

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DATAFLOW PROCESS NETWORKS

by

Edward A. Lee

Memorandum No. UCB/ERL M94/53

19 July 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DATAFLOW PROCESS NETWORKS

by

Edward A. Lee

Memorandum No. UCB/ERL M94/53

19 July 1994

DATAFLOW PROCESS NETWORKS

by

Edward A. Lee

Memorandum No. UCB/ERL M94/53

19 July 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

July 19,1994

Department of Electrical Engineering
and Computer Science

University of California

Berkeley, California 94720

DATAFLOW PROCESS NETWORKS

Edward A. Lee

ABSTRACT

This paperreviews a model of computationused in industrial practice in signalprocessingsoft
ware environments and experimentally in other contexts. It gives this model the name "dataflow
process networks," and studiesits formal properties as well as its utility as a basis for program
ming language design. Variants of this model are used in commercial visual programming sys
tems such as SPW from theAltaGroup of Cadence (formerly Comdisco Systems), COSSAP
from Synopsys (formerly Cadis), the DSP Station from MentorGraphics, and Hypersignal from
Hyperception. They arealso used in research softwaresuch as Khoros from the University of
New Mexico and Ptolemy from the University of Californiaat Berkeley.

Dataflow process networks are shown to be a special case of Kahn process networks, a model of
computation where a number of concurrent processescommunicate through unidirectional FIFO
channels, where writes to the channel arenon-blocking, andreads areblocking. In dataflow pro
cess networks, each process consists of repeated "firings" of a dataflow "actor". An actor defines
a (usually functional) quantum of computation. By dividing processes into actor firings, the con
siderableoverhead of context switching incurred in most implementations of Kahn process net
works is avoided.

This paperrelates the dataflowprocess networks to otherdataflow models, including those used
in dataflow machines, such as static dataflow and the tagged-token model. It also relates dataflow
process networks to functional languages such as Haskell, and shows that modern language con
cepts such as higher-order functions and polymorphism can be used very effectively in dataflow
process networks. A number of programmingexamples using a visual syntax aregiven.

Thisresearch in sponsored in part by ARPA,under theRASSPprogram, in cooperation withtheUnited States AirForce, and by
the National Science Foundation (MTP9201605).

1of52

1.0 Motivation

This paperconcerns programming methodologies commonly called"graphical dataflow

programming" that areused extensively for signalprocessing and experimentally for other appli

cations. In this paper, "graphical" means simply that the programis explicitly specified by a

directed graph where the nodes represent computations and the arcsrepresent streams. The graphs

are typically hierarchical, in that a node in a graphmay representanotherdirected graph. The

nodes in the graphcan be either languageprimitives or subprograms specified in anotherlan

guage, such as C or Fortran.

It is common in the signal processing community to use a visualsyntax to specify such

graphs, in whichcasethe model is oftencalled "visual dataflow programming." But it is by no

means essential to use a visual syntax. At least onecommercial graphical programming environ

ment (Mentor Graphics' DSP Station) allows an arbitrary mixture of visual and textual specifica

tion, both based onthe applicative language Silage [35]. Several other languages with related

semantics, suchas SIGNAL [9][52] and Sisal [57] are used primarily or exclusively with textual

syntax. The language LUCID [75][77], while primarily used with textual syntax, has experimen

tal visual forms [7].

Hierarchy in graphicalprogram structure canbe viewed as an alternativeto the more usual

abstraction ofsubprograms via procedures, functions, or objects. It is better suited than any of
these to avisual syntax, and also better suited tosignal processing.

Some examples ofgraphical dataflow programming environments intended for signal pro
cessing (including image processing) are Khoros, from the University ofNew Mexico [67],

Ptolemy, from the University ofCalifornia at Berkeley [15], the signal processing worksystem
(SPW), from the Alta Group at Cadence (formerly Comdisco Systems), COSSAP, from Synopsys
(formerly Cadis), and the DSP Station, from Mentor Graphics (formerly EDC). A survey of
graphical dataflow languages for other applications isgiven byHills [36]. These software envi

ronments allclaim variants of dataflow semantics, but a wordof caution is in order. The term

"dataflow" is oftenused veryloosely for semantics that bear little resemblance to those outlined

Motivation

2of52 DATAFLOW PROCESS NETWORKS

Motivation

byDennis in 1975 [23]. A major motivation ofthis paper isto point out arigorous formal under

pinning for dataflow graphical languages, to establish precisely the relationship between such lan

guages and functional languages, and toshow that such languages benefit significantly from such

modern programming concepts as polymorphism, strong typing, and higher-order functions.

Although it has been rarely exploited invisual dataflow programming, I also show that such lan

guages can make very effective use of recursion.

Most graphical signal processing environments do notdefine alanguage in any strict

sense. In fact, some designers of such environments advocate minimal semantics [60], arguing

that thegraphical organization by itselfis sufficient tobeuseful. The semantics of aprogram in

such environments isdetermined by the contents of the graph nodes, either subgraphs or asubpro

grams. Subprograms are usually specified in aconventional programming language suchasC.

Mostsuch environments, however, including Khoros, SPW, and COSSAP, take amiddleground,

permitting the nodesin agraph orsubgraph to contain arbitrary subprograms, butdefining precise

semantics for the interaction betweennodes. Following Halbwachs [32], I callthe language used

to definethe subprograms in nodesthe hostlanguage. Following Jagannathan, I call the language

defining the interaction between nodes the coordination language [41].

Many possibilities have been explored for precise semantics of coordination languages,

including for example the computation graphsof Karp and Miller [46], the synchronous dataflow

graphs of Lee and Messerschmitt [50], the Processing Graph Method (PGM) of Kaplan, et al.

[45], Granular Lucid [41], and others [2][18][21][41][76]. Many of these limit expressiveness in

exchange for considerable advantages such as compile-time predictability.

Graphical programs can be eitherinterpreted orcompiled. It is common in signal process

ing environments to providebothoptions. The output of compilation canbe a standard procedural

language, such asC, assembly code for programmable DSP processors [63], oreven specifica

tions of silicon implementations [22]. Often, considerable effortis putintooptimized compilation

(see for example [10][26][64][71]).

DATAFLOW PROCESS NETWORKS 3 of 52

Formal Underpinnings

2.0 Formal Underpinnings
mmmmmmmmmmmmmmmmmm

In most graphical programming environments, the nodes of the graph can be viewed as

processes that run concurrently and exchange data over the arcs of the graph. However, these pro

cesses and their interaction are usually much more constrained than those of CSP [37] or SCCS

[58]. A better (and fortunately much simpler) formal underpinning is the Kahn process network

[43].

2.1 Kahn Process Networks

In a process network, concurrent processes communicate only through one-way FIFO

channels with unbounded capacity. Each channel carries a possibly infinite sequence (astream)

that wedenote X = [*lf x2,...] ,where each xt isan atomic data object, or token. Each token is

written (produced) exactly once, and read (consumed) exactly once. Writes to the channels are

non-blocking (they always succeed immediately), but reads are blocking. This means that apro

cess thatattempts to read from anemptyinputchannel stalls untilthe bufferhas sufficient tokens

tosatisfy the read. Lest the reader protest, I will show that this model ofcomputation does not

actually require either multitasking or parallelism, although it is certainly capable ofexploiting

both. It also usually does notrequire infinite queues, and indeed can bemuch more efficient in its

use of memory than comparable methods in functional languages, as wewill see.

A process inthe Kahn model isamapping from one or more input sequences to one or

more output sequences.The processis usuallyconstrained to be continuous in a rather technical

sense. To develop this idea, we need a little notation.

Consider &prefix ordering ofsequences, where the sequence Xprecedes the sequence Y
(written X=Y)jfX is aprefix of (or is equal to) Y. For example, [xvx2] c [xv x2, x3] .Con
sider a(possibly infinite) ordered set ofsequences %={ XQ c X1 E...}. Such an ordered set of
sequences can have one or more upper bounds Y, where Xt E Y for all X. e %•The least upper
bound XLUB of x is an upper bound such for any other upper bound Y, XLUB c y. To ensure
that any ordered set ofsequences always has an upper bound, we include in our algebra the ficti-

4°f 52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

tious sequence T {top) defined so that X E T for all sequences X. The empty sequence is
denoted ± (bottom), and is obviously aprefix ofany other sequence.

Aprocess f maps an input sequence into an output sequence. Given an ordered set of

sequences %, itwill map this set into another (possibly ordered) set of sequences ¥. Let n x

denote the least upper bound (in the prefix order sense) of the set %. Then aprocess / is said tobe

continuous if for all such sets %,

/(nx)=n/(x). (1)
This is analogous to the conventional notion of continuity for conventional functions, if the least

upper bound is interpreted as a limit, as in

n %=n { X0 E Xx E ... }= limX.. . (2)

Kahn sketches aproofthat networks of continuous processes haveamoreintuitive prop

erty calledmonotonicity [43]. A process / is monotone if given two sequences X and X', then X

E X' => /(X) E /(X') . This canbe thought of as a form of causality, but onethat does not

invoke time. Moreover, in signal processing, it provides auseful abstract analog to causality that

works for multiratediscrete-time systems withoutrequiring the invocationof continuous time.

For completeness, I now prove Kahn's claim that a continuous process is monotonic [43].

To do this, I prove thatif a process is not monotonic, thenit cannotbe continuous. If the process /

is not monotonic, then there exist sequences X and X' where X E X', but /(X) £ f(X') . Let

X ={ X0 E Xx E ... }beany prefix ordered sequence such that XQ = X and n x =X'. Then

note that/(n x) = /(*') •But this cannot be equal to n /(%) because X G x and /(X) £

f(X') . This concludes the proof.

A key consequence of these properties is thata process canbe computediteratively [54].

This means thatgiven a prefix of the final input sequences, it is possibleto compute partof the

output sequences. In other words, a monotonic process is non-strict (its inputs need not be com

plete before it can begin computation). In addition, a continuous process will not wait forever

before producing an output (i.e., it will not wait for completion of an infinite input sequence).

DATAFLOW PROCESS NETWORKS 5 Of 52

Formal Underpinnings

A network of processes is, in essence, a set of simultaneous relations betweensequences.

Any setof sequences that forms a solution is called &fixed point. Kahn argues in [43] that continu

ity of the processes impliesthatthere will beexactly one"minimal" fixed point(where minimalis

in the sense of prefix ordering). The minimalsolution is the solution resulting from null sequences

at the system inputs. Other solutions can then be found from this one by iterativecomputation,

which works because of the monotone condition.

Note that continuity implies monotonicity, but not the other way around. One process that

is monotone but not continuous is given by

{0}; ifX is finite
f(X) = «

To show that this is monotone, note that if X is infinite and X E X', then X = X', so

{0,1}; otherwise ^

y = /(X) ET=/(X') . (4)

If X is finite, then Y = /(X) = {0} , which is aprefix of all possible outputs. To show that it is

not continuous, consider the sequence

X={X0 EXX E...}, (5)

where each X- has exactly i elements in it. Then n x is infinite, so

/(nx) = {0,l}*n/(x) ={0}. (6)
Iterative computation of this function is clearly problematic.

A useful property is that anetwork ofmonotone processes itself defines amonotone pro

cess. This property isvalid even for process networks with feedback loops, as is formally proven

using induction by Panagaden and Shanbhogue [62]. It is possible tousethis to show that net

works of monotone processes aredeterminate.

2.2 Nondetermlnlsm

A useful property insome modern languages isan ability to express nondeterminism. This

can beused toconstruct programs that respond to unpredictable sequences of events, or tobuild

incomplete programs, deferring portions ofthe specification until more complete information

6of52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

about thesystem implementation is available. Although this capability can beextremely valuable,

it needs tobebalanced against the observation that for the vast majority of programming tasks,

programmers need determinism. Unfortunately, by allowingtoo much freedom in the interaction

between nodes, some graphical programming environments can surprise the userwith nondeter-

minate behavior. Nondeterminate operations can be apowerful programming tool, butthey

should be used only when such a powerful programming tool is necessary.

Taking aBayesian perspective, asystem israndom if theinformation known about thesys

tem and its inputs is not sufficient to determine itsoutputs. The semantics of theprogramming

language maydetermine what is known, since some properties of theexecution may beunspeci

fied. However, since mostgraphical programming environments donotdefine complete lan

guages, it is easy (and dangerous) to circumvent whatsemantics there are by usingthe host

language. In fact, thecommon principle of avoiding overspecifying programs leaves aspects of

the execution unspecified, andhence opens the door to nondeterminate behavior. Any behavior

that depends on these unspecified aspects will be nondeterminate.

Forexample, in the process networkshownin figure 1,nothingin the graph specifies the

relative timing of the processing in nodes B and C. Suppose that nodes B and C each modify a

variable thatthey share. Then the order in whichthey access this variable couldcertainly affect

the outcomeof the program. The problem hereis thatthe process network semantics, which spec

ify a communication mechanism, have been circumvented using a shared variable in the host lan

guage.While this may be a powerful and useful capability, it should be used with caution, and in

particular, it should not surprise the unwaryprogrammer. Such a capability has been built into the

PGM specification [45] in the form of what arecalled "graph variables."

Figure1. This process network does not specify the relative timing of the
processing in nodes B and C. If Dis a nondeterminate merge, it does
not specify in which order the results should appear at E.

DATAFLOW PROCESS NETWORKS 7 of 52

Formal Underpinnings

If B and C share a variable as described above, then they are possibly not monotone.

Knowing that /(X0) = Y0 , /(Xj) = Yx , and X0 E Xx is notenough to conclude that Y0 E

Yx because the extended inputs might somehow affect the order inwhich the shared variable is

accessed. However, they could be monotone if, for example, the discipline used to access the

shared variable is equivalent to implementing a Kahn channel.

As a rather different example, suppose that actor D in figure 1 is a nondeterminate merge.

(any of the three variants discussed by Panagaden and Shanbhogue [62]). Its behavior is that if a

data value (a token) is available on either input, it can immediately move that token to its output.

Now, the output depends on the order in which B and C produce their outputs, and on the timing

with which D examines its inputs. It is easy to show that a nondeterminatemerge is not mono

tonic, and hence not continuous.

Arvind and Brock [4] argue that the nondeterminatemerge is practicallyuseful for

resource management problems. A resourcemanager acceptsrequests for a resource(e.g. money

in a bank balance), arbitrates betweenmultiple requests, and returns a grant ordeny, or some

related data value. It is observed that such aresource manager can beusedto build amemorycell,

precisely the type of resource that functional programming is trying to get away from.

A network witha nondeterminate merge clearly mightbenondeterminate, butit might

also bedeterminate. For example, suppose that Cin figure 1never actually produces any outputs.

Then the nondeterminate merge in D will not make the network nondeterminate.

The nondeterminate merge does notsatisfy one of Kahn*s conditions for aprocess net

work, that reads from channels beblocking. This constraint makes it impossible for aprocess to

test an input for the presence of data. Thus, if Dis anondeterminate merge, then the graph in fig

ure 1 is not, strictly speaking, a Kahn process network.

We have been using the term "determinate" loosely. If wenow formally define determin

ism inthe context of process networks, then the main result of this section follows immediately.

Define the history of achannel tobethe sequence of tokens that have traversed the channel (i.e.

havebeen bothwrittenandread). A Kahn process is said to be determinate if the histories of all

theinternal and output channels depend only on the histories of the input channels. A monotone

8of52 DATAFLOW PROCESS NETWORKS

FormalUnderpinnings

process is clearly determinate. Since anetwork of monotone processes is monotone [62], then a

network of monotone processes is also determinate.

2.3 Streams

The graphical programming environments thatwe areconcerned with aremost often used

todesign or simulate real-time signal processing systems. Real-time signal processing systems

arereactive, in that they respond to a continual stream of stimuli from an environment with which

they cannotsynchronize [8]. Skillcorn [75] argues that streams and functions on them are a natu

ral way tomodel reactive systems. Streams are such agood model for signals that the signal pro

cessing communityroutinely uses them even for non-real-time systems.

Wendelborn and Garsden [78] observe that there are different ideas in the literature of

what a streamis. One camp defines streams recursively, usingcons-like list constructors, and

treats them functionally usinglazy semantics. This view is apparently originally due to Landin

[47]. Lazysemantics ensure that theentire stream need notbeproduced before itsconsumer oper

ates on it. For example, Burge [16] describes streams as the functional analog of coroutines that

"may be considered to be a particular method of representing a list in which the creation of each

list element is delayed until it is actually needed."As another example, in Scheme, streams are

typically implemented as a two-element cell where one element has the value of the head of the

stream and the otherhas the procedure thatcomputes the rest of the stream [1]. Recursive opera

tions on streams requireuse of a special"delay" operator thatdefers the recursivecalluntil access

to the "cdr" of the streamelement is attempted. This ad-hoc mechanism makes recursivestreams

possible in a language without lazy semantics.

Anothercamp sees streams aschannels, just like the channels in a Kahnprocess network.

A channel is not functional, becauseit is modified by appending new elements to it. Kahn and

MacQueen outlinein [44] a demand-driven multitasking mechanism forimplementingsuchchan

nels. Ida and Tanaka argue for the channel model for streams, observing that it algorithmically

transforms programs from arecursive to an iterative form [40]. Dennis, by contrast, argues for the

recursive-cons representation of streams in Sisal 2 for program representation, but suggests trans

latingthem into non-recursivedataflow implementations using the channelmodel [25]. Franco, et

DATAFLOW PROCESS NETWORKS 9 of 52

Formal Underpinnings

al. also argue in [28] for using the channel model, with a demand-driven execution style, and pro

pose an implementation in Scheme. The channels are implemented using a "call with current con

tinuation" mechanism in Scheme. This mechanism essentially supports process suspension and

resumption, although the authorsadmit that at the time of their writing, no Scheme implementa

tion supported this without the considerableexpense of a control-stack copy.

A unique approachimplemented in the language Silage [35] blends the benefits of a

declarative style with the simplicity the channel model. In Silage, a symbol "x" represents aninfi

nitestream. The language has thenotion of aglobal cycle, and asimple reference to asymbol"x"

can be thought of asreferring to the"current value" of the stream x. An implicit infinite iteration

surrounds every program. This language is beingused successfully for both softwareand hard

ware synthesisin the MentorGraphics DSPStation, the Cathedral project at IMEC [22], andin

the Hyper project at U. C. Berkeley [66].

A moregeneral approach is to associate witheach stream a"clock," asdone in Lustre [31]

and Signal [9]. A clockis alogical signal that defines the alignment of stream tokens in different

streams. For example, one could have astream ywhere only every second token iny aligns with a

token inanother stream x. Although both streams may be infinite, one can view xas having twice

as many tokens as y. A powerful algebraic methodology has been developed toreason about rela

tionships between clocks, particularly for the Signal language [9] [52].

I prefer the channel model for streams for anumber ofreasons. Stylistically, unlike the

recursive-cons model, it puts equal emphasis on destruction (consumption ofdata from the

stream) as construction (production ofdata onto the stream). Moreover, itdoes not require costly
lazy evaluation. While ademand-driven style ofcontrol ispopular among theoreticians, no estab

lished signal processing programming environment uses it, partly because ofthe cost, and partly
because the same benefits (avoiding unnecessary computation) can usually be obtained more effi

ciently through compile-time analysis [12][50]. Unlike Silage, Lustre, and Signal, there is no con

cept ofsimultaneity oftokens (tokens in different streams lining up). Instead, tokens are queued
using a FIFO discipline.

10tiS1 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

It is especially important in signal processing applications to recognize that streams can

carry trulyvast amounts of data. A real-time digital audio stream, for instance, mightcarry 44,100

samples persecondperchannel, andmight run for hours. Video sequences carry much more.

"Viewing astream as aconventional data structure, therefore, gets troublesome veryquickly. It

mayrequire storing forever allof thedata that everenters the stream. Any practical implementa

tionmustinstead store onlya sliding window into thestream, preferably asmall window. Butjust

by providing a construct for random access of elements of a stream, for example, the language

designer can make it difficult or impossible for a compilerto bound the size of the window.

A usefulstream model in this context mustbe as good atlosing data (and recycling its

memory) as it is atstoring data. The prefix-ordered sequences carried by thechannels in theKahn

process networksare anexcellentmodel for streams because the blockingreads remove data from

the stream. However, special care is stillrequired if thememoryrequirements of the channels in a

network are to remain bounded. This problem will be elaborated below.

In [68] [69] [70], Reekieetal.consider theproblem of supporting streams in the functional

programming language Haskell [38]. They propose some interesting extensions tothelanguage,

and motivate them withaconvincing discussion of the information needed by acompiler to effi

ciently implement streams. To do this, they use the Kahn process network model for Haskell pro

grams, and class them into static and dynamic. In static networks, all streams are infinite. In

dynamic networks, streams can come and go, and hence the structure of the network can change.

Mechanisms for dealing with these two types ofnetworks are different. Staticnetworks are much

more common in signal processing, and fortunately much easier to implement efficiently,

although I will consider both types below.

For efficiency, Reekie etal. wish toevaluate the process networks eagerly, rather than

lazily asnormally required by Haskell [70]. They propose eager evaluation whenever strictness

analysis [39] reveals that a stream is "head strict", meaning that every element in thestream will

beevaluated. This is similar to theoptimization embodied in theEazyflow execution model for

dataflow graphs, which combines data-driven and demand-driven evaluation of operator nets by

DATAFLOW PROCESS NETWORKS 11 Of52

Formal Underpinnings

partitioning the net into subnets that can be evaluated eagerly without causing any wasteful com

putation [42].This, in effect, translates the recursive-cons view of streams into a channel view.

Reekie, et al. also point out that if analysis reveals that a subgraph is synchronous (in the

sense of "synchronous dataflow" [50][51]), then very efficient evaluation is possible. While this

latter observation has been known for some time in signalprocessingcircles, putting it into the

context of functional programming has been a valuablecontribution. To clarify this point, I can

establish a clearrelationship between dataflow, functional languages,and Kahn process networks.

Streams can be generalized to higherdimensionality, as done in Lucid [75] and Ptolemy

[49] [19]. This, however, is beyond the scopeof this paper.

2.4 Dataflow, functional languages, and process networks

A dataflowactor; when it fires, maps input tokens into output tokens. Thus, an actor,

applied to one ormore streams, will fire repeatedly. A set offiring rules specify when anactor can

fire. Specifically, these rules dictate precisely whattokens must be available at the inputs for the

actor to fire. A firing consumes input tokensand produces outputtokens. A sequence of such fir

ings is a particular type of Kahn process thatwe might call a dataflow process.

More specialized dataflow models, such asDennis* static dataflow [24] or synchronous

dataflow [50][51] canbe described in terms of dataflow processes. The models usedby all signal

processing environments mentioned above can also be described in terms of dataflow processes.

The tagged token model of Arvind andGostelow [5] [6] is related,but not identical, as I will show.

Signal [9] and Lustre [31], which are called "synchronous dataflow languages," donot form data

flow processes at allbecause they lack theFIFO queues of thecommunication channels.

A sufficient condition for adataflow process to becontinuous is that theactors are junc

tional, and that the set of firing rules is sequential. "Functional" means that the actors lack side

effects and that theoutputs are purely a function of the inputs. "Sequential" means that the firing

rules can betested in apre-defined order using only blocking reads. A little notation willhelp

make this rather technicaldefinition precise.

12 of 52 DATAFLOW PROCESSNETWORKS

Formal Underpinnings

2.4.1 Firing rules

An actor with M input streams can have N firing rules

F* IFVF2 •**}• <7>

The actorcan fire if and only if at least one of the firing rules is satisfied, where each firing rule

constitutes a set ofpatterns, one for each of M inputs,

Ftm Vuvhi *W- m

A pattern P.j is a(typically finite) sequence. For firing rule i to be satisfied, each pattern P. .

must form a prefix of the sequence of unconsumed tokens at input j .

For some firing rules, some patterns might be empty lists, Pt . = X. This means that any

available sequence at input j is acceptable. In particular, it does notmeanthatinput j must be

empty.

To be ableaccommodate the usual dataflow firing rules, we needa slightgeneralization of

prefix ordering algebra. The special symbol "*"willdenote atoken wildcard. Thus, thesequence

[*] is aprefix of any sequence with atleast one token. Thesequence [*,*] is a prefix of any

sequence with at leasttwo tokens. The only sequence thatis a prefix of [*] is X, however. Notice

therefore, thatthe statement [*] E P is not saying that any one-token sequence is a prefix of P.

All it says is that P has at least one token.

Let Aj, for j = 1,..., M, denote the list ofavailable unconsumed tokens on the j input.
Then the firing rule F. is enabled if

Pitj E Aj, for all j = 1,..., M. (9)

We can write condition (9) using the shorthand

Fj E A (10)

where A = {AvA2i..., AM} , and it isunderstood that each sequence in the list F* is aprefix of

the correspondingsequence in the sequence of available tokens A.

DATAFLOWPROCESS NETWORKS 13 of 52

Formal Underpinnings

For many actors, the firing rules are verysimple. Consider anadder with two inputs. It has

asingle firing rule, F = {{[*],[*]}}, meaning that each of thetwoinputs musthave atleast

onetoken. More generally, synchronous dataflow actors [50] [51], always have asingle firing rule,

andeach pattern in the firing rule is of the form [*, *,..., *] , with some fixed number of wild

cards. In other words, an SDF actor isenabled byafixed number of tokens at each input.1

A moreinteresting actor is the select actor in figure 2a, has the firing rules

^1 = {[*L-U [71} (11)

^2= U, [*MF]} (12)

where T and F match true and false-valued Booleans, respectively. The behavior of this actor is

toread aBoolean control input, then read atoken from the specified data input and copy that

token tothe output. The firing rules are sequential, inthat ablocking read of the control input, fol

lowed byablocking read of the appropriate data input, will invoke the appropriate firing rule.

Thenondeterminate merge with two inputs, also shown in figure 2b, has the firing rules

Fx = {[*],X} (13)

F2= (-L, [*]}• (14)

These rules are notsequential. A blocking read of either input fails to produce the desired behav

ior, as illustrated in figure 3. In figure 3a, ablocking read of the top input will never unblock. In

figure 3b, a blocking read of the bottom input willnever unblock. In both cases, thebehavior is

1. TRUE DATA INPUT

2. FALSE DATA INPUT*

3. CONTROL INPUT

1. DATA INPUT'

2. DATA INPUT'

(a) (b)
Figure 2. The select and nondeterminate merge actors each combine two

data streams into one, but the select actor uses a Boolean control
signalto determine howto accomplish the merge.

1. An SDF actor also produces afixed number oftokens when itfires, but this is not captured in the firing rules.

14 <* 52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

incorrect. Note that with any correct implementation of the nondeterminate merge, both networks

in figure 3 are nondeterminate. It is unspecified how many times a given token will circulate

around the feedback loop between arrivals of tokens from the left.

2.4.2 Identifying sequential firing rules

In general, a set of firing rules is sequential if the following procedure succeeds:

1. Find an input; such that [*] E P.. for all / = 1,..., N. Thatis, find aninputsuch that all

the firing rules require atleast onetoken from that input. If no such input exists, fail.

2. For thechoice of input j, divide the firing rules into subsets, one for each specific token value

mentioned in the first position ofP.j for any / = 1,..., N. If P. . = [*,...] , then the firing
rule F. should appear in all such subsets.

3. Remove the first element of P. . for all / = 1,.... N.

4. If all subsets have empty firing rules, then succeed. Otherwise, repeat these four steps for any
subset with any non-empty firing rules.

The first step identifies an input where atoken isrequired by all firing rules. The idea of the sec

ond step is that reading atoken from that particular input will often at least partially determine

which firing rules apply. Observingits value, therefore, will often reduce the size of the set of

applicable firing rules.

Consider theselect actor in figure 2.The above steps become

Figure 3. Illustration that the firing rules of the nondeterminate merge are not
sequential. A blocking read of either Input will cause one of these
two networks to deadlock Inappropriately.

DATAFLOW PROCESS NETWORKS 15 of 52

Formal Underpinnings

1. 7 = 3.

2. The firing rules divide into two sets, {Fx} and {F2} , each with only one rule.

3. Thenew firing rules become Fx = {[*],±,1} in the first subset and F2 = {_L, [*],!}

in the second subset.

4. The procedurerepeats trivially for each subset, andin step 3, the modified firing rules become

empty.

For the nondeterminate merge, the procedure fails immediately, in the first applicationof step 1.

2.4.3 Relationship to higher-order functions

Constraining the actors to be functional makes a dataflowprocessroughly equivalent to

the function "maps" used by Burge [16] and Reekie [68]. It is similar to the "map" function in

Haskell and the "mapcar" function in Lisp, except that it introduces the notion of consuming the

tokens that match the firing rule, and hence easily deals with infinite streams.

All of these variants of "map" arehigher-orderfunctions, in that they take functions as

argumentsand return functions [55]. Forexample, mapsf where/is a function, returns a function

that applies/to each element of a stream. The function/might take a scalar argument, but the

function returned by mapsftakes a streamargument. Thus, mapsfis a dataflow process,where

each firing consists of one application of/.

2.4.4 A nondeterminate example

An example that combines many of the pointsmade so far can be constructed using the

nondeterminateoperator introduced by McCarthy [56] andused by Hudak [38]:

amb(xt ±)-x

amb(±,y)=y

amb (x, y)=xory chosen randomly

These threedeclarations define the outputof the amb function under three firing rules. The sym

bols "x" or"y" translate into a firing rulethatrequires one data token, andthe value of the data is

given symbolx ory.A dataflow process could beconstructed by repeatedly firing this function on

16 Of52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

stream inputs. McCarthy points out that the expression amb (1,2) + amb (1,2) could take on the

value 3, and uses this to argue that nondeterminism implies aloss ofreferential transparency1.

When used to create a dataflow process, this example actually mixes two distinct causes

for nondeterminism. Random behavior in anactor acting aloneis sufficient to lose determinacy

and referential transparency. The simpler definition:

amb (x,y)=xory chosen randomly

is sufficient for amb (1,2) + amb (1,2) to take on the value 3. If the choice of random number is

madeusingarandom number generator, thennormally therandom number generator has state,

initialized by a seed. Perhaps theseed should beshown explicitly as an argument to the function:

amb (x, y,s)=xory chosenby generating arandom number from seed s.

Suddenly, weregain referential transparency and determinacy. Itwould not bepossible for

amb (1,2,3) +amb (1,2,3) toequal 3, for example. Without giving the seed as an argument, amb
is not functional.

Consider the simplified definition:

amb2 (*, JL) = x

amb2(±,y)=y

ambl (xf y) = y

This definition has no random numbers in it, but in adataflow process network, it is still possible

for ambl (1,2) +amb2 (1,2) to equal 3. The firing rules are not sequential. The output depends
on how the choice between firing rules is made, something not specified bythe language seman
tics.

We canshow directly thatadataflow process constructed with the ambl function is not

monotonic, and hence isnot continuous. Let f(X, Y) represent the dataflow process made with

actor "ambl" applied tosequences X and Y. Itiseasy to show that the process isnot monotonic,
and henceis not continuous. Consider the sequences

*l = [1] ,X2 = [1,1] ,and Yx = ± , Y2 = [2] , (15)

1. Abasic notion dating back to the lambda calculus [20], referential transparency means that any two identical expressions have
identical values. Ifam£(l,2)+am£(l,2)=3. then clearly the two instances ofamb(12) cannot have taken on the same value.

DATAFLOW PROCESS NETWORKS 17of52

Formal Underpinnings

where Yx is the empty sequence. Clearly, Xx E X2 and Yx E Y2. However,

f(XvYx) £ f(X2,Y2) . (16)

Weget f(Xv Yx) = [1] , while /(X2, Y2) can take on any of the following possible values:

[2,1], [1,2], [1,2,1], [1,1,2],or [2,1,1] .This is clearly nondeterminate. Onlythree of

the five possibleoutcomessatisfythe monotonicity constraint. And thesechooserather arbitrarily

from among the firingrules. If we were to make a policy of these choices, it would be easy to con

struct other example inputs that would violate monotonicity.

One might argue for a different interpretation of the firing rules, in which a ± in a firing

rule pattern matches only an empty input (no tokens available). Under this interpretation, we get

f(XvY1) = [1] and/(X2, Y2) = [2,1] .Whilenotmonotonic, this might appear to be

determinate (recall that we've only argued that continuity is sufficient for determinacy, not that it

is necessary). But further examination reveals that I have made some implicit assumptions about

synchronization between the input streams. To see this, consider the prefix orderedsequences

Xx = [1],X2= [1],X3 = [1,1],and)^ = ±,K2= [2],y3 = [2]. (17)

It would seem reasonable to argue that these are in fact exactly the same sequences as in (15). We

arejust looking at the value of the sequences more often. However, under the same implicit syn

chronization assumptions, the output is different:

f(XvYx) = [1] ,/(X2,y2) = [2] ,/(X3,y3) = [2,1] . (18)

These outputs arenot prefix ordered, as they would be for a continuous process.

This issue becomes much clearer if one considers a morecomplete dataflow process net

work, as shown in figure 4. The dataflow processes A andB have no inputs, so their firing rule is

Figure 4. A variant of McCarthy's amb function embedded In a dataflow
process network.

18 Of 52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

simple; they are always enabled. They produce at their outputs the streams X and Y. The prob

lems addressed above, in this context, refer to the relative timing of token production at A and B

compared to the timing of the firings of the ambl actor. In dataflow process network semantics,

this timing is not specified.

2.4.5 Firing rules and template matching

Some functional languages use template matching in function definitions theway I have

been using firing rules. Consider the following Haskell example (with slightly simplified syntax):

fac 0 =1

facrt =w*fac(w-l)

This defines a factorial function. If the argument is0, the result is 1. If the argument is«, the result

is72*fac(n-l). These are not ambiguous because the semantics ofHaskell gives priority to the first

template, removing any ambiguity. The second template is really ashorthand for "any nexcept

0." These two templates, therefore, viewed as firing rules, are naturally sequential, since each rule

consumes one token and implicidy states: "use me if no previously declared firing rule applies

and the inputs match my pattern." Ofcourse, this does not remove ambiguities due to function

arguments where nodata is needed. (Haskell has lazy semantics, deferring the evaluation of func

tion arguments until the data is needed, soa function maybeinvoked that will decide it does not

need data from one its arguments).

Embedding this example, the factorial function, in adataflow process network introduces

new and interesting problems. Consider/ac X, where Xis astream. Each firing ofthe actor can

trigger the creation of newstreams, sothis process network is notstatic. I willconsider more

interesting recursive examples than this is considerable detail below, so I defer further discussion.

2.4.6 Relationship to Kahn Process Networks

Dataflow process networks are aspecial case ofKahn process networks. They construct a
process as asequence ofatomic actor invocations. Instead ofsuspending aprocess on ablocking
read or non-blocking write, threads can be freely interleaved byascheduler, which determines the

sequence of actor firings. Since theactors are functional, nostate needs to be stored when one

DATAFLOW PROCESS NETWORKS 19of52

Formal Underpinnings

actor terminates andanother fires. The biggest advantage, therefore, is thatthe contextswitch

overhead of process suspension and resumption is entirely avoided.

The offsettingcost is thecost of scheduling. However, for most programs, this costcanbe

entirelyshifted to the compiler [50] [12]. While it is impossible to always shift allcosts to the

compiler [12], large clusters within aprocess network can be scheduled atcompile time,greatly

reducing the number of dataflowprocesses thatmust be dynamically scheduled. As a conse

quence of this efficiency, much finer granularity is practical, with processes often being as simple

as to just add two streams. We will now consider execution models in more detail.

2.5 Execution models

Given a dataflow process network, a surprising variety of execution models can be associ

ated with it. This variety is due, in no small part, to the fact that a dataflow process network does

not overspecify an algorithm the way non-declarative semantics do. Execution models have dif

ferent strengths and weaknesses, and there is, to date, no clear winner.

2.5.1 Concurrent processes

Kahn and MacQueen propose an implementation of Kahn process networks using multi

tasking with a primarily demand-driven style [44]. A single "driver" process (one with no out

puts) demands inputs.When it suspends due to aninput beingunavailable, the input channelis

marked "hungry" and the source process is activated. It may in turn suspend,if its inputs arenot

available. Any process that issues a "put" commandto ahungry channelwill be suspended and

the destination process restarted whereit left off, thus injectingalsoa data-driven phaseto the

computation. If a "get" operation suspends aprocess, andthe source process is already suspended

waiting for an input, then deadlock has been detected.

In the Kahn and MacQueen schema, configuration of the network on the fly is allowed.

This allows for recursive definition of processes. Recursive definition of streams (data) is also

permittedin the form of directed loops in the process graph.

The repeated task suspension andresumption in this style of execution is relatively expen

sive, sinceit requires acontext switch. It suggests that thegranularity of the processes should be

20 of 52 DATAFLOW PROCESS NETWORKS

Formal Underpinnings

relatively large. For dataflow process networks, the cost can be much lower, and hence the granu

larity can be smaller.

2.5.2 Dynamic scheduling of dataflow process networks

Dataflow process networks have other natural execution models due to the breakdown of a

process into a sequence of actor firings. A firing of an actor provides a different quantum of exe

cution than a process thatsuspends onblocking reads. Using thisquantum avoids thecomplexi

tiesof taskmanagement (context switching and scheduling) that are implied by Kahn and

MacQueen [44] and explicitly described byFranco, etal [28]. Instead of context switching, data

flow process networks are executed by scheduling the actor firings. This scheduling can bedone

at compile time or atrun time, and in the latter case, can bedone byhardware orby software.

The most widely known execution models for dataflow process networks have emerged

from research into computer architectures for executing dataflow graphs [3]. This association may

be unfortunate, since the performance ofsuch architectures has yet toprove competitive [34]. In

such architectures, actors are fine-grained, and scheduling isdone byhardware. Although there

have been some attempts to apply these architectures to signal processing [61], the widely used

dataflow programming environments for signal processing have nothing todo with dataflow
architectures.

Some signal processing environments, for example COSSAP from Cadis (now Synopsys)
and the dynamic dataflow domain in Ptolemy, use arun-time scheduler implemented insoftware.

This performs essentially the same function performed inhardware bydataflow machines, but is

usually used with actors that have larger granularity. The scheduler tracks the availability of
tokens on the inputs to the actors, and fires actors that areenabled.

2.5.3 Static scheduling of dataflow process networks

For many signal processing applications, the firing sequence can be determined statically
(at compile-time). The class ofdataflow process networks for which this is always possible is
called synchronous dataflow [46][50][51]. In synchronous dataflow, the solution to asetof bal

ance equations relating the production and consumption oftokens gives the relative firing rates of

DATAFLOW PROCESS NETWORKS 21 of52

Experimenting with Language Design

the actors. These relative firing rates combined with simple precedence analysis allows for the

staticconstruction ofperiodic schedules. Synchronous dataflow is used in COSSAP (forcode

generation, notfor simulation), in the multirate version ofSPW from the Alta Group of Cadence

(formerly Comdisco), andin the synchronous dataflow domain in Ptolemy. These methods have

recently been extended to cover most dynamic dataflow graphs [12] [48], andhave been imple

ment in the Boolean dataflow domain in Ptolemy. For fullygeneral dataflow models, it is still nec

essary to have some responsibilities deferred to a runtime scheduler [12].

2.5.4 The tagged-token model

An execution model developed by Arvind and Gostelow [5][6] actually generalizes the

dataflow process network model. In this model, each token has a tag associated with it, and firing

of actors is enabled when inputs with matching tags are available. Outputs to a given stream are

produced with distinct tags. An immediate consequence is that there is no need for a FIFO disci

pline in the channels. The tags keep track of the ordering. More importantly, there is no need for

the tokens to be produced or consumed in order.The possibility for out-of-order execution allows

us to construct dataflow graphs that would deadlock under the FIFO scheme but not under the

tagged-token scheme. We will consider a detailed example below, after developing a usable lan

guage.

3.0 Experimenting with Language Design

The dataflow process network model, as defined so far, provides a framework within

which we can define a language. Todefine a complete language, we wouldneed to specify a set of

primitive actors. Instead, I will outline a coordination language, leaving the design of theprimi

tives somewhat arbitrary. Thereare often compelling reasons to leave the primitives unspecified.

Manygraphicaldataflow environments rely on a hostlanguage for specification of these primi

tives, and allow arbitrary granularity and userextensibility. Depending on the design of these

primitives, the language may or may notbefunctional, may ormay notbe able to express nonde

terminism, and may or may not be as expressive other languages.

22 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

Granular Lucid, for example, is a coordination languagewith the semantics of Lucid [41].

Coordination languages with dataflow semantics are described by Suhler et al. [76], Gifford and

Lucassen [29], Onanian [61], Printz [65], and Rasure and Williams [67]. Contrast these to the

approach of Reekie [68] and the DSP Station from Mentor Graphics [26], where new actors are

defined in a language with identical semantics to the visual language. There are compelling

advantages to that approach, in that all compiler optimizations are availabledown to the level of

the host language primitives. But the hybridapproach, in which the host language has imperative

semantics, gives the user more flexibility. Since our purpose in this paper is to explore the data

flow process networks model fully, this flexibility is essential.

3.1 The Ptolemy system

To make the discussion concrete, I will use the Ptolemysoftware environment [15] to

illustrate some of the tradeoffs. It is well suited for several reasons:

• It has both a visual ("block diagram") anda textualinterface; the visual interface similarin

principle to manyof those used in signal processing software environments.

• It does not have any model of computation built into the kernel, andhencecan be used to

experiment with variations on themodel of computation.

• Three dataflow process network "domains" have already been built in Ptolemy, precisely to
carry out such experiments. I canuse, compare, andextend these.

• The set ofprimitive actors iseasily extended (using C++ as the host language). This gives us

more than enough freedom to test the limits of the dataflow process networks model of com
putation.

Adomain in Ptolemy is auser-defined subsystem implementing aparticular model ofcomputa
tion. Three Ptolemy domains have been constructed with dataflow semantics, and one with more

general process network semantics. The synchronous dataflow domain (SDF) [50][51] is particu
larly well suited to signal processing [14], where low-overhead execution is imperative. The SDF
domain makes all scheduling decisions at compile time. The dynamic dataflow domain (DDF)
makes all scheduling decisions atruntime, and is therefore much more flexible. The Boolean

DATAFLOW PROCESS NETWORKS 23of52

Experimenting with Language Design

dataflow domain (BDF) attempts to make scheduling decisions for dynamic dataflow graphs at

compile time, using the so-called token-flow formalism [12][48]. Itresorts torun-time scheduling

onlywhen its analysis techniques break down. Thecommunicating processes domain (CP) uses a

multitasking kernel to manage process suspension and resumption.

Ptolemy supports two distinct execution models, interpreted and compiled. Compilation

canbe implemented usinga simplecodegeneration mechanism, allowing for quickexperimenta

tion, or it can be implementedusingmore sophisticated transformation andoptimization tech

niques. Such optimization may require more knowledge about theprimitives than the simplecode

generation mechanism, which simply stitches together code fragments defining each actor.

3.2 Visual hierarchy — the analog to procedural abstraction

In keeping with the majority of signalprocessing programming environments, I will use a

visual syntax for the interconnection of dataflow processes. In fact, in Ptolemy, a program is not

entirelyvisual, since the actors anddata structures are defined textually, usingC++. Only the

gross programstructureis describedvisually.The visual equivalentof an expression, of course, is

a subgraph. Subgraphs canbe encapsulated into a single node, thus forming alarger dataflow pro

cess by composing smallerones. This is analogous to procedural abstraction in imperativelan

guages and functional abstraction in functional languages.

3.2.1 Determinacy and referential transparency

To make the dataflow process network determinate, as discussed above, it is sufficient for

the actors to have two properties; their mappings from inputtokens to output tokens should be

functional (free from sideeffects), and the firing rules for each actor should be sequential, in the

technical sensegiven above. If ouractors havethese properties, then ourlanguage hasreferential

transparency, meaningthat syntactically identical expressions have the samevalueregardless of

their lexical position in the program.

Withreferential transparency, thetwosubgraphs shown in figure 5 are equivalent. Thetwo

inputs to theidentical dataflow processes A are identical streams, so theoutputs willbe identical.

24 °*52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

If the primitive actors are functional, then hierarchicalactors may be functional as well, but there

are some complications due to scheduling, directed loops in the graph, and delays.

3.2.2 Functional behavior and hierarchy

In modern languages, it is often considered important that abstractions be semantically lit

tle different from languageprimitives. Thus, if the primitive actors are functional, the hierarchical

nodes should be functional. If the primitive actors have firing rules, then the hierarchical nodes

should have firing rules. We will find this goal problematic.

A hierarchical node in adataflow process network has asubnetwork and input/output

ports, as shown in the examples in figure 6. If we wish for the subnetwork to fire as a unit, as if it

Figures. Referential transparency implies that these two dataflow process
networks are equivalent.

A

(a) (b)

1 2—i ri °2 h ir—
Dt 1 * D3

<d>

Figure 6. Hierarchical nodes in a dataflow process network may not be
functional even If the primitives are functional. The large
arrowheads indicate input and output for the hierarchical node.

DATAFLOW PROCESS NETWORKS 25 of 52

Experimenting with Language Design

werea primitive, thenthe firing mustbe free of sideeffects. This is not always possible. Consider

the examplein figure 6a. Note first thatto avoid deadlock, it mustbe possible for actor A to fire (at

least the first time) without any tokens atits top input port. Such a feedback loop will typically be

used to implement a recurrence, in which case the feedback channel will store tokens from one

firing of the hierarchical node foruse in the next firing. With this usage, the hierarchical nodehas

state, and is therefore not functional.

3.2.3 Delays, state, recurrences, and recursion

The hierarchical node shown in figure 6b is more typical. The shaded diamond is a delay,

which is typically implemented as an initial token in the channel. This initial token enables the

first firing of actorA if it requires a token on the top input. It is called a "delay" because for any

channel with a unit delay, the /i-th token read from the channel is the (n - l)-th written to it. A

feedback loop with delay effectively stores state, making the hierarchicalnode non-functional.

The delay shown in figure 6(b) is typically implemented using the "cons" operator to ini

tialize streams when streams arebased on the recursive-cons model [47]. It is roughly equivalent

to the "D" operatorin the tagged-token model [6]. It is the visual equivalent of "fby" (followed-

by) in Lucid [75] and the "->" operator in Lustre [32]. In the single assignment language Silage,

developed for signal processing [35], a delay is written "x@l". This expression refers to the

stream "x" delayed by one token, with the initial token value defined by a declaration like

"x@@ 1 = value." For example,

x = 1 +x<§)1;
x@@1 = 0;

defines a stream consisting of all non-negativeintegers,in order.

In functional languages, insteadof usingarecurrent construct like a delay, stateis usually

carried in the program using recursion. Consider, forexample, the following Haskell program,

which adds the elements of a list or stream, given by Reekie [68]:

integrate xs = scanl (+) 0 xs

where scanl is a higher order function defined in Haskell as follows:

scanl (f, init, _L) = init

26 Of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

scanl (f, init, (xjcs)) =f(x, scanl if, init, xs))

These two definitions use template matching; the firstis invoked if the third argument is an empty

list. The init gives the initial value for the sum, equivalent to the value of the initial token in a

delay. The syntax (x:xs) divides a list into the first element (x) and the rest (xs). The program uses

recursionto carrystate, via the higher-order function scan. It has been observed that for efficiency

this recursion must be translated into an iterative implementation [40] [25] [28].For streams this is

mandatory, since otherwisethe depth of the recursion could become extremely large.

Delays in a hierarchical node can make the node non-functional even if it is not in a feed

backloop. Consider the examplein figure 6c.Following Lee and Messerschmitt [50], the"1"

symbol nextto theoutput of Cx means that it produces one token when it fires. The"1"next to

the input of C2 means that it consumes one token when it fires. A reasonable firing of the hierar

chical node would therefore consist ofone firing of Cx and one of C2. But under this policy, state

will have to bepreserved onthe arc connecting the two actors between firings, again making the

hierarchical node non-functional.

3.2.4 Firing subgraphs — the balance equations

This last example raises the question of how todetermine how many firings of the constit

uentactors makeup a"reasonable" firing of ahierarchical node. One approach would be to solve

the balance equations of [48] [50] [51] todetermine how many firings of each actor are needed to

return a subsystem to its original state. By "original state"we mean that the number of uncon-

sumed tokens on each internal channel (arc) should be the same after the firing as before. For the

example in figure 6c, the single balance equation is

rCiXl=rC2Xl, (19)

where rc_ is the number of firings of C. that returns the subsystem to its original state (and thus

keeps it "in balance"). For dynamic dataflow graphs, these balance equations are abit more com

plicated, but often lead to definitive conclusions about the relative number of firings ofthe actors
that are required to maintain balance.

DATAFLOW PROCESS NETWORKS 27of52

Experimenting with Language Design

Unfortunately, twoproblems arise. First, some useful systems have balance equations with

no solution [12][13]. Suchsystems are said to be inconsistent, and generally haveunbounded

memoryrequirements. A simplified (and probably notuseful) example is shownin figure 6d.The

balance equations for this subsystem are(one for each arc)

rCiXl=rC2Xl, (20)

rc1xl =rc3x1' (21>

rc2x2 =rc3xl- (22)
These equations have no solution. Indeed, any set of firings of these actorswill leave state in the

subsystem, so no firing pattern would result in a functional hierarchical node.

To hint that inconsistent systems are, in fact, useful, consider an algorithmthat computes

an ordered sequence of integers of the form 2 3 5 for all a, b, c £ 0. This problem has been

consideredby Dijkstra[27] andKahnandMacQueen [44]. A dataflow implementation equivalent

to the first of two by Kahn and MacQueen is shownin figure 7a. The "merge" block is an ordered

merge [48]; given a nondecreasing sequenceof input valueson two streams, it merges them into a

single stream of nondecreasingvalues, andremoves duplicates. An more efficient implementation

that does not generate such duplications (and hence does not need to eliminate them) is given in

figure 7b. It is also inconsistent. Neither of these implementations has bounded memory require

ments.

3.2.5 Side effects and state

Some of the problems with directed loops could be solved by requiringall delays to

appearonly at the top level of the hierarchy, as was done for example in the BOSS system [72].

This is awkward, however, and anyway provides only a partial solution. A better solution is sim

ply to reconcile the desire for functional behavior with the desire to maintain state. This can be

done simultaneously for hierarchical nodes andprimitives, greatly increasing the flexibility and

convenience of the language, while still maintaining the desirable properties of functional behav

ior.

28 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

The basic observation is that internal state in a primitive or a hierarchical node is syntactic

sugar (a convenient syntactic shorthand) for feedback loops at the top level of the graph. In other

words, there is no reason to actually put all such feedback loops at the top level if semantics can

be maintained with a more convenient syntax. With this observation, we can now allow actors

with state. These become more like objects than functions, since they represent both data and

methods for operating on the data. The (implicit) feedback loop around any actor or hierarchical

node with statealsoestablishes a precedence relationship between successive firings of the actor.

This precedence serializes the actor firings, thusensuring proper state updates.

Once we allow actors with state, it is a simple extension to allow actors with other side

effects, such as those handling I/O. Theinherently sequential nature of an actor that outputs a

stream to a file, for example, is simply represented by a feedback loop that does notcarry any

meaningful data, but establishes precedences between successive firings of the actor.

result

(a)

result

(b)

Figure 7. Two Inconsistent dataflow graphs that compute an ordered sequence off
Integers ofthe form 283b5°. The triangular Icons multiply their inputs by
the Indicated constant. The delay Icon (a diamond) representsan initial
token with value 1,3, or 5, as annotated.

DATAFLOW PROCESS NETWORKS 29 of 52

Experimenting with Language Design

3.3 Functionarguments — parametersand Input streams

InPtolemy, as inmany software environments of this genre, there are three phases tothe

execution of aprogram. The setup phase makes apass over the hierarchical program graph initial

izing delays, initializing state variables, evaluating parameters, evaluating whatever portion of

theschedule is pre-computed, and performing whatever other setup functions theprogram mod

ules require. The run phase involves executing either thepre-computed schedule oradynamic

schedule that is computed on-the-fly. If therun is finite (itoften is not), there is awrapup phase, in

which allocated memory is freed, final results are presented to theuser, and anyother required

cleanup code is executed.

The parameters that areevaluated during the setup phaseareoften related to one another

via anexpression language. Thus, parameters represent the part of thecomputation that does not

operate on streams, in which values thatmight be usedduring stream processing are computed.

Some simpleexamples are the gain values associated withthe triangular icons in figure 7 or the

initial values of the delays in the same figure. In principle, these values may be specified as arbi

trarily complex expressions.

The gain blocksin figure 7 may beviewedas functions of arity two, the multiplying con

stant and the input stream. But unlike any functional language that I know of, acleardistinctionis

madebetweenparameter arguments and stream arguments. This distinction is bothsyntactic and

semantic. The syntaxin Ptolemy is tousea textual expression language to specify thevalueof the

parameters, using a parameter screen like that in figure 8. This expression language hassome of

the trappings of a standard programming languages, including types andscoping rules. It couldbe

entirelyreplaced by a standard programming language, although preferably one with declarative

semantics.

Parameters are still formally viewedas arguments to the function represented by the actor.

But the syntactic distinction between parameters and stream arguments is especially convenient in

visual programming. It avoids cluttering adiagrammatic program representation with agreat

many arcs representing streams thatnever change in value. Moreover, it makes the job of a com

piler orinterpreter simpler, removing theoptimization step of identifying such static streams. In

30 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

Ptolemy, when compiled mode is used for implementation, code generation occurs after the

parameters have been evaluated, thus allowing highly-optimized, application-specific code to be

generated. For example, instead of a single telephone channel simulator subroutine capable of

simulating any combination of impairments, a optimized code that takes advantage of the fact that

the third harmonic distortion is set to zero (see figure 8) can be synthesized. This becomes partic

ularly important when the implementation is via hardware synthesis, as is becoming increasingly

common in signal processing systems.

Sometimes, all of the arguments to a function are parameters, in which case we call the

actora source, since it has no dynamic inputs (see, for example, the A and B actors in figure 4).

ID Edit Params

Edit Parameters

j< sPTQLEMY/src/domains/sdf/demo/telChanlmpulseResp.data

J0.05

J60 —_

;10

jo.o

jo. 4

1inearDistortlonTaps:

noise:

phaseJltterFrequency_Hz:

phaseJ1tterAmplitude_Deg:

frequencyOffset_Hz:

secondHarmonic:

thirdHarmonic: |0.0 ~~~>

OK Appi jTelephone
iChannel

Telephone Channel Simulator

Gaussian noise

f-

impaired Signal
11 EditParams fgggffiffi

.a**]

linear Distortion

rm
iPMj/ I{'«•*

Freq-offset Non-Linear
Phase Jitter Distortion

i —

Figure 8. Top: A typical parameter screen in Ptolemy for a hierarchical node
that models a telephone channel. The first parameter is given as a
reference to a file. The icon for the node is shown to the right. The
next level down In the hierarchy is shown In the lower right window.
At the lower left, the parameter screen shows that the parameterfor
the Gain actor inherits its value from the "noise" parameter above it
in the hierarchy. Parameter values can also be expressions.

DATAFLOW PROCESS NETWORKS 31 of 52

Experimenting with Language Design

Referential transparency for source actors is also preserved, as long as theparameters are consid

ered. Thus, the transformation shown in figure 5 isnow possible only if the actors or subgraphs

being consolidated have identical parameters. Thus, with these syntactic devices (actors with

state, delays, and actors with parameters as well as inputs), referential transparency is still possi

ble. I call such actorsgeneralizedfunctional actors.

3.4 Firing rules and strictness

A function is strict if it requires that all its arguments bepresent before it can begin com

putation. A dataflow process, viewed as a function applied toastream, clearly should notbe strict,

in that the stream should nothave tobecomplete for the process tobegin computation. The pro

cess is in fact defined as a sequence of firings that consume partial input data and produce partial

output data. But in our context, this is a rather trivial form of non-strictness.

A dataflow process is composed of a sequence of actor firings. The actor firings them

selves mightbe strict ornon-strict. This is determined by the firing rules. For example, an actor

formed from theMcCarthy amb function is clearly non-strict, since it can fire with onlyoneof the

two arguments available. A process made with this actor, however, is notcontinuous, and the pro

cess is non-determinate.

It is possible to have a determinate process made of non-strict actors. Consider

select (x, _L, true) = x

select (X, y, false) = y

The firing rules impliedby thisdefinition are sequential, since a tokenis required for the third

argument, andthe value of thatargument determines which firing ruleapplies. Moreover, selectis

functional, soaprocess made upof repeated firings of this actor is determinate. ThePtolemy icon

for this process is shownin figure 9. This function, however, is clearly not strict, since the func

tiondoesnot require thatall three arguments be present. Moreover, we will see thatthis non-

strictness is essential for the most general form of recursion. The fact thatnon-strictness is essen

tial for recursion has been observedbefore,of course [38].

32 of52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

The next natural question is whetherhierarchical nodes should be strict. The example

shown in figure 10 suggests a definitive "no" for the answer. A hierarchical node A is composed

of subprocesses B andC as shown in the figure. When considering only the expandeddefinitionin

figure 10b,we might identify a strictactor consistingof a firing of each of B and C, in either

order, once both inputs to the meta actor were available. However, when connected as shown in

figure 10a, the network deadlocks, quite unnecessarily.

All three dataflow domains in Ptolemy have non-strict hierarchical nodes. To implement

this, most schedulers used in thesedomains takea simpleapproach; they flatten the hierarchy

before constructing a schedule. This approach may beexpensive for large programs with repeated

use of the samehierarchical nodes, but it does the job. At leastone more sophisticated scheduler

[11] constructs strict hierarchical nodes (when this is safe) through aclustering process, in order

tobuild more compact schedules. It ignores the user-specified hierarchy in doing this.

O-* >—€>

Figure 9. Switch and Select actors in the dynamic dataflow domains of
Ptolemy. These are determinate actors that merge or split streams
under the control off a Boolean stream.

C=D

(a) (b)
Figure 10. A hierarchical node A in a simple subnetwork (a) and itsexpanded

definition (b). Iff theactor AIsstrict, thesubnetwork in(a) deadlocks.

DATAFLOW PROCESS NETWORKS 33 of 52

Experimenting with Language Design

3.5 Recurrences and Recursion

Functional languages such as Haskell commonly use recursion to carry state. The compa

rable mechanism for dataflow process networks is feedback loops, usually with initial tokens, as

shown in figure 6aand 6b. These feedback loops specify recurrence relations rather than recur

sion. Ida and Tanaka have also noted the advantages ofthis representation [40]. A consequence of

this is that recursion plays aconsiderably reduced role indataflow process networks compared to

functional languages. But this does not mean that recursionis not useful.

Consider the"sieve of Eratosthenes," an algorithm considered by Kahn and MacQueen

[44]. Itcomputes prime numbers byconstructing achain of"filters", one for each prime number it

has found so far. Each filter removes from the stream anymultiple of its prime number. The algo

rithm starts with a single filter for the prime number 2 in thechain and runs each successively

larger integer throughthe chainof filters. Each time anumbergets throughto the end of the chain,

it must be prime, so a new filter is created and added to the chain. A recursive implementation of

this algorithm is concise,convenient, andelegant, although of course we canexpress anyrecur

sive algorithm iteratively [38].

A recursive implementation in the dynamic dataflow domain of Ptolemy is shown in fig

ure 11.The icon with the concentric squares is actually a higher-order function (explained further

below) that invokes a named hierarchical node (sift) when it fires. In this case, the named hierar

chical node is a recursive reference to the very hierarchical node in which the icon appears. More

direct expression of recursion is not yet supported by the Ptolemy graphical interface, although it

is supported in the underlying kernel.

Note that recursion in figure 11 expresses a "mutable graph", in that the structure of the

graph changes as the programexecutes. Such dynamics arealso permitted by Kahn and Mac

Queen [44] and in TLDF [76]. Mutability, however, considerably complicates compile-time anal

ysis of the graph. The compile-time scheduling methods in [12] and [50] have yet to be extended

to recursive graphs. This raises the interesting questionof whetherrecursion precludes compile-

time scheduling. We find, perhaps somewhat surprisingly, that often it does not. To illustrate this

point, we will derive a recursiveimplementationof the fast Fourier transform (FFT) in the syn-

34 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

chronousdataflow domain in Ptolemy, and show that it can be completelyscheduled at compile

time. It can even be statically parallelized, with the recursive description imposing no impedi

ment. The classicderivation of theFFTleads directly to a natural and intuitive recursive represen

tation. For completeness, we repeat this simple derivation here.

The N-th orderdiscreteFourier transform DFTof a sequence x(n) is given by

fork (replicate a stream

generate constant

value: 1 n fTS

eratosthenes

Pass first arrivingtoken through to the output
Remaining input tokens traverse the lower path.

Figure 11. A recursive Implementation of the sieve of Eratosthenes in the
dynamic dataflow domain in Ptolemy. The top-level system(with just
three actors) producesall the integersgreater than 1, filters them for
primes, and displays the results. Other Icons are explained once
each.

DATAFLOW PROCESS NETWORKS 35 of 52

Experimenting with Language Design

N-l J^]kn
**= Z*(n)e yNJ (23)

ii = 0

for0 £ k < N. Toget thevalues for other k, simply periodically repeat thevalues given above

with period N. Define

WN = e (24)

and note the following properties:

W2N =WmtmdW^k=WkN. (25)
Using this we can write

N-l JV-2 N-l

Xk =£^(n)^"= £ x(n)W*+ £ *(/i)H# (26)
« = 0 R = 0 n = 1

n even n odd

By change of variables on the summations, this becomes

(W2)-i f{Nll)-\
.kn .kn**= £ x(2«)^+ £ *(2n-l)H^!l£ (27)

n = 0 V ii = 0 '

This is the key step in the derivation of the so-called "decimation-in-time FFT"; the first summa

tion is the (N/2) order DFT of the even samples, while the secondis the (N/2) order DFT of

odd samples. Thus, in general, we can write

DFTN(x(n)) = DFTm(x(n);n even) +WNDFTNj2(x(n);n odd) . (28)

Recall that DFTN(x(n)) isperiodic with period N, so DFTNj2 (x(n) ;n even) isperiodic with

period N/2.

From this, we arrive at the recursive specification shownin figure 12. The first actor is a

distributor, whichcollects two samples each timeit fires, routing the first oneto the top output

and thesecond oneto thelower output. Therecursive invocation of this block accomplishes the

decimation in time. Theoutputs of the distributor are connected to two IJThenElse blocks, repre

sentoneof two possible replacement subsystems. Whentheorder parameter is larger than some

36 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

threshold, the IjThenElse block replaces itself with a recursive reference to the galaxy within

which it sits. When it gets below some threshold, then the IjThenElse block replaces itself with

some direct implementation of a small order FFT. The IjThenElse block is another example of a

higher-order function, and will be discussed in more detail below. The repeat block takes into

account the periodicity of the DFTs of order N/2 without duplicating the computation. The exp-
kgenblockat thebottom simplygenerates the WN sequence. The sequence mightbeprecomputed,

or computed on the fly.

A more traditional visual representation of an FFT is shown in figure 13. This representa

tion is extremely inconvenient for programming, however, sinceit cannot represent FFTs of the

size typically used (128 to 1024points). Moreover, any such visual representationhas the order of

the FFT and the granularity of the specification hard-wired into the specification. It is better to

have both parameterized, as in figure 12.Moreover, I would argue that the visual representationin

figure 12is more intuitive, since it is a more direct representation of the underlying idea.

An interesting generalization of the conditional used in the recursion in figure 12 would

use templates on the parameter values to select from among the possible implementations for the

node. Thiswould make therecursion stylistically identical to that found in functional languages

distributor
-U13R

repeat

MpfC*

expgen

Figure 12. A recursive specification of an FFT implemented in the SDF domain
in Ptolemy. The recursion is unfolded during the setup phase of the
execution, so that the graph can be completely scheduled at
compile time.

DATAFLOW PROCESS NETWORKS 37 of 52

Experimenting with Language Design

like Haskell, albeit with avisual syntax. This can be illustrated with another practical example of

an application of recursion.

Consider the system shown in figure 14. It shows amultirate signal processing applica

tion: ananalysis/synthesis filter bank withharmonically spaced subbands. The stream coming in

at the left is split by matching highpass andlowpass filters (labeled "QMF"). These aredecimat

ing polyphase FIR filters, so for everytwo tokens consumed on the input, one tokenis produced

on each of two outputs. The left-most QMF only is labeled with the number of tokens consumed

and produced, but the others behave thesame way. The output of the lowpass sideis further split

by asecond QMF, and thelowpass output of that by athird QMF. The boxes labeled "F"represent

some function performed on the decimated stream (such asquantization). The QMFboxes to the

rightof these reconstruct the signal using matching polyphase interpolating FIR filters.

Figure 13. A fourth-order decimation-in-time FFT shown graphically. The order
of the FFT, however, Is hard-wired into the representation.

—• F

F

QMF

1 1 1 1

1
—•

I H
1
—• QMF—» F —#

QMF —• QMF

QMI:—* F —• QMF

Figure 14. An analysis/synthesis filter bankunderthe SDF model. The depth of
the filter bank, however, is hard-wiredInto the representation.

38 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

There are four distinct sample ratesin figure 14 with a ratio of 8 between the largestand

the smallest. This type of application typically needs to be implemented in real time at low cost,

so compile-time scheduling is essential.

The graphical representation in figure 14is useful fordeveloping intuition, andexposes

exploitableparallelism, but it is not so useful for programming. The depth of the filter bank is

hard-wired into the visual representation, so it cannotbe conveniently made into a parameter of a

filter-bankmodule. The representationin figure 15 is better. A hierarchical node called "FB", for

"fiTterbank" is defined, andgiven a parameter D for"depth". ForD > 0 the definitionof the block

is atthe left. It contains aself-reference, withthe parameter of the insidereference changed to D -

1.When D=0, the definition at therightis used. The systemat the top, consisting of just one

block, labeled "FB(D =3)",is exactly equivalent to the representation in figure 14, except that the

visual representation does notnow depend onthedepth. The visual recursion in figure 15 can be

unfolded completely atcompile time, exposing all exploitable parallelism, and incurring no

unnecessary run-time overhead

3.6 Higher-Order Functions

Indataflow process networks, all arcs connecting actors represent streams. The icons rep

resent both actors and theprocesses made upofrepeated firings of theactor. Functional languages

often represent such processes using higher order functions. For example, in Haskell,

map/*s

FB(D=3)

jt*

/FB(D>0)

V.
QMF

1
F -

1

QMF
1| _ 1

FB(D=D-1] —*

IMMMMV^.

Figure 15. A recursive representation of the filter bank application. This
representation uses template matching.

DATAFLOW PROCESS NETWORKS 39 of 52

Experimenting with Language Design

appliesthe function/to the list xs. Every single-input process in adataflow process network con

stitutes an invocation of such a higherorder function, applied to a stream rather than a list. In a

visual syntax, the function itself is specified simply by the choice of icon. Moreover, Haskell has

the variant

zipWith/xs ys

where the function/has arity two.Thiscorresponds simply to adataflow process with two inputs.

Similarly, the Haskell function

scanl/a xs

takes a scalar a and a list xs. The function/is applied first to a and the head ofxs. The function is

then applied to the first returned value and the second element of xs. A corresponding visual syn

tax for a dataflow process network is given in figure 16.

Recall ourproposed syntactic sugar for representing feedback loops such as that in figure

16using actors with state. Topically theinitial value of thestate (a) will bea parameter of the

node. In fact, dataflow processes withstate cover many of thecommonly usedhigher-order func

tions in Haskell.

Themostbasic useof icons in our visual syntax may therefore beviewed as implementa

tiona small setof built-in higher-order functions. More elaborate higher-order functions will be

more immediately recognizable as such, and will prove extremely useful. Pioneering work in the

useof higher-order functions in visual languages was done by Hills [36], Najork and Golin [59],

and Reekie [68]. We will draw on this work here.

I created an actor in Ptolemy called Map that generalizes the Haskell map. It has aparam

eterthatspecifies another actor (primitive orhierarchical) by name. Thatactor defines one or

Figure 16. Visual syntax for the dataflow process network equivalent of the
Haskell "scanl fa xs" higher-order function.

400152 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

moreprocesses that are applied to anynumber of inputstreams. Its iconis shown in figure 17a. A

simple example of its use is shown in figure 17c. In that figure, three Ramp actors generate three

streams consisting of increasing integers. TheMap actorsimply applies any namedactor to those

three streams. If the named actor has a single input, then three instances will be created. The

parameters of the three instances can be set independently via theparameters of the Map actor.

My implementation of Map is simplebuteffective. It simply creates one or more instances

of a the specified actor (which mayitselfbe a hierarchical node)andsplices those instance intoits

own position in the graph. Thus, we call the specified actor the replacement actor, since it takes

theplace of theMap actor. TheMap actor then self-destructs. This is done in the setup phase of

execution so that no overhead is incurred for the higher order function during the run phase of

execution, which for signal processing applications is the most critical.

MapGr

TkText

jffchjibule
•

•

•

MapGr

etc.

Figure 17. (a) An Icon for a simple higher-order function in Ptolemy, Map, which
applies a named actorto its input streams, (b) A variantof Map where the
actor to apply to the Input streams is specified graphically Instead of
textually. (c) A simple use of the two types of Map actors where three
ramps (linearly increasing sequences) have three Instances of a named
actor applied to them and the three resulting streams are displayed
using TkText.

DATAFLOW PROCESS NETWORKS 41 of 52

Experimenting with Language Design

In the visual programming languages ESTL [59] and DataVis [361, higher-order functions

use a "function slots" concept, visually representing the replacement function as a box inside the

icon for the higher-order function. I have implemented in Ptolemy a conceptually similar visual

representation, using the icon shown in figure 17b.The replacement actor is graphically con

nected to the (rather elaborate) icon, as shown in figure 17c. There, at the right, a version of the

MapGr actor (one with inputs but no outputs) specifies that the TkText actor should be applied to

each of the input streams. Notice also that the streams going from the Map to the MapGr arecom

pactly represented using the Ptolemy bus icon, a slash through the connecting wire. The bus icon

has a single parameter, the width of the bus.

A number ofadditionalvariations arepossible.First, the replacementactormay have arity

larger than one, in which case the input streams are grouped in appropriately sized groups to pro

vide the arguments for each instance of the specifiedactor. Forexample, if the replacement actor

has arity two, and there are 12 input streams, then six instances of the actor will be created. The

first instance will process the first two streams, the second the next two streams, etc.

Another variationis aMap actorwith no input. In this case, the number of instances of the

replacement actor that are created must matchthe number of output streams. An example that

uses this concept is shown in figure 17. It again uses the bus icon to represent a collection of

streams.The programin figure 17generates anapproximation to a square wave by adding a finite

numberof sinusoids. The ParSourcesGr actor, whichis the version of MapGr with no inputs, has

singen as its replacementactor. The singen actor is a hierarchical node thatgenerates a sinusoidal

sequence of the specified frequency. In this case, theparameter map designates thatthe frequen

cies should be (2n/period) for the first singen actor, (6 n Iperiod) for the second singen actor, etc.

In other words, the singenactors should generate a fundamental and all the odd harmonics.The

MapGr actor applies a gain of 4/rc(2/ - 1) to each sinusoid, where i is the index of the sinusoid.

Thesegain values are theFourier series coefficients for asquare wave. TheAddactor simplyadds

all its inputs. The XMgraph actor plots the signal, as shown in figure 19.

SincetheMap actor always creates atleast oneinstance of thereplacement actor, it cannot

beuseddirectly forrecursion. Sucharecursion would never terminate. A variant of theMap actor

42 Of52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

can be defined that instantiates the replacement actor(s) only at run time. This is (essentially) what

we used in figure 11 to implement recursion. Using dynamic dataflow, the dynamic Map actor

fires conditionally. When it fires, it creates an instance of its replacementactor (which may be a

hierarchical node recursively referenced), and self-destructs.

The dynamic Map was the first higher-order function implemented in Ptolemy (it was

implemented under a different name by SoonhoiHa). Its runtime operation is quite expensive,

however, requiring dynamic creation of a dataflow graph. So there is still considerable motivation

ParSourcesGr

Approximate a Square Wave by a
Finite Number of Sinusoids

parameter_map:

gain = 4/(Pr(2*instance_number-l))

parameter_map:
frequency = 2*PI*(2*instance_number-1)/period

Figure 18. The Map actor in Ptolemy can be used with no inputs, in which case,
the number of instances of the replacement actor that are created
must match the number of outputs. The slash through a wire
indicates a bus, which represents a collection of streams.

1.00 - |\/\/\/v~vr\/\/\/\ A/V\/n~v^\/\/\/\
I 1—I

0.50

•

-

0.00 _ I
"

0.50 I-
1.00

—I 1 1 ,i i

0.00 100.00 200.00 300.00 400.00

Figure 19. First 400 values computed by the program in figure 17. It is an
approximation to a square wave computed by adding 10 sinusoids.
Thus, the bus widths in figure 17 are 10.

DATAFLOW PROCESS NETWORKS 43 of 52

Experimenting with Language Design

for recursion that can be statically unrolled, asdone in figure 12. In fact, thatsystem is imple

mented using another higher-order function, IjThenElse, which is derived from Map. The

IjThenElse actor takes two replacement actors as parameters plus a predicate. The predicate spec

ifies which of the two replacement actors should be used.That actor is expandedinto a graph

instance and spliced into the position of the IjThenElse actor. The IjThenElse actor, like the Map

actor, then self-destructs. Since the unused replacementactorargumentis not evaluated, the

semantics arenon-strict, and the IjThenElse actor canbe used to implement recursion. The recur

sion is completelyevaluated during the setup phase of execution (or atcompile time), so the

recursion imposes no runtime overhead during the runphase.

The higherorder functions above haveakey restriction: thereplacement actor is specified

by a parameter, not by aninput stream. Thus, I avoidembedding unevaluated closures in streams.

In Ptolemy, since tokens that pass through the channels are C++ objects,it would not be hard to

implement the more general form. It warrants further investigation.

3.7 The tagged-token execution model

Recall that the tagged-token execution modeldeveloped by Arvind and Gostelow [5] [6]

allows out-of-order execution. This allows some dataflow graphs to produce output that would

deadlock under theFIFO channel model. An example is shown in figure 20. This graph computes

KgM
A B c D

N F Ni (N-1)!

N-1 F (N-1)! (N-2)!

N-2 F (N-2)! (N-3)!

2 F 2 1

1 T 1 1

0 T 1

Figure 20. This factorial program deadlockswithoutout-of-order execution, as
provided for example by the tagged token model.

44 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

N! if out-of-order execution is allowed, but deadlocks withoutproducing anoutput under the

FIFO model.The sequence of values on thelabeled arcs is given in the table in the figure.

The loop at the left countsdown from N to 0, sincethe delay is initializedto N and the

value circulating in the loopis decremented by 1each time around. The test (diamond shape)

compares the value at A to 1.When A<lt it outputsa True. Until that time, the select is not

enabled, because there are no tokens ontheFalse input. Butnotice that at that time, the queue at

the control input (B) of the selecthasN False tokens followed by one True token. The False

tokens still cannot be consumed. If out-of-orderexecution is not allowed, then the select will

never be able to fire. However, since theselect has no state, there is no reason to prohibit out-of-

order execution.

Out-of-order execution requires bookkeeping like that provided by the tagged-token

model. The consumption of theTrue token is by the(7v+l)-th firing (logically) of theselect. Thus,

the 1produced atits output is (logically) the(N+l)-th output produced by theselect. Hence, atC,

we show the 1output as the last entry in the table, even though it is the first one produced tempo

rally. The logical orderingmust be preserved.

Recall that adelay is an initial token onachannel. Thedelay attheleft is an ordinary

delay, where theinitial tokenis initialized to value N. The delay on theright, however, is some

thingnew, a negative delay. Instead of aninitial token, thisdelay discards the first token that

enters the channel. Itcan beimplemented inavariety ofways, one ofwhich is shown in figure 21.

The effect of the negative delay is shown incolumn D; the first token (logically, not temporally)

produced by theselect is discarded by thenegative delay. Thus, the 1produced by the (N+l)-th

firing (logically) of the select must be consumed bythe A7-th firing of the multiply at the upper

Figure 21. One way to Implement a negative delay, which discards the first
token that arrives on the Input stream.

DATAFLOW PROCESS NETWORKS 45 Qf52

Experimenting with Language Design

right. The other input of the multiply has avalue"1" asits N-th input (A), so the N-th output (log

ically) or first output (temporally) of the multiply is 1 x 1 = 1. This makes available the N-th

token (logically) of the selectFalse input, whichcan now be consumed by the AT-th firing (logi

cally) of the select.The "1" produced herewill be multiplied by 2, enabling the (W-2)-th firing of

the select.We continue until the first firing (logically) of the select produces N\. At this point,

there areN +1 tokens at the downsamplerinput (the icon at the bottom with the downward arrow),

enabling it. It consumes thesetokens and outputs the first one (logically). Thus the output of the

downsampler is N\.

Note that although this might appear to be anundulycomplicated way to compute a facto

rial, it nonetheless demonstrates thatenabling out-of-order execution does increase the expres

siveness in the language. Of course, this haslimitedvalueif its only use is to represent obscure

and unnecessarily complicated algorithms.

3.8 Data types and polymorphism

A key observation about our dataflow process networks so far is that theonlydatatype

represented visually is the stream. The tokens ona stream can have arbitrary type, so this

approach is more flexible than it sounds likeat first. For instance, we can embed arrays into

streams either directly by sequencing theelements of thearray, orby encapsulating each array

intoa single token, orby generalizing to multidimensional streams [49] [75]. In Ptolemy, tokens

can contain arbitrary C++ objects, sothe actors can operate onthese tokens inrather sophisticated

ways, making effective use of data abstraction.

Ptolemy networks are strongly typed. Each actor port (input or output) has atype, and type

consistency is statically checked. Polymorphism, in which asingle actor can operate onany of a

variety of datatypes, is supported in anatural way.

Hudak distinguishes twotypes of polymorphism, parametric and ad-hoc (or overloading)

[38]. Inthe former, a function behaves the same way regardless of the data type of itsarguments.

In the latter, the behavior can bedifferent, depending on the type. Although inprinciple both are

supported in Ptolemy, wehave made more use of parametric polymorphism inthe visual pro-

46 of 52 DATAFLOW PROCESS NETWORKS

Experimenting with Language Design

gramming syntax. The way thatparametric polymorphism is handled is thatactors declare their

inputs oroutputs to be of type "anytype". The actors thenoperate on the tokensvia abstracted

type handles.

Polymorphic blocks in Ptolemy includeall those thatperformcontrol functions on

streams, like the commutator and distributor in figure 12. The Map actor is also polymorphic,

although in a somewhat more complicated way. Its inputs and outputs are declared to be"any-

type", and typeresolution is redone for actors connected to it after thesubstitution of thereplace

ment actor(s).

3.9 Parallelism

For functional languages, thedominant viewappears tobethat parallelism mustbeexplic

itly defined by the programmer by annotating the program with the processor allocation [38].

Moreover, as indicated by Harrison [33], the ubiquity ofrecursion in functional programs sequen-

tializes what would otherwise beparallel algorithms. Harrison proposes using higher-order func

tions toexpress parallel algorithms in a functional language, in place of recursion. The parallel

implementation is accomplished bymechanized program transformations from the higher-order

function description. This is called "transformational parallel programming," and has also been

explored by Reekie and Potter [70] in thecontextof process networks. The transformations could

also beinteractive, supported by"meta-prograrnming". One transformation methodology is the

unfold/fold method of Burstall and Darlington [17], which is based on partial (symbolic) evalua

tion and substitution of equalexpressions.

In thedataflow community, by contrast, parallelism has always been implicit. This is, in

part, due tothe scarce use ofrecursion. A dataflow graph typically reveals agreat deal of parallel

ism that can be exploited either byrun-time hardware [3] or, if the firing sequence issufficiently
predictable, a compiler [30][65][73] [74].

Dataflow process networks can combine the best ofthese. Parallelism can be implicit, and

higher-order functions can beused tosimplify the syntax of the graphical specification. The

phased execution, in which the static higher-order functions are evaluated during asetup phase, is

DATAFLOW PROCESS NETWORKS 47 0f 52

Conclusions

analogous to the fold/unfold method of Burstall and Darlington [17], but there is no need for a

specialized transformation tool that "understands" the semantics of the higher-order functions.

Thus, parallelism is exploited equally well with user-defined higher-order functions as with those

that are built into the language.

Moreover, in a surprising twist, the use of static higher-order functions enables the use of

recursion withoutcompromising parallelism. As long as the recursion can be evaluated during the

setup phase, it does not sequentialize the program. Thus, we regain much of the elegance that the

use of recursion lends to functional languages. An example (a recursive specification of an FFT)

is given above in figure 12. In situations where the recursion cannot be evaluated during the setup

phase, as in the sieve of Eratosthenes in figure 11, the algorithm is inherently sequential.

4.0 Conclusions

Signal processing softwareenvironments are domain-specific. Some of the techniques

they use, including (and maybe especially) their visual syntax has only been proven in this

domain-specific context. Nonetheless, they have (or can have) the best features of the best modern

languages, including natural and efficient recursion, higher-orderfunctions, data abstraction, and

polymorphism.

Thispaperpresents a theory of design thathas been (at leastpartially) put intopractice by

the signal processing community. In the words of Milner [53], such a theory "does not stand or

fall by experiment in the conventional scientific sense." It is the"pertinence" of a theory that is

judged by experiment rather than its "truth".

5.0 Acknowledgments

I would like to thank the entire Ptolemy team, but especially Joe Buck, Soonhoi Ha, Alan

Kamas, and DaveMesserschmitt, for conceiving and building a magnificent infrastructure for the

kinds ofexperiments described here. I would also like togratefully acknowledge helpful com-

48 of 52 DATAFLOW PROCESS NETWORKS

References

ments onearly drafts of thepaperfrom Shuvra Bhattacharyya, Tom Parks, andJuergen Teich. The

inspiration for this paper came originally from Jack Dennis, who pointed outthe need torelate the

work with dataflow in signal processing with the broader computer science community.

6.0 References

[I] H.Abelson and G. J. Sussman, Structure and Interpretation ofComputer Programs. The MTT Press Cam
bridge. MA. 1985.

[2] W. B. Ackerman. "Data Flow Languages." Computer, Vol. 15. No. 2.February 1982.

[31 Arvind, L. Bic. T. Ungerer. "Evolution ofData-Row Computers." in Advanced Topics in Data-Flow Comput
ing, ed. J.-L. Gaudiot and L. Bic. Prentice-Hall, 1991.

[4] Arvind and J.D. Brock, "Resource Managers inFunctional Programming." /. ofParallel and Distributed Com
puting, Vol. 1, No. 5-21,1984

[51 Arvind and K. P. Gostelow, "Some Relationships between Asynchronous Interpreters ofaDataflow Language."
InFormal Description ofProgramming Languages, IFIP Working Group 2.2.1977.

[6] Arvind and K. P. Gostelow, "The U-Interpreter", Computer. 15(2), February 1982.

[71 E. A. Ashcroft and R. Jagannathan, "Operator Nets," inProc. IFIP TC-10 Working Conf. on Fifth-Generation
Computer Architectures, North-Holland,The Netherlands, 1985.

[81 A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-Time Systems," Proceedings of
the IEEE. Vol. 79. No. 9,1991, pp. 1270-1282.

[9] A. Benveniste and P. Le Guernic. "Hybrid Dynamical Systems Theory and the SIGNAL Language," IEEE Tr.
onAutomatic Control. Vol. 35, No. 5, pp.525-546. May 1990.

[10] S. Bhattacharyya and E. A. Lee. "Memory Management for Synchronous Dataflow Programs." toappear in
IEEE Tr. on SignalProcessing,May 1994.

[II] S. Bhattacharyya and E. A. Lee. "Looped Schedules for Dataflow DescripUons of Multirate Signal Processing
Algorithms," toappear inFormal Methods in System Design, (updated from UCB/ERL Technical Report, May
21.1993).

[12] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model, Tech.
Report UCB/ERL 93/69. Ph. D. Dissertation. Dept. ofEECS. University ofCalifornia. Berkeley, CA 94720
1993.

[13] J.Buck and E. A. Lee, "The Token Flow Model," presented atData Flow Workshop, Hamilton Island. Austra
lia. May. 1992. Also in Advanced Topics in Dataflow Computing and Multithreading, ed. Lubomir Bic. Guang
Gao, andJean-Luc Gaudiot, TFFF. Computer Society Press, 1994.

[14] J. Buck. S. Ha, E. A. Lee. and D. G. Messerschmitt. "Multirate Signal Processing in Ptolemy". Proc. ofthe Int.
Conf. on Acoustics, Speech, and Signal Processing, Toronto. Canada. April, 1991.

[15] J. Buck, S. Ha. E. A. Lee. D. G. Messerschmitt. "Ptolemy: aFramework for Simulating and Prototyping Heter
ogeneous Systems", International Journal ofComputer Simulation, April, 1994.

[16] W.H.Burge. "Stream Processing Funcdons,"/i5A/y. ofResearch and Development. Vol. 19 No 1 Januarv
1975. " * *

DATAFLOW PROCESS NETWORKS 49 of 52

References

[17] R. M. Burstall andJ.Darlington. "A Transformation SystemforDeveloping Recursive Programs," JACM,Vol.
24. No. 1,1977.

[18] N. Carriero and D.Gelernter, "Linda in Context." Comm. of the ACM, Vol. 32,No.4, pp.444-458. April 1989.

[19] M. J.Chen, "Developing aMultidimensional Synchronous Dataflow Domain inPtolemy", MS Report, ERL
Technical ReportUCB/ERL No. 94/16,University of California. Berkeley. CA 94720.May 6.1994.

[20] A. Church. The Calculi of Lambda-Conversion, Princeton University Press, Princeton, NJ, 1941.

[21] F.Commoner andA. W. Holt, "Marked Directed Graphs." Journal ofComputer andSystem Sciences, Vol.5,
pp. 511-523.1971.

[22] H. De Man. F. Catthoor. G. Goossens, J.Vanhoof, J.VanMeerbergen, S. Note,J.Huisken, "Architecture-driven
synthesis techniques formapping digital signal processing algorithms intosilicon," in special issueon com
puter-aided design of Proceedings ojthe IEEE, Vol. 78.No.2. pp.319-335, February. 1990.

[23] JB. Dennis. "First Version Data Flow Procedure Language", Technical Memo MAC TM61, May. 1975. MTT
Laboratoryfor Computer Science.

[24] J.B. Dennis. "Data How Supercomputers." IEEE Computer, Vol 13,No. 11, November, 1980.

[25] J. B. Dennis, "Stream Data Types for Signal Processing," unpublished memorandum. September 28.1992.

[26] D.Desmet and D.Genin. "ASSYNT: Efficient Assembly Code Generation for DSP's starting from aData Flow-
graph." Trans. ojICASSP '93, Minneapolis. April. 1993.

[27] E.W. Dijkstra, A Discipline ofPrograniming, Prentice Hall, Englewood Cliffs, New Jersey, 1976.

[28] J. Franco, D. P. Friedman, and S.D.Johnson, "Multi-Way Streams inScheme." Comput. Lang., Vol. 15, No. 2.
pp. 109-125,1990.

[29] D. K.Gilford and J. M. Lucassen, "Integrating Functional and Imperative Pr^amming," inProc. 1986 ACM
Conf. onLisp andFunctional Programming, pp. 28-38.1986.

[30] S.Ha, "Compile-Time Scheduling ofDataflow Program Graphs with Dynamic Constructs," PkD.Dissertation,
EECS DepL, University of California, Berkeley, CA94720, April 1992.

[31] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, "The Synchronous Data Flow Prograniming Language LUS
TRE,"Proceedings ofthe IEEE, Vol. 79,No. 9,1991. pp. 1305-1319.

[32] N.Halbwachs. Synchronous Programming ojReactive Systems, Kluwer Academic Publishers, Dordrecht. 1993.

[33] P. G.Harrison. "A Higher-Order Approach toParallel Algorithms." The Computer Journal, Vol 35. No. 6,
1992.

[34] J. Hicks, D. Chiou, B. S. Ang, and Arvind. "Performance Studies ofId on the Monsoon Dataflow System." /. of
Parallel and Distributed Computing, Vol. 18. No. 3,pp. 273-300. July. 1993.

[35] P. Hilfinger, "AHigh-Level Language and Silicon Compiler for Digital Signal Processing", Proceedings ofthe
Custom Integrated Circuits Conference, IEEE Computer Society Press. Los Alamitos. CA 1985. pp 213-216.

[36] D. D. Hills. "Visual Languages and Computing Survey: Data Flow Visual Programming Languages," J. of
Visual Languages andComputing, Vol. 3, p.69-101.

[37] C. A.R. Hoare, "Communicating Sequential Processes," Communications ofthe ACM, Vol. 21. No. 8.August
1978.

[38] P. Hudak, "Introduction to Haskell and functional programming", ACM Computing Surveys, Sept '89.
[39] J. Hughes, "Compile-time Analysis ofFunctional Programs." in Turner, ed.. Research Topics in Functional Pro

gramming, Addison-Wesley,1990.

500,52 DATAFLOW PROCESS NETWORKS

References

[40] T. Ida and J. Tanaka. 'Tunctional Programming with Streams." Information Processing '83, Elsevier Science
pubs.(North-Holland). 1993.

[41] R. Jagannathan, "Parallel Execution ofGLU Programs," presented at 2nd International Workshop on Dataflow
Computing, Hamilton Island, Queensland, Australia, May 1992.

[42] R. Jaganathan and E. A.Ashcroft, "Eazyflow: AHybrid Model for Parallel Processing," In Proc. Int. Conf. on
Parallel Processing, pp514-523, IEEE, August, 1984.

[43] G. Kahn, "The Semantics ofaSimple Language for Parallel Programming," Proc. ofthe IFIP Congress 74,
North-Holland Publishing Co., 1974.

[44] G. Kahn and D. B.MacQueen, "Coroutines and Networks ofParallel Processes." Information Processing 77, B.
Gilchrist, editor. North-Holland Publishing Co..1977.

[45] D. J. Kaplan, etal, "Processing Graph Method Specification Version 1.0." the Naval Research Laboratory.
Washington D.C., December 11.1987.

[46] R.M. Karp, R E. Miller, "Properties ofaModel for Parallel Computations: Determinacy, Termination. Queue-
ing," SIAM Journal, Vol. 14.pp. 1390-1411. November. 1966.

[47] P. J.Landin, "A Correspondence Between Algol 60and Church's Lambda Notation," Communications of the
ACM, Vol. 8,1965.

[48] E. A.Lee, "Consistency inDataflow Graphs", IEEE Transactions on Parallel and DistributedSystems", Vol. 2,
No. 2. April 1991.

[49] E A.Lee, "Representing and Exploiting Data Parallelism Using Multidimensional Dataflow Diagrams." Proc.
ojICASSP '93. Minneapolis. MN, April. 1993.

[50] E A.Lee and D. G. Messerschmitt, "Static Scheduling ofSynchronous Data Flow Programs for Digital Signal
Processing" IEEE Transactions onComputers, January, 1987.

[51] E A.Lee and D. G. Messerschmitt, "Synchronous Data Flow" IEEE Proceedings, September, 1987.

,[52] P. LeGuernic, T.Gauthier, M. LeBorgne. C. LeMaire, "Programming Real-Tune Applications with SIGNAL."
Proceedings ojthe IEEE, Vol.79, No. 9. September 1991.

[53] R. Milner, Communication andConcurrency, Prentice-Hall. Englewood Cliffs, NJ, 1989.

[54] D. McAHester, P. Panagaden. V. Shanbhogue. "Nonexpressibility ofFairness and Signaling," toappear inJCSS,
1993.

[55] J. McCarthy, "Recursive Functions of Symbolic Expressions and the computation bymachine. Part T\ Comm
ojthe ACM, V. 3, No. 4 (April 1960).

[56] J. McCarthy, "ABasis for aMathematical Theory ofComputation," inComputer Programming and Formal
Systems, North-Holland, pp. 33-70.1978.

[57] J. McGraw, "Sisal: Streams and Iteration inaSingle Assignment Language", Language Reference Manual,
LawrenceLivermoreNational Laboratory, Livermore, CA 94550.

[58] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ. 1989.

[59] M. A.Najork.E. Golin, "Enhancing Show-and-Tell with aPolymorphic Type System and Higher-Order Func
tions," inIEEE Workshop onVisual Languages, Skokie, Illinois. October 4-6.1990. pp. 215-220.

[60] T. J. Olson, N. G. Klop, M. R.Hyett. S. M. Carnell, "MAVIS: avisual environment for active computer vision."
Proceedings 1992 IEEE Workshop on Visual Languages, Seattle, WA, USA, 15-18 Sept 1992, TFFF Comput
See. Press, 1992.p. 170-6.

DATAFLOW PROCESS NETWORKS 51 Of 52

References

[61] J. S. Onaman,"A Signal Processinglanguage for Coarse GrainDataflowMultiprocessors," MTT/LCS/TR-449,
545 Technology Sq., Cambridge. MA 02139. June 14.1989.

[62] P.Panagadenand V. Shanbhogue,"The Expressive Powerof Indeterminate DataflowPrimitives," Information
and Computation,Vol. 98, No. 1. May 1992.

[63] J. Pino, S. Ha. E Lee. J. Buck, "Software Synthesis forDSPUsing Ptolemy", invited paperin the Journalon
VLSI SignalProcessing, specialissue on "Synthesis forDSP", to appear. 1994.

[64] D. G. Powell.E A. Lee, W. C. Newman,"DirectSynthesisofOptimizedDSP Assembly Code from Signal
Flow Block Diagrams,"ProceedingsojICASSP, San Francisco, March, 1992.

[65] H. Frintz, "AutomaticMapping of Large Signal Processing Systems to aParallel Machine," Memorandum
CMU-CS-91-101, School of Computer Science, Carnegie Mellon University, PhD. Thesis, May 15.1991.

[66] J.Rabaey. C. Chu,P. Hoang, andM. Potkonjak, "Fast Prototyping of Datapath-Intensive Architectures." IEEE
Design and TestofComputers,pp. 40-51, June 1991.

[67] J.Rasure and C. S.Williams. "An Integrated Visual Language and Software Development Environment", Jour
nalof Visual Languages andComputing, Vol2, pp217-246,1991.

[68] H. J. Reekie, "Toward Effective Programming for Parallel Digital Signal Processing," Research Report 92.1.
University of Technology. Sydney. PO Box 123. Broadway NSW 2007. May 1992.

[69] H. J. Reekie. "Integrating Block-Diagram and Textual Programming for Parallel DSP." Proc. 3dInt. Symp. on
Signal Processing anditsApplications, Queensland, Australia, August 1992.

[70] H. J. Reekie and J. Potter, 'Transforming Process Networks," presented at the Massey Functional Programming
Workshop, Massey University, Parmerston North, New Zealand, August 1992.

[71] H. J. Reekie and M Meyer, "The Host-Engine Software Architecture for Parallel Digital Signal Processing "
Proc. of the Australian Workshop on Parallel and Real Time Systems, Melbourne. Australia. North-Holland.
July. 1994.

[72] K.S. Shanmugan. G. J. Minden. E. Komp. T. C. Manning, and E R Wiswell. "Block-Oriented System Simula
tor(BOSS)," Telecommunications Laboratory, University of Kansas, Internal Memorandum, 1987.

[73] G. C. Sih and EA Lee, "ACompile-Time Scheduling Heuristic for Interconnection-Constrained Heteroge
neous Processor Architectures". IEEE Trans, on Parallel and Distributed Systems, Vol. 4, No. 2.February
1993.

[74] G. C. Sih and E. A.Lee, "Declustering: A New Multiprocessor Scheduling Technique," IEEE Trans, on Paral
lel andDistributedSystems, June 1993.

[75] D. B. Skillconi, "Stream Languages and Data-Flow," in Advanced Topics in Data-Flow Computing, ed. J.-L.
Gaudiot and L. Bic, Prentice-Hall. 1991.

[761 P. A.Suhler. J. Biswas, K. M Komer, J. C. Browne, *TDFL: ATask-Level Dataflow Language", /. on Parallel
andDistributed Systems, 9(2).June 1990.

[77] W. W. Wadge and E A.Ashcroft, Lucid, the dataflow programming language, London Academic Press, 1985.
[78] A. L. Wendelborn, H. Garsden, "Exploring the Stream Data Type in SISAL and other Languages," to appear in

Advanced Topics in Dataflow Computing and Multithreading, ed. Lubomir Bic. Guang Gao. and Jean-Luc
Gaudiot, IEEE Computer Society Press, 1994.

52^ 52 DATAFLOW PROCESS NETWORKS

	Copyright notice 1994
	ERL-94-53 (1 of 3)
	ERL-94-53 (2 of 3)
	ERL-94-53 (3 of 3)

