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ABSTRACT

This paper reviews a model of computation used in industrial practice in signal processing soft-
ware environments and experimentally in other contexts. It gives this model the name “dataflow
process networks,” and studies its formal properties as well as its utility as a basis for program-
ming language design. Variants of this model are used in commercial visual programming sys-
tems such as SPW from the Alta Group of Cadence (formerly Comdisco Systems), COSSAP
from Synopsys (formerly Cadis), the DSP Station from Mentor Graphics, and Hypersignal from
. Hyperception. They are also used in research software such as Khoros from the University of
New Mexico and Ptolemy from the University of California at Berkeley.

Dataflow process networks are shown to be a special case of Kahn process networks, a model of
computation where a number of concurrent processes communicate through unidirectional FIFO
channels, where writes to the channel are non-blocking, and reads are blocking. In dataflow pro-
cess networks, each process consists of repeated “firings” of a dataflow “actor”. An actor defines
a (usually functional) quantum of computation. By dividing processes into actor firings, the con-
siderable overhead of context switching incurred in most implementations of Kahn process net-
works is avoided.

This paper relates the dataflow process networks to other dataflow models, including those used
in dataflow machines, such as static dataflow and the tagged-token model. It also relates dataflow
process networks to functional languages such as Haskell, and shows that modern language con-
cepts such as higher-order functions and polymorphism can be used very effectively in dataflow
process networks. A number of programming examples using a visual syntax are given.

This research in sponsored in part by ARPA, under the RASSP program, in cooperation with the United States Air Force, and by
the National Science Foundation (MIP9201605).
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Motivation

1.0 Motivation

This paper concerns programming methodologies commonly called “graphical dataflow
programming” that are used extensively for signal processing and experimentally for other appli-
cations. In this paper, “graphical” means simply that the program is explicitly specified by a
directed graph where the nodes represent computations and the arcs represent streams. The graphs
are typically hierarchical, in that a node in a graph may represent another directed graph. The
nodes in the graph can be either language primitives or subprograms specified in another lan-

guage, such as C or Fortran,

It is common in the signal processing community to use a visual syntax to specify such
graphs, in which case the model is often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax. At least one commercial graphical programming environ-
ment (Mentor Graphics’ DSP Station) allows an arbitrary mixture of visual and textual specifica-
tion, both based on the applicative language Silage [35]. Several other languages with reiated
semantics, such:as SIGNAL [9][52] and Sisal [57] are used primarily or exclusively with textual
syntax. The language LUCID [75][77], while primarily used with textual syntax, has experimen-
. tal visual forms [7].

Hierarchy in graphical program structure can be viewed as an alternative to the more usual
abstraction of subprograms via procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal processing.

Some examples of graphical dataflow programming environments intended for signal pro-
cessing (including image processing) are Khoros, from the University of New Mexico [67],
Ptolemy, from the University of Qalifomia at Berkeley [15], the signal processing worksystem
(SPW), from the Alta Group at Cadence (formerly Comdisco Systems), COSSAP, from Synopsys
(formerly Cadis), and the DSP Station, from Mentor Graphics (formerly EDC). A survey of
graphical dataflow languages for other applications is given by Hills [36). These software envi-
ronments all claim variants of dataflow semantics, but a word of caution is in order. The term

“dataflow” is often used very loosely for semantics that bear little resemblance to those outlined
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Motivation

by Dennis in 1975 [23]. A major motivation of this paper is to point out a rigorous formal under-
. pinning for dataflow graphical languages, to establish precisely the relationship between such lan-
guages and functional languages, and to show that such languages benefit significantly from such
modern programming concepts as polymorphism, strong typing, and higher-order functions.
Although it has been rarely exploited in visual dataflow programming, I also show that such lan-

guages can make very effective use of recursion.

Most graphical signal processing environments do not define a language in any strict
sense. In fact, some designers of such environments advocate minimal semantics [60), arguing
that the graphical organization by itself is sufficient to be useful. The semantics of a program in
such environments is determined by the contents of the graph nodes, either subgraphs or a subpro-
grams. Subprograms are usually specified in a conventional programming language such as C.
Most such environments, however, including Khoros, SPW, and COSSAP, take a middle ground,
permitting the nodes in a graph or subgraph to contain arbitrary subprograms, but defining precise
semantics for the interaction between nodes. Following Halbwachs [32], I call the language used
to define the subprograms in nodes the host language. Following Jagannathan, I call the language

defining the interaction between nodes the coordination language [41].

Many possibilities have been explored for precise semantics of coordination languages,
including for example the computation graphs of Karp and Miller [46], the synchronous dataflow
graphs of Lee and Messerschmitt [50], the Processing Graph Method (PGM) of Kaplan, ez al.
[45], Granular Lucid [41], and others [2][18][21][41][76]. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time predictability.

Graphical programs can be either interpreted or compiled. It is common in signal process-
ing environments to provide both options. The output of compilation can be a standard procedural
language, such as C, assembly code for programmable DSP processors [63], or even specifica-
tions of silicon implementations [22]. Often, considerable effort is put into optimized compilation
(see for example [10][26][64][71]).
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Formal Underpinnings

2.0 Formal Underpinnings

In most graphical programming environments, the nodes of the graph can be viewed as
processes that run concurrently and exchange data over the arcs of the graph. However, these pro-
cesses and their interaction are usually much more constrained than those of CSP [37] or SCCS
[58]. A better (and fortunately much simpler) formal underpinning is the Kahn process network
[43].

2.1 Kahn Process Networks

In a process network, concurrent processes communicate only through one-way FIFO
channels with unbounded capacity. Each channel carries a possibly infinite sequence (a stream)
that we denote X = [x,,x,,...] , where each x; is an atomic data object, or foken. Each token is
~ written (produced) exactly once, and read (consumed) exactly once. Writes to the channels are
non-blocking (they always succeed immediately), but reads are blocking. This means that a pro-

cess that attempts to read from an empty input channel stalls until the buffer has sufficient tokens
| to satisfy the reéd. Lest the reader protest, I will show that this model of computation does not
actually require either multitasking or parallelism, although it is certainly capable of exploiting
both. It also usually does not require infinite queues, and indeed can be much more efficient in its

use of memory than comparable methods in functional languages, as we will see.

A process in the Kahn model is a mapping from one or more input sequences to one or
more output sequences. The process is usually constrained to be continuous in a rather technical
sense. To develop this idea, we need a little notation.

Consider a prefix ordering of sequences, where the sequence X precedes the sequence Y
(written X £ Y) if X is a prefix of (or is equal to) ¥, For example, [x,x,] £ [xy, X5, x5] . Con-
sider a (possibly infinite) ordered set of sequences y = { Xo E X; E... }. Such an ordered set of
sequences can have one or more upper bounds Y, where X i E Y forall X; € x . The least upper
bound X, ;, of ¥ is an upper bound such for any other upper bound Y, X Lus E Y. Toensure

that any ordered set of sequences always has an upper bound, we include in our algebra the ficti-
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tious sequence T (top) defined so that X = T for all sequences X . The empty sequence is
- denoted L (botzom), and is obviously a prefix of any other sequence.

A process f maps an input sequence into an output sequence. Given an ordered set of
sequences %, it will map this set into another (possibly ordered) set of sequences . Let n X
denote the least upper bound (in the prefix order sense) of the set % . Then a process f is said to be

continuous if for all such sets i,

fx)=nfx). M
This is analogous to the conventional notion of continuity for conventional functions, if the least
upper bound is interpreted as a limit, as in
i =

Kahn sketches a proof that networks of continuous processes have a more intuitive prop-
erty called monotonicity [43]. A process f is monotone if given two sequences X and X’, then X
E X’ = f(X) E f(X’) . This can be thought of as a form of causality, but one that does not
invoke time. Moreover, in signal processing, it provides a useful abstract analog to causality that

works for multirate discrete-time systems without requiring the invocation of continuous time.

For completeness, I now prove Kahn’s claim that a continuous process is monotonic [43].
To do this, I prove that if a process is not monotonic, then it cannot be continuous. If the process f
is not monotonic, then there exist sequences X and X’ where X £ X/, but f(X) % f(X’) .Let
X ={ Xy € X; £ ... } be any prefix ordered sequence such that X, = X andn ) = X’. Then
note that f(n % ) = f(X’) . But this cannot be equal ton f() because X€ x and f(X) ¥
f(X’) . This concludes the proof.

A key consequence of these properties is that a process can be computed iteratively [54].
This means that given a prefix of the final input sequences, it is possible to compute part of the
output sequences. In other words, a monotonic process is non-strict (its inputs need not be com-
plete before it can begin computation). In addition, a continuous process will not wait forever

before producing an output (i.e., it will not wait for completion of an infinite input sequence).
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A network of processes is, in essence, a set of simultaneous relations between sequences.
Any set of sequences that forms a solution is called a fixed point. Kahn argues in [43] that continu-
ity of the processes implies that there will be exactly one “minimal” fixed point (where minimal is
in the sense of prefix ordering). The minimal solution is the solution resulting from null sequences
at the system inputs. Other solutions can then be found from this one by iterative computation,

which works because of the monotone condition.
Note that continuity implies monotonicity, but not the other way around. One process that
is monotone but not continuous is given by

{0}; if X is finite
fx = {0,1}; otherwise @)

To show that this is monotone, note that if X is infinite and X = X’, then X = X’, so

Y=f(X) Y =f(X). (4)
I X is finite, then Y = f(X) = {0} , which is a prefix of all possible outputs. To show that it is

~ not continuous, consider the sequence

1={X,EX, E..}, (5)

where each X; has exactly i elements in it. Then n y is infinite, so

Any)={01}#n f(x) ={(0}. (6)
 Iterative computation of this function is clearly problematic.
A useful property is that a network of monotone processes itself defines a monotone pro-
cess. This property is valid even for process networks with feedback loops, as is formally proven
using induction by Panagaden and Shanbhogue [62]. It is possible to use this to show that net-

works of monotone processes are determinate.

2.2 Nondeterminism

A useful property in some modern languages is an ability to express nondeterminism. This
can be used to construct programs that respond to unpredictable sequences of events, or to build

incomplete programs, deferring portions of the specification until more complete information
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about the system implementation is available. Although this capability can be extremely valuable,
it needs to be balanced against the observation that for the vast majority of programming tasks,
programmers need determinism. Unfortunately, by allowing too much freedom in the interaction
between nodes, some graphical programming environments can surprise the user with nondeter-
minate behavior. Nondeterminate operations can be a powerful programming tool, but they

should be used only when such a powerful programming tool is necessary.

Taking a Bayesian perspective, a system is random if the information known about the sys-
tem and its inputs is not sufficient to determine its outputs. The semantics of the programming
language may determine what is known, since some properties of the execution may be unspeci-
fied. However, since most graphical programming environments do not define complete lan-
guages, it is easy (and dangerous) to circumvent what semantics there are by using the host
language. In fact, the common principle of avoiding overspecifying programs leaves aspects of
the execution unspecified, and hence opens the door to nondeterminate behavior. Any behavior

that depends on these unspecified aspects will be nondeterminate.

For example, in the process network shown in figure 1, nothing in the graph specifies the
relative timing of the processing in nodes B and C. Suppose that nodes B and C each modify a
variable that they share. Then the order in which they access this variable could certainly affect
the outcome of the program. The problem here is that the process network semantics, which spec-
ify a communication mechanism, have been circumvented using a shared variable in the host lan-
guage. While this may be a powerful and useful capability, it should be used with caution, and in
particular, it should not surprise the unwary programmer. Such a capability has been built into the
PGM specification [45] in the form of what are called “graph variables.”

Figure 1. This process network does not specify the relative timing of the
processing in nodes B and C. If D is a nondeterminate merge, it does
not specify in which order the results should appear at E.
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If B and C share a variable as described above, then they are possibly not monotone.
Knowing that f(X,) = Y, , f(X;) =Y;,and X; E X, is not enough to conclude that Y, &
Y, because the extended inputs might somehow affect the order in which the shared variable is
accessed. However, they could be monotone if, for example, the discipline used to access the

shared variable is equivalent to implementing a Kahn channel.

As a rather different example, suppose that actor D in figure 1 is a nondeterminate merge.
(any of the three variants discussed by Panagaden and Shanbhogue [62]). Its behavior is that if a
data value (a token) is available on either input, it can immediately move that token to its output.
Now, the output depends on the order in which B and C produce their outputs, and on the timing
with which D examines its inputs. It is easy to show that a nondeterminate merge is not mono-

tonic, and hence not continuous.

Arvind and Brock [4] argue that the nondeterminate merge is practically useful for
- resource management problems. A resource manager accepts requests for a resource (e.g. money
in a bank balance), arbitrates between multiple requests, and returns a grant or deny, or some
related data value. It is observed that such a resource manager can be used to build a memory cell,

precisely the type of resource that functional programming is trying to get away from.

A network with a nondeterminate merge clearly might be nondeterminate, but it might
also be determinate. For example, suppose that C in figure 1 never actually produces any outputs.
Then the nondeterminate merge in D will not make the network nondeterminate.

The nondeterminate merge does not satisfy one of Kahn’s conditions for a process net-
work, that reads from channels be blocking. This constraint makes it impossible for a process to
test an input for the presence of data. Thus, if D is a nondeterminate merge, then the graph in fig-
ure 1 is not, strictly speaking, a Kahn process network.

We have been using the term “determinate” loosely. If we now formally define determin-
ism in the context of process networks, then the main result of this section follows immediately.
Define the history of a channel to be the sequence of tokens that have traversed the channel (i.e.
have been both written and read). A Kahn process is said to be determinate if the histories of all

the internal and output channels depend only on the histories of the input channels. A monotone
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process is clearly determinate. Since a network of monotone processes is monotone [62], then a

network of monotone processes is also determinate.

2.3 Streams

The graphical programming environments that we are concerned with are most often used
to design or simulate real-time signal processing systems. Real-time signal processing systems
are reactive, in that they respond to a continual stream of stimuli from an environment with which
they cannot synchronize [8]. Skillcorn [75] argues that streams and functions on them are a natu-
ral way to model reactive systems. Streams are such a good model for signals that the signal pro-

cessing community routinely uses them even for non-real-time systems.

Wendelborn and Garsden [78] observe that there are different ideas in the literature of
what a stream is. One camp defines streams recursively, using cons-like list constructors, and
treats them functionally using lazy semantics. This view is apparently originally due to Landin
[47]. Lazy semantics ensure that the entire stream need not be produced before its consumer oper-
ates on it. For example, Burge [16] describes streams as the functional analog of coroutines that
“may be considered to be a particular method of representing a list in which the creation of each
list element is delayed until it is actually needed.” As another example, in Scheme, streams are
typically implemented as a two-element cell where one element has the value of the head of the
stream and the other has the procedure that computes the rest of the stream [1]. Recursive opera-
tions on streams require use of a special “delay” operator that defers the recursive call until access
to the “cdr” of the stream element is attempted. This ad-hoc mechanism makes recursive streams

possible in a language without lazy semantics.

Another camp sees streams as channels, just like the channels in a Kahn process network.
A channel is not functional, because it is modified by appending new elements to it. Kahn and
MacQueen outline in [44] a demand-driven multitasking mechanism for implementing such chan-
nels. Ida and Tanaka argue for the channel model for streams, observing that it algorithmically
transforms programs from a recursive to an iterative form [40]. Dennis, by contrast, argues for the
recursive-cons representation of streams in Sisal 2 for program representation, but suggests trans-

lating them into non-recursive dataflow implementations using the channel model [25]. Franco, et
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al. also argue in [28] for using the channel model, with a demand-driven execution style, and pro-
pose an implementation in Scheme. The channels are implemented using a “call with current con-
tinuation” mechanism in Scheme. This mechanism essentially supports process suspension and
resumption, although the authors admit that at the time of their writing, no Scheme implementa-
tion supported this without the considerable expense of a control-stack copy.

A unique approach implemented in the language Silage [35] blends the benefits of a
declarative style with the simplicity the channel model. In Silage, a symbol “x” represents an infi-
nite stream. The language has the notion of a global cycle, and a simple reference to a symbol “x”
can be thought of as referring to the “current value” of the stream x. An implicit infinite iteration
surrounds every program. This language is being used successfully for both software and hard-
ware synthesis in the Mentor Graphics DSP Station, the Cathedral project at IMEC [22], and in
the Hyper project at U. C. Berkeley [66].

A more general approach is to associate with each stream a “clock,” as done in Lustre [31]
and Signal [9]. A clock is a logical signal that defines the alignment of stream tokens in different
streams. For example, one could have a stream y where only every second token in y aligns with a
token in another stream x. Although both streams may be infinite, one can view x as having twice
as many tokens as y. A powerful algebraic methodology has been developed to reason about rela-

tionships between clocks, particularly for the Signal language [9][52].

I prefer the channel model for streams for a number of reasons. Stylistically, unlike the
recursive-cons model, it puts equal emphasis on destruction (consumption of data from the
stream) as construction (production of data onto the stream). Moreover, it does not require costly
lazy evaluation. While a demand-driven style of control is popular among theoreticiars, no estab-
lished signal processing programming environment uses it, partly because of the cost, and partly
because the same benefits (avoiding unnecessary computation) can usually be obtained more effi-
ciently through compile-time analysis [12][50]. Unlike Silage, Lustre, and Signal, there is no con-
cept of simultaneity of tokens (tokens in different streams lining up). Instead, tokens are queued
- using a FIFO discipline.
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It is especially important in signal processing applications to recognize that streams can
carry truly vast amounts of data. A real-time digital audio stream, for instance, might carry 44,100
samples per second per channel, and might run for hours. Video sequences carry much more.
Viewing a stream as a conventional data structure, therefore, gets troublesome very quickly. It
may require storing forever all of the data that ever enters the stream. Any practical implementa-
tion must instead store only a sliding window into the stream, preferably a small window. But just
by providing a construct for random access of elements of a stream, for example, the language

designer can make it difficult or impossible for a compiler to bound the size of the window.

A useful stream model in this context must be as good at losing data (and recycling its
memory) as it is at storing data. The prefix-ordered sequences carried by the channels in the Kahn
process networks are an excellent model for streams because the blocking reads remove data from
the stream. However, special care is still required if the memory requirements of the cﬁannels ina
network are to remain bounded. This problem will be elaborated below.

In [68][69][70], Reekie et al. consider the problem of supporting streams in the functional
programming language Haskell [38]. They propose some interesting extensions to the language,
and motivate them with a convincing discussion of the information needed by a compiler to effi-
ciently implement streams. To do this, they use the Kahn process network model for Haskell pro-
grams, and class them into szatic and dynamic. In static networks, all streams are infinite. In
dynamic networks, streams can come and go, and hence the structure of the network can change.
Mechanisms for dealing with these two types of networks are different. Static networks are much
more common in signal processing, and fortunately much easier to implement efficiently,
although I will consider both types below.

For efficiency, Reekie et al. wish to evaluate the process networks eagerly, rather than
lazily as normally required by Haskell [70]. They propose eager evaluation whenever strictness
analysis [39] reveals that a stream is “head strict”, meaning that every element in the stream will
be evaluated. This is similar to the optimization embodied in the Eazyflow execution model for
dataflow graphs, which combines data-driven and demand-driven evaluation of operator nets by
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partitioning the net into subnets that can be evaluated eagerly without causing any wasteful com-

putation [42].This, in effect, translates the recursive-cons view of streams into a channel view.

Reekie, et al. also point out that if analysis reveals that a subgraph is synchronous (in the
sense of “synchronous dataflow” [50][51]), then very efficient evaluation is possible. While this
latter observation has been known for some time in signal processing circles, putting it into the
context of functional programming has been a valuable contribution. To clarify this point, I can
establish a clear relationship between dataflow, functional languages, and Kahn process networks.

Streams can be generalized to higher dimensionality, as done in Lucid [75] and Ptolemy
[49][19]. This, however, is beyond the scope of this paper.

2.4 Dataflow, functional languages, and process networks

A dataflow actor, when it fires, maps input tokens into output tokens. Thus, an actor,
applied to one or more streams, will fire repeatedly. A set of firing rules specify when an actor can
.. fire. Specifically, these rules dictate precisely what tokens must be available at the inputs for the
actor to fire. A firing consumes input tokens and produces output tokens. A sequence of such fir-

_ ings is a particular type of Kahn process that we might call a daraflow process.

More specialized dataflow models, such as Dennis’ static dataflow [24] or synchronous
dataflow [50][51] can be described in terms of dataflow processes. The models used by all signal
processing environments mentioned above can also be described in terms of dataflow processes.
The tagged token model of Arvind and Gostelow [5][6] is related, but not identical, as I will show.
Signal [9] and Lustre [31], which are called “synchronous dataflow languages,” do not form data-

flow processes at all because they lack the FIFO queues of the communication channels.

A sufficient condition for a dataflow process to be continuous is that the actors are func-
tional, and that the set of firing rules is sequential. “Functional” means that the actors lack side
effects and that the outputs are purely a function of the inputs. “Sequential” means that the firing
rules can be tested in a pre-defined order using only blocking reads. A little notation will help
make this rather technical definition precise.
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24.1 Firing rules

An actor with M input streams can have N firing rules

F= {F},Fp...Fy} . )

The actor can fire if and only if at least one of the firing rules is satisfied, where each firing rule

constitutes a set of patterns, one for each of M inputs,

Fi= {P, ,Pi g Py} - (8)

A pattern P; j is a (typically finite) sequence. For firing rule i to be satisfied, each pattern P Lj

must form a prefix of the sequence of unconsumed tokens at input j .

For some firing rules, some patterns might be empty lists, P, j= . This means that any
available sequence at input j is acceptable. In particular, it does 7ot mean that input j must be
empty.

To be able accommodate the usual dataflow firing rules, we need a slight generalization of
prefix ordering algebra. The special symbol “*” will denote a token wildcard. Thus, the sequence
[*] is a prefix of any sequence with at least one token. The sequence [*,*] is a prefix of any
sequence with at least two tokens. The only sequence that is a prefix of [*] is L, however. Notice
therefore, that the statement [*] £ P is not saying that any one-token sequence is a prefix of P.

All it says is that P has at least one token.

Let A s for j = 1, ..., M, denote the list of available unconsumed tokens on the j'h input.
Then the firing rule F; is enabled if
P,.’j EAj,fora]lj= 1, ., M. 9)
We can write condition (9) using the shorthand

F ;B A (10)
where A = {A, A,, ..., Ay} , and it is understood that each sequence in the list F ) is a prefix of

the corresponding sequence in the sequence of available tokens A .
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For many actors, the firing rules are very simple. Consider an adder with two inputs. It has
asingle firingrule, F = { { [*], [*]} } , meaning that each of the two inputs must have at least
one token. More generally, synchronous dataflow actors [50][51], always have a single firing rule,
and each pattern in the firing rule is of the form [*, *, ..., *] , with some fixed number of wild-

cards. In other words, an SDF actor is enabled by a fixed number of tokens at each input,l

A more interesting actor is the select actor in figure 2a, has the firing rules

{[*].4, [1]} (1)

{1, [*], [F1} (12)
where T and F match true and false-valued Booleans, respectively. The behavior of this actor is

F,

F,

to read a Boolean control input, then read a token from the specified data input and copy that
token to the output. The firing rules are sequential, in that a blocking read of the control input, fol-
lowed by a blocking read of the appropriate data input, will invoke the appropriate firing rule.

The nondeterminate merge with two inputs, also shown in figure 2b, has the firing rules

Fp = {[*],1} (13)
F,={L1,[*]}. (14)
. These rules are not sequential. A blocking read of either input fails to produce the desired behav-
ior, as illustrated in figure 3. In figure 3a, a blocking read of the top input will never unblock. In

figure 3b, a blocking read of the bottom input will never unblock. In both cases, the behavior is

1. TRUE DATA INPUT:
1. DATA INPUT:
2. FALSE DATA INPUT:
2. DATA INPUT:
3. CONTROL INPUT:
(a) (b)

Figure2. The select and nondeterminate merge actors each combine two
data streams Into one, but the select actor uses a Boolean control
signal to determine how to accomplish the merge.

1. An SDF actor also produces a fixed number of tokens when it fires, but this is not captured in the firing rules.
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incorrect. Note that with any correct implementation of the nondeterminate merge, both networks
in figure 3 are nondeterminate. It is unspecified how many times a given token will circulate
around the feedback loop between arrivals of tokens from the left.

24.2 Identifying sequential firing rules
In general, a set of firing rules is sequential if the following procedure succeeds:

1. Find an input j such that [*] &= P, ;foralli = 1,..,N.Thatis, find an input such that all
the firing rules require at least one token from that input. If no such input exists, fail.

2. For the choice of input j, divide the firing rules into subsets, one for each specific token value
mentioned in the first position of P,.’j foranyi =1,..,N.If Pi’j = [*,..],then the firing
rule F; should appear in all such subsets.

3. Remove the first element of P‘.’ i foralli=1,..,N.

4. If all subsets have empty firing rules, then succeed. Otherwise, repeat these four steps for any

subset with any non-empty firing rules.

The first step identifies an input where a token is required by all firing rules. The idea of the sec-
ond step is that reading a token from that particular input will often at least partially determine
which firing rules apply. Observing its value, therefore, will often reduce the size of the set of
applicable firing rules.

Consider the select actor in figure 2. The above steps become

(@ (b)

Figure 3. [llustration that the firing rules of the nondeterminate merge are not
sequential. A biocking read of either input will cause one of these
two networks to deadlock inappropriately.

DATAFLOW PROCESS NETWORKS 15 0152



Formal Underpinnings

1. j=3.
2. The firing rules divide into two sets, {F,} and {F,} , each with only one rule.

3. The new firing rules become F; = {[*], 1,1} inthe firstsubsetand F, = {L, [*], 1}

in the second subset.

4. The procedure repeats trivially for each subset, and in step 3, the modified firing rules become
empty.

For the nondeterminate merge, the procedure fails immediately, in the first application of step 1.

24.3 Relationship to higher-order functions
Constraining the actors to be functional makes a dataflow process roughly equivalent to
the function “maps” used by Burge [16] and Reekie [68]. It is similar to the “map” function in
Haskell and the “mapcar” function in Lisp, except that it introduces the notion of consuming the

tokens that match the firing rule, and hence easily deals with infinite streams.

All of these variants of “map” are higher-order functions, in that they take functions as
arguments and return functions [55]. For example, maps f, where fis a function, returns a function
that applies fto each element of a stream. The function f might take a scalar argument, but the
function returned by maps f takes a stream argument. Thus, maps fis a dataflow process, where

each firing consists of one application of f.

24.4 A nondeterminate example
An example that combines many of the points made so far can be constructed using the

nondeterminate operator introduced by McCarthy [56] and used by Hudak [38]:

amb (x, L)=x

amb (1,y)=y

amb (x, y) = x or y chosen randomly
These three declarations define the output of the amb function under three firing rules. The sym-
bols “x” or “y” translate into a firing rule that requires one data token, and the value of the data is
given symbol x or y. A dataflow process could be constructed by repeatedly firing this function on
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stream inputs. McCarthy points out that the expression amb (1, 2) + amb (1, 2) could take on the

value 3, and uses this to argue that nondeterminism implies a loss of referential u'ansparencyl.

When used to create a dataflow process, this example actually mixes two distinct causes
for nondeterminism. Random behavior in an actor acting alone is sufficient to lose determinacy
and referentiai transparency. The simpler definition:

amb (x, y) = x or y chosen randomly
is sufficient for amb (1, 2) + amb (1, 2) to take on the value 3. If the choice of random number is
made using a random number generator, then normally the random number generator has state,
initialized by a seed. Perhaps the seed should be shown explicitly as an argument to the function:
amb (x, y, s) = x or y chosen by generating a random number from seed s.
Suddenly, we regain referential transparency and determinacy. It would not be possible for
amb (1,2, 3) +amb (1, 2, 3) to equal 3, for example. Without giving the seed as an argument, amb
is not functional.

Consider the simplified definition:
amb2 (x, 1)=x
amb2 (L,y)=y
amb2 (x,y)=y
This definition has no random numbers in it, but in a dataflow process network, it is still possible
for amb2 (1, 2) + amb2 (1, 2) to equal 3. The firing rules are not sequential. The output depends
on how the choice between firing rules is made, something not specified by the language seman-
tics.
We can show directly that a dataflow process constructed with the amb2 function is not
monotonic, and hence is not continuous. Let f(X,Y) represent the dataflow process made with

actor “amb2” applied to sequences X and Y . It is easy to show that the process is not monotonic,

and hence is not continuous. Consider the sequences

X,=[11,X,=[L1],and ¥, =1, ¥, = [2] , (15)

1. A basic notion dating back to the lambda calculus [20), referential transparency means that any two ideatical expressions have
identical values. If amb(1,2)+amb(1,2)=3, then clearly the two instances of amb(1,2) cannot have taken on the same value.
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- where Y, is the empty sequence. Clearly, X, £ X, and Y, EY,. However,

F(XpY) E f(X,Y,) . (16)

We get f(X,Y,) = [1] ,while f(X,, Y,) can take on any of the following possible values:
(2,11, [1,2], [1,2,1], [1,1,2],0r [2,1, 1] . This is clearly nondeterminate. Only three of
the five possible outcomes satisfy the monotonicity constraint. And these choose rather arbitrarily
from among the firing rules. If we were to make a policy of these choices, it would be easy to con-

struct other example inputs that would violate monotonicity.

One might argue for a different interpretation of the firing rules, in which a .L in a firing
rule pattern matches only an empty input (no tokens available). Under this interpretation, we get
o f(X,Y)) = [1] andf(X,,Y,) = [2,1] . While not monotonic, this might appear to be
determinate (recall that we’ve only argued that continuity is sufficient for determinacy, not that it
is necessary). But further examination reveals that I have made some implicit assumptions about

synchronization between the input streams. To see this, consider the prefix ordered sequences
X,=[11,X,=[11,X; = [},1] ,and Y, = L, Y, = [2], Y, = [2]. (17)
It would seem reasonable to argue that these are in fact exactly the same sequences as in (15). We

are just looking at the value of the sequences more often. However, under the same implicit syn-

chronization assumptions, the output is different:
f(Xp Yl) = [1] ’ f(XZ) Y2) = [2] ’ f(X39 Y3) = [2’ 1] . (18)
These outputs are not prefix ordered, as they would be for a continuous process.

This issue becomes much clearer if one considers a more complete dataflow process net-

work, as shown in figure 4. The dataflow processes A and B have no inputs, so their firing rule is

Figure4. A variant of McCarthy’'s amb function embedded In a datafiow
process network.
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simple; they are always enabled. They produce at their outputs the streams X and Y. The prob-
lems addressed above, in this context, refer to the relative timing of token production at A and B
compared to the timing of the firings of the amb2 actor. In dataflow process network semantics,
this timing is not specified.

24.5 Firing rules and template matching
Some functional languages use template matching in function definitions the way I have

been uéing firing rules. Consider the following Haskell example (with slightly simplified syntax):

facO =1

facn = n*fac(n-1)
This defines a factorial function. If the argument is 0, the result is 1. If the argument is n, the result
is n*fac(n-1). These are not ambiguous because the semantics of Haskell gives priority to the first
template, removing any ambiguity. The second template is really a shorthand for “any n except
0.” These two templates, therefore, viewed as firing rules, are naturally sequential, since each rule
consumes one token and implicitly states: “use me if no previously declared firing rule applies
and the inputs match my pattern.” Of course, this does not remove ambiguities due to function
arguments where no data is needed. (Haskell has lazy semantics, deferring the evaluation of func-
tion arguments until the data is needed, so a function may be invoked that will decide it does not
need data from one its arguments).

Embedding this example, the factorial function, in a dataflow process network introduces
new and interesting problems. Consider fac X, where X is a stream. Each firing of the actor can
trigger the creation of new streams, so this process network is not static. I will consider more

interesting recursive examples than this is considerable detail below, so I defer further discussion.

24.6 Relationship to Kahn Process Networks
Dataflow process networks are a special case of Kahn process networks. They construct a
process as a sequence of atomic actor invocations. Instead of suspending a process on a blocking
read or non-blocking write, threads can be freely interleaved by a scheduler, which determines the

sequence of actor firings. Since the actors are functional, no state needs to be stored when one
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- actor terminates and another fires. The biggest advantage, therefore, is that the context switch

overhead of process suspension and resumption is entirely avoided.

The offsetting cost is the cost of scheduling. However, for most programs, this cost can be
entirely shifted to the compiler [50] [12]. While it is impossible to always shift all costs to the
compiler [12], large clusters within a process network can be scheduled at compile time, greatly
reducing the number of dataflow processes that must be dynamically scheduled. As a conse-
quence of this efficiency, much finer granularity is practical, with processes often being as simple

as to just add two streams. We will now consider execution models in more detail.

2.5 Execution models

Given a dataflow process network, a surprising variety of execution models can be associ-
ated with it. This variety is due, in no small part, to the fact that a dataflow process network does
not overspecify an algorithm the way non-declarative semantics do. Execution models have dif-

ferent strengths and weaknesses, and there is, to date, no clear winner.

2.5.1 Concurrent processes

Kahn and MacQueen propose an implementation of Kahn process networks using multi-
tasking with a primarily demand-driven style [44]. A single “driver” process (one with no out-
puts) demands inputs. When it suspends due to an input being unavailable, the input channel is
marked “hungry” and the source process is activated. It may in turn suspend, if its inputs are not
available. Any process that issues a “put” command to a hungry channel will be suspended and
the destination process restarted where it left off, thus injecting also a data-driven phase to the
computation. If a “get” operation suspends a process, and the source process is already suspended
waiting for an input, then deadlock has been detected.

In the Kahn and MgcQueen schema, configuration of the network on the fly is allowed.
This allows for recursive definition of processes. Recursive definition of streams (data) is also

permitted in the form of directed loops in the process graph.

The repeated task suspension and resumption in this style of execution is relatively expen-

sive, since it requires a context switch. It suggests that the granularity of the processes should be
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_ relatively large. For dataflow process networks, the cost can be much lower, and hence the granu-

larity can be smaller.

2.5.2 Dynamic scheduling of dataflow process networks
Dataflow process networks have other natural execution models due to the breakdown of a
process into a sequence of actor firings. A firing of an actor provides a different quantum of exe-
cution than a process that suspends on blocking reads. Using this quantum avoids the complexi-
ties of task management (context switching and scheduling) that are implied by Kahn and
MacQueen [44] and explicitly described by Franco, et al. [28]. Instead of context switching, data-
flow process networks are executed by scheduling the actor firings. This scheduling can be done

at compile time or at run time, and in the latter case, can be done by hardware or by software.

The most widely known execution models for dataflow process networks have emerged
from research into computer architectures for executing dataflow graphs [3]. This association may
be unfortunate, since the performance of such architectures has yet to prove competitive [34]. In
- such architectures, actors are fine-grained, and scheduling is done by hardware. Although there
have been some attempts to apply these architectures to signal processing [61], the widely used
dataflow programming environments for signal processing have nothing to do with dataflow
architectures.

Some signal processing environments, for example COSSAP from Cadis (now Synopsys)
and the dynamic dataflow domain in Ptolemy, use a run-time scheduler implemented in software.
This performs essentially the same function performed in hardware by dataflow machines, but is
usually used with actors that have larger granularity. The scheduler tracks the avallablhty of

tokens on the inputs to the actors, and fires actors that are enabled.

2.5.3 Static scheduling of dataflow process networks
For many signal processing applications, the firing sequence can be determined statically
(at compile-time). The class of dataflow process networks for which this is always possible is
called synchronous dataflow [46][50][51]. In synchronous dataflow, the solution to a set of bai-
ance equations relating the production and consumption of tokens gives the relative firing rates of
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the actors. These relative firing rates combined with simple precedence analysis allows for the
static construction of periodic schedules. Synchronous dataflow is used in COSSAP (for code
generation, not for simulation), in the multirate version of SPW from the Alta Group of Cadence
(formerly Comdisco), and in the synchronous dataflow domain in Ptolemy. These methods have
recently been extended to cover most dynamic dataflow graphs [12][48], and have been imple-
ment in the Boolean dataflow domain in Ptolemy. For fully general dataflow models, it is still nec-

essary to have some responsibilities deferred to a runtime scheduler [12].

2.5.4 The tagged-token model

An execution model developed by Arvind and Gostelow [5][6] actually generalizes the
dataflow process network model. In this model, each token has a tag associated with it, and firing
of actors is enabled when inputs with matching tags are available. Outputs to a given stream are
produced with distinct tags. An immediate consequence is that there is no need for a FIFO disci-
pline in the channels. The tags keep track of the ordering. More importantly, there is no need for
the tokens to be produced or consumed in order. The possibility for out-of-order execution allows
us to construct dataflow graphs that would deadlock under the FIFO scheme but not under the

tagged-token scheme. We will consider a detailed example below, after developing a usable lan-

guage.

3.0 Experimenting with Language Design

The dataflow process network model, as defined so far, provides a framework within
which we can define a language. To define a complete language, we would need to specify a set of
primitive actors. Instead, I will outline a coordination language, leaving the design of the primi-
tives somewhat arbitrary. There are often compelling reasons to leave the primitives unspecified.
Many graphical dataflow environments rely on a host language for specification of these primi-
tives, and allow arbitrary granularity and user extensibility. Depending on the design of these
primitives, the language may or may not be functional, may or may not be able to express nonde-

terminism, and may or may not be as expressive other languages.
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Granular Lucid, for example, is a coordination language with the semantics of Lucid [41].
Coordination languages with dataflow semantics are described by Suhler et al. [76], Gifford and
Lucassen [29]; Onanian [61], Printz [65], and Rasure and Williams [67]. Contrast these to the
approach of Reekie [68] and the DSP Station from Mentor Graphics [26], where new actors are
defined in a language with identical semantics to the visual language. There are compelling
advantages to that approach, in that all compiler optimizations are available down to the level of
the host language primitives. But the hybrid approach, in which the host language has imperative
semantics, gives the user more flexibility. Since our purpose in this paper is to explore the data-

flow process networks model fully, this flexibility is essential.

3.1 The Ptolemy system

To make the discussion concrete, I will use the Ptolemy software environment [15] to

illustrate some of the tradeoffs. It is well suited for several reasons:

* It has both a visual (“block diagram”) and a textual interface; the visual interface similar in

principle to many of those used in signal processing software environments.

* It does not have any model of computation built into the kernel, and hence can be used to

experiment with variations on the model of computation.

* Three dataflow process network “domains” have already been built in Ptolemy, precisely to

carry out such experiments. I can use, compare, and extend these.

* The set of primitive actors is easily extended (using C++ as the host language). This gives us

more than enough freedom to test the limits of the dataflow process networks model of com-
putation.

A domain in Ptolemy is a user-defined subsystem implementing a particular model of computa-
tion. Three Ptolemy domains have been constructed with dataflow semantics, and one with more
general process network semantics. The synchronous dataflow domain (SDF) [50] [51] is particu-
larly well suited to signal processing [14], where low-overhead execution is imperative. The SDF
domain makes all scheduling decisions at compile time. The dynamic dataflow domain (DDF)

makes all scheduling decisions at runtime, and is therefore much more flexible. The Boolean
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datafiow domain (BDF) attempts to make scheduling decisions for dynamic dataflow graphs at
compile time, using the so-called token-flow formalism [12][48]. It resorts to run-time scheduling
only when its analysis techniques break down. The communicating processes domain (CP) uses a

multitasking kernel to manage process suspension and resumption.

Ptolemy supports two distinct execution models, interpreted and compiled. Compilation
can be implemented using a simple code generation mechanism, allowing for quick experimenta-
tion, or it can be implemented using more sophisticated transformation and optimization tech-
niques. Such optimization may require more knowledge about the primitives than the simple code

generation mechanism, which simply stitches together code fragments defining each actor.

3.2 Visual hierarchy — the analog to procedural abstraction
In keeping with the majority of signal processing programming environments, I will use a
visual syntax for the interconnection of dataflow processes. In fact, in Ptolemy, a program is not
entirely visual, since the actors and data structures are defined textually, using C++. Only the
gross program structure is described visually. The visual equivalent of an expression, of course, is
a subgraph. Subgraphs can be encapsulated into a single node, thus forming a larger dataflow pro-
cess by composing smaller ones. This is analogous to procedural abstraction in imperative lan-

guages and functional abstraction in functional languages.

3.2.1 Determinacy and referentlial transparency
To make the dataflow process network determinate, as discussed above, it is sufficient for
the actors to have two properties; their mappings from input tokens to output tokens should be
functional (free from side effects), and the firing rules for each actor should be sequential, in the
technical sense given above. If our actors have these properties, then our language has referential
transparency, meaning that syntactically identical expressions have the same value regardless of
their lexical position in the program.

With referential transparency, the two subgraphs shown in figure 5 are equivalent. The two
inputs to the identical dataflow processes A are identical streams, so the outputs will be identical.
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If the primitive actors are functional, then hierarchical actors may be functional as well, but there

are some complications due to scheduling, directed loops in the graph, and delays.

3.2.2 Functional behavior and hierarchy
In modern languages, it is often considered important that abstractions be semantically lit-
tle different from language primitives. Thus, if the primitive actors are functional, the hierarchical
nodes should be functional. If the primitive actors have firing rules, then the hierarchical nodes
should have firing rules. We will find this goal problematic.

A hierarchical node in a dataflow process network has a subnetwork and input/output

ports, as shown in the examples in figure 6. If we wish for the subnetwork to fire as a unit, as if it

Figure 5. Referential transparency implies that these two dataflow process
' networks are equivalent.

(c)

Figure 6. Hierarchical nodes In a dataflow process network may not be
functional even If the primitives are functional. The large
arrowheads Indicate input and output for the hlerarchical node.
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were a primitive, then the firing must be free of side effects. This is not always possible. Consider
the example in figure 6a. Note first that to avoid deadlock, it must be possible for actor A to fire (at
least the first time) without any tokens at its top input port. Such a feedback loop will typically be
used to implement a recurrence, in which case the feedback channel will store tokens from one
firing of the hierarchical node for use in the next firing. With this usage, the hierarchical node has
state, and is therefore not functional.

3.23 Delays, stéte, recurrences, and recursion
The hierarchical node shown in figure 6b is more typical. The shaded diamond is a delay,
which is typically implemented as an initial token in the channel. This initial token enables the
first firing of actor A if it requires a token on the top input. It is called a “delay” because for any
channel with a unit delay, the n-th token read from the channel is the (n — 1)-th written to it. A
feedback loop with delay effectively stores state, making the hierarchical node non-functional.

The delay shown in figure 6(b) is typically implemented using the “cons” operator to ini-
tialize streams when streams are based on the recursive-cons model [47]. It is roughly equivalent
to the “D” operator in the tagged-token model [6]. It is the visual equivalent of “fby” (followed-
by) in Lucid [75] and the “->” operator in Lustre [32]. In the single assignment language Silage,
developed for signal processing [35], a delay is written “x@1”. This expression refers to the
stream “x” delayed by one token, with the initial token value defined by a declaration like
“x@@1 = value.” For example,

Xx=14+x@1;
x@@1 =0;

defines a stream consisting of all non-negative integers, in order.

In functional languages, instead of using a recurrent construct like a delay, state is usually
carried in the program using recursion. Consider, for example, the following Haskell program,
which adds the elements of a list or stream, given by Reekie [68]:

integrate xs = scanl (+) 0 xs
where scanl is a higher order function defined in Haskell as follows:
scanl (f, init, 1) = init
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scanl (f, init, (x:xs)) = f (x, scanl (f, init, xs))
These two definitions use template matching; the first is invoked if the third argument is an empty
list. The init gives the initial value for the sum, equivalent to the value of the initial token in a
delay. The syntax (x:xs) divides a list into the first element (x) and the rest (xs). The program uses
recursion to carry state, via the higher-order function scan. It has been observed that for efficiency
this recursion must be translated into an iterative implementation [40][25][28]. For streams this is

mandatory, since otherwise the depth of the recursion could become extremely large.

Delays in a hierarchical node can make the node non-functional even if it is not in a feed-
back loop. Consider the example in figure 6¢c. Following Lee and Messerschmitt [50], the “1”
symbol next to the output of C; means that it produces one token when it fires. The “1” next to
the input of C, means that it consumes one token when it fires. A reasonable firing of the hierar-
chical node would therefore consist of one firing of C, and one of C, . But under this policy, state
will have to be preserved on the arc connecting the two actors between firings, again making the
hierarchical node non-functional.

3.24 Firing subgraphs — the balance equations
This last example raises the question of how to determine how many firings of the constit-
uent actors make up a “reasonable” firing of a hierarchical node. One approach would be to solve
the balance equations of [48][50][51] to determine how many firings of each actor are needed to
return a subsystem to its original state. By “original state” we mean that the number of uncon-
sumed tokens on each internal channel (arc) should be the same after the firing as before. For the

example in figure 6c, the single balance equation is

re, X1 = re,x1, ' (19)
where 7. is the number of firings of C,; that returns the subsystem to its original state (and thus
keeps it “in balance”). For dynamic dataflow graphs, these balance equations are a bit more com-

plicated, but often lead to definitive conclusions about the relative number of firings of the actors
that are required to maintain balance.
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Unfortunately, two problems arise. First, some useful systems have balance equations with
. no solution [12][13]. Such systems are said to be inconsistent, and generally have unbounded
memory requirements. A simplified (and probably not useful) example is shown in figure 6d. The

balance equations for this subsystem are (one for each arc)

’ClXI = rcle, (20)
’C,XI = ’c,"l' (21)
rC2x2 = "(:3)‘1' (22)

These equations have no solution. Indeed, any set of firings of these actors will leave state in the
_ subsystem, so no firing pattern would result in a functional hierarchical node.

To hint that inconsistent systems are, in fact, useful, consider an algorithm that computes
an ordered sequence of integers of the form 2“31’5c for all a, b, c 2 0. This problem has been
considered by Dijkstra [27] and Kahn and MacQueen [44]. A dataflow implementation equivalent
to the first of two by Kahn and MacQueen is shown in figure 7a. The “merge” block is an ordered
merge [48]; given a nondecreasing sequence of input values on two streams, it merges them into a
single stream of nondecreasing values, and removes duplicates. An more efficient implementation
that does not generate such duplications (and hence does not need to eliminate them) is given in
figure 7b. It is also inconsistent. Neither of these implementations has bounded memory require-

ments.

3.25 Side effects and state
Some of the problems with directed loops could be solved by requiring all delays to
appear only at the top level of the hierarchy, as was done for example in the BOSS system [72].
This is awkward, however, and anyway provides only a partial solution. A better solution is sim-
ply to reconcile the desire for functional behavior with the desire to maintain state. This can be
done simultaneously for hierarchical nodes and primitives, greatly increasing the flexibility and
convenience of the language, while still maintaining the desirable properties of functional behav-

ior.
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The basic observation is that internal state in a primitive or a hierarchical node is syntactic
sugar (a convenient syntactic shorthand) for feedback loops at the top level of the graph. In other
words, there is no reason to actually put all such feedback loops at the top level if semantics can
be maintained with a more convenient syntax. With this observation, we can now allow actors
with state. These become more like objects than functions, since they represent both data and
methods for operating on the data. The (implicit) feedback loop around any actor or hierarchical
node with state also establishes a precedence relationship between successive firings of the actor.
This precedence serializes the actor firings, thus ensuring proper state updates.

Once we allow actors with state, it is a simple extension to allow actors with other side
effects, such as those handling I/O. The inherently sequential nature of an actor that outputs a
stream to a file, for example, is simply represented by a feedback loop that does not carry any
meaningful data, but establishes precedences between successive firings of the actor.

(®

Figure 7. Two Inconsistent dataflow graphs that compute an ordered sequence of
integers of the form 22395, The triangular icons multiply thelir inputs by
the indicated constant. The delay Icon (a diamond) represents an Initial
token with value 1, 3, or 5, as annotated.

DATAFLOW PROCESS NETWORKS 29 of 52



Experimenting with Language Design

3.3 Function arguments — parameters and input streams

In Ptolemy, as in many software environments of this genre, there are three phases to the
execution of a program. The sefup phase makes a pass over the hierarchical program graph initial-
izing delays, initializing state variables, evaluating parameters, evaluating whatever portion of
the schedule is pre-computed, and performing whatever other setup functions the program mod-
ules require. The run phase involves executing either the pre-computed schedule or a dynamic
schedule that is computed on-the-fly. If the run is finite (it often is not), there is a wrapup phase, in
which allocated memory is freed, final results are presented to the user, and any other required

cleanup code is executed.

The parameters that are evaluated during the setup phase are often related to one another
* via an expression language. Thus, parameters represent the part of the computation that does not
operate on streams, in which values that might be used during stream processing are computed.
Some simple examples are the gain values associated with the triangular icons in figure 7 or the
initial values of the delays in the same figure. In principle, these values may be specified as arbi-

trarily complex expressions.

The gain blocks in figure 7 may be viewed as functions of arity two, the multiplying con-
stant and the input stream. But unlike any functional language that I know of, a clear distinction is
made between parameter arguments and stream arguments. This distinction is both syntactic and
semantic. The syntax in Ptolemy is to use a textual expression language to specify the value of the
parameters, using a parameter screen like that in figure 8. This expression language has some of
the trappings of a standard programming languages, including types and scoping rules. It could be
entirely replaced by a standard programming language, although preferably one with declarative

semantics.

Parameters are still formally viewed as arguments to the function represented by the actor.
But the syntactic distinction between parameters and stream arguments is especially convenient in
visual programming. It avoids cluttering a diagrammatic program representation with a great
many arcs representing streams that never change in value. Moreover, it makes the job of a com-

piler or interpreter simpler, removing the optimization step of identifying such static streams. In
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Ptolemy, when compiled mode is used for implementation, code generation occurs afer the
parameters have been evaluated, thus allowing highly-optimized, application-specific code to be
generated. For example, instead of a single telephone channel simulator subroutine capable of
simulating any combination of impairments, a optimized code that takes advantage of the fact that
the third harmonic distortion is set to zero (see figure 8) can be synthesized. This becomes partic-
ularly important when the implementation is via hardware synthesis, as is becoming increasingly

common in signal processing systems.

Sometimes, all of the arguments to a function are parameters, in which case we call the

actor a source, since it has no dynamic inputs (see, for example, the A and B actors in figure 4).

l.l.near-m'stortinnTaps 3 ( $PTOLEMY/src/domains/sdf/demo/telChanImpulseResp.data

noise: : : 0.05

phasel 1tterFreqﬁency_Hz : i60

phaselitterAmplitude_Deg: - i10

frequencyOffset_Hz: . 0.0

secongHarmonic: 0.4

thirdHarmonic: L 0.0

o Appl elephone

[@] Edit P

; Edit Par§

gain: - jnoise
i oK f fpely

Figure 8. Top: A typical parameter screen in Ptolemy for a hierarchical node
that models a telephone channel. The first parameter is given as a
reference to a file. The icon for the node is shown to the right. The
next level down in the hierarchy is shown in the lower right window.
At the lower left, the parameter screen shows that the parameter for
the Gain actor inherits its value from the “noise” parameter above it
in the hierarchy. Parameter values can also be expressions.
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Referential transparency for source actors is also preserved, as long as the parameters are consid-
- ered. Thus, the transformation shown in figure 5 is now possible only if the actors or subgraphs
being consolidated have identical parameters. Thus, with these syntactic devices (actors with
state, delays, and actors with parameters as well as inputs), referential transparency is still possi-

ble. I call such actors generalized functional actors.

3.4 Firing rules and strictness

A function is strict if it requires that all its arguments be present before it can begin com-
putation. A dataflow process, viewed as a function applied to a stream, clearly should not be strict,
in that the stream should not have to be complete for the process to begin computation. The pro-
cess is in fact defined as a sequence of firings that consume partial input data and produce partial
output data. But in our context, this is a rather trivial form of non-strictness.

A dataflow process is composed of a sequence of actor firings. The actor firings them-
selves might be strict or non-strict. This is determined by the firing rules. For example, an actor
formed from the McCarthy amb function is clearly non-strict, since it can fire with only one of the
two arguments available. A process made with this actor, however, is not continuous, and the pro-

cess is non-determinate.

It is possible to have a determinate process made of non-strict actors. Consider

select (x, L, true) =x

select (L, y, false) =y
The firing rules implied by this definition are sequential, since a token is required for the third
argument, and the value of that argument determines which firing rule applies. Moreover, select is
functional, so a process made up of repeated firings of this actor is determinate. The Ptolemy icon
for this process is shown in figure 9. This function, however, is clearly not strict, since the func-
tion does not require that all three arguments be present. Moreover, we will see that this non-
strictness is essential for the most general form of recursion. The fact that non-strictness is essen-

tial for recursion has been observed before, of course [38].
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The next natural question is whether hierarchical nodes should be strict. The example
shown in figure 10 suggests a definitive “no” for the answer. A hierarchical node A is composed
of subprocesses B and C as shown in the figure. When considering only the expanded definition in
figure 10b, we might identify a strict actor consisting of a firing of each of B and C, in either
order, once both inputs to the meta actor were available. However, when connected as shown in

figure 10a, the network deadlocks, quite unnecessarily.

All three dataflow domains in Ptolemy have non-strict hierarchical nodes. To implement
this, most schedulers used in these domains take a simple approach; they flatten the hierarchy
before constructing a schedule. This approach may be expensive for large programs with repeated
use of the same hierarchical nodes, but it does the job. At least one more sophisticated scheduler
[11] constructs strict hierarchical nodes (when this is safe) through a clustering process, in order
to build more compact schedules. It ignores the user-specified hierarchy in doing this.

o

Figure 9. Switch and Select actors in the dynamic dataflow domains of
, Ptolemy. These are determinate actors that merge or split streams
under the control of a Boolean stream.

!

(a) (b)

Figure 10. A hierarchical node Ain a simple subnetwork (a) and its expanded
definition (b). If the actor A is strict, the subnetwork in (a) deadlocks.
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3.5 Recurrences and Recursion

Functional languages such as Haskell commonly use recursion to carry state. The compa-
rable mechanism for dataflow process networks is feedback loops, usually with initial tokens, as
shown in figure 6a and 6b. These feedback loops specify recurrence relations rather than recur-
sion. Ida and Tanaka have also noted the advantages of this representation [40]. A consequence of
this is that recursion plays a considerably reduced role in dataflow process networks compared to

functional languages. But this does not mean that recursion is not useful.

Consider the “sieve of Eratosthenes,” an algorithm considered by Kahn and MacQueen
[44]. It computes prime numbers by constructing a chain of “filters”, one for each prime number it
has found so far. Bach filter removes from the stream any multiple of its prime number. The algo-
rithm starts with a single filter for the prime number 2 in the chain and runs each successively
larger integer through the chain of filters. Each time a number gets through to the end of the chain,
it must be prime, so a new filter is created and added to the chain. A recursive implementation of
this algorithm is concise, convenient, and elegant, although of course we can express any recur-
sive algorithm iteratively [38].

A recursive implementation in the dynamic dataflow domain of Ptolemy is shown in fig-
ure 11. The icon with the concentric squares is actually a higher-order function (explained further
below) that invokes a named hierarchical node (sift) when it fires. In this case, the named hierar-
chical node is a recursive reference to the very hierarchical node in which the icon appears. More
direct expression of recursion is not yet supported by the Ptolemy graphical interface, although it
is supported in the underlying kernel.

Note that recursion in figure 11 expresses a “mutable graph”, in that the structure of the
graph changes as the program executes. Such dynamics are also permitted by Kahn and Mac-
Queen [44] and in TLDF [76]. Mutability, however, considerably complicates compile-time anal-
ysis of the graph. The compile-time scheduling methods in [12] and [50] have yet to be extended
to recursive graphs. This raises the interesting question of whether recursion precludes compile-
time scheduling. We find, perhaps somewhat surprisingly, that often it does not. To illustrate this

point, we will derive a recursive implementation of the fast Fourier transform (FFT) in the syn-
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chronous dataflow domain in Ptolemy, and show that it can be completely scheduled at compile
time. It can even be statically parallelized, with the recursive description imposing no impedi-
ment. The classic derivation of the FFT leads directly to a natural and intuitive recursive represen-

tation. For completeness, we repeat this simple derivation here.

The N -th order discrete Fourier transform DFT of a sequence x (n) is given by

i eratosthenes

filter

Figure 11. A recursive implementation of the sieve of Eratosthenes in the
dynamic dataflow domain in Ptolemy. The top-level system (with just
three actors) produces all the integers greater than 1, filters them for

prlcr:n‘es, and displays the results. Other icons are explained once
each.
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N-1 —i{ 2%\ n
X, = Ex(n)eJ(N) (23)
n=0

for 0 <k <N. To get the values for other k, simply periodicaﬂy repeat the values given above
with period N . Define

e

Wy (24)
and note the following properties:
Wy = Wy, and Wy ** = W, (25)
Using this we can write
N-1 N-2 N-1
kn kn kn
X, = Zx(n)WN = zx(n)WN+ Zx(n)WN (26)
n=0 n=0 n=1
n even n odd
By change of variables on the summations, this becomes
(N2) -1 ¢ (NR2) -1 ‘ ¢ _
Xe= Y x(2n) WN','2+( Yy x(2n- l)WN';z)WN. (@7)
n=0 n=0

This is the key step in the derivation of the so-called “decimation-in-time FFT”; the first summa-
tion is the (N/2) order DFT of the even samples, while the second is the (N/2) order DFT of

odd samples. Thus, in general, we can write

DFTy(x(n)) = DFTy, (x(n);n even) + W:,DF Tnp (x(n);n odd) . (28)
Recall that DFTy (x (n)) is periodic with period N, so DF Tynp (x(n) ;n even) is periodic with
period N/2.

From this, we arrive at the recursive specification shown in figure 12. The first actor is a
distributor, which collects two samples each time it fires, routing the first one to the top output
and the second one to the lower output. The recursive invocation of this block accomplishes the
decimation in time. The outputs of the distributor are connected to two IfThenElse blocks, repre-

sent one of two possible replacement subsystems. When the order parameter is larger than some
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threshold, the /fThenElse block replaces itself with a recursive reference to the galaxy within
which it sits. When it gets below some threshold, then the [fThenElse block replaces itself with
some direct implementation of a small order FFT. The [fThenEise block is another example of a
higher-order function, and will be discussed in more detail below. The repeat block takes into
account the periodicity of the DFTs of order N/2 without duplicating the computation. The exp-
gen block at the bottom simply generates the W,f, sequence. The sequence might be precomputed,

or computed on the fly.

A more traditional visual representation of an FFT is shown in figure 13. This representa-
tion is extremely inconvenient for programming, however, since it cannot represent FFTs of the
size typically used (128 to 1024 points). Moreover, any such visual representation has the order of
the FFT and the granularity of the specification hard-wired into the specification. It is better to
have both parameterized, as in figure 12. Moreover, I would argue that the visual representation in

figure 12 is more intuitive, since it is a more direct representation of the underlying idea.

An interesting generalization of the conditional used in the recursion in figure 12 would
use templates on the parameter values to select from among the possible implementations for the

node. This would make the recursion stylistically identical to that found in functional languages

Figure 12. A recursive specification of an FFT implemented in the SDF domain
In Ptolemy. The recursion is unfolded during the setup phase of the
execution, so that the graph can be completely scheduled at
compile time.

DATAFLOW PROCESS NETWORKS 37 of 52



Experimenting with Language Design

like Haskell, albeit with a visual syntax. This can be illustrated with another practical example of

an application of recursion.

Consider the system shown in figure 14. It shows a multirate signal processing applica-
tion: an analysis/synthesis filter bank with harmonically spaced subbands. The stream coming in
at the left is split by matching highpass and lowpass filters (labeled “QMF”). These are decimat-
ing polyphase FIR filters, so for every two tokens consumed on the input, one token is produced
on each of two outputs. The left-most QMF only is labeled with the number of tokens consumed
and produced, but the others behave the same way. The output of the lowpass side is further split
by a second QMEF, and the lowpass output of that by a third QMF. The boxes labeled “F” represent
some function performed on the decimated stream (such as quantization). The QMF boxes to the

right of these reconstruct the signal using matching polyphase interpolating FIR filters.

x(0) X(0)
x(2 X(1)
x(1). X(2)
x(3 X(3)

Figure 13. A fourth-order decimation-in-time FFT shown graphically. The order
of the FFT, however, Is hard-wired into the representation.

o F
1 s 1
= 1. B
| GMA— y L — M
LOMA— —OMF
QMF|—¢|_F_:MF

Figure 14. An analysis/synthesis fliter bank under the SDF model. The depth of
the filter bank, however, Is hard-wired Into the representation.
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There are four distinct sample rates in figure 14 with a ratio of 8 between the largest and
the smallest. This type of application typically needs to be implemented in real time at low cost,
so compile-time scheduling is essential.

The graphical representation in figure 14 is useful for developing intuition, and exposes
exploitable parallelism, but it is not so useful for programming. The depth of the filter bank is
hard-wired into the visual representation, so it cannot be conveniently made into a parameter of a
filter-bank module. The representation in figure 15 is better. A hierarchical node called “FB”, for
“filterbank” is defined, and given a parameter D for “depth” . For D > 0 the definition of the block
is at the left. It contains a self-reference, with the parameter of the inside reference changed to D -
1. When D=0, the definition at the right is used. The system at the top, consisting of just one
block, labeled “FB(D = 3)”, is exactly equivalent to the representation in figure 14, except that the
visual representation does not now depend on the depth. The visual recursion in figure 15 can be
unfolded completely at compile time, exposing all exploitable parallelism, and incurring no

unnecessary run-time overhead

3.6 Higher-Order Functions

In dataflow process networks, all arcs connecting actors represent streams. The icons rep-
resent both actors and the processes made up of repeated firings of the actor. Functional languages

often represent such processes using higher order functions. For example, in Haskell,

map fxs
—{ FB(D=3) |}~
FB(D > 0)
LI = 1 FB(D=0)
2 2 — F |-
— ] 4 -
QMHA—{ FB(D=D-1) |—>laMF

Figure 15. A recursive representation of the filter bank application. This
representation uses template matching.
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+ applies the function f'to the list xs. Every single-input process in a dataflow process network con-
stitutes an invocation of such a higher order function, applied to a stream rather than a list. In a
visual syntax, the function itself is specified simply by the choice of icon. Moreover, Haskell has
the variant

zipWith fxs ys
where the function f has arity two. This corresponds simply to a dataflow process with two inputs.
Similarly, the Haskell function

scanl fa xs
takes a scalar a and a list xs. The function fis applied first to a and the head of xs. The function is
then applied to the first returned value and the second element of xs. A corresponding visual syn-

tax for a dataflow process network is given in figure 16.

Recall our proposed syntactic sugar for representing feedback loops such as that in figure
16 using actors with state. Typically the initial value of the state (a) will be a parameter of the
node. In fact, dataflow processes with state cover many of the commonly used higher-order func-
tions in Haskell.

The most basic use of icons in our visual syntax may therefore be viewed as implementa-
tion a small set of built-in higher-order functions. More elaborate higher-order functions will be
more immediately recognizable as such, and will prove extremely useful. Pioneering work in the
use of higher-order functions in visual languages was done by Hills [36], Najork and Golin [59],
and Reekie [68]. We will draw on this work here.

I created an actor in Ptolemy called Map that generalizes the Haskell map. It has a param-

eter that specifies another actor (primitive or hierarchical) by name. That actor defines one or

Figure 16. Visual syntax for the dataflow process network equivalent of the
Haskell “scanl f a xs” higher-order function.
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more processes that are applied to any number of input streams. Its icon is shown in figure 17a. A
simple example of its use is shown in figure 17c. In that figure, three Ramp actors generate three
streams consisting of increasing integers. The Map actor simply applies any named actor to those
three streams. If the named actor has a single input, then three instances will be created. The

parameters of the three instances can be set independently via the parameters of the Map actor.

My implementation of Map is simple but effective. It simply creates one or more instances
of a the specified actor (which may itself be a hierarchical node) and splices those instance into its
own position in the graph. Thus, we call the specified actor the replacement actor, since it takes
the place of the Map actor. The Map actor then self-destructs. This is done in the setup phase of
execution so that no overhead is incurred for the higher order function during the run phase of

execution, which for signal processing applications is the most critical.

Map

(a)

elc.

etc.

MapGr

(c)

(b)

Figure 17. (a) An Icon for a simple higher-order function in Ptolemy, Map, which
applies a named actor to its input streams. (b) A variant of Map where the
actor to apply to the input streams Is specified graphically instead of
textually. (c) A simple use of the two types of Map actors where three
ramps (linearly increasing sequences) have three instances of a named
actor applied to them and the three resulting streams are displayed
using TkText.
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In the visual programming languages ESTL [59] and DataVis [36], higher-order functions
use a “function slots” concept, visually representing the replacement function as a box inside the
icon for the higher-order function. I have implemented in Ptolemy a conceptually similar visual
representation, using the icon shown in figure 17b. The replacement actor is graphically con-
nected to the (rather elaborate) icon, as shown in figure 17c. There, at the right, a version of the
MapGr actor (one with inputs but no outputs) specifies that the TkText actor should be applied to
each of the input streams. Notice also that the streams going from the Map to the MapGr are com-
pactly represented using the Ptolemy bus icon, a slash through the connecting wire. The bus icon

has a single parameter, the width of the bus.

A number of additional variations are possible. First, the replacement actor may have arity
larger than one, in which case the input streams are grouped in appropriately sized groups to pro-
vide the arguments for each instance of the specified actor. For example, if the replacement actor
has arity two, and there are 12 input streams, then six instances of the actor will be created. The

first instance will process the first two streams, the second the next two streams, etc.

Another variation is a Map actor with no input. In this case, the number of instances of the
replacement actor that are created must match the number of output streams. An example that
uses this concept is shown in figure 17. It again uses the bus icon to represent a collection of
streams. The program in figure 17 generates an approximation to a square wave by adding a finite
number of sinusoids. The PafSourcesGr actor, which is the version of MapGr with no inputs, has
singen as its replacement actor. The singen actor is a hierarchical node that generates a sinusoidal
sequence of the specified frequency. In this case, the parameter_map designates that the frequen-
cies should be (2n/period) for the first singen actor, (6 7t/ period) for the second singen actor, etc.
In other words, the singen actors should generate a fundamental and all the odd harmonics. The
MapGr actor applies a gain of 4/n(2i - 1) to each sinusoid, where i is the index of the sinusoid.
These gain values are the Fourier series coefficients for a square wave. The Add actor simply adds

all its inputs. The XMgraph actor plots the signal, as shown in figure 19.

Since the Map actor always creates at least one instance of the replacement actor, it cannot

be used directly for recursion. Such a recursion would never terminate. A variant of the Map actor
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can be defined that instantiates the replacement actor(s) only at run time. This is (essentially) what
we used in figure 11 to implement recursion. Using dynamic dataflow, the dynamic Map actor
fires conditionally. When it fires, it creates an instance of its replacement actor (which may be a

hierarchical node recursively referenced), and self-destructs.

The dynamic Map was the first higher-order function implemented in Ptolemy (it was
implemented under a different name by Soonhoi Ha). Its runtime operation is quite expensive,

however, requiring dynamic creation of a dataflow graph. So there is still considerable motivation

Approximate a Square Wave by a
Finite Number of Sinusoids

parameter_map:
gain = 4/(P|’(2"instance_number-1))

sind

etc.

ParSourcesGr

parameter_map:
frequency = 2"PI*(2"instance_number-1)/period

Figure 18. The Map actor in Ptolemy can be used with no inputs, in which case,
the number of instances of the replacement actor that are created
must match the number of outputs. The slash through a wire
indicates a bus, which represents a collection of streams.

1.00 - -
0.50 |- d
0.00 |- , -
-0.50 i
b I

0.00 100.00 200.00 300.00 400.00

Figure 19. First 400 values computed by the program in figure 17. It is an
approximation to a square wave computed by adding 10 sinusoids.
Thus, the bus widths in figure 17 are 10.
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-+ for recursion that can be statically unrolled, as done in figure 12. In fact, that system is imple-

mented using another higher-order function, [fThenElse, which is derived from Map. The
IfThenElse actor takes two replacement actors as parameters plus a predicate. The predicate spec-
ifies which of the two replacement actors should be used. That actor is expanded into a graph
instance and spliced into the position of the [fThenElse actor. The IfThenElse actor, like the Map
actor, then self-destructs. Since the unused replacement actor argument is not evaluated, the
semantics are non-strict, and the IfThenElse actor can be used to implement recursion. The recur-
sion is completely evaluated during the setup phase of execution (or at compile time), so the

recursion imposes no runtime overhead during the run phase.

The higher order functions above have a key restriction: the replacement actor is specified
by a parameter, not by an input stream. Thus, I avoid embedding unevaluated closures in streams.
- In Ptolemy, since tokens that pass through the channels are C++ objects, it would not be hard to

implement the more general form. It warrants further investigation.

3.7 The tagged-token execution model
Recall that the tagged-token execution model developed by Arvind and Gostelow [51[6]

allows out-of-order execution. This allows some dataflow graphs to produce output that would

deadlock under the FIFO channel model. An example is shown in figure 20. This graph computes

@g. 3 A i C D
N F NI N |
(+) N-1 F (N1 | (N2)
N-2 F (N2)! | (N-3)!
1
2 F 2 1
1 T 1 1
0 T 1

Figure 20. This factorial program deadlocks without out-of-order execution, as
provided for example by the tagged token model.
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N! if out-of-order execution is allowed, but deadlocks without producing an output under the
FIFO model. The sequence of values on the labeled arcs is given in the table in the figure.

The loop at the left counts down from N to 0, since the delay is initialized to N and the
value circulating in the loop is decremented by 1 each time around. The test (diamond shape)
compares the value at A to 1. When A<1, it outputs a True. Until that time, the select is not
enabled, because there are no tokens on the False input. But notice that at that time, the queue at
the control input (B) of the select has N Falise tokens followed by one True token. The False
tokens still cannot be consumed. If out-of-order execution is not allowed, then the select will
never be able to fire. However, since the select has no state, there is no reason to prohibit out-of-

order execution.

Out-of-order execution requires bookkeeping like that provided by the tagged-token
model. The consumption of the True token is by the (N+1)-th firing (logically) of the select. Thus,
the 1 produced at its output is (logically) the (N+1)-th output produced by the select. Hence, at C,
- we show the 1 output as the last entry in the table, even though it is the first one produced tempo-
rally. The logical ordering must be preserved.

Recall that a delay is an initial token on a channel. The delay at the left is an ordinary
delay, where the initial token is initialized to value N. The delay on the right, however, is some-
thing new, a negative delay. Instead of an initial token, this delay discards the first token that
enters the channel. It can be implemented in a variety of ways, one of which is shown in figure 21.
The effect of the negative delay is shown in column D; the first token (logically, not temporally)
produced by the select is discarded by the negative delay. Thus, the 1 produced by the (N+1)-th
firing (logically) of the select must be consumed by the N-th firing of the multiply at the upper

Figure 21. One way to implement a negative delay, which discards the first
token that arrives on the Input stream.
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right. The other input of the multiply has a value “1” as its N-th input (A), so the N-th output (log-
ically) or first output (temporally) of the multiply is 1 x 1 = 1. This makes available the N-th
token (logically) of the select False input, which can now be consumed by the N-th firing (logi-
cally) of the select. The “1” produced here will be multiplied by 2, enabling the (N-2)-th firing of
the select. We continue until the first firing (logically) of the select produces N!. At this point,
there are N +1 tokens at the downsampler input (the icon at the bottom with the downward arrow),
enabling it. It consumes these tokens and outputs the first one (logically). Thus the output of the

downsampler is N1.

Note that although this might appear to be an unduly complicated way to compute a facto-
rial, it nonetheless demonstrates that enabling out-of-order execution does increase the expres-
siveness in the language. Of course, this has limited value if its only use is to represent obscure
- and unnecessarily complicated algorithms.

3.8 Data types and polymorphism

A key observation about our dataflow process networks so far is that the only datatype
represented visually is the stream. The tokens on a stream can have arbitrary type, so this
approach is more flexible than it sounds like at first. For instance, we can embed arrays into
streams either directly by sequencing the elements of the array, or by encapsulating each array
into a single token, or by generalizing to multidimensional streams [49][75]. In Ptolemy, tokens
can contain arbitrary C++ objects, so the actors can operate on these tokens in rather sophisticated

ways, making effective use of data abstraction.

Ptolemy networks are strongly typed. Each actor port (input or output) has a type, and type
consistency is statically checked. Polymorphism, in which a single actor can operate on any of a
variety of datatypes, is supported in a natural way.

Hudak distinguishes two types of polymorphism, parametric and ad-hoc (or overloading)
[38]. In the former, a function behaves the same way regardless of the data type of its arguments.
In the latter, the behavior can be different, depending on the type. Although in principle both are

supported in Ptolemy, we have made more use of parametric polymorphism in the visual pro-
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gramming syntax. The way that parametric polymorphism is handled is that actors declare their
inputs or outputs to be of type “anytype”. The actors then operate on the tokens via abstracted
type handles. '

Polymorphic blocks in Ptolemy include all those that perform control functions on
streams, like the commutator and distributor in figure 12. The Map actor is also polymorphic,
although in a somewhat more complicated way. Its inputs and outputs are declared to be “any-
type”, and type resolution is redone for actors connected to it after the substitution of the replace-

ment actor(s).

3.9 Parallelism

For functional languages, the dominant view appears to be that parallelism must be explic-
itly defined by the programmer by annotating the program with the processor allocation [38].
Moreover, as indicated by Harrison [33], the ubiquity of recursion in functional programs sequen-
tializes what would otherwise be parallel algorithms. Harrison proposes using higher-order func-
tions to express parallel algorithms in a functional language, in place of recursion. The parallel
implementation is accomplished by mechanized program transformations from the higher-order
function description. This is called “transformational parallel programming,” and has also been
explored by Reekie and Potter [70] in the context of process networks. The transformations could
also be interactive, supported by “meta-programming”. One transformation methodology is the
unfold/fold method of Burstall and Darlington [17], which is based on partial (symbolic) evalua-
tion and substitution of equal expressions.

In the dataflow community, by contrast, parallelism has always been implicit. This is, in
part, due to the scarce use of recursion. A dataflow graph typically reveals a great deal of parallel-
ism that can be exploited either by run-time hardware [3] or, if the firing sequence is sufficiently
predictable, a compiler [30][651[73](74].

Dataflow process networks can combine the best of these. Parallelism can be implicit, and
higher-order functions can be used to simplify the syntax of the graphical specification. The
phased execution, in which the static higher-order functions are evaluated during a setup phase, is
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analogous to the fold/unfold method of Burstall and Darlington [17], but there is no need for a
specialized transformation tool that “understands” the semantics of the higher-order functions.
Thus, parallelism is exploited equally well with user-defined higher-order functions as with those

that are built into the language.

Moreover, in a surprising twist, the use of static higher-order functions enables the use of
recursion without compromising parallelism. As long as the recursion can be evaluated during the
setup phase, it does not sequentialize the program. Thus, we regain much of the elegance that the
use of recursion lends to functional languages. An example (a recursive specification of an FFT)
is given above in figure 12. In situations where the recursion cannot be evaluated during the setup

phase, as in the sieve of Eratosthenes in figure 11, the algorithm is inherently sequential.

4.0 Conclusions

Signal processing software environments are domain-specific. Some of the techniques
they use, including (and maybe especially) their visual syntax has only been proven in this
domain-specific context. Nonetheless, they have (or can have) the best features of the best modern
languages, including natural and efficient recursion, higher-order functions, data abstraction, and

polymorphism.

This paper presents a theory of design that has been (at least partially) put into practice by
the signal processing community. In the words of Milner [53], such a theory “does not stand or
fall by experiment in the conventional scientific sense.” It is the “pertinence” of a theory that is

judged by experiment rather than its “truth”,
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