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Abstract

The objective of this project was to create a different scheme for compiling
the Esterel synchronous reactive programming language [6, 5, 4, 9] which could
handle larger programs, facilitates debugging, and could be easily retargeted to
ward different architectures. The approach presented here uses an intermediate
representation which is somewhere between a high-level reactive language like
Esterel and assembly code for a traditional processor. This is similar to the ic
format used in the Esterel V3 compiler [8] and Baker's NDAM[2, 3]. Compila
tion proceeds by translating this into assembly code for a SPARC processor.

This differs significantly from the scheme used in the V3 compiler, which
derives a single finite-state machine representing the behavior of the program.
The FSM approach offers fast executables and exact causality checking, but
suffers from exponential growth of compile times and object code sizes.

This report describes the Esterel language, the intermediate representation
used by this new compiler, and how the format is translated into executable
SPARC assembly code. Its intended audience are those who wish to understand
the workings of this Esterel compiler and those simply curious about the Esterel
language.
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Chapter 1

Introduction

The synchronous, reactive programming language Esterel was devised by Berry
and Cosserat [6] to describe controllers for real-time systems. Esterel resembles
many high-level languages, but incorporates a model of time.

This document describes a compiler that translates Esterel into an inter
mediate form which is an assembly language for an ideal synchronous, reactive
machine, and then translates this into SPARC assembly code. This scheme
avoids the problems of rapidly-growing object code size and compilation times
in the Esterel V3 compiler supported by CISI Ingenierie [8].

Figure 1.1 illustrates where the compiler presented here fits into the syn
chronous, reactive development environment being developed at the University
of California, Berkeley. Baker [2] uses a similar intermediate format to define
a synchronous, reactive subset of the VHDL language, which is compiled into
Esterel and run with the Esterel V3 compiler. In addition, Baker [3] has also
shown that the intermediate representation can be compiled into finite state
machines which can then be forwarded to a model checking or language con
tainment verification system for further analysis.

In all development systems, the ability to simulate the system under devel
opment is important. Often, this is done exclusively to catch bugs, but it can
be used for other purposes. For example, the mock-upof the digital watch pre
sented in Appendix C could be used to evaluate the user interface of the watch.
However, since this is a reactive system, the utility of a simulator would drop
rapidly if the simulation was too slow.

The path used in [2] (S-VHDL -• NDAM -• Esterel) facilitates such simu
lation, but the Esterel compiler used in that study can have prohibitively long
compilation times and large executables. The compiler presented here compiles
quickly and produces a fast, small executable.

This document is arranged in roughly the order in which the compiler per
forms its tasks. Chapter 2 presents the Esterel language in some detail. Chap
ter 3 contains a description of the representation used as an intermediate be-
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tween Esterel source and assembly code. Chapter 4 discusses the issues in the
run-time system. Chapter 5 discusses the important notion of causality in Es
terel. Finally, Chapter 6 presents some experimental results and raises some
questions about the language. Appendices A and B describe the lexical as
pects of Estereland a BNF grammar. Appendix C describes a large Esterel
program—a digital watch with five functions.

1.1 Reactive Systems

Reactive systems respond continuously to their environment at a speed deter
mined by their environment. These differ from transformational systems which
have all input available at the beginning of execution and produce all output
by the end. Between these two extremes are interactive systems, which also
respond to their environment continuously, but do so at the system's rate, not
the environment's.

The C programming language is well-suited to constructing transformational
systems. The event model employed in the X Window System supports inter
active systems. Neither of these, however, directly supports the strict time
requirements imposed by reactive systems.

Many embedded systems are required to be reactive. For example, an anti-
lock braking system in a modern automobilewould be of little use if it required
anywhere between a second and a minute to detect and react to a wheel skidding.
An elevator controller which occasionally ignores a floor request would quickly
annoy its users.

1.2 Synchrony

To support reactive programming, Esterel adopts the strong synchrony model:1

The program reacts instantly to external events. Most instructions
take no time, including control structures. Instructions which do
take time, such as delay instructions, do so explicitly.

Adopting this model leads to time being treated as a sequence of discrete
instants between which nothing of interest happens. Events, such as a but
ton being depressed, happen in a particular instant. In the same instant, the
program computes and presents its reaction to the event.

This leads to a straightforward notion of concurrency. When two events
occur, either they occur in exactly the same instant (are concurrent), or in
different instants.

1called the strong synchrony hypothesis elsewhere
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module simple:
input A, B, C;
output D, E, F;

loop

await A ; emit D ; await A

end

II

every B do
emit F

end

I

await B ; emit E ; await C ; emit E
II

B

C

-• time

Figure 1.2: Esterel's model of time.
Presented the input events shown above the time line, the Esterel program
shown produces the events listed below the time line.

Figure 1.2 on page 7 illustrates these concepts. An instant is denoted by a
vertical tick on the time line. The input events for that instant are listed above
this and the events these produce are shown below.

Real machines are not, of course, infinitely fast. But if the machine always
has enough time to compute its reaction before the next event arrives, then the
perfect synchrony model is satisfied.

1.3 Signals

A signal is a channel on which events occur. For example, a digital stopwatch
with a button labeled start/stop might have an input signal called START/STOP
which has an event each time the button is pressed. It might also employ
signals called SECOHD and MIHUTE which have events every second and minute



respectively. It would be natural to synchronize these so that an event on MIHUTE
occured every sixty seconds. Such synchronization can be specified exactly in
Esterel:

every 60 SECOHD do

emit MIHUTE

end

Esterel supports two types of signal. A pure signal is only ever present
or absent. A valued signal is either absent, or present with some value. For
example, in an elevator controller, there might be a pure signal DOORCLOSED
indicating that the door has closed, and a valued signal called FLOOR indicating
on which floor the car has just arrived.

1.4 Previous Work

Berry and Cosserat, the designers of Esterel, write [6]

The goal of the ESTEREL project is to develop a real-time lan
guage based on a rigorous formal model, and actually to develop
simultaneously the language, its semantics and its implementation.

They give the semantics [6] through a set of rewrite rules. These take an
Esterel program, a set of input events, and a memory state to produce a set of
output events, a new memory state, and a new Esterel program which does in
its first instant what the old program would do in its second instant.

With a program to perform such a rewrite (originally implemented in a
LISP-like language), it is a straightforward task to build an interpreter, albeit
a slow one.

Shortly after the interpreter was developed, it was discovered that the rules
could also produce an Esterel compiler. Because Esterel has no dynamic data
allocation (in particular it contains no recursion), every Esterel program can be
treated as a finite-state machine. This is made easier when the data portion
(separate from the signal portion) is abstracted away.

To compile an Esterel program, an FSM is formed whose states are labeled
with complete Esterel programs and whose transitions are labeled with sets of
input events. The reset state is labeled with the program to be compiled. The
rewrite rules are applied to this program to find the program which results
from every possible set of input events. Each of these is a potential new state,
which is then rewritten with every possible set of input events which may form
new states. This process continues until all states, when rewritten with every
possible set ofinput signals, take transitions to other established states. When
this process is completed, the state labels can be discarded. At each step, in

8



effect, the derivative of the state machine with respect to some input symbols
is taken[7].

To keep the number of states within reason, all data-dependent actions are
treated separately. Whena transition (the execution ofa program in an instant)
affects memory, perhaps by evaluating an expression, the transition is labeled
with that expression. At run-time, the expression is evaluated and the result
stored when that transition is taken.

Data-dependent conditionalstatements (i.e., if statements) complicatethings.
Every time an ii statement is encountered in a transition, it effectively splits
that transition into two branches. At run-time, the ii condition is tested and
the appropriate branch is taken. Each if statement can, at worst, double the
size of the state machine.

This compilation scheme was used in an earlier Esterel compiler. The latest,
the Esterel V3 compiler currently supported by CISI INGENIERIE [8] takes
a similar approach: it translates the pure Esterel source into an intermediate
representation (called ic) which is then used to form an FSM (represented in
the oc file format) which captures all behavior of the program.

This approach has nice theoretical properties, but has a few shortcomings.
In particular, the number of states is potentially exponential in the size of the
program, and compilation (i.e., determining the FSM) takes time proportional
to the product of the number of states and the number of possible input signal
combinations, which is potentially exponential in the number of input signals.
For an example of how bad this can be, see Table 6.1 on page 47.

To partially alleviate the explosion in the number of input signal combina
tions, the keyword relation was included, which allows the programmer to
reduce the number of possible input combinations by placing constraints on
input signals. For example, signals can be marked as mutually exclusive.

The FSM approach allows for the possibility of many instructions being
compiled away so that they take no time during execution, leading to a program
with a constant response time. Manipulation of pure internal signals can be
treated in this manner, but data manipulation cannot, making truly constant
response time unlikely.

The main advantage of compiling Esterel source into an FSM is that it
ensures the program is causal and actually makes sense as a specification. It is
comparatively easy in Esterel to specify a program which is a paradox, usually
of the form "if this happened, then it did not." If a FSM can be found, then
the program is guaranteed, at least, to run. For further discussion of this, see
Chapter 5.

The V3 compiler attempts to address the problems of large programs with
the -cascade option, but this is limited to cases where the program can be
broken up into modules which have no feedback, i.e., there exists an ordering of
the modules where module i only depends on the actions of modules 0,..., i— 1.
However, the correctness of this decomposition is only ensured if the program
can be compiled without the option, which can be simply impossible due to



memory/disk space constraints.
The other problem with the FSM approach is debugging. Since a particular

Esterel instruction does not usually map directly to a specific section of code
in the executable, it's difficult to say which instructions were executed. In
particular, "single-stepping" is not practical.

1.5 An Alternative

The approach to compiling Esterel presented here is far more traditional. The
scheme first mechanically translates the source text into an intermediate rep
resentation similar to three-address code used in modern optimizing compilers,
then translates the intermediaterepresentation directly into assembly codefor a
processor. Currently, this compiler produces code for the SPARC environment.
This target was chosen mostly out of convenience—the compiler could easily be
adapted to another assembly language, or to produce C code.

Calculatingthe response for each instant is performed as a fixed-point com
putation, effectively breaking each instant into a series of steps, as shown in
Figure 1.3 on page 11. The compiler produces a routine which, when called,
takes one of these steps. This is called by a common outer loop which han
dles signals from the environment and a few housekeeping chores. The issue of
convergence is subtle, but in practice the number of iterations required is small
(< 20) and fairly constant during the execution of a program.

This compilation approach works well with larger programs. The effort
required by the compiler, the size of the executable, and its execution time are
all approximately linearin the size ofthe original Esterel source. This advantage
becomes very clear for large programs, where there can be over two orders of
magnitudedifference in times/sizes compared to the V3 compiler (see Table 6.2
on page 47).

Another advantage to this approach is that it is more easily debugged. Since
most instructions in the source program have a direct manifestation in the final
executable, stepping through the program and observing the effects of each
instruction is feasible.

Finally, a slight variant of the intermediate representation used here has
been used to compile a synchronous, reactive subset of VHDL (see [2, 3]). This
suggests that a more general synchronous-reactive compiler could be built by
adding additional front ends which use the same intermediate representation.

10
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Figure 1.3: Computing the reaction of an Esterel program.
As in Figure 1.2, the input events are shown above the time line. The program
computes its reaction in a series of steps following each instant. As long as
these steps are completed before the next instant, the perfect synchrony model
is satisfied.

A programmer need not and should not consider this—the program will behave
as if the signals appear as shown in Figure 1.2.

11



Chapter 2

The Esterel Language

Esterel is a block-structured textual language with a syntax similar to many
high-level languages. It has nested if-then-else statements, loops, and the fa
miliar infix expression syntax. It also has constructs for parallel execution,
preemption, and exception handling.

Esterel's semantics are defined by a set of core instructions. The remaining
instructions are convenient shorthands for combinations of these. This scheme
is attractive because it simplifies formal treatments of the language, yet allows
a programmer to write programs whose behavior is much clearer to the human
reader.

2.1 Esterel's Model of Time

Esterel's model of time is fundamental to the definition of the language. As
described earlier, Esterel invokes the strong synchrony model and assumes the
program reacts instantly to stimulus. In this framework, the execution of the
program is divided up into discrete instants. In each instant, some set of input
events is presented and the program computes a set of output events.

2.2 Signals, Sensors, and Variables

A signal is a broadcast channel for events. Esterel supports two varieties

• Pure signals are either present or absent in an instant, but never both.

• Valued signals are pure signals with an associated value which only changes
on event boundaries, but may be read at any time. The ? operator returns
the value of a signal in an expression. For example, ?A refers to the value
of signal A.

12



Sensors are used to represent continuously-varying environmental inputs.
Their values are read in the same manner as valued signals, but there is never
an event on a sensor, even when the value changes. Sensors may only be inputs
from the environment.

Esterel has local variables, but no global variables. These may take boolean
or integer values.1 The value of a variable is set by assignment, and may be
tested by an if-then construct.

Signals are used copiously throughout Esterel programs, both for commu
nication with the environment and for internal communication. For most ap
plications, signals are preferred over variables because of their synchronizing
ability—and instruction which requires the value of a signal is suspended until
the signal has been emitted by another part of the program. Shared variables
(written in one part of the program, read in another section executing in parallel
in the same instant) are not guaranteed to contain the correct values.

2.3 Occurrences

An occurrence describes an instant (the instant in which the occurrence is said to
elapse) in terms of one or more signal events. Occurrences are used throughout
Esterel for synchronization between signals and instructions. For example, the
await instruction, which simply delays until its occurrence has elapsed, provides
a simple form of synchronization.

Occurrences take one of three forms:

• Simple

The occurrence elapses in the instant the given signal has an event, ex
cluding any in the current instant.

• Immediate

The occurrence elapses in the instant the given signal has an event, in
cluding any in the current instant.

• Counted

The occurrence elapses in the same instant as the nth event on the given
signal, excluding any in the current instant.

The three types of occurrences are depicted in Figure 2.1.

1The Esterel V3 compiler supportsthe importation of variables with morecomplex types
from a host language (such as C), which may be used as arguments to functions from that
language. The compiler described herein does not support this.

13
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Figure 2.1: Illustration of the three types of occurrences.

2.4 Structure

An Esterel program is broken into a number of modules that execute in parallel.
Each module definition contains an interface portion and a body composed of
instructions.

Instructions may be composed in sequence or in parallel. Any instruction
may be such a composition.

• »i ; *2 ; • • • ; in

Instructions in a semicolon-delimitedsequence are executed in order. First,
ii is executed. When i\ terminates, %2 is executed, and so on. When in
terminates, the sequence itself terminates.

These instructions may terminate instantly, leading to an ordering of in
structions within an instant. However, something like emit A ; emit B is
equivalent to emit B ; emit Asince there is no ordering of events within
an instant.

• >i 11 1*2 11 • • • 11 tn

Instructions delimited by double vertical bars are executed in parallel. t'i
through i„ are executed immediately. When all instructions have termi
nated, then the parallel construct terminates.

2.5 Core Instructions

2.5.1 Signal

A local signal s is introduced an instruction i by the following construct

signal s in
i

end

The signal s can only be used within the instruction t (which may be a
composition of instructions), and is not visible outside of the signal construct.

14



2.5.2 Var

A local variable t; with type t (integer or boolean) is introduced into an
instruction i with

var v : t in

i

end

An initializing expression e may be included. This is evaluated when the
var construct is first entered.

var v := e : t in

t

end

Like the signal construct, the variable v can only be used within the in
struction i, and is not visible elsewhere.

2.5.3 Emit

The emit instruction places an event on a signal s in the current instant and
terminates instantly.

emit s

If the signal s is valued, then the emit instruction includes an expression
which is also evaluated instantly.

emit s( e )

2.5.4 Halt

The halt instruction does nothing and never terminates. This is the fundamen
tal time consumer in Esterel. It appears in many composite instructions, often
in situations where it can be preempted.

2.5.5 Preemption and Exceptions

The core preemption construct takes the form

do

»i

watching o
timeout %2 end

15



The instruction ii is executed while occurrence o is watched. If »i terminates
before o elapses, then the whole do construct terminates. If o does elapse, ii
is terminated before it has a chance to execute for that the instant and 1*2 is
executed.

Esterel's exception construct is

trap E in

»i

handle E do ii
end

The instruction i\t which somewhere contains the instruction exit E, is
executed while exception E is watched. If ii terminates without E being raised
by the exit instruction, then the trap construct terminates. If z'i raises E, then
1*1 is terminated and t'2 is executed. However, when E is raised, t'i is allowed to
finish for the instant.

Figure 2.2 on page 17 illustrates the differences between do and trap. It
employs the composite instruction await o which is a shorthand for do halt
watching o, which simply waits for the given occurrence to elapse before ter
minating.

An exception may be given a value that can be read within the instruction
%2 with the ?? operator. For example, ??F refers to the value of exception F,
given by the expression e in exit F(e).

2.5.6 Conditionals

The if statement in Esterel has the familiar form

if e then t'i
else z*2
end

The boolean expression e is evaluated instantly. If true, then instruction t'i
is executed, otherwise, »2 is executed.

The other conditional statement in Esterel checks for the presence of a signal.

present s then i\
else t'2
end

Here, instruction 1*1 is executed if signal s is present in the current instant.
Otherwise, 1*2 is executed.

For both conditional statements, either the then i\ or the else 1*2 clause
may be omitted.

16



do

await A ; emit B ; halt

watching C

trap E in
await A ; emit B ; halt

II

await C ; exit E

end

r

<

K.

r

<

K.

r

A

C

do entered,
A, C ignored

do entered,
A ignored

A

c

B do terminated

B emitted

A

C

do terminated,
B not emitted

trap entered, B trap terminated
A, C ignored B emitted

A A

C

trap entered,
A ignored

A

C

B

B emitted,
trap terminated

do

await immediate A ; emit B ; halt <

watching immediate C

do entered and terminated,
A ignored

^.
do entered,
B emitted

A

C

do terminated

Figure 2.2: An illustration of the differences between do and trap and the effect
of the immediate keyword.
On the left are the responses of the fragments on the right to two different
sequences of input events.
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2.5.7 Loop

Esterel includes an infinite loop instruction:

loop
i

end

This executes the instruction i, waits for it to finish, and executes it again.
True infinite loops are often desired in controllers, but when necessary, these
can be terminated through preemption or an exception. It is an error for the
instruction i to take no time. Forexample,loop emit S end. This corresponds
to the program doing an infinite amount of work in zero time.

2.6 Composite Instructions

2.6.1 await

The await instruction is one of the most common. It waits for its occurrence
to elapse and then terminates.

do

await o translates to halt

watching o

await also comes in the following elaborate form:

await

case oi do ii
case 02 do ii

case on do in
end

This waits for one of the occurrences oi,...,on to elapse, say oj. Then,
instruction ij is executed and the await terminates. If two occurrences elapse
in the same instant, the one listed first takes precedence.

This can be built using preemption and exceptions:

trap El in

trap E2 in

do halt watching o\
timeout exit El end

await

case 0\ do i\
translates to 11

case o2 do t2 . . _. . , .
do halt watching 02

timeout exit E2 end

handle E2 do ii end

handle El do i\ end

18



2.6.2 do ... upto

do do

i translates to i ; halt
upto o watching o

In effect, this forces the duration of instruction i to be exactly the length of
occurrence o, terminating i early if it does not finish before o elapses.

2.6.3 loop ... each

This modification of the loop instruction restarts itself whenever its occurrence
elapses:

loop
i translates to

loop
do

i ; halt
each 0 watching o

end

2.6.4 every ... do

This repeatedly synchronizes its instruction with its occurrence:

every o do

i translates to

end

await 0

loop
do

i ; halt

watching o
end

2.6.5 sustain

Although signals are often thought of as events, the sustain instruction allows
them to be used as flags. It uses a special signal, TICK, which is present in
every instant by definition. Thus, sustain forces another signal to be present
in every instant.

Typically, sustain is used with a do or a trap that defines the length of
time that it is executing, and hence, the length of time that its flag is asserted.

every TICK do
sustain s translates to emit s

end

19



2.7 A Stopwatch Controller in Esterel

Figure 2.3 on page 22 depicts a simple stopwatch controller illustrating many
common characteristics of Esterel programs. The module consists of four (elab
orate) instructions running in parallel, each responsible for some part of the
stopwatch. All communication, both with the outside world and between differ
ent parts of the program, is done through signals. Preemption and exceptions
are used liberally.

2.7.1 Signals

A typical digital stopwatch has two buttons marked start/stop and lap/reset,
here conveyed through the SS and LR input signals respectively. SECOND is a
periodic signal assumed to be generated by an external oscillator once a second.

When in lap mode, the stopwatch continues to measure time, but the display
does not change. The FROZEN output is present when the display is in this mode.
The integer-valued output TIME is the value for the display, and does not change
when the stopwatch is lap mode.

The internal signal RESET resets the counter. LAP indicates a switch between
lap and normal mode. RUN is used as a flag to indicate that the stopwatch is
running, and is present in every such instant.

2.7.2 The Start/Stop Button Handler

The first process is responsible for the action of the start/stop button, which is
a simple toggle. When the stopwatch is running, the RUN signal present in every
instant, which is enforced by the sustain instruction.

This illustrates how simply state information can be incorporated into Es
terel code. Here, there are two states: one which waits for SS, and one which
sustains the RUN signal until the next SS signal.

2.7.3 The Lap/Reset Button Handler

The second process is responsible for decoding the action of the lap/reset button.
When lap/reset is pressed and the the stopwatch is running, the stopwatch
switches into or out of lap mode. If the stopwatch is not running and not in
lap mode, then the action is to reset. The every construct ensures that these
actions are taken exactly when the lap/reset button is pressed.

This behavior could be described by the following boolean equations

LAP = B2 • RUN

RESET = B2 • RUN • FROZEN
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Esterel's representation is more flexible than this. Currently this process
contains no state information, but in Esterel, it can be added without a signifi
cant change to the code. The precedence of the operations is made explicit by
the familiar form of the present instruction.

2.7.4 The Frozen Display Handler

The third process keeps track of the lap mode and generates the FROZEN signal
accordingly. Similar to the first process, it implements a toggle which sustains
the FROZEN signal after an odd number of LAP events.

This uses the trap construct to ensure that FROZEN is sustained up to and
including the instant LAP appears. This is in contrast with the first process
which does not emit RUN when the start/stop button is pressed the second time.

2.7.5 The Counter

The fourth process, the counter, illustrates the use of a local variable and how
the explicit initialization feature can be used. By enclosing the var declaration
and its initialization expression in a loop. ..upto preemption construct, the
reset behavior is automatic and straightforward. The way to think about it is
this: A counter is something that starts at zero and goes up every second that
the stopwatch is running. If the display is not frozen, then this count should be
broadcast to the display. After every reset, this process is restarted.
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module STOPWATCH:

input SS, LR, SECOND;

output TIHE(integer);

signal RESET, LAP, RUN, FROZEN in

'/, Start/Stop Button Handler

loop
await SS;

do

sustain RUN

upto SS

end

II

'/, Lap/Reset Button Handler

every LR do

present RUN then emit LAP

else present FROZEN

else emit RESET

end

end

end

II

% Frozen Display Handler

loop

await LAP ;

trap T in

sustain FROZEN

II

await LAP ; exit T

end

end

II

*/t Counter

loop

var second := 0 : integer in
emit TIME(second) ;

every SECOND do

present RUN then

second := second + 1

end ;

present FROZEN else

emit TINE(second)

end

end

end

upto RESET

end

Figure 2.3: A stopwatch controller written in Esterel.
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Chapter 3

The Intermediate

Representation

Like many compilers, this compiler translates source code into an intermediate
representation before generating assembly language for the target processor.
The intermediate representation used here was chosen using the following crite
ria:

• Completeness—Every construct in Esterel must have a correct translation
into the intermediate representation. In particular, it must support the
parallel execution and preemption semantics of Esterel.

• Generality—A similar representation has been used in a compilation scheme
for a synchronous subset of VHDL[2,3]. Mimickingthis workensures that
this intermediate representation could be used in other situations, allowing
the reuse of the code generator.

• Simplicity—Keeping the intermediate representation as simple as possible
simplifies the final code generation phase and makes optimization much
easier.

The result of balancing these sometimes conflicting requirements is presented
below. The intermediate representation chosen is very close to the three-address
code used in modern optimizing compilers[1]. All but one of the instructions are
"simple" in some sense—they translate into only a few assembly-language in
structions. The remaining instruction, try, is responsible for parallel execution
and preemption and is really the workhorse of the language.

The notion of time employed in the intermediate representation is the same
synchronous/reactive one used by Esterel. Only the halt instruction takes any
time—the rest happen instantly, but in an order.
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The following presentation introduces an informal syntax which corresponds
directly with the data structures used inside the compiler1. This syntax is
intended to be illustrative rather than machine-readable, although the compiler
can produce it.

3.1 Data Objects

Unlike a typical assembly language, the intermediate representation manipu
lates objects at a higher level than memory and registers. In particular, valued
and pure signals identical to Esterel's are included, as well as valued and pure
exceptions.

All objects in the intermediate representation are globally accessible—the
correct scoping is imposed by the structure of the Esterel program.

3.1.1 Signals

sO, si, s2, ...
The intermediate representation deals with both pure and valued (with an

integer value) signals. At any time during the execution of the program, each
signal is in one of the following three states:

• present: The signal is present in the current instant.

• absent: The signal is absent in the current instant.

• unknown: The presence or absence of the signal in the current instant is
unknown.

All the signals used in the program are listed in the Signals block. Each is
listed along with its name from the Esterel program, and its type. For example,
si: RIHG specifies that pure signal si represents the signal called RING in the
Esterel source program. s5: A(int) indicates that signal A in the Esterel
source has been assigned to signal s5.

3.1.2 Variables

vO, vi, v2, ...

Variables take integer values. Esterel's booleans are implemented using the
integer values 1 and 0 for true and false respectively. Variable are listed in the
Local Variables block along with their names from the Esterel program. No
type is specified—all are integers.

1Processesare classeswith variable-sized arrays of instruction objects, an integer denoting
the process's number, and an integer denoting its program counter. Each instruction is a
subclass of a general instruction class. For example, the try class contains an array of point
ers to the subprocesses it calls, an array of watch clauses, and an array of handle clauses.
Information about data objects is also stored in arrays.
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source has been assigned to signal s5.

3.1.2 Variables

vO, vl, v2, ...

Variables take integer values. Esterel's booleans are implemented using the
integer values 1 and 0 for true and false respectively. Variable are listed in the
Local Variables block along with their names from the Esterel program. No
type is specified—all are integers.

1Processes are classes with variable-sized arrays of instruction objects, an integer denoting
the process's number, and an integer denoting its program counter. Each instruction is a
subclass of a general instruction class. For example, the try class contains an array of point
ers to the subprocesses it calls, an array of watch clauses, and an array of handle clauses.
Information about data objects is also stored in arrays.
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3.1.3 Registers

rO, rl, r2, ...
Like variables, these take integer values, but their values are only guaranteed

to persist until the next non-assignment statement. Registers are used primarily
to store intermediate results in evaluating expressions.

3.1.4 Exceptions

eO, el, e2, ...
The intermediate representation contains both pure and valued exceptions.

At any time during execution, each exception is either

• raised: An exit statement has raised the exception

• lowered: The exception is being observed, but no corresponding exit
has been executed.

Like signals, each exception is listed in the Exceptions block along with an
(int) designation when the exception is valued, and its name from the Esterel
program.

3.1.5 Counters

cO, cl, c2, ...
Counters are used in the intermediate representation to keep track of the

number of events that have been observed on a particular signal in a counted
occurrence. Like signals, each counter is listed along with its name (the name
of the signal being counted in that occurrence) in the Counters block.

3.2 Processes

The program of the intermediate format is build from a hierarchically-arranged
group of processes—sequences of instructions. A single process behaves like a
program on a standard processor—each has a program counter pointing to the
instruction currently being executed. Once that instruction has been executed,
the program counter is moved to the next instruction to be executed (usually
the next in the sequence, but branches are allowed) and execution continues.
Each instruction in a process is assigned a small integer label used for branch
targets.

Execution of a process may not "fall off the end." The last instruction of
a process is a halt, which makes the process's execution cease but does not
terminate it, an exit which terminates the process, or an unconditional goto.

Each process is introduced with a line giving its unique name (PO, PI, etc.)
and which program counter it uses, e.g., PCI, PCS, etc. Each instruction in
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a process is given an index. (0:, 1:, etc.) These labels are used as branch
destinations and simplifiescorrelating assembly language instructions with those
in the intermediate format.

3.3 Simple Instructions

3.3.1 Assignment Statments

The intermediate representation has one all-encompassing assignment statement
which handles most data manipulation. It may have two or three arguments,
each of which may be one of the data objects described above or a constant
integer. Many combinations of these are unused—for example, the destination
of an assignment may not be constant, and only the simple assignment form is
allowed to have non-register operands. These policies of use were imposed to
simplify the translation of these instructions into assembly code for the SPARC
RISC processor, and would simplify the translation for other processors.

• d := s

Simple assignment. The value of the source is written into the destination.

• d := op s

Unary operation. The operator is applied to the value of the source and
the result written into the destination. The unary operators are integer
negate, binary NOT, and decrement.

• d : = si op «2

Binary operation. The operator is applied to the values of the two sources
and the result written into the destination. The binary operators are
integer add, subtract, multiply, divide, and modulus, binary AND and
OR, integer equality, integer less than, and integer less than or equal to.

When a signal or exception is referenced, the value returned is the value of
the signal in the current instant, and not presence/absence or raised/lowered
information. For such accesses to be legal, the presence/absence of a signal must
be established in an instant or the raised status of an exception must be known,
either from context (The code run by a handle clause of a try obviously knows
that the exception has been raised.) or through force (The require statement
ensures that the value of a signal is known correctly.).

3.3.2 Flow-of-Control Statements

The intermediate representation has a general branch instruction which either
unconditionally branches to an instruction, checks for the zero/non-zero status
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ofa register orvariable, the presence/absence ofa signal, or the raised/lowered
status of an exception. It takes the following forms

goto / Unconditional branch to instruction /
ii s goto / If status ofs is "true," branch to instruction /
ii not s goto / If status ofs is "false," branch to instruction /

3.3.3 emit

The emit statement is very similar to its Esterel counterpart. It makes the
given signal present in the current instant, and may set its value, if any. The
two forms are

emit s Emit the signal s
emit s r Emit the signal s setting its value to register r

3.3.4 exit

The exit statement, like its Esterel counterpart, can raise an exception and set
its value. In the intermediate representation, it alsoserve to terminate a process
(In Esterel, this action was implicit.) The three forms are

exit Terminate the process
exit e Terminate the process and raise exception e
exit e r Terminate the process and raise exception e,

assigning it the value in register r.

3.3.5 halt

The halt statment, like its Esterel counterpart, prevents further execution of
the process, but does not allow it to terminate. This is the only mechanism in
the intermediate representation which consumes time. Between instants, each
active process is either stopped at a halt or waiting on a halted subprocess.

3.3.6 require

require s\ S2 • • •s*

When the value of a signal is needed to evaluate an expression, the newest
value of that signal is needed. Similarly, a conditional branch which depends on
the presence or absence of a signal must know whether the signal is present or
absent in an instant before proceeding. The require instruction ensures that
the named signals are known before execution may proceed.
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3.4 The try Instruction

The try instruction is responsible for parallel execution of processes and both
kinds ofpreemption (signal- and exception-prompted). Its most general form is

try

call pi
call p2

call pn
watching s\ c\ goto wli
watching s2 C2 goto wl2

watching sm cm goto wlm
handle e\ goto el\
handle e2 goto e/2

handle ep goto elp

This calls subprocesses pi through pn while monitoring signals si through
sm and exceptions e\ through ep. If one of these signals is present or an ex
ception is raised, then the subprocesses are terminated and the handler pointed
to by the goto is executed, otherwise the instruction terminates when all of its
subprocesses have.

More specifically, if exception e,- is raised and exceptions ei through et_i
are not, then the subprocesses are terminated after they have completed for the
instant and execution proceeds with instruction e/,-. If signal s* is present, then
counter c,- is decremented. If counter c,- becomes zero and counters c\ through
c,_i are non-zero, then thesubprocesses areterminated andexecution proceeds
with instruction wl{. The signals are checked before any subprocesses execute
in every instant except the first in which the try is executed.

The semanticsof this instruction were chosen to capture Esterel's most diffi
cult instruction, await.. .case. This can have a mixture ofcounted, uncounted,
and immediate occurrences. Counters were introduced to handle the counted
occurrences. Another approach would have been to introduce a separate pro
cess to count the signals. However, since the semantics require that when a
preempting signaloccurs, none of the processes will be executed in that instant,
it was not clear how to do this.

In a previous version of this compiler, there were two varieties of the try
instruction, one that dealt only with signals, and one that dealt only with ex
ceptions. All instructions in Esterel can be represented by a nesting of such
constructs, but since much of the code was the same (program counter ini-
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tialization, subprocess calling, potential set calculation, and so forth), the two
varieties were merged.

3.5 Translating Esterel

The translation of a small Esterel program into the intermediate format is shown
in Figure 3.1 on page 30. The await Ainstruction turns into a try which calls
a process containing a single halt while watching the awaited signal. The
present instruction, since it needs to know about a signal to correctly check
its condition, is composed of a require statement followed by a conditional
branch.

In this simple example, there are three expressions: "3" in the initialization
of variable C, "C + 3" in the first emit, and "C - 2" in the second. These ex
pressions produce code in a RISC-like load-store manner. Values which reside
in "memory" (i.e., non-registers) are loaded into registers before being manipu
lated.

A more elaborate program and its translation are shown in Figure 3.2 on
page31. This example contains an await.. .case statement, which is the most
complex in Esterel, employing the three types of occurrences (simple, counted,
and immediate). The counted occurrence requires a counter to be loaded with
the iteration count before the try instruction is entered (instructions 2 and 3
of process PO). The immediate occurrence is similar to a simple occurrence,
but the presence of the signal is checked before the try instruction is entered
(instructions 0 and 1 of process PO).

This example also illustrates the use of an exception. The statements which
are observed for the exception are placed in a separate process (P3) and run by
a try (instruction 14 of process PO) with a handle clause.

The value of signal B is read by the ? operator in the exit instruction.
The exit instruction (instruction 5 of process P3) raises the exception and sets
its value to the contents of register rO which contains the value of signal s2.
Note that this signal was required (in instruction 3) before the expression was
evaluated. The value of the exception is loaded in the handler routine and
emitted through signal F (instructions 12 and 13 of process PO).
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module example1:
input A,D;
output B(integer);

loop
var C := 3

await A ;

present D then
emit B(C+3)

else

emit B(C-2)
end

end

end

integer in

Local variables

vO: C

Signals 4( 1 valued )
sO: TICK

si: A

s2: D

s3: B(int)

Process PO uses PCO

0: rO := 3

1: vO := rO

try

call PI

watching si goto 3

require s2
ii not s2 goto 10

rO := vO

rl := 3

rO := rO + rl

emit s3 rO

goto 14

rO := vO

rl := 2

rO := rO - rl

emit s3 rO

14: goto 0

Process PI oi process PO uses PCI
0: halt

Figure 3.1: A small example and its translation into the intermediate format.
The local variables and signals are listed above the processes. Each instruction
in each process is labeled with a small integer, and each process is introduced
with a name and which program counter it uses.
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module example2:
input A, B(integer), C;
output D, E, F(integer);

await

case A>4° emit H
case 3 B «U>

emit E

await A

emit D

case immediate

emit F(0)
end

>

trap e(integer) in
loop

await A ;
present B then

exit e(?B)
end

end

handle e do

emit F(??e)
end

Signals 7(2 valued )
sO: TICK

si: A s2: B(int) s3: C
s4: D s5: E s6: F(int)

Counters 1

cO: B

Exceptions 1(1 valued )
eO: e(int)

Process PO uses PCO

*0: require s3
1: if s3 goto 12

y2: rO := 3
3: cO := rO

4: try
call PI

watching si goto 6
watching s2 cO goto 8
watching s3 goto 12

5: goto 14

6: emit s4

7: goto 14

8: emit s5

9: try
call P2

105
watching si goto 10

emit s4

11: goto 14

'12: rO := 0

13: emit s6 rO

r14: try
call P3

handle eO goto 16
15: goto 18

r16: rO := eO

17: emit s6 rO

18: exit

rocess PI of process PO uses PCI
0: halt

rocess P2 of process PO uses PCI
0: halt

Process P3 of process PO uses PCI
0: try

call P4

watching si goto 1

1: require s2
2: if not s2 goto 7

require s2
rO := s2

exit eO rO
goto 0

Process P4 of process P3 uses PC2
0: halt

Figure 3.2: A further example illustrating the translation from Esterel into the
intermediate format.



Chapter 4

Execution

The intermediate format has been chosen so that virtually all instructions are
easy to execute on a traditional processor. This compiler generates code for the
SPARC architecture, although it could easily be retargeted to another. Arith
metic instructions translate, for the most part, into single assembly language
instructions, emit simply stores a value in an array in memory, and a condi
tional branch consists of a test followed by an assembly-languagebranch.

The difficult part of executing the intermediate format (and hence, Esterel)
is ensuring that the correct instructions execute in each instant in the right
order. For example, the subprocesses of a try must not be executed if any of
the watched signals are present in that instant. Also, if an expression reads the
value of a signal, and if some other part of the program is going to emit that
signal, the expression should get the new value, and not the old.

4.1 Causal Interleaving

The approach taken here turns the execution of the intermediate format into a
fixed-point computation on the set of signals, both internal and external. The
code generator produces a routine, hereafter referred to as the main process rou
tine, that takes incomplete information about the presence or absence of signals
and emits what signals it can, changing program counters, variables, counters,
exceptions, and so forth in the process. Execution for each instant consists set
ting all signals except those global inputs that are known to be present or absent
to unknown, and calling the routine repeatedly until the presence or absence of
each signal is known.

There is no instruction in the intermediate representation that "unemits" a
signal, so something else must establish the absence of a signal. A conservative
rule is used to decide which signals are absent:
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// an internal or output signal could not be emitted in the current
instant, then is marked as absent.

Much of the code produced is responsible for establishing which signals could
still be emitted in the current instant. In particular, when the main process has
executed what it can using the information it has, it returns the address of a
routine that marks all the signals that still have the potential to be emitted in
the current instant. The outer loop then marks all unknown signals which are
not in this potential set as absent.

This technique causes the set of present and absent signals to grow mono-
tonically and the set of unknown signals to shrink monotonically since once
a signal is marked as present, it cannot be marked as absent (only unknown
signals are marked as absent), and once it is marked as absent, it could not
thereafter be emitted since all signals that could possibly be emitted are placed
in the potential set.

4.2 Process Routines

Each process in the the intermediate representation is translated into a sequence
of assembly-language instructions, which compose its process routine.

Each process routine, when called, executes as many instructions as it can,
depending on the state of various signals, and returns with

• A program counter that points to the instruction to be executed the next
time the process routine is called;

• A potential set calculator that points to a routine that marks those signals
which could still be emitted in the current instant; and

• A status, one of

Terminated (0) The process has hit an exit instruction and has termi
nated. In this case, the returned program counter points to this same
exit instruction and the returned potential set calculator points to
a null routine (this process could not emit any more signals this in
stant).

Halted (1) The process has hit a halt instruction. In this case, the
returned program counter points to this same halt and the returned
potential set calculator points to a null routine.

Waiting (—1) This indicates that the process needs information about
more signals before it may proceed, but that it has more to do in
the current instant. The returned potential set calculator points to
a routine that marks the appropriate signals.
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If the process exits or halts, the returned program counter points to the
same exit or halt instruction. This simplifies the code that calls the process:
rather than having to test a flag or the programcounter against somethingthat
indicates the terminated or halted status of the process, it can always call the
process regardless of whether it has terminated.

When a process routine contains a try instruction, it calls other process rou
tines (i.e.,thosein call clauses ofthe try instruction). Potentialset calculators
also may call other potential set calculators with the relationships imposed by
the try instruction.

Each process is assigned a unique program counter. In any program, it may
not be possible for every process to be active simultaneously, so each program
counter may not have a unique process. In particular, if a process contains
two try instructions, the processes called by those try instructions may share
program counters. The assignmentof program counters is performed at compile
time with a simple recursive rule which makes a worst-case estimate of the
number of simultaneously-active processes.

4.3 Processor Registers

Processor registers are used to return the new program counter, the new poten
tial set calculation routine, and the return status.

Intermediate representationregisters are mapped directly onto processor reg
isters.

One processor register stores the base address of all the arrays for addressing
purposes.

Register use is shown in Table 4.2.

4.4 Simple Instructions

The compiler currently produces assembly code for the SPARC architecture.
This is a modern RISC processor with 32 32-bit registers. Register %g0 is
special—it always returns a zero, and may be used as the destination for a
result which is ignored.

The branch instructions on the SPARC have a single shadowed instruction
following. This instruction is not executed only if the annul flag (part of the
branch opcode) is set and the branch fails.

The one addressing mode used by the compiler adds a 12-bit immediate
value to a register to form a full 32-bit address. By putting the high-order bits
of the base address of the arrays in a register, this mode facilitates quick access
to all the run-time data. The syntax

[•/.i5+y.lo(_V+12)]
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Description C definition Multiplicity

Program Counters void (*PC[])() one per active process
point to process routines. These are function pointers.

Potential Function Pointers void (*POD)() one per active process
point to potential set calculation routines. These are function pointers.

Halted Flags char H[] one per active process
A process sets its halted flag to 1 when it is finished for the instant. At
the beginning of each instant, these flags are all cleared to 0 to restart the
processes for the instant. These flags are used by both the process routines
and the potential set calculators.

Signal Presence Flags char S[] one per signal
Each signal is either present (1), absent (—1), or unknown (0). At the
beginning of each instant, all but the input signals are set to unknown.

Signal Potential Flags char P[] one per signal
The potential set routines set each signal with the potential to be emitted
to 1. Those signals which have no potential (0), and are unknown are
marked as absent.

Signal Values int SVD

Variable Values int V[]

Counter Values int C[]

Exception Presence Flags char E[]

Exception Values int EV[]

one per valued signal

one per variable

one per counted occurrence

one per exception

one per valued exception

Table 4.1: List of all runtime data structures.

The size of each of these is determined at compile time.
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Registers
name use

V.gO Always zero
•/.oO Temporary
%ol Temporary
y.io rO

WLI rl

y.17 r7

•/.i2 Returned program counter
•/.i3 Returned potential set calculation routine
y.i4 Returned status (—1,0,1)
#/.i5 Base address of arrays

Table 4.2: Register usage for the SPARC processor.

means "take the low-order bits of the address of _V, an array, add twelve, and
add this to the register */,i5". y.i5 contains the base address of the arrays, so
this refers to the 12th byte of the _V array. Such a scheme allows for a small,
limited amount of data, but this has not presented a problem thus far.

4.4.1 Assignment Statements

Simple assignment instructions translate into single instructions:

• A memory load instruction (array to register), e.g.,

rO := vl -* Id t%i5+%lo(JT+4)] ,JJ10

• A memory store instruction (register to array)

v3 := rl -> st %ll,C5li5+%lo(_V+12)]

• A constant load (constant to register)

r2 := 5 —♦ mov 5//.12

Assignment instructions with unary and binary operands only reference reg
isters, so most translate to single instructions:

rO := not rl -• xnor %g0,%ll,%10
rl := r2 + r3 -> add %12,%13,%11

The comparison operators use the SPARC'S annul flag, which cancels the
execution of the instruction in the branch delay slot if the branch is not taken.
If the branch is taken, 1 is loaded, otherwise 0 is loaded.
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rl := r2 < r3 -• cmp */.12,y.l3
bl,a LL1

mov l,*/,rl
mov 0,*/£ri

LL1:

4.4.2 Flow-of-Control Statements

Each instruction is given a label like P5I3, which refers to instruction 3 of
process 5.

• Unconditional branches translate directly.

goto 1 -> ba P0I1
nop

• A register test translates to

if rl goto 5 -• tst y.ll
bne P3I5

nop

• A signal presence test translates to

if not si goto 3 -• ldsb [%i5+%lo(_S+l)],%oO
tst */,o0

bneg P2I3

nop

4.4.3 emit

emit simply stores the signal value, if any, and sets the signal to present:
emit s2 rl -»• st %ll,[%i5+%lo(_SV+8)] ! store value

mov l,'/.o0
stb y.o0, [y.i5+*/.lo(_S+2)] / set to present

AAA exit

An exit with an exception stores the exception value, if any, raises its exception,
sets the return PC to branch to the same exit instruction, and sets the return
potential set routine to null. It then "returns" to the try instruction which
called it, returning the halted status.

Returning the halted status in this case is done to get around a technical
point. If all other processes were also to terminate, the innermost enclosing
try would execute first. Since this try may not be watching for the given
exception (i.e., another further out would be), it may erroneously execute further
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instructions. The halted status prevents this possibility and since we can be
assured that some enclosing try is watching for the exception, it will be handled,

exit el rO -* st y.10, [y,i5+y,lo(_EV+4)3 / store value
mov i,'/,o0 / set to raised
stb y.oO,[y.i5+y.lo(_E+l)]

LL1:

set LL1, y,i2 / Return PC
set P01, y.i3 / Return PO
ba PR1

or y.i4, 1 , y.i4 / return HALTED

When the exit does not refer to an exception, the generated code is similar,
except that the terminated status is returned (implicitly) instead of the halted
status.

exit —* LL1:

set LL1, y.i2 / Return PC
set P01, y,i3 / Return PO
ba PR1

nop

4.4.5 halt

halt is much like an exit. Naturally, the halted status is returned,
halt -+ LL2:

set LL2, %i2 / Return PC
set P02, y.i3 / Return PO
ba PR2

or y,i4, 1, %i4 / return HALTED

4.4.6 Require

require may force a process to return with the waiting status. First, it checks its
signals and if none are unknown, it branches to the next instruction. Otherwise,
it returns with the waiting status and returns a potential set calculation routine
that marks those signals can be emitted.
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1: require s2 s3
2: emit sO

3: emit si

/ check signals s2 and sS
POI1:

ldsb C%i5+%lo(_S+2)] //.oO
tst '/,o0

be LLO

ldsb [y.i5+y,lo(_S+3)] //.oO
tst '/,o0

be P0I2

nop

/ Return waiting
LLO:

set P0Il,y.i2 / PC
set LLl,'/,i3 ! potential
ba PRO

or y,i4,-l,'/,i4 / return waiting

! Potential set calculator

! marks sO and si as having potential
LL1:

stb y.go,[y.i5+y.io(_p+o)]
stb y.go,cy.i5+y,io(_p+i)]
ba POO

nop

/

/ Code for emit
P0I2:

The potential set calculation for the require instruction is static, since
we know which segments of code (in particular, the first instructions of the
subprocesses of every try) may be executed in the current instant.

4.5 The try Instruction

try is the most complex of all the intermediate instructions, being responsible
for parallel execution, preemption, and exception handling. Because of this, it
also has significant responsibilities related to the potential set.

A try instruction's behavior changes with time. For example, it examines
any watched signals only after the first instant. The change is accomplished by
returning different program counters (i.e., not always pointing to the beginning
of the code for the try) as appropriate, and through the use of the halt array.

Most of the information a try instruction needs is available at compile time.
For example, it will always check the same signals and exceptions. This makes

39



for very simple, loop-free code in the executable.
A try instruction has the following structure:

initialize subprocess program counters
lower our exceptions

waiting for processes to run
call each of the subprocesses
a process has not completed

check the exceptions after completion

process is done for this instant,
but is still active

all subprocesses have terminated
waiting for watching signals

halted in this instant

need to know about all

watched signals before proceeding

PC,-...PCj =0
Efc...E, = 0
repeat

A:

call PC,-...PC;
if any processes returned waiting

return waiting, PC = A
if any exception was raised

branch to its handler

if any process returned halted
return halted, PC = B

branch to the next instruction

B:

if this process has been halted
return halted, PC = B

if any watched signals are unknown
return waiting, PC = B

decrement the counter of any counted
occurrence whose signal is present

if any occurrence elapsed
branch to its handler

end repeat

counter became zero, or
simple occurrence's signal present

The full potential-set calculator routine for a try is much more elaborate
than that used by require:

if process is not halted
callP0i...P0i potential set routines of subprocesses
mark potential set of each watch handler
mark potential set of each exception handler
mark potential set of next instruction

return

4.6 Example

The SPARC translation of the program of Figure 3.1 on page 30 is shown in
Figure 4.1 on page 41. The assembly code for the try instruction has been
placed in the second column for clarity.

Each instruction is given a label such as P0I1, which indicates process zero,
instruction one.
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Local variables
vO: C

Signals 4( 1 valued )
sO: TICK

si: A

s2: D

s3: B(int)

Process PO uses P

3

4

5

6

7

8

9

10

11

12

13

14

rO := 3

vO := rO

try
call PI

watching si goto
require s2
if not s2 goto
rO := vO

rl := 3

rO := rO + rl-

emit s3 rO

goto 14
rO := vO

rl := 2

rO := rO

emit s3 r

goto 0

Process PI

of process PO
0: halt

| Process PO uses PCO

010:
mov 3.X10

Oil:
st Xl0,[Xi5+Xlo(_V+0)]

012:

fP0I3:
! Potential signals: „_

ldsb [p5+Xro (J3+2)l ,XoO
tst XoO \
bne P0I4
nop

LL7:
set P0I3.#i2
set LL8,7.i3
ba PRO
or Xi4,-l,Xi4

stb XgO, [Xi5+Xlo(J>0+12V]
nop

fP0I4:
ldsb [Xi5+#/.lo(J5+2)] ,Xo0
tst XoO
bneg P0I10
nop

i:d [y.i5+y.io(_v+o)],y.io
016:

mov 3,*/.ll

017:
add xio.xn.xio

fP0I8:
st y.io.[y.i5+y,io(^v+o)]
mov l.AOQ
stb y.oO,ty.i5+y,lo(_S+3)]

LL8:

019:
ba P0I14
nop

0110:
Id [y.i5+y.lo(.V+0)]//,10

0111:
mov 2,y.ll

0112:
sub y,io,y.n,y.io

0I1S3t: X10,CXi6+Xlo«»+0)]
mov l.XoQ
stb y.oo, [y.i5+y#io (js+3) ]

0114:
ba POIO
nop

fPHO
LL9:

set LL9,Xi2
set PO1,7.13
ba ER1 .,.,
or %i4,l,%i4

'! Initializing all program counters
set ?lIQl%SOm, / °

, st Xq0,Ki5+Xlo(_PC+4)]
! Lowering all exceptions

ba LLO

LLl:n°P
! CheckiiChecking the halted .status of this

ldsb Rfi5+%loCH+0)J, XoO
tst XoO
be LL3
nop

! Returning the halted status
set LLir/.i2
set LL5 Xi3
ba PRO .,LL3or Xi4,l,Xi4

nop
bneg LL6
nop
ba*P0I3
nop

LL6: *
LLO:
! Executing all subprocesses

stbYL4 rifi5+%lot:jl+0)1
mov XgO,Xi4
Id [%|5mo(_PC+4)] ,%o0
call XoO.O
nop

PR1: .,.
st Xi2,
St Xl3.w«a
subcc Xi4,
bpos LL4
nop

! Return with the waiting status
set LL0,Xi2 6
set LL5,Xi3
ba PRO ,LL48tb XgO,[Xi5+Xlo(.H+0)]
'ldsb [y.i5+Xlo(_H+0)J ,Xi4

! Checking all exceptions
tst XbCr
be P0I3
nop

! Hatting .,
set LCl,Xi2

i5+Xlfi(J0+4}]4gO,?60

set LL5.Xi3„
or Xop.fti4.Xi4
ba ProRC
stb' XoO, L7.i5+y.lo(-H+0)]
Returning with waiting status

LL2
set LLl,Xi2
set LL5,Xi3
ba PRO
or Xi4,-l,Xi4

LL5:
! Calcul

tst XoO
bne POO
nop

set
oO

Id' IXa5+X1o (J>0+4) ] ,XoO
call XoO.O
nop

P01: .

nop

Figure 4.1: The translation of the Esterel program of Figure 3.1 from page 30.
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The potential-set calculator routine for the try starting at LL5 first checks
the status of the halted flag for the process, returning immediately if it is set,
indicating that the processhas halted. In this case, since the processhas halted,
it cannot emit any more signals in the current instant. However, at the begin
ning of the next instant, the halted flag will be cleared and when the potential
set calculator is called again (even before it is known that the process can be
executed), the potential set will be calcuated assuming that the process could
be executed.

Because each subprocess can be called from exactly one try instruction, the
return address of each subprocess is known at compile time. In this example,
for instance, process PI is called from the try in process PO. The return address
of process PI is given the label PRl. Similarly, the potential set calculator for
process PI is called from exactly one point, so its return address is explicit: P01.

4.7 Outer Loop

The outer loop calls the outermost process routine and its potential set calcu
lator repeatedly to compute the program's response for an instant. The outer
loop performs the following actions:

Ho ... H„ := 0 clear all halted flags
So .. .Sm := 0 mark all signals as unknown
Si.. .Sj := 1 or —1 as appropriate mark all input signals as present or absent
repeat

Po .. .Pj = 0 mark signals as having no potential
call PCO outermost process routine
foreach signal i

if S, = 0 and P,- = 0 signal is unknown and has no potential
S,- = —1 mark signal as absent

until outermost process routine returned halted
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Chapter 5

Causality

In Esterel, as in any language, it is possible to write something nonsensical.
Possible errors include the simple syntax error (misspelling a keyword, for ex
ample), and more elaborate semantic errors (e.g., trying to add an integer or
a boolean, emitting an input-only signal, etc.). In Esterel, there is the fairly
subtle concept of causality which can be violated.

A simple exampleof a causality error is the following paradox

present A else emit A end

Because of the instantaneoussemantics of Esterel, this fragment means that
if the signalAis absent in an instant, then it should be emitted in that instant,
which is clearly nonsense since a signal is either present or absent, never both.
Another, morecommon mistakeis to makea do.. .watching preempt itself. For
example,

do

await A ; emit B ; emit C

watching C

When A arrives, B and C are emitted in the same instant. However, when C
is emitted, the enclosed instruction is not executed (the semantics of the do), so
C could not have been emitted. (A way to get around this particular problem
is to replace the do.. .watching with a trap instruction.)

These two errors would be fairly easy to catch at compile time—the rule
is that any instruction whose execution depends on a signal cannot emit that
signal. However, manifestation of these sorts of errors can be arbitrarily subtle.
Consider the following sequence
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await B

II

await C

II

await D

II

await E

present A else emit C end

emit D

emit E

emit A

Here, when B arrives, C is emitted if Ais present. However, Ais emitted if E
is present, and E is emitted if Dis present, and Dis emitted if Cis present. It is
subtle, but this is the same sort of paradox as present A else emit A end.

To illustrate how subtle such violations can be, consider the following vari
ation on this code:

await B ; present A else emit C end

II
await B ; await C ; emit D

II

await D ; emit E

II
await E ; emit A

This does not constitute a causality violation. Assuming B is the only input
signal, when Boccurs, Dcannot be emitted because the await Cwill only start
looking for C in the next instant. Thus, D is not emitted, so E and A are not
emitted, so C is.

However, by adding one keyword, the fragment again becomes non-causal:

await B ; present A else emit C end

await B

II

await D

II

await E

await immediate C ; emit D

emit E

emit A

Here is another paradox:

every A do

present C then emit D end

end

II

every A do

present D else emit C end

end
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Here, when Ais present, the first line says that C implies D, but the second
says Dimplies not C, which is paradoxical.

However, the data-dependent actions make the problem even more subtle.
Consider

var i := 0 : integer in
every A do

i := i + 1 ;

emit B(i)

end

II

every B do

if ?B mod 2=1 then

present C then emit D end

end

end

II

every B do

if ?B mod 2=0 then

present D else emit C end

end

end

end

This is actually causal since it is impossible for both ?B mod 2 = 0 and ?B
mod 2 = 1 to be true in the same instant (the value returned by ?B is unique
to an instant).1

So in general, exact causality checking is impractical. The Esterel V3 com
piler simulates only the signal portion of the program as part of the compilation
process (i.e., not the data portion), which accounts for its rapidly-growing com
pilation times. It can detect causality violations, but it is conservative and it
requires excessively long compilation times.

Some causality checking is necessary, but the conservative approach taken
by the Esterel V3 compiler requires too much time to perform.

1Unsurprisingly, the Esterel V3 compiler flags this example as noncausal.
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Chapter 6

Results and Conclusions

The compiler presented in this report was tested on the lengthy example (and
variations thereon) presented in appendix C. For comparison, it was also tested
with the production Esterel V3 compiler supported by CISI INGENIERIE[8].
These results are shown in Tables 6.1 and 6.2 on pages 47 and 47.

The examples watch1, watch2, watch3, and watch4 are stripped-down ver
sions of the complete watch example, containing the first one, two, three, and
four submodules respectively.

6.1 Results for The Esterel V3 Compiler

Please refer to Table 6.1. With the Esterel V3 compiler, the number of states in
the finite-state machine starts small, but grows quickly with the size of the input
file. The length of the ic file, which contains an intermediate representation
similar to the one used here, is growing roughly linearly with the length of the
input file, as is to be expected. However, the length of the oc file, which contains
a description of the state machine used to produce the C source, is growing very
rapidly—exponentially for this example.

The C source file produced is roughly the same size as the oc file, so the
system's C compiler is presented with a challenge: C source files no smaller than
980K. Not surprisingly, the time required to produce the C source file is rapidly
getting out of hand, starting at a minute and increasing by about a factor of
four for each 200-line increase in the length of the source file.

The size of the executable produced by this compiler tracks the size of the
C source file, and is also growing very rapidly. The one consolation is that the
time required to simulate one thousand clock ticks is both small and growing
slowly.
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lines in source file

number of states

length of ic file (kilobytes)
length of oc file (megabytes)

time to create C source file (mm:ss)
time to compileC source (mm:ss)

size of MIPS executable (megabytes)

time to simulate 1000 clock ticks (seconds)
f Times on a machine roughly 3x faster

watch1 watch2 watch3 watch4 watch
297

7

467

22

619

32

823

128

998

>206

16

0.98

25

5.42

35

18.7

45

190

52

>236

0:52

1:50

4:43

15:30

15:57

18:43f
>37:00f

0.87 3.7 12.2

2.8 4.8 6.6

Table 6.1: The Esterel V3compiler used on the watch example from appendix C

watch1 watch2 watch3 watch4 watch
lines in source file

number of processes
number of program counters
number of signals

length of translation file (kilobytes)
lines of assembly code (thousands)

time to produce assembly code (seconds)
time to assemble (seconds)

size of SPARC process code (kilobytes)
size of SPARC executable (kilobytes)

time to simulate 1000 clock ticks (seconds)
iterations per clock tick

Table 6.2: This compilation scheme used on the watch example from appendix C

47

297 467 619 823 998

45 83 110 150 178

34 50 58 78 97

40 45 54 62 70

10 17 24 31 36

5.6 9.9 13 18 21

1.7 2.5 3.1 3.7 4.5

3 4 5.5 7.8 8.5

14 26 35 48 56

64 80 96 112 128

2.3 2.6 3.2 3.8 4.2

9 9 9 9 9



6.2 Results for This Compiler

Please refer to Table 6.2. With the compilation scheme presented in this report,
the number of processes and program counters are both growing roughly linearly
with the size of the source file. Moreover, the length of the translation (roughly
equivalent to the ic file—atextual listing of the intermediate representation) is
growing linearly. The really encouraging result is that the number of assembly
code lines is also growing linearly with the size of the source file, as expected.

The time required to produce this assembly code is very small indeed (this
time includes parsing the Esterel source file, converting it to the intermediate
representation, and translating this into SPARC assembly code), and also ap
pears to be linear in the length of the Esterel source file, very much unlike the
Esterel V3 compiler.

It takes roughly twice as long to run theassembly code through the assembler1
as it does to compile the Esterel source code.

Not surprisingly, the executable produced (which includes a simple command-
line interface, so comparison with the MIPS executable is reasonable), is much
smaller. For example, the 600-line source file watch3 produces a 12 megabyte
executable with thee Esterel V3 compiler, whereas this approach produces a
128 kilobyte executable, nearly two orders of magnitude smaller!

Finally, the time to simulate 1000 clock ticks is roughly comparable to the
Esterel V3 compiler (the two machines used were roughly the same speed: a
SPARCstation IPC and a DECstation 5000). The number of calls to the process
code for the signal information to converge is between one and ten for all five
examples, with nine being the overwhelming median for all.

6.3 Comments

It is not entirely fair to compare the compilation times for two compilers, as
the Esterel V3 compiler is doing full causality checking. The compiler presented
here does effectively none, instead leaving the checking to runtime. However,
the times and file sizes for the V3 compiler become prohibitive very quickly.
For example, I was unable to find a machine with the 400 MB of free disk
space required produce the C source code for the watch4 example. Even for the
smaller watch2 example, waiting twenty minutes for the program to compile
would have made debugging agonizing, to say the least. The multi-megabyte
executables are also infeasible for embedded systems. Although the amount of
memory available in such systems has been growing rapidly over time, these
seem excessive.

So the question of whether this language is practical without full compile-
time causality checking arises. In the process of writing and debugging the
watch example of appendix C, it turned out not to be a major issue. If a

1Sun'sstandard SPARC assembler shipped with SunOS 4.1.1 for these examples
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causality violation was introduced (and quite a number were over the course
of development), it would become clear fairly quickly—either the whole watch
would fail, or the module where the violation was introduced would fail in
an obvious manner. The Tcl/Tk mock-up described in appendix C was an
invaluable debugging aid. Instead of entering test vectors in a textual manner
and observing the results, I simply used the mock-up like I used the watch on
my wrist—the bugs became apparent fairly quickly.

Esterel is a good language for describing very heterogeneous systems. In
such cases, little code could possibly be reused—every problem has to be solved
in a different way. However, when there is some uniformity involved, which is
often the case with human-interface code, Esterel is not completely effective.
For example, most of the "adjust" modes of the watch are very similar—MODE
advances the field being adjusted, FORWARD and REVERSE adjust that field. This
was implemented with a valued signal, but that technique isn't quite right. A
signal with a notion of an ordered "one-hot" encoding would be better.

The designers of Esterel included the copymodule keyword in the language
(not present in the compiler presented here) which is little more than a simple
macro expansion. The watch example of appendix C used the m4macro prepro
cessor for this function, which was nearly as effective. Such preprocessors can
improve the readability of the code, and somewhat simplify the programmer's
task, but much more is needed to capture the similarity in typical control-
dominated systems.

A number of important features were omitted from the example of ap
pendix C which were present in the real watch on which it was based. Why
they were omitted sheds some light on Esterel's shortcomings.

• The true watch has a "telephone book" mode which stores about 24 names
(8 alphanumeric characters each) and phone numbers (12 digits each).

• The true watch calculated the day-of-the-week from the year, month and
date. Moreover, it knows about the number of days in each month and
leap years.

• The true watch has five alarms and a hourly signal.

The telephone book mode was omitted primarily because storing the data
would have been difficult in Esterel. The Esterel V3 compiler has the ability to
import complextypes from a host language(e.g., C) and attach them to signals,
local variables, and whatnot. These can then be manipulated with functions in
the host language called from Esterel. These facilities are not present in the
compiler presented here, but could be included. But this seems to be avoiding
the problem by letting a "real" language handle the messy data manipulation.

Calculating the day-of-the-week from the year, month, and date is a fairly
complex arithmetic operation which would benefit from array lookups, some
thing not present in Esterel.
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The five alarms could have been implemented with a number ofinstantiations
of the alarm module presented here, but this produces an excessive amount of
code. Since all five are identical, there should be some way to reuse the code
more effectively.

6.4 Conclusions

The objective stated in the abstract has been achieved: a compiler for the Esterel
language has been produced which quickly produces an efficientexecutable. For
large programs, its performance greatly eclipses the existing compilation scheme,
and allows such programs to be compiled at all. The increase in speed has come
at the expense of compile-time causality checking.

There are many ways to proceed from here. Retargeting the backend to
produce code for other processors is one simple modification. There are probably
many more simple checks which could be performed at compile time in the hopes
of catching an erroneous (i.e., non-causal) program. Also, this approach lends
itself to symbolic debugging, which has not currently been implemented beyond
a simple mechanism to report the locations of the program counters.

A hope for this work is for it to be used for other tasks. For example, it
appears that the scheme presented here for producing assembly code from the
intermediate representation could also be used to produce code from a syn
chronous subset of the VHDL language [2, 3]. The intermediate format also
lends itself to taking event derivatives and forming an FSM. While this has
shown to be potentially explosive, there may be a way of effectively partitioning
a program. An FSM so generated could be sent to a formal verification system
which could then prove properties about the system.
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Appendix A

Lexical Aspects of Esterel

Identifiers

An identifier is a sequence of letters, digits, and underscores starting with
a letter. Case is significant. There is no limit on the length of identifiers.

Keywords

All keywords are lowercase.

and

await

call

case

do

each

else

emit

end

every

exit

false

halt

handle

if

immediate

in

input

inputoutput

loop

Integer Literals

mod

module

not

nothing
or

output

present

repeat

sensor

signal

sustain

then

timeout

times

trap

true

upto

var

Hatching
with

An integer literal is a string of digits 0-9. Leading zeros are and - signs
are allowed. Leading + signs are disallowed.

Comments

Comments begin with a percent sign (*/•) and continue to the end of the
line.

Whitespace

Whitespace includes comments, spaces, tabs, newlines, and form feeds,
and serves to delimit identifiers, keywords, and integer literals.
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Appendix B

Syntax of Esterel

In the following, items in braces ( { } ) are optional. The notation { A }* means
"zero or more occurrences of A? and the notation { B }+ means "one or more
occurrences of B.n 7-identifier is an identifier of type 7. Keywords are in a
typewriter typeface.

Files

The source file is composed of one or more modules.

file-*
{ module }+

Modules

A module contains zero or more declarations and a single instruction ter
minated by a period (.).

module —*•

module module-identifier :
{ declaration }*
instruction

Declarations

declaration —*•

input signal-declaration-list ;
I output signal-declaration-list ;
I inputoutput signal-declaration-list ;
I sensor sensor-declaration-list ;
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Signal Declaration Lists

Signals are declared with comma-separated lists of one or more signals,
each with an optional type.

signal-declaration-list —•
signal-declaration { , signal-declaration }*

signal-declaration —•
signal-identifier

| signal-identifier ( type-identifier )

type-identifier —•
integer

| boolean

sensor-declaration-list —•

sensor-declaration { , sensor-declaration }*

sensor-declaration —•

signal-identifier ( type-identifier )

Instructions

instruction

var variable-declaration-list in instruction end

signal signal-declaration-list in instruction end
[ instruction ]

{ instruction ; }+ { ins<rwc/ion }
instruction { I I instruction }+
nothing
halt

exit exception-identifier { ( expression ) }
variable-identifier := expression
if expression { then instruction }
{ else instruction } end
loop instruction end
repeat expression times instruction end
emit signal-identifier { ( expression ) }
sustain signal-identifier { ( expression ) }
present signal-identifier { then instruction }
{ else instruction } end
do instruction watching occurrence
{ timeout instruction end }
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await occurrence { do instruction end }
await { case occurrence { do instruction) }+ end
loop instruction each occurrence
do instruction upto occurrence
every occurrencedo instruction end
trap exception-declaration in instruction
{ handle exception-identifier do instruction } end

exception-declaration —*•
exception-identifier

| exception-identifier ( type-identifier )

Variable Declaration Lists

Variables are declared in comma-separated lists with optional initialization
expressions and type specifications.

variable-declaration-list —•

variable-declaration { , variable-declaration }*

variable-declaration —*•

variable-identifier { := expression }
{ : type-identifier }

Expressions

expression —*
integer-literal
true

false

variable-identifier
?signal-identifier
? sensor-identifier
?? exception-identifier
( expression )
- expression
expression * expression
expression / expression
expression mod expression
expression + expression
expression - expression
expression < expression
expression <= expression
expression > expression
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C.l Testing Scheme

A mock-up of an actual watch was created using the Tcl/Tk system [10] for
building user interfaces. A short (« 40 line) tcl script describes a window with
four text items and five buttons. Four of these buttons call simple routines in a
small C program (« 400 lines) when pressed, the other quits the program. Each
of these simple routines set the given button to present and calls the tick rou
tine, which calculates the Esterel program's response for the next instant. The C
program then examines the emitted signals and adjusts the display accordingly
through tcl commands.

A facility for creating periodic events in Tk is used to call a C routine
approximately ten times a second. This C routine sets the TENTHSECOHD signal
present and calls tick. Not surprisingly, since this timekeeping mechanism is
fairly inexact, the watch keeps less-than-perfect time. Nevertheless, this scheme
made the debugging process much more efficient than had it been attempted
using just a command-line-based simulator.

C.2 The Main Module

The watch receives its controls through five signals, one which occurs ten times
a second, and one for each button.

module watch:

input TENTHSECOND;

input MODE, ADJUST, REVERSE, FORWARD;

The display is controlled through two valued signals, one which indicates
which major mode is being displayed (time, time adjust, alarm, alarm adjust,
etc), and one which, in the adjust modes, indicateswhich field is being changed.

output DISPLAY_HODE(integer),
DISPLAY_FIELD( integer);

A separate valued signal is used for each field from the five major compo
nents. In effect, the C program acts as a multiplexer which selects which of
these fields to copy to the display based on DISPLAY-MODE and DISPLAY_FIELD.

These are integer-valued signals, but it is useful to think of them as tak
ing on the following symbolic values. The various .modes define the values
DISPLAY-MODE takes on and the various .adjusts define values for DISPLAY-FIELD.

define('Time.mode *,'0')
define('Time_adjust_mode',' 1')
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define('Time.adjust.seconds','0»)
define('Time.adjust.minutes', '2')
define('Time.adjust.hours',' 1')
define('Time.adjust.days', '6')
define('Time.adjust.dayofweek','3»)
define(*Time.adjust.months',' 5')
define(*Time.adjust.years', '4')

define('Alarm.mode»,'2')
define('Alarm_adjust.mode','3')

define('Alarm.adjust.minutes *,' 1')
define('Alarm.adjust.hours','0 *)
define('Alarm.adjust.days','3')
define('Alarm.adjust.months *, c2*)

define('Dual.mode','4')
defineCDual.adjust.mode', '5')

define('Dual.adjust.minutes','1')
define('Dual.adjust.hours',' 0')
define('Dual.adjust.days», '3»)
define('Dual.adjust.months','2')

define('Timer.mode»,'6')
define('Timer.adjust.mode','7')

define('Timer.adjust.minutes',' 1')
define('Timer.adjust.hours', '0')

define('Stopwatch.mode','8 *)

output MAIH.SECOHD(integer),
MAIN.MIHUTECinteger),
MAIN_H0UR(integer),
MAIN.DAY(integer),
MAIH_DATE(integer),
MAIH_M0NTH(integer),
MAIH_YEAR(integer);

output DUAL.MINUTE(integer),
DUAL_H0UR(integer),
DUAL_DAY(integer),
DUAL_DATE(integer),
DUAL_M0NTH(integer);

output TIMER.HOUR(integer),
TIMER_MIHUTE(integer),
TIMER.SECOND(integer);

output ALARM.MIHUTE(integer),
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ALARM.HOUR(integer),
ALARM_DATE(integer),
ALARM_HONTH(integer);

output STOPWATCH.TENTHSECOHD(integer),
STOPWATCH_SECOND(integer),
STOPWATCH.MIHUTE(integer),
STOPWATCH_HOUR(integer);

Four other signals perform miscellaneous tasks.

UPDATE is present whenever the display needs to be updated, e.g., when the
mode changes, when a value changes, etc.

ALARM is present whenever the alarm is going off.

FLASH is present whenever the watch is in an adjust mode and the requested
field should be blanked. This is used to indicate which field is currently
being changed.

STOPWATCH-FROZEN is present whenever the stopwatch is in lap mode (keeping
time, but display holds previous value). When in stopwatch mode, the
display indicates when it is in lap mode.

output UPDATE;

output ALARM;

output FLASH;
output STOPWATCH.FROZEN;

The main module is composed of five processes executing in parallel, one for
each major mode (the time and dual modes are combined here), and one which
controls the operation of the display. The m4 macro preprocessor was used to
break the program into modules. Thus, each of the .modules and .watchdogs
here actually expand into a number of instructions which will be described in
later sections.

signal MAIN.REVERSE, MAIN.FORWARD, DUAL.REVERSE, DUAL.FORWARD,
ALARM.REVERSE, ALARM.FORWARD, TIMER.STARTSTOP, TIMER.RUNNING,
TIMER.REVERSE, TIMER.FORWARD, TIMER.RESET,
STOPWATCH.FREEZETHAW,

STOPWATCH.STARTSTOP, STOPWATCH.RUHHIHG,

STOPWATCH.RESET in

time.module

II
alarm.module

60



timer.module

II

stopwatch.module

II

loop

trap Return.to.time in

time.control.module ;

alarm.control.module ;

dual.control.module ;

timer.control.module ;

stopwatch.control.module

end

»

await TICK

end

end

The main loop is a sequence of control modules (instructions) enclosed by
a trap instruction. If one of the control modules terminates, it starts the next
module. However, if it issues the Retum_to_time exception, the watch returns
to timekeeping mode.

The local signals are used to adjust the various timekeeping mechanisms and
adjust their modes. These form the communication path between the control
modules and the modules which actually keep the time.

C.3 The Time Module

The time module, responsible for keeping track of the main time as well as
the time for the dual-timezone mode, is composed of a number of sub-modules
executing in parallel, one for each unit of time.

Again, local signals are used for communcationbetween the variousmodules.

define('time.module','

signal HEXT.SECOND, HEXT.MINUTE,
MAIH.HEXT.HOUR, MAIN.HEXT.DAY, MAIN.NEXT.MONTH, MAIN.HEXT.YEAR,

DUAL.HEXT.HOUR, DUAL.HEXT.DAY, DUAL.HEXT.MONTH, DUAL.NEXT.YEAR,

MAIH.RESET.SECOHD in

every MAIN.FORWARD do
if 7DISPLAY.FIELD = Time.adjust.seconds then emit MAIH.RESET.SECOND end

end
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II
tenthsecond_module

II

second.module

II

minute_module('MAIN','Time.adjust')
II

minute_module('DUAL','Dual.adjust')
II

hour_module('MAIN','Time.adjust')
II

hour.module('DUAL','Dual.adjust')
II

day.module('MAIN*,'Time.adjust')
II

day.module('DUAL','Dual.adjust')
II

dayofweek.module('MAIN','Time.adjust')
II

month_module('MAIN','Time.adjust')
II

month_moduie('DUAL','Dual.adjust')
II

year.module('MAIN','Time.adjust')

end

»)

The tenthsecond module is simple. It emits the NEXT-SECOND signal every
ten tenths of a second, or resets itself when necessary.

define('tenthsecond.module','
loop

every 10 TENTHSECOND do
emit NEXT.SECOND

end

each MAIN.RESET.SECOND

')

The second moduleis slightly more complex because the second count must
be visible to the outside world (through the HAINJSECOND signal).

define('second.module','
loop

var second := 0 : integer in
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emit MAIN.SECOND(second);

every NEXT.SECOND do

second := second + 1;

if second = 60 then second := 0; emit NEXT.MINUTE end;

emit UPDATE ; emit MAIN.SECOND(second)

end

end

each MAIN.RESET.SECOND

')

The minute module is more complex still, since the minute must be able to
be increased and decreased. The await.. .case instruction is used to arbitrate

between which of the three actions to take.

Using the 7DISPLAY.FIELD signal in this manner is somewhat unsatisfactory—
there is a slight possibility that some other field is adjusted just when NEXTJf INUTE
signal is present, causing the minute to be lost. One solution would be to "fan
out" the MAIN-FORWARD signals based on the value of DISPLAY-FIELD in a man
ner similar to MAIN-RESET-SECOND. But this is not particularly elegant. What
is needed is a more sophisticated notion of a signal, one which has a "one-hot"
notion associated with it.

Two instantiations of the minute module are used, one for the main time
keeper and one for the dual-timezone mode. $1 and $2 are replaced with MAIN
and Time-adjust, or DUAL and Dual-adjust respectively.

define('minute.module','

var minute := 0 : integer in

emit $1_MINUTE(minute);

loop

await

case $1_F0RVARD do

if 7DISPLAY.FIELD = $2_minutes then minute := minute + 1 end

case $1.REVERSE do

if 7DISPLAY.FIELD = $2_minutes then minute := minute - 1 end

case NEXT.MINUTE do

minute := minute + 1 ; if minute = 60 then emit $1_NEXT_H0UR end

end ;

minute :- (minute + 60) mod 60;

emit UPDATE ; emit $1.MINUTE(minute)

end
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end

')

The hour module is almost identical to the minute module, and the pair
could probably have been written as a more elaborate macro.

define('hour.module','
var hour := 0 : integer in

emit $l_H0UR(hour);

loop

await

case $1_F0RWARD do

if 7DISPLAY.FIELD = $2.hours then hour := hour + 1 end

case $1.REVERSE do

if 7DISPLAY.FIELD = $2_hours then hour := hour - 1 end

case $1_NEXT_H0UR do

hour := hour + 1 ; if hour = 24 then emit $1_NEXT_DAY end

end ;

hour := (hour +24) mod 24;

emit UPDATE ; emit $l_HOUR(hour)

end

end

')

The day module is slightly different. It wraps around at one instead of zero.
This is fairly simple-minded since all months are assumed to have 31 days.

define('day.module','
var date := 1 : integer in

emit $l_DATE(date);

loop

await

case $1.FORWARD do

if 7DISPLAY.FIELD = $2_days then date := date + 1 end
case $1.REVERSE do

if 7DISPLAY.FIELD = $2.days then date := date - 1 end
case $1_NEXT_DAY do

date := date + 1 ; if date = 32 then emit $1_NEXT_M0NTH end

end ;
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date := (date + 30) mod 31+1;
emit UPDATE ; emit $l_DATE(date)

end

end

')

The day-of-the-week, month, and year modules are all very similar:

define('dayofweek.module','
var day := 0 : integer in

emit $l_DAY(day);

loop
await

case $1.FORWARD do

if 7DISPLAY.FIELD = $2_dayofweek then day := day + 1 end
case $1.REVERSE do

if 7DISPLAY.FIELD = $2_dayofweek then day := day - 1 end
case $1_NEXT_DAY do

day := day + 1
end ;

day := (day + 7) mod 7;
emit UPDATE ; emit $l_DAY(day)

end

end

')

define('month.module','
var month := 1 : integer in

emit $1.MONTH(month);

loop

await

case $1_F0RVARD do

if 7DISPLAY.FIELD = $2_months then month := month + 1 end

case $1.REVERSE do

if 7DISPLAY.FIELD = $2_months then month := month - 1 end

case $1_NEXT_M0NTH do

month := month + 1 ; if month = 13 then emit $1.NEXT.YEAR end

end ;
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month := (month + 11) mod 12+1;
emit UPDATE ; emit $1_M0NTH(month)

end

end

')

define('year.module','
var year := 94 : integer in

emit $l_YEAR(year);

loop

await

case $1.FORWARD do

if 7DISPLAY.FIELD = $2_years then year := year + 1 end
case $1.REVERSE do

if 7DISPLAY.FIELD = $2_years then year := year - 1 end
case $1_NEXT_YEAR do

year := year + 1

end ;

year := (year + 100) mod 100;
emit UPDATE ; emit $l_YEAR(year)

end

end

')

C.4 The Time Control Module

The time control module is responsible for handling the four buttons when the
watch is in the main timekeeping mode.

define('time.control.module','

trap Leave.time in
loop

% Time display

emit DISPLAY.HODE(Time.mode) ; emit UPDATE ;

do

await MODE; exit Leave.time
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watching ADJUST

>

emit DISPLAY_MODE(Time.adjust.mode) ; emit UPDATE ;

do

time.adjust.module
watching ADJUST

end */• time display/adjust loop

end V* Leave.time

')

An exception is used to detect when this module should terminate, i.e., when
MODE is presessed from within. ADJUST toggles between the main time display
mode and the time adjust mode.

The time adjust module cycles through the fields (using the variable setfield)
when MODE is pressed, converts the REVERSE and FORWARD buttons to their time-
adjusting counterparts, and flashes the display field.

define('time.adjust.module','
var setfield := 0 : integer in

emit DISPLAY_FIELD(setfield) ; emit UPDATE ;
C

every MODE do
setfield := setfield + 1;

if setfield = 7 then setfield := 0; end ;

emit DISPLAY.FIELD(setfield) ; emit UPDATE

end

II

every REVERSE do

emit MAIN.REVERSE

end

II

every FORWARD do

emit MAIN.FORWARD

end

II

flash.enable.module

]
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end % var setfield

')

The flash module is simple—it emits the FLASH signal on and off, synchro
nized with the TENTHSECOND signal.

define('flash.enable_module','
loop

emit UPDATE ; await 2 TENTHSECOND ;

emit FLASH ; emit UPDATE ; await TENTHSECOND ;

emit FLASH ; await TENTHSECOND

end

')

C.5 The Alarm Module

Much like the time module, the alarm module is composed of a number of sub-
modules executing in parallel. Every minute, the alarm is checked against the
main clock to see if the alarm should be started. If so, it is started and sustained
until one of the main buttons is pressed.

define('alarm_module','

signal STARTALARM in

alarm.minute.module

II

alarm.hour.module

II

alarm.date.module

II

alarm.month.module

II

every MAIN.MINUTE do

if ( (7MAIN.MINUTE = 7ALARM.MINUTE) and

(7MAIN.H0UR = ?ALARM.HOUR) and

(7ALARM.DATE = 0 or (7ALARM.DATE = 7MAIN.DATE)) and

(7ALARM.M0NTH = 0 or (7ALARM.H0NTH = 7MAIN.M0NTH)) ) then

emit STARTALARM

end

end

II

loop

await STARTALARM ;

do
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do

do

sustain ALARM

watching MODE
watching FORWARD

watching REVERSE
end

end

')

The minute, hour, date, and month modules are all fairly similar. Each uses a
local variable to remember their settings, and each waits until an ALARM-FORWARD
or ALARM-REVERSE signal instructs them to change.

define('alarm_minute_module','
var minute := 0 : integer in

emit ALARM.MINUTE(minute);

loop
await

case ALARH.FORWARD do

if 7DISPLAY.FIELD = Alarm.adjust.minutes then
minute := minute + 1 end

case ALARM.REVERSE do

if 7DISPLAY.FIELD = Alarm.adjust.minutes then
minute := minute - 1 end

end ;

minute := (minute +60) mod 60;

emit UPDATE ; emit ALARM.MINUTE(minute)

end

end

')

define('alarm.hour.module',*

var hour := 0 : integer in

emit ALARM.HOUR(hour);

loop

await

case ALARH.FORWARD do
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if 7DISPLAY.FIELD = Alarm_adjust.hours then hour := hour + 1 end
case ALARM.REVERSE do

if 7DISPLAY.FIELD = Alarm.adjust.hours then hour := hour - 1 end
end ;

hour := (hour + 24) mod 24;

emit UPDATE ; emit ALARM.HOUR(hour)

end

end

')

define('alarm.date_module','
var date := 0 : integer in

emit ALARM.DATE(date);

loop

await

case ALARM.FORWARD do

if 7DISPLAY.FIELD = Alarm.adjust.days then date := date + 1 end
case ALARM.REVERSE do

if 7DISPLAY.FIELD = Alarm.adjust.days then date := date - 1 end
end ;

date := (date + 32) mod 32 ;

emit UPDATE ; emit ALARM.DATE(date)

end

end

')

define('alarm.month.module','

var month := 0 : integer in

emit ALARM.MONTH(month);

loop

await

case ALARM.FORWARD do

if 7DISPLAY.FIELD = Alarm.adjust.months then month := month + 1 end
case ALARM.REVERSE do

if 7DISPLAY.FIELD = Alarm.adjust.months then month := month - 1 end
end ;

month := (month +13) mod 13 ;

emit UPDATE ; emit ALARM.MONTH(month)
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end

end

)

C.6 The Alarm Control Module

Like the time control module, the alarm display and alarm set modes are split
into two modules. One difference is that the MODE button has two different

effects depending on whether ADJUST is pressed before MODE. If the user adjusts
the alarm, MODE returns the watch to the main time display mode, otherwise, it
advances it to the next main mode.

define('alarm.control.module','
trap Leave.Alarm in

emit DISPLAY_MODE(Alarm_mode); emit UPDATE ;

do

await MODE; exit Leave.Alarm

watching ADJUST

loop

emit DISPLAY_MODE(Alarm.adjust.mode) ; emit UPDATE ;

do

alarm.adjust.module

watching ADJUST

*

emit DISPLAY_MODE(Alarm.mode); emit UPDATE ;

do

await MODE; exit Return.to.time

watching ADJUST

end % alarm adjust/display mode

end '/, Leave.Alarm

)
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define('alarm.adjust.module','
var setfield := 0 : integer in

emit DISPLAY_FIELD(setfield) ; emit UPDATE ;

C

every MODE do

setfield := setfield + 1;

if setfield = 4 then setfield := 0 end;

emit DISPLAY_FIELD(setfield) ; emit UPDATE ;
end

II

every REVERSE do

emit ALARM.REVERSE

end

II

every FORWARD do

emit ALARM.FORWARD

end

II

flash.enable.module

3

end

C.7 The Timer Module

The countdown timer has a structure similar to the other modules. The main

module is composed of set of sub-modules executing in parallel, one for each
unit of time. The alarm for the countdown timer works in much the same way
as it does for the alarm module.

define('timer.module','

signal STARTALARM, SECOND, MINUTE, HOUR, RESET in

timer.tenthsecond.module

II

t imer.second.module

II

timer.minute.module
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timer.hour.module

II

loop

await STARTALARM ;

do

do

do

sustain ALARM

watching MODE
watching FORWARD

watching REVERSE
end

end

')

The tenthsecond module is a little more elaborate for the countdown timer

because it must monitor the state of the timer and halt when the count reaches

zero, which is performed with the exception Halt.Timer. This functionality
would be difficult with a signal used with preemption—the do... watching which
monitors the signal would be controlling the count, introducing a casality vio
lation.

define('timer.tenthsecond.module','
var tenthsecond := 9 : integer in

loop

do

every TIMER.RESET do tenthsecond := 9; emit RESET end
watching TIMER.STARTSTOP ;

trap Halt.Timer in

every TENTHSECOND do

tenthsecond := tenthsecond - 1;

if tenthsecond = -1 then tenthsecond := 9; emit SECOND end

end

II

every SECOND do

if 7TIMER.MINUTE = 0 and 7TIMER.H0UR = 0 and

7TIMER.SEC0ND = 0 then

emit STARTALARM; exit Halt.Timer

end
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end

II

await TIHER.STARTSTOP ; exit Halt.Timer

end

end

end

')

The second module is much simpler since it relies on the tenthsecond module
to halt the timer when appropriate. The requirements are that the seconds be
both resettable and externally-visible.

define('timer.second.module','
var second := 0 : integer in

emit TIMER_SECOND(second);

loop
await

case RESET do

second :- 0

case SECOND do

second := second - 1;

if second = -1 then second := 59; emit MINUTE; end

end ;

emit UPDATE ; emit TIHER_SECOHD(second)

end

end

')

The minute module handles both the actual number of minutes remaining
and the number of minutes which the user has requested. The reset operation is
to load the number of minutes remaining with the number of minutes requested.

define('timer.minute.module','
var minute :- 0, setminute := 0 : integer in

emit TIMER.MINUTE(minute);

loop
await
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case RESET do

minute := setminute

case TIMER.FORWARD do

if 7DISPLAY.FIELD = Timer.adjust.minutes then
setminute := (setminute +61) mod 60 ; minute := setminute end

case TIHER.REVERSE do

if 7DISPLAY.FIELD = Timer.adjust.minutes then
setminute := (setminute + 59) mod 60 ; minute := setminute end

case MINUTE do

minute := minute - 1; if minute = -1 then minute := 59; emit HOUR end
end ;

emit UPDATE ; emit TIHER.MINUTE(minute)

end

end

')

The hour module is similar to the minute module. Both the number of

hours remaining and the number of hours requested are the responsibility of
this module.

define('timer.hour.module','

var hour := 0, sethour := 0 : integer in

emit TIMER.HOUR(hour);

loop

await

case RESET do

hour := sethour

case TIMER.FORWARD do

if 7DISPLAY.FIELD = Timer.adjust.hours then
sethour := (sethour + 61) mod 60 ; hour := sethour end

case TIHER.REVERSE do

if 7DISPLAY.FIELD = Timer.adjust.hours then

sethour := (sethour + 59) mod 60 ; hour := sethour end
case HOUR do

hour := hour - 1

end ;

emit UPDATE ; emit TIMER.HOUR(hour)
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end

end

)

C.8 The Timer Control Module

Because the timer has both a complex run behavior (it can be started, stopped,
and reset), and a complex adjustment behavior (the hours and minutes can
be set independently, and the timer is implicitly reset before adjustment), the
control module is broken into three pieces, one for running, one for adjustment,
and one which calls both of these, presented below. The required functionality
is that after a button other than MODE has been pressed, MODE returns to
the timekeeping mode, rather than the next (the stopwatch).

define('timer.control.module','
trap Leave.Timer in

emit DISPLAY.MODE(Timer.mode); emit UPDATE ;

do

timer_run_module('Leave.Timer')

»

loop

tinter_run_module('Return.to.time')

end

watching ADJUST

loop

emit DISPLAY.MODE(Timer.adjust.mode); emit UPDATE ; emit TIMER.RESET ;

do

timer.adjust.module

watching ADJUST

i

emit DISPLAY.MODE(Timer.mode); emit UPDATE ;

do
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loop

timer_run_module('Return.to.time')

end

watching ADJUST

end % run/adjust loop

end */» Leave.Timer

')

The timer run module handles the three buttons MODE, which either re
turns the watch to the timekeeping mode, or sends it to the next mode (the
stopwatch), FORWARD, which starts and stops the timer, and REVERSE,
which stops and resets the timer.

define('timer.run.module','
await

case MODE do exit $1

case FORWARD do emit TIMER.STARTSTOP

case REVERSE do emit TIMER.RESET

end

')

The timer adjust module cycles between the two fields (hour and minute),
and sends TIMER-REVERSE and TIMER-FORWARD to the other timer modules. The

field being adjusted is set to flash by the flash enable module, described in
section C.4 on page 68.

define('timer.adjust.module','
var setfield := 0 : integer in

loop
await

case MODE do

setfield := (setfield + 1) mod 2;
emit DISPLAY_FIELD( setfield) ; emit UPDATE ;

case REVERSE do

emit TIMER.REVERSE

case FORWARD do

emit TIMER.FORWARD

end

end

II
flash.enable.module
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end

')

C.9 The Stopwatch Module

The stopwatch module consists of parallel-executing modules for each of the
units of time and two toggles which control whether the stopwatch is running
and whether it is in lap mode (the display is not advancing, but the time elapsed
is kept).

An exception is used to detect ST0PWATCHJ5TARTST0P. This ensures that
STOPWATCH-RUNNING is present up to and including the instant in which STOPWATCH_STARTSTOP
occurs.

define('stopwatch.module','
signal SECOND, MINUTE, HOUR, RESET in

loop

await STOPWATCH.STARTSTOP;

trap Stopwatch.stop in
sustain STOPWATCH.RUNNING

II

await STOPWATCH.STARTSTOP ; exit Stopwatch.stop
end

end

II

loop

await STOPWATCH.FREEZETHAW ; emit STOPWATCH.FROZEN ;

do

sustain STOPWATCH.FROZEN

watching STOPWATCH.FREEZETHAW

end

II

stopwatch.tenthsecond.module

II
stopwatch.second.module

II

stopwatch.minute.module

II

stopwatch.hour.module

end

')
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The tenthsecond module for the stopwatch is even more elaborate than that
for the countdown timer. In addition to start, stop, and reset functionalities, it
much also handle its display, which is affected by the lap mode.

def ine(' stopwatch_tenthsecond_module','
var tenthsecond := 0 : integer in

emit STOPWATCH.TENTHSECOND(tenthsecond);

loop

do

every STOPWATCH.RESET do

tenthsecond := 0;

emit UPDATE ; emit STOPWATCH.TENTHSECOND(tenthsecond)

end

watching STOPWATCH.STARTSTOP ;

do

loop

await

case STOPWATCH.RESET do

tenthsecond := 0

case TENTHSECOND do

tenthsecond := tenthsecond + 1;

if tenthsecond = 10 then tenthsecond := 0; emit SECOND end

case STOPWATCH.FREEZETHAW

end

>

emit UPDATE ;

present STOPWATCH.FROZEN else

emit STOPWATCH.TENTHSECOND(tenthsecond)

end

end

watching STOPWATCH.STARTSTOP

end

end

')

The stopwatch second, minute, and hour modules are comparatively simple.
Each must handle reset, increasing, and the display freezing effects of the lap
mode.
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define('stopwatch.second.module','
var second := 0 : integer in

emit STOPWATCH_SECOND(second);

loop

await

case STOPWATCH.RESET do

second := 0

case SECOND do

second := second + 1;

if second = 60 then second := 0; emit MINUTE; end

case STOPWATCH.FREEZETHAW

end ;

present STOPWATCH.FROZEN else

emit UPDATE ; emit ST0PWATCH_SEC0ND(second)

end

end

end

')

define('stopwatch.minute.module','
var minute := 0 : integer in

emit STOPWATCH.MINUTE(minute);

loop

await

case STOPWATCH.RESET do

minute := 0

case MINUTE do

minute := minute + 1;

if minute = 60 then minute := 0; emit HOUR; end

case STOPWATCH.FREEZETHAW

end

»

present STOPWATCH.FROZEN else

emit UPDATE ; emit STOPWATCH.MINUTE(minute)

end

end
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end

')

define('stopwatch.hour.module','
var hour := 0 : integer in

emit STOPWATCH.HOUR(hour);

loop

await

case STOPWATCH.RESET do

hour := 0

case HOUR do

hour := hour + 1;

if hour = 24 then hour := 0; end

case STOPWATCH.FREEZETHAW

end

»

present STOPWATCH.FROZEN else

emit UPDATE ; emit STOPWATCH.HOUR(hour)
end

end

end

')

CIO The Stopwatch Control Module

The stopwatch control module is simplified because, unlike all the other modes,
it has no adjust mode. Moreover, since it is the last in the chain, it does not
need to worry about the dual functionality of the MODE button, which always
returns the watch to the timekeeping mode.

The STOPWATCHJIUNNING signal is used as a flag to distinguish between when
the REVERSE button resets the stopwatch and when it toggles lap mode.

define('stopwatch_control_module','
do

emit DISPLAY.MODE(Stopwatch.mode); emit UPDATE;

loop

await
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case FORWARD do

emit STOPWATCH.STARTSTOP

case REVERSE do

present STOPWATCH.RUNNING

then emit STOPWATCH.FREEZETHAW

else emit STOPWATCH.RESET

end

end

end

watching MODE
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