considerably shorter runtime.

Circuit Gates Algorithm 1 Algorithm 2

c432 160 136 315

c499 202 76 215

C1908 880 403 426

C2670 1161 647 393

C3540 1667 2759 1766

C5315 2290 2047 1473

C6288 2416 3742 1126

C7552 3466 2946 1539

S38417 22397 2867 2960

Table 5.2: Comparison ofCLB Counts

5.5 Placement

The MasPar MP-1 has both a global and local communication network. The local

network (X-net) connectseachPEto its eightnearest neighbors in the directions north, south,east,

west, northeast, northwest, southeast, and southwest.

The global network allows aPE to communicate withany other PE inthesystem.

PE's areorganizedinto 4x4 clusters.While the system can communicate with all clusters simulta

neously, only one PE percluster canbe accessed ata time. One outgoing and oneincoming mes-
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sage per cluster is permitted simultaneously. A message between two PE's within a cluster

consumes both the outgoing and incoming channel.

Despite several attempts to utilize the X-net, relying exclusively ontheglobal net

work gave better results. The problem with the X-net is that all processors must communicate in

the same direction simultaneously. One processor cannot transmit north while another transmits

south. It is also difficult to position CLB'ssothat theyborder all their fanin and fanout CLB's.

Figure 5.6 gives the placement algorithm that was used. It attempts to assign

CLB's to processors in a way that evenly distributes the communication load among PE clusters.

When more than one PE inacluster attempts tosend orreceive data, themessages are serialized. If

the number of inputs to a cluster it / and thenumber of outputs is 0, MAX(I, O) is thenumber of

pending messages. Thealgorithm greedily picks clusters with the fewest pending messages.

The placement algorithm assumes CLB'shave roughly equivalent activity rates. If

some CLB'shave significantly higher activity rates, communication is notevenly distributed. It is

possible to record activity rates atrun-time, but thedata can be input dependent.

Initialize C.inputs = C.ouptuts = 0 for all clusters C
foreach CLB F {

C = cluster where MAX(C.inputs, C.outputs) is the minimum
Place F in C

C.inputs = C.inputs + F.fanins
C.outputs = C.outputs + F.fanouts

}

Figure 5.6:Placement Algorithm
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Chapter 6

Experimental Results

Td simulate acircuit using our technique, the following steps occur 1. Thecircuit

is compiled, 2. The compiled circuit is uploaded to the processing elements of the MP-1, and 3.

The simulation isexecuted on a file ofinput vectors. The next two tables summarize the perfor

mance of step 3, the actual simulation.

6.1 Simulation Performance

Table 6.1 compares the simulation speed of the original and re-synthesized cir

cuits. The figures were obtained by measuring the simulation time of 5,000 random vectors on a

MasPar MP-1 with 8192 processing elements. The time required to display outputs was excluded.

The circuit s38417 was originally asequential circuit, but only the combinational portion was sim

ulated. All synthesized circuits used R=2, k-13, except for s38417 which used R=4, k-12. Allcir

cuits were originallygate-levelrepresentations.

Table 6.2 compares the performance ofour parallel simulator (with re-synthesized

circuits) against Verilog-XL, a popular commercial simulator[TM91]. Verilog ran on a

SparcStation 2 with 32 MBytes of physical RAM and a local disk. Table 6.3 summarizes the

compilation and data upload times (steps 1 and 2). Both sets of figures were obtained on a

DecStation 5000.
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Circuit Gates Unmodified

(patt/sec)
Re-synthesized

(patt/sec)
Speedup

c432 160 379.6 888.3 2.3

c499 202 298.7 827.4 2.7

C1908 880 208.4 863.7 4.1

C2670 1161 270.2 836.6 3.1

C3540 1667 222.3 537.6 2.4

C5315 2290 213.1 669.1 3.1

C6288 2416 242.1 736.9 3.0

C7552 3466 233.5 698.3 3.0

S38417 22397 32.2 397.5 12.3

Table 6.1: Performance Results

Circuit Gates Verilog-XL
(patt/sec)

MasPar

(patt/sec)
Speedup

c432 160 735.3 888.3 1.2

c499 202 526.3 827.4 1.6

C1908 880 256.4 863.7 3.4

C2670 1161 152.9 836.6 5.5

C3540 1667 170.7 537.6 3.1

C5315 2290 86.2 669.1 7.8

C6288 2416 5.1 736.9 144.5

C7552 3466 54.9 698.3 12.7

S38417 22397 15.5 397.5 25.6

Table6.2: Verilog vs. MP-1
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6.2 Performance Characterization

Themain simulation loop comprises aseries of steps: 1. Reading theinput vectors

from disk, 2. Calculating CLB outputs, and 3.Transmitting outputs overthe communication net

work. Table 6.3 summarizes theamount of time spent ineach step.

Circuit Gates Reading Inputs Computation Communication

c432 160 2.2% 68.8% 28.8%

c499 202 1.5% 70.5% 27.9%

C1908 880 1.9% 69.1% 28.9%

C2670 1161 6.3% 66.7% 27.0%

C3540 1667 2.7% 47.3% 49.9%

C5315 2290 4.8% 59.2% 36.3%

C6288 2416 2.1% 64.9% 33.1%

C7552 3466 6.0% 61% 33.0%

S38417 22397 2.5% 86.5% 10.7%

Table6.3: Perfonnance Analysis

For smaller circuits, roughly one third of the simulation time was spent in the

communication step. Previous studies in parallel simulation have concluded that the communica

tion step is themajor performance bottleneck for simulation. When using synthesis withsimula

tion, there is no single bottleneck. There are anumber of competing factors that affect simulation

performance. The job of the circuit compiler is to choose a good balance between trade-offs for

optimal simulation performance.

One important trade-off isparallelism vs.communication costs. An improvement

in parallelism can reducethe amountof computation, but increase the amount of communication.

The amount of parallelism is setby the number of inputs and outputs to the CLB. Each CLB has a
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loop for OR'ing together its inputs and another loop for sending itsoutputs. Reducing these loops

improves computation time,butalso increases thesizeof thecircuit, leading to more communica

tion.

Another factor to consider is the CLB table size. Larger CLB's tend to produce

smaller circuits, butcanincrease theactivity level. Withagreaternumber of inputs to theCLB,the

likelihood of achange intheoutputs is greater, leading to more events and higher communication

rates. It is difficult for the compiler to adjust for activity rates because runtime data is required,

which can be very dependent on the inputvectors.

The settings that provided the bestresults onan 8k-processor MP-1 keptthe num

ber of CLB's fewer than 2048. TheMP-1 global router is capable of communicating witheach PE

cluster simultaneously. Onan MP-1 with8kPE's, there are 512clusters (each cluster has 16 PE's).

Keeping the numberof CLB's fewer than2048 placed at most 4 CLB's in each cluster. The activ

ity rates of thebenchmark circuits were such that 4 CLB's sharing a single communication channel

did not overwhelm the global router.

6.3 Effective Simulation Performance

Table 6.4 summarizes theMP-1 "overhead" - theamount of timetocompile acir

cuitand to upload thecircuit information totheprocessing elements of theMP-1. The figures were

obtained on a DecStation 5000.

The overhead costs are veryimportant in theearly part of the design cycle when

many iterations are needed to debug acircuit. Prohibitive overhead can negate any increased per

formance from parallel simulation. A graph like the one shown in Figure 6.1 can be constructed

from the dataofTables 6.2 and6.3. With the higheroverhead, parallel simulationbecomes worth

while for the circuit s38417 only when more than 100,000 vectors are simulated.
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Circuit Gates Compilation
(sec)

Upload
(sec)

Total

(sec)

c432 160 15 44 59

c499 202 16 33 49

C1908 880 38 124 162

C2670 1161 52 78 130

C3540 1667 100 177 277

C5315 2290 282 216 498

C6288 2416 254 222 477

C7552 3466 358 180 539

S38417 22397 5939 607 6546

Time (sec)
14000

12000

10000

Table 6.4:Compilation andUploadTimes

50000 100000

Vectors

Figure 6.1: Overall Simulation Perfonnance of s38417
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Chapter 7

Simulator Internals

In this chapter, thecode for the simulator isexamined. The full program listing is given in

Appendix A. The code performs the following steps:

1. Reads the synthesized circuit and checks for errors
2. Uploads circuit information to the parallel processors
3. Simulates the circuit

A MasPar program has two portions: front-end code and DPU (Data Parallel Unit) code.

The front-end code, which runs on the UNIX front end, exchanges data with the DPU and instructs the

DPU to execute parallel routines. The parallel (DPU) code iswritten inMPL, adialect ofCthat provides

parallel extensions. For the steps listed above, step 1is performed onthe front-end. In step 2,the front-end

uploads the data to the DPU. Step 3isan MPL routine that executes on the DPU. This chapter covers step

3.

7.1 Programming in C on the MasPar

As described earlier, the DPU consists of a 2-dimensional array of processing elements

(PE's) which are controlled by the Array Control Unit (ACU). The PE's and the ACU have independent

address spaces. MPL adds anew type qualifier, plural, todifferentiate between the two address spaces. The

plural qualifier allocates storage in PE memory. Variables defined without the plural qualifier are

"singular"andresidein ACU memory. All PE's storeplural variables at the same address.

35



7.1.1 Pointers

Although theDPU has twoaddress spaces, pointers mayrefer to either space. The follow

ing pointer combinations are possible:

• Singularpointer to singulardata
• Singularpointer to plural data
• Plural pointer to pluraldata
• Plural pointer to singulardata

A plural pointer to plural data only allows aPE to point to itsown local memory. Access

ing thememoryofanother PEis only possible through acommunication function.

7.1.2 Control Statements

MPLhasallthe statements of traditional C. However, the plural form of these statements

affect which PE's are active. Branching and control statements become plural when they refer toa plural

expression.

The following ifblock is a plural control statement. The plural variable iproc is a special

variable that stores aPE's processor number. Hence, iproc's value on processor 0 is0, its value on proces

sor 1is 1, etc. This ifblock will increment plural variables x and y only on processors 0 through 9. The

other processors remain idle for the duration of the block.

extern plural int iproc;
plural int x, y;

if (iproc < 10) {
x++;

y++;

}

Plural (fstatements with an else clause will make the active set of the else block the group

of PE's that evaluate the controlexpressionto false. The //block andthe else block do not execute concur-
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rentiy.

7.13 Looping Statements

Looping statements work similarly toi/statements. Only PE's that evaluate the controlling

expression totrue are active. The loop will iterate until there are no more active PE's. The following code

blockdemonstrates a parallel/or loop.

plural int i;

for(i=0; i<iproc; i++) {
/* code */

}

The variable "iproc" is defined as before - it is aprocessor's unique identification number.

On processor 0, the loop will not execute. Processor 1 performs the loop once, processor 2 performs it

twice, and so on. It is important that loops are evenly distributed among processors toexploit parallelism.

This loop isnot well distributed because amachine with 16k processors will loop 16k times on the last pro

cessor. Meanwhile, low-numbered processors are idle.

7.2 Simulation Code

The main simulation loop will now be examined. The name of the function is

perform^simulation, which iscalled from the front-end after the circuit has been uploaded tothe PE array.

Figure 7.1 gives the variables used.
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short num_po;

intd;

plural unsigned short
input_bufifer[16][LEVELS];

plural short
prev_outputO, prev_outputl,....
prev_outputn;

plural unsigned short
prev_inputs[16];

plural unsigned char
input_vecs[PI_BYTES] [VECS];

plural struct node_struct {
short num_vectors;
short level;
Send

sender[MAXJFANOUTS];
unsigned short

table[FANOUTS][TABLE_SIZE];
char inputs;

}

plural short vectors;

A function argument containing the number of primary
outputs.

A function argument specifying a file pointer to the input
vector file.

Queuesthe inputs to a CLB. The first range (0..15) is for
specifying the networkconnection to the outputof a pre
ceding CLB.Each oftheseconnections canhavemultiple
bits. Clearly, the definition assumes no CLB has more
than 16inputs, which is not possible given the memory
capacity of the PE's. The second range (O.JLEVELS)
stores inputs in a circular queue until they can be pro
cessed. LEVELS must be greaterthan the number of lev
els in the circuit, or data could be overwritten.

Storesthe previously calculated output for a CLB. There
is a separate variable foreach output at the CLB. An out
putis only sentif it differs from the previous output.

Stores the last inputs processedat a CLB.

Input vectors are read in blocks and stored in this array.
VECS is the number of vectors in a block. Input vector
bits are packed into bytes. PIJBYTES is the maximum
number of bytes a CLB needs forits primary inputs.

This data structure contains the lookup tables and netiist
information. The field num_yectors is the number of
input patterns to be simulated, level is the CLB's level in
the circuit, sender contains netiist information, and table
is theCLB's lookup table. The field inputs does not rep
resent the number of bits in the truth table but rather the
number of other CLB's that fan-in to the CLB.

Thenumber of input vectors that have been computed.

Figure 7.1:Variables usedin MainSimulation Loop
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7.2.1 Initialization

The initialization portion of the simulation loop sets thenumber of calculated vectors to

zero and clearsthe input buffer.

vectors = 0:

for(i=0; i<16; i++) {
for(j=0; J<LEVELS; J++) toput_bufrer[il(j] =empty;

The identifier empty isaconstant indicating no valid signal has been received bythe input

buffer. It means the current signal value does not differ from the previous value. The initialization phase

also invalidates prevj>utputO,prev_putputl, ...,prev_outputn to ensure the first calculated output will gen

erate an event.

prev_outputO = prev_outputl... = prey_outputn =empty;

7.2.2 Reading the Input Vectors

Following the initialization, the input veaors are read from disk. The input vector file is

packed into bytes. The reasons for this are twofold: the 10performance isimproved and the inputs must be

packed anyway to perform the table lookup. During synthesis, the compiler ensures that no CLB's primary

inputs are inmore than P1_BYTES bytes. For the benchmark circuits, P1J3YTES had avalue of4. The fol

lowing data structure contains information for using theinput veaors:

struct pLstruct {
char num_pLbytes;
unsigned short pLmapping[PI BYTES! [256J;
ofLt offsetlPLBYTESl;

}

The field pi_bytes isthe number ofbytes containing primary inputs for the CLB and offset

points to the file location where each block ofveaors resides. Ttepijnapping field isalookup table for
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re-ordering the byte. When OR'ing togetherthe input vector bytes, some of the bits may overlap.Re-map

ping ensures eachbit has a unique location.

The code for reading the input vectors is as follows:

for(l=0; 1<PIJBYTES; 1++) {
If (1 < pijnfo.numjrtjbytes) {

pp_lseek(d. piJnfo.offsetHl, L_SET}:
pp_read(d, input_vecs[ll, VECS);

}
}

The functions ppjseek and ppjead are parallel versions of the UNIX system callsseek

and read. In the code above, each processor reads VECS n unber of bytes from the file given by descriptor

d intothe bufferinput_vecs[lj. Each PEcanread from different file positions, setby ppjseek.

7.2.3 Main Simulation Loop

The input vector code reads VECS vectorsat a time. The main simulationloop is invoked

for each such block of vectors. For each iteration of the loop, the inputs to the CLB are OR'ed together

using the variable vector:

vector = 0;
for (i=0: i<mjnputs; i++) {

j = input_buffer[il[vec_count];
if (j==empty)

j = prevjnputslil;
else

prevjnputsli] =j;
lnput_buflfer[il[vec_countl = empty;
vector = vector I j;

}

When a CLB's output is unchanged, it is not propagated. This leaves the corresponding

entry in the input bufferof the succeeding CLBempty. The loop above checks for emptyentries. When it

finds one, the previous input is used. When the entry in the input buffer is not empty, prevjnputs is

updated.
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The following loop OR's together vector with any required primary inputs:

for(j=0; j<PLBYTES; j++) {
vector =vector I pLmfo.pi_mapping(jHinput_vecs(jl[vectorsll;

Once vector iscalculated, it can beused tolookup the output values:

output = m_j)roc_lnfo.table[01[vectorl;

If the output has changed and it isnot aprimary output, the value ispropagated:

if (output != prev_outputO) {
pp_rsend(dest, &output. send_adr, sizeoflshort));
prev_outputO = output;

}

The function ppjsend copies ablockof memory from the local PE to thedestPE. Inthis

case, itplaces the output value into the input buffer ofthe succeeding CLB. The code for handling outputs

is duplicated for each fanout ofthe CLB. When an output is aprimary output, the value is stored. Primary

outputs are written outlater as ablock when the main simulation loop finishes.
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Chapter 8

Overview of the Connection Machine-5

With its limited memory and slow speed, the MasPar MP-1 is obsolete compared

to newer machines. The Connection Machine-5 (CM-5), one of the latest to be commercially

available, offers much greater computational power. This chapter summarizes the architectural

features of theCM-5 and discusses ways of adapting thework done ontheMP-1 to theCM-5.

8.1 Processing Elements on the CM-5

Like the MP-1, theCM-5 provides acollection of processors, each withtheir own

local memory. The current CM-5 implementation uses the SPARC microprocessor as the

processing element with 8-32 MBytes oflocal memory. This configuration is considerably more

powerful than the 1.8 MIPS, 64 KByte processing element used by the MP-1.

The processing elements in the CM-5 may also be equipped with a veaor co

processor. In this configuration, memory is organized into four 8 Mbyte banks. Each veaor unit

has a peak performance of 32 Mops on 64-bit integer operands. The veaor units receive

instructions from the SPARC, eitherindividually or broadcasted to all four units. The SPARC can

perform other tasks while the vector units execute instructions.

Each veaor unit has 64 64-bit registers, which can also be used as 128 32-bit

registers. A veaor mask register allowscertain vectorelements to be "masked out" forconditional

vector processing. Besides addition and multiplication operations, there is support for vectored

bitwise logical shift, AND, NAND, OR, NOR, XOR, and NOT.
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8.2 The CM-5 Networks

The CM-5 has three separate, scalable networks: the Control Network, the Data

Network, and the Diagnostic Network. The diagnostic network, used for detecting faulty

processors, is not visible to the programmer andwill not be discussedhere.

The Control Network provides broadcasting, synchronization, and reduction.

Reduction combines values from multiple processors to form a single result The possible

reduction operations are: summation, finding the maximum or minimum value, logical OR,

exclusive OR, and logical AND.

The Data Network provides simultaneous point-to-point transmission of

messages. Unlike the MP-1, the CM-5 Data Network is hierarchical, emphasizing data locality.

Processing elements are grouped into four's. Maximum bandwidth between elements within a

group of four is 20 Mbytes/sec, 10Mbytes/sec between groups of 16, and 5 Mbytes/sec for all

other messages.

8.3 Programming the CM-5

The CM-5 supports both SIMD and MTMD computing. SIMD programming on

the CM-5 is very similar to that on the MP-1. Loops and branching constructs restrict which

processors are active, implicitly handling synchronization. When multiple execution paths are

possible (such as with if-else statements), each block is executed serially, reducing parallelism.

Fortunately, suchconditions werelargely avoided by the MP-1 parallel simulator.

MLMD computing is provided through thecontrol network. The following "two-

phase barrier" synchronizationmethod is used: A processor notifies the Control Network that it is

ready to enter a barrier. When all other processors have reached the barrier, the network notifies all

the processors. While waiting for notification, processors may perform other tasks with their

individual instruction streams.

The CM-5 has system calls for switching between SIMD and MTMD processing.
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InSIMD mode, the Control Processor broadcasts blocks of instructions to the processing nodes. In

MIMD mode, processors independently fetch instructions asneeded and synchronization becomes

the responsibility of the programmer.

SIMD programs run between two phases: local computation and global

communication. By handling communication all atonce, synchronization overhead is reduced. It

is also easier for compilers todetect common communication patterns. For these reasons, the CM-

5 Technical Summary [CM91] recommends using SIMD processing.

8.4 Parallel Simulation on the CM-5

The CM-5 has all the architectural features of the MP-1, so the simulation

methods for the MP-1 areadaptable to the CM-5. However, it is unclearwhether the two machines

have comparable "grain" sizes. The synthesis algorithm was tuned for an optimal ratio of

compuation and communication on the MP-1. Experimentation isneeded to find optimal settings

for the CM-5. This is especiaUy true when the CM-5 is equipped with veaor hardware. In this

configuration, each processing element isa small supercomputer.

Parallel simulationcanexploit a numberof architectural features of the CM-5 not

found on the MP-1 - a larger address space, vector processing, MIMD processing, and a data

network emphasizing data locality.

If the same table lookup methodology were used, the CM-5's address space would

allow much larger CLB sizes. When equipped with 8MBytes ofmemory, each CLB could have up

to22 inputs. However, experiments performed on the benchmark circuits found that increasing the

CLB size beyond 13 did not producea fewernumber ofCLB's.

The extra memory in the CM-5 would beuseful for handling multiple CLB's at

each processing element C4CLB-folding"). Given the cost of aCM-5 processing element, even a

machine with several hundred processors is quite expensive. With fewer processors, each node

must simulate multiple CLB's.
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The processing elements in the CM-5 are fast enough that it might be

advantageous to use CLB-folding to save on communication costs, especially on machines with

vector units. The computation step of the MP-1 simulator performs two steps: 1.OR theinputs to

the CLB together to form a table index and 2.Look up the output values from the tables. Step 1

(the OR loop) can bevectorized to handle multiple CLB's simultaneously. So, CLB-folding does

not incur a large parallelism penaltyon a CM-5withvector units.

Unlike theMP-1, the CM-5 provides MIMD computing, allowing each processor

to execute an independent instruction and data stream. The current version of the simulator would

not benefit greatly from this capability. MIMD processing would be useful for mixed-mode

simulation, which would allow simultaneous simulationat the transistor,RTL, ur behavioral level.

The CM-5 data network, which is quite different than that in the MP-1, is more

amenable to parallel simulation. The MP-1 placement algorithm would do poorly on the CM-5

because it assumes a flat network hierarchy. Instead, thefollowing algorithm is proposed:

1. Assign primary output CLB's to processors such that they are evenly spaced
apart.

2. Visit CLB's topological^ from the primary outputs to the inputs. Try to place
each CLB as close to its fanout CLB's as possible If CLB folding is used, try to
place the CLB on the same processor as its fanout. If it does not fit on the same
processor, putit in the fanout's group of4. If it does not fit in thesame group of
16,place theCLB in thecluster with thefewest occupied processors.

Themajor difficulty in step 2 occurs when a CLB belongs to thesupport of more

than one primaryoutput In this case, it maybe impossibleto place the CLB near all its fanouts. It

is likely thatduplicating these CLB's would cause thecircuit size to explode. Apartial solution is

toonly duplicate pathologic cases, such asCLB's that cannot beplaced inthesame group of 16 as

oneof it's fanouts. This might also require combining the duplication and placement steps of the

compiler.
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Chapter 9

Conclusions and Future Work

A parallel functional simulator was developed for the MasPar MP-1, amassively

parallel, SIMD computer. This simulator was used totest optimizations for improving parallel sim

ulation performance.

The results demonstrate theimportance ofoptimizing the circuit. Parallel simula

tion of the unmodified circuits was only slightly faster than aSparcStation-2 nmning Verilog-XL.

Logic synthesis increased parallel simulation performance bymore than an order ofmagnitude for

large circuits.

The data showthatthe MP-1 is morescalable to larger circuits thanaworkstation.

The circuit s38417, with over 100 times more gates than c432, simulated 47 times slower than

c432 under Verilog, butonly 2 times slower onthe MP-1. Parallel computers have theextra benefit

that they can beeasily scaled to simulate larger circuits by adding more processors. It is more dif

ficult to scale a workstation without using hardware acceleraters. Even increasing the instruction

and data cache sizes has limited effea because thesimulation code is solarge that cache misses are

frequent.

It is significant that the MP-1 outperforms the SparcStation-2. The processing

element used by the MP-1 is more than ten times slower than the SPARC, yet the MP-1 can

outperform the SparcStation-2 by more than a factor of 10. The synthesis algorithm is clearly

exploiting parallelism in the circuit. On the MP-1, roughly two-thirds of the simulation time was

spent oncompuation. On the CM-5 (which uses the SPARC as itsprocessing element), this portion

of the simulation would run 10 times faster. Thus, it is likely that the CM-5 could simulate two

ordersof magnitude fastertiiana uniprocessor.
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Appendix

Simulation Code

This appendix gives the MPL simulation code. It is divided into three files:

main.c, upload.c, and sim.c. The file uploadx contains code for reading tiie circuit file. After veri

fying it hasno errors, it is uploaded to the DPU. The the actual simulation is handled in simx.
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psim.li

#lnclode <sys/file.h>

#define FANOUTS 4
♦define TABLE SIZE 4096
#deflne MAX_FANOUTS 32
#define VECS 2500
#define PIBYTES 8

typedef struct send_struct {
short destination;
char trans;
short offset;
short num;
short vecior[32];
short order[32];

} Send;

typedef struct node_struct {
short num_vectors;
short level;
Send senderlMAX FANOUTS];
unsigned short talle[FANOUTS][TABLE_SIZE];
char inputs; ~

} Node;

typedef struct pi_struct {
char num_pi_bytes;
unsigned short pi_mapping[PI BYTES][256];
off_t offset[PI BYTES];

} Pi;

short get_num_input_vectors(), read_priniary_inputs(), atob();
short re_order();

Dec2 01.111993

/* look-up table */
/* messages expected */
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psim.li psim.h
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main.c main.c

♦include <stdioJi>
^include <sys/time.h>
#include "psim.h"

Send *upload_tables();
extern void m_simulate(), m_init();

main(argc, argv) main
int argc;
char **argv;
{
short pats, num_pi, num_po, num_clumps, pi_clumps;

If (argc != 2) {
printf("Usage: %s network-rlleNn", argv[0]);
cxit(l);

)

init();
pats = VECS;

)

/* load tables into PE and grab primary input map *I
upload_tables(argv[l],pats, &num_jpi, &num_po, &num_clumps, &pi_clumps);

callRequest(m_simulate, 2 * slzeof(short), pats, num_po);

short get_num_input_vectors(mame)
char *fhame;
I
FILE *fp;
short num;

if ( (fp = fopen(mame, V)) = NULL) {
fprintf(stderr,"Em)n Could not open %s for readingW, fiiame);
exit(l);

}
fscanf(fp, "%dW, Anum);
fclose(fp);
return(num);

char *strsav(s)
char *s;

I
char *copy;

)

copy = (char *) malloc(strlen(s)+l * sizeof(char));
If dcopy) {

penoiC'strsav");
exit(l);

>
strcpy(copy, s);
return(copy);

enumerate(line, out, table) CltUmCTQtC
char *line;
short out;
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main.c main.c

...enumerate
nnslgned short "table;
{
char *copyl, *copy2;
short value, i=0;
short j;

whlle(line[i]) {
If (lineli] == '--) {

copyl = strsav(line);
copylli] = '0';
enumerate(copyl, out, table);
firee(copyl);
copy2 = strsav(line);
copy2[i] = '1';
enumerate(copy2, out, table);
firee(copy2);
return;

>
i++;

>
value = atob(line);
table[value] = tablefvalue] | out;

}

short atob(s)
char *s;

{
short i=0, order = strlen(s)-l, sum=0;

whlle(s[i]) {
sum += (s[i] - '0') « order;
i++; order—;

)
return(sum);

)

initQ fat

}
callRequest(m_init, 0);
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upload.c upload.c

finclude <stdioJi>
^include "psim.h"

extern void m_mit_table(), m_init_messagesO. mjiiritjjenderO;
extern void mitjnputj^uffer(), mjreadjarimaryJnputsO, m_init num vectorsO;
extern void m_set_clumpj)indexOi m_set_mpursends(), m setjproc "mfo();
extern void m_sefpi_src(), m_getjpilnfob. m~get_levels();

Send *upload_tables(fiiame, vector_count, numjw, numjpo, num chimps, pi clumps)
char *fname; ~* ~ ""
short vector_count;
short *numjpo, *num_pi, *num_clumps;
short *pi clumps; ~*
{
Pi *fejpi_info;
char m bytel32], b, off;
FILE *rp;
char line[8192], pattem[32], s_value[32];
short clump, count, order, messages, foo, bar;
short i, j, inputs, outputs, sop, value, outs, sends, pHndicies;
short line_ct=0;
short p, rec, clump_levels;
unsigned short table[TABLE_SIZE];
char primary_output_buffer=Or
Send sender[MAXjFANOUTS], *pnmary_inputs;
Node proc; ~"
Int PI_index[8192];
int real_inputs;
char input_ordering[32], index[32];

If ( (fp = fopen(mame, "r")) = NULL) {
fprintf(stderr, "Error: Could not open '%s' for reading.W,

fhame);
exit(l);

}

fgets(line, 8192. fp); /* skip Global: */
fgets(line, 8192, fp); /* skip .clumps: *l
fscanf(fp, ".clumpjevels: %hdV, &clumpjevels);
send_clump_levels(clump_levels);

fscanf(fp, ".pi %hd\n", num_pi);
fscanf(fp, ".po %hdW', numjpo);
line_ct+=3;
fgets(line, 8192, fp); /* skip pi: */
fgets(line, 8192, fp); /* skip po: */

for(i=0; i<8192; i++) PI_index[i] = -1;

fscanf(fp, M.pi_index %hd:VT, &pi_indicies);
line_ct+=3; ~~
for(i=0; i<pi_indicies; i++) {

fscanf(fp, "%hd: ftfadVi", &p, Arec);
PI_mdex[p] = rec;
line ct++;

}

fscanf(rp, "records %hdW', pi_chunps);
line_ct++;

primaryjnputs = (Send *) calloc((*pi_chimps) + 1, sizeof(Send));
If (Iprimaryjnputs) Quit("upload_tables()H);

fejpijlnfo = (Pi *) calloc((*pi_chimps) + 1, slzeof(Pi));
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upload.c upload.c

If (!fej>i_info) Quit("upload_tablesO");

for(i=0; i < »pi clumps; i++) {
fccanf(fp, "record %hd\n", Afoo);
fscanf(fp, "send %hdSn", Asends);
line_ct++;
primaryj3rputs[i]jium = sends;

for(j=0; j<sends; j-H-) {
fccanf(fp, w%hd". Afoo);
primary_mputs[i].vector(j] = foo;

fecardXfp, "to");
Kne_ct++;
for(j=0; j<sends; j++) {

fscanf(fp, "%hd", Afoo);
primary mputs[i].order|j] = foo;

}
fscanf(fp, ,\i");
line_ct++;
buildjMjWo(A(primary_inputs[i]), A(fejri_info[i]), i);

fgets(line, 8192, fp);
line_ct++;
if (strcmp(line, ".end globaNi"))

quit(line_ct, "Error in map file — no '.end global'");

sendj3i_mfo(PI_index, fejpHnfo);

/* read in local processor information */
*num_clumps = 0;
wbile(l) {

fscanf(fp, "Clump: %hd(%hd)(%hd)V, Aclump. Afoo, Abar);
If (feof(fp)) break;
proc.num_vectors = vector_count;
fscanf(fp, "%hd, %hd\n", Afoo, Abar);
fscanf(fp, ".level %hdW, A(proc.level));
(*num_clumps>H-;
fscanf(fp, ".outs %hd\n", Aouts);
line_ct+=3;
If (outs > MAX_FANOUTS) qrit(line_ct, "Too many .outs");
for(i=0; i<outs; i++) {

fscanf(fp, ".send %hdW', Asends);
line_ct++;
proc^ender[i]jium = sends;
fscanf(fp, "%hd(%hd), %hd: ",

A(procjender[i].destination),
A(proc.sender[i].trans),
A(procjender[i].offset));

for(j=0; j<sends; j++) {
fscanf(fp, M%hd", Afoo);
proc.sender[i].vectOTlj] = foo;

}
fscanf(fp, "to");
line_ct++;
for(j=0; j<sends; j++) {

fscanf(fp, "%hd", Afoo);
proc.seader[i].orderlj] = foo;

>
fscanf(fp, "Vn");
line_ct++;

}
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upload.c upload.c

proc.sender[i].desrJnation = -1; /* -/ designates PO * I
fscanf(fp, M.PO %hdto", Asends);
If (sends AA outs)

quit(line_ct, "Error Clump has both po and chimp out");

If ((sends + outs) > MAXJFANOUTS)
quit(line_ct. Too many .outs");

line_ct-H-;
pToc.sender[i]jium = sends;
for(j=0; j<sends; j++) {

fccanf(fp, "%hd", Afoo);
proc^ender[i].vector(j] = foo;

>
fccanf(fp, "to");
line_ct++;
for(j=0; j<sends; j++) {

fscanf(fp, M%hd", Afoo);
pTocsender[i].order[j] = foo;

>
If (sends) proc.sender[i].offset=primaryjDUtputJbuffer++;
proc.sender[++i].num = 0; ~*
fecanf(fp, "to");
line_ct++;

fscanf(fp, M.ci %hdto", A(proc.mputs));
fscanf(fp, ".i %hdto", Ainputs);
fscanf(fp, ".o %hdto", Aoutputs);
If (outputs > 8 * dzeof(unslgned short))

quitOine_ct, 'Table output size too large");
fgetsOine, 8192, fp)~ /* slap input labels *l
fgetsOine, 8192, fp); /* skip output labels */
fscanf(fp, ".p %hdto", Asop);
line_ct+=6;

for(i=0; i<FANOUTS; i++) {
for(j=0; j<TABLE_SIZE; j++) proc.table[i][j] = 0;

}

for(i=0; i<sop; i++) {
fscanf(fp, "%s %sto", pattern, sj/alue);
line_ct++; "*
value = atob(s_value);
enumerate(pattem, value, proc.table[0]);
enumerate(pattem, value, proc.table[lj);

}
If (outs) Order(Aproc);
fgets(line, 8192, fp);
line ct++;
If (sircmpOine, ".eto"))

quit(line_ct, "Error No .e found in table");

sendjproc mfo(clump, proc);
}
fclose(fp);
return(primaryj3iputs);

buUdj3i_infc<primary_inputs, fejpijnfo, rec) blUld pi iflfo
Send *primary_inputs; ~~
Pi *fe_pijnfo;
short recT
{
tot b, i;
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upload.c upload.c

...build_piJnfo
tot vec, order,
tot off, bytej>ffset;
char m_byte[256];

for(b=0; b<32; b++) m_byte[b] = 0;
for(b=0; b<primaryjhputs->num; b++) {

vec = primary_inputs->vector[b];
m byte(vec/8]"s= 1;

>
off =0;
for(b=0; b<32; b++) {

If (m_byte[b]) {
fejMjHifo->off5etloff] = (off_t) b * VECS;
m byte[b] = off-H-; ~~
If"(off >= PIJBYTES) {

rpnntf(stderr, Too many PI in rec %dto", rec);
return;

}
>

}
fejpijjifo->numj>i_bytes = off;

for(i=0; kPIjBYTES; i++) imHj?ijBble(fejMjjifo->pi_mapping[i]);

for(b=0; b<primary_inputs->num; b++) {
vec = primary_inputs->vector[b];
order = primary_inputs->orderIbj;
bytejsffset = m~byte[vec/8];
modj^le(fejpijlnfo->TOjrnapping[bytej>ffset], vec, order);

mod_table(table, pos, order) mod tohlc
unsigned short *table; —
tot pos, order;
{
tot vector;
unsigned short val, mask;

pos = pos % 8;
for(vector = 0; vector < 256; vector-H-) {

mask = 1 « pos;
table[vector] = table[vector] |

(((vector A mask) != 0) « order);
}

send_clump_levels(clump_levels) Send clWTU) levels
short clump levels; — ~*
{

callRequest(m_get_levels, slzeof(short *), Aclump levels);
1

initj)i_table(table) initpi table
unsigned short *table; ~
{
tot i;

for(i=0; i<256; i++) table[i] = 0;
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upload.c upload.c

sendjpi_mfo(PI_index, fejpi info) Send pi info
tot *PI_index; " -r _ J
Pi *fejpi info;
{
short i, p;

for(i=0; i<8192; i++) {
If (PI_index[i] != -1) {

p = PI_index[i];
callRequest(mjgetjri_info, 2*slxeof(short}+sizeor(Pi *),

A(fejri_info[p]), i, p);

}

Order(proc) Order
Node *proc;
{
short i, f;
short j, output;
unsigned short vector;
Send *send;

for(f = 0; f < FANOUTS; f++) {
for(i=0; i < TABLE_SEE; i++) {

If (proc->table[f][i]) {
send = A(proc->senderIf]);
output = proc->table[f][i];
vector = 0;
for(j=0; j<send->num; j++) {

vector = vector | (((output A (1 «
send->vector[j])) != 0) «
send->order[j]);

}
proc->table[f][i] = vector,

send_proc_info(clump, proc) Send PWC info
short clump; —r —
Node proc;
{

)

callRequest(m_set_pTOCj3ifo,
slzeof(short) + sixeof(Node *\ dump, Aproc);

quit(Une, s) quit
short line;
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upload.c up!oad.c

...quit
char *s;
{

fprintf(stdeiT, "Line %d: %sto", line, s);
exit(l);

>

°«"(s) Quit
char *s; *1***
{

perror(s);
exit(l);

>

short re_order(buffer, p)
char *buffer;
Send *p;
{
short i, r=0;

for(i=0; i<p->num; i++)
r = r | (buffer[p->vector[i]] « p->order[i]);

return(r);
}
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slim.m slim.m

^include <stdioJi>
^Include <sys/time.h>
JHnclude <mpl.h>
#toclnde "psim.h"

Meflne empty 10000
#define send adr A(input buffer[m scnder->offset][vec count])
fdefine LEVELS 32

plural Pi pijTnfo;
plural short global_m_num_vectors;
plural unsigned short"** plural m_table;
plural char globaI_m_inputs;
plural Send * plural mjsender;

plural Node mjprocjinfo;
plural unsigned short input_bufferf16][LEVELS];
plural unsigned char input_vecs[PIjBYTES][VECS];
short networkjevels; ~~ ""

void performjrimulationO, m_n.ap();

visible void mj5elj3roc_info(clump, info)
short clump;
Node *info;
{
short nx, ny;

m_map(clump, Anx, Any);
blockbi(info, Amjprocjnfo, nx, ny, 1, 1, sIzeofQtode));

visible void mjgetj3ijnfo(fe_pi_info, clump, record)
Pi *fejpi_info;
short clump, record;
{
short nx, ny;

m_map(clump, Anx, Any);
blockIn(fej>i_info, Api_info, nx, ny, 1, 1, sizeof(pijnfo));

visible void m_getjtevels(fe_levels)
short *fe_levels; ~*
{

copyIn(fe levels, Anetwork_levels, sIzeof(short));
)

void m_map(clump, x, y)
short clump, *x, *y;
{

*y = clump / nxproc;
*x = clump % nxproc;

}
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slim.m

visible void m_init()
{
short

plural

>

quit(s)
char *s;

{

». j;
short x, y;

globaljnjmputs = -1;
global_m_inputs = 0;
global_mjium_vectors = 0;

for(x = 0; x<PIj3YTES; x++) {
for(y=0; y<256; y++) mjJifo.pij3uujring[x][y] = 0;

for(y=0; y<16; y++) {
for(x=0; x<LEVELS; x++) input_buffer[y)lx] = 0;

pMnfojiumjrijbytes = 0;

perroT(s);
exit(l);

void kludge()
{

}

global_m_num_vectors = mjwocjmfo.numj/ectors;
m_table = mjproc_info.table;
globaljnjinputs = mjwocjmfo.inputs;
mjsender = A(mjprocjlnfo.sender[0]);

visible void mjsimulate(pats, numjpo)
short pats, numjso;
{
short i;
tot d;
double itime;
struct timeval btime, etime;

/* _jrouterCount = 0; */
getnmeofday(Abtime, 0);
kludge();

d = open("/unp/inputs", O RDONLY);
If (d < 0) quit("opentt);
performjrimulation(num_po, d);

gettimeofday(Aetime, 0);
itime = (etime.tvjsec + 1.0e-6*etime.tv_usec)

(btime.rv_sec + 1.0e-6*btime.tvjjsec);
fprintf(stderr, 'Time: %eto", itime);

printfC'routerCount = %dto", routerCount);
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void performjnmulation(numjpo, d)
short numjpo, d;
{
plural register unsigned short i, j;
plural register unsigned short prevjratputO, prevjratputl;
plural register short m_num_vectors = glorjaljm_num_vectors;
plural register char mjtoputs" = globaljnjsmutsf ""
plural register unsigned short vector,- ~
plural register short vectors=0;
plural register short vec_count=0;
plural register short output;
plural register short sender_num = m_sender->num;
plural register char level; ~
plural short dest = mj5ender->destination;
plural unsigned short outbuf;
plural short pojndex = m_sender->order[0];
plural unsigned short prev" inputs[16];
char final_out[LEVELS][256];
char 1; ~
tot k, out_count = 0;

for(i=0; i<16; i++) {
forO=0; j<LEVELS; j++)

input_buffer[i][j] = empty;
}
prev_outputO = prev_outputl = empty;

for(l=0; 1<PI_BYTES; 1++) {
If (1 < pijnfojiumjpi_bytes) {

ppjseek(d, pi_info.offset[l], LjSET);
pp_read(d, input vecsfl], VECS);

}
}

level = mj3roc_info.level;

wblIe(vectors < m numvectors) {
If OeveT) {

level—;
continue;

}
vector = 0;
for(i=0; i<m_inputs; i++) {

j = inputJbuffer[i][vec_count];
If (j==empty) {

j = prev inputs[i];
)
else

prev_inputs[i] = j;
input_buffer[i][vec_count] = empty;
vector = vector | j;

)

/* PI evaluation * I

for(j=0; j<PIj3YTES; }++) {
vector = vector |

pi info.pijiiapping[j][input vecs[j][vectors]];
}

output = mj3rcc_mfo.table[0][vector];
If (dest = -1) {

mj3roc_info.table[2][vectors] = mjprc€_info.table[0][vector];
mj3rocjnfo.table[3]Ivectors] = mjproc_mfo.table[l][vector];
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eke {
outbuf = output;
If (outbuf 1= prev_outputO) {

pp_rsend(dest,Aoutbuf, sendjulr, stoeof(short));
prev outputO = outbuf;

}

mjsender = A(mjproc_info^ender[l]);
If (m_sender->num) {

dest = m_sender->destination;
outbuf = mj3roc_info.table[l][vector];
If (outbuf != prev_outputl) {

pp_Tsend(dest, Aoutbuf,
send_adr,sl2eof(short));

prev outputl = outbuf;
>

mjwnder = A(mjproc_mfo.sender[2]);
If (m_sender->num) {

dest = m_sender->dest lation;
outbuf = mjproc_info.table[2][vector];
If (outbuf != prevj3utput2) {

pp_rsend(dest, Aoutbuf,
sendjulr, sizeof(short));

prevjwtput2 = outbuf;
}

mjsender = A(mjjiroc_infoj5ender[3]);
If (m_sender->num) {

dest = m_sender->destinanon;
outbuf = mjproc_info.table[3][vector];
If (outbuf 1= prevjautput3) {

ppjrsend(dest, Aoutbuf,
sendjidr, sizeof(short));

prev_output3 = outbuf;
}

>
)

}
mjsender = A(mjproc_info.sender[0]);
dest = m_sender-xiestination;

•H-vectors;

vec_count = -H-vec_count % LEVELS;

If (networkjevels = 0) {
out_count = -Hout count % LEVELS;

)
else network levels—;
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