
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



PERFORMANCE EVALUATION OF ONE

AND TWO-LEVEL DYNAMIC BRANCH

PREDICTION SCHEMES OVER

COMPARABLE HARDWARE COSTS

by

Jos£ Luis Pino and Balraj Singh

Memorandum No. UCB/ERL M94/45

20 June 1994



PERFORMANCE EVALUATION OF ONE

AND TWO-LEVEL DYNAMIC BRANCH

PREDICTION SCHEMES OVER

COMPARABLE HARDWARE COSTS

by

Jose* Luis Pino and Balraj Singh

Memorandum No. UCB/ERL M94/45

20 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



PERFORMANCE EVALUATION OF ONE

AND TWO-LEVEL DYNAMIC BRANCH

PREDICTION SCHEMES OVER

COMPARABLE HARDWARE COSTS

by

Jose* Luis Pino and Balraj Singh

Memorandum No. UCB/ERL M94/45

20 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Performance Evaluation of One and Two-Level Dynamic

Branch Prediction Schemes over Comparable Hardware Costs

Jose* Luis Pino and Balraj Singh

EECS Department,University of California, Berkeley, CA 94720
pmo@EECSSerkeley.EDU, bsingh@CS3erkeley.EDU

ABSTRACT

Branch prediction has become an area of interest due to
its effectson theperformanceofpipelined and superscalar
processors. Various methods have been proposed to
speculate the path ofan instruction stream after a branch.
In this paper, the performance ofprediction schemes is
evaluated by not only the accuracy ofprediction but also
by the amountofhardware the technique requires to reach
that level ofaccuracy.

Wemodel the configurationswhich were proposed by the
authors oftheseschemes by allocating an equalnumber of
bytes ofmemory to each and then mapping (if possible)
the various tables needed by the scheme to that amountof
memory. The total number ofbytes per scheme was varied
from 1 byte to 128 kilobytes for each of the different runs.
The inputs to the various schemes were traces obtained by
running the SPEC-92 benchmarks.

We also compare thefinite state machines proposed in [1]
to update the history bits in the 2 bit schemesand study the
performanceofone over the other.

1.0 INTRODUCTION

Most modern processorshave a deep pipeline to decrease
the average cycle time thus reducing the total execution
time. Because of the pipeline structure, a processor
decodes an instruction after it has fetched other sequential
instructions. When a branch instruction is taken, the
pipeline leads to fetches of sequential instructions after the
branch.These instructions must be nullified since they are
invalid. Since on an average 20 percent of the instructions
are branches [5], these incorrect instructions lead to a
substantial penalty on the performance of the processor.
This effect is more significant in superscalar architectures
which may issue more than one instruction per cycle.

To reduce the number of wasted instructions following a
branch, processor designers try to move the calculation of
the branch target as early in the pipeline as possible.

Another technique used to reduce the cost of branch is to
speculate on the direction and the target of the branch and
move the execution in that direction. If the speculation is
incorrect then the processor must nullify the instructions it
partially executed in the wrong direction.

Speculation that is done at compile time and based on
opcode information in the instruction is known as static
branchprediction.These can be as simple as predictingall
branches taken which can achieve up to 68 percent
accuracy [6] or can include always predicting forward
branches not taken and backward branches as taken [7].

When speculation is done at run-time it is known as
dynamic branch prediction. This is discussed in further
detail in section 2.0 of this paper.

This paper compares the performance of proposed
dynamic branchprediction schemes over a broadrangeof
hardware costs. For purposes of this study, the hardware
cost is assumedto be the size of the tables for address tags
and prediction bits. Thus, the hardware cost model does
not account for the complexity of looking up anentry in a
branchprediction table. To our knowledge this is the first
time a study of this nature has been conducted.

In the following sections we will describe the various
dynamic prediction schemes we used for the study. For
each scheme, die hardware cost model will be given. Each
hardware cost function given will have as one of its
arguments the order of the number of bytes of memory
available. We alsodiscussthe our simulationmethodology
and implementation details before presenting our results
and observations.

2.0 BRANCH PREDICTION SCHEMES

As described earlier, dynamic prediction schemes
speculate on the basis of the run-time behavior of a branch
or a set of branches. Schemes such as Decode History
Table (DHT) [1], Branch History Table (BHT) [1] and a
combination of both DHT/BHT (DHT-BHT) [1] can be



classified as one-level dynamic prediction schemes as the
prediction depends only on the history of the branch under
consideration.

In schemes such as two-level adaptive training branch
prediction [2][4] and prediction using branch correlation
[3][4] a more complex approach is used in which the
prediction is not only based on the past history of the
branch under consideration but also the outcomes of

recently executed branches in the instruction stream. We
classify these as two-level dynamic branch prediction
schemes.

We simulated all of the above branch prediction schemes
using varied table sizes. The following sub-sections
describe each of these schemes individually.

2.1 One-Level Branch Prediction Schemes

One-level branch prediction schemes only consider the
history of the branch under consideration when
speculating the outcome of the branch.

2.1.1 Decode History Table (DHT)

The Decode history table (DHT) is a direct mapped array
of one or two bit entries which areprobed to determine the
outcome of a branch [1][6][7]. Figure 1 shows a simple
implementation of a two-bit DHT.

T
Branch Address

X|X

1

• X X

Prediction Bits

Figure 1. Two-Bit DecodeHistoryTable(DHT)

In a DHT many branches may map to the same element.
The history bits areupdated after the correct outcome of
each branch is determined. For the simulations, we tested
the DHT using both one and two bit histories. The table
size of the DHT is expressed as:

tableSizeone_bit (order) = 2'

tableSizetwo_bit (order) = 2'

order + 3

order+ 2

(EQ1)

(EQ2)

2.1.2 Branch History Table (BHT)

The Branch history table (BHT) is a fully associative array
of entries which stores the branch address as a tag and
some history bits to speculate the outcome of the branch
[1]. This is a very widely used branch prediction scheme
and numerous commercial processors currently use it in
their branch prediction units. Figure 2 illustrates a BHT
with two bits ofhistory.

Branch Address

Address Tag

X X

•

•

•

•

•

•

•

•

*• X X

Prediction Bits

Figure 2. Branch History Table(BHT)

If there is no entry for the current branch in the table, the
branch is predicted not taken and an entry is created for
the branch. Once the correct outcome of the branch is
determined thehistorybits for the branch are updated.

Since it has to store the branch address and has to do a
fully-associative table lookup, the BHT is very costly in
termsof hardware. In practice, for each branchinstruction
address tag there is an associated target address stored to
be used in the event of branch. We have not accounted for
this cost in our hardware model because it will not affect
the prediction performance. This and the combined DHT-
BHT techniques are the only branch prediction schemes
that we have studied where the target addresses can be
stored and retrieved when doing branch prediction.
Finally, we implemented arandom replacement policy for
theBHT due to its simplicity andminimalhardware cost.

When computing the hardware cost for this method, we
alsodo not include the cost of the history bits. The table
size is given by (EQ 3).

order-2tableSize (order) = 2

2.1.3 Combination DHT-BHT

(EQ3)

Based on the DHT and BHT schemes, Kaeli, et al. [1]
proposed animprovement by combiningthe two. Figure 3



Branch

Address

• «

Prediction

BHT Tag
Miss?

Figure 3. Combined DHT-BHT

gives an example of a combination DHT-BHT predictor.
When a BHT misses, the DHT is used to predict the
directionof the branch.Furthermore, predictionsmade by
a BHT hit do not update the DHT.

For simplicity, the sizes of both the DHT and BHT in our
simulation were set equal to each other. As in section
2.12, we do not account for the prediction history bits of
the BHT; we also do not account for the cost of the DHT.
Thus the function for computing the table sizes of the
combined DHT-BHT is equivalent to the BHT which is
shown in (EQ 3).

2.2 Two-Level Branch Prediction Schemes

In two-level adaptive training branch prediction and
prediction using branch correlation, a two-stage approach
is used in which the prediction is not only based on the
past history of the branch under consideration but also the
outcomes of recently executed branches in the instruction
stream.

2.2.1 Correlation Based Prediction (BPT)

Pan, et. al. assertthat in many integer workloads,control-
flows arecomplex thus correlating sequential branches in
an instruction stream [3]. To take advantage of this
observation, they propose correlation based prediction
(BPT). Here the prediction not only depends on the branch
address but also the path which was taken by the
instruction stream to reach the branch. This path is
recorded in a global shift register which selects the
appropriate set to predict from. Hence the last n sequential
branch outcomes select which of the 2" sub-histories is to
be used for branch prediction. A two bit shift register
based correlationscheme is shown in figure4.

Since the shift register must be updated after each branch
outcome, speculating across multiple branches in
superscalararchitectures is not possible. The function for
the table size ofeach sub-history is shown in (EQ 4).

Shift Register

Branch Address

L —• X X
Prediction Bits

Figure 4. Correlation Based Prediction (BPT)

tableSize(orderjhiftSize) = 2order+2-shif(Size

2.2.2 Two-Level Adaptive Prediction (TLA)

(EQ4)

The last scheme that study was proposed by Yeh and Patt
in [2]. Their method, two-level adaptive prediction, also
uses the conceptof correlation. However the prediction is
based on the history of successive branches whose address
directly maps into a register in the correlation table (see
figure 5).The direct-mapped address correlation register is
used to address into the global pattern table. The typical
sizes of the correlation registers proposed by Yeh and Patt
are either six or twelve bits.

This scheme does not have the intuitive appeal which the
other schemes do. It is also quite expensive to implement
in both hardware andsoftware(for simulation purposes).

The function for the global patterntable size with respect
to correlation register size is given in (EQ 5) and the
function for thecorrelation table size is given in (EQ 6).

crSizeptSize (crSize) = 2 (EQ5)

Branch Address
Global Pattern Table

• Correlation Reg

\
^ X X -•X X

Prediction Bits

•

•

•

•

•

•

•

•

Flgure5. Two-Level AdaptivePrediction (TLA)



ctSizeiprder,crSize) =
^order+3 ^crSize

crSize
(EQ6)

2.3 Finite State Machines

To implement two-bit history schemes, one employs a
finite state machine to update the history bits. Yeh and Patt
in [2] suggest the finite state machines in figure 6. The
second automaton in the most commonly used two-bit
saturating up-down counter. In our simulation we
compared all four for each of the two-bit history schemes
to see if one automaton was clearly better than the others.

Automaton 1 Automaton 2

Automaton 3 Automaton 4

Figure 6. Finite state machines for updating 2-bit
branch histories

To read the state transition graphs:

• In the center each is a state number and a prediction
value associated with that state. A 'N' denotes predict
not taken; whereas, a 'T' denotes predict taken.

• On a branch outcome, update the state by taking the
appropriate 'N' or T arrow to the next state.

3.0 SIMULATION TECHNIQUES

For purposes of this study, we chose to run trace driven
simulation over cycle level simulations. We did this so that
we could run real benchmarks through our simulator at a
respectable speed. In cycle-level simulation, furthermore
we would have to assume a hardware architecture. Thus,

our results can be used as a basis for further study of any
specific architecture.

We used SPEC-92 integer and floating point benchmarks
running on a DEC MIPS as our test suite. Our traces were
generated using Pixie. Unfortunately, the pixified gcc
benchmark would core dump, so we could not use it in our
study. The benchmarks used for the study are shown
below.

Floating Point Integer

doduc compress

fppp eqntott

mdljdp espresso

ora li

tomcatv

We also chose to limit each trace to a total of 2,000,000
branches resolved for simulation speed. In figure 7, we
compare the prediction ratios for the various schemes
between runs to 2,000,000 and 6.000,000. A comparably
small amount of error in the same direction is introduced

because of this assumption.

DKM DHT-2 TlA-C TLA-12 CHI-erf:

Figure 7. Prediction ratios of runs cutoff at 2,000.000
branches and runs cutoff at 6.000,000
branches. The white bars are for compress and
the gray bars are for the eqntott.

4.0 SIMULATION RESULTS

For this and remaining sections, we will use the
abbreviations shown below.

Symbol Scheme

DHT-1 One bit decode history table
DHT-2 Two bit decode history table
BHT Branch history table
BPT Correlation based prediction,2 bit shift register
TLA-6 Two level adaptive, 6 bit correlation register
TLA-12 Two level adaptive, 12 bit correlation register
DHT-BHT Combined BHT and DHT-1

Wefound that branch prediction ratios were much higher
for the floating point benchmarks. Schemes here achieved
up to 98% accuracy for the fppp benchmark. On average.



Figure 8.

H H 1—H—H 1 1 r—H 1 1 1 1
4 I « 7 • 0 10 II 1* 19 14 II 16 17

Average Prediction Ratio vs. HardwareCost for
FloatingPoint SPEC-92 Benchmarks

for all the floating point benchmarks the best achieved was
97% by DHT-2. BHT, BPT and DHT-BHT. Figure 8,
shows the average prediction ratio across all floating point
benchmarks with respect to hardware cost.

However, it is interesting to note that DHT-2 achieves
rates of more than 90% accuracy at a mere 16 bytes of
total memory usage. At 128 bytes, DHT-2 achieves 95%
accuracy. At the hardware limit all but the TLA, achieve
comparable results. BPT requires 64 bytes before exceeds
90% accuracy.

The integer benchmarks achieve lower prediction
accuracies than the floating point benchmarks. The
average prediction ratios achieved over hardwarecosts is
shown in figure 9.

Ine highest prediction ratio achieved was 94% correct for
the li benchmark using BPT. It is interesting to note that
the espresso benchmark was particularly difficult to
predict and all the benchmarks at the hardware limit only
achieved roughly 80% accuracy.

Figure 9.

i 1 1 1

4 11 IS 17

LotattfMn et I !•!>••» Oo»l In Brtoa

Average PredictionRatio vs. Hardware Cost
for Integer SPEC-92 Benchmarks

Figure 10. Average Prediction Ratio vs. Hardware Cost
for both Integerand FloatingPoint SPEC-92
Benchmarks

Over the integer benchmarks, the highest average
achieved prediction rate was about 90%. With BPT being
slighdy better than the DHT-2, BHT, DHT-BHT and TLA-
6. Again, it is interesting to note that DHT-2 performs well
with small hardware cost. Using 16 bytes, DHT-2 achieves
prediction ratios around 85%; whereas, BPT uses 128
bytes to achieve this.

In figure 10, all the benchmarks are averaged to give a
overall predictionratio for a given hardwarecost

Chi comparing the finite statemachines shown in figure 6,
we found that automaton 2 generally gave the best results.
The only consistent exception to this were schemes with
address tag buffers smaller than 128 entries (ninth order)
which get better results with automaton 1.

5.0 PERFORMANCE ANALYSIS

In this section, we list possible sources of error in our
assumptions and simulations.

Our simulation does not differentiate between conditional

and non-conditional branches. This limitation was

introduced because the traces we have consist of basic

blocks rather than individual instructions with distinct

opcodes.

We only account for the hardwarecost in terms of amount
of memory used by the prediction tables. We do not
account for the hardware needed to access the entries nor

the cost of updating the history bits.

Since we wanted this study to be architecture independent,
we do not compare branch miss penalties in terms of
processorcycles. However, this is an important metric for



chip designers to consider before using any of the branch
prediction schemes.

After we reviewed our simulation results, we realize that
the way we set the combined DHT/BHT table size may
not have been the optimal. For simplicity, we assumed that
the DHT and BHT components had the same number of
table entries. We now feel that a the DHT should have
more table entries than the BHT. We believe that the
prediction rates will remain lower than the DHT-2 alone.
The main advantage of the combined DHT-BHT is that in
the BHT we can store the target address and thereby
reduce the number of wasted cycles on calculating the
target address each time.

6.0 CONCLUSIONS

Given enough hardware, all prediction schemes perform
roughly the same. Their relative differences arenegligible
considering standard deviations of approximately 2.5%
from the mean of all benchmarks. The notable exceptions
are TLA-6 and TLA-12 whose standard deviation are

about 6%.

Our most surprising result is that DHT-2 has roughly 90%
prediction accuracies for buffer sizes in the 32 - 64 byte
regions.

Due to the high accuracy of the small DHT-2, we believe
researchers should focus on small and simple branch
prediction schemes. However, as is evident in the
literature, researchers have been recently looking at
increasingly complex branch prediction techniques. Our
results demonstrate that these schemes do not improve
prediction significantly and perform much worse for low
hardware-cost implementations. Correlation based
schemes overcome one level techniques only after they
reach their saturationpoint.

Because of the low hardware-cost implementations
possible with DHT, processordesigners should investigate
into designing predictionunits per processratherthan per
processor.We have not studied the effect of interleaving
instructionstreams through a branch prediction simulation
and furtherstudy in this areais warranted.

If target addresses are needed to reduce branch cycle
penalties, we recommend combining a DHT-2 with a
cache. The cache would store only taken branches using
the branch instruction address as a tag and storing the
associated target address. This is similar to the combined
DHT/BHT proposed in [1]except that it is less complex.

Again, in this case, multiple small DHT tables could be
introduced to allow for multiple processes.

REFERENCES

[1] D.R, Kaeli, P.G. Emma, J.W. Knight, andTR. Puzak,
"Contrasting instruction-fetch time and instruction-
decode time branch prediction mechanisms: achiev
ing synergy through their cooperative operation,"
Eighteenth EUROMICRO Symposium on Micropro
cessing and Microprogramming (EUROMICRO 92),
vol. 35, Paris,France, 1992, p. 401-8.

[2] T.-Y.Yeh andYN. Patt, 'Two-level adaptive training
branch prediction," Proceedings of the 24th Interna
tional Symposium on Microarchitecture. MICRO 24,
Albuquerque, NM, USA, ACM, 1991,p. 51-61.

[3] S.-T. Pan. K. So. andJ.T. Rahmeh, "Improving the
accuracy of dynamicbranch prediction using branch
correlation," Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS-V). vol. 27, Bos
ton, MA, USA, 1992. p. 76-84

[4] T.-Y. Yeh and YN. Patt, "A comparison of dynamic
branch predictors that use two levels of branch his
tory," 20th Annual International Symposium on
ComputerArchitectureISCA '20, vol. 21, San Diego,
CA, USA, 1993, p. 257-66.

[5] D.A. Patterson, and JX. Hennessy, Computer Archi
tecture a Quantitative Approach, Morgan Kaufmann,
San Mateo. CA., 1990.

[61 J.Lee, and A. J. Smith, "Branch Prediction Strategies
and Branch Target Buffer Design", tfff Computer.
(January 1984). pp. 6-22.

[7] J. E. Smith. "A Study of Branch Prediction Strate
gies". Proceedings of the 8th International Sympo
sium on Computer Architecture. (May. 1981), pp.
443-58.


	Copyright notice 1994
	ERL-94-45

