

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A HARDWARE LIBRARY REPRESENTATION

FOR THE HYPER SYNTHESIS SYSTEM

by

Scarlett Zhijia Wu

Memorandum No. UCB/ERL M94/47

10 June 1994

A HARDWARE LIBRARY REPRESENTATION

FOR THE HYPER SYNTHESIS SYSTEM

by

Scarlett Zhijia Wu

Memorandum No. UCB/ERL M94/47

10 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A HARDWARE LIBRARY REPRESENTATION

FOR THE HYPER SYNTHESIS SYSTEM

by

Scarlett Zhijia Wu

Memorandum No. UCB/ERL M94/47

10 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Hardware Library Representation for the
HYPER Synthesis System

by

Scarlett Z. Wu

ABSTRACT

The goal of the HYPER sysnthesis system is to build real-time systems

optimized for any given set of design specifications. The effectiveness of the high-level

optimization is often limited by the inaccurate estimation of the hardware being built.

This project focuses its attention on a generic library representation used by the

HYPER system and discusses the various considerations that are taken into account in

selecting the set of hardware properties in the library. The design of a low power

wavelet filter is used to illustrate the complexity of today's synthesis problem and

through the design flow, it is shown how the different hardware properties are used in

high-level architectural transformation to achieve optimization goal.

ACKNOWLEDGEMENTS

First of all, I would like to thank my research advisor, Professor Jan Rabaey,

who has given me a great deal of inspiration and constant advice. It was a wonderful

experience for me to work with the HYPER group. I sure will miss everyone.

I would also like to thank Anantha Chandrakasan, who has developed many of

the low power design techniques discussed in this report. Some of his ideas have

become the basis of this research project.

Last but not least, I would like to thank my parents, who have supported me all

my life and encouraged me to achieve the best I can.

Chapter 1 Introduction............. 1

1.1 Overview 1

1.2 Organization 2

Chapter 2 Background3

2.1 Flowgraph Representation vs. Cell Library 3

2.2 Interaction with other HYPER Tools 5
2.2.1 Module Selection/Estimation 5
2.2.2 Design Exploration 6
2.2.3 Hardware Mapper 7

Chapter 3 Hardware Library 10

3.1 Database Structure 10

3.2 List Functions 12

3.3 Hardware Properties 15
3.3.1 Cost/Performance 15

3.3.2 Structural Model 17

3.3.3 Hardware Behavior 21

3.4 Future Work 22

Chapter 4 Technology Library 23

4.1 Scaling Factor 23

4.2 Global Clock 24

4.3 Supply Voltage 25

4.4 Process Variation 25

Chapter 5 Design and Implementation of A Low Power Wavelet Filter 26

5.1 Overview 26

5.2 Low Power Design Approaches 27

5.3 Wavelet Filter 31

5.4 Design Row 32
5.4.1 Filter Specifications 32
5.4.2 Transformation 34

5.4.2. a Constant Multiplication 34
5.4.2. bRetiming 34
5.4.2. c Partial Chaining 35

5.4.3 HardwareAllocation 35
5.4.4 Place & Route 37

5.4.5 Other Considerations 37

5.5 Simulation/Test Results 38
5.5.1 Chip Area 38

5.5.2 Clock Frequency/Sample Rate 39

5.5.3 Power Consumption 39
5. 5.4 Chip Testing .41

5.6 Summary 43

Chapter 6 Conclusions..w

Appendix A: Hardware Database........ 45

Appendix B: Library Routines......... 73

References ..81

1
Introduction

1.1 Overview

The ultimate goal of any synthesis system is to find an optimized hardware

solution for a given set of parameters. During the process of transforming a high-level

design specifications to the final layout, information on the available hardware

resources are often the basis of making many optimization decisions. As a result, the

hardware database can influence the quality of an implementation in many ways.

In this report, a set of hardware properties are defined for the HYPER hardware

libraries. These properties can be shared among a variety of hardware units in

describing hardware performances, cost and behaviors. It has been shown through many

benchmark designs that this hardware library gives the designer a great deal of freedom

to make changes to existing hardware information, to add additional hardware unit to

existing library, and to create new libraries. Lastly, a technology library is also created

for each hardware library in which global properties that are applicable to all units are

defined.

1.2 Organization

This report is composed of six chapters. Chapter 2 gives background

knowledge on HYPER, the synthesis system where the hardware database is currently

installed. It is also analyzed here how the hardware database interacts with several

design stages within the HYPER system. Chapter 3 introduces the hardware library.

And the technology library is defined in Chapter 4. In Chapter 5, the design and

implementation of a wavelet filter is documented. Some of the low power design

methodologies are discussed here as well. Finally, Chapter 6 summarizes the work done

and proposes suggestions on future work. Examples of hardware database in text file

format are provided in Appendix A. And Appendix B supplies a list of available library

routines.

2
Background

HYPER is a synthesis environment for real-time DSP systems. A typical

design flow starts with the intended system described in the data-flow language

SILAGE. This description is then translated to an intermediate control data flowgraph

(CDFG). During each synthesis step, individual transformations are performed on the

flowgraph and certain hardware assignment information is annotated. At the final stage

of design flow, the transformed flowgraph is mapped onto a specific hardware structure.

In such a system, the hardware database is accessed frequently and it carries out the

following four tasks: 1. to provide accurate cost and performance data on any hardware

unit; 2. to select the best suited hardware unit with given constraints; 3. to describe the

capabilities and limitations of a hardware unit; 4. to show the layout topology and

connectivity of the hardware unit.

2.1 Flowgraph Representation vs. Cell Library

In the HYPER system, the internal CDFG representation is composed of nodes,

data edges, and control edges. The nodes represent data operations, while edges

represent data precedences between the nodes[Rab91]. When the CDFG is first

generated, certain generic parameters are automatically annotated onto nodes and

edges. In most datapath cells, the bitwidth of an operation is a common parameter. It is

also found that for some operations, extra generic parameters are needed to sufficiently

describe their functionality and behavior. For example, a shift operation is not complete

without specifying the shift range. Or, in the case of a multiply operation, three values

of bitwidth are required, two for the input nodes and one for the output node. Naturally,

this type of generic parameters depends upon the specific operation and is independent

of the hardware unit used for implementation. Whenever the hardware database is

accessed, these parameters become constraints for hardware selection. In other words,

these parameters define the common link between the information at flowgraph level

and that at cell library level. Table 2.1 lists the hardware operations available in the

HYPER system along with their generic parameter(s).

Table 2.1 List of Operations and Corresponding Generic Parameters

Operation
Generic

Parameter(s)
Description

adder, subtracter,

counter, comparator,
register, inverter, buffer

N bitwidth

shifter N,M bitwidth and shift range

multiplexer, logic cells N, NrIN bitwidth & number of inputs

multiplier N,N1,N2 bitwidth of output & two inputs

register file N, R, NCON bitwidth, total number of registers
& number of constant registers

ram, rom, fifo N,R
bitwidth

& number of memory locations

The definition of the generic parameters above enables the separation of high-

level flowgraph representation from the details of hardware cell description. To

introduce a new hardware cell to a library, one only needs to find the operation family

the cell belongs to and its hardware properties can then be easily represented in terms

of the generic parameters defined for the operation family.

2.2 Interaction with other HYPER Tools

As stated earlier, the hardware database is accessed from various stages in the

HYPER system. Since each of the stages acquires different information from the

hardware database, it is worthwhile to focus on how the database interacts with other

HYPER tools. Namely, these tools include Module Selection/Estimation stage, Design

Exploration stage and Hardware Mapper stage.

2.2.1 Module Selection/Estimation

The goal of Module Selection is to find the best choice of suited execution

units to implement a flowgraph, given a set of active area, speed or power constraints.

A designer is free to choose clock period, supply voltage and cell library. It is also up to

the designer to specify selection constraints. For example, instead of choosing the

fastest or the smallest unit, the designer can ask for multi-functional units in order to

achieve a higher degree of time sharing. It is clear that the hardware database has to be

able to differentiate between operation families while being capable of access to

individual hardware units in each family.

When a node contains a constraint that exceeds the capability of any available

hardware cell in the library, the node has to be replaced with a cluster of nodes which

are implementable. For instance, if a hardware library only has shifter cells with shift

range of 7, a node with shift range of 14 should then be transformed to two cascaded

shift nodes, each with shift range of 7. Of course, doing such transformation in Module

Selection requires the knowledge of hardware capability. It is, therefore, reasonable to

place constraints on each individual hardware unit to describe its limitations.

Based on the result of Module Selection, the Estimation stage estimates the

cost and performance of the implementation. At this point, values of the generic

parameters have been annotated to the flowgraph. Using these parameter values, it is

sufficient to generate the specific estimation data. Since only rough estimation is

required at this stage, it is unnecessary and sometimes impossible to generate precise

data without the knowledge of allocation and scheduling. For example, to estimate the

active switching capacitance of a hardware unit, it is more appropriate to use the

simulation result of a white noise input. However, once the scheduling of the system is

determined, more accurate power analysis can be made with simulation results of

expected input patterns. In many cases, default values should be used at early stage of

the design flow and this information useful to be included for individual hardware unit.

2.2.2 Design Exploration

The Design Exploration stage embodies the capabilities of both Module

Selection and Estimation by allowing the designer to explore a three-dimensional

design space defined by clock period, sample period and supply voltage. The

improvement or degradation of different design qualities, such as area, can be shown by

varying these parameters. Since different time criteria imposes different timing

constraints on Module Selection and as a result, Estimation produces different cost and

performance. The reason for the variations can be explained as follows. It is found that

for datapath cells, there is a fixed correlation between supply voltage and its

propagation delay. Figure 2.1 shows how delay varies in function of supply voltage for

a given technology[Cha92]. It is clear that as supply voltage decreases, the delay

increases and this effect can become quite large at very low voltage supply. As a result,

the critical path increases and at a given clock period and sample period, more

hardware are required to implement the same design. So the implementation could

become more costly. Therefore, in order to estimates accurate delay time under

different voltage supply, the correlation should be stored in the hardware database for

different technology.

1
multiplier

clock generator
2.0|im technology —

4.00

Vdd (volts)

Figure2.1 Correlation Between Time Delay and Supply Voltage

Since each hardware unit is characterized under a given process, it is also

necessary to define scaling factors to reflect the variation of process and supply voltage.

2.2.3 Hardware Mapper

During the Hardware Mapper stage, the high-level flowgraph is mapped to a

target hardware structure before it is handed over to the silicon compiler to generate

layout. The target hardware structure can be described in the form of either VHDL or

SDL language[Ben94]. In general, the three steps involved in the Hardware Mapper are

— adding peripheral hardware units, i.e. registers, multiplexers and tri-state buffers;

generating appropriate control blocks; and creating layout floorplan for post processor.

It is extremely important during this stage for hardware database to provide information

regarding data terminals, control terminals and hardware behaviors for different

configurations. To set up the control table, the Hardware Mapper has to find out what

input control terminals exist for each unit and how they are asserted as a function of

time. It can become quite difficult in some cases to describe these behaviors in a

hardware library. To begin with, the names of these control signals are not known at

high level. Different operation has different control signals. And for some configurable

units, control signals can even change the functionality of the unit. To assist the

interactions between Hardware Mapper and the hardware library, a set of dynamic

parameters are introduced for each operation family. These dynamic parameters are

very different from the generic parameters defined in Section 2.1 because dynamic

parameters are used by Hardware Mapper to set up the control table and they are never

annotated to the high-level flowgraph. For example, the shifter operations have a

dynamic parameter called "SHIFT" which denotes the dynamic shift value. For a given

value of "SHIFT", the hardware library provides the control signal setups of the shifter.

In the following chapter, it will be shown how this can be achieved for some complex

control configurations. Table 2.2 lists the dynamic parameters valid in Hardware

Mapper.

Table 2.2 List of Operations and Corresponding Dynamic Parameters

Dynamic
Parameter

Operations Description

Vdd all chip supply

GND all chip ground

CK1 all phase 1 of global clock

CK2 all phase 2 of global clock

WRITE register, counter,
memory

write control

READ register, memory read control

COUNT counter count enable

Table 2.2 List of Operations and Corresponding Dynamic Parameters

Dynamic
Parameter

Operations Description

RESET counter reset

OEN register, counter,
memory, tri-state buffer

output enable

SELECT multiplexer select configuration

SHIFT shifter shift configuration

In the last phase of Hardware Mapper - layout floorplanning, it is important

to find out the geometry of the unit as well as the location of input/output terminals.

With the right place and route tool, this could effectively help to increase the

compactness of a layout.

3
Hardware Library

In a high-level synthesis tool such as HYPER, the hardware library is the only

hardware resource.

This chapter presents the complete hardware library in details. Section 3.1

describes the overall database structure. Section 3.2 introduces the set of list functions

used for library expressions. Section 3.3 defines each hardware property in the

hardware library and Section 3.4 makes some suggestions on future improvements.

3.1 Database Structure

The hardware library is written in text file format because this is the easiest

form for any designer to make modification or to create new entries.

Figure 3.2 shows the overall structure of the hardware library. All primitive

operators are placed at top level hierarchy. The second level hierarchy, placed under

each operator family, consists of hardware cells that can implement that operator. The

hardware descriptions are then listed under each hardware unit[Chu92]. In this data

10

11

structure, the only way to identify a hardware unit is by specifying an operator name

and a cell name.

Operatorl

I
1

Celll Cell2

property1
property2
property3

I

Cell3

Hardware Library

I

Operato r2 • • •

T T

Cella Cellb Celll

Figure 3.2 Structure of Hardware Library

To represent the above structure, the Common Lisp associate list format has

been adopted in the library. Thus, in a text format, Figure 3.1 can be written as:

(
(Operatorl

(Celll
(property 1 ...)
(property2 ...)
(property3 ...)

)
(Cell2

(property 1 ...)

)

)
(Operator2

(Cella

)

12

3.2 List Functions

Each hardware property included in the hardware library is always associated

with a specific data type. The numerical data type is widely feasible for information

such as delay time, area, power, etc. Another commonly used data type is a list of

character strings. For example, the input signals of a 3-input NAND gate are "A", "B"

and "C". It has been observed that in general, a hardware property can always be

expressed as either a numerical value or a list of objects.

It turned out that in most cases, the standard Lisp functions are often sufficient

enough to interpret common numerical expression. The general form of a Lisp function

looks as follows:

(operator operandi operandi ...)

Here, each operand following the operator can also simply be replaced with another

Lisp function. However, the standard Lisp functions doesn't provide a convenient way

for manipulating complex list structures, which is seen quite often in a hardware

library.

The expanded list functions defined for the HYPER hardware library are

strongly based on the standard Lisp functions and it has the following format:

(keyword list_structure)

For each keyword, there are two ways to express a list structure - primitive or

advanced. A primitive list structure is one that consists of a real value, an integer value

or a string. In the case of a string, it can either be a character string or one enclosed by

double quotes. Advanced list structure, on the other hand, can be a hierarchical list of

primitive list structures. Since the result of any list function is a list structure, list

functions can usually be hierarchically used by themselves. In other words, all list

13

functions are also list structures. And if the first item of a list structure matches to a

valid keyword, it can be called a list function.

To get a better understanding, Table 3.3 lists all the valid listfunctions. In the

second column, int denotes an integer value, real denotes a real value, str denotes a

string and strux denotes a list structure.

Table 3.3List of list functions in Hardware Library

Keywords
Operand(s) w/
Corresponding

Data Type
Description Result

Data Type

+ realj real2 ... realj + real2 +... real

- realj real2 ... reali - real2 -... real

* realj real2 ... realj * real2 * ... real

/ reali re&h ••• (realj / real2) /... real

max reali real2 ... maximum value real

min reali real2 ... minimum value real

sqrt real square root of real real

exp real ereal
real

expt reali real2 ... (realj)real2 real

ceiling real 1real] integer

== inti int2 ... (intj = int2) ? 1 : 0 integer

!= inti int2 ... {inti != int2) ? 1: 0 integer

>= inti int2 ... (intj >= int2) ? 1:0 integer

<= inti int2 ... (inti <= int2) ? 1:0 integer

> inti int2 ... (intj > int2) ? 1: 0 integer

< inti int2 ... (intj < int2) ? 1: 0 integer

i int (int = 0) ? 1: 0 integer

&& inti int2 ... (intj && int2 && ...) ? 1 :0 integer

II inti int2 ... (intj 11 int2 11...) ? 1:0 integer

strcmp strj str2 strcmp(.y/r/, str2) ? 1 :0 integer

14

Table 3.3 List of list functions in Hardware Library

Keywords
Operand(s) w/
Corresponding

Data Type
Description

Result

Data Type

Istrcmp strj str2 lsUcmp(strj, str2) ? 1 : 0 integer

strcasecmp strj str2 strcasecmpCsfri, str2) ? 1: 0 integer

Istrcasecmp str j str2 IstrcasecmpCsfr/, str2) ? 1:0 integer

lookup
str0

((strj, struxj)
(str2, strux2)

if !strcmp(s#0, "strux")
return strut}

list structure

strcat str j str2 ... concatenation of strings and/or
integer(integer allowed)

string

d2b strux convert any decimal
number to its binary form

list structure

expand str intj int2 int^
return a list of strings each trans

formed from str by replacing
"%d" by integer values from intj

to int2 with step int3

list structure

include /path/filename
include lisp structure in

"/path/filename"
(physical path only)

list structure

Some examples of using the above list functions can be found in Section 3.3 as

well as the complete hardware library file in the Appendix A. When referring to the

hardware library, one thing to notice is that the parser in the HYPER system does not

support the use of real numbers in a text file. However, for those list functions that

require real operands, it is important to remember that the C routines developed for

them do use real numbers in every calculation. For example, list structure (* N (/ 5 4))

is equivalent to calculating the expression N * 1.25.

15

3.3 Hardware Properties

The hardware information of a unit can be divided into three groups. The first

group includes its performance and cost. The second group defines its structural model.

While the last group describes its behavior. In the following three sections, hardware

properties in each of these groups are defined.

3.3.1 Cost/Performance

The cost and performance data of a hardware unit is generated by

characterizing the unit. It is often the case that these properties are expressed as a

function of its generic parameters. In most examples of this section, the generic

parameter "N" is used to specify the bitwidth. While reading these examples, it is

helpful to refer to Chapter 2 and the previous sections for definitions of generic

parameters and list functions.

Here is a property that are often used to estimate overall datapath area.

AREA

This property specifies the cell area in X2. Returns an integer.
Example: (AREA (* 207 (+ 20 (* 64 N))))

It has been found through recent research that power consumption of a

hardware unit is largely influenced by the choice of its input patterns. To accurately

reflect such variations, the HYPER system has developed its own power estimation

model[Lan94]. Characterized information for this model is stored in the following

property.

CAP-COFFFS

This property specifies the coefficients for calculation of effective

capacitance with different input patterns. Returns a list of integers.
Example: (CAP-COEFFS (LOOKUP KEY

((UU/XX (20))

(US/XX (20 18))

(SU/XX (21 21))

(SS/XX (0 39 41 0)))))

16

The time delay information of a hardware unit is quite important to the high-

level transformation because it directly affects the critical path of an implementation.

In general, the following property DELAY gives the overall delay time regardless the

type of hardware unit. To obtain accurate delay values, it is advised to use fractions for

intermediate terms as it is done in the example.

QELAL

This property specifies the worst case propagation delay. Returns an
integer.

Example:

(DELAY (+ (/ 5 2) (/ 52 10) (* N (/ 3 4))))

For some hardware units such as adders and multipliers, the worst case delay

time can often be described with a ripple model. The model for the adder is illustrated

in Figure 3.3[Rab94]. The major time delay in this model is mostly contributed by the

rippling effect and this component is usually proportional to the bitwidth of the adder.

In addition to the ripple delay, an extra one-bit delay has to account for the time delay

in the first or the last full adder. Depending upon whether the carry-out path or the sum

path is faster, an overlap time might be added to or subtracted from the total delay time.

As a result, three delay components are used to describe the ripple model.

C, o,N-l

• • •

Figure 3.3 Worst Case Delay in a Kipple Adder

QME=BU=nELAL

This property specifies the one bit delay of a full adder. Returns an
integer.

Example: (ONE-BIT-DELAY (/ 52 10))

17

RIPPLE-DELAY

This property specifies the delay caused by ripple effect. Returns an

integer.

Example: (RIPPLE-DELAY (* N (/ 3 4)))

RIPPLE-OFFSET

This property specifies the delay offset. Returns an integer.

Example: (RIPPLE-OFFSET (/ 5 2))

For hardware units that drive large load, a set of cells are usually designed for

various loading requirements. In this library, we classify the load to 6 groups — "NO",

"SMALL", "MEDIUM", "LARGE", "XLARGE" and "HUGE", each of which

corresponds to a specific loading capacitance. This information can be proven effective

during the Hardware Mapper stage for selecting bus drivers.

DRIVING-CAP

This property specifies the driving capability of a cell. Returns a

character string.

Example: (DRIVING-CAP XLARGE)

3.3.2 Structural Model

To generate a correct version of the hardware netlist, it is necessary for the

Hardware Mapper to access terminal information from the library. In this section, our

focus is on what signals goes into a unit, what signals comes out of a unit, and how

signals should be asserted to set up a specific operation. As a reminder, the generic

parameters and dynamic parameters defined in Chapter 2 are seen quite often in the

examples provided.

While mapping a high-level operation node to its hardware implementation,

the data input/output signals of the unit are equivalent to the input/output edges of the

node.

18

DATA-IN-TERMINAL

This property specifies all input signals. Returns a list of character
strings.

Example:

(DATA-IN-TERMINAL (A B))

(DATA-IN-TERMINAL (EXPAND IN%d 0 (- NrIN 1)))

DATA-OUT-TFRMINAf.

This property specifies all output signals. Returns of list of character
strings.

Example: (DATA-OUT-TERMINAL SUM)

Of course, to operate any hardware unit, we need a supply and a ground.

POWER-TERMINAL

This property specifies signal names for power and ground.
Example: (POWER-TERMINAL (Vdd (GND))

Let us now turn our attention to control signals. Control signals are very

different from the data signals described above because they don't directly relate to any

high-level nodes or edges. After allocation and scheduling are carried out on the

flowgraph, a schedule table can be derived as a function of time. As an example, Figure

3.4 shows a typical scheduling table.

Turn sttbtractor addeiO adderl l/o^ sfiifeerO shifter! transfer uiiit

0 * — x"> " x s X X X
1 x ,x % x * , -
1 x - x^ . %
3 % s * x * -X • s
4 x x

5 x x x

Figure 3.4 Schedule Table of an HR Filter Example

In order to generate the control logics for a specific schedule table, control

signals on each hardware units should be set up for proper operation at every time

point. For example, to find out how to set up a variable shifter so that it shifts right by

3, one has to find out what control signals are needed and how each signal should be

19

asserted. In this case, the dynamic parameter "SHIFT" can be set to 3 and when the

hardware library is called, it returns the corresponding asserted shift controls. To

achieve a direct mapping between the local control signals and the dynamic parameters,

the following property CTL-IN-TERMINAL is defined. The general format of this

property is to pair each local control signal on the hardware unit with its corresponding

dynamic parameter. This is illustrated in the first example. The second example shows a

case where two dynamic parameters are combined logically to produce one local control

signal. In the last example, one dynamic parameter is mapped to two local control

signals.

CTL-IN-TERMINAL

This property specifies the setups of input control signals. Returns a

list structure.

Example:

(CTL-IN-TERMINAL ((CLK CK1) (CIN GND)

(LD LOAD) (CNT COUNT) (RST RESET)))

(CTL-IN-TERMINAL ((CLK (and WRITE CK1))))

(CTL-IN-TERMINAL ((SI SO) SELECT))

For certain hardware units, the output control signals are also important for

setting up the control table. For instance, the output of a comparator can well be used as

a branch indicator. These output control signals are defined in the following property.

As shown in the second example, extra logics can be placed on any outcoming control

signals to generate other desired output configurations.

CTL-OUT-TERMINAI.

This property specifies the output control signals. Returns a list
structure.

Example:

(CTL-OUT-TERMINAL AGTB)

(CTL-OUT-TERMINAL (not (or AGTB AEQB)))

20

As a special case of CTL-OUT-TERMINAL, the following property defines any

existing complementary output control signals. This can be useful for reducing the

number of inverter in the control logics.

COMPLEMENT-OUT

This property specifies complementary output signals.
Example: (COMPLEMENT-OUT COUTINV)

To plan for a compact, routing efficient layout, it's essential to understand the

geometry of each hardware block and their individual input/output terminal location.

The following two properties do exactly that. For the he property CTL-TERM-EDGE,

terminal edges an be defined in four different ways -- TOP, BOTTOM, LEFT or RIGHT.

HEIGHT/WIDTH

Cell height or width in X. Each returns an integer.
Example: (HEIGHT 207)

(WIDTH (+ 20 (* 64 N)))

CTL-TERM-EDGE

This property specifies control edge of signals. Returns a list
structure.

Example:

(CTL-TERM-EDGE ((CLK BOTTOM) (CIN BOTTOM)

(LD BOTTOM) (CNT BOTTOM) (COUT TOP)))

Finally, for parameter driven silicon complier, such as the Lager

tools[Lager91], hardware parameters are often required to be included in the structural

description language. The following property maps the necessary hardware

parameter(the first in the pair) to a generic parameter or a constant value(the second in

the pair).

PARAMETERS

This property specifies the setups of hardware parameters. Returns a

list structure.

Example:

(PARAMETERS (N N) (CLKINV 0) (FB 1))

21

3.3.3 Hardware Behavior

It is quite often the case that not all units in an operator family can implement

its corresponding high-level operation because of hardware constraints. During Module

Selection, hardware units with unsatisfied constraint requirements can never be

selected. In the following example, a shifter's shift value is limit to be from 0 to 31.

CONSTRAINT

This property specifies the hardware constraints of the ceil. Returns

an integer.

Example:

(CONSTRAINT (&& (>= M 0) (<= M 31)))

As seen throughout Section 3, generic parameters and dynamic parameters are

used in expressions often. It is usually true that a default value can be defined for these

parameters to prevent any expression interpreter to crash. However, the most effective

outcome of using a default value is that it can provide general hardware information

without knowing specific details. In the example shown below, parameter "KEY" is set

to default value of "UU/XX", which is the key corresponding to the white noise input

pattern for capacitance calculation. This default value can be overwritten only when

more specific input patterns are acquired and the key is set to something other key.

DEFAULT

This property specifies the default values for generic parameter or
dynamic parameter. Returns a list structure.

Example: (DEFAULTS (KEY UU/XX))

It has been observed that in many cases, we can combine CONSTRAINT and

DEFAULTS for special selection purposes. For example, we can place a constraint on a

certain parameter OUTTYPE to equal to "TRI", meaning the output of the unit is tri-

stated. Then, at the DEFAULTS statement, OUTTYPE can be again set to "TRI".

(CONSTRINT (Jstrcmp OUTTYPE "TRI"))

(DEFAULTS (OUTTYPE "TRI"))

22

This generally does not change anything when the library is accessed as long

as OUTTYPE is not specified otherwise. However, if OUTTYPE is specified as

"NONTRI", meaning a unit that is not tri-stated, the default will be overwritten and the

particular hardware unit is rejected from the selection.

3.4 Future Work

The hardware library described in this chapter has been developed to define a

set of hardware properties for any generic cell library. Seen by many HYPER tool

developers, the frame work it provides has proven to cover a wide variety of needs.

However, future improvement should be looked into as well. As more new design

features are being introduced into the HYPER system, new properties should be

identified and added to the existing library.

4
Technology Library

Once a cell library is developed, each cell is characterized and its hardware

properties can be extracted and compiled. The resulting product is a hardware library

that can be used by the HYPER system. It is generally true that the development of such

a cell library is based upon a certain process technology. Therefore, a set of technology

properties are common to all hardware units in the library. These properties are now

compied to the technology library. Properties introduced in this chapter are stored in a

text file in the same directory where the hardware library resides. The list functions

defined in the previous chapter are allowed here as well..

4.1 Scaling Factor

The cost and performance of a cell can only be comprehended with proper

units attached. For example, the following three properties are used to annotate

appropriate units to information on size, time and capacitance.

(size_units micron)

(time_units nsec)

(cap_units fF)

23

24

It is often the case that data indicated in the hardware library are not exactly

scaled to the unite specified. For example, we usually like to use A, to describe size

because such information can be applied to different process technology. For this

reason, the scaling factors are also included in the technology file. The examples are

shown as follows.

(size_scale (/6 10))

(time_scale 1)

(cap_scale 1)

4.2 Global Clock

One-phase clock scheme and two-phase clock scheme obviously have different

impact of the global control generator. The Hardware Mapper, therefore, handles

hardware units such as register files and memories quite differently for the two

schemes. The property below defines the number of clocks needed for a specific library.

(nr_of_clocks 1)

Since a cell library is usually developed to meet certain timing specifications,

it is reasonable to give a general ideal of the average delay in a library. Because the

HYPER system is interactive, we define a default clock period based on the delay

information. This property helps the HYPER users to start working on a problem with a

appropriate clock frequency without doing trial-and-error.

(clock_period 50)

For an event-driven design, each clock period represents a state. The state

transition point is therefore determined by either the rising edge or the falling edge of

the clock. To illustrate this, the following property is defined.

(state_transition rising)

25

4.3 Supply Voltage

A specific supply voltage is used to compile any delay information. As

illustrated in Figure 2.1, the delay time varies as a function of supply voltage. In the

technology file, we define the following two properties to show this dependence. The

supply voltage specifies the voltage at which the library cells are characterized. And

the delayjscale lists a group of points taken from an average delay versus supply curve

similar to Figure 2.1. For a given voltage supply, the correct scaling factor for delay is

can be obtained through interpolation between two adjacent points.

(supply_vo11 age 3)

(delay_scale ((10 280) (15 69) (20 35) (25 23)

(30 18) (35 14) (40 12) (45 11) (50 10)))

Routines have been developed to read off the information provided by

delay scale and again, the numbers above appear to be ten times larger because the

current parser does not parse real numbers.

4.4 Process Variation

The impact of using a different process technology lies in several aspects. First

of all, the size scaling is different, which affects the total area estimation. This

adjustment can be reflected in the property sizejscale defined in Section 4.1.

As the device scales, the delay information should be re-calibrated as well. It

is therefore necessary to generate a delay versus technology curve. In addition, the

change of process also causes the delay versus supply curve to scale accordingly. These

variation factors have not be described in the current technology library and are part of

the future work.

5
Design and

Implementation of A Low
Power Wavelet Filter

It has been our experience that when the hardware properties are accurately

modelled and represented in a hardware library, the HYPER system can be quite

powerful in exploring various design spaces. The hardware models depicted in the

individual library are the basis of optimizing designs in terms of time, area or/and

power. As the design constraints become more complicated, high quality optimization

can hardly be achieved by hand. However, powered by an advanced synthesis tool such

as the HYPER system, multi-dimensional optimization is now feasible. The focus of

this chapter is to investigate how different hardware properties in the library are used to

achieve low power design.

5.1 Overview

With today's technology, high performance systems are widely begin

developed while the demand for portable computing and communication devices with

low power consumption has become a challenge for all designers. It has been found

through research that in general, different techniques should be applied at different

26

27

levels of design processes in order to achieve low power. Some of these design

approaches will be discussed in Section 5.2. One of the techniques we are particularly

interested in is the architectural transformation. In a datapath intensive design, the

trade-off between using more time shared units and using more dedicated units is a

major factor in determining the total power consumption of the final implementation.

To explore the effect of such trade-off, a case study is done on a 14th order wavelet

filter. Two architectures are chosen to represent the two extreme cases of the time

sharing trade-off. Two chips are designed and built in the HYPER system based on the

selected architectures. A comparison of power consumption is then made and relevant

simulation results are compiled.

5.2 Low Power Design Approaches

In a digital CMOS circuit, power consumption is contributed by three major

factors - dynamic switching, direct path current and leakage current. Generally

speaking, the switching power is the most influential factor. As a rule of thumb,

switching power is directly related to supply voltage, active switching capacitance and

effective switching frequency, as illustrated in the following formula[Cha92]:

Powerswitching= CL * VDD * feffective

It is apparent that power can be saved by reducing the values of the three

variables above. However, power saving usually comes with other cost. For example,

reducing the capacitance usually means reducing the transistor size, which can lead to

slowing down the circuit. Same happens when the supply voltage is reduced. On the

other hand, it is also possible to reduce power consumption with the least extra cost by

optimizing circuit level designs and applying high-level transformations. For instance,

to ensure that the number of glitch events is minimum, a tree structure is better than a

chain structure in a sequence of additions[Cha93].

28

There are basically five levels of optimization at which power can be reduced.

Namely, they are technology, circuit/logic, architecture, algorithm and system[Cha92].

While different low power design techniques are applicable at each level, optimization

at the architectural level has by far the biggest impact on overall power

reduction[Cha93].

Examples of architectural transformation include pipelining, parallelism,

redundancy, etc. First, take a look at Figure 5.5. After applying pipelining, operation A

is divided into N stages, separated by registers. Assuming the delay is evenly

distributed among these N stages, the worst case clock frequency is increased by a

factor of N. Therefore, to achieve the same throughput, the pipelined version can be run

at a lower supply voltage. According to the previous power equation, the reduction of

supply voltage reduces the total power consumption quadratically. Of course, the price

we are paying here is the cost of extra registers, in terms of area as well as active

capacitance. This is why optimal power consumption is not achieved with pipeline of

infinite depth. Clearly, the optimal point in this case depends on the trade-off between

delay scaling factor and register cost.

I l
f ///////////// vxyz/yryz/y/y'>

Operation A/N
v/////////yyi

N Stages <

OperationA/N
/////////////

Figure 5.5 Effect of Pipelining

It has been observed that in many real-time applications, input data to a system

are very often correlated. For instance, a sequence of speech samples does not consist

many high frequency components and the value of each sample does not vary a lot

29

compared to its adjacent samples. The different behaviors between speech data input

and random noise data input are illustrated in Figure 5.6. As expected, every bit in a

random noise input is switching at about50% probability. However, when interpreted in

binary numbers, higher bits of the speech data exhibits much lower probability of

switching. The most significant bit - the sign bit, switches far less often than the least

significant bit, which is acting almost like a random noise input.

6 8 10
Bit Number

12 14

Figure5.6 Transition Probability of Different Input Patterns

HYPER system has been used to synthesize systems that involve large number

of computations. These computations must be carried out by a set of execution units. In

the past, a minimum number of execution units is usually preferred to achieve minimum

silicon cost. This results in high level of time sharing of execution units. In addition,

data buses are shared among a number of units as well. In a system that handles

correlated data, the time sharing tends to randomize the data being put on the bus. This

effect is shown in the example on Figure 5.7. A single counter counts continuously and

its output data exhibit the behavior shown in Figure 5.6 because of correlation. In the

first case, when each counter has its dedicated output bus, we observe a low probability

of transition on certain bits of the output, namely, the higher bits. In the second case on

the right, when the two data buses are merged and two counters are putting uncorrelated

30

data onto the same bus during adjacent clock periods, the data on the bus become very

random unless the two counters are not independent of each other. Although the total

amount of capacitance on the bus does not vary too much, the effective switching

frequency has been greatly increased. As a result, the power contribution from the bus

puts a large burden on the total power dissipation.

Busi

K
1-*

u

Si
s
3
O

u
X

I OR

u

S
§

BUS2

<i

3 2.0f

* o.q>

r
No Bus-sharing

T& ilSD SD 2dD 250
Skew Between Counter Outputs

Figure 5.7 Example of Bus Sharing

/

Shared Bus

On the other hand, without no time shared hardware unit, every single

computation has to be carried out by a set of dedicated execution units. This

implementation is called parallelism. From a traditional synthesis point of view, this

scheme is not desirable because it always involves more silicon cost. However, as

demonstrated in the previous paragraph, from a low power point of view, this approach

may be a winner despite its overhead on silicon area. Also, as the process technology

continues to make progress, the area cost will eventually become less significant than

the power cost.

31

As stated earlier, the focus of this project is to investigate the trade-off

between time sharing and parallelism. In theory, there exists a optimal point where the

right amount of time sharing and parallelism can be combined to implement a system

with the least power consumption. At the same time, area cost is also one of the issues

considered for such a trade-off comparison.

5,3 Wavelet Filter

Wavelet theory has been used for many multi-resolution signal processing

applications[Rio91]. The wavelet transform provides better frequency resolution at low

frequencies by spreading the frequency response of encoding filters in a logarithmic

scale. Figure 5.8 compares the analysis windows of the wavelet transform with the one

using the short-time fourier transform. It is shown that the latter has fixed resolution at

all frequencies.

Short-Time Fourier Transform

t i i i—r—r
2f0 3f0 4f0 5f0 6f0 7f0 8f0 9f0

Wavelet Transform

Frequency f
. I "*

4f0 8f0

Figure 5.8 Division of the frequency domain

Frequency f

One way of implementing the above wavelet transform is shown in Figure 5.9.

The basic block for this system is a discrete-time filter called wavelet filter. Each

wavelet includes a halfband low-pass filter and a halfband high-pass filter. To achieve

higher resolution, the low-pass filter output is cascaded to the next stage wavelet filter.

32

This scheme is called subband coding. The appropriate scaling between consecutive

stages are made with sub-sampling by two.
i 1

•] hpfJ-1^2)
I

i 1

»| HPF|-1»(B) i 1

» lpf -+>@-*
,yelet I

i_ jrilter | »| LPF |—j-^PS)—»

Figure 5.9 Subband Coding Scheme

»| HPFJ-1^2)
I

» LPF

ivelet I
h>©

5.4 Design Flow

5.4.1 Filter Specifications

In this project, we are designing a wavelet filter with 14-tap impulse response.

The top level flowgraph is shown in Figure 5.10. As an input file to the HYPER system,

Outhig

Outlow

Figure 5.10 Top Level Flowgraph

the flowgraph can be described in the SILAGE language, shown below.

#define word fix<16,15>

/* 22 nonzero bits, high pass design */
#define aO word(0.015625)

word(0.015625)

word(-0.046875)

word(-0.031250)

word(0.093750)

word(0.109375)

word(-0.468750)

#define al

#define a2

#define a3

#define a4

#define a5

#define a6

#define a7 word(0.468750)

#define a8 word(-0.109375)

#define a9 word(-0.093750)
#define alO word(0.031250)

#define all word(0.046875)

#define al2 word(-0.015625)

#define al3 word(-0.015625)

word) Outhigh, Outlow : word =func main(In

begin

Accl3

Accl2

Accll

AcclO

Acc9

Acc8 = Acc9 +

ACC7 = ACC8 +

Acc6 = Acc7 +

Acc5 = Acc6 +

Acc4 = Acc5 +

Acc3 = Acc4 +

Acc2 = Acc3 +

Accl = Acc2 +

word(In@13 * al3) ;

Accl3 + word(In@12

Accl2 + word(In@ll

Accll + word(In@10

AcclO + word(In@9 *

* al2)

* all)

* alO)

a9);

a8)

a7)

a6)

a5)

a4)

a3)

a2)

al)

' aO)

word(In@8

word(In@7

word(In@6

word(In@5

word(In@4

word(In@3

word(In@2

word(In@l

+ word(InOuthigh = Accl

Ace

ACC

ACC

Acc

ACC

ACC

ACC

ACC

ACC

ACC

ACC

ACC

ACC

Out

end;

lowl3

lowl2

lowll

lowlO

low9 =

low8 =

low7 :

10W6 =

10W5 :

10W4 :

10W3 :

10W2 :

lOWl :

low =

= word(In@13

= Acclowl3 -

= Acclowl2 +

= Acclowll -

* al3);

word(In@12

word(In@ll

word(In@10

= AcclowlO

: Acclow9 •

: Acclow8 •

: Acclow7

: Acclow6 •

: Acclow5 •

: Acclow4 •

: Acclow3 •

: Acclow2 •

Acclowl -

+ word(In@9

• word(In@8 *

• word(In@7 *

• word(In@6 *

• word(In@5 *

• word(In@4 *

• word(In@3 *

• word(In@2 *

• word(In@l *

word(In * aO

* al2)

* all)

* alO)

r a9);

a8)

a7)

a6)

a5)

a4)

a3)

a2)

al)

33

In this example, the fourteen multiplication constant values are interpreted in

16-bit binary numbers.

34

5.4.2 Transformation

First, we start by mapping the SILAGE language to an initial flowgraph which

resembles what is in Figure 5.10. Then, in the HYPER system, different transformations

are performed at the flowgraph level, namely, they are Constant Multiplication,

Retiming and Partial Chaining.

5.4. 2. a Constant Multiplication

Because of the fact that each multiplication in this design has a constant

operand, it is possible to transform these multiplication operations to add-shift

operations. As illustrated in the example on Figure 5.11, multiplying by "00101000"

can be transformed to an addition and two constant shift operations. In the wavelet filter

design, expensive multipliers can now be replaced with cheaper adders and shifters. In

addition to the area cost savings, simple blocks such as adders and shifters make it

much more flexible to apply various high-level flowgraph transformations in the

HYPER system.

In

ooioiooo^©^0111 O 1 ffH9"^out
Figure 5.11 Constant Multiplication

5.4. 2. b Retiming

After the constant multiplication, the high-level flowgraph only consists of

adders, shifters and occasionally, delay elements. The delay elements define the stages

of computation needed for the filter. In the wavelet filter case, a total number of 14

computation steps are required for each tap of output. With a certain sampling

frequency, the delay elements can be mapped to registers which isolate subsequent

computation results. Each of these registers is clocked by the global clock signal.

However, through direct mapping, the nature of the FIR filter tends to create

35

unbalanced delay paths on the high-level flowgraph. This is not desired in getting the

best performance because the critical path of this implementation is determined by the

worst-case delay between subsequent registers. As a result, the retiming transformation

is brought in to move the registers along the delay path in orderto generate a flowgraph

with the minimum register to register delay.

5.4.2. c Partial Chaining

From a hardware mapping point of view, the two target architectures for the

final design has to be considered separately.

The time shared implementation calls for simple and regularly used hardware

units to be shared among various arithmetic computations. Chained operators are not

likely to be used by different computations as a regular basis.

As for the parallel implementation, each computation operator is mapped to a

dedicated hardware unit. All operators between any two subsequent delay elements can

be chained to form one datapath. An advantage of applying the parallel scheme is that

the number of shifts is predefined for all shifters. Shifters with constant number of

shifts can simply be mapped to metal wires, saving large amount of active silicon area.

Moreover, partial chaining does not dramatically increase the register to register delay

and hence keeps the critical path within reasonable range.

5.4.3 Hardware Allocation

The major objective of applying the time shared scheme is to utilize the

minimum number of execution units, namely, the adders, the subtractors, the shifts and

so on. Because of the limited number of execution units available, large number of

registers are used for intermediate data storage. As mentioned earlier, the number of

computation stages of a FIR filter is the same as the number of taps in the impulse

response. With the time shared units, each computation stage is allocated to several

36

execution units and is carried out in more than one clock cycle, making the available

time dependent on the amount of hardware resource provided. The scheduling of the

system is optimized using HYPER's scheduler to ensure minimum possible available

time. The architecture provided by current version of HYPER system uses a global state

machine and local control logic blocks to manipulate the operations of each execution

units at any time. Along with each execution unit, a big array of register file is

generated to store intermediate data. Data transfers are conducted across execution

units via data buses.

On the other hand, the fully parallel version of the wavelet filter is

implemented with maximum number of execution units required, meaning dedicated

hardware unit for each high-level operation. Compared to the fully time shared wavelet

filter, the fully parallel one does not need any control logic blocks. This leaves us with

datapath units only, which can be built with datapath compilers to utilize silicon area

most efficiently. The constant shifters also contribute to area savings as well. As each

computation stage is pipelined, the available time of the system is simply one clock

cycle.

From a design point of view, the two implementations discussed above are

chosen for comparison on the basis of area and powercost. Each has its advantages and

disadvantages. First of all, the time shared filter tries to use the least amount of

execution units, where complex calculation is often performed. It has been found that

these hardware units cost more in area as well as in power. However, with less

computation resources, the price being paid in this implementation is more silicon area

and powerdissipation for building storage register files, global and local control logics

and randomized placement/routing. The other extreme, as discussed, tries to use more

uniform hardware units, hoping the regularity of the data flow and the elimination of

control logic, large routing and large register files will lead to a reduction of power

37

consumption. Obviously, there exists a trade-off that is dependent on the hardware

allocation.

5.4.4 Place & Route

In the fully time shared wavelet filter, global and local logic blocks are

synthesized with combinational logic optimizer and built with standard logic blocks. As

a result, a large number of control signals need to be routed to their destinations.

Because of the difference between standard cell compiler and datapath compiler, even

with the best routing tools available, messy routing and large chunks of white space is

observed in the final layout. In the fully parallel implementation, pipelined data follows

a predictable computation flow, which is also reflected in the hardware routing. As all

the units can be handled by datapath compiler, place and route become a much easier

task to accomplish.

5.4.5 Other Considerations

It has been found that power consumed in the I/Os of the chip usually

dominates the total chip power. In order to study the area and power trade-off between

the two design approaches, separate supply and ground pins are designed to isolate I/O

pad power and chip core power. The following simulation and test results are based on

the core power only. It should also be noted that even though the core power is only an

insignificant part of the total chip power, lowering this portion of the power

consumption can be a crucial improvement factor with advanced MCM (Multi-Chip

Module) technology.

38

5.5 Simulation/Test Results

5. 5. 1 Chip Area

As discussed in the previous section, the area cost could be one of the

drawbacks in the fully parallel approach. Figure 5.12 compares the layout of the two

fabricated chips in the same scale. It is obvious that the concern for extra area cost is

not necessary. It turned out that the area overhead in the fully parallel wavelet is about

16.9% more. It is observed that because of placement regularity, there is less open

Figure 5.12 Chip layout of Wavelet Filter

Fully Time Shared (Left) & Fully Paralleled (Right)

space on the chip and silicon area has been efficiently utilized. If the active area is the

concern, area ratio of the two designs are roughly 2:1, which is hardly unreasonable. On

the fully time shared wavelet chip, each execution unit is densely placed and routed,

while the overall chip placement and routing become quite messy, leaving a lot of white

space.

39

5.5. 2 Clock Frequency/Sample Rate

On the fully time shared wavelet chip, the critical path is the worst case delay

in any of the execution units, plus the register set-up and hold time. However, it takes

22 clock cycles to compute a sample output. If the worse case delay is 17ns, the

maximum clock frequency is limited to 58.8MHz and the maximum sample rate is

limited to 2.7MHz.

The worst case register to register delay on the fully parallel wavelet chip,

after retiming, is 18ns. Because every output of the filter is pipelined, the maximum

achievable clock frequency and sample rate are the same, 55.6MHz.

5.5.3 Power Consumption

To compare the power consumption on each chip, a piece of digitized voice

data is put onto the input of the filter. IRSIM, a switch-level simulator then simulates

both chips and counts the number switching events on any non-zero capacitance nodes

on the chip. The total powerconsumption for this voice data is then generated by:

TotalPower =Y^cfa
i

The simulation results are shown in Figure 5.13. It has been observed in the

simulations that the average power consumption per sample stabilizes after some time.

40

It is also shown that the power ratio between the fully time shared wavelet and the fully

paralleled one is about 1:8.
npk] 10*

1 1 • 1 1 i

SjOO :ully Time Shared

4 JO
-

-

4.00
-

3 JO
-

-

300
-

-

ISO
-

2J0O
-

-

IJO
-

100

1 1 1

Fully Parallel -

0J0

1 i i i

™

SjOO 10J» ISjGO 2000 25.00 30jOO OjOO SjOO 1000 ISjOO 2OJ0O 2Sj00 3000

Figure 5.13 Power Consumption of Wavelet Filter

Surprisingly enough, a great amount of power can be saved using the fully

paralleled wavelet filter. The following is a table showing power breakdown in the fully

time shared chip.

Table 5.4 Power Breakdown of Fully Time Shared Implementation

Hardware Components Power Consumption (%)

Tri-State Buffer & Mux 27.2

Local Control 18.9

Register File 11.7

Subtracter 10.5

Adder 8.4

Global Control 5.7

Shifter 5.0

It is obvious that more than half of the power is dissipated in the controller,

register files and bus-related units. These units are eliminated in the fully parallel

design, which only consists of the adders, the subtractors, the shifters and the

41

individual registers. Since shifters in the parallel design are simply metal wires, shifter

itself does not consume any power. It, however, contributes to extra capacitance for the

its driving stage. Even the adders and subtractors consume less power in the paralleled

design than their counterparts in the time shared wavelet design because of correlated

data.

The above analysis no doubt supports the power savings stated below. Table

5.5 lists the simulation results to compare the trade-offs between different aspects of

the two implementations.The comparison is based on the same throughput at a sample

frequency of 2.7MHz. The last column of Table 5.5 has taken into account the voltage

supply difference for each of the two implementations.

Table 5.5 Comparison of ERSIM Simulation Results

Area Vdd Eff. Cap. Power

Time Shared 13.6 mm2 5V 5,171 pF 350 mW

Parallel 15.9 mm2 1.2 V 643 pF 2.5 mW

5.5.4 Chip Testing

The two wavelet chips discussed in this chapter have been both fabricated

using MOSIS 2.0-micron process. Some of the test results are given in this section.

Shown in Table 5.5, the fully parallel implementation can be run at a much

lower supply voltage to achieve the same throughput as in the case of the fully time

shared implementation. It is tested that the critical path of the fully parallel wavelet

filter does follow the delay versus supply curve given in Figure 2.1. Figure 5.14 is

42

generated using chip testing results and it shows the predicted dependency of delay

over supply.
ClockPcfUxIO3

2jOO

1 1 1 1

1.SO -1 -

1.80 -

1.70 -

1.60 -

IJO -

1.40 -

IJO -

1.20 -

1.10 -

UOO -

0.90 -

OJO -

0.70 \ -

0.60 \ -

OJO v. -

040 ^N^ -

OJO ^""s. -

0.20 ^^. _

0.10

1 I 1 1 Velt»j* SofpJy

Figure 5.14 Tested Clock Frequency
Versus Supply Dependency

To verify the functionality, an impulse input is put onto the input of the filter

and corresponding output signals, both low-pass and high-pass, are collected. The

transfer functions of the filter in the frequency domain are computed accordingly,

shown in Figure 5.15.
Gain

Highpass

Figure 5.15 Transfer Function in
Frequency Domain

43

5.6 Summary

Two extremely different architectures have been used to implement a wavelet

filter. As expected, the parallel approach consumes much less power for the same

throughput because of its simplified hardware structure and highly correlated data flow.

The extra overhead cost is insignificant.

6
Conclusions

For any high-level synthesis tool, the hardware properties of available

resources are compiled into libraries. This report describes such a library representation

which can support a wide variety of hardware units. The syntax of the library and the

different categories of hardware properties are described in detail. Efforts have been

made to keep the high-level tools away from the properties of each individual hardware

unit. It is expected that future improvement in the HYPER environment may require the

library representation to include other properties. However, development of such can be

easily achieved with very little change to the current library representation.

Also included in this report is the design and implementation of a wavelet

filter. Through theoretical analysis, statistical analysis, simulation and testing, it is

shown that the power consumption is greatly influenced by the architecture chosen for

implementation. A good synthesis tool, therefore, should be able to find a optimal

solution for least power consumption. Such a tool requires accurate estimation of

hardware cost, in area as well as in power. The hardware library is essentially the

backbone in every step of the synthesis step. In conclusion, the continuous refinement

of the hardware library representation is a key factor in building a high-level synthesis

system.

44

Appendix A

Hardware Database

(

(++

("counter"

(PARAMETERS (N N))

(CAP (* CO N))

(CAP-COEFFS(154))

(AREA (* 160 (+ 75 (* 64 N) (* 31 (- (ceiling (/ (+ N 1) 16)) 1)))))
(DELAY (+ 5 (* N (/ 3 4))))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 2)

(RIPPLE-DELAY (* N (/ 3 4)))

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((CLK CKl) (CIN GND) (LD LOAD) (CNT COUNT) (RST RESET)))
(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

((CLK BOTTOM) (CIN BOTTOM) (LD BOTTOM) (CNT BOTTOM) (COUT TOP)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)))

(>=

("logcomp"

(PARAMETERS (N N) (TWOS_COMP 1))

45

(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (181))

(UU/US/XX(160 202))

(UU/SU/XX(215 153))

(UU/SS/XX (112 312 206 101))

(US/UU/XX (152 206))

(SU/UU/XX (176 206))

(US/US/XS (175 156 0 164 182 0 219 212))

(SU/SU/SX (226 236 0 121 206 0 133 152))

(US/SU/XX (232 90 188 195))

(SU/US/XX (194 165 130 254))

(US/SS/XS (189 134 0 285 152 177 0 59 92 0 315 262 220 0

119 161))

(SU/SS/SX (189 182 234 283 0 222 0 73 78 0 363 0 185 180

85 126))

(SS/UU/XX (84 261 254 129))

(SS/US/XS (120 138 0 75 241 0 223 251 194 181 0 274 86 0

231 171))

(SS/SU/SX (111 143 0 62 296 293 0 238 299 0 105 157 115

0 167 156))

(SS/SS/SS (0 27 84 0 0 145 0 219 0 0 163 199 0 0 0 0 304

0 251 0 216 262 311 212 0 0 245 0 00 180 223

246 160 0 0 0 345 0 0 38 93 130 41 0 121 0 203

0 0 0 0 316 235 0 0 212 0 161 0 0 27 62 0)))))
(AREA (* 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(DELAY 0)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL NIL)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

46

)

(CTL-OUT-TERMINAL (or AEQB AGTB))

(CTL-TERM-EDGE ((AGTB TOP) (AGTB TOP)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)

)

(>
("logcomp"

(PARAMETERS (N N) (TWOS.COMP 1))

(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (181))

(UU/US/XX(160 202))

(UU/SU/XX(215 153))

(UU/SS/XX (112 312 206 101))

(US/UU/XX (152 206))

(SU/UU/XX(176 206))

(US/US/XS (175 156 0 164 182 0 219 212))
(SU/SU/SX (226 236 0 121 206 0 133 152))

(US/SU/XX (232 90 188 195))

(SU/US/XX (194 165 130 254))

(US/SS/XS (189 134 0 285 152 177 0 59 92 0 315 262 220 0

119 161))

(SU/SS/SX (189 182 234 283 0 222 0 73 78 0 363 0 185 180

85 126))

(SS/UU/XX (84 261 254 129))

(SS/US/XS (120 138 0 75 241 0 223 251 194 181 0 274 86 0

231 171))

(SS/SU/SX (111 143 0 62 296 293 0 238 299 0 105 157 115

0 167 156))

(SS/SS/SS (0 27 84 0 0 145 0 219 0 0 163 199 0 0 0 0 304

0 251 0 216 262 311 212 0 0 245 00 0 180 223

246 160 0 0 0 345 0 0 38 93 130 41 0 121 0 203

0 0 0 0 316 235 0 0 212 0 161 0 0 27 62 0)))))
(AREA (* 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(DELAY 0)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

47

)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL NIL)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL AGTB)

(CTL-TERM-EDGE ((AGTB TOP)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)

)

("logcomp"

(PARAMETERS (N N) (TWOS.COMP 1))

(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (181))

(UU/US/XX(160 202))

(UU/SU/XX (215 153))

(UU/SS/XX (112 312 206 101))

(US/UU/XX (152 206))

(SU/UU/XX(176 206))

(US/US/XS (150 158 175 0 166 0 214 228))

(SU/SU/SX (223 233 146 0 215 0 170 155))

(US/SU/XX (253 103 198 199))

(SU/US/XX (176 139 139 245))

(US/SS/XS (166 161 283 0 161 160 60 0 95 0 303 293 221 0

123 146))

(SU/SS/SX (177 182 258 257 225 0 80 0 94 0 324 0 195 196

117 101))

(SS/UU/XX (82 249 252 121))

(SS/US/XS (128 131 83 0 245 0 242 254 194 193 264 0 69 0

201 201))

(SS/SU/SX (129 130 58 0 286 302 235 0 299 0 129 131 122

0 166 164))

(SS/SS/SS (0 33 37 0 185 0 212 0 189 205 0 0 0 0 0 0 269

0 312 0 217 264 268 265 260 0 0 0 195 228 0 0

205 213 0 0 340 0 0 0 37 94 90 68 155 0 152

0 0 0 0 0 278 286 0 0 192 0 232 0 0 33 27 0)))))
(AREA (* 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(DELAY 0)

48

)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))
(DATA-OUT-TERMINAL NIL)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL AEQB)
(CTL-TERM-EDGE ((AEQB TOP)))
(COMPLEMENT-OUT NIL)
(DRIVING-CAP NO)

)

(<=

("logcomp"

(PARAMETERS (N N) (TWOS.COMP 1))
(DEFAULTS (KEY UU/UU/XX))
(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (181))

(UU/US/XX (160 202))

(UU/SU/XX(215 153))

(UU/SS/XX (112 312 206 101))

(US/UU/XX (152 206))

(SU/UU/XX (176 206))

(US/US/XS (170 170 164 0 0 182 210 211))
(SU/SU/SX (241 218 121 0 0 206 154 143))
(US/SU/XX (232 90 188 195))

(SU/US/XX (194 165 130 254))

(US/SS/XS (137 180 285 0 175 157 59 0 0 92 268 311 0 220

148 131))

(SU/SS/SX (172 195 278 230 222 0 73 0 0 78 0 363 167 195
133 87))

(SS/UU/XX (84 261 254 129))

(SS/US/XS (137 119 75 0 0 241 242 232 167 211 274 0 0 86

179 217))

(SS/SU/SX (159 92 62 0 289 299 238 0 0 299 150 107 0 115
145 176))

(SS/SS/SS (0 62 36 0 218 0 145 0 204 159 0 0 0 0 0 0 0

258 0 297 225 305 261 203 0 245 0 0 220 182 0

0 0 0 167 235 0 0 345 0 38 126 90 41 193 0 128

0 0 0 0 0 0 0 232 325 0 159 0 214 0 58 25 0)))))

49

)

(AREA (* N 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(DELAY 0)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL NIL)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL (not AGTB))
(CTL-TERM-EDGE ((AGTB TOP)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)

)

(<

("logcomp"

(PARAMETERS (N N) (TWOS_COMP 1))
(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (181))

(UU/US/XX(160 202))

(UU/SU/XX(215 153))

(UU/SS/XX (112 312 206 101))

(US/UU/XX (152 206))

(SU/UU/XX (176 206))

(US/US/XS (170 170 164 0 0 182 210 211))
(SU/SU/SX (241 218 121 0 0 206 154 143))
(US/SU/XX (232 90 188 195))
(SU/US/XX (194 165 130 254))

(US/SS/XS (137 180 285 0 175 157 59 0 0 92 268 311 0 220
148 131))

(SU/SS/SX (172 195 278 230 222 0 73 0 0 78 0 363 167 195
133 87))

(SS/UU/XX (84 261 254 129))

(SS/US/XS (137 119 75 0 0 241 242 232 167 211 274 0 0 86
179 217))

(SS/SU/SX (159 92 62 0 289 299 238 0 0 299 150 107 0 115
145 176))

50

)

(SS/SS/SS (0 62 36 0 218 0 145 0 204 159 0 0 0 0 0 0 0

258 0 297 225 305 261 203 0 245 0 0 220 182 0

0 0 0 167 235 0 0 345 0 38 126 90 41 193 0 128

0 0 0 0 0 0 0 232 325 0 159 0 214 0 58 25 0)))))
(AREA (* 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(AREA (* N 64 (+ 187 (* 14 (ceiling (log N 2))))))
(HEIGHT (+ 187 (* 14 (ceiling (log N 2)))))
(WIDTH (* N 64))

(DELAY 0)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL NIL)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL (not (or AGTB AEQB)))
(CTL-TERM-EDGE ((AGTB TOP) (AEQB TOP)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)

51

)

(REG

("regfile"

(CONSTRAINT (&& (== R 1) (II (== NCON 0) (== NCON 1))
(istrcasecmp OUTTYPE TRI) (Istrcasecmp CTRLTYPE HIGH)))

(DEFAULTS (R 1) (NCON 0) (OUTTYPE TRI) (CTRLTYPE HIGH) (KEY UU/XX)
(FUNC WRITE) (CS_OFFSET 44) (BUF.OFFSET 47))

(PARAMETERS ((N N) (R R) (NC (- R NCON))
(REGPLANE (D2B N CONSTPLANE))))

(CAP (* (/ N N_TOT) (+ CO (* CI R) (* C2 N_TOT) (* C3 R N_TOT))))
(CAP-COEFFS (LOOKUP FUNC

((READ (LOOKUP KEY

((UU/XX ((87 51 35 8)))

(US/XX ((103 51 36 12) (98 43 34 3)))
(SU/XX ((78 43 34 3) (68 33 39 14)))
(SS/XX ((88 43 17 3) (88 43 51 3)

52

(89 43 58 23) (88 43 17 3))))))

(WRITE (LOOKUP KEY

((UU/XX ((99 30 65 10)))

(US/XX ((124 43 63 3) (120 52 65 17)))

(SU/XX ((89 35 65 17) (78 43 67 3)))

(SS/XX ((104 43 38 3) (104 43 92 32)
(104 43 92 3) (104 43 38 3)))))))))

(AREA (* (+ BUF.OFFSET (* 42 NCON) (* 62 (- R NCON))) (+ CS_OFFSET (* 64
N) (* 7 (- (ceiling (/ (+ N 1) 8)) 1)))))

(HEIGHT (+ BUF.OFFSET (* 42 NCON) (* 62 (- R NCON))))
(WIDTH (+ CS.OFFSET (* 64 N) (* 7 (- (ceiling (/ (+ N 1) 8)) 1))))
(DELAY (/ 9 2))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(POWER-TERMINAL (Vdd GND))

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(CTL-IN-TERMINAL

((CLK CKl)

((EXPAND RD[%d] 0 (- R 1) 1) (EXPAND READ[%d] 0 (- R 1) 1))
((EXPAND WR[%d] 0 (- (- R NCON) 1) 1)

(EXPAND WRITE[%d] 0 (- (- R NCON) 1) 1))))
(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

((CLK BOTTOM) ((EXPAND RD[%d] 0 R) BOTTOM)
((EXPAND WR[%d] 0 (- (- R NCON) 1)) BOTTOM)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)

)

)

(REGFILE

("regfile"

(CONSTRAINT (&&

(Istrcasecmp OUTTYPE TRI) (Istrcasecmp CTRLTYPE HIGH)))
(DEFAULTS (R 1) (NCON 0) (OUTTYPE TRI) (CTRLTYPE HIGH) (KEY UU/XX)

(FUNC WRITE) (CS.OFFSET 44) (BUF_OFFSET 47))
(PARAMETERS ((N N) (R R) (NC (- R NCON))

(REGPLANE (D2B N CONSTPLANE))))

(CAP (* (/ N N_TOT) (+ CO (* CI R) (* C2 N_TOT) (* C3 R N_TOT))))
(CAP-COEFFS (LOOKUP FUNC

((READ (LOOKUP KEY

((UU/XX ((87 51 35 8)))

53

(US/XX ((103 51 36 12) (98 43 34 3)))

(SU/XX ((78 43 34 3) (68 33 39 14)))

(SS/XX ((88 43 17 3) (88 43 51 3)

(89 43 58 23) (88 43 17 3))))))

(WRITE (LOOKUP KEY

((UU/XX ((99 30 65 10)))

(US/XX ((124 43 63 3) (120 52 65 17)))

(SU/XX ((89 35 65 17) (78 43 67 3)))

(SS/XX ((104 43 38 3) (104 43 92 32)

(104 43 92 3) (104 43 38 3)))))))))

(AREA (* (+ BUF.OFFSET (* 42 NCON) (* 62 (- R NCON))) (+ CS.OFFSET (* 64

N) (* 7 (- (ceiling (/ (+ N 1) 8)) 1)))))

(HEIGHT (+ BUF.OFFSET (* 42 NCON) (* 62 (- R NCON))))

(WIDTH (+ CS.OFFSET (* 64 N) (* 7 (- (ceiling (/ (+ N 1) 8)) 1))))

(DELAY (/ 9 2))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(POWER-TERMINAL (Vdd GND))

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(CTL-IN-TERMINAL

((CLK CKl)

((EXPAND RD[%d] 0 (- R 1) 1) (EXPAND READ[%d] 0 (- R 1) 1))

((EXPAND WR[%d] 0 (- (- R NCON) 1) 1)

(EXPAND WRITE[%d] 0 (- (- R NCON) 1) 1))))

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

((CLK BOTTOM) ((EXPAND RD[%d] 0 R) BOTTOM)

((EXPAND WR[%d] 0 (- (- R NCON) 1)) BOTTOM)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)))

(mux

("mux2"

(SDLNAME "mux")

(VHDLNAME "mux")

(CONSTRAINT (== NrIN 2))

(DEFAULTS (SELECT 0) (KEY UU/XX))

(PARAMETERS ((N N) (NUM.IN NrIN)))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (20))

(US/XX (20 18))

(SU/XX (21 21))

(SS/XX (0 39 41 0)))))

(AREA (* 56 (+ (* 64 N) (* 25 (ceiling (/ (+ N 1) 8))))))
(HEIGHT 56)

(WIDTH (* N 64))

(DELAY (/ 5 2))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 5 2))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (INA INB))
(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL (((SA) SELECT)))

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((SA BOTTOM)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL))

("mux3"

(SDLNAME "mux")

(VHDLNAME "mux")

(CONSTRAINT (== NrIN 3))

(DEFAULTS (SELECT 0) (KEY UU/XX))

(PARAMETERS ((N N) (NUM_IN NrIN)))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (32))

(US/XX (24 36))

(SU/XX (41 26))

(SS/XX (0 77 51 0)))))

(AREA (* 93 (+ 30 (* 64 N) (* 20 (ceiling (/ (+ N 1) 8))))))
(HEIGHT 93)

(WIDTH (* N 64))

(DELAY (/ 8 3))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 8 3))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (INA INB INC))
(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL (((SB SA) SELECT)))
(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((SA BOTTOM)(SB BOTTOM)))
(COMPLEMENT-OUT NIL)

54

(DRIVING-CAP SMALL))
("mux4"

(SDLNAME "mux")

(VHDLNAME "mux")

(CONSTRAINT (== NrIN 4))

(DEFAULTS (SELECT 0) (KEY UU/XX))

(PARAMETERS ((N N) (NUM_IN NrIN)))
(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (39))

(US/XX (30 44))

(SU/XX (49 33))

(SS/XX (0 93 63 0)))))

(AREA (* 113 (+ 79 (* 64 N) (* 16 (- (ceiling (/ (+ N 1) 16)) 1)))))
(HEIGHT 113)

(WIDTH (+ 79 (* 64 N) (* 16 (- (ceiling (/ (+ N 1) 16)) 1))))
(DELAY (/ 8 3))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 8 3))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (INA INB INC IND))

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL (((SB SA) SELECT)))

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((SA BOTTOM)(SB BOTTOM)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)))

(nop

("add"

(CONSTRAINT (== NrIN 2))

(PARAMETERS ((N N) (CS.TYPE "z")))

(DEFAULTS (KEY UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (76))

(US/XX (57 86))

(SU/XX (96 57))

(SS/XX (10 182 123 0)))))

(AREA (* 207 (+ 11 (* 64 N))))

(DELAY (+ (/ 5 2) (/ 52 10) (* N (/ 3 4))))
(RIPPLE-OFFSET (/ 5 2))

(ONE-BIT-DELAY (/ 52 10))

55

(RIPPLE-DELAY (* N (/ 3 4)))

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL A)

(DATA-OUT-TERMINAL SUM)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((COUT TOP) (COUTINV TOP)))

(COMPLEMENT-OUT COUTINV)

(DRIVING-CAP NO)))

(+
("add"

(CONSTRAINT (== NrIN 2))

(DEFAULTS (KEY UU/UU/XX))

(PARAMETERS ((N N) (CSJTYPE "z")))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (268))

(UU/US/XX(221 308))

(UU/SU/XX (240 259))

(UU/SS/XX (99 358 321 200))

(US/UU/XX(214 283))

(SU/UU/XX (232 265))

(US/US/XS (208 0 350 233 308 281 0 314))

(SU/SU/SX (253 0 228 208 278 214 0 295))

(US/SU/XX (107 324 312 158))

(SU/US/XX (136 354 295 270))

(US/SS/XS (60 0 332 154 317 0 331 319 256 136 0 429 203

298 0 136))

(SU/SS/SX (108 0 373 0 286 133 164 302 222 81 336 348 0

391 0 233))

(SS/UU/XX (108 338 340 200))

(SS/US/XS (82 0 289 114 264 183 0 401 317 0 415 323 208

303 0 226))

(SS/SU/SX (117 0 248 95 395 0 186 296 288 108 0 425 268

277 0 147))

(SS/SS/SS (3 0 0 0 341 165 0 0 307 0 1210 0 223 269 15

344 174 0 0 0 485 0 0 67 242 250 79 0 229 0

377 300 0 101 0 31 284 342 80 0 0 384 0 0 0

455 439 0 174 188 21 0 386 0 420 0 0 247 409 0

0 0 3)))))

(AREA (* 207 (+ 11 (* 64 N))))

(HEIGHT 207)

56

(WIDTH (+ 11 (*64N)))

(DELAY (+ (/ 5 2) (/ 52 10) (* N (/ 3 4))))

(RIPPLE-OFFSET (/ 5 2))

(ONE-BIT-DELAY (/ 52 10))

(RIPPLE-DELAY (* N (/ 3 4)))

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL SUM)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((COUT TOP) (COUTINV TOP)))
(COMPLEMENT-OUT COUTINV)

(DRIVING-CAP SMALL))

("csa"

(CONSTRAINT (== NrIN 2))

(DEFAULTS (KEY UU/UU/XX))

(PARAMETERS (N N) (CS_TYPE "z"))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (233))

(UU/US/XX (241 247))

(UU/SU/XX (243 230))

(UU/SS/XX (199 305 299 172))

(US/UU/XX (225 227))

(SU/UU/XX(241218))

(US/US/XS (182 0 352 268 245 311 0 215))

(SU/SU/SX (273 0 223 202 188 199 0 249))

(US/SU/XX (129 286 313 145))

(SU/US/XX (211 276 262 195))

(US/SS/XS (82 0 265 158 297 0 353 295 292 381 0 327 170

296 0 105))

(SU/SS/SX (266 0 325 0 279 158 131 227 228 115 145 251 0

320 0 210))

(SS/UU/XX (96 333 299 102))

(SS/US/XS (62 0 224 125 345 409 0 325 290 0 395 348 109

2310 87))

(SS/SU/SX (101 0 214 102 389 0 212 283 258 156 0 349 120

221 0 92))

(SS/SS/SS (0 0 0 0 320 182 0 0 283 0 144 0 0 142 126 0

390 476 0 0 0 368 0 0 204 324 310 191 0 207 0

300 268 0 174 0 78 225 221 74 0 0 320 0 0 0

499 422 4 141 136 0 0 173 0 292 0 0 174 330 0

57

0 0 0)))))

(AREA (* 232 (+ 40 (* 64 N))))

(HEIGHT 232)

(WIDTH (+(* 64 N) 18 10))

(DELAY (+ (/ 13 10) (* (/ 6 10) (sqrt N))))
(RIPPLE-OFFSET (/ 13 10))

(ONE-BIT-DELAY 2)

(RIPPLE-DELAY (* (/ 6 10) (sqrt N)))
(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL SUM)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((CARRYOUT TOP) (COUTN TOP)))
(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)

)

)

(-

("sub"

(PARAMETERS ((N N) (CS_TYPE "z")))

(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (264))

(UU/US/XX (291 232))

(UU/SU/XX (263 232))

(UU/SS/XX (203 351 342 115))

(US/UU/XX (209 266))

(SU/UU/XX (226 274))

(US/US/XS (372 287 193 0 0 259 313 277))

(SU/SU/SX (247 239 216 0 0 337 209 219))
(US/SU/XX (298 105 210 286))

(SU/US/XX (327 157 223 309))

(US/SS/XS (348 300 309 0 334 199 76 0 0 130 310 372 0

343 235 154))

(SU/SS/SX (158 323 294 145 355 0 91 0 0 226 0 424 178

335 236 86))

(SS/UU/XX (118 316 315 199))

(SS/US/XS (313 151 95 0 0 342 290 216 403 341 285 0 0

133 269 340))

(SS/SU/SX (283 109 105 0 206 314 339 0 0 369 266 129 0

58

231 139 250))

(SS/SS/SS (0 190 273 21 302 0 124 0 363 171 0 0 4 0 0 0

0 236 0 347 107 254 242 107 0 375 0 0 348 184

00 00461 405 0 0 305 0 51 218 318 71 307 0

129 0 0 0 0 16 0 0 366 486 0 230 0 319 5 169

152 19)))))

(AREA (* 207 (+ 20 (* 64 N))))
(HEIGHT 207)

(WIDTH (+ 20 (* 64 N)))

(DELAY (+ (/ 5 2) (/ 52 10) (* N (/ 3 4))))
(RIPPLE-OFFSET (/ 5 2))

(ONE-BIT-DELAY (/ 52 10))

(RIPPLE-DELAY (* N (/ 3 4)))

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL SUM)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((CIN BOTTOM) (COUT TOP) (COUTINV TOP)))
(COMPLEMENT-OUT OUTINV)

(DRIVING-CAP SMALL)))

(negate

("sub"

(PARAMETERS ((N N) (CS.TYPE "z")))
(DEFAULTS (KEY UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (104))

(US/XX (113 99))

(SU/XX (116 97))

(SS/XX (67 189 197 27)))))

(AREA (* 207 (+ 20 (* 64 N))))
(DELAY (+ (/ 5 2) (/ 52 10) (* N (/ 3 4))))
(RIPPLE-OFFSET (/ 5 2))

(ONE-BIT-DELAY (/ 52 10))

(RIPPLE-DELAY (* N (/ 3 4)))

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL B)

(DATA-OUT-TERMINAL SUM)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CARRYIN VDD)))
(CTL-OUT-TERMINAL NIL)

59

(CTL-TERM-EDGE ((CIN BOTTOM) (COUT TOP) (COUTINV TOP)))
(COMPLEMENT-OUT OUTINV)

(DRIVING-CAP SMALL)))

(A
("xor"

(SDLNAME "logics")

(VHDLNAME "logics")

(CONSTRAINT (== NrIN 2))

(PARAMETERS ((N N) (TYPE "xor") (NUMJN NrIN)))

(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (45))

(UU/US/XX (40 49))

(UU/SU/XX (48 39))

(UU/SS/XX (27 70 53 28))

(US/UU/XX (36 50))

(SU/UU/XX (52 38))

(US/US/XS (40 0 0 35 0 40 61 0))

(SU/SU/SX (56 0 0 48 0 44 30 0))

(US/SU/XX (40 34 57 44))

(SU/US/XX (44 60 35 40))

(US/SS/XS (25 0 0 55 53 0 0 18 0 28 88 0 0 53 35 0))

(SU/SS/SX (25 0 82 0 0 62 0 34 0 28 0 61 42 0 18 0))

(SS/UU/XX (30 71 43 31))

(SS/US/XS (33 0 0 31 0 56 86 0 46 0 0 41 0 24 38 0))

(SS/SU/SX (31 0 0 35 74 0 0 66 0 50 36 0 0 37 22 0))

(SS/SS/SS (00000 63 0000 67 000000 54 00 98

000000 57 00 74 000 54 0000 46 37 0

000 35 00000000 75 00 47 00000 0)))))
(AREA (* N 56 64))

(HEIGHT 64)

(WIDTH (* N 56))

(DELAY (/ 5 2))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 5 2))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL O)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

60

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)))

(&

("and2"

(SDLNAME "logics")
(VHDLNAME "logics")

(CONSTRAINT (== NrIN 2))

(PARAMETERS ((N N) (TYPE "nandand") (NUM.IN NrIN)))
(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (36))

(UU/US/XX (22 48))

(UU/SU/XX (39 35))

(UU/SS/XX (9 65 35 31))

(US/UU/XX (25 45))

(SU/UU/XX (38 36))

(US/US/XS (13 0 37 0 33 0 0 59))

(SU/SU/SX (50 0 24 0 28 0 0 42))

(US/SU/XX (22 29 53 39))

(SU/US/XX (19 55 27 43))

(US/SS/XS (0 0 45 0 26 0 29 0 20 0 0 89 46 0 0 30))
(SU/SS/SX (18 0 78 0 18 0 29 0 0 0 57 0 0 56 0 30))
(SS/UU/XX (10 62 38 31))

(SS/US/XS (0 0 22 0 38 0 0 85 26 0 50 0 29 0 0 35))
(SS/SU/SX (22 0 0 0 69 0 51 0 22 0 0 56 33 0 0 26))
(SS/SS/SS (0000 45 00000000000 38 0000

108 00 38 0000 63 000000 45 00000

56 000 56 000000 69 0000 56 0000

0)))))

(AREA (*N 51 64))

(DELAY (/28 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 28 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL OB)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT OA)

(DRIVING-CAP SMALL))

61

("and3"

(SDLNAME "logics")

(VHDLNAME "logics")

(CONSTRAINT (== NrIN 3))

(PARAMETERS ((N N) (TYPE "nandand") (NUMJN NrIN)))
(CAP (* CO N))

(CAP-COEFFS (50))

(AREA (* N 59 64))

(DELAY (/29 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 29 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (A B C))

(DATA-OUT-TERMINAL OB)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT OA)

(DRIVING-CAP SMALL)))

(I
("or2"

(SDLNAME "logics")

(VHDLNAME "logics")

(CONSTRAINT (== NrIN 2))

(PARAMETERS ((N N) (TYPE "noror") (NUMJN NrIN)))
(DEFAULTS (KEY UU/UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/UU/XX (40))

(UU/US/XX (35 44))

(UU/SU/XX (54 25))

(UU/SS/XX (31 76 38 13))

(US/UU/XX (33 43))

(SU/UU/XX (55 27))

(US/US/XS (38 0 0 30 0 32 0 58))

(SU/SU/SX (72 0 0 38 0 39 0 12))

(US/SU/XX (44 25 63 25))

(SU/US/XX (44 65 26 26))

(US/SS/XS (24 0 0 64 50 0 0 0 0 40 0 92 0 28 0 25))
(SU/SS/SX (36 0 103 0 0 51 0 24 0 26 0 52 0 25 0 0))
(SS/UU/XX (29 78 37 12))

(SS/US/XS (24 0 0 37 0 65 0 90 50 0 0 29 0 0 0 26))

62

(SS/SU/SX (37 0 0 26 99 0 0 53 0 51 0 26 0 25 0 0))
(SS/SS/SS (00000 75 0000 49 000000 76 000

128 0 0 0 0 0 53 0 0 0 53 0 0 50 0 0 0 0 53 0

0 49 000000000000 52 0000000

0)))))
(AREA (* N 64 53))

(DELAY (/29 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 29 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (A B))

(DATA-OUT-TERMINAL OB)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT OA)

(DRIVING-CAP SMALL))

("or3"

(SDLNAME "logics")

(VHDLNAME "logics")

(CONSTRAINT (== NrIN 3))

(PARAMETERS ((N N) (TYPE "noror") (NUMJN NrIN)))
(CAP (* CO N))

(CAP-COEFFS (50))

(AREA (* N 64 70))

(DELAY (/ 31 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 31 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL (A B C))

(DATA-OUT-TERMINAL OB)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT OA)

(DRIVING-CAP SMALL)))

(!
("invs"

(SDLNAME "inv")

(VHDLNAME "inv")

(PARAMETERS (N N) (SIZE "s"))

63

(DEFAULTS (KEY UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (10))

(US/XX (10 9))

(SU/XX (10 11))

(SS/XX (0 20 210)))))

(AREA (* N 40 64))

(DELAY (/ 17 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 17 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL))

("invm"

(SDLNAME "inv")

(VHDLNAME "inv")

(PARAMETERS ((N N) (SIZE "m")))

(DEFAULTS (KEY UU/XX))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (24))

(US/XX (18 28))

(SU/XX (32 20))

(SS/XX (0 60 39 0)))))

(AREA (* N 40 64))

(DELAY (/ 17 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 17 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

64

(DRIVING-CAP MEDIUM)))

(buffer

("bufs"

(SDLNAME "buf")

(VHDLNAME "buf)

(DEFAULTS (KEY UU/XX))

(PARAMETERS ((N N) (SIZE "s")))
(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (21))

(US/XX (18 21))

(SU/XX (23 20))

(SS/XX (0 44 39 0)))))

(AREA (* N 64 40))

(HEIGHT 40)

(WIDTH (* N 64))

(DELAY (/18 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 18 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL))

("bufm"

(SDLNAME "buf)

(VHDLNAME "buf)

(DEFAULTS (KEY UU/XX))

(PARAMETERS ((N N) (SIZE "m")))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (30))

(US/XX (32 25))

(SU/XX (28 35))

(SS/XX (0 54 68 0)))))

(AREA (* N 64 40))

(AREA (* N 64 40))

(HEIGHT 40)

(WIDTH (* N 64))

65

(DELAY (/ 22 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 22 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP MEDIUM))

("bufl"

(SDLNAME "buf')

(VHDLNAME "buf)

(DEFAULTS (KEY UU/XX))

(PARAMETERS ((N N) (SIZE "1")))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (47))

(US/XX (54 35))

(SU/XX (39 59))

(SS/XX (0 74 113 0)))))

(AREA (* N 64 40))

(HEIGHT 40)

(WIDTH (* N 64))

(DELAY (/27 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 27 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP LARGE))

("bufx"

(SDLNAME "buf)

(VHDLNAME "buf)

(DEFAULTS (KEY UU/XX))

(PARAMETERS ((N N) (SIZE "x")))

66

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (80))

(US/XX (95 58))

(SU/XX (64 104))

(SS/XX (0 122 199 0)))))

(AREA (* N 64 48))

(HEIGHT 48)

(WIDTH (* N 64))

(DELAY (/29 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 29 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP XLARGE))

("bufh"

(SDLNAME "buf)

(VHDLNAME "buf)

(DEFAULTS (KEY UU/XX))

(PARAMETERS ((N N) (SIZE "h")))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (149))

(US/XX (178 104))

(SU/XX (116 194))

(SS/XX (0 221 3710)))))

(AREA (* N 64 69))

(HEIGHT 69)

(WIDTH (* N 64))

(DELAY (/33 10))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY (/ 33 10))

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

67

68

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP HUGE)))

(»
("shr"

(SDLNAME "sh")

(VHDLNAME "sh")

(CONSTRAINT (&& (>= M 0) (<= M 31)))

(DEFAULTS (SHIFT 0) (MAX 31) (MIN 0) (KEY UU/XX))

(PARAMETERS ((N N) (ENDTYPE "arithmetic") (STYPE "right")
(MAXSBY (- (expt 2 (ceiling (log (+ M 1) 2))) 1))))

(CAP (* (/ N 1000)

(+C0

(* (ceiling (log (+ M 1) 2))

(+ (/ CI N_TOT) C2 (* C3 N_TOT) (* C4 M) (* C5 SHIFT))

))))
(CAP-COEFFS (LOOKUP KEY

((UU/XX ((28722 43859 12296 62 244 -183)))

(US/XX ((28916 47230 -3343 39 5 -73)

(49760 -160179 38790 -182 1072 279)))

(SU/XX ((29515 206333 19996 173 528 -279)

(31079 -29660 3711 -43 -5 75)))

(SS/XX ((000000)

(79266 46257 58788 -9 1600 0)

(59791 24275 12 0 0 0)

(000000))))))

(AREA (* (+ 20 (* 64 N) (* 11 (ceiling (/ N 8)))) (- (* 109 (ceiling (log (+ M 1) 2)))
64)))

(HEIGHT (- (* 109 (ceiling (log (+ M 1) 2))) 64))

(WIDTH (+ 20 (* 64 N) (* 11 (ceiling (/ N 8)))))
(DELAY (+ (/ 37 10) (* M (/ 3 10))))

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL

(((EXPAND SHIFT[%d] (- (ceiling (log (+ M 1) 2)) 1) 0) SHIFT)))
(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

69

(((EXPAND SHIFT[%d] (- (ceiling (log (+ M 1) 2)) 1) 0) BOTTOM)))
(COMPLEMENT-OUT NIL)
(DRIVING-CAP SMALL)))

(«
("shl"

(SDLNAME "sh")

(VHDLNAME "sh")

(CONSTRAINT (&& (>= M 0) (<= M 31)))
(DEFAULTS (SHIFT 0) (MAX 31) (MIN 0) (KEY UU/XX))
(PARAMETERS ((N N) (ENDTYPE "arithmetic") (STYPE "left")

(MAXSBY (- (expt 2 (ceiling (log (+ M 1) 2))) 1))))
(CAP (* (/ N 1000)

(+C0

(* (ceiling (log (+ M 1) 2))

(+ (/ CI N_TOT) C2 (* C3 N_TOT) (* C4 M) (* C5 SHIFT))
))))

(CAP-COEFFS (LOOKUP KEY

((UU/XX ((29049 -113660 19883 -6 241 -200)))
(US/XX ((34124 77815 -2916 -13 171 124)

(35430 -62726 33235 36 622 -146)))
(SU/XX ((32619 -69119 33361 -2 573 -113)
(35075 139991-8382 64 156 115)))

(SS/XX ((5871 64108 -610 -45 166 204)
(62518 -133309 62229 142 1046 -458)
(63551 -64984 5783-118 166 50)
(4820 170171 -4412 -13 139 171))))))

(AREA (* (+ 20 (* 64 N) (* 11 (ceiling (/ N 8)))) (- (* 109 (ceiling (log (+ M 1) 2)))
64)))

(HEIGHT (- (* 109 (ceiling (log (+ M 1) 2))) 64))
(WIDTH (+ 20 (* 64 N) (* 11 (ceiling (/ N 8)))))
(DELAY (+ (/ 37 10) (* M (/ 3 10))))
(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(PIPE-DEPTH 1)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL

(((EXPAND SHIFT[%d] (- (ceiling (log (+ M 1) 2)) 1) 0) SHIFT)))
(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

(((EXPAND SHIFT[%d] (- (ceiling (log (+ M 1) 2)) 1) 0) BOTTOM)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL)))

(@

("transfer"

(PARAMETERS (N N))

(CAP 0)

(CAP-COEFFS NIL)

(AREA 0)

(HEIGHT 0)

(WIDTH 0)

(DELAY 0)

(RIPPLE-DIR NIL)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(TIMING-CONSTRAINT NIL)

(DATA-IN-TERMINAL INI)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)))

("#"

("transfer"

(PARAMETERS (N N))

(CAP 0)

(CAP-COEFFS NIL)

(AREA 0)

(HEIGHT 0)

(WIDTH 0)

(DELAY 0)

(RIPPLE-DIR NIL)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(TIMING-CONSTRAINT NIL)

(DATA-IN-TERMINAL INI)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

70

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)))

(=

("transfer"

(PARAMETERS (N N))

(CAP 0)

(CAP-COEFFS NIL)

(AREA 0)

(HEIGHT 0)

(WIDTH 0)

(DELAY 0)

(RIPPLE-DIR NIL)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(TIMING-CONSTRAINT NIL)

(DATA-IN-TERMINAL INI)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)))

(input

("ioUnif

(PARAMETERS (N N))

(CAP 0)

(CAP-COEFFS NIL)

(AREA 0)

(HEIGHT 0)

(WIDTH 0)

(DELAY 0)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 0)

(RIPPLE-DELAY 0)

(TIMING-CONSTRAINT NIL)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL NIL)

(CTL-OUT-TERMINAL NIL)

71

(CTL-TERM-EDGE NIL)

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)))

(trist-buf

("tristjDuffer"

(SDLNAME "trist_buffer_np")
(DEFAULTS (KEY UU/XX))

(PARAMETERS (N N))

(CAP (* CO N))

(CAP-COEFFS (LOOKUP KEY

((UU/XX (27))

(US/XX (26 26))

(SU/XX (29 28))

(SS/XX (0 55 54 0)))))

(AREA (* N 38 50))

(HEIGHT 50)

(WIDTH (* N 38))

(DELAY 1)

(RIPPLE-OFFSET 0)

(ONE-BIT-DELAY 1)

(RIPPLE-DELAY 0)

(DATA-IN-TERMINAL IN)

(DATA-OUT-TERMINAL OUT)

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((CNTL OEN) (CNTLINV (not OEN))))

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE ((CNTL TOP) (CNTLINV TOP)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP SMALL))))

72

Appendix 6

Library Routines

Int

InputHardwareDatabase(DatabasePathName)
char *DatabasePathName;

Reads specified rb-dp into memory.

int

CleanUpDatabasef)
Removes current rb-dp from memory.

ListPointer

HwExpandInclude(Entry)

ListPointer Entry;

Expands any included file in rb-dp.

char

*HwGetFunctionSource(Function)

char *Function;

Returns hardware source type of a function, i.e., datapath, standard logic or array.

int

CheckHwProperty(Property)
char *Property;

Checks whether or not a hardware property is valid in the library representation.

int

HwIsFunctionlnLibrary(Function)

73

char ^Function

Checks whether or not a function exists in the library.

int

HwlsCelllnLibrary(Cell)
char *Cell;

Checks whether or not a cell exists in the library.

ListPointer

HwGetParameterEntry(ParameterList, Name)
ListPointer ParameterList;

char *Name;

Returns list structure entry in ParameterList with label Name.

int

IsParameterValueSet(Label, ParameterList)

char *Label;

ListPointer ParameterList;

Checks whether or not a parameter is defined in the parameterList.

ListPointer

UpdateParameterList(CellPtr, ParameterList)

ListPointer ParameterList;

Updates the parameters with any default values specified by CellPtr.

int

HwConstraintMet(CellPtr, ParameterList)
ListPointer CellPtr;

ListPointer ParameterList;

Checks if the parameters specified by ParameterList satisfy the constraints specifiedby
CellPtr.

ListPointer

HwG etCellList(Function)

char *Function;

Returns a list of cells included in Function.

ListPointer

HwGetHwParameters(Cell, ParameterList)
ListPointer Cell, ParameterList;

74

Returns the hardware parameter of Cell in list structure format.

char *

HwGetCheapestCell(Function, ParameterList)
char ^Function;

ListPointer ParameterList;

Returns the name of the cell with the least area cost in a specific Function.

pointer

HwGetCapSize(Cell)
ListPointer Cell;

Returns the loading capacity of the Cell.

ListPointer

HwGetCellByCapSize(Function, CapSize, ParameterList)
char ^Function;

char *CapSize;

ListPointer ParameterList;

Returns the cell with a specific loading capacity in a Function.

int

IsCellShared(Functionl, Function!, CellName)
char *Functionl;

char *Function!;

char **CellName;

Checks if there exists a shared cell between Functionl and Function!.

int

IsAluShared(Functionl, Function!, CellName)
char *FunctionI;

char *Function!;

char **CellName;

Checks if there exists a shared ALU unit between Functionl and Function!.

char *

FindSharedCell(Functionl, Function!, ParameterList)
char *FunctionI;

char *Function!;

ListPointer ParameterList;

Returns the cheapest shared cell in both Functionl and Function!.

ListPointer

HwGetCheapestCellPointer(Function, ParameterList)

75

char ^Function;

ListPointer ParameterList;

Returns the list structure pointer pointing to the cheapest cell in a Function.

ListPointer

HwGetFastestCellPointer(Function, ParameterList)
char *Function;

ListPointer ParameterList;

Returns the list structure pointer pointing to the fastest cell in a Function.

int

HwGetMinDelayfFunction, ParameterList)
char *Function;

ListPointer ParameterList;

Returns the minimum delay time in a Function.

int

HwGetMaxDelay(Function, ParameterList)
char ^Function;

ListPointer ParameterList;

Returns the maximum delay time in a Function.

char *

HwGetCellWuhMaxDelay(Function, ParameterList, MaxDelay, Delay)
char ^Function;

ListPointer ParameterList;

int MaxDelay;

int *Delay;

Returns the cell name with the maximum delay time that is less than Delay.

int

HwGetRippleDelay(Function, Cell, ParameterList)
char ^Function;

char *Cell;

ListPointer ParameterList;

Returns the ripple delay time.

int

HwGetBitDelay(Function, Cell, ParameterList)
char *Function;

char *Cell;

ListPointer ParameterList;

Returns the one-bit delay time.

76

char *

HwGetCellWithMinDelay(Function, ParameterList, MinDelay, Delay)
char ^Function;

ListPointer ParameterList;

int *MinDelay;

int *Delay;

Returns the name of the cell with the minimum delay time which is less thtnDelay.

int

HwGetDelay(Function, Cell, ParameterList)
char *Function;

char *Cell;

ListPointer ParameterList;

Returns the delay time of a specific Cell.

int

HwGetAreafFunction, Cell, ParameterList)
char *Function;

char *Cell;

ListPointer ParameterList;

Returns the area cost of a specific Cell.

int

HwG etCap(Function, Cell, ParameterList)
char ^Function;

char *Cell;

ListPointer ParameterList;

Returns the active capacitance of a specific Cell.

ListPointer

HwExpandList(List, ParameterList)

ListPointer List, ParameterList;

Expands any "EXPAND" list function in a list.

ListPointer

HwGet!nData(Function, CellName, ParameterList)
char *Function;

char *CellName;

ListPointer ParameterList;

Returns the names of the input data signals.

ListPointer

77

HwGetOutData(Function, CellName, ParameterList)
char ^Function;

char *CellName;

ListPointer ParameterList;

Returns the names of the output data signals.

char

*HwGetSupply(Function, Cell, SupplyType)
char ^Function;

char *Cell;

int SupplyType;

Returns the signal names for supply(SupplyType = /) or ground(SupplyType =0).

ListPointer

HwGetInControl(Cell, ParameterList)

ListPointer Cell, ParameterList;

Returns the names of the input control signals.

ListPointer

HwGetOutControl(Cell, ParameterList)

ListPointer Cell, ParameterList;

Returns the names of the output control signals.

ListPointer

HwGetControlEdge(Cell, ParameterList)
ListPointer Cell, ParameterList;

Returns the edge sides of the control signals.

char

*HwGetSdlName(Function, Cell)
char *Function;

char *Cell;

Returns the SDL file name to construct Cell.

char

*HwGetVHDLName(Function, Cell)
char *Function;

char *Cell;

Returns the VHDL file name to construct Cell.

int

HwFindMaxShiftRange(Function, Max)
char *Function;

78

int *Max;

Returns the maximum shifter range.

int

InputTechnology(DatabasePathName)
char *DatabasePathName;

Reads the technology library file into memory.

int

CleanUp Technology()

Removes the technology library from memory.

int

GetCharTechnologyParameter(Keyword, Value)
char ^Keyword;

char **Value;

Returns character string value of parameter specified by Keyword.

int

GetDoubleTechnologyParameter(Keyword, Value)
char ^Keyword;

double * Value;

Returns floating point value of parameter specified by Keyword.

int

GetIntegerTechnologyParameter(Keyword, Value)
char ^Keyword;

int * Value;

Returns integer value of parameter specified by Keyword.

int

GetListTechnologyParameter(Keyword, List)
char ^Keyword;

ListPointer *List;

Returns list structure value of parameter specified by Keyword.

char *

GetSizeUnitsO

Returns the unit of length.

double

GetSizeScaleFactor()

Returns the scaling factor of length.

79

double

GetDPAreaScaleFactor()

Returns the scaling factor of area cost.

char *

GetTimeUnitsO

Returns the unit of time.

double

GetTimeScaleFactor()

Returns the scaling factor of time.

char *

GetCapUnitsO
Returns the unit of capacitance.

double

G etCapScaleFactor()

Returns the scaling factor of capacitance.

int

TechGetNumberOfClocksO

Returns the number of clocks implemented in the library.

double

TechGetSupplyO

Returns the default voltage supply value of the library.

ListPointer

TechGetDelayScale()

Returns the scaling factor of delay time.

int

TechGetStateTransitionEdge()
Returns the clock edge for state transition.

80

References

[Ben93] O. Bentz, A Hardware Mapper for the HYPER High Level Synthesis System,

M.S. Report, EECS Department, U.C. Berkeley, 1993.

[Bur94] T. Burd, Low Power CMOS Library Design Methodology, M.S. Report, EECS

Department, U.C. Berkeley, 1994.

{Cha92] A. Chandrakasan, S. Sheng, R. Brodersen, "Low-power CMOS Digital

Design", IEEE Journal of Solid State Circuits, pp. 473-484, April 1992.

[Cha93] A. Chandrakasan, M. Potkonjak, J. Rabaey, R. Brodersen, "HYPER-LP: A

System for Power Minimization Using Architectural Transormations",,, 1993.

[Chu92] C. Chu, Hardware Mapping and Module Selection in the HYPER Synthesis

System, Ph. D. Report, EECS Department, U.C. Berkeley, 1992.

[Lan94] P. Landman, SPA; A Stochastic Tool for Architectural Power Analysis, EECS

Department, U.C. Berkeley, 1994

[Rab91] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak: "Fast Prototyping of Data Path

Intensive Architecture," IEEE Design and Test, vol. 8, no. 2, pp. 40-51, 1991.

81

82

[Rab94] J. Rabaey, Digital Integrated Circuits: A Design Perspective, EECS241 Class

Reader, EECS Department, U.C. Berkeley, 1994.

[Lager91] "Volume !: Lager Tool Set", U.C. Berkeley, U.C. Los Angeles, Mississippi

State University, Institute for Technology Development, June 1991.

	Copyright notice 1994
	ERL-94-47

